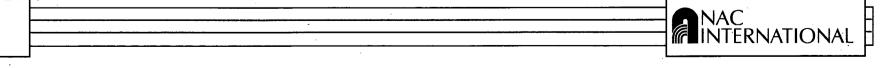

#### **NAC-LWT MOX SAR Amendment**



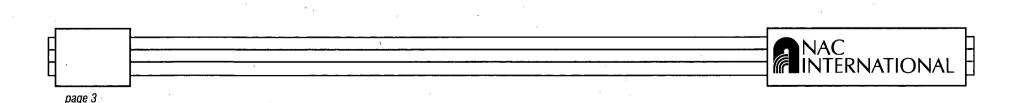
February 25, 2008


NAC International is a Wholly Owned Subsidiary of USEC Inc., the World's Leading Supplier of Enriched Uranium Fuel for Commercial Nuclear Power Plants.



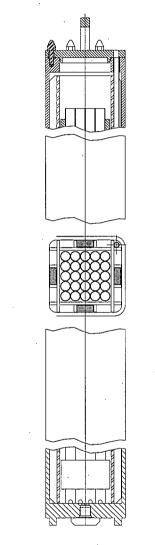
**MOX Applications** 

## NAC-LWT Legal Weight Truck Spent Fuel Transport Cask Docket #71-9225


MOX Transport Supporting Pu Disposition Program

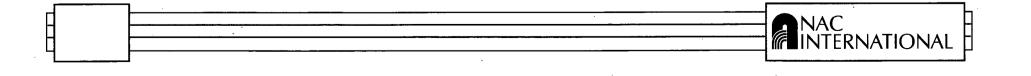


#### **MOX Amendment Summary**


NAC prepared and submitted an amendment request for the NAC-LWT CoC by revising the SAR to incorporate the following new content conditions:

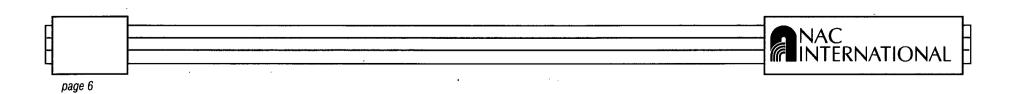
- Mixed Oxide (MOX) Fuel Rods irradiated in a pressurized light water reactor (PWR)
  - The new content requested for inclusion in the CoC is a mixed load of up to 16 MOX and PWR fuel rods (plus the ability to load nonfuel hardware into open tubes within the 5x5 array)
  - Current PWR/BWR rod transport canister and 5x5 insert will be used
  - Current CoC authorizes the transport of up to 25 PWR UO<sub>2</sub> rods in 5x5 insert contained in a PWR/BWR rod transport canister




#### **MOX Fuel Rod Shipping Configuration**

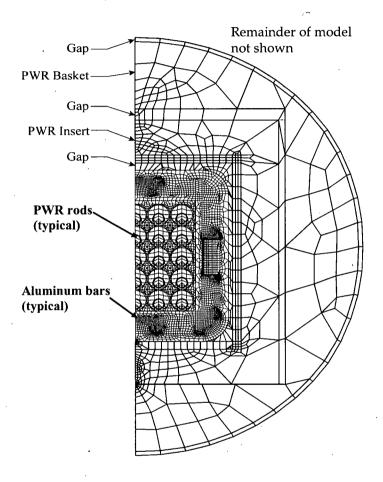
- Up to 16 MOX/PWR rods loaded into a licensed 5x5 insert
- Insert located in a free flow rod or screened rod transport canister
- Canister inserted into PWR basket insert loaded into PWR basket
- Transport configuration identical to current licensed shipping configuration for LWR rods except cask containment is in the leaktight configuration (i.e., all metal seals)






#### MOX Fuel Rod Structural and Thermal Evaluation Considerations



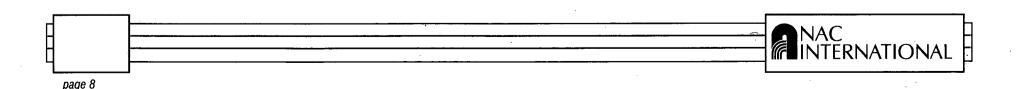

#### **Structural Considerations for MOX Fuel Rods**

- The MOX and PWR fuel rod payload is enveloped by the current content (25 PWR or BWR rods) maximum weight
- MOX rods are ≤2.75 kg per rod for a total load of < 1,300 lbs for the fuel rods, insert, transport canister and PWR basket spacer
- Current structural evaluations use a bounding load of 1,500 lbs
  - Corresponds to a permissible rod weight of 14 lbs (6.4 kg) per rod
- The proposed MOX fuel rod payload meets geometry requirements (i.e., length, diameter, etc.) of previous LWR rod evaluations
- Therefore, no change to the SAR structural evaluations were required



#### **Thermal Considerations for MOX Fuel Rods**

- Maximum heat load of 143 W per rod with a peaking factor of 1.1
- Total heat load for the MOX/PWR fuel rod contents is 16×143 W = 2.3 kW
- Maximum number of MOX rods is 16 in a 5x5 fuel rod insert
- Standard conditions are applied for the NAC-LWT thermal analysis:
  - Helium backfill in cask cavity
  - Package loaded in an ISO container
  - Condition 1 in SAR Section 3.4.1.7
- Current licensed condition for PWR high burnup rods is for 25 rods with a maximum heat load of 2.3 kW




ANSYS half-symmetry model of the cross-section of the 25-rod basket

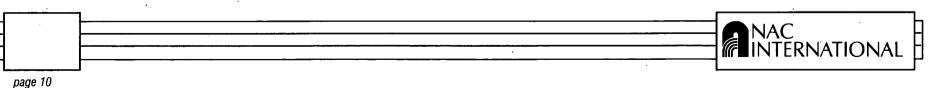


#### Thermal Considerations for MOX Fuel Rods (continued)

- Evaluation in Section 3.4.1.7 Rev. 38 of the NAC-LWT SAR applied a 2-D ANSYS model
  - Assigned 160 W heat load to each of the 25 rods (4 kW total)
  - Modeled 160 W heat load included a peaking factor for axial flux shape
  - Table 3.4-10 reports a maximum clad temperature of 671°F < 752°F (meets ISG 11, Revision 3)
- MOX amendment revised Section 3.4.1.7 (Normal) and Section 3.5.1.2 (Fire Accident) to provide justification that:
  - 143 W high burnup MOX/UO<sub>2</sub> rods, with a peaking factor of 1.1, are bounded by the heat load applied in the previous analysis (143 W x 1.1 = 158 W < 160 W</li>
  - Removal of 9 fuel rods at 160 watts per rod (1.44 kW total) significantly reduces fuel temperatures (no significant effect on system conductance)
  - Effect of reduced MOX thermal conductivity versus  $UO_2$  is not significant



### Summary of Nuclear Evaluations MOX Fuel Rods

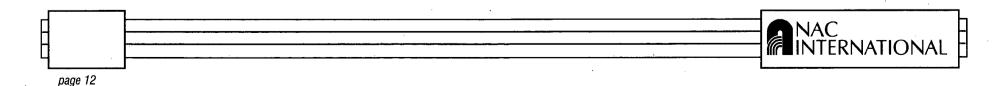

#### **MOX Fuel Nuclear Evaluations**

#### Containment

- Cask configuration to use metallic seals to providing leaktight containment
- Pressure calculations account for maximum MOX fuel rod fission gas release

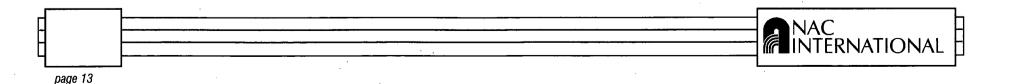
#### Shielding

- SAS2H source term generation for MOX elements
  - Included light element activation of plenum springs
  - Evaluated various plutonium compositions ranging from weapons grade (WG) to power grade (PG)
- MCNP shielding evaluation with revised source terms
- Generate minimum cool time table constraint by heat load
- Criticality
  - MCNP evaluations using ENDF/B-VI libraries
  - Applying maximum reactivity rod pitch configuration



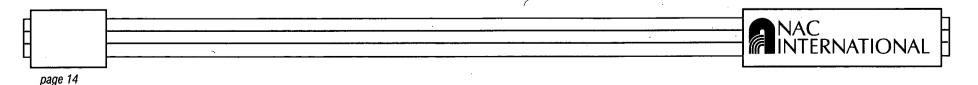

#### Containment/Pressure Evaluation MOX Fuel Rods



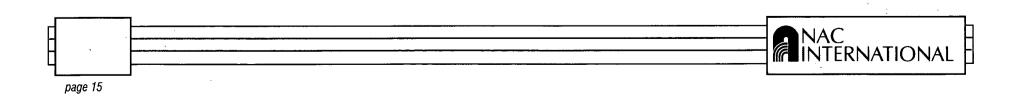

### **NAC-LWT Containment Considerations**

- Based on recommendations of NUREG-1617, Supplement 1, MOX Fuel Rod Contents will be loaded into a NAC-LWT with a leaktight containment
- Containment openings (i.e., closure lid and vent and drain port covers) will be sealed with metallic O-ring seals
- Containment design will be identical to that utilized and certified for TPBAR transports
- The lid and Alternate B port covers will each be individually leak tested to verify a helium leakage rate of less than or equal to 2 x 10<sup>-7</sup> cm<sup>3</sup>/s
- Therefore, there will be no leakage of radioactive material from the cask under normal or hypothetical conditions of transport



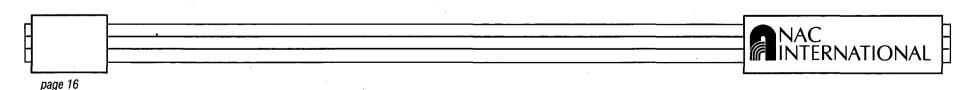

#### **NAC-LWT Pressure Considerations**

- System pressure evaluated (30% fission gas release)
  - Normal condition (3% rod failure) system pressure 17.2 pisg
  - Accident condition (100% rod failure) system pressure 80.0 psig
- Failure of 13 rods during normal transport at 100% fission gas release required to reach 50 psig limit (structural analysis basis)
- Failure of all 16 MOX rods at 75% fission gas release produces maximum normal condition pressure of 48.5 psig



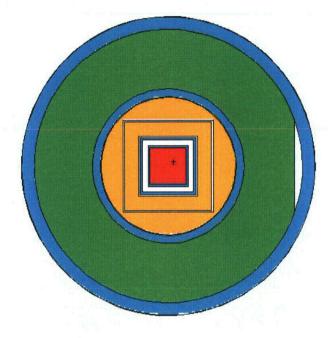

#### **MOX Shielding Evaluation**

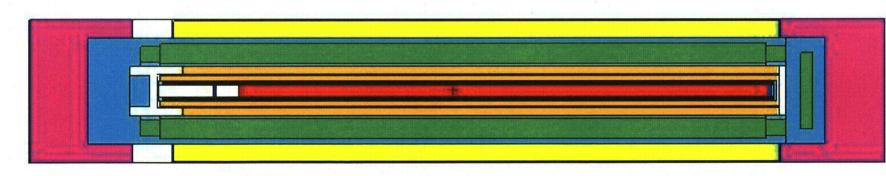
- Source generation duplicates LWR UO<sub>2</sub> rod source generation currently in NAC-LWT SAR
- Generated maximum fissile material mass fuel pin hybrid
  - Pellet OD 0.3805 inch, Active Fuel Length 153.5 inches
  - 2.63 kg HM per rod
- Source term evaluated using the SAS2H sequence
  - Range of plutonium compositions from WG/MOX Services (93.5% <sup>239</sup>Pu) to PG (62% <sup>239</sup>Pu)
    - Lower limit <sup>239</sup>Pu applied to each Pu composition to maximize shielding source
  - Cool time from 90 days in 10-day increments
  - Burnups evaluated up to 70 GWd/MTHM (maximum requested average rod burnup of 62.5 GWd/MTHM )
  - Light element source at 5g <sup>60</sup>Co/kg of plenum spring




- Minimum cool time generated for various plutonium contents
  - Standard configurations from MOX review plan plus MOX Services (MS) specific configuration (similar to WG)
  - Added uranium oxide fuel for comparison and shipment with the MOX rods
     (UO<sub>2</sub> rods at 80 GWd/MTU to conform to currently licensed contents)
  - Analysis shown in presentation based on a range of 2 wt% to 7 wt% fissile Pu content for all grades
    - 0.2 wt% <sup>235</sup>U depleted uranium matrix (conservatively reduced fissile material)
    - Overall low fissile content for burnups considered




- With the exception of power grade (low quality Pu), minimum cool time is 90 days
  - Power grade Pu requires 120 days
- Required cool time increases with increased fissile Pu content while source increases with decreased fissile Pu content


| WG Source Term M<br>GWd/MTHM and | •          | 70 Heat<br>[watts/roo | Neutron [] [n/sec/rod] | Gamma<br>[y/sec/rod] |     |
|----------------------------------|------------|-----------------------|------------------------|----------------------|-----|
| 2% Fissile                       |            | 118.1                 | 4.34E+07               | 7.11E+14             | _   |
| 3% Fis                           | sile       | 122.4                 | 3.28E+07               | 7.12E+14             | -   |
| 4% Fis                           | 4% Fissile |                       | 2.59E+07               | 7.09E+14             | -   |
| 5% Fissile                       |            | 129.0                 | 2.14E+07               | 7.06E+14             | _   |
| 6% Fis                           | sile       | 129.3                 | 1.83E+07               | 7.03E+14             |     |
| 7% Fissile                       |            | 128.6                 | 1.60E+07               | 7.00E+14             | _   |
|                                  |            |                       |                        |                      | -   |
| Burnup (GWd/MTHM)                | 80         | 70                    | 70                     | 70                   | 70  |
| <b>Fissile Material Type</b>     | LEU        | WG                    | FG                     | PG                   | MS  |
| 7% Fissile Content               | <90        | <90                   | <90                    | 120                  | <90 |
| 6% Fissile Content               | <90        | <90                   | <90                    | 120                  | <90 |
| 5% Fissile Content               | <90        | <90                   | <90                    | 110                  | <90 |
| 4% Fissile Content               | <90        | ` <b>&lt;</b> 90      | <90                    | 100                  | <90 |
| 3% Fissile Content               | <90        | <90                   | <90                    | <90                  | <90 |
| 2% Fissile Content               | <90        | <90                   | <90                    | <90                  | <90 |

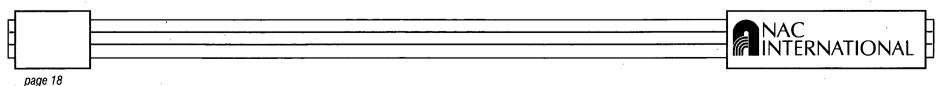


**Radial Accident** 

- Generated dose profiles in MCNP for each fuel type at 90 days cool time and a burnup of 70 GWd/MTHM
- Discrete cask model
- Accident model contains
  - Lead slump
  - Impact limiter loss
  - Neutron shield loss



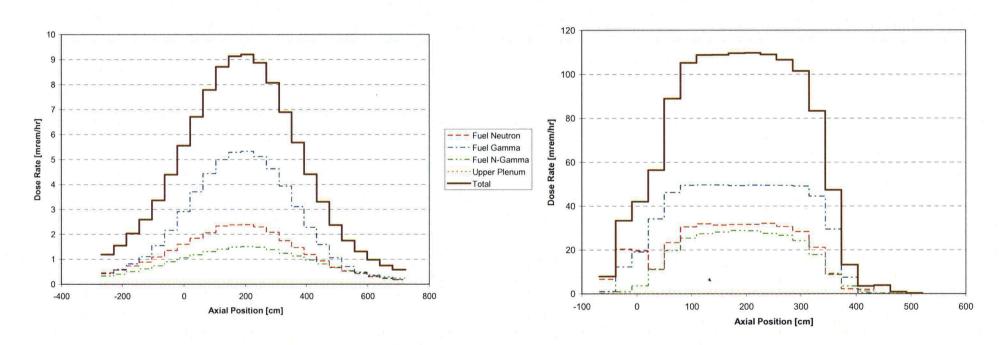



**Axial Normal** 

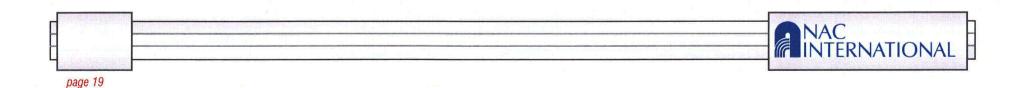


- Dose rates are below limits for all fuel types
  - Therefore, no specific requirement needs to be applied to plutonium composition
- Mixture of  $UO_2$  and  $PuO_2$  rods is allowed
- Zirconium-based nonfuel hardware, such as guide tube and burnable absorber rods, produces no significant source and may be loaded in nonfuel rod locations

| Burnup (GWd/MTHM) | 80   | 70   | 70   | 70    | 70   |
|-------------------|------|------|------|-------|------|
| Fuel Material     | LEU  | WG   | FG   | PG    | MS   |
| Normal Surface    | 91.6 | 85.0 | 87.8 | 109.6 | 86.3 |
| Normal 1 meter    | 23.6 | 22.1 | 22.7 | 27.5  | 22.4 |
| Normal 2 meter    | 8.1  | 7.6  | 7.8  | 9.2   | 7.7  |
| Accident 1 meter  | 362  | 344  | 347  | 373   | 345  |

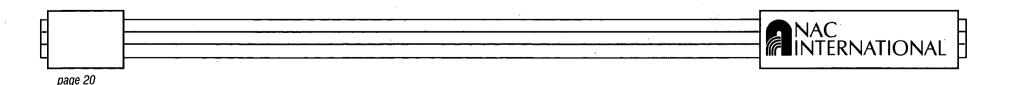

Dose rates in mrem/hr




Cask dose rate profiles (PG Material, 70 GWd/MTU, 90 days cool time)

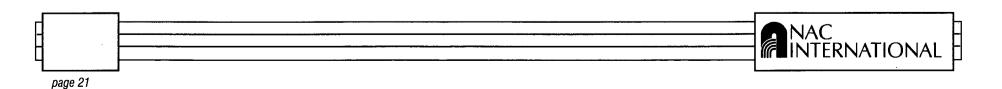
#### 2-meter from conveyance

Cask surface



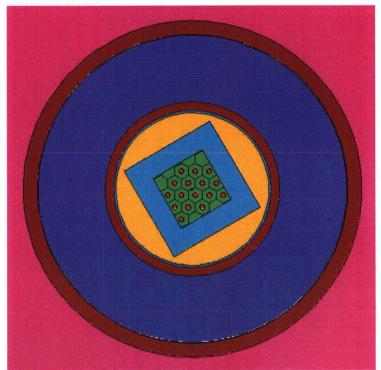

Plenum contribution is ~ 0 mrem/hr (i.e., no significant hardware source)

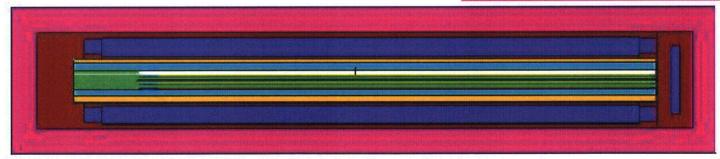


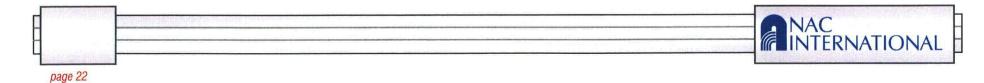

#### **MOX Shielding Evaluation Summary**

- Up to 16 UO<sub>2</sub> and MOX rods with a heat load up to 143 W/rod may be loaded
- A limit of 62 GWd/MTHM is applied consistent with NRC guidance on maximum allowed burnup (rod clad performance)
- Rods may be loaded at a minimum cool time of 90 days
  - Exception Power Grade Pu (<86% <sup>239</sup>Pu) at 120 days due to heat load limit



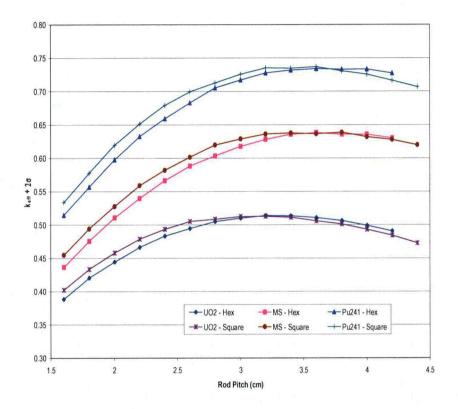

#### **MOX Criticality Evaluations**


- MOX fuel rod shipping configuration is identical to previously evaluated LWR rod geometry
- Reactivity calculations for MOX fuel rods are performed using MCNP versus CSAS (KENO-Va) models employed in previous LWR evaluations
- Model changes from previous undamaged LWR rod evaluations are limited to:
  - Revising fuel material composition (max. 7 wt% fissile Pu)
    - Including all fissile isotope (<sup>239</sup>Pu and <sup>241</sup>Pu) evaluations
  - Allow partial flooding of the canister (used in NAC-LWT SAR LWR damaged fuel evaluations)
- Addition of MOX specific MCNP validation (USL)




## **MOX Criticality Evaluation (continued)**

- Model Summary
  - Finite cask model
  - Infinite array of casks
  - Accident condition
    - Loss of neutron shield
    - Loss of impact limiter
  - Maximum reactivity rod configuration








#### **MOX Criticality Evaluation (continued)**

- Evaluation performed at various rod pitches to determine optimum configuration – square rod pitch and triangular (hex) pitch
  - Bounding results for 7 wt% fissile
     Pu and 0.7 wt% <sup>235</sup>U
- No credit taken for rod holder, can, or can insert
  - No geometry constraints from components
  - No parasitic absorption





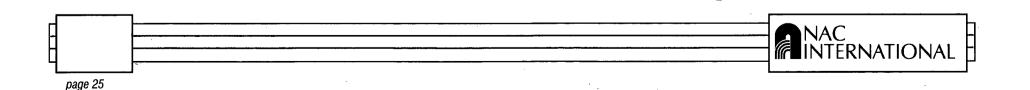
## **MOX Criticality Evaluation (continued)**

#### Optimum Moderator Studies

- Including preferential flooding of system
- Most reactive configuration
  - Flooded rod region
  - Dry cask cavity
  - Dry cask exterior
- Bounding for 7 wt% fissile Pu and 0.7 wt% <sup>235</sup>U
- Conservatively evaluated pure <sup>241</sup>Pu isotope curves to demonstrate no specification of Pu distribution is required

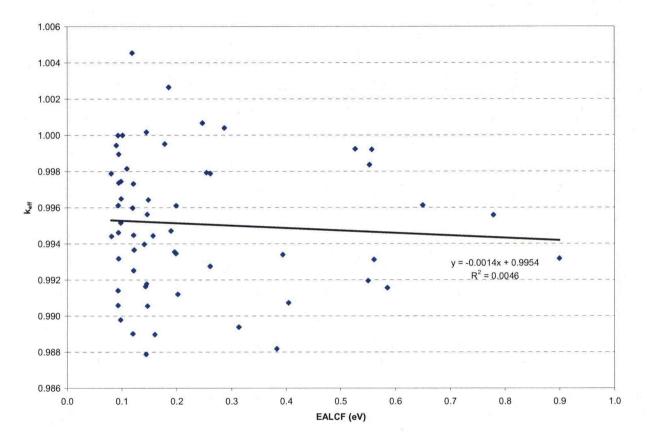
#### 0.65 0.55 0.35 0.30 0.25 Vary Interior and Exterior De 0.20 0.2 0.3 Water Density (g/cc <sup>241</sup>Pu Fuel Material 0.85 0.80 0.7 0.65 0.60 0.55 0.50 0.45 0.40 0.15 0.25

Water Density (g/cc)


0.1 0.2

**MS Fuel Material** 

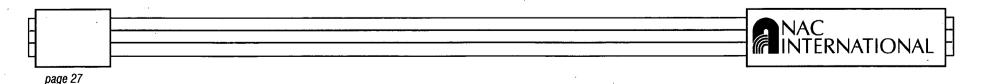



### **MOX Criticality Bias (USL) Calculation**

- NUREG/CR-6361 based analysis effort
- Establish Upper Subcritical Limit (USL) based on code bias and uncertainty
- MOX critical benchmarks obtained from "International Handbook of Critical Experiments"
  - Models based on direct inputs and experiment description
  - 59 experiments selected based on plutonium enrichment and pin (rod) geometry
- Established bias trends versus neutron energy, moderator, and isotope content
- USL for MOX material is 0.9338 (5% administrative margin) similar to the USL of 0.9372 for low enriched (max. 5 wt% <sup>235</sup>U) uranium oxide
- Adequacy of administrative margin tested by USLSTATS Method 2 and found acceptable
- No indication of significant code bias in either fuel material. Fuel material is not mixed but exits as distinct rods within basket. Therefore, code bias calculation with a mixed rod set not required (note that MOX material contains <sup>235</sup>U/<sup>238</sup>U mixture)
- Large margin to USL even with conservative  ${}^{241}$ Pu payload and removal of tube structure constraints ( $\Delta k$ >0.1 versus code bias and uncertainty in the range of 0.01 to 0.02)

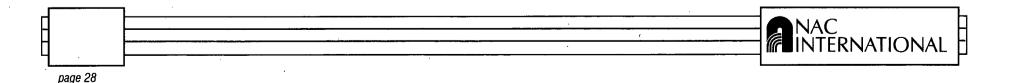


# MOX Criticality Bias (USL) Calculation (continued)


- Sample distribution of k<sub>eff</sub> versus EALCF
- No statistical trend (low correlation coefficient)
- USLSTATS test normal distribution
- Lowest USL applied from any correlation






#### **MOX Criticality Evaluation Summary**

- System reactivity significantly below Upper Subcritical Limit (USL) considering conservative assumptions of:
  - No credit for rod holder and canister structure
  - Preferential flooding of canister (designed to drain freely) in a cask demonstrated not to leak
  - Infinite array of casks under accident conditions
  - Fresh fuel
- Constraints on the MOX or UO<sub>2</sub> rods loaded are limited to:
  - Maximum Pellet OD of 0.3805 inch (No minimum)
  - Maximum Active Length of 153.5 inches (No minimum)
  - Maximum heavy metal mass of 2.63 kg (No minimum)



#### **PWR MOX Fuel Rod Shipment Schedule**

- Intent is to ship PWR MOX and PWR UO<sub>2</sub> fuel rods to Post Irradiation Examination as soon as possible after cycle completion
- Minimum 90 days cooling per amendment request
- Loading as early as October 2008
- CoC required by September 1, 2008



#### **Other NAC-LWT Licensing Activities**

- LEU TRIGA Cluster Rod Amendment Request Supplement based on February 6, 2008 NAC/NRC Meeting submitted week of February 25, 2008
- ANSTO damaged fuel amendment (FRR) anticipated for 3<sup>rd</sup> Quarter 2008
- LWT SAR Revision 39 to incorporate LEU TRIGA Cluster Rods and MOX; may include ANSTO damaged fuel

