ATTACHMENT 3

Peach Bottom Atomic Power Station

Units 2 and 3
Docket Nos. 50-277 and 50-278

License Amendment Request

Response to Request for Additional Information
Alternative Source Term (AST)

PBAPS Calculation PS-049, Revision 2, "Seismic Evaluation of Consoles 2(3)0C05A, 2(3)0C04A and 2(3)0C03 for Mod 955"

	MAN. CALC.	COMP. CALC	attributes*	$\begin{gathered} \text { REV. } \\ 0 \end{gathered}$	$\begin{gathered} \text { REV. } \\ \hline \end{gathered}$	REV.	${ }^{\text {Rev. }}$	$\begin{gathered} \text { REV. } \\ \hline \end{gathered}$	REV.	REV.	${ }^{\text {REVV }} 7$
1.	x	x	SOURCES OF DATA \& FORMULAE WERE REVIEWED AND VERIFIED TO bE CORRECT AND COMPLETE.	$7 k$		jou)					
2.	x	x	inPUT DATA FROM SOURCES iN ITEM 1 , ABOVE, IS CORRECT AND PROPERLY EMPLOYED IN THE CALC.	$\frac{1 k}{}$	-11640	dgan					
3	x	x	CALCULATION ASSUMPTIONS WERE REVIEWED AND FOUND TO BE COMPLETE AND VALID	x	$7{ }^{\text {cku}}$	gro					
4.	x		THE ANALTTICAL METHOD EMPLOXED IN. THE CALC. hAS BEEN CONSIDERED AND is PROPER FOR THE INTENDED USE OF THE CALCULATION.	$f k$	$77^{2} \mathrm{~m}$	giow					
5	x		Mathematical accuracy has been checked and is correct indicate METHOD USED): a) COMPLETE CHECK OF EACH COMPUTATION	$\begin{aligned} & y z \\ & 1 i n \end{aligned}$	F16.ic	NA 380°					
			b) SPOTCHECK OF SELECTED COMPUTATIONS WHCH ARE INITIALED IN THE calculation		- $\sim_{4} / 4 \mathrm{~A}$	$\begin{array}{r} 4 \\ 3 \mathrm{~A} .3 \\ \hline \end{array}$					
			c) PERFORMANCE OF ALTERNATE OR APPROXIMATION CALCULATION PER ERDP 39 calc is ATtached		$\begin{array}{\|l\|} \hline N / A \\ -7, ~ \\ \hline \end{array}$	$\begin{aligned} & \text { N } \\ & \text { doul } \\ & \hline \end{aligned}$					
6	x	X	calculation aesults were checked against applicable, documented design criterla and found to be in conformance.	$\begin{gathered} 9 k \\ 6 \\ \hline 1 \end{gathered}$	$\begin{array}{\|l\|} \hline N(A) \\ 7,16 \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline N A \\ 8 \\ \hline \end{array}$					
7.	x	x	EXISTING CALCULATION WHICH REQUIRE REVISION BECAUSE OF THIS CALCULAthon have been identified	N / A	- x_{1}	820					
\square		x	THE ANALYTICAL METHOD DESCRIBED IN THE COMPUTER CALCULATION SUMMARY IS PROPER FOR THE INTENDED USE OF THE CALCULATION.	N/A	Y/A						
2		x	COMPUTATIONAL ACCUPACY HAS BEEN CHECKED AND FOUND CORRECT (INDICATE METHOD USED): a) Check sample calc. using data othen than used in sample.		$\underset{\substack{N / A \\ \beta=0}}{ }$						
			b) PERFORMANCE OF ALTERNATE OR APPROXIMATE CALCULATHN PER ERDP 3.9 calc. is ATtacheo SWEC QA ACCEPTED			Tr					
			c) DESCRIBE OTHER METHOD IF 9.A OR 9.8 IS NOT USED. COMPUTER PRROSNMM	N/A							
10.		x	output is reasonable Considering the input.	$\sqrt{5 k}$	fucmo	$\overline{\lambda 1}$					

* these ame the minimum attributes and are not intended to limit the initiative of the checker to review other attributes. attaibutes applicable to manual and computer calculations are noted by an \mathcal{M}) in the approprlate column. for checking of reusions to manlal calculations, the atthibutes may be limited to only revised portions of the calculation. checker shall initial each attribute completed.

Pl\|								
CNCULATION TIIE (Incicative of the Objective): Seismic Evaluation of Consoles $2(3) 0$ CO 5A $2(3) \mathrm{OCO} 4 \mathrm{~A}$ and 2 (3) O CO 3 for MOO 955								
						OPTIONLLwork PaCRAGE No.		
J.0. or w.o. no.	omsion a group	caculaton no.		Oftonke task coos				
15597	NM(C)			N/A		N/A		
	7 Howal L. Kowal $8-8-90$				A	N/A	\checkmark	
	$\begin{aligned} & \text { Thowal } \\ & \text { L. Kow } 10.15-9 \mathrm{C} \\ & 10 . \end{aligned}$	$\begin{gathered} 7 \text { Kowal } \\ \text { C.Kowig } \\ 10.15-90 \end{gathered}$			${ }^{\text {B }}$		\checkmark	
$7 \times \text { mechoer }$		$\text { Anuraivala } 10 / 15 / 90$			2	N/A		
			Remon.					
gnow	Murea locanow	corr		ar		a a locamon		
RECORD MGMT. FLES / fRE FIE IF NONE PROUECT FLE	8OSTON 245/02 CHOC							

STONE \& WEBSTER ENGINEERING CORPORATION
CALCULATION SHEET

CALCULATION SHEET

5010.65

5010.65 CALCULATION IDENTIFICATION NUMBEA					ct	
					PAGE	
	19597	$\begin{aligned} & \text { DIVISION \& GROUP } \\ & \text { NM (C) } \end{aligned}$	Calculation no. PS-049	$\begin{array}{\|c\|} \hline \text { OPTIONAL TASK CODE } \\ \text { N/A } \end{array}$		
Revision Status Table						
$\begin{array}{\|l\|} \hline \text { Rev } \\ \text { no } \end{array}$	$\begin{gathered} \hline \text { Page } \\ \text { No. } \end{gathered}$	Description/reason				
A		Original issue - Cover sheet Rev. o fromesila				
		This revision is made to include the following changes: 1. Deviation of support design for RWM CRT for unit 2 console 20C05A. This change is required due to space availability of unit 2 console.				
		2. Addition of a modification--replacement of a Gemax 6"x6" computer trend recorder with a 6 "x6" tracor westronics multipens recorder. This modification was not originally planed for installation during the upcoming outage.				
	16 25	3. Material changes for bolts, nuts, washers and screws to accomodate vendor deviation request. Replace page 16 with a new page.				
	58	4. Revise seismic capability limits of existing Q devices for clarification, and replace with revised page.				
	$\begin{gathered} 1,2 \\ 3 \end{gathered}$	Editorial changes related to the above revision are identified below: Update page number.				
	4	Update table of contents to include changes for items 1 \& 2 above.				
	4 a					
	6	Change note to read from "items $4 \& 5$ " to "item 4".				
	11	Add weight of tracor westronics multipens recorder.				
	$\begin{array}{\|l\|} \hline \text { Atta. } \\ 1,2 \\ \hline \end{array}$	Attach voided pages 16 and 58 as Attachment 1 for record.				
2		Revision 2 includes the following changes:				
	$\begin{aligned} & 6,11 \\ & 52 \mathrm{~d} \\ & 52 \mathrm{f} \\ & 52 \mathrm{~g} \\ & 54 \\ & \hline \end{aligned}$	1. Removal of the existing RWM operator interface and replacement with a new $6^{\prime \prime} \times 6^{\prime \prime}$ computer trend recorder.				
		Editorial changes related to revision 2 are identified below. Update page numbers.				
	1,2,3					
	$4 \& 4 \mathrm{a}$	Update table of contents.				
	5	Update revision sheet.				

1. Install a digital display with its associated electronics and power supply.
2. Same as 04A

The locations of the above modifications are identified on the attached sketches (pages 7, 8 AND 9).

19597-NM(C)-PS-049

CALCULATION IDENTIFICATION NUMBER				
JOB NUMBER	OIVISION \& GROUP	CALCULATION NO.	OPTIONAL TASK CODE	PAGE
19597	NM (C)	PS -049	N A	10

The above modifications involve cutouts of the console panel to provide openings for mounting the devices, and attachment of the devices to console structural members, etc. Therefore, the impacts that may arise from the modifications need to be addressed, which are stated in the "Objective" section.
2.0 OBJECTIVE

The objectives of this calculation are:

1. To demonstrate the adequacy of MOD 955 supports/braces.
2. To address the impact of the modifications on the existing consoles and devices.
3. To assess the impact of non Q devices on the Q devices and consoles and provide resolution as necessary (for console 05A only).
4. To provide seismic capability limits of existing Q devices from SWEC/Vendor data bases (for console 05A only).

STONE \& WEBSTER ENGINEERING CORPORATION

CALCULATION SHEET

SECTION M-M

$$
\begin{aligned}
& \text { (1) } 13^{\prime R} \text { RWMCRT } \\
& \text { (2) Panel switch }
\end{aligned}
$$

ITEM NUMBER	PART QISCRIPTION	CAT. NUMBER
(1)	HEX HEAO BOLT 1/2"X 1 3/16"	HHCSOSO119EC
(2)	1/2" WASHER	HFL W050EG
(3)	flat plate	P1054
(4)	1/2* SPRING NUT	P4010
(5)	1/2" NUT	HHXHDSOEC

NOTE: CHAMFER EOGE OF HDLES to clear stud welo

Cutout for Digital
Displays

19597-NM(C)-PS-049 page 17

COLLAR SIDE VIEW

COLLAR FRONT VIEW

$\frac{\text { SECT ON } Q-Q}{(\text { see page 12) }}$
(3) Cable connectors
(5) Power supplies

ASSEmbLy DETAILS

TRAY SIDE VIEW
TRAY TOP VIEW
(4) Digital Displays \&

Electranics Boxes
Console $05 A$

FABRICATION DETAILS

TRAY FRONT VIEW

CALCULATION SHEET

CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER				$\begin{gathered} \text { Page } \\ 36 \end{gathered}$
$\begin{gathered} \text { JOB NUMBER } \\ 19597 \end{gathered}$	nIVISION \& GAOUP NH (C)	CALCULATION NO. PS-049	optional task code N / A	

6.0 Qualification of MOD 955 Supports/Braces

Support designs for MOD 955 proposed by PECo as stated in the previous section are shown on the attached sketches (section 3.0) in the order listed below:

Console 05A

1. 13 in. RWM CRT
2. Panel switch
3. RWM cable connector
4. Digital displays and associated electronics
5. Power supplies

Console 04A

1. Digital display
2. Electronics
3. Power supply

Console 03

Same as 04A
6.1 Kethod

In this section, conceptual designs for wOD 955 supports provided by peco will be analyzed to the requirements of AISC (ref. 6) to ensure that they are structurally adequate to withstand seismic loads. In addition, these supports will also be verified to ensure that they are sufficiently rigid so that local modifications will not affect the nearby existing device qualifications.

To this end, the frequencies of the local frames or mounting plates will be verified to show that they are in the rigid range of seismic response spectra.
stone \& weister engineering corporation
CALCULATION SHEET
5010.65

STONE \& WEBSTER ENGINEERING CORPORATION

CALCULATION SHEET

STONE \& WEBSTER ENGINEERING CORPORATION
CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER

	CALCULATION IDENTIFICATION NUMBER			
JOB NUMBER	-OHISION \& GROUP	CALCULATION NO.	OPTIONAL TASK CODE	
19597	NM (C)	PSAGE		

Collar flange: 10 gage

$$
\begin{aligned}
12.5 \times 1.435 \times 2 & =36 \\
16 \times 1 & =\frac{16}{52} \times .1345 \times .283=2.0
\end{aligned}
$$

Total
Weight of CRT
Miscelleneous
Total
$45.61 b$
35 1b
9.4 1b
$901 b$
b. Frequency of supporting frame in X - direction

Consider that the total weight is equally distributed to the front panel and the unistrut frame.

```
W=90/2=45 lb
f=1/(2\pi) x sqrt[g/\Delta]
                                    (ref. 11)
\Delta=Wa}\mp@subsup{}{}{2}\mp@subsup{b}{}{3}(3L+a)/(12EIL^3
                                    (ref. 6)
    =.000733 in.
where
    I=.181 for P3301 (ref. 7)
    E = 29000000. psi
    W=45/2=22.5 lb
    L=26 in.
    a=10 in.
    b}=16 1n
    g = 3 8 6 . 4 ~ i n / s q ~ s e c .
f=115 Hz.
```

stone a werster engineering corporation
CALCULATION SHEET

Calculation identification numme				$\begin{aligned} & \text { PAGE } \\ & 40 \end{aligned}$
	$\begin{aligned} & \text { DIVIISION A GROUP } \\ & \text { NM (C) } \end{aligned}$	CALCULATION NO. $\text { PS }-045$	OPTIONAL TASK COOE N / A	
c. Frequency of supporting frame in z-direction (front-to-back) The CRT is supported by the panel at the front and by the unistrut frame at the back. In the front-to-back direction, the front panel is braced with a box made of sheet metal, which is then connected to the frame. Thus, the front panel and the frame support unite together in resisting the motion in the z -direction. For frequency estimation, however, the rigidity of the front panel will be totally neglected and the total weight will be conservatively attributed to the frame support and applied at a single point(not distributed +/- 3^{n}).				

$$
\begin{aligned}
& f=1 /(2 \pi) \times \text { sqrt }(g / \Delta) \\
& \Delta=W a^{2} b^{2} /(3 E I L)=.001732 \text { in }
\end{aligned}
$$

where

$$
\begin{aligned}
& W=45 \mathrm{lb} \\
& a=10 \mathrm{in} \\
& b=16 \mathrm{in} \\
& I=.294 \mathrm{in}^{4} \\
& L=26 \mathrm{in} . \\
& f=75 \mathrm{~Hz} .
\end{aligned}
$$

Noted that the flxibility of the cross plece has been neglected by virtue of the other conservatisms.
d. Frequency of supporting frame in the vertical direction

Based on the support configuration, the support is much stiffer in the vertical direction than in the horizontal directions, since the frame is stiff in the vertical direction, and is connected to an existing unistrut which is welded to the top panel. Thus, the frequency in the vertical direction is higher than that in the horizntal directions.
stone a webstea engineering corporation
CALCULATION SHEET

STONE \& WEBSTER ENGINEERUNG CORPORATION
CALCULATION SHEET
5010.68

CALCULATION IDENTIFICATION NUMBER				
JOB NUMBEA	DIVISION GAOUP	CALCULATION NO.	OPTIONAL TASK CODE	PAGE
19597	NM (C)	PS -049	N / A	42

b. Frame analysis due to dead wt. + seismic load ($\mathbf{x}+\boldsymbol{y}$)

The loads are considered equally distributed to the front panel and the support frame and then equally distributed to each of the two vertical members.
$F 1=130 / 4=32.5 \mathrm{lb}$
$F 2=356 / 4=89$
$F 3=427 / 4=107$

Vertical member-- P3301 (ref. 7)
$A=.794 \mathrm{sqin}$.
$\mathrm{z1}=.207 \mathrm{cu}$ in.
$z 3=.362 \mathrm{cu} \mathrm{in}$.
RI $=F 1 \times 16 / 26=20 \mathrm{lb}$
$R 2=F 2 / 2=44.5$
$R 3=F 3 x^{2} /\left(2 L^{3}\right) \times(a+2 L)$
 - 48
$\mathrm{M} 3=\mathrm{R} 1 \times 10=200 \mathrm{in}-1 \mathrm{~b}$
$\mathbf{M 1}=$ R3 $\times 10=480$

$\mathrm{R} 2 / \mathrm{A}=56 \mathrm{psi}$
m3/Z3 = 552
M1/Z1 = 2319
Total $=2927$ psi
Horizontal member--P3300 (ref. 7)
$A=.397 \mathrm{sq} \mathrm{in}$.
$\mathrm{Z1}=.078 \mathrm{cu}$ in.
Z2 =. 181 cu in.
$\mathrm{M} 1=\mathrm{R} 2 \times 8.6=382.7 \mathrm{in}-\mathrm{lb}$
$\mathrm{M} 2=\mathrm{R} 1 \times 8.6=172$
$\mathrm{R} 3 / \mathrm{A}=121 \mathrm{pBi}$
$\mathrm{M} 1 / \mathrm{Z1}=4909$
$\mathrm{M} 2 / \mathrm{Z} 2=950$
Total $=5980$ psi

Stone \& webster engineering corporation

CALCULATION SHEET

CALCULATION SHEET

CALCULATION SHEET

The CRT is mounted to the bottom sheet metal of the tray by four screws. The tray 1 s connected to two tracks, one on each side of the tray. The tracks are then mounted to the can which is mounted at the front panel and supported at the back by a frame. The detailed configuration is shown on the attached sketches.
a. CRT mounting

Weight of CRT $=35 \mathrm{lb}$
Dead wt + seismic load $(y+z) \quad$ Dead wt + seismic load $(x+y)$

* $F 1=206$
* $F 1=50$
$F 2=195$
F2 $=138$
$F 3=166$

CRT mounting screws: 4-1/4" dia. screws

* These loads
$A=.0362 \mathrm{sq}$ in. (ref. 12)

Tensile stress $=F 2 /(4 A)=1347$ psi Shear stress $=(F 1+F 3) /(4 A)=1492 \mathrm{psi}$
derived using same
methodology found in the previous
Sheet metal bearing stress section.

12 gage, $t=.1046$ in.

Bearing stress $=(F 1+F 3) /(4 t d)=2065 \mathrm{psi}$
b. Tray mounting

Weight of tray $=10.4+2.6=13 \mathrm{lb}$
Weight of CRT $=35$
Total 48 lb

Dead wt + seismic load $(y+z)$ Dead wt + seismic load $(x+y)$

* $F 1=283 \quad$ * $F 1=69$
$F 2=268$
$F 2=190$
F3 $=228$

CALCULATION SHEET

. 05				14
CALCULATION IDENTIFICATION NUMBEA				
$\begin{gathered} \hline \text { JOB NUMBER } \\ 19597 \end{gathered}$	-alvision a group NM (C)	calculation no. $\text { PS }-049$	OPTIONAL TASK CODE N / A	PAGE 47
	ce F 2 is re the tray fl ce F3 does ween the tr y bear agai y mounting shear stres ck mounting shear stres y flange: 1 Tray openin Collar open Moment arm $\begin{aligned} & M=F 1 \times a \\ & Z=1 / 6(b t \\ & M / Z=3243 \end{aligned}$	sted by the ge which bea t induce any and the tra t the tracks rews: 6-\#5 $=F 2 /(6 A)=$ crews: 8-1/4 $=(F 2+F 3) /(\varepsilon$ gage, $t=.13$ $\begin{aligned} & H=133 / 4! \\ & \mathrm{g} \boldsymbol{H}=151 / 8 \\ & \mathrm{a}=(151 / 8 \\ & =97 \text { in }-1 \mathrm{~b} \\ &)=1 / 6 \times 1 \\ & i \end{aligned}$	ce $F 1$ is res front panel. onnecting scr sides of th sq in. (ref. $A=.0362 \mathrm{sq}$.6875 in. .03 cu in.	sted ws 12)

Weld: 1/8" fillet weld on two vertical sides is adequate
c. Can mounting

```
Dead wt + seismic load(y+z) Dead wt + seismic load( }\textrm{x}+\textrm{y}
F1 = 531 lb
F1 = 130 lb
    F2 = 502
F2 = 356
F3 = 427
```

Connection between can and unistrut P3301 six $1 / 2$ " bolts: bolt strength is more than adequate. Sheet metal bearing stress $=[(F 1+F 2) / 2] /(6 t d)=1644 \mathrm{psi}$ Connection between can, console pl. and collar flange Twelve $1 / 4^{\prime \prime}$ studs: bolt strength is more than adequate. Sheet metal bearing stress $=[(F 2+F 3) / 2] /(12 \mathrm{td})=1248 \mathrm{psi}$

STONE \& WEBSTER ENGINEERING CORPORATION

CALCULATION SHEET

Dead + seismic load $(y+z)$ Dead + seismic load $(x+y)$
$\mathrm{F} 1=30 \mathrm{lb}$
$F 1=7 \mathrm{lb}$
$F 2=28$
$F 2=20$ $F 3=24$

Brackets

```
\(\mathrm{A}=1 \mathrm{x} .25=.25 \mathrm{sq}\) in
\(Z=(1)(1 / 4)^{\wedge} 2 / 6=.0104 \mathrm{cu}\) in.
\(M=30 \times 2.75 / 2=41.3 \mathrm{in}-1 \mathrm{~b}\)
```

$\mathrm{F} 2 /(2 \mathrm{~A})=56 \mathrm{psi}$
$M /(2 Z)=1986$
Total 2042 psi
Sheet metal
$Z=(1)(.1046)^{\wedge} 2 / 6=.00182$
$\mathrm{M} /(2 \mathrm{Z})=11346 \mathrm{psi}$
Weld: 1/8" fillet weld on both sides of the brackets is adequate.
stone \& webster engineering corporation
CALCULATION SHEET
5010.65

STONE \& WIBSTER ENGINEERING COAPORATION
CALCULATION SHEET

STONE \& WEBSTER ENGINEERING CORPORATION
CALCULATION SHEET

Mounting plate: 12 gage

$$
I=(1 / 12)(9)(.1046)^{\wedge} 3=.000858
$$

Weight

$$
9 x 6.63 x .1046 x .283=1.8 \mathrm{lb}
$$ power supply \qquad

CALCULATION SHEET

Calculation identification number				$\begin{aligned} & \text { PAGE } \\ & 52 \end{aligned}$
JOB NUMBER	Division a group	Calculation no.	OPTIONAL TASK CODE N/A	
19597	NM (C)	PS-049	N/A	
$f=1.732 /(2 \pi) \times \operatorname{sqrt}[E I g /(W L \wedge 3)] \quad L=6.63 / 2=3.32 \mathrm{in}$.				
$=59 \mathrm{~Hz}$				
Plate stress				
```M=(5.8\times4.75) x3.32=91.5 in-1b Moment due to eccentricity (1") of the power supply = (4 x 3.2) {1} = 12.8 Total = 104.3```				
$F=5.8 \times 3.2 \quad=18.6 \mathrm{lb}$				
$\mathrm{Z}=\mathrm{I} /(\mathrm{t} / 2)=.0164$				
$A=9 x .1046=.941$ sq in				
$\mathrm{m} / \mathrm{Z}$ ( $=6360 \mathrm{psi}$				
$F / \mathrm{A}=20$				
		80 psi		

Note: The mounting plate has been revised from 12 gage to 11 gage as shown on the drawing. This change is on the conservative side, and therefore, is acceptable.
6.2.6 Comparison of Calculated Stresses with Allowable Stresses

The calculated stresses shown above for sheet metals, screws and bolts are much lower than the allowable stresses given in section 3.0. Therefore, these device mounting supports are acceptable.

CALCULATION IDENTIFICATION NUMBER				$\begin{gathered} \text { PAGE } \\ 52 a \end{gathered}$
$\begin{gathered} \text { JOB NUMBER } \\ 19597 \end{gathered}$	DIVIISION \& GROUP NM (C)	CALCULATION NO. PS-049	OPTIONAL TASK CODE $\mathrm{N} / \mathrm{A}$	
$6.2 .7$	ation of $S$   2 Console   RWM CRT sup htly from deviation er to the ches), ie. existing hor   . (instead vertical ntation of brace for ssary becau ole.   ew of the ole conclu ts to comp he minor d CRT support ptable.	port Design 0C05A   ort for uni e same suppo ncludes the pport frame (1) the conn izontal P3301 f 1 ft. 4 in nel, (2) th he brace is it 3 console e of the spa   T support qua s that a suf sate for the iation descr design for	CRT for   ates   console.   the brace   pport   brace with   roximately   from the   al   osite to   n is   of unit 2   unit 3   margin   fect caused   herefore,   s	合



WUMEER	part oiscription	cat. number
(1)	HEX HEAD BOLT $1 / 2^{\text {n }}$ \| 1 3/15"	HHCS0501 19EG
(2)	1/2" MASHER	HFL WOSOEG
(3)	flat plate	P1064
(4)	1/2" Sprimg nut	P4010
(5)	1/2" XUT	hhanosoeg
(6)	HEX HEAO BOLT 1/2"X 1 3/4"	hhcsasoitseg
(1)	HEX HEAD BOLT $1 / 4 . \times$ 3/4"	ннсS025015EG
(B)	1/4" SPrind mut	P4006-1420
(9)	1/4" vasher	HFL WO2SEC

20C05A


STONE \& WEBSTER ENGINEERING CORPORATION

CALCULATION IDENTIFICATION NUMBER				
JOB NUMBER	DIVISION \& GROUP	CALCULATION NO.	OPTIONAL TASK CODE	PAGE
19597	NM (C)	PS -049	N A	

6.2.8 Qualification of support for $6^{\prime \prime} \times 6^{\prime \prime}$ tracor westronics multipens recorder

This modification involves replacement of the existing 6"x6" computer trend recorder with 6"x6" tracor westronics multipens recorder. The existing recorder weighs approximately 40 lbs, while the new recorder weighs only 20 lbs. The new recorder is mounted at the front panel and supported at the back by a support frame as shown on the attached sketches. Thus, the new recorder is better supported than the old one before the modification. Therefore, this modification will not affect the adjacent device qualification.

Judging from the sizes of the structural members and bolts, the support frame is structurally adequate to support the new recorder, which weighs only 20 lbs.
6.2.9 Qualification of support for $6^{\prime \prime}$ x 6" computer trend recorder

This modification involves the replacement of the existing RWM operator interface with a non-Q 6"x6" computer trend recorder. The new recorder weighs 20 lbs. and it is judged that the existing RWM weighs more than 20 lbs. since it is much larger in size. The cut out in the panel skin due to the RWM will be covered by an 11 gauge plate with mounting bolts/holes similar to the RWM installation. A smaller cut out in this 11 gauge plate will be made to accommodate the installation of the new trend recorder. The new recorder is mounted at the front of the panel and supported at the back by a support frame as shown on the sketches on pages 52 f and 52 g . Thus, the new recorder is better supported then the old one prior to this modification. Therefore, the installation of this computer trend recorder will not affect the adjacent device qualification.

Judging from the sizes of the structural members and bolts, the support frame is structurally adequate to support the new trend recorder, which weighs only 20 lbs.


nuclear group	CALCULATION SHEET DOCTYPE:000	CALC NO PS-049 REV 2 $\qquad$   page $\qquad$ OF 60 ORIGINATOR $7 . m$. Curel DATE 12.4 .90 REVIEWER gigulute DATE $12-4.90$



SECTION Q-O


DETAIL 6


DETAIL 7

NUCLEAR GROUP	CALCULATION SHEET	CALC NO PS-049 REV_2
		PAGE $52 \mathrm{~g} \sim$ OF 60
		ORIGINATOR 7. micherk DATE 12-4-90
	DOCTYPE:000	REVIEWER goulhoth DATE 12-4-90

20C05A \& 30C05A

$\int_{i-505}^{11} 0$


DETAIL F-8


MOUNTING DETAIL:XR-80188B \& XR-90188B
stone \& webster engineering corporation
CALCULATION SHEET


# STONE \& WESTTER ENGINEERINQ COPRORATION <br> CALCULATION SHEET 

Calculation identification number				PAGE
JOB NUMBER	DIVISION \& GROUP	Calculation No.	OPTIONAL TASK CODE	
19597	NM (C)	PS-049	N/A	

same as or smaller than it was before the modification, and thus, the adjacent devices and the console will not be affected by this modification.

The closest $Q$ device to this modification is a single $G E C R$ 2940 switch located approximately 1 ft. from the cutout and near a panel edge which provides a stiff support for the switch. This and other $Q$ devices in the upper panel of the console are all switches and push buttons with very high seismic capacities in any event.

The overall weight being added to the console is negligible and no change can be expected in the overall console response as well.
7.2 Other Small Devices

Other modifications involve installation of small devices such as digital displays, panel switch, etc., which weigh from 1 lb to 5 lbs .

The mounting supports for these devices are made rigid to ensure that seismic responses are not amplified. In addition, the weights of the devices are negligibly small compared to the total welght of the console, therefore, the responses of these devices will be negligible and will not affect the integrity of the console and the adjacent devices.
7.3 6" x 6" Computer Trend Recorder

This new device is smaller and is judged to weigh less than the device it is replacing, the RWM operator interface. The new recorder also has a new rear support bracket further strengthen its mounting. Therefore, the installation of the computer trend recorder in place of the RWM operator interface will not impact the existing qualification of the $Q$ devices in panel 05A.

8.0 ASSESSMENT OF THE IMPACT OF THE FAILURE OF NON-Q DEVICES ON THE Q DEVICES AND THE CONSOLES AND RECOMMENDATIONS FOR ANY MODIFICATIONS IF REQUIRED (FOR 05A ONLY)

The installed console was seismically qualified with all devices in their original configuration. All original devices are therefore concluded to be acceptable from a $I I / I$ consideration. This includes confirmation of both structural integrity and the absence of unacceptable spatial interactions not involved with structural failure (breaking loose). Console modifications completed after installation have been assessed using information (1) provided by PECo and (2) obtained during a walkdown of the this specific console as well as other seismically qualified consoles and cabinets. Section 6.0 above confirms the integrity of Modification (MOD) 955. Console 05A is concluded to have no unacceptable II/I interactions.

### 8.1 DISCUSSION

The conclusion stated above is derived from the following:
8.1.1 The console and all devices installed at the time of plant installation were seismically qualified as a part of the original seismic qualification of the console. (The Task Scoping document, ref 1 , states that "PECo has established that the existing consoles are $Q$ commodities seismically qualified with all the devices attached.")
8.1.2 Console modifications performed subsequent to the installation of the seismically qualified configuration have been characterized as minor. This means either:
a. Minor changes involving inconsequential structural modifications (small holes being drilled or covered, or
b. Additions (or deletions) of inconsequential weight and/or size to the console, or
c. The exchange of like item for like item in which the new item is sufficiently similar to the replaced item (in size, weight, anchorage details, etc.) to be a basis to conclude that equivalent and satisfactory structural integrity exists.

The purpose of the walkdown is to confirm that such modifications are not significant for a II/I interaction assessment.

### 8.1.3 Reference 13 confirms basic console anchorage. No further assessment is required.

$\triangle 5010.65$



# CALCULATION SHEET 

- 5010.65


Stone e webster engineering corporation
CALCULATION SHEET


FIGURE 8-1
LIST OF $Q$ DEVICES ON CONSOLES 2(3)0CO5(A)

19597-NM(C)-PS-O49 PAGE
$\qquad$ Subject or Apparatus

1. 2ea manual scram push buttons (B4, 22)
2. 6ea GE CR2940 switches $(160,18)$
3. 2ea GE CR115 switches $(158,15)$
4. lea GE CR2940 switch $(142.75,2)$


STONE 6 WEBSTER ENGINEERING CORPORATION CALCULATION BHEET

Page No.
Preliminary

19597-NM(C)-PS-O49 PAGE 60q

Cllent	Location	Est. No.	J.O. Nu.
Subjoct or Apparatus		Date	By
		Cheeked	By
Basod on		Revised	By


J.O. OR WTO. NO. 19597
DIVISION E GROUP
$N M(C)$

$30605 A$
(necirc/rwcu) 30CO.5A
 $30 C O C 4 A$

$30605 A$


CALCULATION IDENTIFICATION NUMBER

J.O.OR W.O.NO.	DIVISION E GROUP	CALCULATION NO.	OPTIONALTASK CODE
19597	NM (C)	PS-049	



30cosA Q-Devies

30C05A Q-devicce

$30 \operatorname{co5} A Q$-devics

CALCULATION SHEET
JO. OR WTO. NO. 19597
$\varepsilon$ GROUP CALCULATION NO. OPTIONAL TASK CODE


$$
30005 / 4 \text { Framing }
$$



STONE E WEBSTER ENGINEERING CORPORATION
CALCULATION SHEET


STONE \& WEBSTER ENGINEERING CORPORATION
CALCULATION SHEET
APPendix 1
CALCULATION IDENTIFICATION NUMBER


$30 c 05 \mathrm{~A}\left(\begin{array}{l}\text { From back. } \\ \text { switch detail) }\end{array}\right.$

300054



STONE \& WEBSTER ENGINEERING CORPORATION CALCULATION SHEET





CALCULATION SHEET


