

Mark B. Bezilla Vice President - Nuclear 5501 North State Route 2 Oak Harbor, Ohio 43449

> 419-321-7676 Fax: 419-321-7582

February 28, 2008

L-08-043

10 CFR 50.73

ATTN: Document Control Desk United States Nuclear Regulatory Commission Washington, D.C. 20555-0001

SUBJECT: Davis-Besse Nuclear Power Station Docket Number 50-346, License Number NPF-3 Licensee Event Report 2008-001, Pressure Boundary Leak Found During Decay Heat Removal Drop Line Weld Overlay

Enclosed is Licensee Event Report (LER) 2008-001. This LER is being submitted to provide written notification of the discovery of water seeping from a weld on the Decay Heat Removal System during the Fifteenth Refueling Outage while in Mode 6. The water seeping was identified during the installation of a pre-emptive full structural weld overlay on the 12-inch Reactor Coolant System hot leg to Decay Heat Removal System nozzle at the location of the dissimilar metal butt weld region. The leak was determined to be from an axial flaw. The leak was repaired. This event is being reported in accordance with 10 CFR 50.73(a)(2)(ii)(A) as a condition that resulted in the condition of the nuclear power plant, including its principal safety barriers, being seriously degraded. Immediate notification of this event was made to the Nuclear Regulatory Commission on January 4, 2008 (Event Number 43880) per 10 CFR 50.72(b)(3)(ii)(A).

There are no regulatory commitments contained in this letter or its enclosure. If there are any questions or if additional information is required, please contact Raymond A. Hruby, Jr., Manager – Site Regulatory Compliance, at 419-321-8000.

Sincerely,

ack A. Vicism

Mark B. Bezilla

TSC

Enclosure: LER 2008-001 (NP-33-08-001-00)

Davis-Besse Nuclear Power Station, Unit 1 L-08-043 Page 2 of 2

cc: NRC Region III Administrator NRC Resident Inspector NRR Project Manager Utility Radiological Safety Board

NRC FORM 366 U.S. NUCLEAR RECULAT	ORY CO	OMMISS		APPROVED BY OMB NO 3150 010	C	YPIPES	3/31/2010			
(6-2004)	Estimated burden per response to comply with this mandatory collection request: 80 hrs. Reported lessons learned are incorporated into the licensing process and fed back to industry. Send comments recarding burden									
LICENSEE EVENT REPORT (LER) (See reverse for required number of digits/characters for each block)						inch (T-5 I 5-0001, or I Office of I of Manage npose an i umber, the I to respon	F52), U.S. by internet nformation ement and nformation NRC may nd to, the			
1. FACILITY NAME				2. DOCKET NUMBER 3. PAGE						
Davis-Besse Nuclear Power Station				05000346	1	1 OF 6				
4. TITLE										
Pressure Boundary Leak Found During Decay Heat Removal Drop Line Weld Overlay										
5. EVENT DATE 6. LER NUMBER	7. RE	PORT	DATE	8. OTHER FACIL	TIES INVOL	VED				
MONTH DAY YEAR YEAR SEQUENTIAL REV NUMBER NO.	MONTH	DAY	YEAR	FACILITY NAME		0500	NUMBER			
01 04 2008 2008 - 001 - 00	02	28	2008	FACILITY NAME		оскет 0500	NUMBER			
9. OPERATING MODE 11. THIS REPORT IS SUBM	MITTED	PURSI	JANT	O THE REQUIREMENTS OF 10	CFR §: (Che	ck all the	at apply)			
20.2201(b)	20.22	:03(a)(3)(i)	50.73(a)(2)(i)(C)	50.7	73(a)(2)(v	/ii)			
6 🗌 20.2201(d)	20.22	03(a)(3)(ii)	⊠ 50.73(a)(2)(ii)(A)	50.7	73(a)(2)(v	/iii)(A)			
20.2203(a)(1)	20.22	03(a)(4)	50.73(a)(2)(ii)(B)	50.7	73(a)(2)(v	/iii)(B)			
20.2203(a)(2)(i)	50.36	(c)(1)(i)	(A)	50.73(a)(2)(iii)	50.7	73(a)(2)(i	x)(A)			
10. POWER LEVEL 20.2203(a)(2)(ii)	50.36	(c)(1)(ii)(A)	□ · 50.73(a)(2)(iv)(A)	50.7	73(a)(2)()	<)			
20.2203(a)(2)(iii)	50.36	(c)(2)		50.73(a)(2)(v)(A)	73.7	71(a)(4)				
000 🗌 20.2203(a)(2)(iv) 🗌	50.46	(a)(3)(ii)	50.73(a)(2)(v)(B)	73.7	71(a)(5)				
20.2203(a)(2)(v)	50.73	(a)(2)(i)	(A)	50.73(a)(2)(v)(C)		IER				
20.2203(a)(2)(vi)	50.73	(a)(2)(i)	(B)	50.73(a)(2)(v)(D)	Spec or in	ify in Absti NRC Form	act below 366A			
12. LICENSEE CONTACT FOR THIS LER										
FACILITY NAME				TELEF	HONE NUMBER	(Include A	rea Code)			
Tej S. Chowdhary, Staff Nuclear Engineer, Regulatory Compliance (419) 321-7831										
13. COMPLETE ONE LINE FOR E	ACH CO	DMPON	ENT F	AILURE DESCRIBED IN THIS R	EPORT					
CAUSE SYSTEM COMPONENT MANU- FACTURER	TO EP	IX	с	AUSE SYSTEM COMPON	INT FACTUR	ER T	ORTABLE O EPIX			
		2								
14. SUPPLEMENTAL REPORT EX	PECTE	D		15. EXPECTED	MONTH	DAY	YEAR			
☐ YES (If yes, complete EXPECTED SUBMISSION DATE).			SUBMISSION DATE							
ABSTRACT (Limit to 1400 spaces, i.e., approximately 15	single-	spaced	typewr	itten lines)	I	L	4			

On January 4, 2008, during the Fifteenth Refueling Outage with the plant in Mode 6, while installing a pre-emptive full structural weld overlay of alloy 52M weld material for mitigation of an alloy 600/182/82 weld on the 12-inch decay heat drop line branch connection from the Reactor Coolant System hot leg, the weld machine operator identified reactor coolant water seeping from a small hole. The weld overlay was stopped, and both loops of the decay heat removal system were declared inoperable. Ultrasonic examination and excavation of a repair cavity confirmed a single axial flaw approximately 1.75 inches long in the nozzle-to-elbow dissimilar metal butt weld. The probable cause was attributed to Primary Water Stress Corrosion Cracking (PWSCC). The corrective action consisted of completing the structural weld overlay after a repair to seal the axial flaw.

The overall safety significance of this event is low. Although the welds may be susceptible to PWSCC that can result in small leaks, industry experience with PWSCC shows that complete failure of the weld joints is considered to be very unlikely.

	CONTINUEATIO	N CUEE	r` ´			
1. FACILITY NAME	2. DOCKET	N SHEE	6. LER NUM	BER	<u> </u>	3. PAGE
Davis-Besse Unit Number 1		YEAR	SEQUENTIA	L	REVISION	
	05000346	2008	001		NUMBER 00	2 OF 6
RRATIVE	<u> </u>	1				
DESCRIPTION OF OCCURRENCE	Ξ:					
System Description:						
At the Davis-Besse Nuclear Power Heat Removal Nozzle [AB-NZL] and ASME Class 1 Reactor Coolant Sys from the RCS to the Decay Heat Re shutdowns.	Station (DBNPS), th d attached piping is t stem (RCS) Pressure emoval System, whic	e primary f to maintair e Boundar ch is used	function of t a Nuclear y. This pipi to cool the r	he 12 Safet ng pr reacto	2-inch Hot L y Related S ovides a flo or core duri	eg Decay Seismic wpath ng plant
DBNPS Technical Specification (TS one Decay Heat Removal Loop in c irradiated fuel assemblies within the	b) Limiting Condition operation when in Mo e reactor vessel is gr	for Operat ode 6 and t eater than	tion (LCO) 3 the water le or equal to	8.9.8. vel al 23 fe	1 requires a bove the to et.	at least p of the
TS LCO 3.9.8.2 requires two indepe and the water level above the top o less than the required Decay Heat I initiation of corrective actions to retu	endent Decay Heat F f the irradiated fuel in _oops Operable, TS urn the required loop	Removal L n the react LCO 3.9.8 s to Opera	oops be Op or vessel is 3.2 Action a able status a	erabl less requi as so	e when in I than 23 fee res the imn on as possi	Mode 6 et. With nediate ible.
Also, TS LCO 3.4.10.1 requires the be maintained in all Modes. With th conforming to the TS-listed requirer component's structural integrity pric above the minimum temperature re Fahrenheit).	structural integrity one structural integrity nents, TS LCO 3.4.1 or to increasing the F quired by nil ductility	f ASME Co of any AS 0.1 Action Reactor Co temperatu	ode Class 1 ME Code C a requires olant Syste ure conside	, 2 ar Class resto m mo ration	nd 3 compo 1 compone ration of the re than 50 s (120 deg	onents to ent not e affected degrees rees
Event Description:						
The FirstEnergy Nuclear Operating 3304, dated January 25, 2007, to re necessary inspection or mitigation a Electric Power Research Institute (E commenced on December 30, 2007	Company (FENOC) emove the DBNPS fr activities for specific EPRI) MRP-139 insp 7.	committed om service dissimilar ection crite	d to the NR(e in Deceml metal welds eria. The F	C in le ber 20 s, in o ifteen	etter Serial 007 to supp rder to sation th Refuelin	Number port sfy g Outage
The scope of the Alloy 600 Weld Or applying pre-emptive weld overlay r cracking. Seven weld overlays wer pressurizer [AB-T], two nozzles for Removal Drop Line. The Decay He Heat Removal System to the RCS I Tungsten Arc Welding (GTAW) pro-	verlay project for the material (alloy 52M) e applied, grouped a the pressurizer surg eat Removal Drop Lin not leg. In order to n cess was chosen for	Fifteenth to areas of as follows: e line, and ne nozzle ninimize do the weld of	Refueling C f the RCS th four nozzle one nozzle provides the pse, applica overlays.	outage nat ar s at tl for th e con ntion c	e consisted e susceptib ne top of th ne Decay H nection of t of an autom	of ble to e leat he Decay hated Gas
The 12-inch RCS hot leg to Decay l carbon steel with Alloy 182 butterin 371 ER 308L stainless steel filler m inch schedule 140 long radius 90 de	Heat Removal Syste g on the weld end ar etal. The nozzle is b egree elbow made o	m nozzle v nd internall utt welded	was shop fa ly clad with with Alloy 1 wade WP-3	ibrica a mir 182/8 16 st:	ted of A105 imum 1/8 i 2 filler meta	5 Grade II nch SA- al to a 12-

· ·

(9-2007)	U.S. NUCLEAR REGULATORY COMMISSION LICENSEE EVENT REPORT (LER) CONTINUATION SHEET							
1. FACILITY NAME	2. DOCKET	6. LER NUMBER					3. PAGE	
Davis-Besse Unit Number 1	. 05000346	YEAR	SEQUENTIAL NUMBER			REVISION NUMBER	3056	
	00000040	2008		001		00	50, 0	
NARRATIVE								

DESCRIPTION OF OCCURRENCE: (continued)

On January 2, 2008, during the Fifteenth Refueling Outage a dye penetrant examination of the Decay Heat Removal Drop Line nozzle connection from the Reactor Coolant System hot leg was completed resulting in no observed indications. With the RCS partially drained until the water level was about two feet above the RCS hot leg centerline, the first bead on the structural weld overlay for the Decay Heat Removal Drop Line nozzle was started by welding personnel on January 3, 2008. With the plant in Mode 6, on January 4, 2008, at 0250 hours, the weld operator identified water seeping from a small hole in the initial pass of the weld overlay bead. The leak was located in the 19th weld bead of the first layer of the structural weld overlay located directly over the existing butt weld. The weld overlay was stopped and both loops of the Decay Heat Removal System were declared Inoperable, due to a through-wall defect that impaired the structural integrity of the piping. A Problem Solving Plan and an Operational Decision Making Issue (ODMI) were developed for continued operation of the Decay Heat Removal System with the leak based upon an engineering evaluation providing reasonable assurance of the structural integrity for existing conditions.

Based upon an ODMI recommendation, the refueling canal was filled and the core was offloaded as originally scheduled. The leakage was measured as less than one drop per minute with at least 23 feet of borated water covering the top of the irradiated fuel assemblies seated within the reactor pressure vessel. Once the core was offloaded, work proceeded on repair of the weld. The first layer of the overlay was ground smooth to allow ultrasonic examination using the phased array technique. A recently developed manual phased array ultrasonic examination procedure was qualified such that it addressed the configuration of the hot leg to Decay Heat Removal Drop Line nozzle and dissimilar metal butt weld region in order to characterize the flaw. This gualification included detection and depth sizing of flaws in dissimilar metal butt welds and was demonstrated on samples containing implanted cracks. Utilizing an EPRI Performance Demonstration Initiative (PDI) mock-up, a detailed examination plan was developed to minimize the scan restrictions existing on the dissimilar metal weld region. The technique used a 32 x 32 element phased array search capable of generating angles from 0 to 84 degrees in one degree increments for circumferential flaws, and 0 to 69 degrees for axial flaws (limited by physical restraints of the wedge). The search output is raster scanned to the extent that the configuration of the dissimilar metal weld geometry allows. The phased array examination determined that the flaw was an axial flaw approximately 1.75 inches long, wholly contained in the dissimilar metal butt weld and had a profile consistent with other stress corrosion cracking axial flaws in alloy 82/182 weld material that have been confirmed in other plants. No other flaws were noted during this initial ultrasonic examination of the decay heat nozzle weld. Refer to Figure 1 for a diagram of the weld and flaw.

At the completion of the ultrasonic examination, a cavity two inches wide, 2.5 inches long and approximately 0.375 inches deep was ground into the weld and adjacent base material in order to prepare the area for evaluation and repair. The UT Examination of the area and the excavated cavity confirmed that the flaw was axially oriented and allowed the configuration of the dissimilar metal butt weld region to be more accurately depicted.

The leak was repaired satisfactorily prior to the plant's return to power on February 1, 2008, under the scope of NRC approved Relief Request RR-A30, Revision 2, dated December 20, 2007 (TAC No. MD4452).

NRG FORM 300A (9-2007)			U.S. NUCLEA	R REGULATU	
LICE	INSEE EVENT F	EPOR	T (LER)		
		N SHE			2 PAGE
	2. DOCKET		SEQUENTIAL	REVISION	3. PAGE
Davis-Besse Unit Number 1	05000346	YEAH	NUMBER	NUMBER	4 OF 6
		2008	001	00	
RRATIVE					
APPARENT CAUSE OF OCCURRE	ENCE:				
.				.	c (1
I ne axial flaw was located in the all alloy 82/182 portion of the dissimilar	oy 82/182 portion of r metal weld is appro	the dissi	milar metal weld.	The thickne	ss of the t
Removal Drop Line had been in ser	vice for 19.25 effecti	ve full po	wer years (EFPY) at a tempe	rature of
606.4 degrees Fahrenheit.		•		, ,	
The probable serves of the syicl flow	in the het les to de	nov hoot	romoval pazzla d	issimilar mo	tal butt
weld was determined to be the resu	It of PWSCC that re	sulted in	the axial flaw pro	aressing thre	bugh-wall,
and resulted with water seeping dur	ing the application of	f the stru	ctural weld overla	y. The stre	ss
corrosion failure mode is supported	by ultrasonic examination	nation res	sults which confirm	m a similar p	profile and
characteristics to stress corrosion ci	racking at other plan	ts establ	isned by metallur	gical examin	ation.
ANALYSIS OF OCCURRENCE:					
At the time of discourse the DDNDG	Survey also descue for	:	ath Defueling Out		a ia Mada
6 (Refueling) The overall safety sig	nificance of this eve	nt was ve	nin Relueling Out	age and wa welds may	s in Mode be
susceptible to PWSCC that can resi	ult in small leaks, inc	lustry exp	perience with PW	SCC shows	that
complete failure of the weld joints is	considered to be ve	ry unlike	ly.		
Both trains of the Decay Heat Remo	wal System were de	clared In	operable due to t	his leak on t	he
dissimilar metal butt weld, but both	trains of the Decay H	leat Rem	noval System rem	ained function	onal with
one train in service providing core c	ooling and the secon	nd train a	ligned in standby	for decay h	eat
removal.					
The EPRI safety assessment of allo	y 82/182 pipe butt w	elds for l	Babcock & Wilco>	design plar	nts (MRP-
112) concluded that axial PWSCC f	laws that propagate	through-	wall will produce I	eakage that	can be
detected in service before exceedin	g available structura	I margins	 For the case of maximum length 	axial-throug	gh-wall flow
which is limited to the width of the w	eld metal. Therefor	e. there i	s no safety conce	rn relative to	naw, o rupture
from an axial flaw and the plant's lea	akage detection syst	em will b	e capable of iden	tifying a thro	, bugh-wall
axial flaw.					
These axial cracks would be detect	ed prior to reaching	critical fla	w size either by r	non-destruct	ive
examination prior to leakage occurri	ing, or by visual insp	ections of	or leak detection a	fter leakage	has
started. Therefore, it is concluded t	he overall safety sig	nificance	of the axial flaw of	discovered a	at the
DBINES was very low because no fa	allures occurred, and promised	i the stru	ctural integrity of	ine RCS pre	ssure
An extent of condition evaluation wa	as also performed.	All Alloy 6	600 dissimilar met	al butt weld	5
Subjected to Hot Leg or greater tem	peratures received a	a pre-emj dissimil	ptive tull structura ar metal butt weld	I weld overla	ay in S (the 14-
inch core flood nozzles (2), the 28-ii	nch reactor coolant	oump inle	et (4) and dischare	ge nozzles (4), the
high pressure injection line nozzles	(4), and the cold leg	drain lin	es (4)) are less si	sceptible to	stress
correction exection due to their lowe	r anarating tompora		The		

to the inspection/mitigation requirements of EPRI MRP-139. One cold leg drain line nozzle was mitigated by weld overlay in 14RFO. The remaining reactor coolant pressure boundary alloy 600/82/182 dissimilar metal welds were either shop fabricated in vessels / piping assemblies or involve j-groove welds. These welds received a base metal visual examination at the frequencies recommended by EPRI MRP-139 for butt welds subject to similar operating temperatures.

~

NRC FORM 366A (9-2007)	CENSEE EVENT F	REPOR N SHE	U.S. NUCLEAI T (LER) ET	R REGULATO	DRY COMMISSION
1. FACILITY NAME	2. DOCKET		6. LER NUMBER		3. PAGE
Davis-Besse Unit Number 1	05000346	YEAR	SEQUENTIAL NUMBER	REVISION NUMBER	5 OF 6
	00000340	2008	001	00	JUFU
NARRATIVE					

ANALYSIS OF OCCURRENCE: (continued)

The core flood tanks operate at ambient temperatures and are not considered prone to PWSCC. Therefore, the condition is not likely present in other identical or similar equipment.

This report is being made in accordance with 10 CFR 50.73(a)(2)(ii)(A) which requires reporting of any event or condition that resulted in the plant, including its principal safety barriers, being seriously degraded. A non-emergency eight hour degraded condition notification per 10 CFR 50.72 (b)(3)(ii)(A) was submitted to the NRC as Event Number 43880 on January 4, 2008.

CORRECTIVE ACTIONS:

Corrective actions taken to repair the leak included excavation of a cavity, peening the area of the flaw, seal welding, completion of the planned full structural weld overlay, and an acceptable ultrasonic examination. The implementation of the structural weld overlay provided a new RCS pressure boundary, an acceptable method of preventing future PWSCC, and an acceptable contour for ultrasonic examination.

DBNPS has ongoing Alloy 600/690 Material Management Program in order to satisfy the EPRI MRP-139 inspection criteria. Additionally, as part of an Alloy 600 Mitigation Plan structural weld overlays of the pressurizer relief and spray nozzles, pressurizer surge nozzle, and surge line to hot leg nozzle were completed during the Fifteenth Refueling Outage (2008). The remaining alloy 600 butt welds will be inspected or mitigated in accordance with EPRI MRP-139 and Nuclear Energy Institute NEI 03-08, Guideline for the Management of Materials Issues.

FAILURE DATA:

PWSCC of Alloy 600 material has been a recurring problem in PWR plants primary system pressure boundaries since the mid 1980's as noted in MRP-139. As a result pre-emptive structural weld overlays of susceptible piping were initiated in accordance with MRP-139 recommendations. This condition was discovered as a result of this pre-emptive action.

Past occurrences at the DBNPS include an axial indication on a dissimilar metal butt weld on the reactor coolant pump 1-1 cold leg drain line (DBNPS LER Number 2006-002) and extensive pressure boundary leakage from J-groove welds on alloy 600 control rod drive mechanism nozzles. Industry operating experience has demonstrated a generic or broader issue that alloy 600/82/182 materials exposed to primary coolant water (or steam) at the normal operating conditions of nuclear plants have been susceptible to stress corrosion cracking. LER 2006-002 stated that the length of the indication could not be determined and there was no evidence of through-wall leakage during bare metal examination of the piping which differentiates it from this event. The overall safety significance of this cold leg drain line nozzle-to-elbow dissimilar metal axial flaw indication discovered in 2006 was considered minimal because no failures or leakage occurred.

Energy Industry Identification System (EIIS) codes are identified in the text as [XX].

NP-33-08-001-00

CR 08-32521

