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Radiation Effects-GALL Examples

Loss of Toughness/Neutron Radiation Embrittlement
•PWR Inlet, Outlet, Safety, and Injection Nozzles; Vessel Shell including 
Beltline Welds, Baffle/former assemblies, Core barrel, Lower internal 
assembly
•BWR fuel supports and control rod drive assemblies, jet pump assemblies, 
Class 1 pump casings, and valve bodies and bonnets

Creep
•PWR Baffle/former assemblies, Lower internal assembly, upper internals 
assembly

Swelling
•PWR Baffle/former assemblies, Core Barrel, Instrumentation support 
structures, Lower internal assembly, RCCA guide tube assemblies, upper 
internals assembly

IASCC
•PWR Baffle/former assemblies, Core Barrel, Instrumentation support 
structures, Lower internal assembly, RCCA guide tube assemblies
•BWR Jet Pump Assemblies
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Irradiation Effects on 
Mechanical Properties
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Reactor Pressure Vessels

RPVs are exposed to fast neutron fluxes (E>0.1 MeV) in the 
range of 1012-1015 n/m2s (10-9 to 10-11 dpa/s).

•PWR fluxes are higher than BWR fluxes
•Flux decreases by ~ a factor of 20 across an 8 inch PWR 
RPV
•Flux decreases by ~ a factor of 12 across an 6 inch PWR 
RPV
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Design Windows

QuickTime™ and a
 decompressor

are needed to see this picture.

NUREG CR 6923
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Creep:
Radiation-induced Stress Relaxation
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Easily Observed Swelling

Swelling: Volume increase in a 
material caused by void 
formation and growth
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Transient Swelling RegimeTransient Swelling Regime
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The length of the 
transient regime 
determines component 
lifetimes and is affected 
by composition, dose 
rate, dose, temperature, 
and cold-work
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Swelling and Displacement Rate
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Stress Relaxation
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Design Windows

QuickTime™ and a
 decompressor

are needed to see this picture.
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Theme 1

Reduction in uncertainty allows for 

extended component lifetime
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Fracture Toughness

Positioning of ASME KIc and KIa
Curves By RTNDT Shows Potentially 
Significant Overconservatism For 
Midland Reactor Low Upper-Shelf 
Weld

Desire to use plant specific 
fracture toughness to 
determine allowed operational 
limits
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Theme 2

Degradation of properties is driven by 

changes in microstructures that are 

driven by radiation

Prediction of properties requires 

prediction of microstructures
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Design Windows

QuickTime™ and a
 decompressor

are needed to see this picture.

NUREG CR 6923
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Design Windows

QuickTime™ and a
 decompressor

are needed to see this picture.

NUREG CR 6923



19
NRC/DOE Life Beyond 60 February 2008

Charpy Energy-Composition
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Atom Probe Tomography

FeFe Cu Ni Mn Si P atoms

•Copper-rich precipitates (CRP) would 
form at RPV temperatures with no 
irradiation but extremely slowly
•Build up of CRP depends on 
displacement damage rate but density 
will saturate when copper is depleted 
from matrix
•Binding of Ni and Mn increase size, 
increasing effect on embrittlement
•Manganese Rich Precipitates may 
form at low copper concentrations
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Theme 3

Accurate modeling of radiation induced 

microstructural development requires the 

ability to model microchemical changes 

in complex alloys
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Master Curve

QuickTime™ and a
 decompressor

are needed to see this picture.

Courtesy S. Rosinski
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Embrittlement Models

•Physically-based statistical model correlations for temperature shifts for:
•a. Fluence
•b. Bulk Ni and Cu concentration
•c. Bulk Cu concentration

Odette and Lucas, JOM 53(7) 2001,  18-22



William Wolfer, LLNL
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Needs

Understanding and predicting radiation response of complex 
materials requires coupled studies that include:

•Modeling technique advancements
•Improved models and interpretations of models of physical 
systems
•Experiments that provide data to support the advancements 
in theory
•Availability of improved experimental probes. 

An aggressive research agenda would make available modern 
material science manufacturing and analysis techniques to the 
study of systems with inherent radioactivity.
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Backups
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Embrittlement Models

These models still lack detailed descriptions of many variables, some of 
which are

•Effect of dose rate in the intermediate Φ regime
•Effects of secondary variables such as manganese or phosphorus
•Through-wall attenuation
•Potential for forming late blooming phases in low-copper steels
•Thermal embrittlement or other new phenomena that might occur at 
long-times or very high Φt, beyond the current database

Odette and Lucas, JOM 53(7) 2001,  18-22

•The best predictive models for temperature shifts show most hardening 
comes from SMF and CRP

ΔTt = Afsmf Ti,Φt,P( )+Bfcrp Cu,Ni,Φ,Φt( )
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Design Windows

QuickTime™ and a
 decompressor

are needed to see this picture.
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PWR Operating Conditions
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Segregation and Swelling

Brager and Garner
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Charpy Energy-Composition

Copper has been identified as a critical element causing embrittlement 
through the formation of copper-rich clusters/precipitates
The degrading effects of nickel in the presence of copper has been 
demonstrated in commercial alloys
Phosphorous has been found to cause sensitivity in very low-copper alloys but 
a synergistic effect is not evident in high-copper alloys.   In practical terms, P 
levels are so low in operating vessel material that they do not have a significant 
effect.
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•Unstable matrix defects (UMD) that form in cascades even in 
steels with low or no copper, but that anneal rapidly compared to 
typical low flux irradiation times
•Stable matrix features (SMF) that persist or grow under 
irradiation even in steels with low or no copper

•Copper rich or catalyzed manganese-nickel rich precipitates 
(CRPs/MNPs)

Odette and Lucas, JOM 53(7) 2001,  18-22

Embrittlement and nanoscale features

•Non-hardening embrittlement can also be caused by 
radiation-induced solute segregation such as phosphorus 
segregation at grain boundaries
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Radiation Hardening
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Temperature dependence of void formation 
in annealed 12X18H10T irradiated in BN-350
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Dislocation Loops in Irradiated
316 SS (2 dpa)
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Design Windows

QuickTime™ and a
 decompressor

are needed to see this picture.
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Hardening of Austenitic Steels
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•Radiation-induced damage can come 
from

•Immobile point defect clusters
•Mobile point defects and point 
defect clusters

Vacancies
Interstitials

Brian Wirth, UCB

Radiation Damage
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Model Dependence Of Yield Strength Change On 
Displacement Rate

• Results Are Relatively Insensitive Below ~5x10-9 dpa/s or about            
3x1016 n/m2/s (E>1.0 MeV)

• May Minimize Concerns About Surveillance Lead Factors and Use of Some 
Test Reactor Data

From Stoller
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Swelling and Bulk Composition
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Segregation and Swelling
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