Proactive Strategies for Monitoring and Managing Aging Related Degradation in Highly Irradiated Reactor Internals

Randy Lott Westinghouse Electric Company

> Life After 60 Workshop Bethesda, Maryland February 2008

Reactor Internals

Unique Service Environment

Long Term Degradation

2

Require Proactive Aging Management Program

We have limited experience with long term exposure in high radiation environments!

80 Years

Unique Degradation Mechanisms

Industry Materials Reliability Program (MEOG/MTAG/EPRI)

Materials Degradation Matrix

- Comprehensive catalogue of potential mechanisms
- Issue Management Table
 - Systematic analysis of current programs
 - Gap Analysis
- Reactor Internals I&E Guidelines
 - Based on Functionality Analysis
 - Recommendation for Aging Management

Materials Degradation Matrix Recognizes 17 Modes of Degradation

Applied to all reactor components. (not just internals!)

Basis for developing the Issue Management Table!

Туре	Mode	Code
Corrosion/Wear	Flow Assisted Corrosion	C/W:FAC
Corrosion/Wear	Pitting	C/W:Pitt
Corrosion/Wear	Wastage	C/W:Wstg
Corrosion/Wear	Wear	C/W:Wear
Fatigue	Environmental	Fat:Env
Fatigue	High Cycle	Fat:HC
Fatigue	Thermal	Fat:Th
Mechanical	Flux Effect	RIT:Flux
Mechanical	Irradiation Embrittlement	RIT:Emb
Mechanical	Thermal Aging	RIT:ThAg
Mechanical	Thermal Neutron	RIT:Thn
Mechanical	Void Swelling	RIT:VS
Stress Corrosion Cracking	Intergranular	SCC:IG
Stress Corrosion Cracking	Irradiation Assisted	SCC:IA
Stress Corrosion Cracking	Low Temperature Crack Propagation	SCC:LTCP
Stress Corrosion Cracking	Primary Water	SCC:PW
Stress Corrosion Cracking	Transgranular	SCC:TG

Issue Management Table 15/62 Gaps Related to Reactor Internals

Inspection Related Gaps

- 1 I&E Guidelines: Reactor Internals
- 8 NDE Accessibility: Reactor Internals
- 20 UT Demonstration: Baffle Bolting
- 32 NDE Capability: Void Swelling (Identification & Characterization)
- 33 NDE Capability: Baffle Former Assembly IASCC
- 43 NDE Capability CRGT Support Pins

Degradation Related Gaps

- 10 Thermal & Irradiation Embrittlement: Synergistic Effects on CASS & SS Welds
- 16 Fluence Impact on SCC of Stainless Steels
- 18 High Cycle Fatigue Internals
- 23 PWSCC Management: Ni-Alloy Reactor Internals
- 28 Fatigue Environmental Effects: Reactor Internals
- 31 Assess Void Swelling & Stress Relaxation Significance: PWR Reactor Internals
- 35 Wear & High Cycle Fatigue: Steam Generator Tubes & Internals

General Assessment Gaps

- 25 Baffle Bolting Assessment
- 49 Irradiation Effects: Ni Alloys (Reactor Internals)

The I&E Guidelines

- Based on Exhaustive Screening Process

7

- Inspection Guidelines:
 - What to inspect
 - When to inspect
- •Evaluation Guidelines
 - What is acceptable
 - What do we do?
 - Mitigate
 - Repair
 - Replace

Functionality Analysis

- A Multi-Discipline Effort

The Cracking Mechanisms

- SCC (Stress & Environment)
- IASCC (Irradiation, Stress & Environment)
- Fatigue (Transient Loading, Environment?)

Produce observable cracks Most probable in regions of stress concentration

The Embrittlement Mechanisms

- Irradiation Embrittlement (Dose & Temperature)
- Thermal Embrittlement (Time, Temperature & Composition)

Changes in material properties

- Strength (increase)
- Ductility (decrease)
- Toughness (decrease)

The Dimensional Stability Mechanisms

- Void Swelling (Temperature & Dose)
- Irradiation Induced Stress Relaxation/Creep (Dose & Stress)

Component Distortion Modify Stress/Strain Distribution – Affects SCC, IASCC and Fatigue

The Wear Mechanism

Difficult to compare or rank wear potential in identified components

Tables in Draft I&E Guidelines

Primary Components Table							
Component	Applicability	Effect (Mechanisms)	Expansion Link (Expansion Item)	Examination Method	Examination Coverage		

Expansion Components Table						
Component	Applicability	Effect (Mechanisms)	Expansion Link (Primary Item)	Examination Method	Examination Coverage	

Life Beyond 60 - Is there a cliff at 60 years?

- Swelling may have a long incubation or nonlinear onset.
- SCC initiation times are difficult to predict.
- ???

Life Beyond 60 - What will the future look like?

- Must plan for improved technologies.
- At 20 year extension relatively few utilities are considering replacement/upgrade.
- At 40 years beyond original license, economics of replacement/upgrade are more favorable.

