Holtec International Final Safety Analysis Report for the HI-STORM 100 Cask System*

by

Holtec International Holtec Center 555 Lincoln Drive West Marlton, NJ 08053 (holtecinternational.com)

USNRC Docket No.: 72-1014 Holtec Report No.: Quality Designation: Safety Significant

HI-2002444

^{*} This document is a copyrighted intellectual property of Holtec International. All rights reserved. Excerpting any part of this document, except for public domain citations included herein, by any person or entity except for the USNRC, without written consent of Holtec International is unlawful.

Page(s)	<u>Revision</u>
i through xi	6

PAGE 1 of 14

Page(s)	Revision
1.0-1 through 1.0-31	6
1.1-1 through 1.1-4	6
Fig. 1.1.1	0
Fig. 1.1.1	
Fig. 1.1.1A Fig. 1.1.1B	2
Fig. 1.1.2	2
Fig. 1.1.2 Fig. 1.1.3 through 1.1.3A	0
Fig. 1.1.3B	2
	1
Fig 1.1.4 through 1.1.5	6
1.2-1 through 1.2-40	
Fig. 1.2.1	1
Fig. 1.2.1A	2
Fig. 1.2.2 Fig. 1.2.3	4
Fig. 1.2.3	3
Fig. 1.2.4	4
Fig. 1.2.5 through 1.2.6	0
Fig. 1.2.7	1
Fig. 1.2.8 through 1.2.8A	1
Fig. 1.2.9 through 1.2.9A	: 1
Fig. 1.2.10 through 1.2.12	. 0
Fig. 1.2.13 through 1.2.15	Deleted
Fig. 1.2.16a through 1.2.16f	0
Fig. 1.2.17a through 1.2.17d	5
Fig. 1.2.18	1
1.3-1	5
1.4-1 through 1.4-3	. 1
Fig. 1.4.1 through 1.4.2	0
1.5-1 through 1.5-2	6
Drawings	See Section 1.5
Bills-of-Material	See Section 1.5
1.6-1 through 1.6-2	3
1.A-1 through 1.A-7	4
Fig. 1 A 1 through 1 A 5	0
1 B-1 through 1 B-3	3
1.B-1 through 1.B-3 1.C-1	2
1.C-2 through 1.C-5	Deleted
1.D-1 through 1.D-8	6
1.I-1	6
1.II-1 through 1.II-4	6

PAGE 2 of 14

Page(s)	<u>Revision</u>
2.0-1 through 2.0-35	6
2.1-1 through 2.1-66	6
Fig. 2.1.1	3
Fig. 2.1.2 through 2.1.2C	1
Fig. 2.1.2D	3
Fig. 2.1.3 through 2.1.5	0
Fig. 2.1.6 through 2.1.8	Deleted
Fig. 2.1.9	3
2.2-1 through 2.2-58	6
2.3-1 through 2.3-22	5
Fig. 2.3.1 through 2.3.4	0
2.4-1 through 2.4-3	3
2.5-1	0
2.6-1 through 2.6-3	3
2A-1 through 2.A-5	2
Fig. 2.A.1	1
2.B-1 through 2.B-4	3
Fig. 2.B.1	3
2.C-1 through 2.C-2	3 3 3 3 3
Fig. 2.C.1	3
2.1-1	. 6
2.II-1 through 2.II-5	6
Fig. 2.II.1	6

PAGE 3 of 14

Page(s)	<u>Revision</u>
3.0-1 through 3.0-10	4
3.1-1 through 3.1-46	5
Fig. 3.1.1 through 3.1.3	1
3.2-1 through 3.2-14	4
3.3-1 through 3.3-11	5
3.4-1 through 3.4-135	6
Fig. 3.4.1	0
Fig. 3.4.2	.1
Fig. 3.4.3 through 3.4.4	0
Fig. 3.4.5	1
Fig. 3.4.6 through 3.4.9	0
Fig. 3.4.10	1
Fig. 3.4.11 through 3.4.29	0
Fig. 3.4.30 through 3.4.49	1
3.5-1	. 6
Fig. 3.5.1 through 3.5.9	Deleted
3.6-1 through 3.6-9	3
3.7-1 through 3.7-8	3
3.8-1 through 3.8-2	6
3.A-1 through 3.A-15	. 1
Fig. 3.A.1 through 3.A.18	0
Fig. 3.A.19 through 3.A.30	Deleted
3.I-1	6
3.II-1 through 3.II-18	. 6
Fig. 3.II.1	6

PAGE 4 of 14

Page(s)	<u>Revision</u>
· · · · · · · · · · · · · · · · · · ·	·
4.0-1 through 4.0-2	3
4.1-1 through 4.1-5	3
4.2-1 through 4.2-10	3
Fig. 4.2.1 through 4.2.2	Deleted
Fig. 4.2.3	3 3 3
4.3-1 through 4.3-2	3
4.4-1 through 4.4-65	3
Fig. 4.4.1 through 4.4.6	0
Fig. 4.4.7	2
Fig. 4.4.8	Deleted
Fig. 4.4.9	1
Fig. 4.4.10	0
Fig. 4.4.11	Deleted
Fig. 4.4.12 through 4.4.13	0
Fig. 4.4.14 through 4.4.15	Deleted
Fig. 4.4.16 through 4.4.17	1
Fig. 4.4.18	Deleted
Fig. 4.4.19 through 4.4.20	1
Fig. 4.4.21 through 4.4.23	Deleted
Fig. 4.4.24	0
Fig. 4.4.25 through 4.4.26	1
Fig. 4.4.27	3
4.5-1 through 4.5-24	. 5
Fig. 4.5.1	0
Fig. 4.5.2	. 1
4.6-1 through 4.6-2	3
4.7-1 through 4.7-3	
4.A-1	Deleted
4.B-1 through 4.B-9	3
Fig. 4.B.1 through 4.B.8	· 1
4.I-1	6
4.II-1 through 4.II-8	. 6

Page(s)	Revision
5.0-1 through 5.0-4	5
5.1-1 through 5.1-26	6
	1
Fig. 5.1.1	
Fig. 5.1.2	0
Fig. 5.1.3	3
Fig. 5.1.4	0
Fig. 5.1.5	0
Fig. 5.1.6	0
Fig. 5.1.7	· 0
Fig. 5.1.8	0
Fig. 5.1.9	0
Fig. 5.1.10	0
Fig. 5.1.11	0
Fig. 5.1.12	1
Fig. 5.1.13	2
5.2-1 through 5.2-58	6
5.3-1 through 5.3-15	4
Fig. 5.3.1	1
Fig. 5.3.2 through Fig. 5.3.3	0
Fig. 5.3.4	2
Fig. 5.3.5	0
Fig. 5.3.6	0
Fig. 5.3.7	1
Fig. 5.3.8 through Fig. 5.3.9	0
Fig. 5.3.10	3
Fig. 5.3.11	1
Fig. 5.3.12	4
Fig. 5.3.13	4
Fig. 5.3.14	4
Fig. 5.3.15	1
Fig. 5.3.16	1
Fig. 5.3.17	1
Fig. 5.3.18	1
Fig. 5.3.19	2
Fig. 5.3.20	1
Fig. 5.3.21	1
Fig. 5.3.22	2
Fig. 5.3.23	4
5.4-1 through 5.4-35	4
5.5-1	0
5.6-1 through 5.6-3	
5.A-1 through 5.A-4	3
5.B-1 through 5.B-7	0
5.C-1through 5.C-61	Ō
5.D-1 through 5.D-6	1
5.E-1 through 5.E-4	1
5.F-1 through 5.F-4	
	3
Fig. 5.F.1 through 5.F.7	3
5.1-1	
5.II-1 through 5.II-12	6

PAGE 6 of 14.

Page(s)	<u>Revision</u>
	· · · · · · · · · · · · · · · · · · ·
6.1-1 through 6.1-19	6
6.2-1 through 6.2-64	5
6.3-1 through 6.3-19	3
Fig. 6.3.1	1
Fig. 6.3.1A	~ 1
Fig. 6.3.2	1
Fig. 6.3.3	. 0
Fig. 6.3.4	1
Fig. 6.3.5	1
Fig. 6.3.6	. 0
Fig. 6.3.7	1
6.4-1 through 6.4-34	. 6
Fig. 6.4.1	Deleted
Fig. 6.4.2 through 6.4.15	1
Fig. 6.4.16	3
Fig. 6.4.17	3
6.5-1	0
6.6-1	0
6.7-1 and 6.7-2	1
6.A-1 through 6.A-20	2
Fig. 6.A.1 through 6.A.5	0
Fig. 6.A.6	. 2
6.B-1 and 6.B-2	. 0
6.C-1 through 6.C-16	6
6.D-1 through 6.D-35	. 1
6.I-1	. 6
6.II-1 through 6.II-6	6
Fig. 6.II.1	6

PAGE 7 of 14

Page(s)	<u>Revisior</u>
7.0-1	6
7.1-1 through 7.1-8	6
Fig. 7.1.1	0
7.2-1	3
7.3-1	3
7.4-1 through 7.4-2	5
7.A-1	Deletec
7.I-1	6
7.11-1	6

PAGE 8 of 14

Page(s)	Revision
	<u>Nevision</u>
8.0-1 through 8.0-6	6
8.1-1 through 8.1-42	5
	4
Fig. 8.1.1	
Fig. 8.1.2a and 8.1.2b	0
Fig. 8.1.2c	4
Fig. 8.1.2d	1
Fig. 8.1.2e and 8.1.2f	0
Fig. 8.1.3	0
Fig. 8.1.4	4
Fig. 8.1.5 and 8.1.6	. 0
Fig. 8.1.7	1
Fig. 8.1.8 through 8.1.11	0
Fig. 8.1.12 and 8.1.13	1
Fig. 8.1.14 through 8.1.17	0
Fig. 8.1.18 and 8.1.19	1
Fig. 8.1.20	4
Fig. 8.1.21	1
Fig. 8.1.22a and 8.1.22b	1
Fig. 8.1.23	1
Fig. 8.1.24	0
Fig. 8.1.25	1
Fig. 8.1.26	4
	4
Fig. 8.1.27 through 8.1.28	1
Fig. 8.1.29a and 8.1.29b	
Fig. 8.1.30	1
Fig. 8.1.31	4
Fig. 8.1.32	0
Fig. 8.1.33	4
Fig. 8.1.34a	1
Fig. 8.1.34b	Deleted
Fig. 8.1.35 and 8.1.36	0
Fig. 8.1.37	4
8.2-1	4
8.3-1 through 8.3-11	5
Fig. 8.3.1	5
Fig. 8.3.2a	4
Fig. 8.3.2b	5
Fig. 8.3.2c through 8.3.2d	0
Fig. 8.3.3	0
Fig. 8.3.4	Deleted
8.4-1 through 8.4-3	4
Fig. 8.4.1a	0
Fig. 8.4.1b	4
8.5-1 through 8.5-5	4
Fig. 8.5.1	4
8.6-1	1
8.I-1	6
8.II-1	6

Revision
.4
6
. 0
· · · ·
6
6

PAGE 10 of 14

Page(s)	Revision
10.1-1 through 10.1-8	5
Fig. 10.1.1	. 4
10.2-1	3
10.3-1 through 10.3-43	5
Fig. 10.3.1a	4
Fig. 10.3.1b	4
Fig. 10.3.1c	4
Fig. 10.3.1d	4
Fig. 10.3.1e	4
10.4-1 through 10.4-5	3
10.5-1	0
10.1-1	6
10.II-1	6

PAGE 11 of 14

Page(s)	Revision
11.1-1 through 11.1-18	5
11.2-1 through 11.2-51	6
Fig. 11.2.1	0
Fig. 11.2.2 through 11.2.5	Deleted
Fig. 11.2.6	1
11.3-1	1
11.1-1	6
11.II-1 through 11.II-14	6

PAGE 12 of 14

<u>Page(s)</u>	<u>Revision</u>
12.0-1	0
12.1-1 through 12.1-3	3
12.2-1 through 12.2-8	3
12.3-1	0
12.4-1	0
12.5-1	· 0
Appendix 12.A Cover	. 3
TS Bases TOC	5
B 3.0-1 through B 3.0-9	. 0
B 3.1.1-1 through B 3.1.1-7	5
B 3.1.2-1 through B 3.1.2-7	3
B 3.1.3-1 through B 3.1.3-3	5
B 3.1.4-1 through B 3.1.4-3	3
B 3.2.1-1	3
B 3.2.2-1 through B 3.2.2-3	1
B 3.2.3-1	3
B 3.3.1-1 through B 3.3.1-5	6
Appendix 12.B	Deleted
12.1-1	6
12.II-1	. 6

PAGE 13 of 14

Page(s)	<u>Revision</u>
13.0-1 through 13.0-2	4
13.1-1	Deleted
13.2-1	Deleted
13.3-1	Deleted
13.4-1	Deleted
13.5-1	Deleted
13.6-1	4
13.I-1	6
13.II-1	6

PAGE 14 of 14

HI-STORM 100 FSAR TABLE OF CONTENTS

СНАР	PTER 1: GENERAL DESCRIPTION	1.0-1
1.0	GENERAL INFORMATION	
	1.0.1 Engineering Change Orders	1.0-3
1.1	INTRODUCTION	1.1-1
1.2	GENERAL DESCRIPTION OF HI-STORM 100 SYSTEM	1.2-1
	1.2.1 System Characteristics	1.2-1
	1.2.2 Operational Characteristics	1.2-21
· .	1.2.3 Cask Contents	1.2-28
1.3	IDENTIFICATION OF AGENTS AND CONTRACTORS	1.3-1
1.4	GENERIC CASK ARRAYS	1.4-1
1.5	DRAWINGS	1.5-1
1.6	REFERENCES	161
1.0	REFERENCES	1.0-1
	APPENDIX 1.A: ALLOY X DESCRIPTION	
	APPENDIX 1.B: HOLTITE™ MATERIAL DATA	
· ·.	APPENDIX 1.C: MISCELLANEOUS MATERIAL DATA	
	APPENDIX 1.D: REQUIREMENTS ON HI-STORM 100 SHIELDING CONCRI	ETE
1.I .	SECTION RESERVED FOR FUTURE USE	1.I-1
1.11	GENERAL DESCRIPTION OF HI-STORM 100 SYSTEM FOR IP1	
	1.II.0 General Information	
	1.II.1 Introduction	1.II-1
	1.II.2 General Description of HI-STORM 100 System for IP1	1.II-1
	1.11.3 Identification of Agents and Contractors	1.II-2
	1.II.4 Generic Cask Arrays	1.II-2
1 - ¹ 1	1.II.5 Drawings	1.II-3
CHA	PTER 2: PRINCIPAL DESIGN CRITERIA	2.0-1
20	PRINCIPAL DESIGN CRITERIA	2.0.1
2.0		
	2.0.1 MPC Design Criteria.	
	2.0.2 HI-STORM 100 Overpack Design Criteria	
	2.0.3 HI-TRAC Transfer Cask Design Criteria2.0.4 Principal Design Criteria for the ISFSI Pad	
	2.0.4 Frincipal Design Criteria for the ISFST Fau	2.0-10
2.1	SPENT FUEL TO BE STORED	2.1-1
	2.1.1 Determination of The Design Basis Fuel	
	2.1.2 Intact SNF Specifications	
	2.1.3 Damaged SNF and Fuel Debris Specifications	
	2.1.4 Deleted	
	i	Revision 6

		ii Revision 6	
	3.1	STRUCTURAL DESIGN	
	3.0	OVERVIEW	
	CHAP	TER 3: STRUCTURAL EVALUATION	
		2.II.5 Regulatory Compliance	
		2.II.4 Decommissioning Considerations	
		2.II.3 Safety Protection Systems	
		2.II.2 HI-STORM 100 Design Criteria	
		2.II.1 Spent Fuel to be Stored	
	· ·	2.II.0 Overview of the Principal Design Criteria	
	2.II	PRINCIPAL DESIGN CRITERIA FOR THE HI-STORM 100 SYSTEM FOR IP1	
	2.1	SECTION RESERVED FOR FUTURE USE2.1-1	
·	21	SECTION RESERVED FOR FUTURE USE	
		APPENDIX 2.C: THE SUPPLEMENTAL COOLING SYSTEM	
•		APPENDIX 2.B: THE FORCED HELIUM DEHYDRATION (FHD) SYSTEM	
		ISFSI PAD FOR HI-STORM 100A	•
		APPENDIX 2.A: GENERAL DESIGN AND CONSTRUCTION REQUIREMENTS FOR THE	
	2.6	REFERENCES	
	2.5	REGULATORY COMPLIANCE2.5-1	ŀ
	2.4	DECOMMISSIONING CONSIDERATIONS	
		2.3.6 Fire and Explosion Protection	
		2.3.5 Radiological Protection	
		2.3.4 Nuclear Criticality Safety	
		2.3.3 Protection by Equipment and Instrumentation Selection2.3-3	
		2.3.2 Protection by Multiple Confinement Barriers and Systems2.3-2	
	2.2	2.3.1 General	
	2.3	SAFETY PROTECTION SYSTEMS	
		2.2.8 Allowable Stresses	
		2.2.7 Load Combinations2.2-16	
		2.2.6 Loads	1
	· ·	2.2.4 Applicability of Governing Documents	
ļ	۰.	2.2.3 Environmental Frienomenta and Accident Condition Design Criteria	
	•	2.2.2 Off-Normal Conditions Design Criteria	
		2.2.1 Normal Condition Design Criteria	
	2.2	HI-STORM 100 DESIGN CRITERIA	
		2.1.9 Summary of Authorized Contents	
		2.1.7 Radiological Parameters for Design Basis SNF	
		2.1.6 Thermal Parameters for Design Basis SNF	
		2.1.5 Structural Parameters for Design Basis SNF	
- 1			ł

4

	3.1.1 Discussion	3.1-1
	3.1.2 Design Criteria	3.1-5
3.2	WEIGHTS AND CENTERS OF GRAVITY	3.2-1
3.3	MECHANICAL PROPERTIES OF MATERIALS	
	3.3.1 Structural Materials	
	3.3.2 Nonstructural Materials	3.3-3
3.4	GENERAL STANDARDS FOR CASKS	
	3.4.1 Chemical and Galvanic Reactions	
	3.4.2 Positive Closure	3.4-2
1.	3.4.3 Lifting Devices	3.4-2
	3.4.4 Heat	3.4-18
	3.4.5 Cold	3.4-64
	3.4.6 HI-STORM 100 Kinematic Stability Under Flood Condition	
· · · ·	3.4.7 Seismic Event and Explosion - HI-STORM 100	
	3.4.8 Tornado Wind and Missile Impact	3.4-92
	3.4.9 HI-TRAC Drop Events	3.4-102
	3.4.10 HI-STORM 100 Non-Mechanistic Tip-Over and Vertical Drop Event	3.4-108
	3.4.11 Storage Overpack and HI-TRAC Transfer Cask Service Life	
	3.4.12 MPC Service Life	
	3.4.13 Design and Service Life	3.4-116
3.5	FUEL RODS	3.5-1
3.6	SUPPLEMENTAL DATA	3.6-1
	3.6.1 Additional Codes and Standards Referenced in HI-STORM 100	• . •
	System Design and Fabrication	
	System Design and Fabrication 3.6.2 Computer Programs	3.6-7
	3.6.3 Appendices Included in Chapter 3	3.6-8
	3.6.4 Calculation Package	
	이 같아. 그들 아파는 것은 것을 가지만 그렇게 한 것은 것을 가지만 하는 것을 것 ??	
3.7	COMPLIANCE WITH NUREG-1536	3.7-1
3.8	REFERENCES	3.9.1
5.0	KEFENENCES	
	APPENDIX 3.A: HI-STORM DECELERATION UNDER POSTULATED VERTICE EVENT AND TIPOVER	CAL DROP
3.I	SECTION RESERVED FOR FUTURE USE	3. I- 1
3.11	STRUCTURAL EVALUATION OF THE HI-STORM 100 SYSTEM FOR IP1	
	3.II.0 Overview	
	3.II.1 Structural Design	
•	3.II.2 Weights and Centers of Gravity	
	3.11.3 Mechanical Properties of Materials	
1	3.II.4 General Standards for Casks	
	3.11.5 Fuel Rods	
		· · · · · · · · · ·
1		•

Revision 6

iii

	3.II.6 Supplemental Data
CHAF	PTER 4: THERMAL EVALUATION
4.0	OVERVIEW
4.1	DISCUSSION
4.2	SUMMARY OF THERMAL PROPERTIES OF MATERIALS
4.3	SPECIFICATIONS FOR COMPONENTS
4.4	THERMAL EVALUATION FOR NORMAL CONDITIONS OF STORAGE
*	4.4.3Minimum Temperatures
	4.4.5Maximum Thermal Stresses
4.5	THERMAL EVALUATION OF SHORT TERM OPERATIONS4.5-14.5.1Thermal Model4.5-24.5.2Maximum Temperatures4.5-12
	4.5.3 Minimum Temperatures
	4.5.6 Evaluation of System Performance for Normal Conditions of Handling and Onsite Transport
4.6	Regulatory Compliance4.6-14.6.1Normal Conditions of Storage4.6.2Short Term Operations4.6-2
4.7	References4.7-1
	APPENDIX 4.A INTENTIONALLY DELETED APPENDIX 4.B CONSERVATISMS IN THE THERMAL ANALYSIS OF THE HI-STORM 100 SYSTEM
4.I	SECTION RESERVED FOR FUTURE USE
4.11	THERMAL EVALUATION OF HI-STORM 100 SYSTEM FOR IP14.II-14.II.1Introduction4.II-14.II.2Thermal Properties of Materials4.II-14.II.3Technical Specifications of Components4.II-14.II.4Normal Storage Thermal Evaluation4.II-1
	iv Revision 6

	 4.II.5 Thermal Evaluation of Short Term Operations
	4.II.7 Regulatory Compliance
CHAI	PTER 5: SHIELDING EVALUATION
5.0	INTRODUCTION
5.1	DISCUSSION AND RESULTS
	5.1.1 Normal and Off-Normal Operations
	5.1.2 Accident Conditions
5.2	SOURCE SPECIFICATION
	5.2.1 Gamma Source
:	5.2.2 Neutron Source
	5.2.3 Stainless Steel Clad Fuel Source
	5.2.4 Non-fuel Hardware
	5.2.5 Choice of Design Basis Assembly
	5.2.6 Thoria Rod Canister
•	5.2-15 5.2-15-15 5.2-15-15 5.2-15-15-15 5.2-15-15-15-15-15-15-15-15-15-15-15-15-15-
	5.2.8 Stainless Steel Channels
5.3	MODEL SPECIFICATIONS
5.5	5.3.1 Description of the Radial and Axial Shielding Configuration
	5.3.2 Regional Densities
5.4	SHIELDING EVALUATION
	5.4.1 Streaming Through Radial Steel Fins and Pocket Trunnions and
	Azimuthal Variations 54-
	5.4.2 Damaged Fuel Post-Accident Shielding Evaluation
	5.4.3 Site Boundary Evaluation
	5.4.4 Stainless Steel Clad Fuel Evaluation
100 - 100 1	5.4.5 Mixed Oxide Fuel Evaluation
	5.4.6 Non-Fuel Hardware
114	5.4.7 Dresden Unit 1 Antimony-Beryllium Neutron Sources
,	5.4.8 Thoria Rod Canister
	5.4.9 Regionalized Dose Rate Evaluation
5.5	REGULATORY COMPLIANCE5.5-
5.0	
5.6	REFERENCES
	APPENDIX 5.A: SAMPLE INPUT FILE FOR SAS2H
	APPENDIX 5.B: SAMPLE INPUT FILE FOR ORIGEN-S
•	APPENDIX 5.C: SAMPLE INPUT FILE FOR MCNP
	APPENDIX 5.D: DOSE RATE COMPARISON FOR DIFFERENT COBALT
	IMPURITY LEVELS
	APPENDIX 5.E: DOSE RATES FOR A HI-STORM 100 OVERPACK WITH AND WITHOU
	AN INNER SHIELD SHELL
1	
	v Revision (

	APPENDIX 5.F: ADDITIONAL INFORMATION ON THE BURNUP VERSUS DECAY HEAT AND ENRICHMENT EQUATION
5.I	SECTION RESERVED FOR FUTURE USE
5.11	SHIELDING EVALUATION OF THE HI-STORM 100 SYSTEM FOR IP15.II-15.II.0Introduction5.II-15.II.1Discussion and Results5.II-15.II.2Source Specification5.II-35.II.3Model Specifications5.II-45.II.4Shielding Evaluation5.II-55.II.5Regulatory Compliance5.II-5
CHAP	TER 6: CRITICALITY EVALUATION
6.1	DISCUSSION AND RESULTS
6.2	SPENT FUEL LOADING6.2-16.2.1 Definition of Assembly Classes6.2-16.2.2 Intact PWR Fuel Assemblies6.2-26.2.3 Intact BWR Fuel Assemblies in the MPC-68 and MPC-68FF6.2-56.2.4 BWR and PWR Damaged Fuel Assemblies and Fuel Debris6.2-66.2.5 Thoria Rod Canister6.2-9
6.3	MODEL SPECIFICATION
6.4	CRITICALITY CALCULATIONS
	6.4.2Fuel Loading or Other Contents Loading Optimization6.4-26.4.3Criticality Results6.4-66.4.4Damaged Fuel and Fuel Debris6.4-76.4.5Fuel Assemblies with Missing Rods6.4-166.4.6Thoria Rod Canister6.4-16
	6.4.7Sealed Rods replacing BWR Water Rods6.4-166.4.8Non-Fuel Hardware in PWR Fuel Assemblies6.4-176.4.9Neutron Sources in Fuel Assemblies6.4-176.4.10Applicability of HI-STAR Analyses to HI-STORM 100 System6.4-186.4.11Fixed Neutron Absorber Material6.4-186.4.12Annular Fuel Pellets6.4-19
6.5	CRITICALITY BENCHMARK EXPERIMENTS
6.6	REGULATORY COMPLIANCE
6.7	REFERENCES
	vi Povision 6

11

	APPENDIX 6.A BENCHMARK CALCULATIONS APPENDIX 6.B DISTRIBUTED ENRICHMENTS IN BWR FUEL APPENDIX 6.C CALCULATIONAL SUMMARY APPENDIX 6.D SAMPLE INPUT FILES
6.I	SECTION RESERVED FOR FUTURE USE
6.11	CRITICALITY EVALUATION OF INDIAN POINT 1 FUEL IN THE MPC-32
	6.11.2Spent Fuel Loading6.11-16.11.3Model Specifications6.11-26.11.4Criticality Calculations6.11-26.11.5Criticality Benchmarks6.11-36.11.6Regulatory Compliance6.11-3
CHAF	PTER 7: CONFINEMENT
7.0	INTRODUCTION
7.1	CONFINEMENT BOUNDARY7.1-17.1.1 Confinement Vessel7.1-17.1.2 Confinement Penetrations7.1-27.1.3 Seals and Welds7.1-37.1.4 Closure7.1-37.1.5 Damaged Fuel Container7.1-37.1.6 Design and Qualification of Final MPC Closure Welds7.1-4
7.2	REQUIREMENTS FOR NORMAL AND OFF-NORMAL CONDITIONS OF STORAGE7.2-1
7.3	CONFINEMENT REQUIREMENTS FOR HYPOTHETICAL ACCIDENT CONDITIONS
7.4	REFERENCES
7.I	SECTION RESERVED FOR FUTURE USE7.I-1
7.II	CONFINEMENT
CHAI	PTER 8: OPERATING PROCEDURES
8.0	INTRODUCTION
8.1	PROCEDURE FOR LOADING THE HI-STORM 100 SYSTEM IN THE SPENT FUEL POOL 8.1-1 8.1.1 Overview of Loading Operations. 8.1-1 8.1.2 HI-TRAC and HI-STORM Receiving and Handling Operations. 8.1-4 8.1.3 HI-TRAC and MPC Receipt Inspection and Loading Preparation. 8.1-7
	vii Revision 6

i

1	
	8.1.4 MPC Fuel Loading
	8.1.5 MPC Closure
	8.1.6 Preparation for Storage
	8.1.7 Placement of HI-STORM into Storage
0.0	
8.2	ISFSI OPERATIONS
8.3	PROCEDURE FOR UNLOADING THE HI-STORM 100 SYSTEM IN THE
	SPENT FUEL POOL
	8.3.1 Overview of HI-STORM 100 System Unloading Operations
•	8.3.2 HI-STORM Recovery From Storage 8.3-2
	8.3.3 Preparation for Unloading
	8.3.4 MPC Unloading
	8.3.5 Post-Unloading Operations
8.4	MPC TRANSFER TO HI-STAR 100 OVERPACK FOR TRANSPORT
	OR STORAGE
	8.4.1 Overview of Operations
	8.4.1Overview of Operations8.4.2Recovery from Storage8.4-1
	8.4.3 MPC Transfer into the HI-STAR 100 Overpack
8.5	MPC TRANSFER TO HI-STORM DIRECTLY FROM TRANSPORT
	8.5.1 Overview of Operations
	8.5.2 HI-STAR Receipt and Preparation for MPC Transfer
	8.5.3 Perform MPC Transfer into HI-STORM 100
•	
8.6	REFERENCES
8.1	SECTION RESERVED FOR FUTURE USE
8.1I	OPERATING PROCEDURES
CHA	PTER 9: ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM9.0-1
9.0	INTRODUCTION9.0-1
9.1	ACCEPTANCE CRITERIA9.1-1
1	9.1.1 Fabrication and Nondestructive Examination (NDE)9.1-1
	9.1.2 Structural and Pressure Tests9.1-5
	9.1.3 Leakage Testing9.1-8
	9.1.4 Component Tests9.1-9
	9.1.5 Shielding Integrity9.1-9
	9.1.6 Thermal Acceptance Tests9.1-14
	9.1.7 Cask Identification
9.2	MAINTENANCE PROGRAM
	9.2.1 Structural and Pressure Parts
	9.2.2 Leakage Tests
	9.2.3 Subsystem Maintenance
	· · · · · · · · · · · · · · · · · · ·
1	viii Revision 6

	9.2.4 Pressure Relief Valve
9.3	REGULATORY COMPLIANCE
9.4	REFERENCES
9.1	SECTION RESERVED FOR FUTURE USE9.1-1
9.11	ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM9.II-1
СНАР	TER 10: RADIATION PROTECTION10.1-1
10.1	ENSURING THAT OCCUPATIONAL RADIATION EXPOSURESARE AS-LOW-AS-REASONABLY-ACHIEVABLE (ALARA)10.1-110.1.2Design Considerations10.1-210.1.3Operational Considerations10.1-410.1.410.1.410.1.5
10.2 10.3	RADIATION PROTECTION DESIGN FEATURES
	10.3.1Estimated Exposures for Loading and Unloading Operations
10.4	ESTIMATED COLLECTIVE DOSE ASSESSMENT
10.5	REFERENCES
10.1	SECTION RESERVED FOR FUTURE USE
10.11	RADIATION PROTECTION10.II-1
CHAF	PTER 11: ACCIDENT ANALYSIS
11.1	OFF-NORMAL CONDITIONS11.1-111.1.1Off-Normal Pressures11.1-211.1.2Off-Normal Environmental Temperatures11.1-411.1.3Leakage of One Seal11.1-711.1.4Partial Blockage of Air Inlets11.1-811.1.5Off-Normal Handling of HI-TRAC11.1-1011.1.6Malfunction of FHD System11.1-1211.1.7SCS Power Failure11.1-14

Revision 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

ix

	11.2	ACCIDENTS 11.2-1	
		11.2.1 HI-TRAC Transfer Cask Handling Accident	
		11.2.2 HI-STORM Overpack Handling Accident	
		11.2.3 Tip-Over	
		11.2.4 Fire Accident	
		11.2.5 Partial Blockage of MPC Basket Vent Holes	
	•	11.2.6 Tornado	
		11.2.7 Flood	2
	I .	11.2.8 Earthquake	
		11.2.9 100% Fuel Rod Rupture	5
		11.2.9 100% Fuel Rod Rupture 11.2-25 11.2.10 Confinement Boundary Leakage 11.2-27	7
	· · .	11.2.11 Explosion 11.2-27 11.2.12 Lightning 11.2-29	7
		11.2.12 Lightning	9
		11.2.13 100% Blockage of Air Inlets	0
		11.2.14 Burial Under Debris	5
1		11.2.15 Extreme Environmental Temperature	
		11.2.16 Supplemental Cooling System (SCS) Failure	9
	11.3	REFERENCES	1
	11.2		1
	11.1	SECTION RESERVED FOR FLITURE USE	1
	1 1	SECTION RESERVED FOR FUTURE USE	1
	11.11	OFF-NORMAL AND ACCIDENT EVALUATION FOR HI-STORM 100S-185 11.II-1	1
1	11.11	11.II.0 Introduction	
		11.II.1 Off-Normal Events	
	•	11.11.2 Accident Events	
			ן ד
	CUAD		
	СНАР	TER 12: OPERATING CONTROLS AND LIMITS	1
	· .	TER 12: OPERATING CONTROLS AND LIMITS	1
	CHAP 12.0		1
	12.0	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1	1
	· .	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1	1
	12.0	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1	1
•	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria	1 1 1
•	12.0	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1	1 1 1
•	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
•	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
· · · · · ·	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting 12.2-1	1 1 1 1 1 2
·	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting 12.2-1	1 1 1 1 1 2
· · · · · ·	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting 12.2-1 12.2.4 Limiting Conditions for Operation 12.2-1	1 1 1 1 2 3 3
	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings 12.2-1 12.2.4 Limiting Conditions for Operation 12.2-1 12.2.5 Equipment 12.2-1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \end{array} $
	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings 12.2-1 12.2.4 Limiting Conditions for Operation 12.2-1 12.2.5 Equipment 12.2-1 12.2.6 Surveillance Requirements 12.2-1	1 1 1 1 2 3 3 3 3
	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings 12.2-1 12.2.4 Limiting Conditions for Operation 12.2-1 12.2.5 Equipment 12.2-1 12.2.6 Surveillance Requirements 12.2-1 12.2.7 Design Features 12.2-1	1 1 1 1 1 2 3 3 3 3 3 3 3
	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS12.0-1INTRODUCTION12.0-1PROPOSED OPERATING CONTROLS AND LIMITS12.1-112.1.1NUREG-1536 (Standard Review Plan) Acceptance Criteria12.1-1DEVELOPMENT OF OPERATING CONTROLS AND LIMITS12.2-112.2.1Training Modules12.2-112.2.2Dry Run Training12.2-112.2.3Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings12.2-112.2.4Limiting Conditions for Operation12.2-112.2.5Equipment12.2-112.2.6Surveillance Requirements12.2-112.2.7Design Features12.2-112.2.8MPC12.2-1	1 1 1 1 1 2 3 3 3 3 3 4
	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1INTRODUCTION12.0-2PROPOSED OPERATING CONTROLS AND LIMITS12.1-112.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria12.1-2DEVELOPMENT OF OPERATING CONTROLS AND LIMITS12.2-112.2.2 Dry Run Training12.2-212.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings12.2-212.2.4 Limiting Conditions for Operation12.2-212.2.5 Equipment12.2-212.2.6 Surveillance Requirements12.2-212.2.7 Design Features12.2-212.2.8 MPC12.2-212.2.9 HI-STORM Overpack12.2-2	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \end{array} $
	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings 12.2-1 12.2.4 Limiting Conditions for Operation 12.2-1 12.2.5 Equipment 12.2-1 12.2.6 Surveillance Requirements 12.2-1 12.2.7 Design Features 12.2-1 12.2.8 MPC 12.2-1 12.2.9 HI-STORM Overpack 12.2-1 12.2.10 Verifying Compliance with Fuel Assembly Decay Heat, Burnup, and Cooling 12.2-1	$\begin{array}{c}1\\1\\1\\1\\2\\3\\3\\3\\4\\4\end{array}$
	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1INTRODUCTION12.0-2PROPOSED OPERATING CONTROLS AND LIMITS12.1-112.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria12.1-2DEVELOPMENT OF OPERATING CONTROLS AND LIMITS12.2-112.2.2 Dry Run Training12.2-212.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings12.2-212.2.4 Limiting Conditions for Operation12.2-212.2.5 Equipment12.2-212.2.6 Surveillance Requirements12.2-212.2.7 Design Features12.2-212.2.8 MPC12.2-212.2.9 HI-STORM Overpack12.2-2	$\begin{array}{c}1\\1\\1\\1\\2\\3\\3\\3\\4\\4\end{array}$
	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings 12.2-1 12.2.4 Limiting Conditions for Operation 12.2-1 12.2.5 Equipment 12.2-1 12.2.6 Surveillance Requirements 12.2-1 12.2.7 Design Features 12.2-1 12.2.8 MPC 12.2-1 12.2.9 HI-STORM Overpack 12.2-1 12.2.10 Verifying Compliance with Fuel Assembly Decay Heat, Burnup, and Cooling Time Limits 12.2-1	1 1 1 1 1 2 3 3 3 3 3 4 4 4 4
	12.0 12.1	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings 12.2-1 12.2.4 Limiting Conditions for Operation 12.2-1 12.2.5 Equipment 12.2-1 12.2.6 Surveillance Requirements 12.2-1 12.2.7 Design Features 12.2-1 12.2.8 MPC 12.2-1 12.2.9 HI-STORM Overpack 12.2-1 12.2.10 Verifying Compliance with Fuel Assembly Decay Heat, Burnup, and Cooling 12.2-1	$\begin{array}{c}1\\1\\1\\1\\2\\3\\3\\3\\4\\4\\4\end{array}$
	12.0 12.1 12.2	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings 12.2-1 12.2.4 Limiting Conditions for Operation 12.2-1 12.2.5 Equipment 12.2-1 12.2.6 Surveillance Requirements 12.2-1 12.2.7 Design Features 12.2-1 12.2.8 MPC 12.2-1 12.2.9 HI-STORM Overpack 12.2-1 12.2.10 Verifying Compliance with Fuel Assembly Decay Heat, Burnup, and Cooling Time Limits 12.2-1	$\begin{array}{c}1\\1\\1\\1\\2\\3\\3\\3\\4\\4\\4\end{array}$
	12.0 12.1 12.2	TER 12: OPERATING CONTROLS AND LIMITS 12.0-1 INTRODUCTION 12.0-1 PROPOSED OPERATING CONTROLS AND LIMITS 12.1-1 12.1.1 NUREG-1536 (Standard Review Plan) Acceptance Criteria 12.1-1 DEVELOPMENT OF OPERATING CONTROLS AND LIMITS 12.2-1 12.2.1 Training Modules 12.2-1 12.2.2 Dry Run Training 12.2-1 12.2.3 Functional and Operating Limits, Monitoring Instruments, and Limiting Control Settings 12.2-1 12.2.4 Limiting Conditions for Operation 12.2-1 12.2.5 Equipment 12.2-1 12.2.6 Surveillance Requirements 12.2-1 12.2.7 Design Features 12.2-1 12.2.8 MPC 12.2-1 12.2.9 HI-STORM Overpack 12.2-1 12.2.10 Verifying Compliance with Fuel Assembly Decay Heat, Burnup, and Cooling Time Limits 12.2-1	$\begin{array}{c}1\\1\\1\\1\\2\\3\\3\\3\\4\\4\\4\end{array}$

12.4	REGULATORY EVALUATION12.4-1
12.5	REFERENCES
	APPENDIX 12.A TECHNICAL SPECIFICATION BASES FOR THE HOLTEC HI-STORM 100 SPENT FUEL STORAGE CASK SYSTEM
12.I	SECTION RESERVED FOR FUTURE USE12.I-1
12.11	OPERATING CONTROLS AND LIMITS 12.II-1
	TER 13: QUALITY ASSURANCE
13.0	QUALITY ASSURANCE PROGRAM13.0-113.0.1Overview13.0.2Graded Approach to Quality Assurance13.0-2
	13.0.2 Graded Approach to Quality Assurance
13.6	REFERENCES
13.1	SECTION RESERVED FOR FUTURE USE13.I-1
13.II	QUALITY ASSURANCE

Revision 6

CHAPTER 1^{\dagger}: GENERAL DESCRIPTION

1.0 GENERAL INFORMATION

This Final Safety Analysis Report (FSAR) for Holtec International's HI-STORM 100 System is a compilation of information and analyses to support a United States Nuclear Regulatory Commission (NRC) licensing review as a spent nuclear fuel (SNF) dry storage cask under requirements specified in 10CFR72 [1.0.1]. This FSAR describes the basis for NRC approval and issuance of a Certificate of Compliance (C of C) for storage under provisions of 10CFR72, Subpart L, for the HI-STORM 100 System to safely store spent nuclear fuel (SNF) at an Independent Spent Fuel Storage Installation (ISFSI). This report has been prepared in the format and content suggested in NRC Regulatory Guide 3.61 [1.0.2] and NUREG-1536 Standard Review Plan for Dry Cask Storage Systems [1.0.3] to facilitate the NRC review process.

The purpose of this chapter is to provide a general description of the design features and storage capabilities of the HI-STORM 100 System, drawings of the structures, systems, and components important to safety, and the qualifications of the certificate holder. This report is also suitable for incorporation into a site-specific Safety Analysis Report, which may be submitted by an applicant for a site-specific 10 CFR 72 license to store SNF at an ISFSI or a facility similar in objective and scope. Table 1.0.1 contains a listing of the terminology and notation used in this FSAR.

To aid NRC review, additional tables and references have been added to facilitate the location of information requested by NUREG-1536. Table 1.0.2 provides a matrix of the topics in NUREG-1536 and Regulatory Guide 3.61, the corresponding 10CFR72 requirements, and a reference to the applicable FSAR section that addresses each topic.

The HI-STORM 100 FSAR is in full compliance with the intent of all regulatory requirements listed in Section III of each chapter of NUREG-1536. However, an exhaustive review of the provisions in NUREG-1536, particularly Section IV (Acceptance Criteria) and Section V (Review Procedures) has identified certain deviations from a verbatim compliance to all guidance. A list of all such items, along with a discussion of their intent and Holtec International's approach for compliance with the underlying intent is presented in Table 1.0.3 herein. Table 1.0.3 also contains the justification for the alternative method for compliance adopted in this FSAR. The justification may be in the form of a supporting analysis, established industry practice, or other NRC guidance documents. Each chapter in this FSAR provides a clear statement with respect to the extent of compliance to the NUREG-1536 provisions. Chapter 1 is in full compliance with NUREG-1536; no exceptions are taken.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

1.0-1

[†] This chapter has been prepared in the format and section organization set forth in Regulatory Guide 3.61. However, the material content of this chapter also fulfills the requirements of NUREG-1536. Pagination and numbering of sections, figures, and tables are consistent with the convention set down in Chapter 1, Section 1.0, herein. Finally, all terms-of-art used in this chapter are consistent with the terminology of the glossary (Table 1.0.1) and component nomenclature of the Bill-of-Materials (Section 1.5).

The generic design basis and the corresponding safety analysis of the HI-STORM 100 System contained in this FSAR are intended to bound the SNF characteristics, design, conditions, and interfaces that exist in the vast majority of domestic power reactor sites and potential away-from-reactor storage sites in the contiguous United States. This FSAR also provides the basis for component fabrication and acceptance, and the requirements for safe operation and maintenance of the components, consistent with the design basis and safety analysis documented herein. In accordance with 10CFR72, Subpart K, site-specific implementation of the generically certified HI-STORM 100 System requires that the licensee perform a site-specific evaluation, as defined in 10CFR72.212. The HI-STORM 100 System FSAR identifies a limited number of conditions that are necessarily site-specific and are to be addressed in the licensee's 10CFR72.212 evaluation. These include:

- Siting of the ISFSI and design of the storage pad (including the embedment for anchored cask users) and security system. Site-specific demonstration of compliance with regulatory dose limits. Implementation of a site-specific ALARA program.
- An evaluation of site-specific hazards and design conditions that may exist at the ISFSI site or the transfer route between the plant's cask receiving bay and the ISFSI. These include, but are not limited to, explosion and fire hazards, flooding conditions, land slides, and lightning protection.
- Determination that the physical and nucleonic characteristics and the condition of the SNF assemblies to be dry stored meet the fuel acceptance requirements of the Certificate of Compliance.
- An evaluation of interface and design conditions that exist within the plant's fuel building in which canister fuel loading, canister closure, and canister transfer operations are to be conducted in accordance with the applicable 10CFR50 requirements and technical specifications for the plant.
- Detailed site-specific operating, maintenance, and inspection procedures prepared in accordance with the generic procedures and requirements provided in Chapters 8 and 9, and the technical specifications provided in the Certificate of Compliance.
- Performance of pre-operational testing.
- Implementation of a safeguards and accountability program in accordance with 10CFR73. Preparation of a physical security plan in accordance with 10CFR73.55.
- Review of the reactor emergency plan, quality assurance (QA) program, training program, and radiation protection program.

HI-STORM 100 FSAR REPORT HI-2002444

The generic safety analyses contained in the HI-STORM 100 FSAR may be used as input and for guidance by the licensee in performing a 10CFR72.212 evaluation.

Within this report, all figures, tables and references cited are identified by the double decimal system m.n.i, where m is the chapter number, n is the section number, and i is the sequential number. Thus, for example, Figure 1.2.3 is the third figure in Section 1.2 of Chapter 1.

Revisions to this document are made on a section level basis. Complete sections have been replaced if any material in the section changed. The specific changes are noted with revision bars in the right margin. Figures are revised individually. Drawings are controlled separately within the Holtec QA program and have individual revision numbers. Bills-of-Material (BOMs) are considered separate drawings and are not necessarily at the same revision level as the drawing(s) to which they apply. If a drawing or BOM was revised in support of the current FSAR revision, that drawing/BOM is included in Section 1.5 at its latest revision level. Drawings and BOMs appearing in this FSAR may be revised between formal updates to the FSAR. Therefore, the revisions of drawings/BOMs in Section 1.5 may not be current.

The HI-STORM 100 System has been expanded slightly to include options specific for Indian Point Unit 1. The affected components are the MPC enclosure vessel, MPC-32 and MPC-32F, HI-STORM 100S Version B and HI-TRAC 100D. Information pertaining to these changes is generally contained in supplements to each chapter identified by a Roman numeral "II" (i.e. Chapter 1 and Supplement 1.II). Certain sections of the main FSAR are also affected and are appropriately modified for continuity with the "II" supplements. Unless superseded or specifically modified by information in the "II" supplements, the information in the main FSAR chapters is applicable to the HI-STORM 100 System at Indian Point Unit 1.

Supplements identified by a Roman numeral "I" (i.e. Chapter 1 and Supplement 1.I) have been inserted in the FSAR as placeholders for future use.

1.0.1 Engineering Change Orders

The changes authorized by the Holtec ECOs (with corresponding 10CFR72.48 evaluations, if applicable) listed in the following table are reflected in Revision 6 of this FSAR.

ECO Number	72.48 Evaluation or
	Screening Number
-	
1022-72	828
1023-50	N/A
1021-94	N/A
1022-73	N/A
1023-51	N/A
	1022-72 1023-50 1021-94 1022-73

LIST OF ECO'S AND APPLICABLE 10CFR72.48 EVALUATIONS

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM Overpack	1024-137	849
	1024-139	853
	1024-141	N/A ,
HI-TRAC 100 and 100D Transfer Cask	-	-
HI-TRAC 125 and 125D Transfer Cask	-	
General FSAR Changes	5014-128	N/A
	5014-133	834
	5014-147	854
	5014-148	856
	5014-149	863
	N/A	857
	5014-151	N/A
	5014-152	N/A

HI-STORM 100 FSAR REPORT HI-2002444

Table 1.0.1

TERMINOLOGY AND NOTATION

ALARA is an acronym for As Low As Reasonably Achievable.

Boral is a generic term to denote an aluminum-boron carbide cermet manufactured in accordance with U.S. Patent No. 4027377. The individual material supplier may use another trade name to refer to the same product.

BoralTM means Boral manufactured by AAR Advanced Structures.

BWR is an acronym for boiling water reactor.

C.G. is an acronym for center of gravity.

Commercial Spent Fuel or CSF refers to nuclear fuel used to produce energy in a commercial nuclear power plant.

Confinement Boundary means the outline formed by the sealed, cylindrical enclosure of the Multi-Purpose Canister (MPC) shell welded to a solid baseplate, a lid welded around the top circumference of the shell wall, the port cover plates welded to the lid, and the closure ring welded to the lid and MPC shell providing the redundant sealing.

Confinement System means the Multi-Purpose Canister (MPC) which encloses and confines the spent nuclear fuel during storage.

Controlled Area means that area immediately surrounding an ISFSI for which the owner/user exercises authority over its use and within which operations are performed.

Cooling Time (or post-irradiation cooling time) for a spent fuel assembly is the time between reactor shutdown and the time the spent fuel assembly is loaded into the MPC.

DBE means Design Basis Earthquake.

DCSS is an acronym for Dry Cask Storage System.

Damaged Fuel Assembly is a fuel assembly with known or suspected cladding defects, as determined by review of records, greater than pinhole leaks or hairline cracks, empty fuel rod locations that are not replaced with dummy fuel rods, missing structural components such as grid spacers, whose structural integrity has been impaired such that geometric rearrangement of fuel or gross failure of the cladding is expected based on engineering evaluations, or those that cannot be handled by normal means. Fuel assemblies that cannot be handled by normal means due to fuel cladding damage are considered fuel debris.

Damaged Fuel Container (or Canister) means a specially designed enclosure for damaged fuel or fuel debris which permits gaseous and liquid media to escape while minimizing dispersal of gross

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR
REPORT HI-2002444

1.0-5

Table 1.0.1 (continued)

TERMINOLOGY AND NOTATION

particulates. The Damaged Fuel Container/Canister (DFC) features a lifting location which is suitable for remote handling of a loaded or unloaded DFC.

Design Heat Load is the computed heat rejection capacity of the HI-STORM system with a certified MPC loaded with CSF stored in *uniform storage* with the ambient at the normal temperature and the peak cladding temperature (PCT) at 400°C. The Design Heat Load is less than the thermal capacity of the system by a suitable margin that reflects the conservatism in the system thermal analysis.

Design Life is the minimum duration for which the component is engineered to perform its intended function set forth in this FSAR, if operated and maintained in accordance with this FSAR.

Design Report is a document prepared, reviewed and QA validated in accordance with the provisions of 10CFR72 Subpart G. The Design Report shall demonstrate compliance with the requirements set forth in the Design Specification. A Design Report is mandatory for systems, structures, and components designated as Important to Safety. The FSAR serves as the Design Report for the HI-STORM 100 System.

Design Specification is a document prepared in accordance with the quality assurance requirements of 10CFR72 Subpart G to provide a complete set of design criteria and functional requirements for a system, structure, or component, designated as Important to Safety, intended to be used in the operation, implementation, or decommissioning of the HI-STORM 100 System. The FSAR serves as the Design Specification for the HI-STORM 100 System.

Enclosure Vessel (or MPC Enclosure Vessel) means the pressure vessel defined by the cylindrical shell, baseplate, port cover plates, lid, closure ring, and associated welds that provides confinement for the helium gas contained within the MPC. The Enclosure Vessel (EV) and the fuel basket together constitute the multi-purpose canister.

Fracture Toughness is a property which is a measure of the ability of a material to limit crack propagation under a suddenly applied load.

FSAR is an acronym for Final Safety Analysis Report (10CFR72).

Fuel Basket means a honeycombed structural weldment with square openings which can accept a fuel assembly of the type for which it is designed.

Fuel Debris is ruptured fuel rods, severed rods, loose fuel pellets, containers or structures that are supporting these loose fuel assembly parts, or fuel assemblies with known or suspected defects which cannot be handled by normal means due to fuel cladding damage.

High Burnup Fuel, or HBF is a commercial spent fuel assembly with an average burnup greater than 45,000 MWD/MTU.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

1.0-6

Table 1.0.1 (continued)

TERMINOLOGY AND NOTATION

HI-TRAC transfer cask or HI-TRAC means the transfer cask used to house the MPC during MPC fuel loading, unloading, drying, sealing, and on-site transfer operations to a HI-STORM storage overpack or HI-STAR storage/transportation overpack. The HI-TRAC shields the loaded MPC allowing loading operations to be performed while limiting radiation exposure to personnel. HI-TRAC is an acronym for **H**oltec International **Tra**nsfer **C**ask. In this FSAR there are several HI-TRAC transfer casks, the 125-ton standard design HI-TRAC (HI-TRAC-125), the 125-ton dual-purpose lid design (HI-TRAC 125D), the 100-ton HI-TRAC (HI-TRAC-100), the 100-ton dual purpose lid design (HI-TRAC 100D), and the 75-ton dual purpose lid design for Indian Point 1 (HI-Trac 100D Version IP1). The 100-ton HI-TRAC is provided for use at sites with a maximum crane capacity of less than 125 tons. The term HI-TRAC is used as a generic term to refer to all HI-TRAC transfer cask designs, unless the discussion requires distinguishing among the designs. The HI-TRAC is equipped with a pair of lifting trunnions and the HI-TRAC 100 and HI-TRAC 125 designs also include pocket trunnions. The trunnions are used to lift and downend/upend the HI-TRAC with a loaded MPC.

HI-STORM overpack or storage overpack means the cask that receives and contains the sealed multi-purpose canisters containing spent nuclear fuel. It provides the gamma and neutron shielding, ventilation passages, missile protection, and protection against natural phenomena and accidents for the MPC. The term "overpack" as used in this FSAR refers to all overpack designs, including the standard design (HI-STORM 100) and two alternate designs (HI-STORM 100S and HI-STORM 100S Version B). The term "overpack" also applies to those overpacks designed for high seismic deployment (HI-STORM 100A or HI-STORM 100SA), unless otherwise clarified.

HI-STORM 100 System consists of any loaded MPC model placed within any design variant of the HI-STORM overpack.

HoltiteTM is the trade name for all present and future neutron shielding materials formulated under Holtec International's R&D program dedicated to developing shielding materials for application in dry storage and transport systems. The Holtite development program is an ongoing experimentation effort to identify neutron shielding materials with enhanced shielding and temperature tolerance characteristics. Holtite-ATM is the first and only shielding material qualified under the Holtite R&D program. As such, the terms Holtite and Holtite-A may be used interchangeably throughout this FSAR.

Holtite[™]-A is a trademarked Holtec International neutron shield material.

Important to Safety (ITS) means a function or condition required to store spent nuclear fuel safely; to prevent damage to spent nuclear fuel during handling and storage, and to provide reasonable assurance that spent nuclear fuel can be received, handled, packaged, stored, and retrieved without undue risk to the health and safety of the public.

Independent Spent Fuel Storage Installation (ISFSI) means a facility designed, constructed, and licensed for the interim storage of spent nuclear fuel and other radioactive materials associated with

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

1.0-7

Table 1.0.1 (continued)

TERMINOLOGY AND NOTATION

spent fuel storage in accordance with 10CFR72.

Intact Fuel Assembly is defined as a fuel assembly without known or suspected cladding defects greater than pinhole leaks and hairline cracks, and which can be handled by normal means. Fuel assemblies without fuel rods in fuel rod locations shall not be classified as Intact Fuel Assemblies unless dummy fuel rods are used to displace an amount of water greater than or equal to that displaced by the fuel rod(s).

License Life means the duration for which the system is authorized by virtue of its certification by the U.S. NRC.

Long-term Storage means the time beginning after on-site handling is complete and the loaded overpack is at rest in its designated storage location on the ISFSI pad and lasting up to the end of the licensed life of the HI-STORM 100 System (20 years).

Lowest Service Temperature (LST) is the minimum metal temperature of a part for the specified service condition.

Maximum Reactivity means the highest possible k-effective including bias, uncertainties, and calculational statistics evaluated for the worst-case combination of fuel basket manufacturing tolerances.

METAMIC[®] is a trade name for an aluminum/boron carbide composite neutron absorber material qualified for use in the MPCs.

METCON[™] is a trade name for the HI-STORM overpack. The trademark is derived from the **metal-con**crete composition of the HI-STORM overpack.

MGDS is an acronym for Mined Geological Disposal System.

Minimum Enrichment is the minimum assembly average enrichment. Natural uranium blankets are not considered in determining minimum enrichment.

Moderate Burnup Fuel, or MBF is a commercial spent fuel assembly with an average burnup less than or equal to 45,000 MWD/MTU.

Multi-Purpose Canister (MPC) means the sealed canister consisting of a honeycombed fuel basket for spent nuclear fuel storage, contained in a cylindrical canister shell (the MPC Enclosure Vessel). There are different MPCs with different fuel basket geometries for storing PWR or BWR fuel, but all MPCs have identical exterior diameters. The MPC is the confinement boundary for storage conditions.

NDT is an acronym for Nil Ductility Transition Temperature, which is defined as the temperature at

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

TERMINOLOGY AND NOTATION

which the fracture stress in a material with a small flaw is equal to the yield stress in the same material if it had no flaws.

Neutron Absorber Material is a generic term used in this FSAR to indicate any neutron absorber material qualified for use in the HI-STORM 100 System MPCs.

Neutron Shielding means a material used to thermalize and capture neutrons emanating from the radioactive spent nuclear fuel.

Non-Fuel Hardware is defined as Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Devices (TPDs), Control Rod Assemblies (CRAs), Axial Power Shaping Rods (APSRs), Wet Annular Burnable Absorbers (WABAs), Rod Cluster Control Assemblies (RCCAs), Neutron Source Assemblies (NSAs), water displacement guide tube plugs, orifice rod assemblies, and vibration suppressor inserts.

Planar-Average Initial Enrichment is the average of the distributed fuel rod initial enrichments within a given axial plane of the assembly lattice.

Plain Concrete is concrete that is unreinforced and is of density specified in this FSAR.

Post-Core Decay Time (PCDT) is synonymous with cooling time.

PWR is an acronym for pressurized water reactor.

Reactivity is used synonymously with effective neutron multiplication factor or k-effective.

Regionalized Fuel Loading is a term used to describe an optional fuel loading strategy used in lieu of uniform fuel loading. Regionalized fuel loading allows high heat emitting fuel assemblies to be stored in fuel storage locations in the center of the fuel basket provided lower heat emitting fuel assemblies are stored in the peripheral fuel storage locations. Users choosing regionalized fuel loading must also consider other restrictions in the CoC such as those for non-fuel hardware and damaged fuel containers. Regionalized fuel loading does not apply to the MPC-68F model.

SAR is an acronym for Safety Analysis Report (10CFR71).

Service Life means the duration for which the component is reasonably expected to perform its intended function, if operated and maintained in accordance with the provisions of this FSAR. Service Life may be much longer than the Design Life because of the conservatism inherent in the codes, standards, and procedures used to design, fabricate, operate, and maintain the component.

Short-term Operations means those normal operational evolutions necessary to support fuel loading or fuel unloading operations. These include, but are not limited to MPC cavity drying, helium backfill, MPC transfer, and onsite handling of a loaded HI-TRAC transfer cask.

HI-STORM 100 FSAR REPORT HI-2002444

1.0-9

TERMINOLOGY AND NOTATION

Single Failure Proof means that the handling system is designed so that all directly loaded tension and compression members are engineered to satisfy the enhanced safety criteria of Paragraphs 5.1.6(1)(a) and (b) of NUREG-0612.

SNF is an acronym for spent nuclear fuel.

SSC is an acronym for Structures, Systems and Components.

STP is Standard Temperature and Pressure conditions.

Thermal Capacity of the HI-STORM system is defined as the amount of heat the storage system, containing an MPC loaded with CSF stored in *uniform storage*, will actually reject with the ambient environment at the normal temperature and the peak fuel cladding temperature (PCT) at 400°C.

Thermosiphon is the term used to describe the buoyancy-driven natural convection circulation of helium within the MPC fuel basket.

Uniform Fuel Loading is a fuel loading strategy where any authorized fuel assembly may be stored in any fuel storage location, subject to other restrictions in the CoC, such as those applicable to non-fuel hardware, and damaged fuel containers.

ZPA is an acronym for zero period acceleration.

ZR means any zirconium-based fuel cladding material authorized for use in a commercial nuclear power plant reactor. Any reference to Zircaloy fuel cladding in this FSAR applies to any zirconium-based fuel cladding material.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

1.0-10

Table 1.0.2

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

Regulatory Guide 3.61 Section and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
· · ·	1. General Descripti	ion '	
1.1 Introduction	1.III.1 General Description & Operational Features	10CFR72.24(b)	1.1
1.2 General Description	1.111.1 General Description & Operational Features	10CFR72.24(b)	1.2
1.2.1 Cask Character- istics	1.III.1 General Description & Operational Features	10CFR72.24(b)	1.2.1
1.2.2 Operational Features	1.III.1 General Description & Operational Features	10СFR72.24(b)	1.2.2
1.2.3 Cask Contents	1.III.3 DCSS Contents	10CFR72.2(a)(1) 10CFR72.236(a)	1.2.3
1.3 Identification of Agents & Contractors	1.III.4 Qualification of the Applicant	10CFR72.24(j) 10CFR72.28(a)	1.3
1,4 Generic Cask Arrays	1.III.1 General Description & Operational Features	10CFR72.24(c)(3)	1.4
1.5 Supplemental Data	1.III.2 Drawings	10CFR72.24(c)(3)	1.5
NA	1.III.6 Consideration of Transport Requirements 1.III.5 Quality Assurance	10CFR72.230(b) 10CFR72.236(m)	1.1
	1.III.5 Quality Assurance 2. Principal Design Crite	10CFR72.24(n)	1.5
2.1 Spent Fuel To Be	2.III.2.a Spent Fuel	10CFR72.2(a)(1)	2.1
2.1 Spent rule 10 Be Stored 2.2 Design Criteria for	2.111.2.a Spent Fuel Specifications 2.111.2.b External	10CFR72.236(a)	2.1
Environmental	Conditions,	10CFR72.122(b)	2.2
Conditions and Natural Phenomena	2.III.3.b Structural, 2.III.3.c Thermal	10CFR72.122(c) 10CFR72.122(b)	2.2.3.3, 2.2.3.10
		(1) 10CFR72.122(b) (2)	2.2
		10CFR72.122(h) (1)	2.0
2.2.1 Tornado and Wind Loading	2.111.2.b External Conditions	10CFR72.122(b) (2)	2.2.3.5

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM 100 FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

2.2.2Water Level (Flood)2.2.3Seismic2.2.4Snow and Ice	 2.111.2.b External Conditions 2.111.3.b Structural 2.111.3.b Structural 2.111.2.b External Conditions 2.111.3.b Structural 	10CFR72.122(b) (2) 10CFR72.102(f) 10CFR72.122(b) (2) 10CFR72.122(b)	2.2.3.6 2.2.3.7 2.2.1.6
(Flood) 2.2.3 Seismic	2.111.3.b Structural2.111.3.b Structural2.111.2.b External Conditions	(2) 10CFR72.102(f) 10CFR72.122(b) (2)	2.2.3.7
	2.111.3.b Structural 2.111.2.b External Conditions	10CFR72.122(b) (2)	
	2.III.2.b External Conditions	10CFR72.122(b) (2)	
2.2.4 Snow and Ice		(2)	2.2.1.6
2.2.4 Snow and Ice			2.2.1.6
	2.111.3.b Structural		
	2.III.3.b Structural		· .
2.2.5 Combined	2.III.3.b Structural	10CFR72.24(d)	2.2.7
Load		10CFR72.122(b)	
		(2)(ii)	2.2.4
NA	2.111.1 Structures, Systems,	10CFR72.122(a)	2.2.4
· · · ·	and Components Important to Safety	10CFR72.24(c)(3)	
NA	2.III.2 Design Criteria for	10CFR72.236(g)	2.0, 2.2
1 12 1	Safety Protection	10CFR72.24(c)(1)	2.0, 2.2
· · · · · · · · · · · · · · · · · · ·	Systems	10CFR72.24(c)(2)	
		10CFR72.24(c)(4)	
		10CFR72.120(a)	
		10CFR72.236(b)	
NA	2.III.3.c Thermal	10CFR72.128(a)	2.3.2.2, 4.0
		(4)	
NA	2.III.3f Operating	10CFR72.24(f)	10.0, 8.0
	Procedures	10CFR72.128(a)	
		(5)	
		10CFR72.236(h)	8.0
		10CFR72.24(1)(2)	1.2.1, 1.2.2
		10CFR72.236(1)	2.3.2.1
		10CFR72.24(e)	10.0, 8.0
		10CFR72.104(b)	
	2.III.3.g Acceptance	10CFR72.122(1)	9.0
	Tests &	10CFR72.236(g)	· · · · ·
	Maintenance	10CFR72.122(f)	
	· · · · ·	10CFR72.128(a)	
.		(1)	
2.3 Safety Protection Systems			2.3

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM 100 FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE
CROSS REFERENCE MATRIX

Regulatory Section an		Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
2.3.1	General			2.3
2.3.2	Protection by	2.III.3.b Structural	10CFR72.236(1)	2.3.2.1
	Multiple Confinement	2.III.3.c Thermal	10CFR72.236(f)	2.3.2.2
	Barriers and Systems	2.III.3.d Shielding/ Confinement/ Radiation	10CFR72.126(a) 10CFR72.128(a) (2)	2.3.5.2
	••	Protection	10CFR72.128(a) (3)	2.3.2.1
			10CFR72.236(d)	2.3.2.1, 2.3.5.2
· · ·			10CFR72.236(e)	2.3.2.1
2.3.3	Protection by Equipment &	2.III.3.d Shielding/ Confinement/	10CFR72.122(h) (4)	2.3.5
	Instrument Selection	Radiation Protection	10CFR72.122(i) 10CFR72.128(a)	
· ·	·		(1)	
2.3.4	Nuclear Criticality Safety	2.III.3.e Criticality	10CFR72.124(a) 10CFR72.236(c)	2.3.4, 6.0
			10CFR72.124(b)	
2.3.5	Radiological Protection	2.111.3.d Shielding/ Confinement/	10CFR72.24(d) 10CFR72.104(a)	10.4.1
		Radiation Protection	10CFR72.236(d) 10CFR72.24(d)	10.4.2
			10CFR72.106(b) 10CFR72.236(d)	
			10CFR72.24(m)	2.3.2.1
225	: The set of	2 III 2 h Staniat	1000072 122(-)	226 222 10
2.3.6	Fire and Explosion Protection	2.III.3.b Structural	10CFR72.122(c)	2.3.6, 2.2.3.10
	imissioning lerations	2.III.3.h Decommissioning	10CFR72.24(f) 10CFR72.130	2.4
			10CFR72.236(h)	
		14.III.1 Design 14.III.2 Cask	10CFR72.130 10CFR72.236(i)	2.4
		Decontamination		2.4

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

1

1

1.0-13

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

Regulatory Guide 3.61 Section and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
	14.111.3 Financial Assurance & Basard Kasaring	10CFR72.30	(1)
	Record Keeping 14.111.4 License Termination	10CFR72.54	(1)
	3. Structural Evaluation	1	
3.1 Structural Design	3.III.1 SSC Important to	10CFR72.24(c)(3)	3.1
	Safety	10CFR72.24(c)(4)	
	3.111.6 Concrete Structures	10CFR72.24(c)	3.1
3.2 Weights and Centers of Gravity	3.V.1.b.2 Structural Design Features		3.2
3.3 Mechanical	3.V.1.c Structural Materials	10CFR72.24(c)(3)	3.3
Properties of Materials	3.V.2.c Structural Materials		
NA	3.III.2 Radiation	10CFR72.24(d)	3.4.4.3
	Shielding,	10CFR72.124(a)	3.4.7.3
	Confinement, and	10CFR72.236(c)	3.4.10
	Subcriticality	10CFR72.236(d) 10CFR72.236(1)	
NA	3.III.3 Ready Retrieval	10CFR72.122(f)	3.4.4.3
		10CFR72.122(h)	
		10CFR72.122(1)	
NA	3.111.4 Design-Basis	10CFR72.24(c)	3.4.7
	Earthquake	10CFR72.102(f)	
NA	3.III.5 20 Year Minimum	10CFR72.24(c)	3.4.11
	Design Length	10CFR72.236(g)	3.4.12
3.4 General Standards for Casks	• • • • • • • • • • • • • • • • • • •		3.4
3.4.1 Chemical and Galvanic Reactions	3.V.1.b.2 Structural Design Features		3.4.1
3.4.2 Positive Closure			3.4.2
3.4.3 Lifting Devices	3.V.1.ii(4)(a) Trunnions 		3.4.3

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM 100 FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

	latory Guide 3.61 tion and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
	3.4.4 Heat	3.V.1.d Structural Analysis	10CFR72.24(d) 10CFR72.122(b)	3.4.4
	3.4.5 Cold	3.V.1.d Structural Analysis	10CFR72.24(d) 10CFR72.122(b)	3.4.5
3.5	Fuel Rods		10CFR72.122(h) (1)	3.5
		4. Thermal Evaluation		
4.1	Discussion	4.III Regulatory Requirements	10CFR72.24(c)(3) 10CFR72.128(a) (4) 10CFR72.236(f) 10CFR72.236(h)	4.1
	Summary of Thermal Properties of Materials	4.V.4.b Material Properties		4.2
4.3	Specifications for Components	4.IV Acceptance Criteria ISG-11, Revision 3	10CFR72.122(h) (1)	4.3
	Thermal Evaluation for Normal Conditions of Storage	4.IV Acceptance Criteria ISG-11, Revision 3	10CFR72.24(d) 10CFR72.236(g)	4.4, 4.5
	NA	4.IV Acceptance Criteria	10CFR72.24(d) 10CFR72.122(c)	11.1, 11.2
4.5	Supplemental Data	4.V.6 Supplemental Info.		
· .		5. Shielding Evaluation	1	
	Discussion and Results		10CFR72.104(a) 10CFR72.106(b)	5.1
5.2	Source Specification	5.V.2 Radiation Source Definition		5.2
	5.2.1 Gamma Source	5.V.2.a Gamma Source		5.2.1, 5.2.3

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM 100 FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

Regulatory Guide 3.61 Section and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
5.2.2 Neutron Source	5.V.2.b Neutron Source		5.2.2, 5.2.3
5.3 Model Specification	5.V.3 Shielding Model		5.3
	Specification		
5.3.1 Description of the Radial	5.V.3.a Configuration of the Shielding and Source	10CFR72.24(c)(3)	5.3.1
and Axial Shielding Configura- tions			
5.3.2 Shield Regional Densities	5.V.3.b Material Properties	10CFR72.24(c)(3)	5.3.2
5.4 Shielding Evaluation	5.V.4 Shielding Analysis	10CFR72.24(d) 10CFR72.104(a) 10CFR72.106(b) 10CFR72.128(a) (2)	5.4
		10CFR72.236(d)	
5.5 Supplemental Data	5.V.5 Supplemental Info.		Appendices 5.A, 5.B, and 5.C
	6. Criticality Evaluation	1	······
6.1 Discussion and Results			6.1
6.2 Spent Fuel Loading	6.V.2 Fuel Specification	· · · ·	6.1, 6.2
6.3 Model Specifications	6.V.3 Model Specification		6.3
6.3.1 Description of Calcula- tional Model	6.V.3.a Configuration	 10CFR72.124(b) 10CFR72.24(c)(3)	6.3.1

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM 100 FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

Regulatory Guide 3.61 Section and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
6.3.2 Cask	6.V.3.b Material Properties	10CFR72.24(c)(3)	. 6.3.2
Regional	-	10CFR72.124(b)	
Densities		10CFR72.236(g)	
6.4 Criticality	6.V.4 Criticality Analysis	10CFR72.124	6.4
Calculations			
6.4.1 Calculational	6.V.4.a Computer Programs	10CFR72.124	6.4.1
or	and		
Experimental	6.V.4.b Multiplication Factor		
Method		· · · · · ·	
6.4.2 Fuel Loading	6.V.3.a Configuration		6.4.2, 6.3.3
or Other Contents			
Loading Optimization			
6.4.3 Criticality Results	6.IV Acceptance Criteria	10CFR72.24(d) 10CFR72.124	6.1, 6.2, 6.3.1, 6.3.2
Results		10CFR72.236(c)	0.5.2
6.5 Critical Benchmark	6.V.4.c Benchmark		6.5,
Experiments	Comparisons		Appendix 6.A,
			6.4.3
6.6 Supplemental Data	6.V.5 Supplemental Info.		Appendices 6.B,6.C, and 6.D
	7. Confinement		
7.1 Confinement	7.III.1 Description of	10CFR72.24(c)(3)	7.0, 7.1
Boundary	Structures, Systems	10CFR72.24(1)	
	and Components		
	Important to Safety		
	ISG-18		•
7.1.1 Confinement	7.III.2 Protection of Spent	10CFR72.122(h)	7.1, 7.1.1
Vessel	Fuel Cladding	(1)	
7.1.2 Confinement Penetrations			7.1.2
7.1.3 Seals and Welds			7.1.3

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

þ

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

	ulatory Guide 3.61 ction and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
	7.1.4 Closure	7.III.3 Redundant Sealing	10CFR72.236(e)	7.1.1, 7.1.4
			. ·	
7.2	Requirements for	7.III.7 Evaluation of	10CFR72.24(d)	7.1
	Normal Conditions of Storage	Confinement System ISG-18	10CFR72.236(1)	
	7.2.1 Release of Radioactive	7.111.6 Release of Nuclides to the Environment	10CFR72.24(1)(1)	7. 1
	Material	7.III.4 Monitoring of Confinement System	10CFR72.122(h) (4)	7.1.4
			10CFR72.128(a) (l)	
		7.111.5 Instrumentation	10CFR72.24(1) 10CFR72.122(i)	7.1.4
		7.III.8 Annual Dose ISG-18	10CFR72.104(a)	7.1
	7.2.2 Pressurization			7.1
• .	of Confinement Vessel			
7.3	Confinement	7.III.7 Evaluation of	10CFR72.24(d)	7.1
	Requirements for	Confinement System	10CFR72.122(b)	
•	Hypothetical Accident Conditions	ISG-18	10CFR72.236(I)	
	7.3.1 Fission Gas Products			7.1
	7.3.2 Release of Contents	ISG-18		7.1
	NA		10CFR72.106(b)	7.1
7.4	Supplemental Data	7.V Supplemental Info.		
		8. Operating Procedure		······
8.1	Procedures for Loading the Cask	8.III.1 Develop Operating Procedures	10CFR72.40(a)(5)	8.1 to 8.5
		8.III.2 Operational Restrictions for ALARA	10CFR72.24(e) 10CFR72.104(b)	8.1.5
		8.III.3 Radioactive Effluent Control	10CFR72.24(1)(2)	8.1.5, 8.5.2

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

Regulatory Guide 3.61 Section and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
	8.111.4 Written Procedures	10CFR72.212(b) (9)	8.0
	8.111.5 Establish Written Procedures and Tests	10CFR72.234(f)	8.0 Introduction
	8.111.6 Wet or Dry Loading and Unloading Compatibility	10CFR72.236(h)	8.0 Introduction
	8.111.7 Cask Design to Facilitate Decon	10CFR72.236(i)	8.1, 8.3
8.2 Procedures for Unloading the Cask	8.111.1 Develop Operating Procedures	10CFR72.40(a)(5)	8.3
	8.III.2 Operational Restrictions for ALARA	10CFR72.24(e) 10CFR72.104(b)	8.3
	8.III.3 Radioactive Effluent Control	10CFR72.24(1)(2)	8.3.3
	8.111.4 Written Procedures	10CFR72.212(b) (9)	8.0
	8.111.5 Establish Written Procedures and Tests	10CFR72.234(f)	8.0
	8.III.6 Wet or Dry Loading and Unloading Compatibility	10CFR72.236(h)	8.0
	8.111.8 Ready Retrieval	10CFR72.122(1)	8.3
8.3 Preparation of the Cask			8.3.2
8.4 Supplemental Data			Tables 8.1.1 to 8.1.10
NA	8.111.9 Design to Minimize Radwaste	10CFR72.24(f) 10CFR72.128(a) (5)	8.1, 8.3
	8.III.10 SSCs Permit Inspection, Maintenance, and Testing	10CFR72.122(f)	Table 8.1.6
	ceptance Criteria and Mainten		1
9.1 Acceptance Criteria	9.111.1.a Preoperational Testing & Initial Operations	10CFR72.24(p)	8.1, 9.1

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

ľ

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

Regulatory Guide 3.61 Section and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
	9.III.1.c SSCs Tested and	10CFR72.24(c)	9.1
	Maintained to	10CFR72.122(a)	
	Appropriate Quality Standards		
	9.111.1.d Test Program	10CFR72.162	9.1
	9.111.1.e Appropriate Tests	10CFR72.236(1)	9.1
	9.111.1.f Inspection for	10CFR72.236(j)	9.1
	Cracks, Pinholes, Voids and Defects		
	9.111.1.g Provisions that	10CFR72.232(b)	9.1 ⁽²⁾
	Permit Commission Tests		
9.2 Maintenance	9.111.1.bMaintenance	10CFR72.236(g)	9.2
Program	9.III.1.cSSCs Tested and	10CFR72.122(f)	9.2
	Maintained to	10CFR72.128(a)	1.9 1.9
	Appropriate Quality Standards	(1)	
	9.III.1.hRecords of	10CFR72.212(b)	9.2
· · · · ·	Maintenance	(8)	
NA	9.III.2 Resolution of Issues	10CFR72.24(i)	(3)
	Concerning		
	Adequacy of Reliability		
	9.III.1.d Submit Pre-Op Test Results to NRC	10CFR72.82(e)	(4)
	9.111.1.i Casks	10CFR72.236(k)	9.1.7, 9.1.1.(12)
	Conspicuously and		
	Durably Marked		
	9.111.3 Cask Identification		
	10. Radiation Protection	n	
10.1 Ensuring that	10.111.4 ALARA	10CFR20.1101	10.1
Occupational		10CFR72.24(e)	
Exposures are as Low		10CFR72.104(b)	
as Reasonably		10CFR72.126(a)	1 ·
Achievable			
(ALARA)			
10.2 Radiation Protection	10.V.1.b Design Features	10CFR72.126(a)(10.2
Design Features		6)	J

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM 100 FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

Regulatory Guide 3.61 Section and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
10.3 Estimated Onsite	10.111.2 Occupational	10CFR20.1201	10.3
Collective Dose	Exposures	10CFR20.1207	
Assessment	· · · ·	10CFR20.1208	
		10CFR20.1301	
			5 T.
	· · · · · · ·		
			· · · ·
		· .	
N/A	10.111.3 Public Exposure	10CFR72.104	10.4
	•	10CFR72.106	
	10.III.1 Effluents and Direct	10CFR72.104	· ·
· · · ·	Radiation		
	11. Accident Analyses	· · ·	······
11.1 Off-Normal Operations	11.III.2 Meet Dose Limits	10CFR72.24(d)	11.1
	for Anticipated	10CFR72.104(a)	
	Events	10CFR72.236(d)	
	11.III.4 Maintain	10CFR72.124(a)	11.1
	Subcritical	10CFR72.236(c)	
	Condition		
	11.III.7 Instrumentation and	10CFR72.122(i)	11.1
	Control for Off-		
	Normal Condition		
11.2 Accidents	11.III.1 SSCs Important to	10CFR72.24(d)(2)	11.2
	Safety Designed for	10CFR72.122b(2)	
	Accidents	10CFR72.122b(3)	
		10CFR72.1220(3)	
		10CFR72.122(g)	
	11.III.5 Maintain	10CFR72.236(1)	11.2
	Confinement for	10011(72.230(1)	11.2
	Accident		
	11.III.4 Maintain	10CFR72.124(a)	11.2, 6.0
	Subcritical	10CFR72.124(a) 10CFR72.236(c)	11.2, 0.0
	Condition	10011(12.230(0)	
· · ·	11.111.3 Meet Dose Limits	10CFR72.24(d)(2)	11.2, 5.1.2, 7.3
	for Accidents	10CFR72.24(m)	
	1	10CFR72.106(b)	

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM 100 FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

	Regulatory Guide 3.61 Section and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20 Requirement	HI-STORM FSAR
		11.III.6 Retrieval	10CFR72.122(1)	8.3
		11.III.7 Instrumentation and Control for Accident Conditions	10CFR72.122(i)	(5)
	NA	11.111.8 Confinement Monitoring	10CFR72.122h(4)	7.1.4
		12. Operating Controls and	Limits	• •
	12.1 Proposed Operating	······································	10CFR72.44(c)	12.0
	Controls and Limits	12.III.1.e Administrative Controls	10CFR72.44(c)(5)	12.0
	12.2 Development of Operating Controls and Limits	12.III.1 General Requirement for Technical Specifications	10CFR72.24(g) 10CFR72.26 10CFR72.44(c) 10CFR72 Subpart E	12.0
			10CFR72 Subpart F	
	12.2.1 Functional and Operating	12.111.1.a Functional/ Operating Units, Monitoring	10CFR72.44(c)(1)	Appendix 12.A
	Limits, Monitoring Instruments, and Limiting Control	Instruments and Limiting Controls		
	Settings			
	12.2.2 Limiting	12.III.1.b Limiting Controls	10CFR72.44(c)(2)	Appendix 12.A
	Conditions for	12.III.2.a Type of Spent Fuel 12.III.2.b Enrichment	10CFR72.236(a)	Appendix 12.A
	Operation	12.III.2.c Burnup 12.III.2.d Minimum Acceptance		
•		Cooling Time 12.111.2.f Maximum Spent		
		Fuel Loading Limit 12.111.2g Weights and		
		Dimensions 12.111.2.h Condition of Spent Fuel		
		12.III.2e Maximum Heat Dissipation	10CFR72.236(a)	Appendix 12.A

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

1.0-22

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

Regulatory Guide 3.61 Section and Content	Associated NUREG- 1536 Review Criteria	Applicable 10CFR72 or 10CFR20	HI-STORM FSAR
Section and Content	1550 Review Criteria	Requirement	rsak
· · ·	12.111.2.i Inerting Atmosphere Requirements	10CFR72.236(a)	Appendix 12.A
12.2.3 Surveillance Specifications	12.111.1.c Surveillance Requirements	10CFR72.44(c)(3)	Chapter 12
12.2.4 Design Features	12.111.1.d Design Features	10CFR72.44(c)(4)	Chapter 12
12.2.4 Suggested Format for Operating		-	Appendix 12.A
Controls and Limits			
NA	12.III.2 SCC Design Bases and Criteria	10CFR72.236(b)	2.0
NA	12.III.2 Criticality Control	10CFR72.236(c)	2.3.4, 6.0
NA	12.III.2 Shielding and Confinement	10CFR20 10CFR72.236(d)	2.3.5, 7.0, 5.0, 10.0
NA	12.111.2 Redundant Sealing	10CFR72.236(e)	7.1, 2.3.2
NA	12.111.2 Passive Heat Removal	10CFR72.236(f)	2.3.2.2, 4.0
NA	12.111.2 20 Year Storage and Maintenance	10CFR72.236(g)	1.2.1.5, 9.0, 3.4.10, 3.4.11
NA	12.III.2 Decontamination	10CFR72.236(i)	8.0, 10.1
NA	12.111.2 Wet or Dry Loading	10CFR72.236(h)	8.0
NA	12.III.2 Confinement Effectiveness	10CFR72.236(j)	9.0
NA	12.III.2 Evaluation for Confinement	10CFR72.236(l)	7.1, 7.2, 9.0
	13. Quality Assurance		
13.1 Quality Assurance	13.111 Regulatory Requirements	10CFR72.24(n) 10CFR72.140(d)	13.0
	13.IV Acceptance Criteria	10CFR72, Subpart G	

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS REFERENCE MATRIX

Notes:

(4)

(5)

66

"NA"

⁽¹⁾ The stated requirement is the responsibility of the licensee (i.e., utility) as part of the ISFSI pad and is therefore not addressed in this application.

- ⁽²⁾ It is assumed that approval of the FSAR by the NRC is the basis for the Commission's acceptance of the tests defined in Chapter 9.
- ⁽³⁾ Not applicable to HI-STORM 100 System. The functional adequacy of all important to safety components is demonstrated by analyses.
 - The stated requirement is the responsibility of licensee (i.e., utility) as part of the ISFSI and is therefore not addressed in this application.

The stated requirement is not applicable to the HI-STORM 100 System. No monitoring is required for accident conditions.

There is no corresponding NUREG-1536 criteria, no applicable 10CFR72 or 10CFR20 regulatory requirement, or the item is not addressed in the FSAR.

There is no Regulatory Guide 3.61 section that corresponds to the NUREG-1536, 10CFR72, or 10CFR20 requirement being addressed.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR REPORT HI-2002444

1.0-24

Table 1.0.3

HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

NUREG-1536 Requirement	Alternate Method to Meet NUREG-1536 Intent	Justification
2.V.2.(b)(1) "The NRC accepts as the maximum and minimum "normal" temperatures the highest and lowest ambient temperatures recorded in each year, averaged over the years of record."	Exception: Section 2.2.1.4 for environmental temperatures utilizes an upper bounding value of 80°F on the annual average ambient temperatures for the United States.	The 80°F temperature set forth in Table 2.2.2 is greater than the annual average ambient temperature at any location in the continental United States. Inasmuch as the primary effect of the environmental temperature is on the computed fuel cladding temperature to establish long-term fuel cladding integrity, the annual average ambient temperature for each ISFSI site should be below 80°F. The large thermal inertia of the HI-STORM 100 System ensures that the daily fluctuations in temperatures do not affect the temperatures of the system. Additionally, the 80°F ambient temperature is combined with insolation in accordance with 10CFR71.71 averaged over 24 hours.
2.V.2.(b)(3)(f) "10CFR Part 72 identifies several other natural phenomena events (including seiche, tsunami, and hurricane) that should be addressed for spent fuel storage."	<u>Clarification</u> : A site-specific safety analysis of the effects of seiche, tsunami, and hurricane on the HI- STORM 100 System must be performed prior to use if these events are applicable to the site.	In accordance with NUREG-1536, 2.V.(b)(3)(f), if seiche, tsunami, and hurricane are not addressed in the SAR and they prove to be applicable to the site, a safety analysis is required prior to approval for use of the DCSS under either a site specific, or general license.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.0-25

HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

NUREG-1536 Requirement	Alternate Method to Meet NUREG-1536 Intent	Justification
3.V.1.d.i.(2)(a), page 3-11, "Drops with the axis generally vertical should be analyzed for both the conditions of a flush impact and an initial impact at a corner of the cask"	<u>Clarification</u> : As stated in NUREG- 1536, 3.V (d), page 3-11, "Generally, applicants establish the design basis in terms of the maximum height to which the cask is lifted outside the spent fuel building, or the maximum deceleration that the cask could experience in a drop." The maximum deceleration for a corner drop is specified as 45g's for the HI- STORM overpack. No carry height limit is specified for the corner drop.	In Chapter 3, the MPC and HI-STORM overpack are evaluated under a 45g radial loading. A 45g axial loading on the MPC is bounded by the analysis presented in the HI-STAR FSAR, Docket 72-1008, under a 60g loading, and is not repeated in this FSAR. In Chapter 3, the HI-STORM overpack is evaluated under a 45g axial loading. Therefore, the HI-STORM overpack and MPC are qualified for a 45g loading as a result of a corner drop. Depending on the design of the lifting device, the type of rigging used, the administrative vertical carry height limit, and the stiffness of the impacted surface, site-specific analyses may be required to demonstrate that the deceleration limit of 45g's is not exceeded.
 3.V.2.b.i.(1), Page 3-19, Para. 1, "All concrete used in storage cask system ISFSIs, and subject to NRC review, should be reinforced" 3.V.2.b.i.(2)(b), Page 3-20, Para. 1, "The NRC accepts the use of ACI 349 for the design, material selection and specification, and construction of all reinforced concrete structures that are not addressed within the scope of ACI 359". 3.V.2.c.i, Page 3-22, Para. 3, "Materials and material properties used for the design and construction of reinforced concrete structures important to safety but not within the scope 	Exception: The HI-STORM overpack concrete is not reinforced. However, ACI 349 [1.0.4] is used as guidance for the material selection and specification, and placement of the plain concrete. Appendix 1.D provides the relevant sections of ACI 349 applicable to the plain concrete in the overpack, including clarifications on implementation of this code. ACI 318-95 [1.0.5] is used for the calculation of the compressive strength of the plain concrete.	Concrete is provided in the HI-STORM overpack primarily for the purpose of radiation shielding during normal operations. During lifting and handling operations and under certain accident conditions, the compressive strength of the concrete (which is not impaired by the absence of reinforcement) is utilized. However, since the structural reliance under loadings which produce section flexure and tension is entirely on the steel structure of the overpack, reinforcement in the concrete will serve no useful purpose. To ensure the quality of the shielding concrete, all relevant provisions of ACI 349 are imposed as clarified in Appendix 1.D. The temperature limits for normal conditions are per Paragraph A.4.3 of Appendix A to ACI 349 and temperature limits for

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

NUREG-1536 Requirement	Alternate Method to Meet NUREG-1536 Intent	Justification
of ACI 359 should comply with the requirements of ACI 349".		off-normal and accident conditions are per Paragraph A.4.2 of Appendix A to ACI 349.
		Finally, the Fort St. Vrain ISFSI (Docket No. 72-9) also utilized plain concrete for shielding purposes, which is important to safety.
3.V.3.b.i.(2), Page 3-29, Para. 1, "The NRC accepts the use of ANSI/ANS-57.9 (together with the codes and standards cited therein) as the basic reference for ISFSI structures important to safety that are not designed in accordance with Section III of the ASME B&PV Code."	<u>Clarification</u> : The HI-STORM overpack steel structure is designed in accordance with the ASME B&PV Code, Section III, Subsection NF, Class 3. Any exceptions to the Code are listed in Table 2.2.15.	The overpack structure is a steel weldment consisting of "plate and shell type" members. As such, it is appropriate to design the structure to Section III, Class 3 of Subsection NF. The very same approach has been used in the structural evaluation of the "intermediate shells" in the HI-STAR 100 overpack (Docket Number 72-1008) previously reviewed and approved by the USNRC.
4.IV.5, Page 4-2 "for each fuel type proposed for storage, the DCSS should ensure a very low probability (e.g., 0.5 percent per fuel rod) of cladding breach during long-term storage."	<u>Clarification:</u> As described in Section 4.3, all fuel array types authorized for storage are assigned a single peak fuel cladding	As described in Section 4.3, all fuel array types authorized for storage have been evaluated for the peak normal fuel cladding temperature limit of 400°C.
4.IV.1, Page 4-3, Para. 1 "the staff should verify	temperature limit.	
that cladding temperatures for each fuel type proposed for storage will be below the expected		
damage thresholds for normal conditions of		
storage."		
4.IV.1, Page 4-3, Para. 2 "fuel cladding limits for each fuel type should be defined in the SAR with thermal restrictions in the DCSS technical specifications."		
4.V.1, Page 4-3, Para. 4 "the applicant should		

HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

NUREG-1536 Requirement	Alternate Method to Meet NUREG-1536 Intent	Justification
verify that these cladding temperature limits are appropriate for all fuel types proposed for storage, and that the fuel cladding temperatures will remain below the limit for facility operations (e.g., fuel transfer) and the worst-case credible accident."		
4.V.4.a, Page 4-6, Para. 6 "the basket wall temperature of the hottest assembly can then be used to determine the peak rod temperature of the hottest assembly using the Wooten-Epstein correlation."	<u>Clarification:</u> As discussed in Subsection 4.4.2, conservative maximum fuel temperatures are obtained directly from the cask thermal analysis. The peak fuel cladding temperatures are then used to determine the corresponding peak basket wall temperatures using a finite-element based update of Wooten-Epstein (described in Subsection 4.4.1.1.2)	The finite-element based thermal conductivity is greater than a Wooten-Epstein based value. This larger thermal conductivity minimizes the fuel-to- basket temperature difference. Since the basket temperature is less than the fuel temperature, minimizing the temperature difference conservatively maximizes the basket wall temperature.
4.V.4.b, Page 4-7, Para. 2 "high burnup effects should also be considered in determining the fuel region effective thermal conductivity."	<u>Exception:</u> All calculations of fuel assembly effective thermal conductivities, described in Subsection 4.4.1.1.2, use nominal fuel design dimensions, neglecting wall thinning associated with high burnup.	Within Subsection 4.4.1.1.2, the calculated effective thermal conductivities based on nominal design fuel dimensions are compared with available literature values and are demonstrated to be conservative by a substantial margin.
4.V.4.c, Page 4-7, Para. 5 "a heat balance on the surface of the cask should be given and the results presented."	<u>Clarification:</u> No additional heat balance is performed or provided.	The FLUENT computational fluid dynamics program used to perform evaluations of the HI-STORM Overpack and HI-TRAC transfer cask, which uses a

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM 100 FSAR Revision 6; February 7, 2008

NUREG-1536 Requirement	Alternate Method to Meet NUREG-1536 Intent	Justification
		discretized numerical solution algorithm, enforces an energy balance on all discretized volumes throughout the computational domain. This solution method, therefore, ensures a heat balance at the surface of the cask.
4.V.5.a, Page 4-8, Para. 2 "the SAR should include input and output file listings for the thermal evaluations."	<u>Exception</u> : No input or output file listings are provided in Chapter 4.	A complete set of computer program input and output files would be in excess of three hundred pages. All computer files are considered proprietary because they provide details of the design and analysis methods. In order to minimize the amount of proprietary information in the FSAR, computer files are provided in the proprietary calculation packages.
4.V.5.c, Page 4-10, Para. 3 "free volume calculations should account for thermal expansion of the cask internal components and the fuel when subjected to accident temperatures.	<u>Exception:</u> All free volume calculations use nominal confinement boundary dimensions, but the volume occupied by the fuel assemblies is calculated using maximum weights and minimum densities.	Calculating the volume occupied by the fuel assemblies using maximum weights and minimum densities conservatively overpredicts the volume occupied by the fuel and correspondingly underpredicts the remaining free volume.

HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

HI-STORM 100 FSAR Revision 6; February 7, 2008

HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

NUREG-1536 Requirement	Alternate Method to Meet NUREG-1536 Intent	Justification
7.V.4 "Confinement Analysis. Review the applicant's confinement analysis and the resulting annual dose at the controlled area boundary."	Exception: No confinement analysis is performed and no effluent dose at the controlled area boundary is calculated.	The MPC uses redundant closures to assure that there is no release of radioactive materials under all credible conditions. Analyses presented in Chapters 3 and 11 demonstrate that the confinement boundary does not degrade under all normal, off-normal, and accident conditions. Multiple inspection methods are used to verify the integrity of the confinement boundary (e.g.,non- destructive examinations and pressure testing). Pursuant to ISG-18, the Holtec MPC is constructed in a manner that supports leakage from the confinement boundary being non-credible. Therefore, no confinement analysis is required.
9.V.1.a, Page 9-4, Para. 4 "Acceptance criteria should be defined in accordance with NB/NC-5330, "Ultrasonic Acceptance Standards"."	<u>Clarification:</u> Section 9.1.1.1 and the Design Drawings specify that the ASME Code, Section III, Subsection NB, Article NB-5332 will be used for the acceptance criteria for the volumetric examination of the MPC lid-to-shell weld.	In accordance with the first line on page 9-4, the NRC endorses the use of "appropriate acceptance criteria as defined by either the ASME code, or an alternative approach" The ASME Code, Section III, Subsection NB, Paragraph NB-5332 is appropriate acceptance criteria for pre-service examination.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

NUREG-1536 Requirement	Alternate Method to Meet NUREG-1536 Intent	Justification
9.V.1.d, Para. 1 "Tests of the effectiveness of both the gamma and neutron shielding may be required if, for example, the cask contains	Exception: Subsection 9.1.5 describes the control of special processes, such as neutron shield	The dimensional compliance of all shielding cavities is verified by inspection to design drawing requirements prior to shield installation.
a poured lead shield or a special neutron absorbing material."	material installation, to be performed in lieu of scanning or probing with neutron sources.	The Holtite-A shield material is installed in accordance with written, approved, and qualified special process procedures.
		The composition of the Holtite-A is confirmed by inspection and tests prior to first use.
		Following the first loading for the HI-TRAC transfer cask and each HI-STORM overpack, a shield effectiveness test is performed in accordance with written approved procedures, as specified in Section 9.1.
13.III, " the application must include, at a minimum, a description that satisfies the	Exception: Section 13.0 incorporates the NRC-approved Holtec	The NRC has approved Revision 13 of the Holtec Quality Assurance Program Manual under 10 CFR 71
requirements of 10 CFR Part 72, Subpart G, 'Quality Assurance'"	International Quality Assurance Program Manual by reference rather	(NRC QA Program Approval for Radioactive Material Packages No. 0784, Rev. 3). Pursuant to 10
	than describing the Holtec QA program in detail.	CFR 72.140(d), Holtec will apply this QA program to all important-to-safety dry storage cask activities. Incorporating the Holtec QA Program Manual by reference eliminates duplicate documentation.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.0-31

HI-STORM 100 FSAR Revision 6; February 7, 2008

1.1 INTRODUCTION

HI-STORM 100 (acronym for <u>Holtec International Storage and Transfer Operation Reinforced</u> <u>Module</u>) is a spent nuclear fuel storage system designed to be in full compliance with the requirements of 10CFR72. The annex "100" is a model number designation which denotes a system weighing over 100 tons. The HI-STORM 100 System consists of a sealed metallic canister, herein abbreviated as the "MPC", contained within an overpack. Its design features are intended to simplify and reduce on-site SNF loading, handling, and monitoring operations, and to provide for radiological protection and maintenance of structural and thermal safety margins.

The HI-STORM 100S and HI-STORM 100S Version B overpack designs are variants of the HI-STORM 100 overpack design and have their own drawings in Section 1.5. The "S" suffix indicates an enhanced overpack design, as described later in this section. "Version B" indicates an enhanced HI-STORM 100S overpack design. The HI-STORM 100S and 100S Version B accept the same MPCs and fuel types as the HI-STORM 100 overpack and the basic structural, shielding, and thermal-hydraulic characteristics remain unchanged. Hereafter in this FSAR reference to HI-STORM 100 System or the HI-STORM 00S Version B. Where necessary, the text distinguishes among the three overpack designs. See Figures 1.1.1A and 1.1.3A for pictorial views of the HI-STORM 100S Version B design.

The HI-STORM 100A overpack is a variant of two of the three HI-STORM 100 System overpack designs and is specially outfitted with an extended baseplate and gussets to enable the overpack to be anchored to the ISFSI pad in high seismic applications. In the following, the modified structure of the HI-STORM 100A, in each of four quadrants, is denoted as a "sector lug." The HI-STORM 100A anchor design is applicable to the HI-STORM 100S overpack design, in which case the assembly would be named HI-STORM 100SA. The HI-STORM 100A anchor design is not applicable to the HI-STORM 100S version B overpack design. Therefore, the HI-STORM 100S Version B overpack cannot be deployed in the anchored configuration at this time. Hereafter in the text, discussion of HI-STORM 100A applies to both the standard (HI-STORM 100A) and HI-STORM 100SA overpacks, unless otherwise clarified.

The HI-STORM 100 System is designed to accommodate a wide variety of spent nuclear fuel assemblies in a single basic overpack design by utilizing different MPCs. The external diameters of all MPCs are identical to allow the use of a single overpack. Each of the MPCs has different internals (baskets) to accommodate distinct fuel characteristics. Each MPC is identified by the maximum quantity of fuel assemblies it is capable of receiving. The MPC-24E, MPC-24E, and MPC-24EF contain a maximum of 24 PWR fuel assemblies; the MPC-32 and MPC-32F contain a maximum of 32 PWR fuel assemblies; and the MPC-68F, and MPC-68FF contain a maximum of 68 BWR fuel assemblies.

The HI-STORM overpack is constructed from a combination of steel and concrete, both of which are materials with long, proven histories of usage in nuclear applications. The HI-STORM overpack incorporates and combines many desirable features of previously-approved concrete and metal

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

module designs. In essence, the HI-STORM overpack is a hybrid of metal and concrete systems, with the design objective of emulating the best features and dispensing with the drawbacks of both. The HI-STORM overpack is best referred to as a METCON[™] (metal/concrete composite) system.

Figures 1.1.1, 1.1.1A, and 1.1.1B show the HI-STORM 100 System with two of its major constituents, the MPC and the storage overpack, in a cut-away view. The MPC, shown partially withdrawn from the storage overpack, is an integrally welded pressure vessel designed to meet the stress limits of the ASME Boiler and Pressure Vessel Code, Section III, Subsection NB [1.1.1]. The MPC defines the confinement boundary for the stored spent nuclear fuel assemblies with respect to 10CFR72 requirements and attendant review considerations. The HI-STORM storage overpack provides mechanical protection, cooling, and radiological shielding for the contained MPC.

In essence, the HI-STORM 100 System is the storage-only counterpart of the HI-STAR 100 System (Docket Numbers 72-1008 (Ref. [1.1.2]) and 71-9261 (Ref. [1.1.3])). Both HI-STORM and HI-STAR are engineered to house identical MPCs. Since the MPC is designed to meet the requirements of both 10CFR71 and 10CFR72 for transportation and storage, respectively, the HI-STORM 100 System allows rapid decommissioning of the ISFSI by simply transferring the loaded MPC's directly into HI-STAR 100 overpacks for off-site transport. This alleviates the additional fuel handling steps required by storage-only casks to unload the cask and repackage the fuel into a suitable transportation cask.

In contrast to the HI-STAR 100 overpack, which provides a containment boundary for the SNF during transport, the HI-STORM storage overpack does not constitute a containment or confinement enclosure. The HI-STORM overpack is equipped with large penetrations near its lower and upper extremities to permit natural circulation of air to provide for the passive cooling of the MPC and the contained radioactive material. The HI-STORM overpack is engineered to be an effective barrier against the radiation emitted by the stored materials, and an efficiently configured metal/concrete composite to attenuate the loads transmitted to the MPC during a natural phenomena or hypothetical accident event. Other auxiliary functions of the HI-STORM 100 overpack include isolation of the SNF from abnormal environmental or man-made events, such as impact of a tornado borne missile. As the subsequent chapters of this FSAR demonstrate, the HI-STORM overpack is engineered with large margins of safety with respect to cooling, shielding, and mechanical/structural functions.

The HI-STORM 100 System is autonomous inasmuch as it provides SNF and radioactive material confinement, radiation shielding, criticality control and passive heat removal independent of any other facility, structures, or components. The surveillance and maintenance required by the plant's staff is minimized by the HI-STORM 100 System since it is completely passive and is composed of materials with long proven histories in the nuclear industry. The HI-STORM 100 System can be used either singly or as the basic storage module in an ISFSI. The site for an ISFSI can be located either at a reactor or away from a reactor.

The information presented in this report is intended to demonstrate the acceptability of the HI-STORM 100 System for use under the general license provisions of Subpart K by meeting the criteria set forth in 10CFR72.236.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

The modularity of the HI-STORM 100 System accrues several advantages. Different MPCs, identical in external diameter, manufacturing requirements, and handling features, but different in their SNF arrangement details, are designed to fit a common overpack design. Even though the different MPCs have fundamentally identical design and manufacturing attributes, qualification of HI-STORM 100 requires consideration of the variations in the characteristics of the MPCs. In most cases, however, it is possible to identify the most limiting MPC geometry and the specific loading condition for the safety evaluation, and the detailed analyses are then carried out for that bounding condition. In those cases where this is not possible, multiple parallel analyses are performed.

The HI-STORM overpack is not engineered for transport and, therefore, will not be submitted for 10CFR Part 71 certification. HI-STORM 100, however, is designed to possess certain key elements of flexibility.

For example:

- The HI-STORM overpack is stored at the ISFSI pad in a vertical orientation, which helps minimize the size of the ISFSI and leads to an effective natural convection cooling flow around the MPC.
- The HI-STORM overpack can be loaded with a loaded MPC using the HI-TRAC transfer cask inside the 10CFR50 [1.1.4] facility, prepared for storage, transferred to the ISFSI, and stored in a vertical configuration, or directly loaded using the HI-TRAC transfer cask at or nearby the ISFSI storage pad.

The version of the HI-STORM overpack equipped with sector lugs to anchor it to the ISFSI pad is labeled HI-STORM 100A, shown in Figure 1.1.4. Figure 1.1.5 shows the sector lugs and anchors used to fasten the overpack to the pad in closer view. Details on HI-STORM 100A are presented in the drawing and BOM contained in Section 1.5. Users may employ a double nut arrangement as an option. The HI-STORM 100A overpack will be deployed at those ISFSI sites where the postulated seismic event (defined by the three orthogonal ZPAs) exceeds the maximum limit permitted for free-standing installation. The design of the ISFSI pad and the embedment are necessarily site-specific and the responsibility of the ISFSI owner. These designs shall be in accordance with the requirements specified in Appendix 2.A. The jurisdictional boundary between the anchored cask design and the embedment design is defined in Table 2.0.5. Additional description of the HI-STORM 100A configuration is provided in Subsection 1.2.1.2.1. The anchored design is applicable to the HI-STORM 100 and the HI-STORM 100S overpack designs only.

The MPC is a multi-purpose SNF storage device both with respect to the type of fuel assemblies and its versatility of use. The MPC is engineered as a cylindrical prismatic structure with square cross section storage cavities. The number of storage locations depends on the type of fuel. Regardless of the storage cell count, the construction of the MPC is fundamentally the same; it is built as a honeycomb of cellular elements positioned within a circumscribing cylindrical canister shell. The manner of cell-to-cell weld-up and cell-to-canister shell interface employed in the MPC imparts extremely high structural stiffness to the assemblage, which is an important attribute for mechanical accident events. Figure 1.1.2 shows an elevation cross section of an MPC.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444 The MPC enclosure vessel is identical in external diameter to those presented in References [1.1.2] and [1.1.3]. However, certain fuel basket models may not be certified for storage or transportation in the HI-STAR 100 System. The Part 71 and 72 CoCs for HI-STAR 100 should be consulted for the MPC models that are certified for that system. Referencing these documents, as applicable, avoids repetition of information on the MPCs which is comprehensively set forth in the above-mentioned Holtec International documents docketed with the NRC. However, sufficient information and drawings are presented in this report to maintain clarity of exposition of technical data.

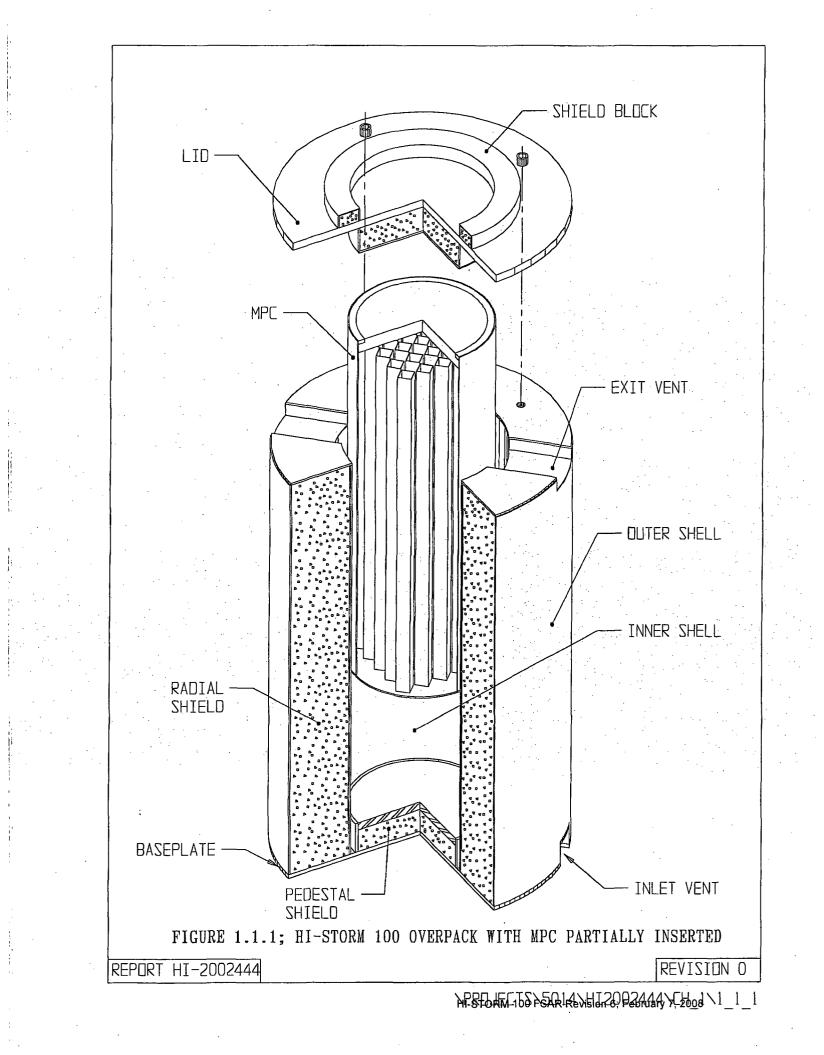
The HI-STORM storage overpack is designed to provide the necessary neutron and gamma shielding to comply with the provisions of 10CFR72 for dry storage of SNF at an ISFSI. Cross sectional views of the HI-STORM storage overpacks are presented in Figures 1.1.3, 1.1.3A, and 1.1.3B. A HI-TRAC transfer cask is required for loading of the MPC and movement of the loaded MPC from the cask loading area of a nuclear plant spent fuel pool to the storage overpack. The HI-TRAC is engineered to be emplaced with an empty MPC into the cask loading area of nuclear plant spent fuel pools for fuel loading (or unloading). The HI-TRAC/MPC assembly is designed to preclude intrusion of pool water into the narrow annular space between the HI-TRAC and the MPC while the assembly is submerged in the pool water. The HI-TRAC transfer cask also allows dry loading (or unloading) of SNF into the MPC.

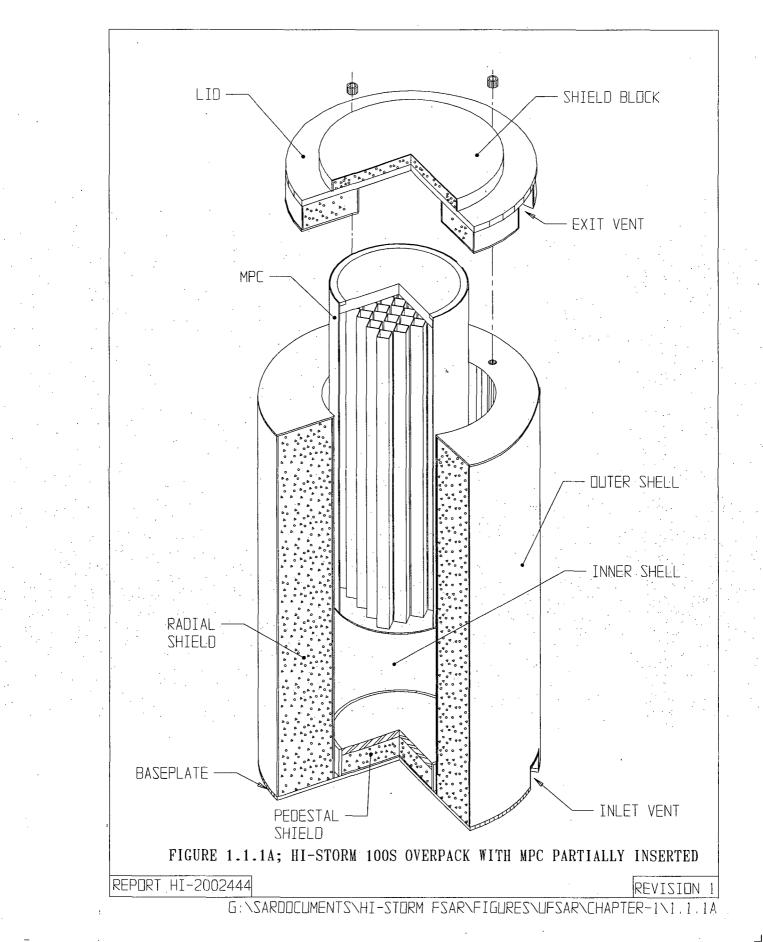
To summarize, the HI-STORM 100 System has been engineered to:

• minimize handling of the SNF;

• provide shielding and physical protection for the MPC;

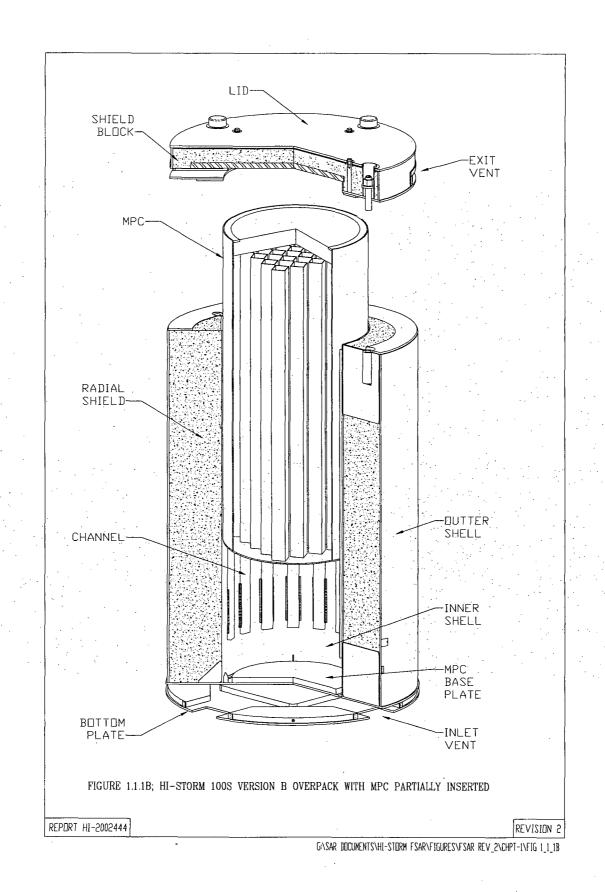
• permit rapid and unencumbered decommissioning of the ISFSI;

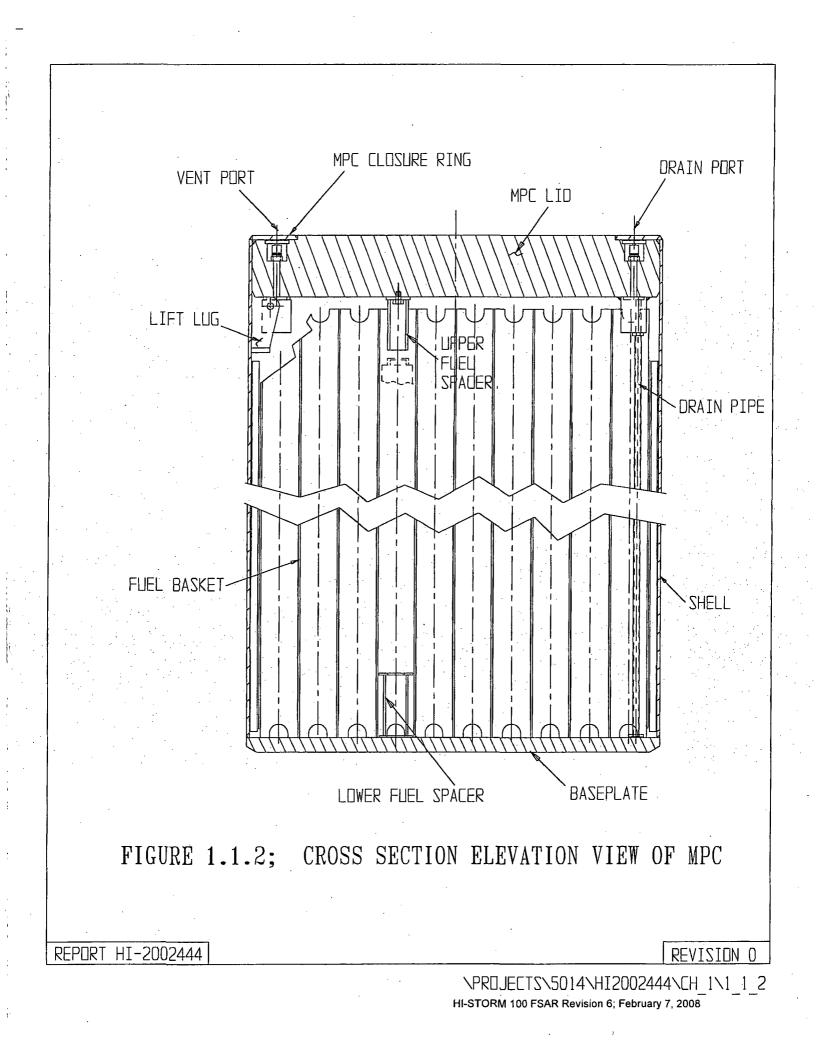

• require minimal ongoing surveillance and maintenance by plant staff;

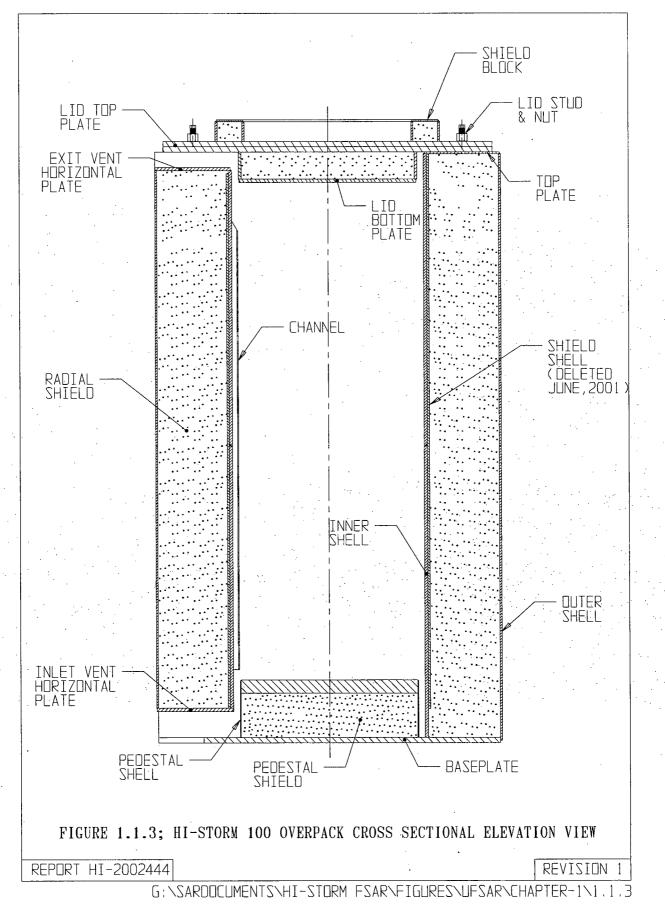

• minimize dose to operators during loading and handling;

• allow transfer of the loaded MPC to a HI-STAR overpack for transportation.

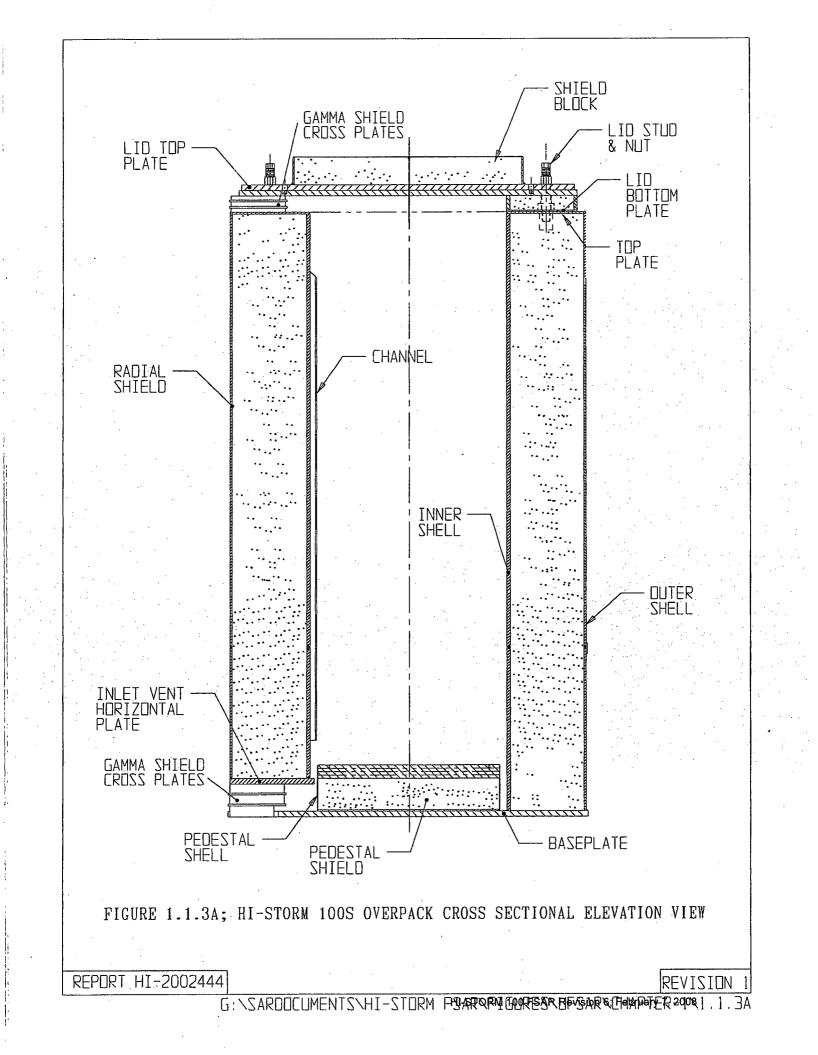
HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

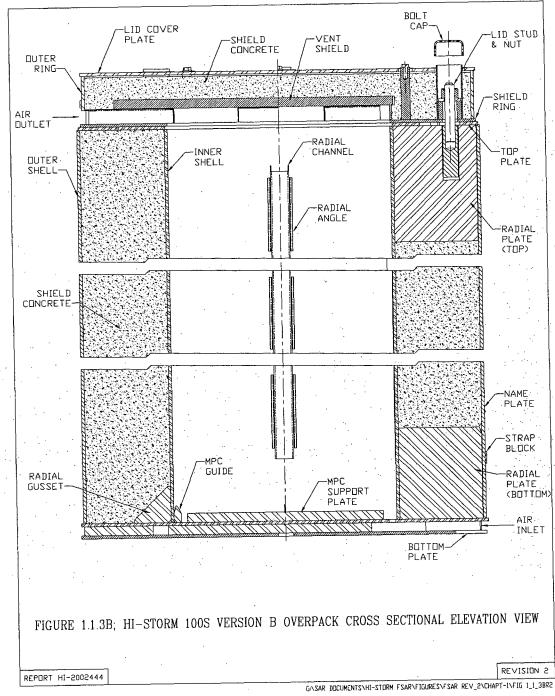

HI-STORM FSAR REPORT HI-2002444

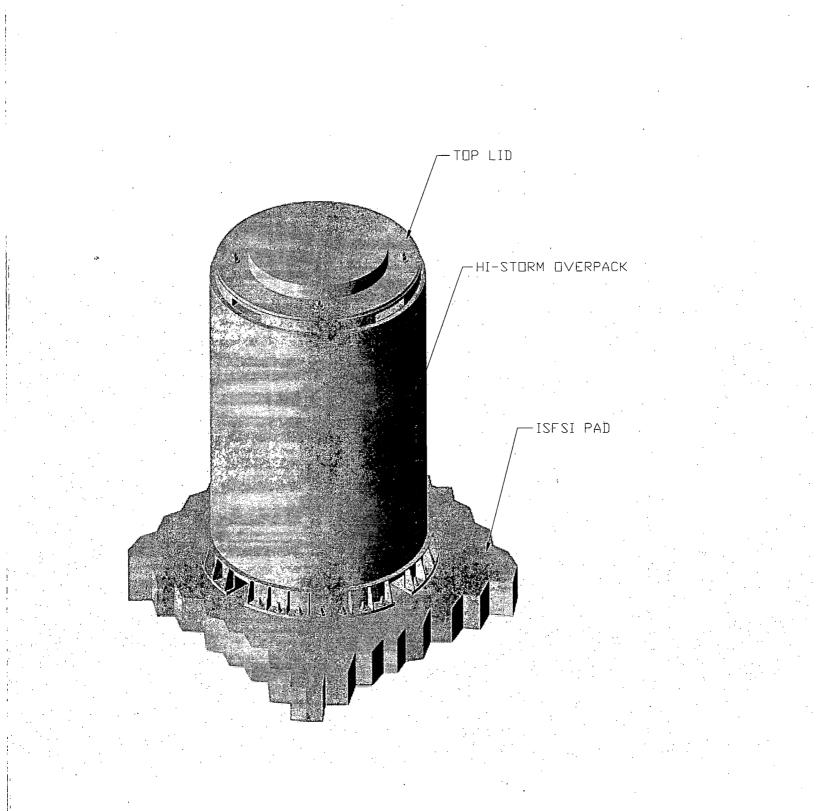




HI-STORM 100 FSAR Revision 6; February 7, 2008


٦




HI-STORM 100 FSAR Revision 6; February 7, 2008

.

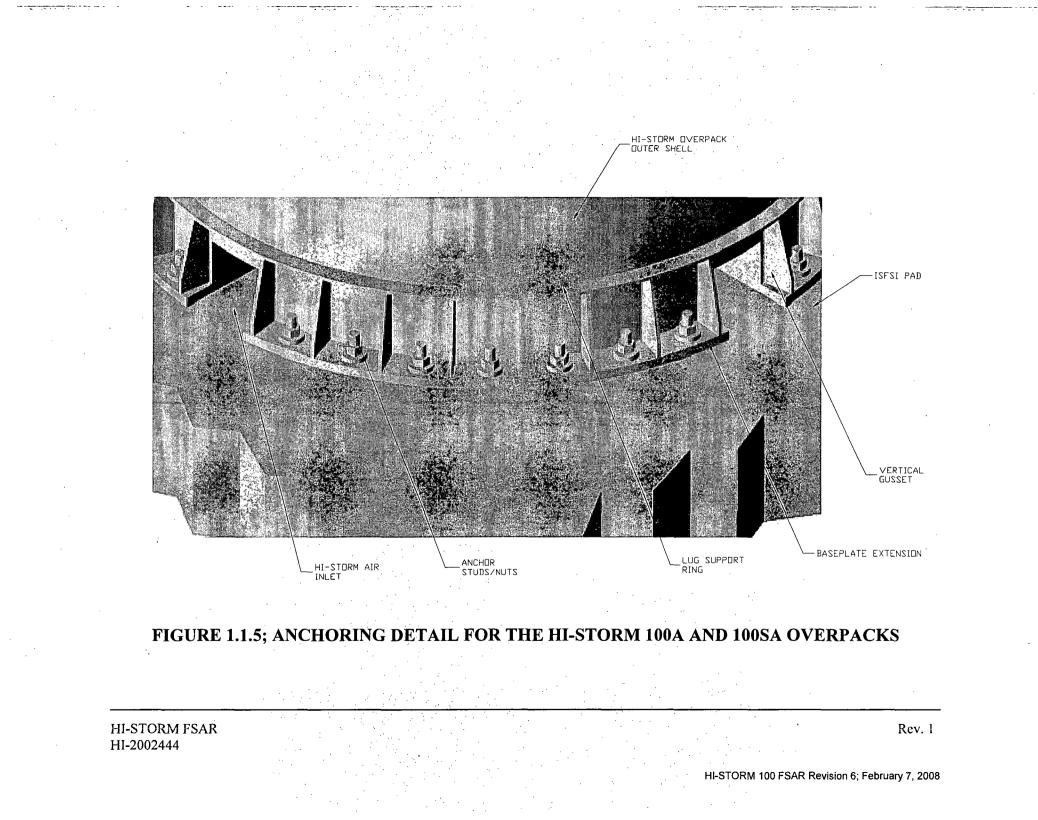

HI-STORM 100 FSAR Revision 6: February 7, 200

FIGURE 1.1.4; A PICTORAL VIEW OF THE HI-STORM 100A OVERPACK (100SA MODEL SHOWN)

HI-STORM FSAR HI-2002444 Rev. 1

HI-STORM 100 FSAR Revision 6; February 7, 2008

1.2 GENERAL DESCRIPTION OF HI-STORM 100 System

1.2.1 System Characteristics

The basic HI-STORM 100 System consists of interchangeable MPCs providing a confinement boundary for BWR or PWR spent nuclear fuel, a storage overpack providing a structural and radiological boundary for long-term storage of the MPC placed inside it, and a transfer cask providing a structural and radiological boundary for transfer of a loaded MPC from a nuclear plant spent fuel storage pool to the storage overpack. Figures 1.2.1 and 1.2.1A provide example cross sectional views of the HI-STORM 100 System with an MPC inserted into HI-STORM 100 and HI-STORM 100S storage overpacks, respectively. Figure 1.1.1B provides similar information for the HI-STORM 100 System using a HI-STORM 100S Version B overpack. Each of these components is described below, including information with respect to component fabrication techniques and designed safety features. All structures, systems, and components of the HI-STORM 100 System, which are identified as Important to Safety are specified in Table 2.2.6. This discussion is supplemented with a full set of drawings in Section 1.5.

The HI-STORM 100 System is comprised of three discrete components:

- i. multi-purpose canister (MPC)
- ii. storage overpack (HI-STORM)
- iii. transfer cask (HI-TRAC)

Necessary auxiliaries required to deploy the HI-STORM 100 System for storage are:

- vacuum drying (or other moisture removal) system
- ii. helium (He) backfill system with leakage detector (or other system capable of the same backfill condition)
- iii. lifting and handling systems
- in. Intellig and handling sys
- iv welding equipment
- v. transfer vehicles/trailer

All MPCs have identical external diameters. The outer diameter of the MPC is 68-3/8 inches[†] and the maximum overall length is 190-1/2 inches. See Section 1.5 for the MPC drawings. Due to the differing storage contents of each MPC, the maximum loaded weight differs among MPCs. See Table 3.2.1 for each MPC weight. However, the maximum weight of a loaded MPC is approximately 44-1/2 tons. Tables 1.2.1 and 1.2.2 contain the key system data and parameters for the MPCs.

[†] Dimensions discussed in this section are considered nominal values.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

i:

1.2-1

A single, base HI-STORM overpack design is provided which is capable of storing each type of MPC. The overpack inner cavity is sized to accommodate the MPCs. The inner diameter of the overpack inner shell is 73-1/2 inches and the height of the cavity is 191-1/2 inches. The overpack inner shell is provided with channels distributed around the inner cavity to present an inside diameter of 69-1/2 inches. The channels are intended to offer a flexible medium to absorb some of the impact during a non-mechanistic tip-over, while still allowing the cooling air flow through the ventilated overpack. The outer diameter of the overpack is 132-1/2 inches. The overall height of the HI-STORM 100 overpack is 239-1/2 inches.

There are two variants of the HI-STORM 100S overpack, differing from each other only in height and weight. The HI-STORM 100S(232) is 232 inches high, and the HI-STORM 100S(243) is 243 inches high. The HI-STORM 100S(243) is approximately 10,100 lbs heavier assuming standard density concrete. Hereafter in the text, these two versions of the HI-STORM 100S overpack will only be referred to as HI-STORM 100S and will be discussed separately only if the design feature being discussed is different between the two overpacks. See Section 1.5 for drawings.

There are also variants of the HI-STORM 100S Version B overpack, differing from each other only in height and weight. The HI-STORM 100S-218 is 218 inches high, and the HI-STORM 100S-229 is 229 inches high. The HI-STORM 100S-229 is approximately 8,700 lbs heavier, including standard density concrete. Hereafter in the text, the versions of the HI-STORM 100S Version B overpack will only be referred to as HI-STORM 100S Version B and will be discussed separately only if the design feature being discussed is different between the overpacks. See Section 1.5 for drawings.

The weight of the overpack without an MPC varies from approximately 135 tons to 160 tons. See Table 3.2.1 for the detailed weights.

Before proceeding to present detailed physical data on the HI-STORM 100 System, it is of contextual importance to summarize the design attributes which enhance the performance and safety of the system. Some of the principal features of the HI-STORM 100 System which enhance its effectiveness as an SNF storage device and a safe SNF confinement structure are:

- the honeycomb design of the MPC fuel basket;
- the effective distribution of neutron and gamma shielding materials within the system;
- the high heat dissipation capability;
- engineered features to promote convective heat transfer;
- the structural robustness of the steel-concrete-steel overpack construction.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-2

The honeycomb design of the MPC fuel baskets renders the basket into a multi-flange plate weldment where all structural elements (i.e., box walls) are arrayed in two orthogonal sets of plates. Consequently, the walls of the cells are either completely co-planar (i.e., no offset) or orthogonal with each other. There is complete edge-to-edge continuity between the contiguous cells.

Among the many benefits of the honeycomb construction is the uniform distribution of the metal mass of the basket over the entire length of the basket. Physical reasoning suggests that a uniformly distributed mass provides a more effective shielding barrier than can be obtained from a nonuniform basket. In other words, the honeycomb basket is a most effective radiation attenuation device. The complete cell-to-cell connectivity inherent in the honeycomb basket structure provides an uninterrupted heat transmission path, making the MPC an effective heat rejection device.

The composite shell construction in the overpack, steel-concrete-steel, allows ease of fabrication and eliminates the need for the sole reliance on the strength of concrete.

A description of each of the components is provided in the following sections, along with information with respect to its fabrication and safety features. This discussion is supplemented with the full set of drawings in Section 1.5.

1.2.1.1 Multi-Purpose Canisters

The MPCs are welded cylindrical structures as shown in cross sectional views of Figures 1.2.2 through 1.2.4. The outer diameter of each MPC is fixed. Each spent fuel MPC is an assembly consisting of a honeycombed fuel basket, a baseplate, canister shell, a lid, and a closure ring, as depicted in the MPC cross section elevation view, Figure 1.2.5. The number of spent nuclear fuel storage locations in each of the MPCs depends on the fuel assembly characteristics.

There are eight MPC models, distinguished by the type and number of fuel assemblies authorized for loading. Section 1.2.3 and Table 1.2.1 summarize the allowable contents for each MPC model. Section 2.1.9 provides the detailed specifications for the contents authorized for storage in the HI-STORM 100 System. Drawings for the MPCs are provided in Section 1.5.

The MPC provides the confinement boundary for the stored fuel. Figure 1.2.6 provides an elevation view of the MPC confinement boundary. The confinement boundary is defined by the MPC baseplate, shell, lid, port covers, and closure ring. The confinement boundary is a strength-welded enclosure of all stainless steel construction.

The PWR MPC-24, MPC-24E and MPC-24EF differ in construction from the MPC-32 (including the MPC-32F) and the MPC-68 (including the MPC-68F and MPC-68FF) in one important aspect: the fuel storage cells in the MPC-24 series are physically separated from one another by a "flux trap", for criticality control. The PWR MPC-32 and -32F are designed similar to the MPC-68 (without flux traps) and its design includes credit for soluble boron in the MPC water during wet fuel loading and unloading operations for criticality control.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-3

The MPC fuel baskets of non-flux trap construction (namely, MPC-68, MPC-68F, MPC-68FF, MPC-32, and MPC-32F) are formed from an array of plates welded to each other at their intersections. In the flux-trap type fuel baskets (MPC-24, MPC-24E, and MPC-24EF), formed angles are interposed onto the orthogonally configured plate assemblage to create the required flux-trap channels (see MPC-24 and MPC-24E fuel basket drawings in Section 1.5). In both configurations, two key attributes of the basket are preserved:

- i. The cross section of the fuel basket simulates a multi-flanged closed section beam, resulting in extremely high bending rigidity.
- ii.

The principal structural frame of the basket consists of co-planar plate-type members (i.e., no offset).

This structural feature eliminates the source of severe bending stresses in the basket structure by eliminating the offset between the cell walls that must transfer the inertia load of the stored SNF to the basket/MPC interface during the various postulated accident events (e.g., non-mechanistic tipover, uncontrolled lowering of a cask during on-site transfer, or off-site transport events, etc.).

The MPC fuel basket is positioned and supported within the MPC shell by a set of basket supports welded to the inside of the MPC shell. Between the periphery of the basket, the MPC shell, and the basket supports, optional aluminum heat conduction elements (AHCEs) may have been installed in the early vintage MPCs fabricated, certified, and loaded under the original version or Amendment 1 of the HI-STORM 100 System CoC. The presence of these aluminum heat conduction elements is acceptable for MPCs loaded under the original CoC or Amendment 1, since the governing thermal analysis for Amendment 1 conservatively modeled the AHCEs as restrictions to convective flow in the basket, but took no credit for heat transfer through them. The heat loads authorized under Amendment 1 bound those for the original CoC, with the same MPC design. For MPCs loaded under Amendment 2 or a later version of the HI-STORM 100 CoC, the aluminum heat conduction elements shall not be installed. MPCs both with and without aluminum heat conduction elements installed are compatible with all HI-STORM overpacks. If used, these heat conduction elements are fabricated from thin aluminum alloy 1100 in shapes and a design that allows a snug fit in the confined spaces and ease of installation. If used, the heat conduction elements are installed along the full length of the MPC basket except at the drain pipe location to create a nonstructural thermal connection that facilitates heat transfer from the basket to shell. In their operating condition, the heat conduction elements contact the MPC shell and basket walls.

Lifting lugs attached to the inside surface of the MPC canister shell serve to permit placement of the empty MPC into the HI-TRAC transfer cask. The lifting lugs also serve to axially locate the MPC lid prior to welding. These internal lifting lugs are not used to handle a loaded MPC. Since the MPC lid is installed prior to any handling of a loaded MPC, there is no access to the lifting lugs once the MPC is loaded.

The top end of the MPC incorporates a redundant closure system. Figure 1.2.6 shows the MPC closure details. The MPC lid is a circular plate (fabricated from one piece, or two pieces - split top and bottom) edge-welded to the MPC outer shell. If the two-piece lid design is employed, only the

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

top piece is analyzed as part of the enclosure vessel pressure boundary. The bottom piece acts as a radiation shield and is attached to the top piece with a non-structural, non-pressure retaining weld. The lid is equipped with vent and drain ports that are utilized to remove moisture and air from the MPC, and backfill the MPC with a specified amount of inert gas (helium). The vent and drain ports are covered and seal welded before the closure ring is installed. The closure ring is a circular ring edge-welded to the MPC shell and lid. The MPC lid provides sufficient rigidity to allow the entire MPC loaded with SNF to be lifted by threaded holes in the MPC lid.

For fuel assemblies that are shorter than the design basis length, upper and lower fuel spacers (as appropriate) maintain the axial position of the fuel assembly within the MPC basket. The upper fuel spacers are threaded into the underside of the MPC lid as shown in Figure 1.2.5. The lower fuel spacers are placed in the bottom of each fuel basket cell. The upper and lower fuel spacers are designed to withstand normal, off-normal, and accident conditions of storage. An axial clearance of approximately 2 to 2-1/2 inches is provided to account for the irradiation and thermal growth of the fuel assemblies. The suggested values for the upper and lower fuel spacers will be determined on a site-specific or fuel assembly-specific basis.

The MPC is constructed entirely from stainless steel alloy materials (except for the neutron absorber and optional aluminum heat conduction elements). No carbon steel parts are permitted in the MPC. Concerns regarding interaction of coated carbon steel materials and various MPC operating environments [1.2.1] are not applicable to the MPC. All structural components in a MPC shall be made of Alloy X, a designation which warrants further explanation.

Alloy X is a material that is expected to be acceptable as a Mined Geological Disposal System (MGDS) waste package and which meets the thermophysical properties set forth in this document.

At this time, there is considerable uncertainty with respect to the material of construction for an MPC that would be acceptable as a waste package for the MGDS. Candidate materials being considered for acceptability by the DOE include:

Type 316 Type 316LN Type 304 Type 304LN

The DOE material selection process is primarily driven by corrosion resistance in the potential environment of the MGDS. As the decision regarding a suitable material to meet disposal requirements is not imminent, the MPC design allows the use of any one of the four Alloy X materials.

For the MPC design and analysis, Alloy X (as defined in this FSAR) may be one of the following materials. Any steel part in an MPC may be fabricated from any of the acceptable Alloy X materials listed below, except that the steel pieces comprising the MPC shell (i.e., the 1/2" thick cylinder) must be fabricated from the same Alloy X stainless steel type.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Type 316
Type 316LN
Type 304
Type 304LN

The Alloy X approach is accomplished by qualifying the MPC for all mechanical, structural, neutronic, radiological, and thermal conditions using material thermophysical properties that are the least favorable for the entire group for the analysis in question. For example, when calculating the rate of heat rejection to the outside environment, the value of thermal conductivity used is the lowest for the candidate material group. Similarly, the stress analysis calculations use the lowest value of the ASME Code allowable stress intensity for the entire group. Stated differently, we have defined a material, which is referred to as Alloy X, whose thermophysical properties, from the MPC design perspective, are the least favorable of the candidate materials.

The evaluation of the Alloy X constituents to determine the least favorable properties is provided in Appendix 1.A.

The Alloy X approach is conservative because no matter which material is ultimately utilized in the MPC construction, the Alloy X approach guarantees that the performance of the MPC will exceed the analytical predictions contained in this document.

1.2.1.2 <u>Overpacks</u>

1.2.1.2.1 <u>HI-STORM Overpack</u>

The HI-STORM overpacks are rugged, heavy-walled cylindrical vessels. Figures 1.1.3B, 1.2.7, 1.2.8, and 1.2.8A provide cross sectional views of the HI-STORM 100 System, showing all of the overpack designs. The HI-STORM 100A overpack design is an anchored variant of the HI-STORM 100 and -100S designs and hereinafter is identified by name only when the discussion specifically applies to the anchored overpack. The HI-STORM 100A differs only in the diameter of the overpack baseplate and the presence of bolt holes and associated anchorage hardware (see Figures 1.1.4 and 1.1.5). The main structural function of the storage overpack is provided by carbon steel, and the main shielding function is provided by plain concrete. The overpack plain concrete is enclosed by cylindrical steel shells, a thick steel baseplate, and a top plate. The overpack lid has appropriate concrete shielding to provide neutron and gamma attenuation in the vertical direction.

The storage overpack provides an internal cylindrical cavity of sufficient height and diameter for housing an MPC. The inner shell of the overpack has channels attached to its inner diameter. The channels provide guidance for MPC insertion and removal and a flexible medium to absorb impact loads during the non-mechanistic tip-over, while still allowing the cooling air flow to circulate through the overpack. Shims may be attached to channels to allow the proper inner diameter dimension to be obtained.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

The storage system has air ducts to allow for passive natural convection cooling of the contained MPC. A minimum of four air inlets and four air outlets are located at the lower and upper extremities of the storage system, respectively. The location of the air outlets in the HI-STORM 100 and the HI-STORM 100S (including Version B) design differ in that the outlet ducts for the HI-STORM 100 overpack are located in the overpack body and are aligned vertically with the inlet ducts at the bottom of the overpack body. The air outlet ducts in the HI-STORM 100S and –100S Version B are integral to the lid assembly and are not in vertical alignment with the inlet ducts. See the drawings in Section 1.5 for details of the overpack air inlet and outlet duct designs. The air inlets and outlets are covered by a screen to reduce the potential for blockage. Routine inspection of the screens (or, alternatively, temperature monitoring) ensures that blockage of the screens themselves will be detected and removed in a timely manner. Analysis, described in Chapter 11 of this FSAR, evaluates the effects of partial and complete blockage of the air ducts.

The air inlets and air outlets are penetrations through the thick concrete shielding provided by the HI-STORM 100 overpack. The outlet air ducts for the HI-STORM 100S and -100S Version B overpack designs, integral to the lid, present a similar break in radial shielding. Within the air inlets and outlets, an array of gamma shield cross plates are installed (see Figure 5.3.19 for a pictorial representation of the gamma shield cross plate designs). These gamma shield cross plates are designed to scatter any radiation traveling through the ducts. The result of scattering the radiation in the ducts is a significant decrease in the local dose rates around the air inlets and air outlets. The configuration of the gamma shield cross plates is such that the increase in the resistance to flow in the air inlets and outlets is minimized. For the HI-STORM 100 and -100S overpack designs, the shielding analysis conservatively credits only the mandatory version of the gamma shield cross plate design because they provide less shielding than the optional design. Conversely, the thermal analysis conservatively evaluates the optional gamma shield cross plate design because it conservatively provides greater resistance to flow than the mandatory design. There is only one gamma shield cross plate design employed with the HI-STORM 100S Version B overpack design, which has been appropriately considered in the shielding and thermal analyses.

Four threaded anchor blocks at the top of the overpack are provided for lifting. The anchor blocks are integrally welded to the radial plates, which in turn are full-length welded to the overpack inner shell, outer shell, and baseplate (HI-STORM 100) or the inlet air duct horizontal plates (HI-STORM 100S) (see Figure 1.2.7). The HI-STORM 100S Version B overpack design incorporates partial-length radial plates at the top of the overpack to secure the anchor blocks and uses both gussets and partial-length radial plates at the bottom of the overpack for structural stability. Details of this arrangement are shown in the drawings in Section 1.5.

The four anchor blocks are located on 90° arcs around the circumference of the top of the overpack lid. The overpack may also be lifted from the bottom using specially-designed lifting transport devices, including hydraulic jacks, air pads, Hillman rollers, or other design based on site-specific needs and capabilities. Slings or other suitable devices mate with lifting lugs that are inserted into threaded holes in the top surface of the overpack lid to allow lifting of the overpack lid. After the lid is bolted to the storage overpack main body, these lifting bolts shall be removed and replaced with flush plugs.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

The plain concrete between the overpack inner and outer steel shells is specified to provide the necessary shielding properties (dry density) and compressive strength. The concrete shall be in accordance with the requirements specified in Appendix 1.D.

The principal function of the concrete is to provide shielding against gamma and neutron radiation. However, in an implicit manner it helps enhance the performance of the HI-STORM overpack in other respects as well. For example, the massive bulk of concrete imparts a large thermal inertia to the HI-STORM overpack, allowing it to moderate the rise in temperature of the system under hypothetical conditions when all ventilation passages are assumed to be blocked. The case of a postulated fire accident at the ISFSI is another example where the high thermal inertia characteristics of the HI-STORM concrete control the temperature of the MPC. Although the annular concrete mass in the overpack shell is not a structural member, it does act as an elastic/plastic filler of the intershell space, such that, while its cracking and crushing under a tip-over accident is not of significant consequence, its deformation characteristics are germane to the analysis of the structural members.

Density and compressive strength are the key parameters that delineate the performance of concrete in the HI-STORM System. The density of concrete used in the inter-shell annulus, pedestal (HI-STORM 100 and -100S overpacks only), and overpack lid has been set as defined in Appendix 1.D. For evaluating the physical properties of concrete for completing the analytical models, conservative formulations of Reference [1.0.5] are used.

To ensure the stability of the concrete at temperature, the concrete composition has been specified in accordance with NUREG-1536, "Standard Review Plan for Dry Cask Storage Systems" [1.0.3]. Thermal analyses, presented in Chapter 4, show that the temperatures during normal storage conditions do not threaten the physical integrity of the HI-STORM overpack concrete.

There are three base HI-STORM overpack designs - HI-STORM 100, HI-STORM 100S, and HI-STORM 100S Version B. The significant differences among the three are overpack height, MPC pedestal height, location of the air outlet ducts, and the vertical alignment of the inlet and outlet air ducts. The HI-STORM 100 overpack is approximately 240 inches high from the bottom of the baseplate to the top of the lid bolts and 227 inches high without the lid installed. There are two variants of the HI-STORM 100S overpack design, differing only in height and weight. The HI-STORM 100S(232) is approximately 232 inches high from the bottom of the baseplate to the top of the lid in its final storage configuration and approximately 211 inches high without the lid installed. The HI-STORM 100S(243) is approximately 243 inches high from the bottom of the baseplate to the top of the lid in its final storage configuration and approximately 222 inches high without the lid installed. There are also variants of the HI-STORM 100S Version B overpack design, differing only in height and weight. The HI-STORM 100S-218 is approximately 218 inches high from the bottom of the baseplate to the top of the lid in its final storage configuration and approximately 199 inches high without the lid installed. The HI-STORM 100S-229 is approximately 229 inches high from the bottom of the baseplate to the top of the lid in its final storage configuration and 210 inches high without the lid installed.

The HI-STORM 100S Version B overpack design does not include a concrete-filled pedestal to support the MPC. Instead, the MPC rests upon a steel plate that maintains the MPC sufficiently

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

above the inlet air ducts to prevent direct radiation shine through the ducts. To facilitate this change, the inlet air ducts for the HI-STORM 100S Version B are shorter in height but larger in width. See the drawings in Section 1.5 for details.

The anchored embodiment of the HI-STORM overpack is referred to as HI-STORM 100A or HI-STORM 100SA. The HI-STORM 100S version B overpack design may not be deployed in the anchored configuration at this time. As explained in the foregoing, the HI-STORM overpack is a steel weldment, which makes it a relatively simple matter to extend the overpack baseplate, form lugs, and then anchor the cask to the reinforced concrete structure of the ISFSI. In HI-STORM terminology, these lugs are referred to as "sector lugs." The sector lugs, as shown in Figure 1.1.5 and the drawing in Section 1.5, are formed by extending the HI-STORM overpack baseplate, welding vertical gussets to the baseplate extension and to the overpack outer shell and, finally, welding a horizontal lug support ring in the form of an annular sector to the vertical gussets and to the outer shell. The baseplate is equipped with regularly spaced clearance holes (round or slotted) through which the anchor studs can pass. The sector lugs are bolted to the ISFSI pad using anchor studs that are made of a creep-resistant, high-ductility, environmentally compatible material. The bolts are preloaded to a precise axial stress using a "stud tensioner" rather than a torque wrench. Pre-tensioning the anchors using a stud tensioner eliminates any shear stress in the bolt, which is unavoidable if a torquing device is employed (Chapter 3 of the text "Mechanical Design of Heat Exchangers and Pressure Vessel Components", by Arcturus Publishers, 1984, K.P. Singh and A.I. Soler, provides additional information on stud tensioners). The axial stress in the anchors induced by pre-tensioning is kept below 75% of the material yield stress, such that during the seismic event the maximum bolt axial stress remains below the limit prescribed for bolts in the ASME Code, Section III, Subsection NF (for Level D conditions). Figures 1.1.4 and 1.1.5 provide visual depictions of the anchored HI-STORM 100A configuration. This configuration also applies to the HI-STORM 100SA.

The anchor studs pass through liberal clearance holes (circular or slotted) in the sector lugs (0.75" minimum clearance) such that the fastening of the studs to the ISFSI pad can be carried out without mechanical interference from the body of the sector lug. The two clearance hole configurations give the ISFSI pad designer flexibility in the design of the anchor embedment in the ISFSI concrete. The axial force in the anchors produces a compressive load at the overpack/pad interface. This compressive force, F, imputes a lateral load bearing capacity to the cask/pad interface that is equal to μF ($\mu \le 0.53$ per Table 2.2.8). As is shown in Chapter 3 of this FSAR, the lateral load-bearing capacity of the HI-STORM/pad interface (μF) is many times greater than the horizontal (sliding) force exerted on the cask under the postulated DBE seismic event. Thus, the potential for lateral sliding of the HI-STORM 100A System during a seismic event is precluded, as is the potential for any bending action on the anchor studs.

The seismic loads, however, will produce an overturning moment on the overpack that would cause a redistribution of the compressive contact pressure between the pad and the overpack. To determine the pulsation in the tensile load in the anchor studs and in the interface contact pressure, bounding static analysis of the preloaded configuration has been performed. The results of the static analysis demonstrate that the initial preloading minimizes pulsations in the stud load. A confirmatory nonlinear dynamic analysis has also been performed using the time-history methodology described in Chapter 3, wherein the principal nonlinearities in the cask system are incorporated and addressed.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-9

The calculated results from the dynamic analysis confirm the static analysis results and that the presence of pre-stress helps minimize the pulsation in the anchor stud stress levels during the seismic event, thus eliminating any concern with regard to fatigue failure under extended and repetitive seismic excitations.

The sector lugs in HI-STORM 100A are made of the same steel material as the baseplate and the shell (SA516- Gr. 70) which helps ensure high quality fillet welds used to join the lugs to the body of the overpack. The material for the anchor studs can be selected from a family of allowable stud materials listed in the ASME Code (Section II). A representative sampling of permitted materials is listed in Table 1.2.7. The menu of materials will enable the ISFSI owner to select a fastener material that is resistant to corrosion in the local ISFSI environment. For example, for ISFSIs located in marine environments (e.g., coastal reactor sites), carbon steel studs would not be recommended without concomitant periodic inspection and coating maintenance programs. Table 1.2.7 provides the chemical composition of several acceptable fastener materials to help the ISFSI owner select the most appropriate material for his site. The two mechanical properties, ultimate strength σ_u and yield strength σ_y are also listed. For purposes of structural evaluations, the lower bound values of σ_u and σ_y from the menu of materials listed in Table 1.2.7 are used (see Table 3.4.10).

As shown in the drawing, the anchor studs are spaced sufficiently far apart such that a practical reinforced concrete pad with embedded receptacles can be designed to carry the axial pull from the anchor studs without overstressing the enveloping concrete monolith. The design specification and supporting analyses in this FSAR are focused on qualifying the overpack structures, including the sector lugs and the anchor studs. The design of the ISFSI pad, and its anchor receptacle will vary from site to site, depending on the geology and seismological characteristics of the sub-terrain underlying the ISFSI pad region. The data provided in this FSAR, however, provide the complete set of factored loads to which the ISFSI pad, its sub-grade, and the anchor receptacles must be designed within the purview of ACI-349-97 [1.0.4]. Detailed requirements on the ISFSI pads for anchored casks are provided in Section 2.0.4.

1.2.1.2.2 <u>HI-TRAC (Transfer Cask) - Standard Design</u>

Like the storage overpack, the HI-TRAC transfer cask is a rugged, heavy-walled cylindrical vessel. The main structural function of the transfer cask is provided by carbon steel, and the main neutron and gamma shielding functions are provided by water and lead, respectively. The transfer cask is a steel, lead, steel layered cylinder with a water jacket attached to the exterior. Figure 1.2.9 provides a typical cross section of the standard design HI-TRAC-125 with the pool lid installed. See Section 1.2.1.2.3 for discussion of the optional HI-TRAC 100D and 125D designs.

The transfer cask provides an internal cylindrical cavity of sufficient size for housing an MPC. The top lid of the HI-TRAC 125 has additional neutron shielding to provide neutron attenuation in the vertical direction (from SNF in the MPC below). The MPC access hole through the HI-TRAC top lid is provided to allow the lowering/raising of the MPC between the HI-TRAC transfer cask, and the HI-STORM or HI-STAR overpacks. The standard design HI-TRAC (comprised of HI-TRAC 100 and HI-TRAC 125) is provided with two bottom lids, each used separately. The pool lid is bolted to the bottom flange of the HI-TRAC and is utilized during MPC fuel loading and sealing

HI-STORM FSAR REPORT HI-2002444

1.2-10

operations. In addition to providing shielding in the axial direction, the pool lid incorporates a seal that is designed to hold clean demineralized water in the HI-TRAC inner cavity, thereby preventing contamination of the exterior of the MPC by the contaminated fuel pool water. After the MPC has been drained, dried, and sealed, the pool lid is removed and the HI-TRAC transfer lid is attached (standard design only). The transfer lid incorporates two sliding doors that allow the opening of the HI-TRAC bottom for the MPC to be raised/lowered. Figure 1.2.10 provides a cross section of the HI-TRAC with the transfer lid installed.

In the standard design, trunnions are provided for lifting and rotating the transfer cask body between vertical and horizontal positions. The lifting trunnions are located just below the top flange and the pocket trunnions are located above the bottom flange. The two lifting trunnions are provided to lift and vertically handle the HI-TRAC, and the pocket trunnions provide a pivot point for the rotation of the HI-TRAC for downending or upending.

Two standard design HI-TRAC transfer casks of different weights are provided to house the MPCs. The 125 ton HI-TRAC weight does not exceed 125 tons during any loading or transfer operation. The 100 ton HI-TRAC weight does not exceed 100 tons during any loading or transfer operation. The internal cylindrical cavities of the two standard design HI-TRACs are identical. However, the external dimensions are different. The 100ton HI-TRAC has a reduced thickness of lead and water shielding and consequently, the external dimensions are different. The structural steel thickness is identical in the two HI-TRACs. This allows most structural analyses of the 125 ton HI-TRAC to bound the 100 ton HI-TRAC design. Additionally, as the two HI-TRACs are identical except for a reduced thickness of lead and water, the 125 ton HI-TRAC has a larger thermal resistance than the smaller and lighter 100 ton HI-TRAC. Therefore, for normal conditions the 125 ton HI-TRAC thermal analysis bounds that of the 100 ton HI-TRAC. Separate shielding analyses are performed for each HI-TRAC since the shielding thicknesses are different between the two.

1.2.1.2.3 HI-TRAC 100D and 125D Transfer Casks

As an option to using either of the standard HI-TRAC transfer cask designs, users may choose to use the optional HI-TRAC 100D or 125D designs. Figure 1.2.9A provides a typical cross section of the HI-TRAC-125D with the pool lid installed. The HI-TRAC 100D (figure not shown) is similar to the HI-TRAC 125D except for the top lid (which contains no Holtite). Like the standard designs, the optional designs are designed and constructed in accordance with ASME III, Subsection NF, with certain NRC-approved alternatives, as discussed in Section 2.2.4. Functionally equivalent, the major differences between the HI-TRAC 100D and 125D designs and the standard designs are as follows:

- No pocket trunnions are provided for downending/upending
- The transfer lid is not required
- A new ancillary, the HI-STORM mating device (Figure 1.2.18) is required during MPC transfer operations
- A wider baseplate with attachment points for the mating device is provided
- The baseplate incorporates gussets for added structural strength
- The number of pool lid bolts is reduce

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STOR	MFSAR
REPORT	HI-2002444

The interface between the MPC and the transfer cask is the same between the standard designs and the optional designs. The optional designs are capable of withstanding all loads defined in the design basis for the transfer cask during normal, off-normal, and accident modes of operation with adequate safety margins. In lieu of swapping the pool lid for the transfer lid to facilitate MPC transfer, the pool lids remain on the HI-TRAC 100D and 125D until MPC transfer is required. The HI-STORM mating device is located between, and secured with bolting (if required by seismic analysis), to the top of the HI-STORM overpack and the HI-TRAC 100D or 125D transfer cask. The mating device is used to remove the pool lid to provide a pathway for MPC transfer between the overpack and the transfer cask. Section 1.2.2.2 provides additional detail on the differences between the standard transfer cask designs and the optional HI-TRAC 100D or 125D designs during operations.

1.2.1.3 Shielding Materials

The HI-STORM 100 System is provided with shielding to ensure the radiation and exposure requirements in 10CFR72.104 and 10CFR72.106 are met. This shielding is an important factor in minimizing the personnel doses from the gamma and neutron sources in the SNF in the MPC for ALARA considerations during loading, handling, transfer, and storage. The fuel basket structure of edge-welded composite boxes and neutron absorber panels attached to the fuel storage cell vertical surfaces provide the initial attenuation of gamma and neutron radiation emitted by the radioactive spent fuel. The MPC shell, baseplate, lid and closure ring provide additional thicknesses of steel to further reduce the gamma flux at the outer canister surfaces.

In the HI-STORM storage overpack, the primary shielding in the radial direction is provided by concrete and steel. In addition, the storage overpack has a thick circular concrete slab attached to the lid, and the HI-STORM 100 and -100S have a thick circular concrete pedestal upon which the MPC rests. This concrete pedestal is not necessary in the HI-STORM 100S Version B overpack design. These slabs provide gamma and neutron attenuation in the axial direction. The thick overpack lid and concrete shielding integral to the lid provide additional gamma attenuation in the upward direction, reducing both direct radiation and skyshine. Several steel plate and shell elements provide additional gamma shielding as needed in specific areas, as well as incremental improvements in the overall shielding effectiveness. Gamma shield cross plates, as depicted in Figure 5.3.19, provide attenuation of scattered gamma radiation as it exits the inlet and outlet air ducts.

In the HI-TRAC transfer cask radial direction, gamma and neutron shielding consists of steel-leadsteel and water, respectively. In the axial direction, shielding is provided by the top lid, and the pool or transfer lid, as applicable. In the HI-TRAC pool lid, layers of steel-lead-steel provide an additional measure of gamma shielding to supplement the gamma shielding at the bottom of the MPC. In the transfer lid, layers of steel-lead-steel provide gamma attenuation. For the HI-TRAC 125 transfer lid, the neutron shield material, Holtite-A, is also provided. The HI-TRAC 125 and HI-TRAC 125D top lids are composed of steel-neutron shield-steel, with the neutron shield material being Holtite-A. The HI-TRAC 100 and HI-TRAC 100D top lids are composed of steel only providing gamma attenuation.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2.1.3.1 Fixed Neutron Absorbers

1.2.1.3.1.1 <u>BoralTM</u>

Boral is a thermal neutron poison material composed of boron carbide and aluminum (aluminum powder and plate). Boron carbide is a compound having a high boron content in a physically stable and chemically inert form. The boron carbide contained in Boral is a fine granulated powder that conforms to ASTM C-750-80 nuclear grade Type III. The Boral cladding is made of alloy aluminum, a lightweight metal with high tensile strength which is protected from corrosion by a highly resistant oxide film. The two materials, boron carbide and aluminum, are chemically compatible and ideally suited for long-term use in the radiation, thermal, and chemical environment of a nuclear reactor, spent fuel pool, or dry cask.

The documented historical applications of Boral, in environments comparable to those in spent fuel pools and fuel storage casks, dates to the early 1950s (the U.S. Atomic Energy Commission's AE-6 Water-Boiler Reactor [1.2.2]). Technical data on the material was first printed in 1949, when the report "Boral: A New Thermal Neutron Shield" was published [1.2.3]. In 1956, the first edition of the Reactor Shielding Design Manual [1.2.4] was published and it contained a section on Boral and its properties.

In the research and test reactors built during the 1950s and 1960s, Boral was frequently the material of choice for control blades, thermal-column shutters, and other items requiring very good thermal-neutron absorption properties. It is in these reactors that Boral has seen its longest service in environments comparable to today's applications.

Boral found other uses in the 1960s, one of which was a neutron poison material in baskets used in the shipment of irradiated, enriched fuel rods from Canada's Chalk River laboratories to Savannah River. Use of Boral in shipping containers continues, with Boral serving as the poison in current British Nuclear Fuels Limited casks and the Storable Transport Cask by Nuclear Assurance Corporation [1.2.5].

Boral has been licensed by the NRC for use in numerous BWR and PWR spent fuel storage racks and has been extensively used in international nuclear installations.

Boral has been exclusively used in fuel storage applications in recent years. Its use in spent fuel pools as the neutron absorbing material can be attributed to its proven performance and several unique characteristics, such as:

- The content and placement of boron carbide provides a very high removal cross section for thermal neutrons.
- Boron carbide, in the form of fine particles, is homogeneously dispersed throughout the central layer of the Boral panels.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

- The boron carbide and aluminum materials in Boral do not degrade as a result of long-term exposure to radiation.
- The neutron absorbing central layer of Boral is clad with permanently bonded surfaces of aluminum.
- Boral is stable, strong, durable, and corrosion resistant.

Boral absorbs thermal neutrons without physical change or degradation of any sort from the anticipated exposure to gamma radiation and heat. The material does not suffer loss of neutron attenuation capability when exposed to high levels of radiation dose.

Holtec International's QA Program ensures that Boral is manufactured under the control and surveillance of a Quality Assurance/Quality Control Program that conforms to the requirements of 10CFR72, Subpart G. Holtec International has procured over 200,000 panels of Boral from AAR Advanced Structures in over 30 projects. Boral has always been purchased with a minimum ¹⁰B loading requirement. Coupons extracted from production runs were tested using the wet chemistry procedure. The actual ¹⁰B loading, out of thousands of coupons tested, has never been found to fall below the design specification. The size of this coupon database is sufficient to provide reasonable assurance that all future Boral procurements will continue to yield Boral with full compliance with the stipulated minimum loading. Furthermore, the surveillance, coupon testing, and material tracking processes which have so effectively controlled the quality of Boral are expected to continue to yield Boral of similar quality in the future. Nevertheless, to add another layer of insurance, only 75% ¹⁰B credit of the fixed neutron absorber is assumed in the criticality analysis consistent with Chapter 6.0, IV, 4.c of NUREG-1536, Standard Review Plan for Dry Cask Storage Systems.

Operating experience in nuclear plants with fuel loading of Boral equipped MPCs as well as laboratory test data indicate that the aluminium used in the manufacture of the Boral may react with water, resulting in the generation of hydrogen. The numerous variables (i.e., aluminium particle size, pool temperature, pool chemistry, etc.) that influence the extent of the hydrogen produced make it impossible to predict the amount of hydrogen that may be generated during MPC loading or unloading at a particular plant. Therefore, due to the variability in hydrogen generation from the Boral-water reaction, the operating procedures in Chapter 8 require monitoring for combustible gases and either exhausting or purging the space beneath the MPC lid during loading and unloading operations when an ignition event could occur (i.e., when the space beneath the MPC lid is open to the welding or cutting operation).

1.2.1.3.1.2 <u>METAMIC[®]</u>

METAMIC[®] is a neutron absorber material developed by the Reynolds Aluminum Company in the mid-1990s for spent fuel reactivity control in dry and wet storage applications. Metallurgically, METAMIC[®] is a metal matrix composite (MMC) consisting of a matrix of 6061 aluminum alloy reinforced with Type 1 ASTM C-750 boron carbide. METAMIC[®] is characterized by extremely fine aluminum (325 mesh or better) and boron carbide powder. Typically, the average B₄C particle size is

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

between 10 and 15 microns. As described in the U.S. patents held by METAMIC, Inc.^{*†}, the high performance and reliability of METAMIC[®] derives from the particle size distribution of its constituents, rendered into a metal matrix composite by the powder metallurgy process. This yields excellent and uniform homogeneity.

The powders are carefully blended without binders or other additives that could potentially adversely influence performance. The maximum percentage of B_4C that can be dispersed in the aluminum alloy 6061 matrix is approximately 40 wt.%, although extensive manufacturing and testing experience is limited to approximately 31 wt.%. The blend of powders is isostatically compacted into a green billet under high pressure and vacuum sintered to near theoretical density.

According to the manufacturer, billets of any size can be produced using this technology. The billet is subsequently extruded into one of a number of product forms, ranging from sheet and plate to angle, channel, round and square tube, and other profiles. For the METAMIC[®] sheets used in the MPCs, the extruded form is rolled down into the required thickness.

METAMIC[®] has been subjected to an extensive array of tests sponsored by the Electric Power Research Institute (EPRI) that evaluated the functional performance of the material at elevated temperatures (up to 900°F) and radiation levels (1E+11 rads gamma). The results of the tests documented in an EPRI report (Ref. [1.2.11]) indicate that METAMIC[®] maintains its physical and neutron absorption properties with little variation in its properties from the unirradiated state. The main conclusions provided in the above-referenced EPRI report are summarized below:

- The metal matrix configuration produced by the powder metallurgy process with a complete absence of open porosity in METAMIC[®] ensures that its density is essentially equal to the theoretical density.
 - The physical and neutronic properties of METAMIC[®] are essentially unaltered under exposure to elevated temperatures (750° F 900° F).
 - No detectable change in the neutron attenuation characteristics under accelerated corrosion test conditions has been observed.

In addition, independent measurements of boron carbide particle distribution show extremely small particle-to-particle distance[†] and near-perfect homogeneity.

An evaluation of the manufacturing technology underlying METAMIC[®] as disclosed in the above-

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

¹ U.S. Patent No. 5,965,829, "Radiation Absorbing Refractory Composition".

[†] U.S. Patent No. 6,042,779, "Extrusion Fabrication Process for Discontinuous Carbide Particulate Metal Matrix Composites and Super, Hypereutectic Al/Si."

Medium measured neighbor-to-neighbor distance is 10.08 microns according to the article, "METAMIC Neutron Shielding", by K. Anderson, T. Haynes, and R. Kazmier, EPRI Boraflex Conference, November 19-20, 1998.

referenced patents and of the extensive third-party tests carried out under the auspices of EPRI makes METAMIC[®] an acceptable neutron absorber material for use in the MPCs. Holtec's technical position on METAMIC[®] is also supported by the evaluation carried out by other organizations (see, for example, USNRC's SER on NUHOMS-61BT, Docket No. 72-1004).

Consistent with its role in reactivity control, all METAMIC[®] material procured for use in the Holtec MPCs will be qualified as important-to-safety (ITS) Category A item. ITS category A manufactured items, as required by Holtec's NRC-approved Quality Assurance program, must be produced to essentially preclude the potential of an error in the procurement of constituent materials and the manufacturing processes. Accordingly, material and manufacturing control processes must be established to eliminate the incidence of errors, and inspection steps must be implemented to serve as an independent set of barriers to ensure that all critical characteristics defined for the material by the cask designer are met in the manufactured product.

All manufacturing and in-process steps in the production of METAMIC[®] shall be carried out using written procedures. As required by the company's quality program, the material manufacturer's QA program and its implementation shall be subject to review and ongoing assessment, including audits and surveillances as set forth in the applicable Holtec QA procedures to ensure that all METAMIC[®] panels procured meet with the requirements appropriate for the quality genre of the MPCs. Additional details pertaining to the qualification and production tests for METAMIC[®] are summarized in Subsection 9.1.5.3.

Because of the absence of interconnected porosities, the time required to dehydrate a METAMIC[®]equipped MPC is expected to be less compared to an MPC containing Boral.

NUREG/CR-5661 (Ref. [1.2.14]) recommends limiting poison material credit to 75% of the minimum ¹⁰B loading because of concerns for potential "streaming" of neutrons, and allows for greater percentage credit in criticality analysis "if comprehensive acceptance tests, capable of verifying the presence and uniformity of the neutron absorber, are implemented". The value of 75% is characterized in NUREG/CR-5661 as a very conservative value, based on experiments with neutron poison containing relatively large B_4C particles, such as BORAL with an average particle size in excess of 100 microns. METAMIC[®], however, has a much smaller particle size of typically between 10 and 15 microns on average. Any streaming concerns would therefore be drastically reduced.

Analyses performed by Holtec International show that the streaming due to particle size is practically non-existent in METAMIC[®]. Further, EPRI's neutron attenuation measurements on 31 and 15 B₄C weight percent METAMIC[®] showed that METAMIC[®] exhibits very uniform ¹⁰B areal density. This makes it easy to reliably establish and verify the presence and microscopic and macroscopic uniformity of the ¹⁰B in the material. Therefore, 90% credit is applied to the minimum ¹⁰B areal density in the criticality calculations, i.e. a 10% penalty is applied. This 10% penalty is considered conservative since there are no significant remaining uncertainties in the ¹⁰B areal density. In Chapter 9 the qualification and on production tests for METAMIC[®] to support 90% ¹⁰B credit are specified. With 90% credit, the target weight percent of boron carbide in METAMIC[®] is 31 for all MPCs, as summarized in Table 1.2.8, consistent with the test coupons used in the EPRI

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-16

evaluations [1.2.11]. The maximum permitted value is 33.0 wt% to allow for necessary fabrication flexibility.

Because METAMIC[®] is a solid material, there is no capillary path through which spent fuel pool water can penetrate METAMIC[®] panels and chemically react with aluminum in the interior of the material to generate hydrogen. Any chemical reaction of the outer surfaces of the METAMIC[®] neutron absorber panels with water to produce hydrogen occurs rapidly and reduces to an insignificant amount in a short period of time. Nevertheless, combustible gas monitoring for METAMIC[®] -equipped MPCs and purging or exhausting the space under the MPC lid during welding and cutting operations, is required until sufficient field experience is gained that confirms that little or no hydrogen is released by METAMIC[®] during these operations.

Mechanical properties of 31 wt.% METAMIC[®] based on coupon tests of the material in the asfabricated condition and after 48 hours of an elevated temperature state at 900°F are summarized below from the EPRI report [1.2.11].

Mechanical Properties of 31wt.% B ₄ C METAMIC			
Property As-Fabricated After 48 hours of 90 Temperature Soal			
Yield Strength (psi)	32937 ± 3132	28744 ± 3246	
Ultimate Strength (psi)	40141 ± 1860	34608 ± 1513	
Elongation (%) 1.8 ± 0.8 5.7 ± 3.1			

The required flexural strain of the neutron absorber to ensure that it will not fracture when the supporting basket wall flexes due to the worst case lateral loading is 0.2%, which is the flexural strain of the Alloy X basket panel material. The 1% minimum elongation of 31wt.% B₄C METAMIC[®] indicated by the above table means that a large margin of safety against cracking exists, so there is no need to perform testing of the METAMIC[®] for mechanical properties.

EPRI's extensive characterization effort [1.2.11], which was focused on 15 and 31 wt.% B_4C METAMIC[®] served as the principal basis for a recent USNRC SER for 31wt.% B_4C METAMIC for used in wet storage [1.2.12]. Additional studies on METAMIC[®] [1.2.13], EPRI's and others work provide the confidence that 31wt.% B_4C METAMIC[®] will perform its intended function in the MPCs.

1.2.1.3.1.3 Locational Fixity of Neutron Absorbers

Both Boral and METAMIC[®] neutron absorber panels are completely enclosed in Alloy X (stainless steel) sheathing that is stitch welded to the MPC basket cell walls along their entire periphery. The edges of the sheathing are bent toward the cell wall to make the edge weld. Thus, the neutron absorber is contained in a tight, welded pocket enclosure. The shear strength of the pocket weld joint, which is an order of magnitude greater than the weight of a fuel assembly, guarantees that the neutron absorber and its enveloping sheathing pocket will maintain their as-installed position under

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-17

all loading, storage, and transient evolutions. Finally, the pocket joint detail ensures that fuel assembly insertion or withdrawal into or out of the MPC basket will not lead to a disconnection of the sheathing from the cell wall.

1.2.1.3.2 <u>Neutron Shielding</u>

The specification of the HI-STORM overpack and HI-TRAC transfer cask neutron shield material is predicated on functional performance criteria. These criteria are:

- Attenuation of neutron radiation to appropriate levels;
- Durability of the shielding material under normal conditions, in terms of thermal, chemical, mechanical, and radiation environments;
- Stability of the homogeneous nature of the shielding material matrix;
- Stability of the shielding material in mechanical or thermal accident conditions to the desired performance levels; and
- Predictability of the manufacturing process under adequate procedural control to yield an inplace neutron shield of desired function and uniformity.

Other aspects of a shielding material, such as ease of handling and prior nuclear industry use, are also considered, within the limitations of the main criteria. Final specification of a shield material is a result of optimizing the material properties with respect to the main criteria, along with the design of the shield system, to achieve the desired shielding results.

Neutron attenuation in the HI-STORM overpack is provided by the thick walls of concrete contained in the steel vessel, lid, and pedestal (only for the HI-STORM 100 and -100S overpack designs). Concrete is a shielding material with a long proven history in the nuclear industry. The concrete composition has been specified to ensure its continued integrity at the long term temperatures required for SNF storage.

The HI-TRAC transfer cask is equipped with a water jacket providing radial neutron shielding. Demineralized water will be utilized in the water jacket. To ensure operability for low temperature conditions, ethylene glycol (25% in solution) will be added to reduce the freezing point for low temperature operations (e.g., below 32° F) [1.2.7].

Neutron shielding in the HI-TRAC 125 and 125D transfer casks in the axial direction is provided by Holtite-A within the top lid. HI-TRAC 125 also contains Holtite-A in the transfer lid. Holtite-A is a poured-in-place solid borated synthetic neutron-absorbing polymer. Holtite-A is specified with a nominal B₄C loading of 1 weight percent for the HI-STORM 100 System. Appendix 1.B provides the Holtite-A material properties germane to its function as a neutron shield. Holtec has performed confirmatory qualification tests on Holtite-A under the company's QA program.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-18

In the following, a brief summary of the performance characteristics and properties of Holtite-A is provided.

Density

The specific gravity of Holtite-A is 1.68 g/cm^3 as specified in Appendix 1.B. To conservatively bound any potential weight loss at the design temperature and any inability to reach the theoretical density, the density is reduced by 4% to 1.61 g/cm^3 . The density used for the shielding analysis is conservatively assumed to be 1.61 g/cm^3 to underestimate the shielding capabilities of the neutron shield.

Hydrogen

The weight concentration of hydrogen is 6.0%. However, all shielding analyses conservatively assume 5.9% hydrogen by weight in the calculations.

Boron Carbide

Boron carbide dispersed within Holtite-A in finely dispersed powder form is present in 1% (nominal) weight concentration. Holtite-A may be specified with a B_4C content of up to 6.5 weight percent. For the HI-STORM 100 System, Holtite-A is specified with a nominal B_4C weight percent of 1%.

Design Temperature

The design temperatures of Holtite-A are provided in Table 1.B.1.. The maximum spatial temperatures of Holtite-A under all normal operating conditions must be demonstrated to be below these design temperatures, as applicable.

Thermal Conductivity

The Holtite-A neutron shielding material is stable below the design temperature for the long term and provides excellent shielding properties for neutrons. A conservative, lower bound conductivity is stipulated for use in the thermal analyses of Chapter 4 (Section 4.2) based on information in the technical literature.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2.1.3.3 <u>Gamma Shielding Material</u>

For gamma shielding, the HI-STORM 100 storage overpack primarily relies on massive concrete sections contained in a robust steel vessel. A carbon steel plate, the shield shell, is located adjacent to the overpack inner shell to provide additional gamma shielding (Figure 1.2.7)[†]. Carbon steel supplements the concrete gamma shielding in most portions of the storage overpack, most notably the pedestal (HI-STORM 100 and –100S overpack designs only) and the lid. To reduce the radiation streaming through the overpack air inlets and outlets, gamma shield cross plates are installed in the ducts (Figures 1.2.8 and 1.2.8A) to scatter the radiation. This scattering acts to significantly reduce the local dose rates adjacent to the overpack air inlets and outlets. See Figure 5.3.19 and the drawings in Section 1.5 for more details of the gamma shield cross plate designs for each overpack design.

In the HI-TRAC transfer cask, the primary gamma shielding is provided by lead. As in the storage overpack, carbon steel supplements the lead gamma shielding of the HI-TRAC transfer cask.

1.2.1.4 Lifting Devices

Lifting of the HI-STORM 100 System may be accomplished either by attachment at the top of the storage overpack ("top lift"), as would typically be done with a crane, or by attachment at the bottom ("bottom lift"), as would be effected by a number of lifting/handling devices.

For a top lift, the storage overpack is equipped with four threaded anchor blocks arranged circumferentially around the overpack. These anchor blocks are used for overpack lifting as well as securing the overpack lid to the overpack body. The storage overpack may be lifted with a lifting device that engages the anchor blocks with threaded studs and connects to a crane or similar equipment.

A bottom lift of the HI-STORM 100 storage overpack is effected by the insertion of four hydraulic jacks underneath the inlet vent horizontal plates (Figure 1.2.1). A slot in the overpack baseplate allows the hydraulic jacks to be placed underneath the inlet vent horizontal plate. The hydraulic jacks lift the loaded overpack to provide clearance for inserting or removing a device for transportation.

The standard design HI-TRAC transfer cask is equipped with two lifting trunnions and two pocket trunnions. The HI-TRAC 100D and 125D are equipped with only lifting trunnions. The lifting trunnions are positioned just below the top forging. The two pocket trunnions are located above the bottom forging and attached to the outer shell. The pocket trunnions are designed to allow rotation of the HI-TRAC. All trunnions are built from a high strength alloy with proven corrosion and non-galling characteristics. The lifting trunnions are designed in accordance with NUREG-0612 and

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

[†] The shield shell design feature was deleted in June, 2001 after overpack serial number 7 was fabricated. Those overpacks without the shield shell are required to have a higher concrete density in the overpack body to provide compensatory shielding. See Table 1.D.1.

ANSI N14.6. The lifting trunnions are installed by threading into tapped holes just below the top forging.

The top of the MPC lid is equipped with four threaded holes that allow lifting of the loaded MPC. These holes allow the loaded MPC to be raised/lowered through the HI-TRAC transfer cask using lifting cleats. The threaded holes in the MPC lid are designed in accordance with NUREG-0612 and ANSI N14.6.

1.2.1.5 Design Life

The design life of the HI-STORM 100 System is 40 years. This is accomplished by using material of construction with a long proven history in the nuclear industry and specifying materials known to withstand their operating environments with little to no degradation. A maintenance program, as specified in Chapter 9, is also implemented to ensure the HI-STORM 100 System will exceed its design life of 40 years. The design considerations that assure the HI-STORM 100 System performs as designed throughout the service life include the following:

HI-STORM Overpack and HI-TRAC Transfer Cask

- Exposure to Environmental Effects
- Material Degradation
- Maintenance and Inspection Provisions

<u>MPC</u>

- Corrosion
- Structural Fatigue Effects
- Maintenance of Helium Atmosphere
- Allowable Fuel Cladding Temperatures
- Neutron Absorber Boron Depletion

The adequacy of the HI-STORM 100 System for its design life is discussed in Sections 3.4.11 and 3.4.12.

1.2.2 <u>Operational Characteristics</u>

1.2.2.1 Design Features

The HI-STORM 100 System incorporates some unique design improvements. These design innovations have been developed to facilitate the safe long term storage of SNF. Some of the design originality is discussed in Subsection 1.2.1 and below.

The free volume of the MPCs is inerted with 99.995% pure helium gas during the spent nuclear fuel loading operations. Table 1.2.2 specifies the helium fill requirements for the MPC internal cavity.

HOLTEC INTERNATIONAL	COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

The HI-STORM overpack has been designed to synergistically combine the benefits of steel and concrete. The steel-concrete-steel construction of the HI-STORM overpack provides ease of fabrication, increased strength, and an optimal radiation shielding arrangement. The concrete is primarily provided for radiation shielding and the steel is primarily provided for structural functions.

The strength of concrete in tension and shear is conservatively neglected. Only the compressive strength of the concrete is accounted for in the analyses.

The criticality control features of the HI-STORM 100 are designed to maintain the neutron multiplication factor k-effective (including uncertainties and calculational bias) at less than 0.95 under all normal, off-normal, and accident conditions of storage as analyzed in Chapter 6. This level of conservatism and safety margins is maintained, while providing the highest storage capacity.

1.2.2.2 <u>Sequence of Operations</u>

Table 1.2.6 provides the basic sequence of operations necessary to defuel a spent fuel pool using the HI-STORM 100 System. The detailed sequence of steps for storage-related loading and handling operations is provided in Chapter 8 and is supported by the drawings in Section 1.5. A summary of the general actions needed for the loading and unloading operations is provided below. Figures 1.2.16 and 1.2.17 provide a pictorial view of typical loading and unloading operations, respectively.

Loading Operations

At the start of loading operations, the HI-TRAC transfer cask is configured with the pool lid installed. The HI-TRAC water jacket is filled with demineralized water or a 25% ethylene glycol solution depending on the ambient temperature conditions. The lift yoke is used to position HI-TRAC in the designated preparation area or setdown area for HI-TRAC inspection and MPC insertion. The annulus is filled with plant demineralized water, and an inflatable annulus seal is installed. The inflatable seal prevents contact between spent fuel pool water and the MPC shell reducing the possibility of contaminating the outer surfaces of the MPC. The MPC is then filled with water (borated if necessary). Based on the MPC model and fuel enrichment, this may be borated water or plant demineralized water (see Section 2.1). HI-TRAC and the MPC are lowered into the spent fuel pool for fuel loading using the lift yoke. Pre-selected assemblies are loaded into the MPC and a visual verification of the assembly identification is performed.

While still underwater, a thick shielding lid (the MPC lid) is installed. The lift yoke is remotely engaged to the HI-TRAC lifting trunnions and is used to lift the HI-TRAC close to the spent fuel pool surface. As an ALARA measure, dose rates are measured on the top of the HI-TRAC and MPC prior to removal from the pool to check for activated debris on the top surface. The MPC lift bolts (securing the MPC lid to the lift yoke) are removed. As HI-TRAC is removed from the spent fuel pool, the lift yoke and HI-TRAC are sprayed with demineralized water to help remove contamination.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-22

HI-TRAC is removed from the pool and placed in the designated preparation area. The top surfaces of the MPC lid and the upper flange of HI-TRAC are decontaminated. The inflatable annulus seal is removed, and an annulus shield is installed. The annulus shield provides additional personnel shielding at the top of the annulus and also prevents small items from being dropped into the annulus. The Automated Welding System baseplate shield (if used) is installed to reduce dose rates around the top of the cask. The MPC water level is lowered slightly and the MPC lid is seal-welded using the Automated Welding System (AWS) or other approved welding process. Liquid penetrant examinations are performed on the root and final passes. A multi-layer liquid penetrant or volumetric examination is also performed on the MPC lid-to-shell weld. The MPC water is displaced from the MPC by blowing pressurized helium or nitrogen gas into the vent port of the MPC, thus displacing the water through the drain line. At the appropriate time in the sequence of activities, based on the type of test performed (hydrostatic or pneumatic), a pressure test of the MPC enclosure vessel is performed.

For MPCs containing all moderate burnup fuel, a Vacuum Drying System (VDS) may be used to remove moisture from the MPC cavity. The VDS is connected to the MPC and is used to remove liquid water from the MPC in a stepped evacuation process. The stepped evacuation process is used to preclude the formation of ice in the MPC and Vacuum Drying System lines. The internal pressure is reduced and held for a duration to ensure that all liquid water has evaporated. This process is continued until the pressure in the MPC meets the technical specification limit and can be held there for the required amount of time.

For storage of high burnup fuel and as an option for storage of moderate burnup fuel, the reduction of residual moisture in the MPC to trace amounts is accomplished using a Forced Helium Dehydration (FHD) system, as described in Appendix 2.B. Relatively warm and dry helium is recirculated through the MPC cavity, which helps maintain the SNF in a cooled condition while moisture is being removed. The warm, dry gas is supplied to the MPC drain port and circulated through the MPC cavity where it absorbs moisture. The humidified gas travels out of the MPC and through appropriate equipment to cool and remove the absorbed water from the gas. The dry gas may be heated prior to its return to the MPC in a closed loop system to accelerate the rate of moisture removal in the MPC. This process is continued until the temperature of the gas exiting the demoisturizing module described in Appendix 2.B meets the specified limit.

Following moisture removal, the MPC is backfilled with a predetermined amount of helium gas. The helium backfill ensures adequate heat transfer during storage and provides an inert atmosphere for long-term fuel integrity. Cover plates are installed and seal-welded over the MPC vent and drain ports with liquid penetrant examinations performed on the root and final passes. The cover plates are helium leakage tested to confirm that they meet the established leakage rate criteria.

The MPC closure ring is then placed on the MPC, aligned, tacked in place, and seal welded, providing redundant closure of the MPC lid and cover plates confinement closure welds. Tack welds are visually examined, and the root and final welds are inspected using the liquid penetrant examination technique to ensure weld integrity. The annulus shield is removed and the remaining water in the annulus is drained. The AWS Baseplate shield is removed. The MPC lid and accessible areas of the top of the MPC shell are smeared for removable contamination and HI-TRAC dose rates

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-23

are measured. The HI-TRAC top lid is installed and the bolts are torqued. The MPC lift cleats are installed on the MPC lid. The MPC lift cleats are the primary lifting point of the MPC.

Rigging is installed between the MPC lift cleats and the lift yoke. The rigging supports the MPC within HI-TRAC while the pool lid is replaced with the transfer lid. For the standard design transfer cask, the HI-TRAC is manipulated to replace the pool lid with the transfer lid. The MPC lift cleats and rigging support the MPC during the transfer operations.

MPC transfer from the HI-TRAC transfer cask into the overpack may be performed inside or outside the fuel building. Similarly, HI-TRAC and HI-STORM may be transferred to the ISFSI in several different ways. The loaded HI-TRAC may be handled in the vertical or horizontal orientation. The loaded HI-STORM can only be handled vertically.

For MPC transfers inside the fuel building, the empty HI-STORM overpack is inspected and staged with the lid removed, the alignment device positioned, and, for the HI-STORM 100 overpack, the vent duct shield inserts installed. If using HI-TRAC 100D or 125D, the HI-STORM mating device is placed (bolted if required by generic or site specific seismic evaluation) to the top of the empty overpack (Figure 1.2.18). The loaded HI-TRAC is placed using the fuel building crane on top of HI-STORM, or the mating device, as applicable. After the HI-TRAC is positioned atop the HI-STORM or positioned (bolted if required by generic or site specific seismic evaluation) atop the mating device, as applicable, the MPC is raised slightly. With the standard HI-TRAC design, the transfer lid door locking pins are removed and the doors are opened. With the HI-TRAC 100D and 125D, the pool lid is removed using the mating device. The MPC is lowered into HI-STORM. Following verification that the MPC is fully lowered, slings are disconnected and lowered onto the MPC lid. For the HI-STORM 100, the doors are closed and the HI-TRAC is prepared for removal from on top of HI-STORM (with HI-TRAC 100D and 125D, the transfer cask must first be disconnected from the mating device). For the HI-STORM 100S and HI-STORM 100S Version B, the standard design HI-TRAC may need to be lifted above the overpack to a height sufficient to allow closure of the transfer lid doors without interfering with the MPC lift cleats. The HI-TRAC is then removed and placed in its designated storage location. The MPC lift cleats and slings are removed from atop the MPC. The alignment device, vent duct shield inserts, and/or mating device is/are removed, as applicable. The pool lid is removed from the mating device and re-attached to the HI-TRAC 100D or 125D prior to its next use. The HI-STORM lid is installed, and the upper vent screens and gamma shield cross plates are installed. The HI-STORM lid studs are installed and torqued.

For MPC transfers outside of the fuel building, the empty HI-STORM overpack is inspected and staged with the lid removed, the alignment device positioned, and, for the HI-STORM 100, the vent duct shield inserts installed. For HI-TRAC 100D and 125D, the mating device is positioned (bolted if required by generic or site specific seismic evaluation) atop the overpack. The loaded HI-TRAC is transported to the cask transfer facility in the vertical or horizontal orientation. A number of methods may be utilized as long as the handling limitations prescribed in the technical specifications are not exceeded.

To place the loaded HI-TRAC in a horizontal orientation, a transport frame or "cradle" is utilized. If the cradle is equipped with rotation trunnions they are used to engage the HI-TRAC 100 or 125

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-24

pocket trunnions. While the loaded HI-TRAC is lifted by the lifting trunnions, the HI-TRAC is lowered onto the cradle rotation trunnions. Then, the crane lowers and the HI-TRAC pivots around the pocket trunnions and is placed in the horizontal position in the cradle.

The HI-TRAC 100D and 125D do not include pocket trunnions in their designs. Therefore, the user must downend the transfer cask onto the transport frame using appropriately designed rigging in accordance with the site's heavy load control program.

If the loaded HI-TRAC is transferred to the cask transfer facility in the horizontal orientation, the HI-TRAC transport frame and/or cradle are placed on a transport vehicle. The transport vehicle may be an air pad, railcar, heavy-haul trailer, dolly, etc. If the loaded HI-TRAC is transferred to the cask transfer facility in the vertical orientation, the HI-TRAC may be lifted by the lifting trunnions or seated on the transport vehicle. During the transport of the loaded HI-TRAC, standard plant heavy load handling practices shall be applied including administrative controls for the travel path and tiedown mechanisms.

For MPCs containing any HBF, the Supplemental Cooling System (SCS) is required to be operational during the time the loaded and backfilled MPC is in HI-TRAC to ensure fuel cladding temperatures remain within limits. The SCS is discussed in detail in Section 4.5 and the design criteria for the system are provided in Appendix 2.C. The SCS is not required when the MPC is inside the overpack, regardless of decay heat load.

After the loaded HI-TRAC arrives at the cask transfer facility, the HI-TRAC is upended by a crane if the HI-TRAC is in a horizontal orientation. The loaded HI-TRAC is then placed, using the crane located in the transfer area, on top of HI-STORM, which has been inspected and staged with the lid removed, vent duct shield inserts installed, the alignment device positioned, and the mating device installed, as applicable.

After the HI-TRAC is positioned atop the HI-STORM or the mating device, the MPC is raised slightly. In the standard design, the transfer lid door locking pins are removed and the doors are opened. With the HI-TRAC 100D and 125D, the pool lid is removed using the mating device. The MPC is lowered into HI-STORM. Following verification that the MPC is fully lowered, slings are disconnected and lowered onto the MPC lid. For the HI-STORM 100, the doors are closed and HI-TRAC is removed from on top of HI-STORM or disconnected from the mating device, as applicable. For the HI-STORM 100S and the HI-STORM 100S Version B, the standard design HI-TRAC may need to be lifted above the overpack to a height sufficient to allow closure of the transfer lid doors without interfering with the MPC lift cleats. The HI-TRAC is then removed and placed in its designated storage location. The MPC lift cleats and slings are removed, as applicable. The pool lid is removed from the mating device and re-attached to the HI-TRAC 100D or 125D prior to its next use. The HI-STORM lid is installed, and the upper vent screens and gamma shield cross plates are installed. The HI-STORM lid studs and nuts are installed.

After the HI-STORM has been loaded either within the fuel building or at a dedicated cask transfer facility, the HI-STORM is then moved to its designated position on the ISFSI pad. The HI-STORM

· ŀ	IOLTEC INTERNATIONAL COPYRIGHTED MATERIAL	
HI-STORM FSAR		Rev. 6
REPORT HI-2002444	1.2-25	

overpack may be moved using a number of methods as long as the handling limitations listed in the technical specifications are not exceeded. The loaded HI-STORM must be handled in the vertical orientation, and may be lifted from the top by the anchor blocks or from the bottom by the inlet vents. After the loaded HI-STORM is lifted, it may be placed on a transport mechanism or continue to be lifted by the lid studs and transported to the storage location. The transport mechanism may be an air pad, crawler, railcar, heavy-haul trailer, dolly, etc. During the transport of the loaded HI-STORM, standard plant heavy load handling practices shall be applied including administrative controls for the travel path and tie-down mechanisms. Once in position at the storage pad, vent operability testing is performed to ensure that the system is functioning within its design parameters.

In the case of HI-STORM 100A, the anchor studs are installed and fastened into the anchor receptacles in the ISFSI pad in accordance with the design requirements.

Unloading Operations

The HI-STORM 100 System unloading procedures describe the general actions necessary to prepare the MPC for unloading, cool the stored fuel assemblies in the MPC, flood the MPC cavity, remove the lid welds, unload the spent fuel assemblies, and recover HI-TRAC and empty the MPC. Special precautions are outlined to ensure personnel safety during the unloading operations, and to prevent the risk of MPC overpressurization and thermal shock to the stored spent fuel assemblies.

The MPC is recovered from HI-STORM either at the cask transfer facility or the fuel building using any of the methodologies described in Section 8.1. The HI-STORM lid is removed, the alignment device positioned, and, for the HI-STORM 100, the vent duct shield inserts are installed, and the MPC lift cleats are attached to the MPC. For HI-TRAC 100D and 125D, the mating device is installed. Rigging is attached to the MPC lift cleats. For the HI-STORM 100S and HI-STORM 100S Version B with the standard HI-TRAC design, the transfer doors may need to be opened to avoid interfering with the MPC lift cleats. For the HI-TRAC 100D and 125D, the mating device (possibly containing the pool lid) is secured to the top of the overpack. HI-TRAC is raised and positioned on top of HI-STORM or bolted (if necessary) to the mating device, as applicable. For the HI-TRAC 100D and 125D, the pool lid is ensured to be out of the transfer path for the MPC. The MPC is raised into HI-TRAC. Once the MPC is raised into HI-TRAC, the standard design HI-TRAC transfer lid doors are closed and the locking pins are installed. For the HI-TRAC 100D and 125D, the pool lid is installed and the transfer cask is unsecured from the mating device. HI-TRAC is removed from on top of HI-STORM. As required based on the presence of high burnup fuel, the Supplemental Cooling System is installed and placed into operation.

The HI-TRAC is brought into the fuel building and, for the standard design, manipulated for bottom lid replacement. The transfer lid is replaced with the pool lid. The MPC lift cleats and rigging support the MPC during lid transfer operations.

HI-TRAC and its enclosed MPC are returned to the designated preparation area and the rigging, MPC lift cleats, and HI-TRAC top lid are removed. The annulus is filled with plant demineralized water (borated, if necessary). The annulus and HI-TRAC top surfaces are protected from debris that will be produced when removing the MPC lid.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

1.2-26

The MPC closure ring and vent and drain port cover plates are core drilled. Local ventilation is established around the MPC ports. The RVOAs are attached to the vent and drain port. The RVOAs allow access to the inner cavity of the MPC, while providing a hermetic seal. The MPC is flooded with borated or unborated water, as required.. The MPC lid-to-MPC shell weld is removed. Then, all weld removal equipment is removed with the MPC lid left in place.

The MPC lid is rigged to the lift yoke and the lift yoke is engaged to HI-TRAC lifting trunnions. If weight limitations require, the neutron shield jacket is drained. HI-TRAC is placed in the spent fuel pool and the MPC lid is removed. All fuel assemblies are returned to the spent fuel storage racks and the MPC fuel cells are vacuumed to remove any assembly debris. HI-TRAC and MPC are returned to the designated preparation area where the MPC water is removed. The annulus water is drained and the MPC and HI-TRAC are decontaminated in preparation for re-utilization.

1.2.2.3 Identification of Subjects for Safety and Reliability Analysis

1.2.2.3.1 <u>Criticality Prevention</u>

Criticality is controlled by geometry and neutron absorbing materials in the fuel basket. The MPC-24/24E/24EF (all with lower enriched fuel) and the MPC-68/68F/68FF do not rely on soluble boron credit during loading or the assurance that water cannot enter the MPC during storage to meet the stipulated criticality limits.

Each MPC model is equipped with neutron absorber plates affixed to the fuel cell walls as shown on the drawings in Section 1.5. The minimum ¹⁰B areal density specified for the neutron absorber in each MPC model is shown in Table 1.2.2. These values are chosen to be consistent with the assumptions made in the criticality analyses.

The MPC-24, MPC-24E and 24EF (all with higher enriched fuel) and the MPC-32 and MPC-32F take credit for soluble boron in the MPC water for criticality prevention during wet loading and unloading operations. Boron credit is only necessary for these PWR MPCs during loading and unloading operations that take place under water. During storage, with the MPC cavity dry and sealed from the environment, criticality control measures beyond the fixed neutron poisons affixed to the storage cell walls are not necessary because of the low reactivity of the fuel in the dry, helium filled canister and the design features that prevent water from intruding into the canister during storage.

1.2.2.3.2 Chemical Safety

There are no chemical safety hazards associated with operations of the HI-STORM 100 dry storage system. A detailed evaluation is provided in Section 3.4.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2.2.3.3 Operation Shutdown Modes

The HI-STORM 100 System is totally passive and consequently, operation shutdown modes are unnecessary. Guidance is provided in Chapter 8, which outlines the HI-STORM 100 unloading procedures, and Chapter 11, which outlines the corrective course of action in the wake of postulated accidents.

1.2.2.3.4 Instrumentation

As stated earlier, the HI-STORM 100 confinement boundary is the MPC, which is seal welded, nondestructively examined and pressure tested. The HI-STORM 100 is a completely passive system with appropriate margins of safety; therefore, it is not necessary to deploy any instrumentation to monitor the cask in the storage mode. At the option of the user, temperature elements may be utilized to monitor the air temperature of the HI-STORM overpack exit vents in lieu of routinely inspecting the ducts for blockage. See Subsection 2.3.3.2 for additional details.

1.2.2.3.5 <u>Maintenance Technique</u>

Because of their passive nature, the HI-STORM 100 System requires minimal maintenance over its lifetime. No special maintenance program is required. Chapter 9 describes the acceptance criteria and maintenance program set forth for the HI-STORM 100.

1.2.3 Cask Contents

The HI-STORM 100 System is designed to house different types of MPCs. The MPCs are designed to store both BWR and PWR spent nuclear fuel assemblies. Tables 1.2.1 and 1.2.2 provide key system data and parameters for the MPCs. A description of acceptable fuel assemblies for storage in the MPCs is provided in Section 2.1. This includes fuel assemblies classified as damaged fuel assemblies and fuel debris in accordance with the definitions of these terms in Table 1.0.1. A summary of the types of fuel authorized for storage in each MPC model is provided below. All fuel assemblies, non-fuel hardware, and neutron sources must meet the fuel specifications provided in Section 2.1. All fuel assemblies classified as damaged fuel or fuel debris must be stored in damaged fuel containers.

MPC-24

The MPC-24 is designed to accommodate up to twenty-four (24) PWR fuel assemblies classified as intact fuel assemblies, with or without non-fuel hardware.

<u>MPC-24E</u>

The MPC-24E is designed to accommodate up to twenty-four (24) PWR fuel assemblies, with or without non-fuel hardware. Up to four (4) fuel assemblies may be classified as damaged fuel assemblies, with the balance being classified as intact fuel assemblies. Damaged fuel assemblies must be stored in fuel storage locations 3, 6, 19, and/or 22 (see Figure 1.2.4).

HOLTEC INTERNATIONAL COPYRIC	GHTED	MATERIAL
------------------------------	-------	----------

MPC-24EF

The MPC-24EF is designed to accommodate up to twenty-four (24) PWR fuel assemblies, with or without non-fuel hardware. Up to four (4) fuel assemblies may be classified as damaged fuel assemblies or fuel debris, with the balance being classified as intact fuel assemblies. Damaged fuel assemblies and fuel debris must be stored in fuel storage locations 3, 6, 19, and/or 22 (see Figure 1.2.4).

<u>MPC-32</u>

The MPC-32 is designed to accommodate up to thirty-two (32) PWR fuel assemblies with or without non-fuel hardware. Up to eight (8) of these assemblies may be classified as damaged fuel assemblies, with the balance being classified as intact fuel assemblies. Damaged fuel assemblies must be stored in fuel storage locations 1, 4, 5, 10, 23, 28, 29, and/or 32 (see Figure 1.2.3).

MPC-32F

The MPC-32F is designed to store up to thirty two (32) PWR fuel assemblies with or without nonfuel hardware. Up to eight (8) of these assemblies may be classified as damaged fuel assemblies or fuel debris, with the balance being classified as intact fuel assemblies. Damaged fuel assemblies and fuel debris must be stored in fuel storage locations 1, 4, 5, 10, 23, 28, 29, and/or 32 (see Figure 1.2.3).

MPC-68

The MPC-68 is designed to accommodate up to sixty-eight (68) BWR intact and/or damaged fuel assemblies, with or without channels. For the Dresden Unit 1 or Humboldt Bay plants, the number of damaged fuel assemblies may be up to a total of 68. For damaged fuel assemblies from plants other than Dresden Unit 1 and Humboldt Bay, the number of damaged fuel assemblies is limited to sixteen (16) and must be stored in fuel storage locations 1, 2, 3, 8, 9, 16, 25, 34, 35, 44, 53, 60, 61, 66, 67, and/or 68 (see Figure 1.2.2).

MPC-68F

The MPC-68F is designed to accommodate up to sixty-eight (68) Dresden Unit 1 or Humboldt Bay BWR fuel assemblies (with or without channels) made up of any combination of fuel assemblies classified as intact fuel assemblies, damaged fuel assemblies, and up to four (4) fuel assemblies classified as fuel debris.

MPC-68FF

The MPC-68FF is designed to accommodate up to sixty-eight (68) BWR fuel assemblies with or without channels. Any number of these fuel assemblies may be Dresden Unit 1 or Humboldt

HI-STORM FSAR REPORT HI-2002444

1.2-29

Bay BWR fuel assemblies classified as intact fuel or damaged fuel. Dresden Unit 1 and Humboldt Bay fuel debris is limited to eight (8) DFCs. DFCs containing Dresden Unit 1 or Humboldt Bay fuel debris may be stored in any fuel storage location. For BWR fuel assemblies from plants other than Dresden Unit 1 and Humboldt Bay, the total number of fuel assemblies classified as damaged fuel assemblies or fuel debris is limited to sixteen (16), with up to eight (8) of the 16 fuel assemblies classified as fuel debris. These fuel assemblies must be stored in fuel storage locations 1, 2, 3, 8, 9, 16, 25, 34, 35, 44, 53, 60, 61, 66, 67, and/or 68 (see Figure 1.2.2). The balance of the fuel storage locations may be filled with intact BWR fuel assemblies, up to a total of 68.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-30

ITEM	QUANTITY	NOTES
Types of MPCs included in this revision of the submittal	8	5 for PWR 3 for BWR
MPC storage capacity [†] :	MPC-24	Up to 24 intact ZR or stainless steel clad PWR fuel assemblies
	MPC-24E MPC-24EF MPC-32 MPC-32F (See Note 1 on next page)	 with or without non-fuel hardware. Up to four damaged fuel assemblies may be stored in the MPC-24E and up to four (4) damaged fuel assemblies and/or fuel assemblies classified as fuel debris may be stored in the MPC-24EF OR Up to 32 intact ZR or stainless steel clad PWR fuel assemblies with or without non-fuel hardware. Up to 8 damaged fuel assemblies may be stored in the MPC-32 and up to 8 damaged fuel assemblies and/or fuel assemblies and/or fuel assemblies and/or fuel assemblies classified as fuel debris may be stored in the MPC-32 and up to 8 damaged fuel assemblies classified as fuel debris may be stored in the MPC-32 and up to 8 damaged fuel assemblies and/or fuel assemblies classified as fuel debris may be stored in the MPC-
	MPC-68	32F. Any combination of Dresden Unit 1 or Humboldt Bay damaged fuel assemblies in damaged fuel containers and intact fuel assemblies, up to a total of 68. For damaged fuel other than Dresden Unit 1 and Humboldt Bay, the number of fuel assemblies is limited to 16, with the balance being intact fuel assemblies. OR

KEY SYSTEM DATA FOR HI-STORM 100 SYSTEM

[†] See Section 2.1 for a complete description of authorized cask contents and fuel specifications.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-31

Table 1.2.1 (continued)KEY SYSTEM DATA FOR HI-STORM 100 SYSTEM

Ι	ТЕМ	QUANTITY	NOTES
MPC storage of	apacity:	MPC-68F	Up to 4 damaged fuel containers
			with ZR clad Dresden Unit 1 (D-
			1) or Humboldt Bay (HB) BWR
			fuel debris and the complement
			damaged ZR clad Dresden Unit 1 or Humboldt Bay BWR fuel
		1	assemblies in damaged fuel
· · ·			containers or intact Dresden Unit
			1 or Humboldt Bay BWR intact
			fuel assemblies.
	• , ,		OR
	. •	MPC-68FF	Up to 68 Dresden Unit 1 or
	•		Humboldt Bay intact fuel or
			damaged fuel and up to 8
			damaged fuel containers
			containing D-1 or HB fuel debris.
	· .		For other BWR plants, up to 16 damaged fuel containers
	•		containing BWR damaged fuel
	·		and/or fuel debris with the
			complement intact fuel
	·		assemblies, up to a total of 68.
			The number of damaged fuel
			containers containing BWR fuel
			debris is limited to eight (8) for
			all BWR plants.
_ <u>L</u>	<u> </u>	1	

Notes:

1. The stated information does not apply to the Indian Point Unit 1 MPC-32s. Supplement 1.II provides the storage capacity for the IP1 MPC-32s.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Tabl	e 1	.2.2	
Tabl	e i	.2.2	

KEY PARAMETERS FOR HI-STORM 100 MULTI-PURPOSE CANISTERS

	PWR	BWR
Pre-disposal service life (years)	40	40
Design temperature, max./min. (°F)	725° [†] /-40° ^{††}	725° [†] /-40° ^{††}
Design internal pressure (psig) Normal conditions Off-normal conditions Accident Conditions	100 110 200	100 110 200
Total heat load, max. (kW)	28.74	28.19
Maximum permissible peak fuel cladding temperature:		
Long Term Normal (°F) Short Term Operations (°F) Off-normal and Accident (°F)	752 752 or 1058 ^{†††} 1058	752 752 or 1058 ^{†††} 1058

- [†] Maximum normal condition design temperatures for the MPC fuel basket. A complete listing of design temperatures for all components is provided in Table 2.2.3.
- ^{††} Temperature based on off-normal minimum environmental temperatures specified in Section 2.2.2.2 and no fuel decay heat load.
- See Section 4.5 for discussion of the applicability of the 1058°F temperature limit during MPC drying.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-33

Table 1.2.2 (cont'd)

	PWR	BWR
MPC internal environment Helium fill (99.995% fill helium purity)	(all pressure ranges are at a reference temperature of 70°F)	(all pressure ranges are at a reference temperature of 70°F)
MPC-24 (heat load \leq 27.77 kW) MPC-24E/24EF (heat load \leq 28.17 kW)	\geq 29.3 psig and \leq 33.3 psig OR 0.1212 +/-10% g-moles/liter \geq 29.3 psig and \leq 33.3 psig OR	
	0.1212 +/-10% g-moles/liter	
MPC-68/68F/68FF (heat load \leq 28.19 kW)		≥ 29.3 psig and ≤ 33.3 psig OR 0.1218 +/-10% g-moles/liter
MPC-32/32F (heat load \leq 28.74 kW) (See Note 2)	≥ 29.3 psig and ≤ 33.3 psig OR 0.1212 +/-10% g-moles/liter	
Maximum permissible multiplication factor (k _{eff}) including all uncertainties and biases	< 0.95	< 0.95
Fixed Neutron Absorber ¹⁰ B Areal Density (g/cm ²) Boral/Metamic	0.0267/0.0223 (MPC-24) 0.0372/0.0310 (MPC-24E, MPC-24EF MPC-32 & MPC-32F)	0.0372/0.0310 (MPC-68 & MPC-68FF) 0.01/NA (MPC-68F) (See Note 1)
End closure(s)	Welded	Welded
Fuel handling	Opening compatible with standard grapples	Opening compatible with standard grapples
Heat dissipation	Passive	Passive

KEY PARAMETERS FOR HI-STORM 100 MULTI-PURPOSE CANISTERS

NOTES:

1. All MPC-68F canisters are equipped with Boral neutron absorber.

2. The stated requirements do not apply to the Indian Point Unit 1 MPC-32s. Supplement 1.II provides Helium fill requirements for Indian Point Unit 1 MPC-32s.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.2-34

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

INTENTIONALLY DELETED

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL HI-STORM FSAR

REPORT HI-2002444

1.2-35

INTENTIONALLY DELETED

HI-STORM FSAR REPORT HI-2002444

1.2-36

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

INTENTIONALLY DELETED

HI-STORM FSAR REPORT HI-2002444

1.2-37

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

HI-STORM 100 OPERATIONS SEQUENCE

Site-specific handling and operations procedures will be prepared, reviewed, and approved by each owner/user. 1 HI-TRAC and MPC lowered into the fuel pool without lids 2 Fuel assemblies transferred into the MPC fuel basket 3 MPC lid lowered onto the MPC HI-TRAC/MPC assembly moved to the decon pit and MPC lid welded in place, 4 volumetrically or multi-layer PT examined, and pressure and leakage tested MPC dewatered, moisture removed, backfilled with helium, and the closure ring 5 welded HI-TRAC annulus drained and external surfaces decontaminated 6 7 MPC lifting cleats installed and MPC weight supported by rigging HI-TRAC pool lid removed and transfer lid attached (not applicable to HI-TRAC 8 100D or 125D) 9 MPC lowered and seated on HI-TRAC transfer lid (not applicable to HI-TRAC 100D or 125D) HI-STORM mating device secured to top of empty HI-STORM overpack (HI-TRAC 9a 100D and 125D only) HI-TRAC/MPC assembly transferred to atop the HI-STORM overpack or mating 10 device, as applicable MPC weight supported by rigging and transfer lid doors opened (standard design HI-11 TRAC) or pool lid removed (HI-TRAC 100D and 125D) 12 MPC lowered into HI-STORM overpack, and HI-TRAC removed from atop the HI-STORM overpack/mating device HI-STORM mating device removed (HI-TRAC 100D and 125D only) 12a 13 HI-STORM overpack lid installed and bolted in place 14 HI-STORM overpack placed in storage at the ISFSI pad 15 For HI-STORM 100A (or 100SA) users, the overpack is anchored to the ISFSI pad by installation of nuts onto studs and torquing to the minimum required torque.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

HI-STORM 100 FSAR Revision 6; February 7, 2008

Table 1.2.7

REPRESENTATIVE ASME BOLTING AND THREADED ROD MATERIALS ACCEPTABLE FOR THE HI-STORM 100A ANCHORAGE SYSTEM

· · · · · · · · · · · · · · · · · · ·		Type Grade or	Ultimate	Yield Strength	Code
Composition	I.D.	UNC No.	Strength	(ksi)	Permitted
			(ksi)		Size
· · · · · · · · · · · · · · · · · · ·		· · ·			Range
C	SA-354	BC	125	109	t ≤ 2.5"
	<u>.</u>	K04100	125	103	1 2 4.5
³ / ₄ Cr	SA-574	51B37M	170	135	t ≥ 5/8"
1 Cr – 1/5 Mo	SA-574	4142	170	135	t ≥ 5/8"
1 Cr-1/2 Mo-V	SA-540	B21	165	150	+ ~ 1 ? ?
•		(K 14073)	. 105	150	t ≤ 4"
5 Cr – ½ Mo	SA-193	B7	125	105	t ≤ 2.5"
$2N_i - \frac{3}{4}Cr - \frac{1}{4}Mo$	SA-540	B23	135	120	
	•	(H-43400)	135	120	
$2N_i - \frac{3}{4}Cr - \frac{1}{3}Mo$	SA-540	B-24	135	120	
		(K-24064)	155	120	
17Cr-4Ni-4Cu	SA-564	630 (H-1100)	140	115	
17Cr-4Ni-4Cu	SA-564	630 (H-1075)	145	125	•
25Ni-15Cr-2Ti	SA-638	660 ·	130	85	
22CR-13Ni-5Mn	SA-479	XM-19	135	105	
	e de la companya de l	(S20910)			

ASME MATERIALS FOR BOLTING.

Note: The materials listed in this table are representative of acceptable materials and have been abstracted from the ASME Code, Section II, Part D, Table 3. Other materials listed in the Code are also acceptable as long as they meet the size requirements, the minimum requirements on yield and ultimate strength (see Table 2.0.4), and are suitable for the environment.

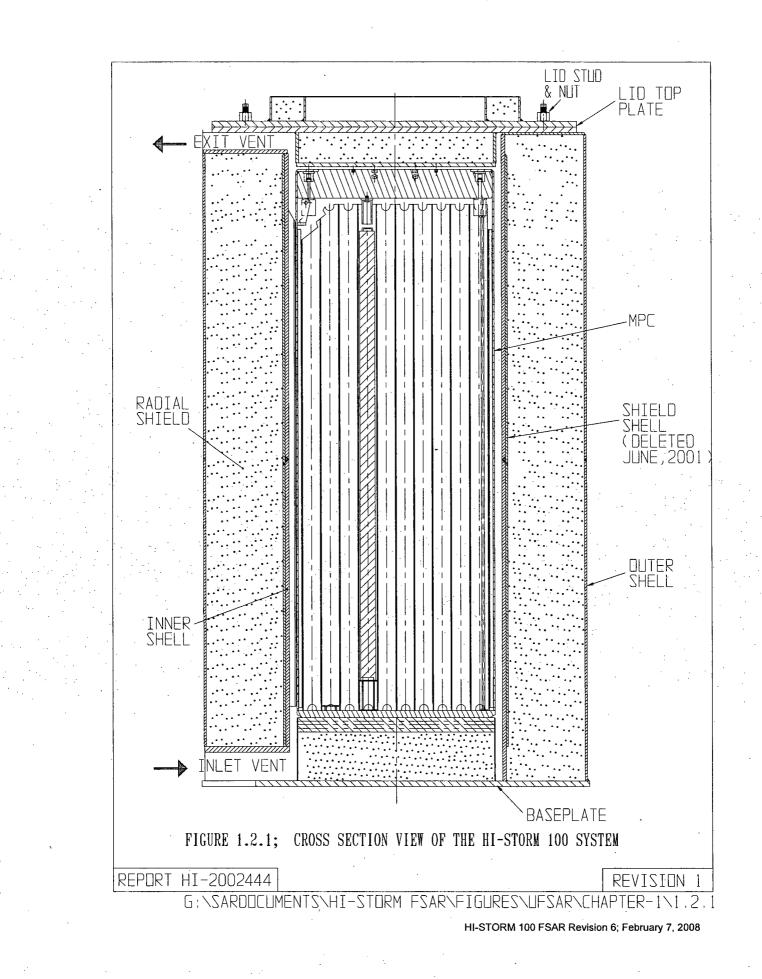
* Nominal diameter of the bolt (or rod) as listed in the Code tables. Two-inch diameter studs/rods are specified for the HI-STORM 100A.

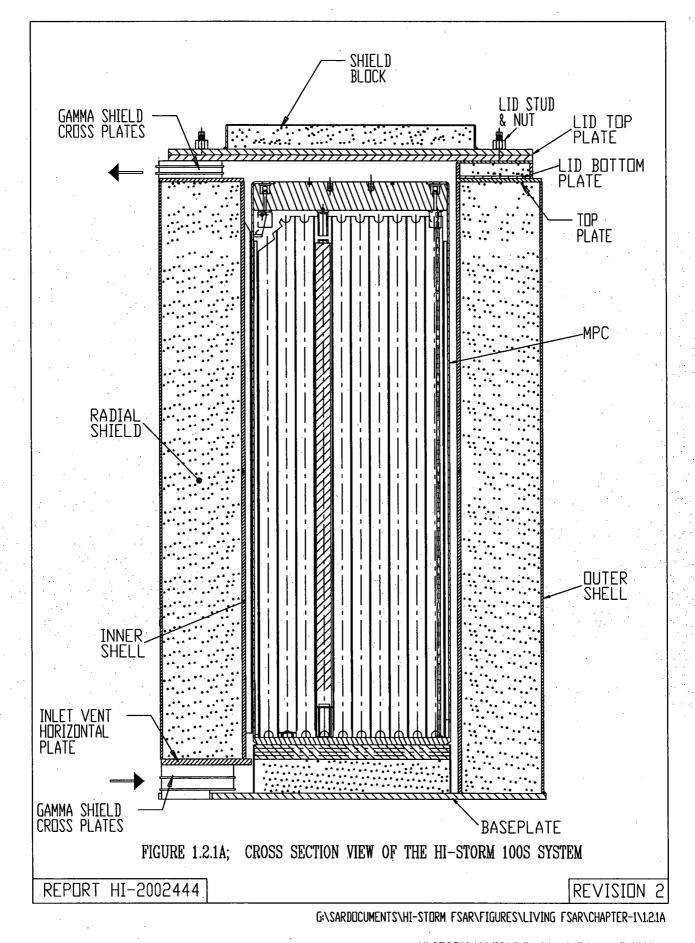
HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

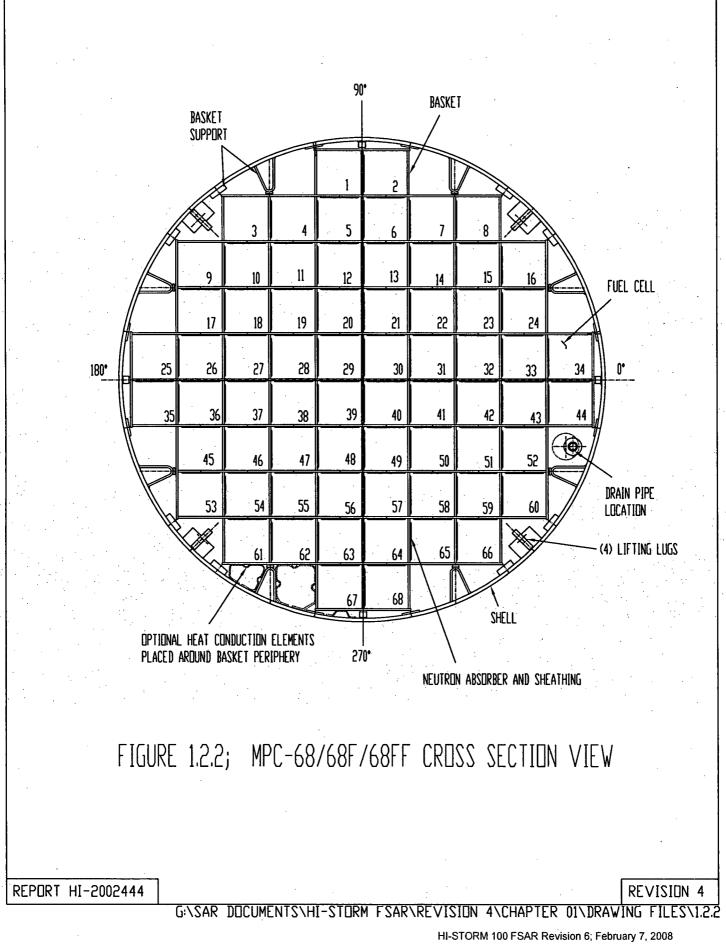
1.2-39

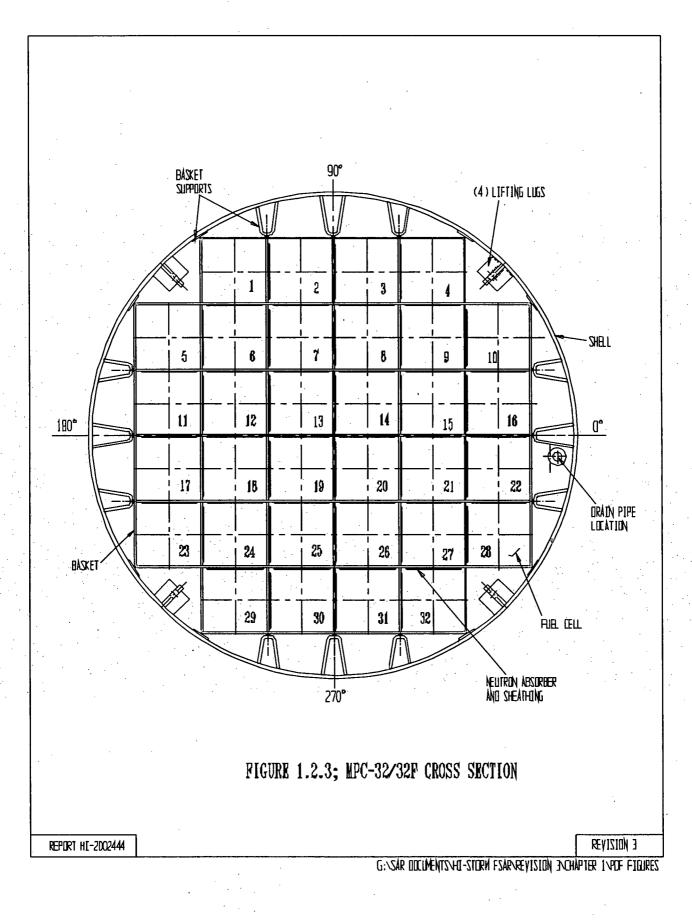
Table 1.2.8

MPC Type	Min. B-10 areal density required by criticality	required Reference <i>METAMIC</i> [®] Panel Thickness			
	analysis (g/cm ²)	100% Credit	90% Credit	75% Credit	Ref. Thickness (inch) (see note)
MPC-24	0.020	27.6	31	37.2	0.075
MPC-68, - 68FF, -32, -32F, -24E, and -24EF	0.0279	27.8	31	37.4	0.104

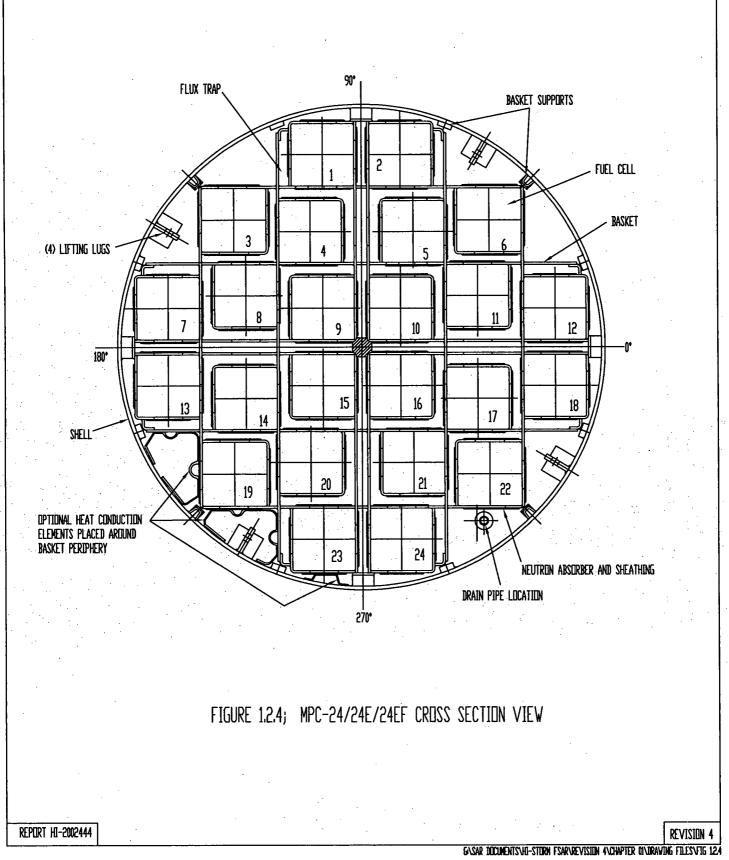

METAMIC[®] DATA FOR HOLTEC MPCs

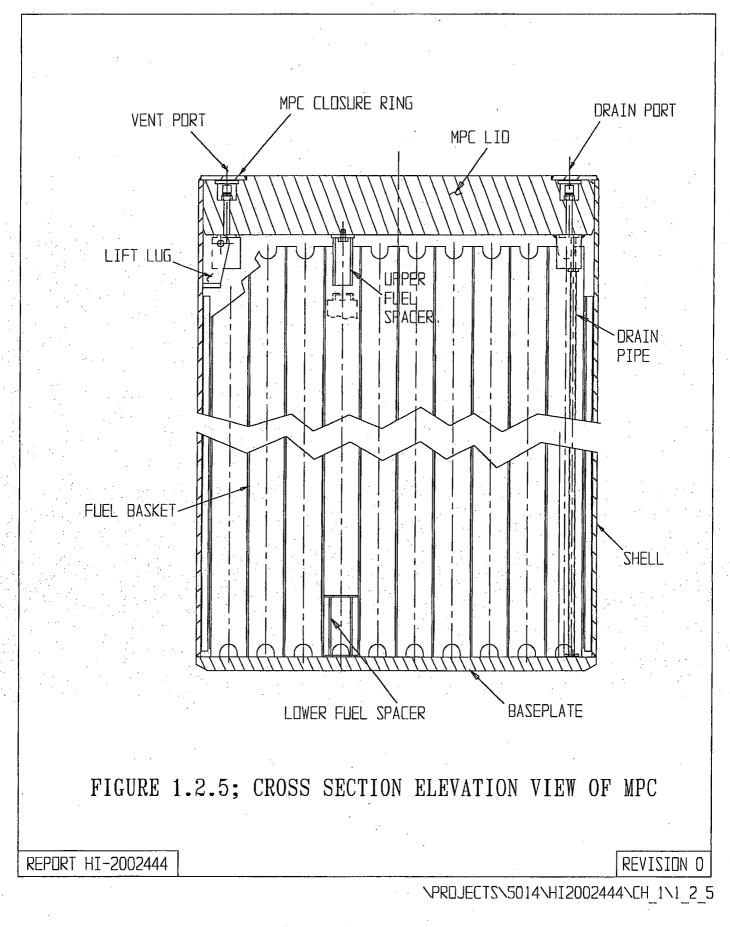

Note: The drawings in Section 1.5 show slightly larger thickness to ensure that the minimum B-10 areal density is conservative under all conditions.

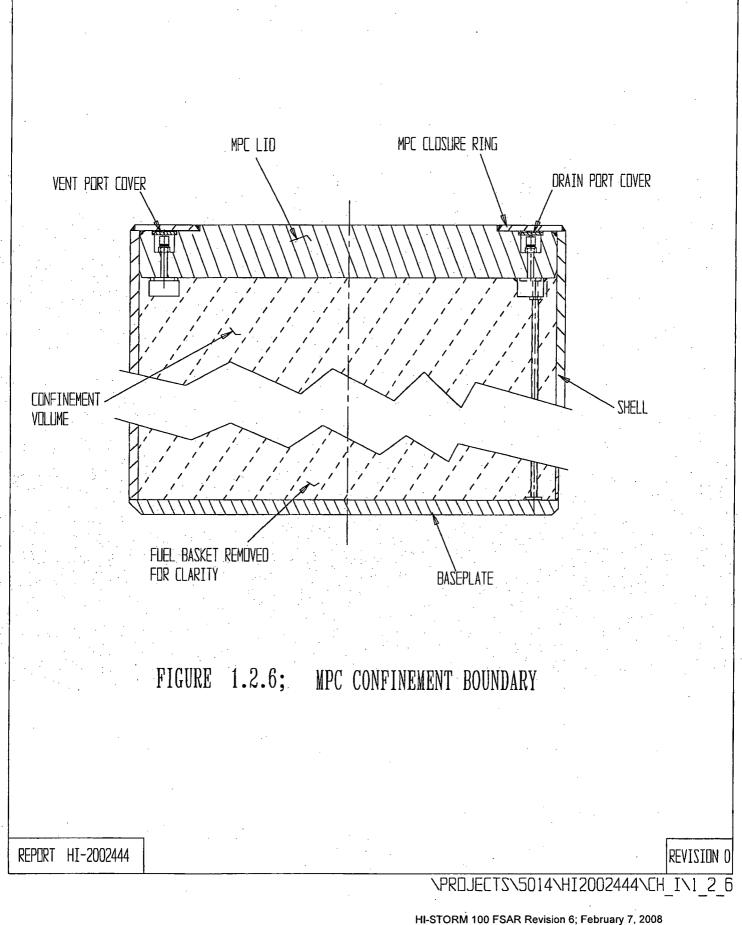

HI-STORM FSAR REPORT HI-2002444


1.2-40

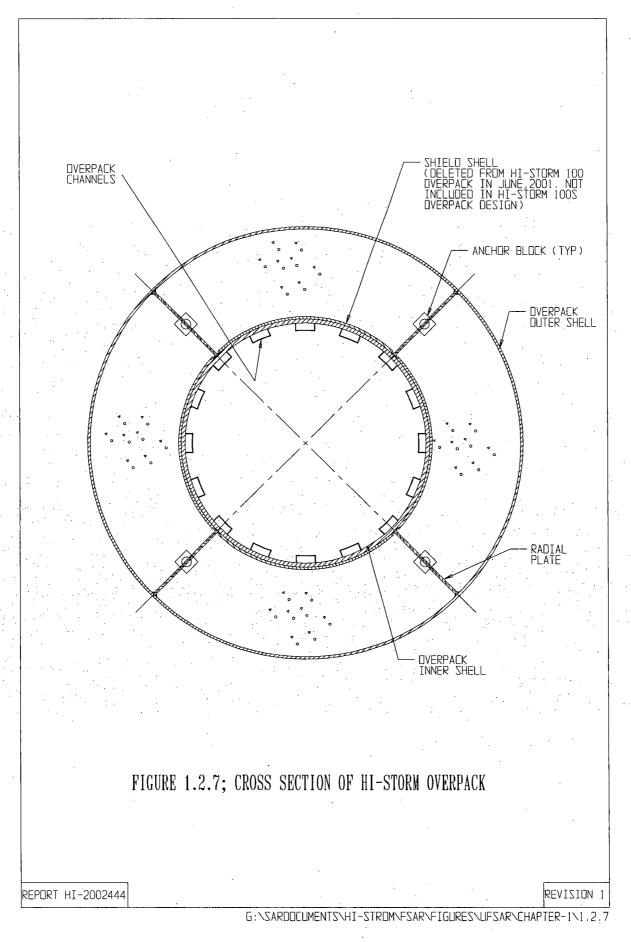
Rev. 6

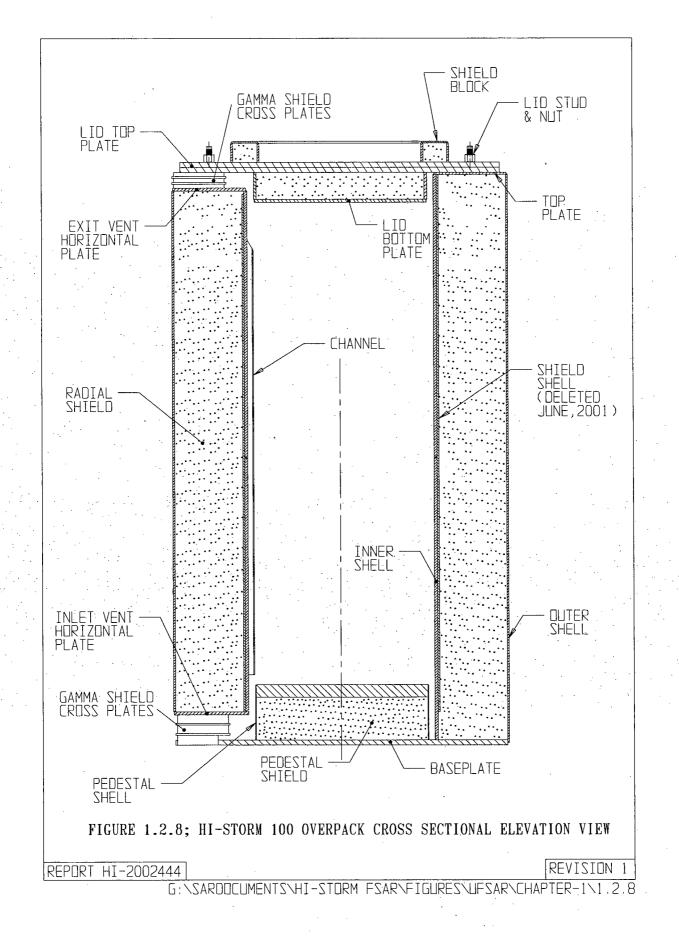


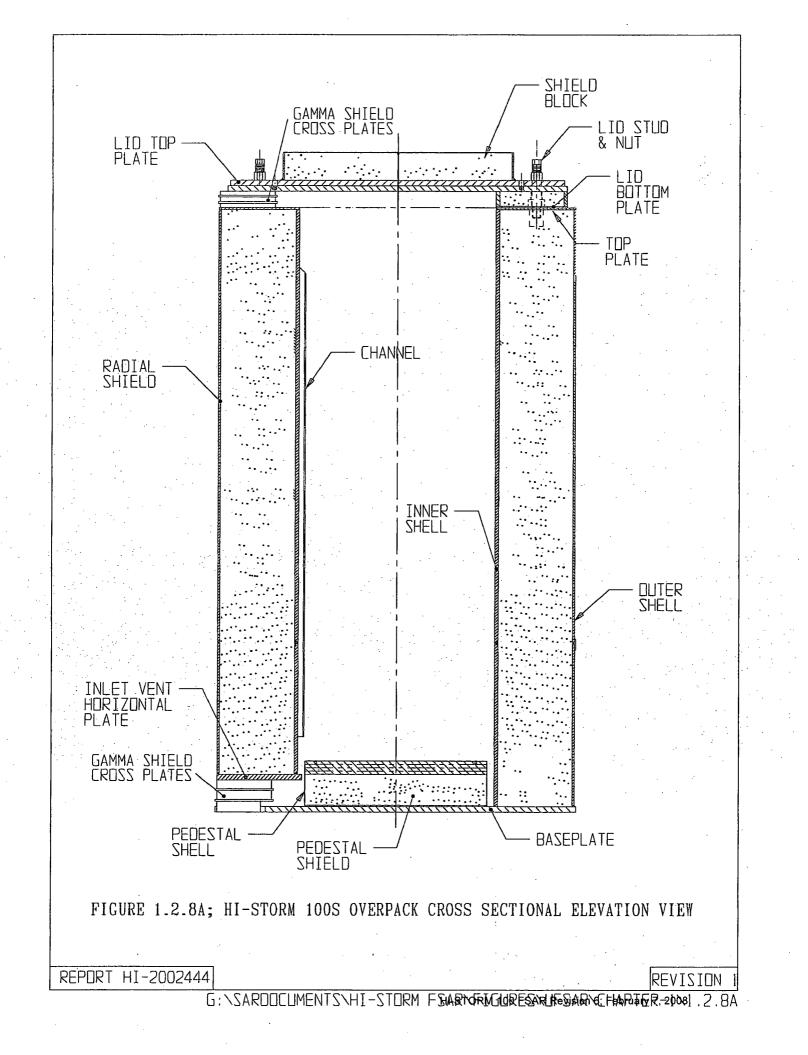


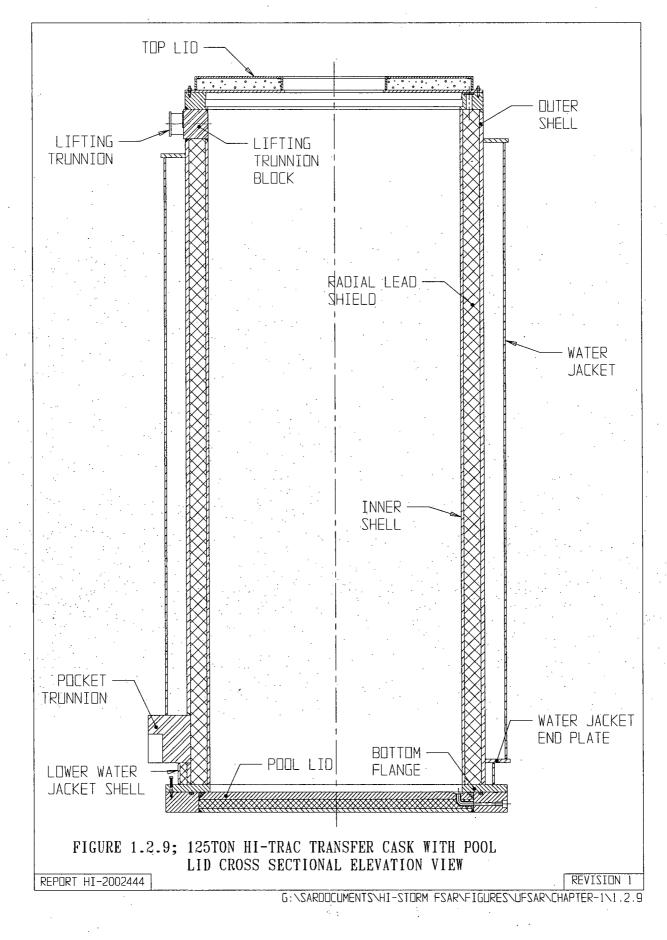


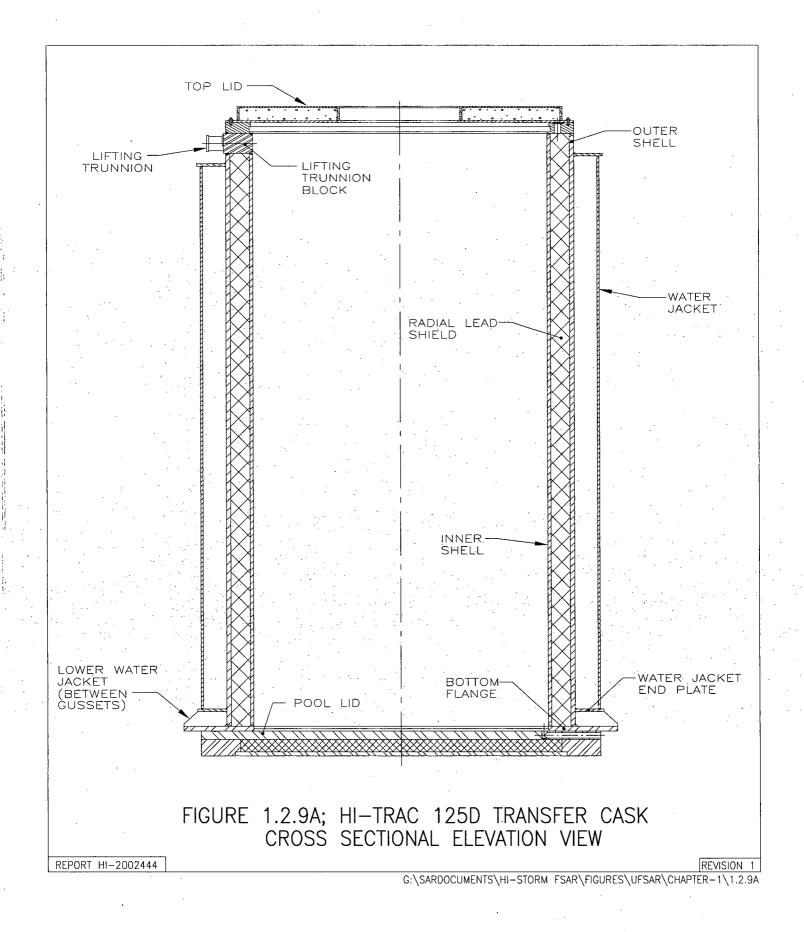
Г

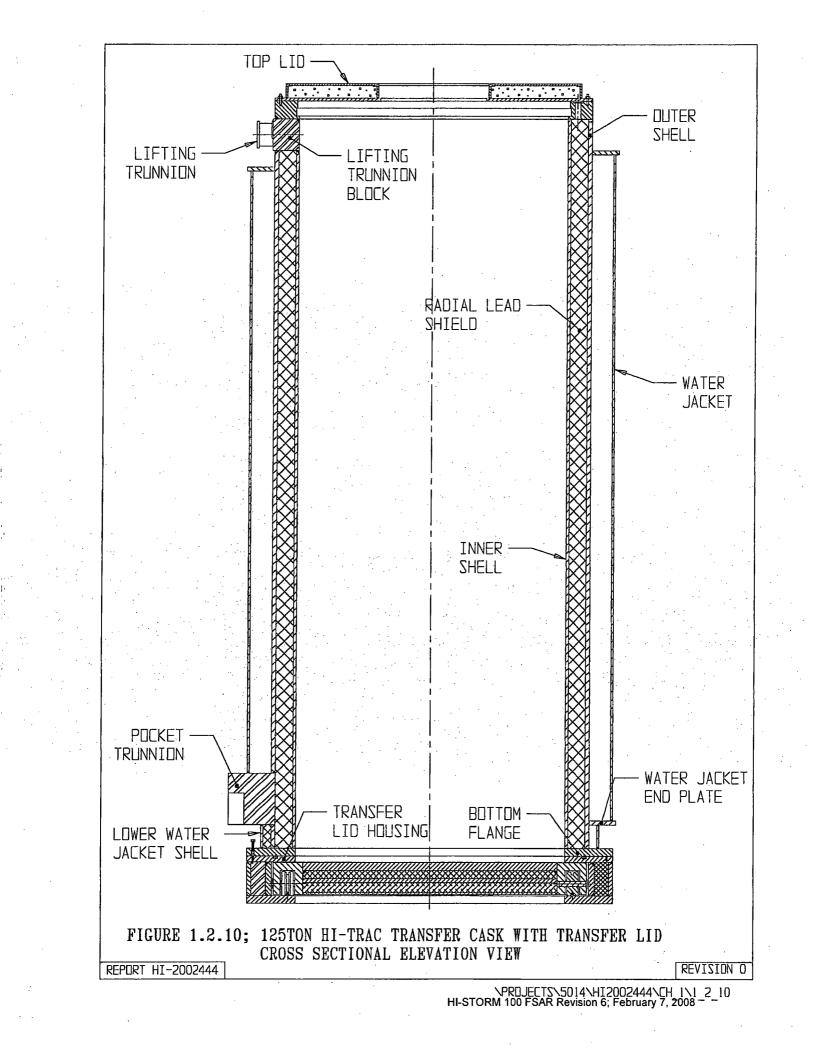

-

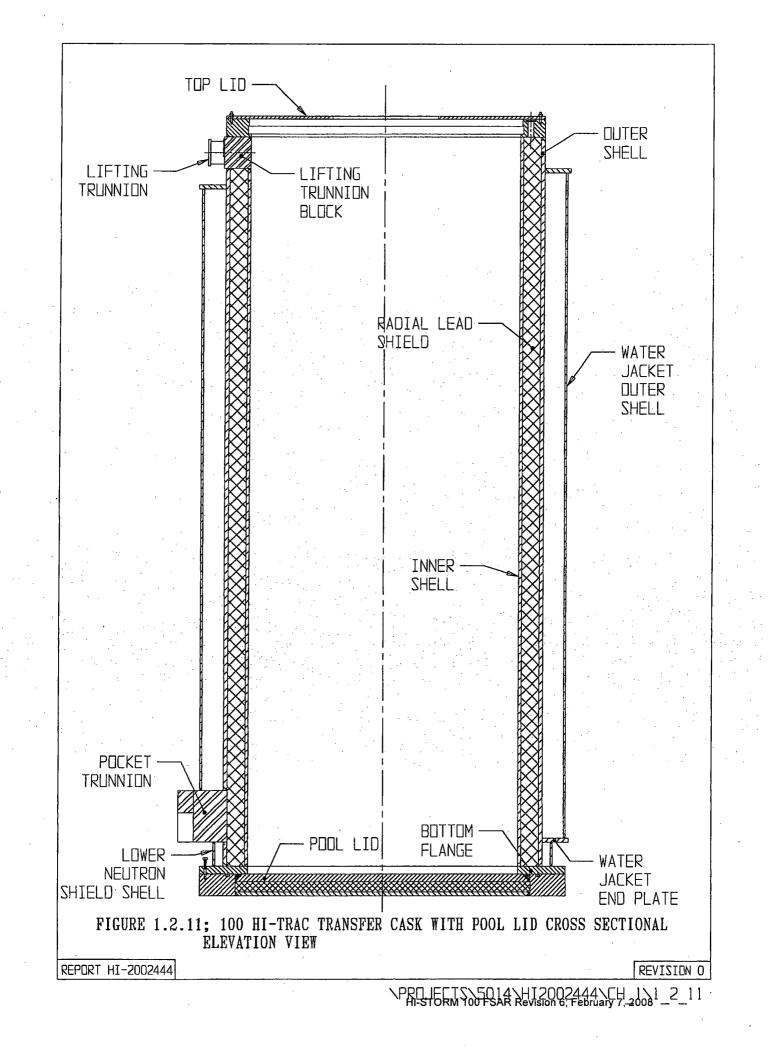


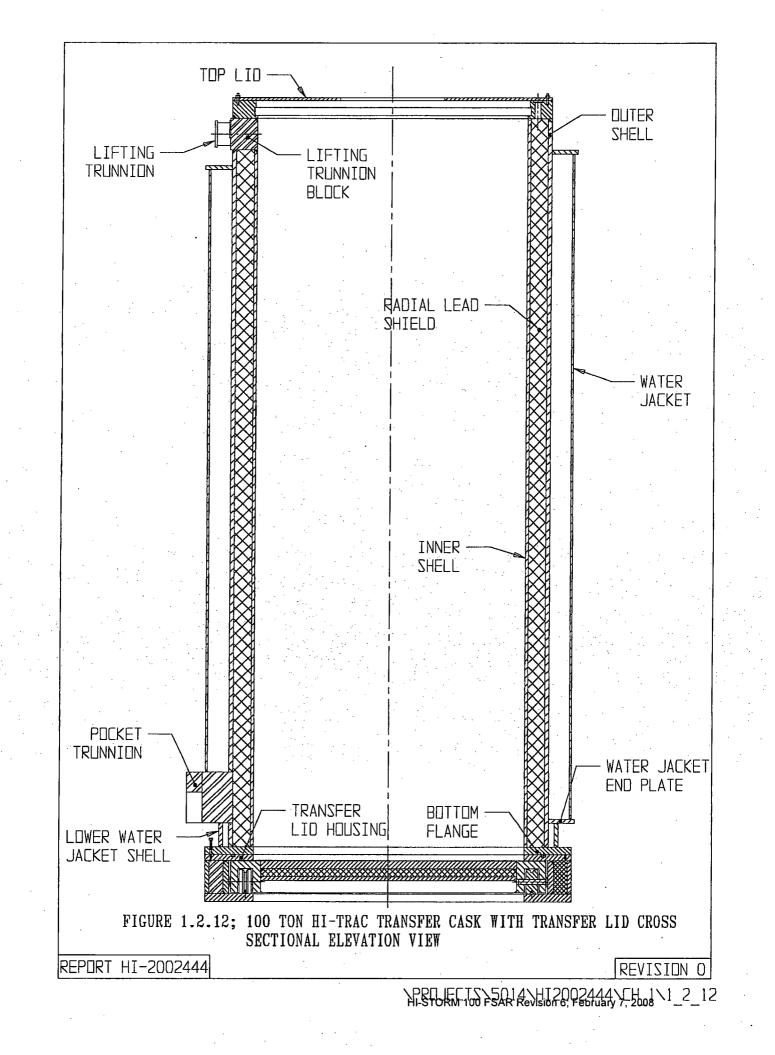


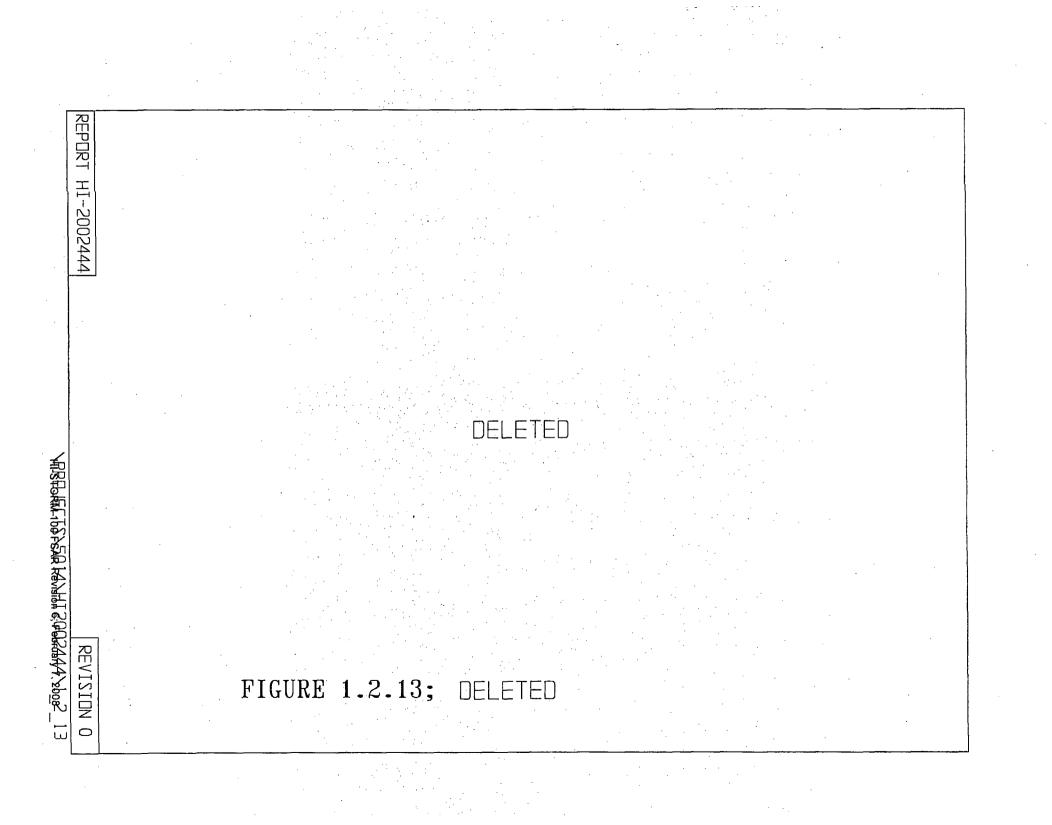

HI-STURINI TUU FSAR REVI

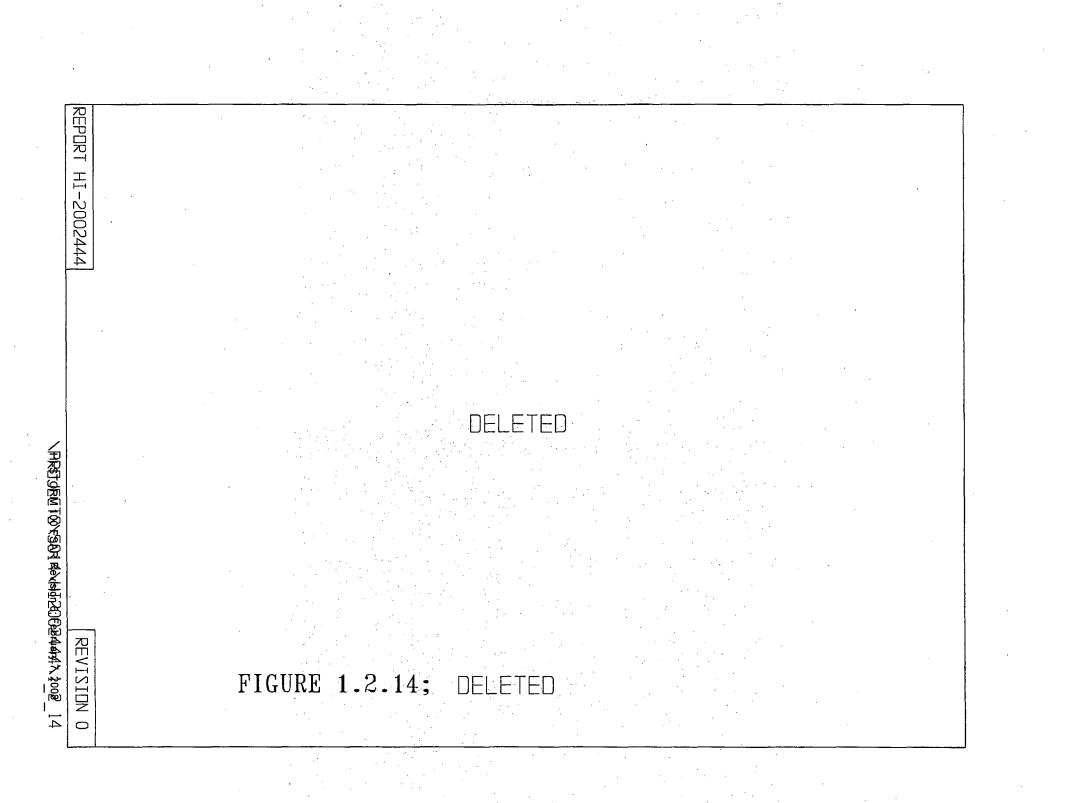


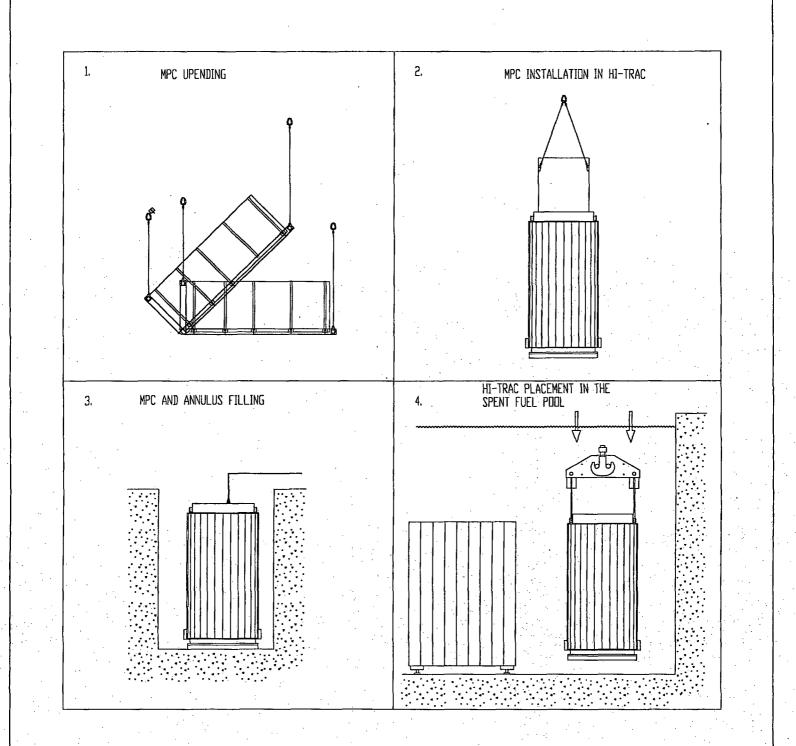

L

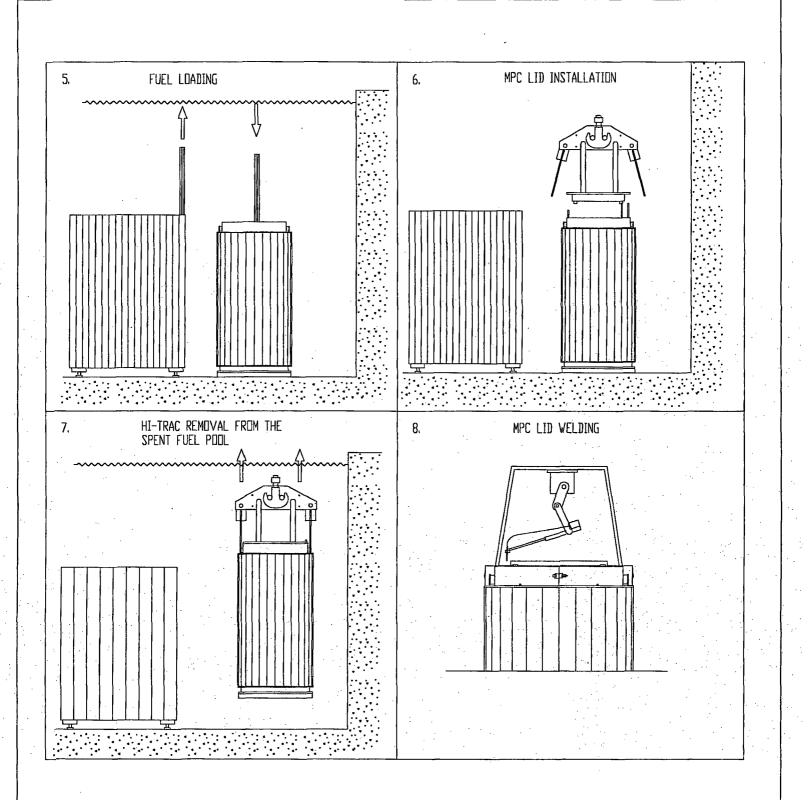




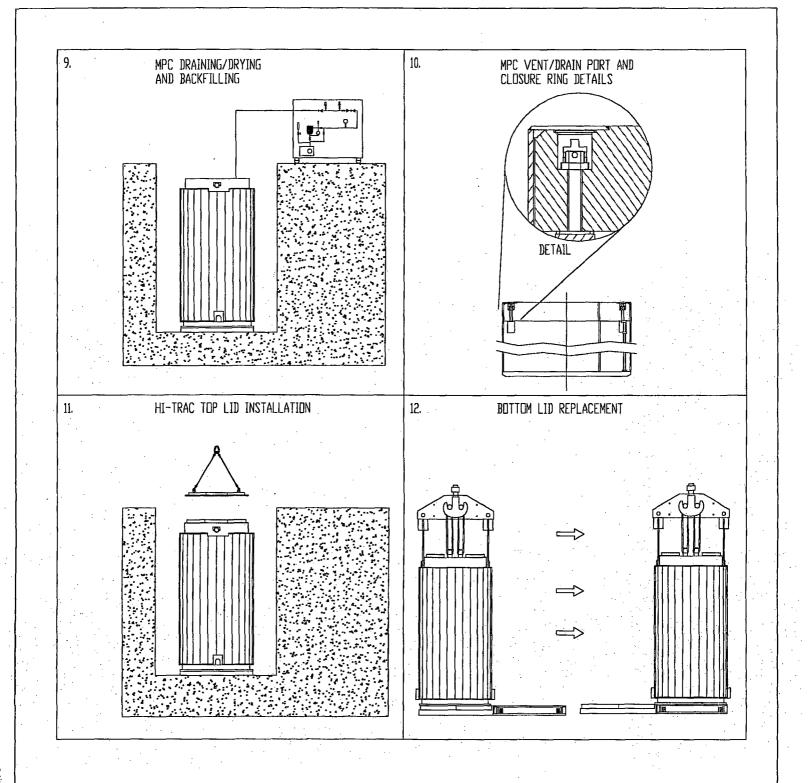

_







REPORT HI-2002444		
4		
人用於記の語のTio	DELETED	
REVISION REVISION		
REVISION O	FIGURE 1.2.15; DELETED	


Figure 1.2.16a; Major HI-STORM 100 Loading Operations (Sheet 1 of 6)

HI-STORM FSAR REPORT HI-2002444

Figure 1.2.16b; Major HI-STORM 100 Loading Operations (Sheet 2 of 6)

HI-STORM FSAR REPORT HI-2002444 Rev. 0

HI-STORM FSAR REPORT HI-2002444 Rev. 0

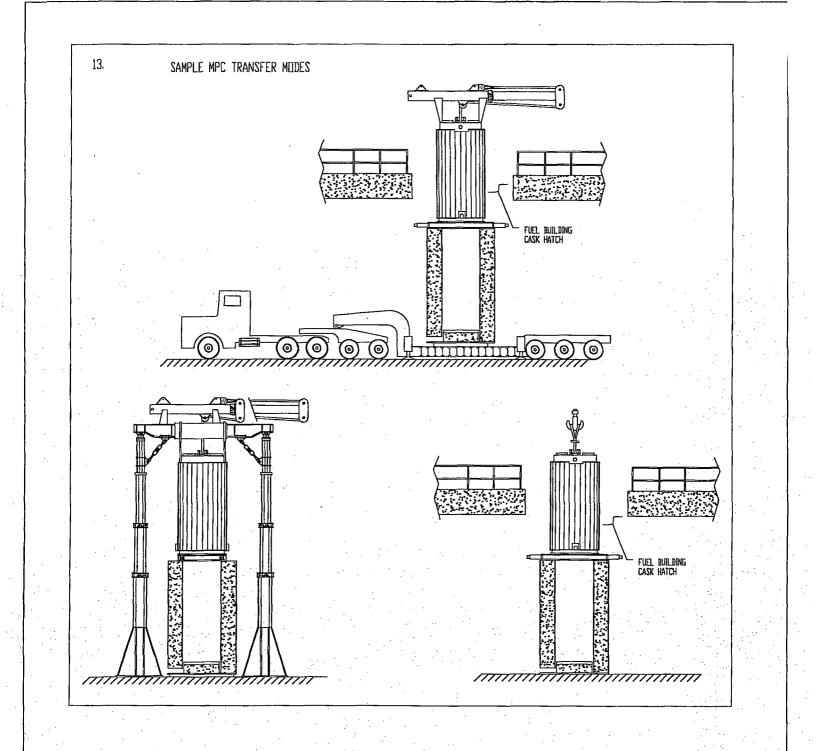
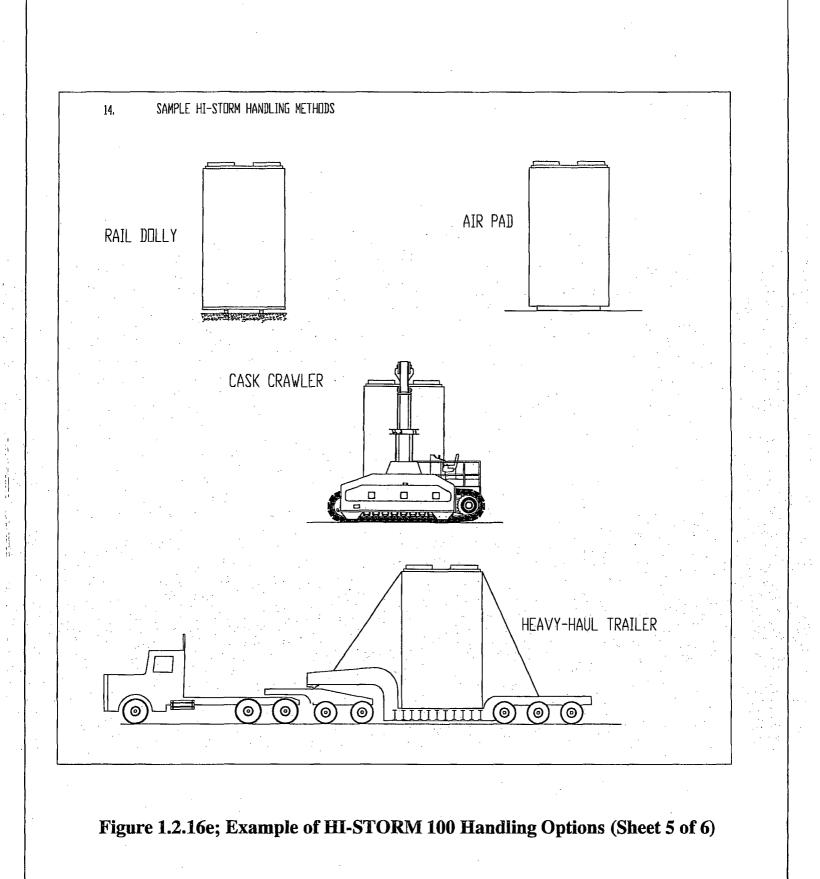
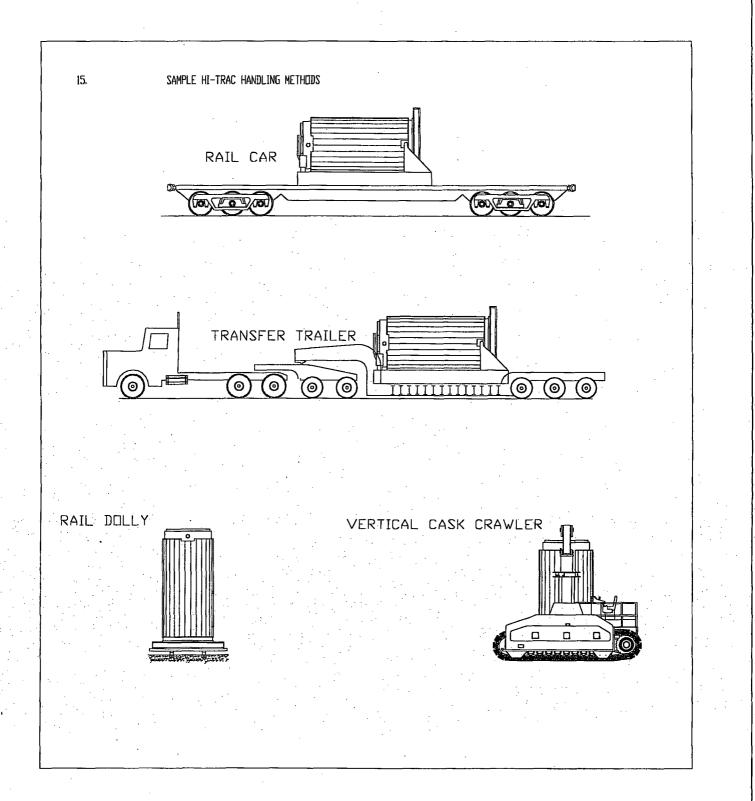
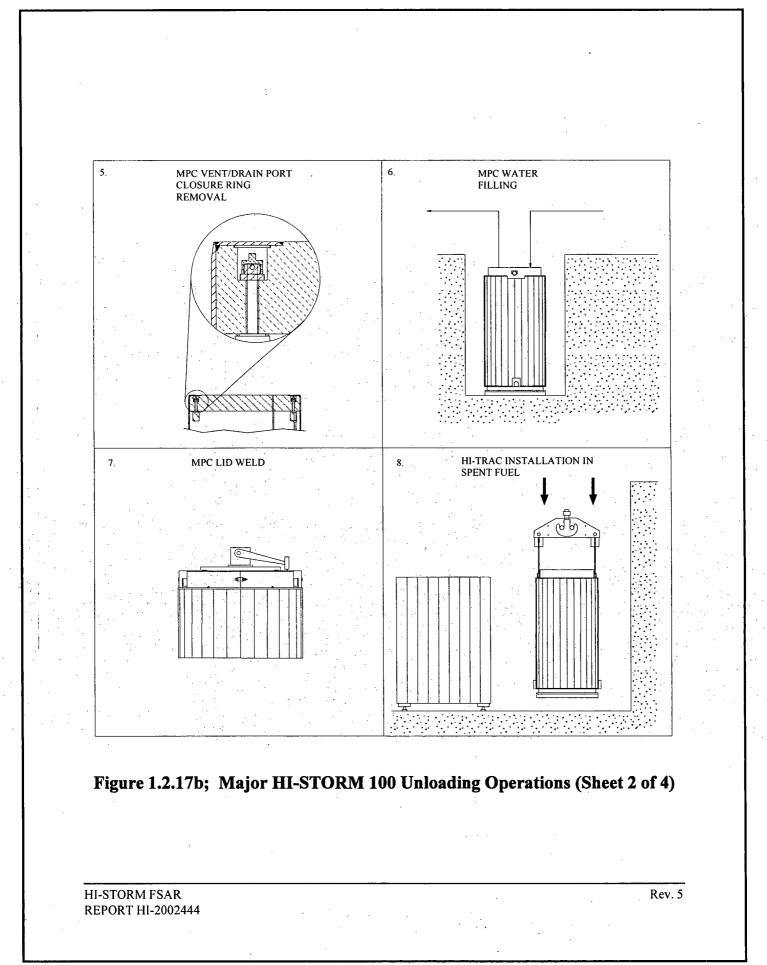



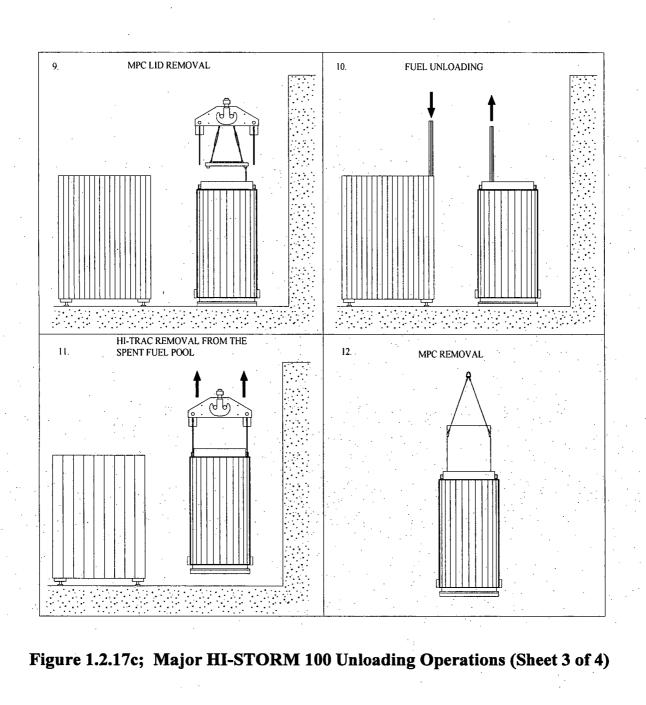
Figure 1.2.16d; Major HI-STORM 100 Loading Operations (Sheet 4 of 6)

HI-STORM FSAR REPORT HI-2002444 Rev. 0

HI-STORM FSAR REPORT HI-2002444



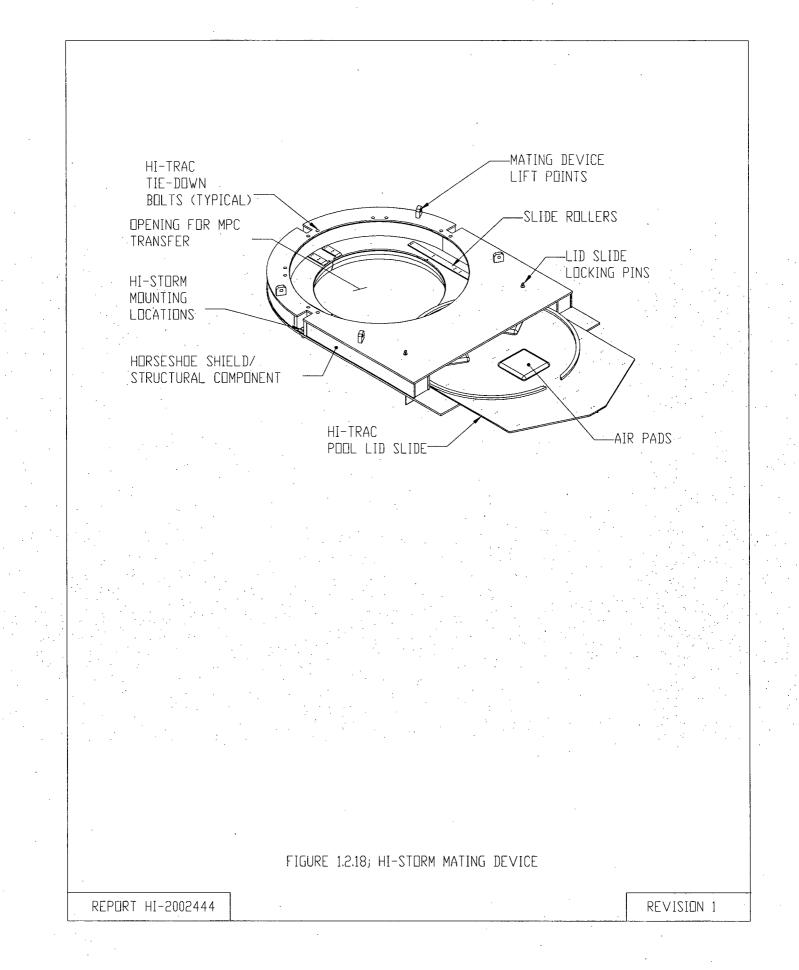

Figure 1.2.16f; Example of HI-TRAC Handling Options (Sheet 6 of 6)


HI-STORM FSAR REPORT HI-2002444

1. HI-STORM TRANSFER TO THE OVERHEAD 2. MPC TRANSFER INTO HI-TRAC (HYDRAULIC LIFTING GANTRY SHOWN) LIFTING DEVICE (CRAWLER SHOWN) BOTTOM LID REPLACEMENT 4.[`] 3. HI-TRAC UPPER SHIELD PLATE REMOVAL

Figure 1.2.17a; Major HI-STORM 100 Unloading Operations (Sheet 1 of 4)

HI-STORM FSAR REPORT HI-2002444



HI-STORM FSAR REPORT HI-2002444

Figure 1.2.17d; Major HI-STORM 100 Unloading Operations (Sheet 4 of 4)

HI-STORM FSAR REPORT HI-2002444 Rev. 5

1.3 IDENTIFICATION OF AGENTS AND CONTRACTORS

Holtec International is a specialty engineering company with a principal focus on spent fuel storage technologies. Holtec has carried out turnkey wet storage capacity expansions (engineering, licensing, fabrication, removal of existing racks, performance of underwater modifications, volume reduction of the old racks and hardware, installation of new racks, and commissioning of the pool for increased storage capacity) in numerous plants around the world. Over 45 plants in the U.S., Britain, Brazil, Korea, and Taiwan have utilized Holtec's wet storage technology to extend their in-pool storage capacity.

Holtec's corporate engineering consists of experts with advanced degrees (Ph.D.'s) in every discipline germane to the fuel storage technologies, namely structural mechanics, heat transfer, computational fluid dynamics, and nuclear physics. All engineering analyses for Holtec's fuel storage projects (including HI-STORM 100) are carried out in-house.

Holtec International's quality assurance program was originally developed to meet NRC requirements delineated in 10CFR50, Appendix B, and was expanded to include provisions of 10CFR71, Subpart H, and 10CFR72, Subpart G, for structures, systems, and components designated as important to safety. The Holtec quality assurance program, which satisfies all 18 criteria in 10CFR72, Subpart G, that apply to the design, fabrication, construction, testing, operation, modification, and decommissioning of structures, systems, and components important to safety is incorporated by reference into this FSAR as described in Chapter 13.

The HI-STORM 100 System is fabricated by Holtec Manufacturing Division (HMD) of Pittsburgh, Pennsylvania; formerly UST&D. HMD is an N-Stamp holder and a highly respected fabricator of nuclear components. HMD is on Holtec's Approved Vendors List (AVL) and has a quality assurance program meeting 10CFR50 Appendix B criteria. Extensive prototypical fabrication of the MPCs has been carried out at the HMD shop to resolve fixturing and tolerance issues. If another fabricator is to be used for the fabrication of any part of the HI-STORM 100 System, the proposed fabricator will be evaluated and audited in accordance with Holtec International's quality assurance program.

Construction, assembly, and operations on-site may be performed by Holtec or a licensee as the prime contractor. A licensee shall be suitably qualified and experienced to perform selected activities. Typical licensees are technically qualified and experienced in commercial nuclear power plant construction and operation activities under a quality assurance program meeting 10CFR50 Appendix B criteria.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.3-1

1.4 GENERIC CASK ARRAYS

The HI-STORM 100 System is stored in a vertical configuration. The required center-to-center spacing between the modules (layout pitch) is guided by operational considerations. Tables 1.4.1 and 1.4.2 provide the nominal layout pitch information. Site-specific pitches are determined by practical operation with supporting heat transfer calculations in Chapter 4. The pitch values in Tables 1.4.1 and 1.4.2 are nominal and may be varied to suit the user's specific needs.

Table 1.4.1 provides recommended cask spacing data for array(s) of two by N casks. The pitch between adjacent rows of casks and between each adjacent column of casks are denoted by P₁ and P₂ In Table 1.4.1. There may be an unlimited number of rows. The distance between adjacent arrays of two by N casks (P3) shall be as specified in Table 1.4.1. See Figure 1.4.1 for further clarification. The pattern of required pitches and distances may be repeated for an unlimited number of columns.

For a square array of casks the pitch between adjacent casks may be in accordance with Table 1.4.2. See Figure 1.4.2 for further clarification. The data in Table 1.4.2 provide nominal values for large ISFSIs (i.e., those with hundreds of casks in a uniform layout), where access of feed air to the centrally located casks may become a matter of thermal consideration. From a thermal standpoint, regardless of the size of the ISFSI, the casks should be arrayed in such a manner that the tributary area for each cask (open ISFSI area attributable to a cask) is a minimum of 225 ft². Subsection 4.4.1.1.7 provides the detailed thermal evaluation of the required tributary area. For specific sites, a smaller tributary area can be utilized after appropriate thermal evaluations for the site-specific conditions are performed.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.4-1

Table 1.4.1

Orientation	Nominal Cask Pitch (ft.)
Between adjacent rows, P1, and adjacent columns, P2	13.5
Between adjacent sets of two columns, P3	38

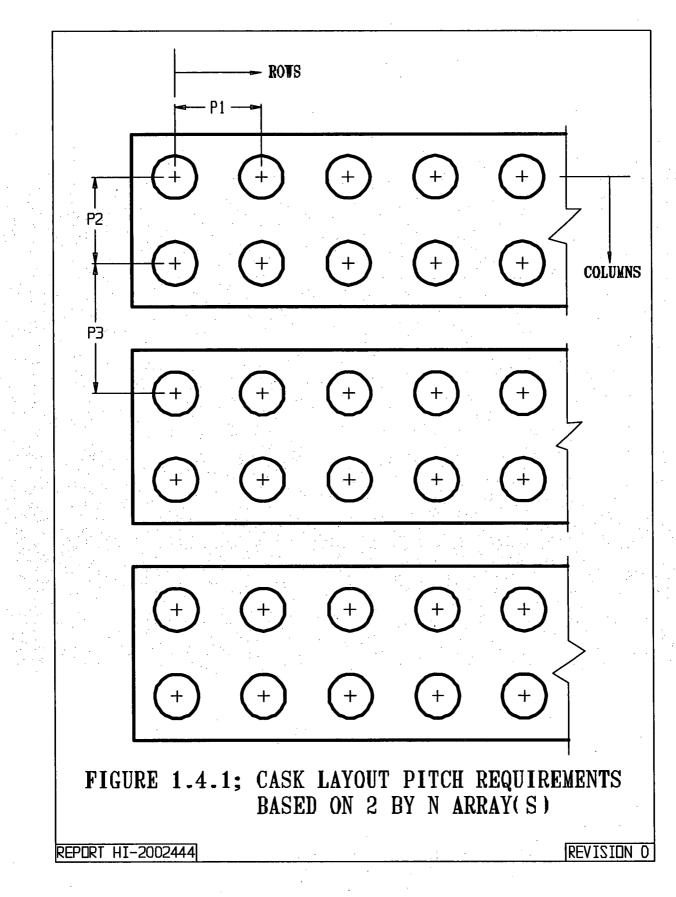
CASK LAYOUT PITCH DATA FOR 2 BY N ARRAYS

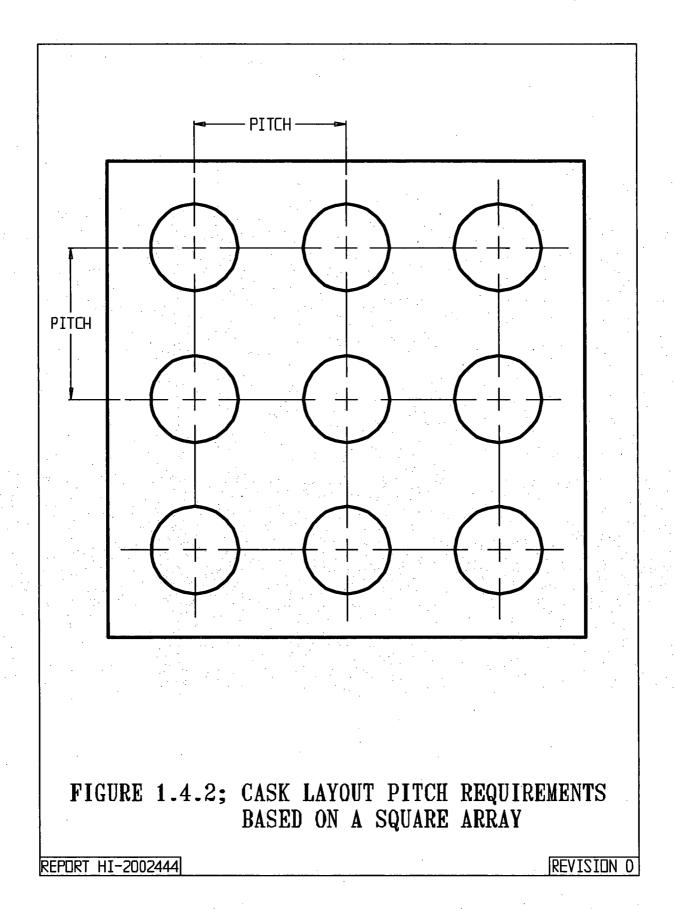
HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.4-2

Table 1.4.2


OrientationNominal
Cask Pitch (ft.)Between adjacent casks18' - 8"


CASK LAYOUT PITCH DATA FOR SQUARE ARRAYS

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.4-3

1.5 <u>DRAWINGS</u>

The following HI-STORM 100 System drawings and bills of materials are provided on subsequent pages in this subsection:

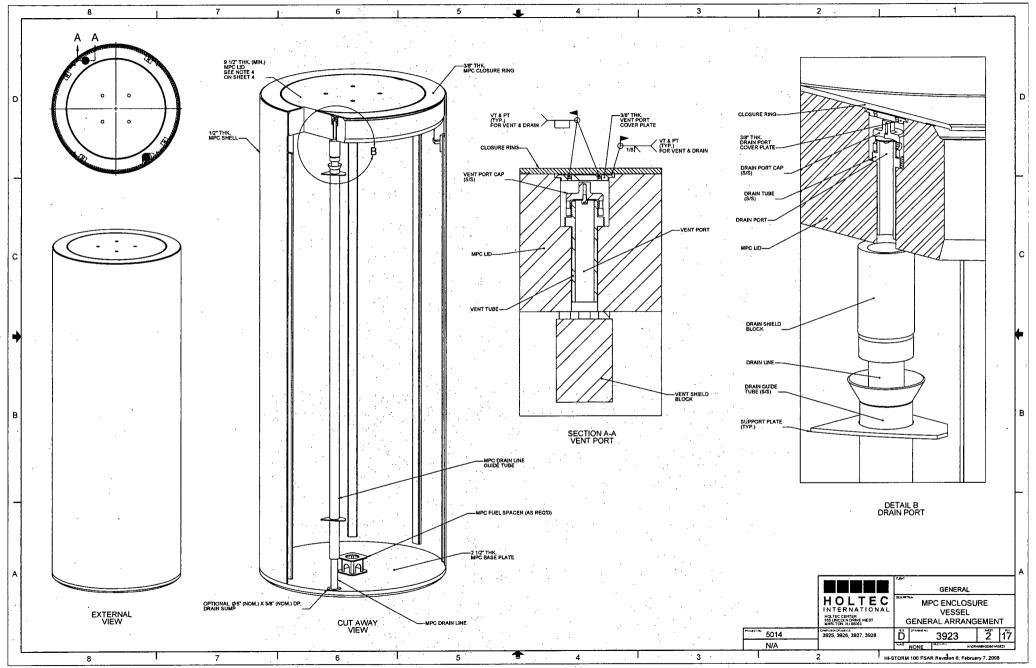
Drawing Number/Sheet	Description	Rev.
3923	MPC Enclosure Vessel	17
3925	MPC-24E/EF Fuel Basket Assembly	· 7
3926	MPC-24 Fuel Basket Assembly	9
3927	MPC-32 Fuel Basket Assembly	13
3928	MPC-68/68F/68FF Basket Assembly	11
1495 Sht 1/6	HI-STORM 100 Assembly	- 13
1495 Sht 2/6	Cross Section "Z" - "Z" View of HI-STORM	18
1495 Sht 3/6	Section "Y" - "Y" of HI-STORM	12
1495 Sht 4/6	Section "X" - "X" of HI-STORM	13
1495 Sht 5/6	Section "W" -"W" of HI-STORM	15
1561 Sht 1/6	View "A" -"A" of HI-STORM	11
1561 Sht 2/6	Detail "B" of HI-STORM	15
1561 Sht 3/6	Detail of Air Inlet of HI-STORM	11
1561 Sht 4/6	Detail of Air Outlet of HI-STORM	12
3669	HI-STORM 100S Assembly	16
1880 Sht 1/10	125 Ton HI-TRAC Outline with Pool Lid	9
1880 Sht 2/10	125 Ton HI-TRAC Body Sectioned Elevation	10
1880 Sht 3/10	125 Ton HI-TRAC Body Sectioned Elevation "B" - "B"	9
1880 Sht 4/10	125 Ton Transfer Cask Detail of Bottom Flange	10
1880 Sht 5/10	125 Ton Transfer Cask Detail of Pool Lid	10
1880 Sht 6/10	125 Ton Transfer Cask Detail of Top Flange	. 10
1880 Sht 7/10	125 Ton Transfer Cask Detail of Top Lid	. 9 .
1880 Sht 8/10	125 Ton Transfer Cask View "Y" - "Y"	9
1880 Sht 9/10	125 Ton Transfer Cask Lifting Trunnion and Locking Pad	7
1880 Sht 10/10	125 Ton Transfer Cask View "Z" - "Z"	9 .
1928 Sht 1/2	125 Ton HI-TRAC Transfer Lid Housing Detail	11
1928 Sht 2/2	125 Ton HI-TRAC Transfer Lid Door Detail	10
2145 Sht 1/10	100 Ton HI-TRAC Outline with Pool Lid	8
2145 Sht 2/10	100 Ton HI-TRAC Body Sectioned Elevation	8
2145 Sht 3/10	100 Ton HI-TRAC Body Sectioned Elevation 'B-B'	8
2145 Sht 4/10	100 Ton HI-TRAC Detail of Bottom Flange	7
2145 Sht 5/10	100 Ton HI-TRAC Detail of Pool Lid	6
2145 Sht 6/10	100 Ton HI-TRAC Detail of Top Flange	. 8
2145 Sht 7/10	100 Ton HI-TRAC Detail of Top Lid	8
2145 Sht 8/10	100 Ton HI-TRAC View Y-Y	8
2145 Sht 9/10	100 Ton HI-TRAC Lifting Trunnions and Locking Pad	5
2145 Sht 10/10	100 Ton HI-TRAC View Z-Z	7

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

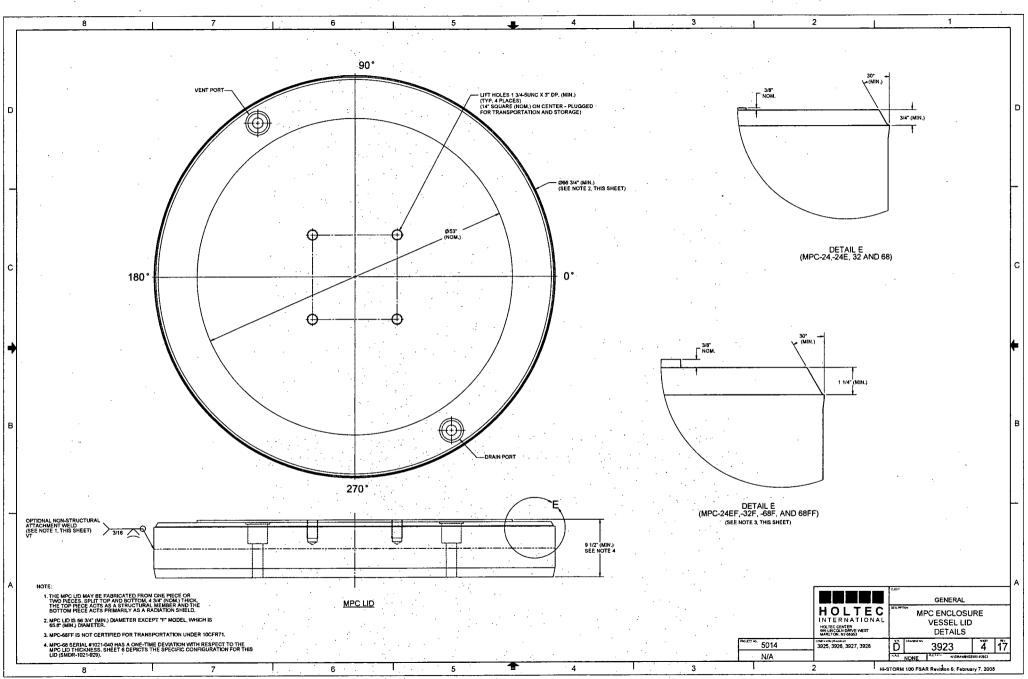
• Rev. 6

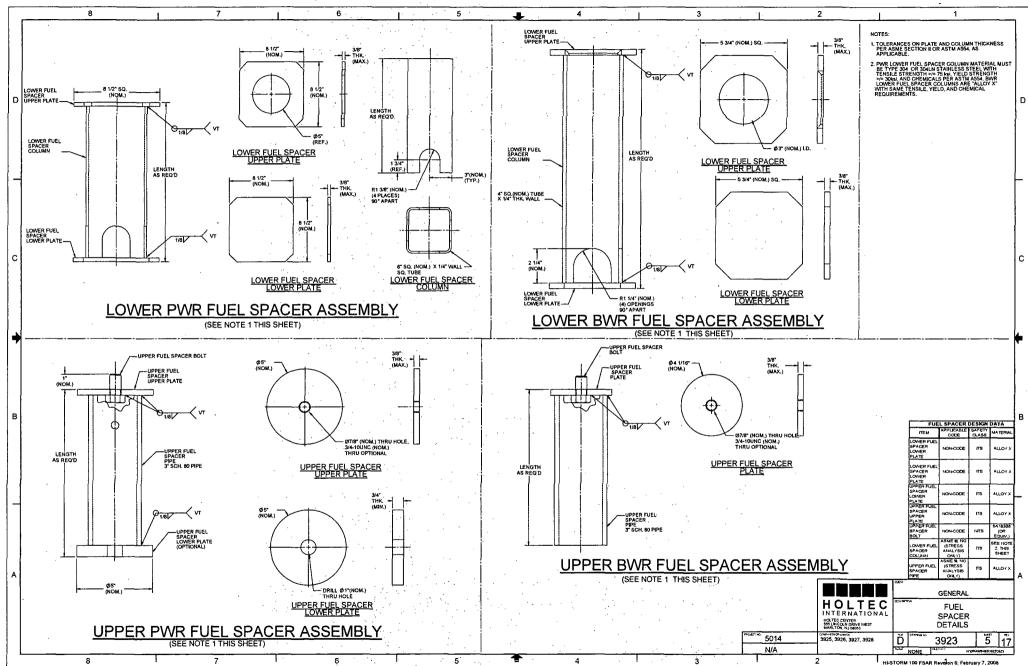
HI-STORM FSAR REPORT HI-2002444

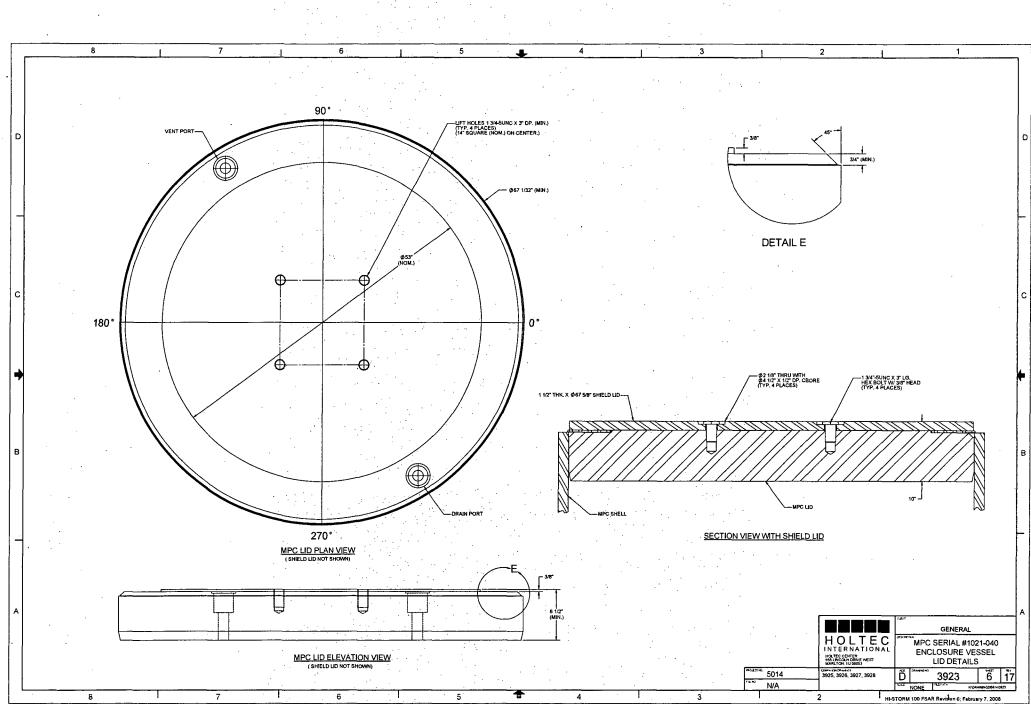
Drawing Number/Sheet	Description	Rev.
2152 Sht 1/2	100 Ton HI-TRAC Transfer Lid Housing Detail	10
2152 Sht 2/2	100 Ton HI-TRAC Transfer Lid Door Detail	8
3187	Lug and Anchoring Detail for HI-STORM 100A	2
BM-1575, Sht 1/2	Bill-of-Materials HI-STORM 100 Storage Overpack	19
BM-1575, Sht 2/2	Bill-of-Materials HI-STORM 100 Storage Overpack	19
BM-1880, Sht 1/2	Bill-of-Material for 125 Ton HI-TRAC	9
BM-1880, Sht 2/2	Bill-of-Material for 125 Ton HI-TRAC	7
BM-1928, Sht 1/1	Bill-of-Material for 125 Ton HI-TRAC Transfer Lid	10
BM-2145 Sht 1/2	Bill-of-Material for 100 Ton HI-TRAC	6
BM-2145 Sht 2/2	Bill-of-Material for 100 Ton HI-TRAC	5
BM-2152 Sht 1/1	Bill-of-Material for 100 Ton HI-TRAC Transfer Lid	8
3768	125 Ton HI-TRAC 125D Assembly	7
4116	HI-STORM 100S Version B	18
4128	100 Ton HI-TRAC 100D Assembly	.5
4724	HI-TRAC 100D Version IP1 Assembly	0

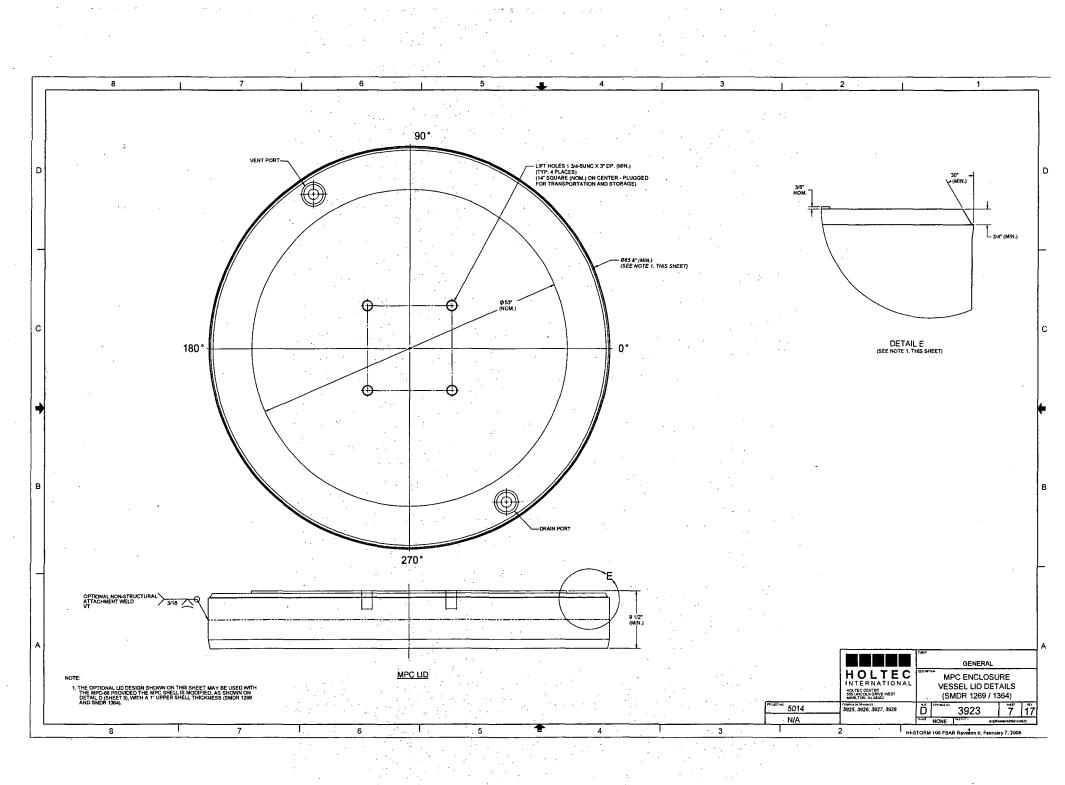

HI-STORM FSAR REPORT HI-2002444

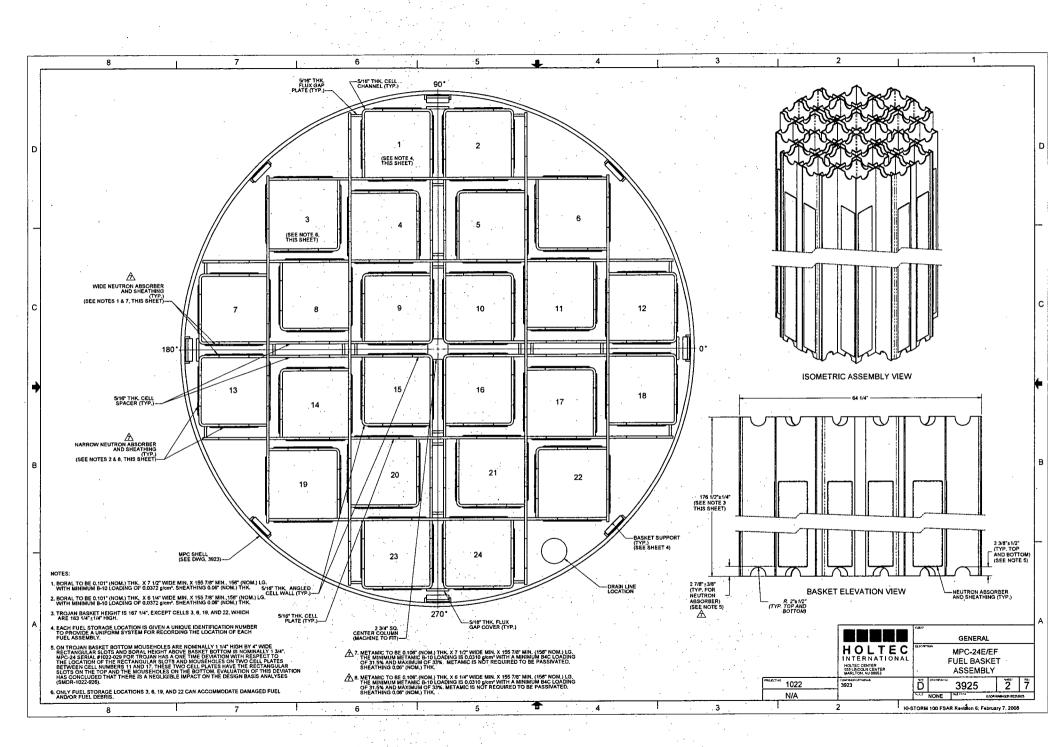

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

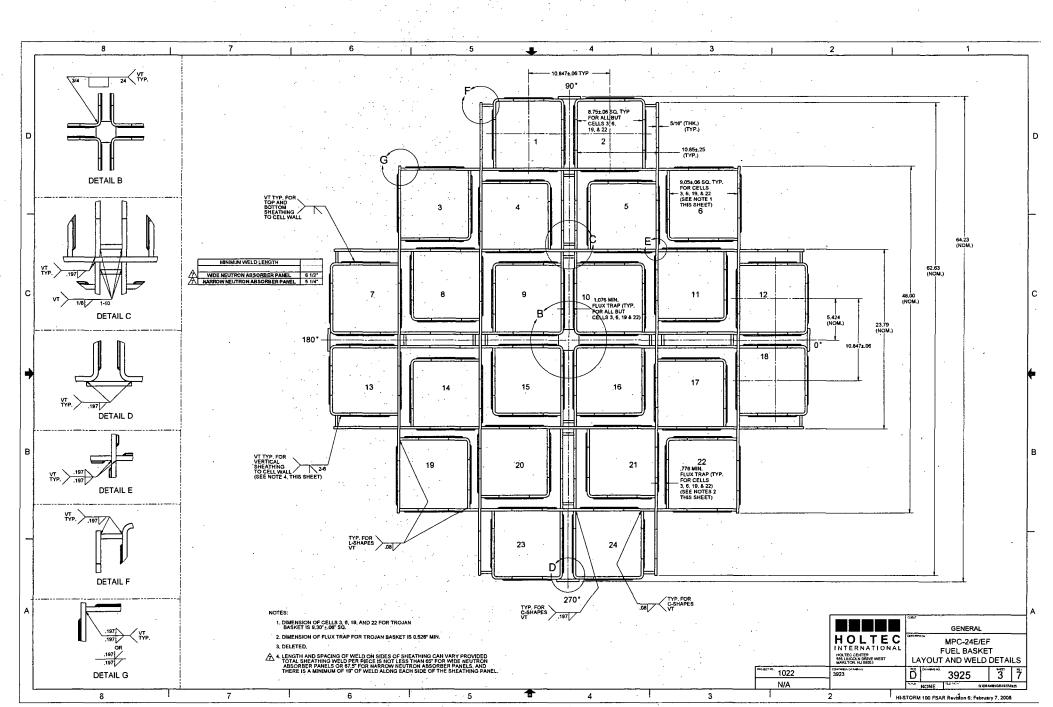

1.5-2


Rev. 6

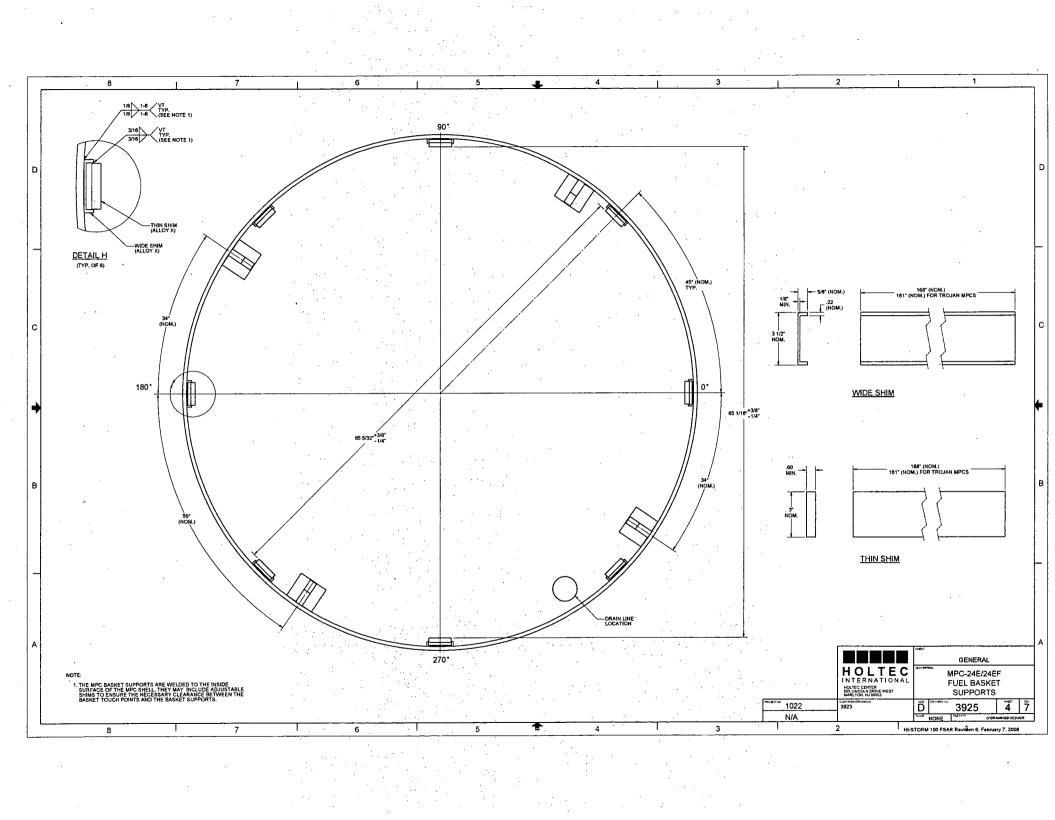

3023 101	EETS /	•	6	RE 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	EV AFFECTED DRAWING SHEET NUMBERS 1 ALL 2 SHEETS 446 3 SHEETS 446 5 SHEETS 345 6 SHEETS 1, 3, 4, 4, 7 7 SHEETS 1, 8, 4, 4, 7 7 SHEETS 1, 7, 4, 7 7 SHEETS 1, 7, 4, 4, 7 7 SHEETS 1, 7, 7 7 SHEETS 1, 7, 7 7 SHEETS 1, 7, 7 7 SHEETS 1	A SING DRAW REVISION LOG SUMMARY OF CHANGES/ AFFECTED ECOS 1021-61, REV. 0, 1023-60, REV. 0 ECO 1023-62, REV. 0, 1023-60, REV. 0 ECO 1023-62, REV. 0 ECO 1023-62, REV. 0 ECO 1023-77, REV. 0, 1023-63, REV. 0 ECO 1021-77, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 ECO 1021-77, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0	PREPARED BY S.LC JJB S.LC S.LC S.LC S.LC	APPROVAL DATE 9/27/04 04/11/05 04/27/05 06/17/05 04/07/06 10/05/06 02/06/08	VIR#+ 89001 79255 67405 47815 78291 82938 96115	NOTES CONT: 11. THIS COMPOSENT IS CLASSIFIED A 10. FAN SUBCOMPOSENT SUBCO SAR TABLE 1.3.3 (RANSPORTATIC 12. DELETED 13. LOCAL GRINDING OF THE MPC SHE IN BASE METAL THORNESS OVER THORNESS IS ALLOWED OVER TH SUM OF ALL AREAS OF LOCAL MET BORNOMS SHALL BC CONTRIVED E RONDONG SHALL BC CONTRIVED E RONDONG SHALL BC CONTRIVED E 14. FOR NON-CODE WELDS, THE PROV FOLLOWED 15. TOLERANCES FOR THICKNESS OF SPECIFIED IN ASME SECTION II. 16. REFER TO THE COMPONENT COMP APPROVED DESIGN DEVIATIONS FO 15. TOLERANCES FOR THICKNESS OF SPECIFIED IN ASME SECTION II. 16. REFER TO THE COMPONENT COMP APPROVED DESIGN DEVIATIONS FO 15. TOLERANCES FOR THICKNESS OF SPECIFIED IN ASME SECTION II. 16. REFER TO THE COMPONENT COMP APPROVED DESIGN DEVIATIONS FO THE RARENT DI MACCORDINCE WIT AND NISPECTED. NONINAL DIRENT	TIS-A BASED ON THE HIGHEST CLASSIFICATION MANNERS SHALL NOT RESULT IN GREATER FRANKULES IN AND FEAL ASIA AND AND AND AND AND AND AND AND AND AN
5014 P.O. 3923 TOT SHE ENSING DRAWING PAC DESCRIP IPC ENCLOSURE VESSEL GENERAL ARRAIN IPC ENCLOSURE VESSEL LID DETAILS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL IPC SERIAL #1021-040 ENCLOSURE VESSEL	TAL 7 EETS 7 CKAGE CONTENTS TTION GEMENT ILD DETAILS	· · · ·		RE 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	EV AFFECTED DRAWING SHEET NUMBERS 1 ALL 2 SHEETS 446 3 SHEETS 446 5 SHEETS 345 6 SHEETS 1, 3, 4, 4, 7 7 SHEETS 1, 8, 4, 4, 7 7 SHEETS 1, 7, 4, 7 7 SHEETS 1, 7, 4, 4, 7 7 SHEETS 1, 7, 7 7 SHEETS 1, 7, 7 7 SHEETS 1, 7, 7 7 SHEETS 1	REVISION LOG SUMMARY OF CHANGES/ AFFECTED ECOS 1021-61, REV. 0, 1023-30, REV. 0 ECO 5014-117, REV. 0 ECO 1023-30, REV. 1 ECO 1023-42, REV. 0 ECO 1023-42, REV. 0 ECO 1023-42, REV. 0 ECO 1023-42, REV. 0 ECO 1021-77, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 TTPICATION RECORD (VIR), NUMBER IS A COMPUTER COMPUTER REVIEWS OF THIS DRAWING ARE DOCUMENTER REV	PREPARED BY S.LC JJB S.LC S.LC S.LC S.LC	APPROVAL DATE 9/27/04 04/11/05 04/27/05 06/17/05 04/07/06 10/05/06 02/06/08	VIR#+ 89001 79255 67405 47815 78291 82938 96115	NOTES CONT: 11. THIS COMPOSENT IS CLASSIFIED A 10. FAN SUBCOMPOSENT SUBCO SAR TABLE 1.3.3 (RANSPORTATIC 12. DELETED 13. LOCAL GRINDING OF THE MPC SHE IN BASE METAL THORNESS OVER THORNESS IS ALLOWED OVER TH SUM OF ALL AREAS OF LOCAL MET BORNOMS SHALL BC CONTRIVED E RONDONG SHALL BC CONTRIVED E RONDONG SHALL BC CONTRIVED E 14. FOR NON-CODE WELDS, THE PROV FOLLOWED 15. TOLERANCES FOR THICKNESS OF SPECIFIED IN ASME SECTION II. 16. REFER TO THE COMPONENT COMP APPROVED DESIGN DEVIATIONS FO 15. TOLERANCES FOR THICKNESS OF SPECIFIED IN ASME SECTION II. 16. REFER TO THE COMPONENT COMP APPROVED DESIGN DEVIATIONS FO 15. TOLERANCES FOR THICKNESS OF SPECIFIED IN ASME SECTION II. 16. REFER TO THE COMPONENT COMP APPROVED DESIGN DEVIATIONS FO THE RARENT DI MACCORDINCE WIT AND NISPECTED. NONINAL DIRENT	AS ITS-A BASED ON THE HIGHEST CLASSIFICATION INFONENT CLASSIFICATIONS ARE PROVIDED IN ONI, AND FOR TABLE 22.6 (STORAGE). ELL SHALL NOT RESULT IN GREATER THAN 10% LC ANY AREA WICH EXCEED 51 MICHS IN THE ANY AREA WICH EXCEED 51 MICHS IN THE ANY AREA WICH EXCEED 51 MICHS IN THE ANY AREA WICH EXCEED 51 MICHS IN THE ALL START AND THE AND THE ANY AND ANY ANY AND ALL START AND ANY ANY ANY ANY ANY ANY ANY LEAST ANY ANY ANY ANY ANY ANY ANY ANY ANY LEAST ANY ANY ANY ANY ANY ANY ANY ANY ANY ANY LEAST ANY ANY ANY ANY ANY ANY ANY ANY ANY ANY LEAST ANY
3923 TOT SHE ENSING DRAWING PAC DESCRIP OVER SHEET IPC ENCLOSURE VESSEL GENERAL ARRAN IPC ENCLOSURE VESSEL LEVATION DETAL IPC ENCLOSURE VESSEL LID DETALS IPC FUEL SPACER DETALLS IPC SERIAL #1021-040 ENCLOSURE VESSEL	TAL 7 EETS 7 CKAGE CONTENTS TTION GEMENT ILD DETAILS	· · · ·		1 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	SHEET NUMBERS 1 ALL 2 SHEETS 4&6 3 SHEETS 4&6 5 SHEETS 3&5 6 SHEETS 1, 3, 4, 4, 7 7 SHEETS 1, 1, 4, 4, 7 SHEETS 1, 1, 4, 4, 7 <td>SUMMARY OF CHANGES/ AFFECTED ECOs 1021-61, REV, 0, 1022-57, REV, 0, 1023-30, REV, 0 ECO 5014-117, REV, 0 ECO 1023-30, REV, 1 ECO 1023-30, REV, 1 ECO 1023-42, REV, 0 ECO 1021-77, REV, 0, 1021-63, REV, 0 ECO 1021-77, REV, 0, 1022-73, REV, 0, 1023-51, REV, 0 ECO 1021-94, REV, 0, 1022-73, REV, 0, 1023-51, REV, 0 TIFICATION RECORD/VIR), NUMBER IS A COMPUTER GE PROPRIATE REVIEWS OF THIS DRAWING ARE DOCUME</td> <td>BY SLC JJB SLC JJB SLC SLC SLC</td> <td>DATE 9/27/04 04/11/05 06/17/05 06/17/05 04/07/06 10/05/06 02/06/08</td> <td>89001 79255 67405 47815 78291 82938 96115</td> <td>11 THIS COMPONENT IS CLASSIFIED O SAR TABLE 1.3.3 (TRANSPORTATIC SAR TABLE 1.3.3 (TRANSPORTATIC 2. DELETED 11. LOCAL GRINDING OF THE MPC SHE 11. IOCAL 11.</td> <td>ELL SHALL NOT RESULT IN GREATER THAN 10% LC ANY AREA WHICH EXCEEDS I MICHES IN THE XOWARES OF 0.02 LOSS IN NOMINAL BASE NETAL E ENTRE LENGT LOSS IN NOMINAL BASE NETAL TAL LOSS BHALL NOT EXCEED 10% OCH AREA YOU TE XANIANTON AS APPROPRIATE. USIONS OF EITHER ASME IX OR AVIS MAY BE ASME CODE MPC ENCLOSURE VESSEL MATERIAL PLETON RECORD (CCR) FOR THE COMPLETE LIST OR EACH INDIVIDUAL SERIAL NUMBER. VIENANIAL SIZE OF THE COMPLETE LIST OR EACH INDIVIDUAL SERIAL NUMBER.</td>	SUMMARY OF CHANGES/ AFFECTED ECOs 1021-61, REV, 0, 1022-57, REV, 0, 1023-30, REV, 0 ECO 5014-117, REV, 0 ECO 1023-30, REV, 1 ECO 1023-30, REV, 1 ECO 1023-42, REV, 0 ECO 1021-77, REV, 0, 1021-63, REV, 0 ECO 1021-77, REV, 0, 1022-73, REV, 0, 1023-51, REV, 0 ECO 1021-94, REV, 0, 1022-73, REV, 0, 1023-51, REV, 0 TIFICATION RECORD/VIR), NUMBER IS A COMPUTER GE PROPRIATE REVIEWS OF THIS DRAWING ARE DOCUME	BY SLC JJB SLC JJB SLC SLC SLC	DATE 9/27/04 04/11/05 06/17/05 06/17/05 04/07/06 10/05/06 02/06/08	89001 79255 67405 47815 78291 82938 96115	11 THIS COMPONENT IS CLASSIFIED O SAR TABLE 1.3.3 (TRANSPORTATIC SAR TABLE 1.3.3 (TRANSPORTATIC 2. DELETED 11. LOCAL GRINDING OF THE MPC SHE 11. IOCAL 11.	ELL SHALL NOT RESULT IN GREATER THAN 10% LC ANY AREA WHICH EXCEEDS I MICHES IN THE XOWARES OF 0.02 LOSS IN NOMINAL BASE NETAL E ENTRE LENGT LOSS IN NOMINAL BASE NETAL TAL LOSS BHALL NOT EXCEED 10% OCH AREA YOU TE XANIANTON AS APPROPRIATE. USIONS OF EITHER ASME IX OR AVIS MAY BE ASME CODE MPC ENCLOSURE VESSEL MATERIAL PLETON RECORD (CCR) FOR THE COMPLETE LIST OR EACH INDIVIDUAL SERIAL NUMBER. VIENANIAL SIZE OF THE COMPLETE LIST OR EACH INDIVIDUAL SERIAL NUMBER.
DESCRIP ENSING DRAWING PAC DESCRIP OVER SHEET IPC ENCLOSURE VESSEL GENERAL ARRANN IPC ENCLOSURE VESSEL ELEVATION DETAILS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	EETS /	<u>IS:</u>		1 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	SHEET NUMBERS 1 ALL 2 SHEETS 4&6 3 SHEETS 4&6 5 SHEETS 3&5 6 SHEETS 1, 3, 4, 4, 7 7 SHEETS 1, 1, 4, 4, 7 SHEETS 1, 1, 4, 4, 7 <td>1021-51, REV. 0, 1022-57, REV. 0, 1023-30, REV. 0 ECO 5014-117, REV. 0 ECO 1023-30, REV. 1 ECO 1021-71, REV. 0 ECO 1021-77, REV. 0, 1021-53, REV. 0 ECO 1021-77, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 CTIFICATION RECORD (VIR) NUMBER IS A COMPUTER OF PROPRIATE REVIEW OF THIS DRAWING ARE DOCUMENTED FOR COMP</td> <td>BY SLC JJB SLC JJB SLC SLC SLC</td> <td>DATE 9/27/04 04/11/05 06/17/05 06/17/05 04/07/06 10/05/06 02/06/08</td> <td>89001 79255 67405 47815 78291 82938 96115</td> <td> DELETED LOCAL GRINDING OF THE MPC SHE IN BASE METAL THEINIESS OVER HASE METAL THEINIESS OVER HASE METAL AN ADDITIONAL ALLO THEINIESS B ALLOWED OVER TH SUND FAILBRACE ACCETAL WH ORINIENS SHALL BE CONTINUED BOINTONS SHALL BE CONTINUED APPROVED DESIGN DEVIATIONS F TO ILLENSIONS NOTED AS NORMAL I CONV. IN ORDER TO INDICATE THE PREMICIPAL OF THE COMPONING WIT AND NISPECTED IN NORMAL DIRENT ADD SPECTED IN NORMAL DIRENT THE FABRICATION PROCESS. </td> <td>ELL SHALL NOT RESULT IN GREATER THAN 10% LC ANY AREA WHICH EXCEEDS I MICHES IN THE XOWARES OF 0.02 LOSS IN NOMINAL BASE NETAL E ENTRE LENGT LOSS IN NOMINAL BASE NETAL TAL LOSS BHALL NOT EXCEED 10% OCH AREA YOU TE XANIANTON AS APPROPRIATE. USIONS OF EITHER ASME IX OR AVIS MAY BE ASME CODE MPC ENCLOSURE VESSEL MATERIAL PLETON RECORD (CCR) FOR THE COMPLETE LIST OR EACH INDIVIDUAL SERIAL NUMBER. VIENANIAL SIZE OF THE COMPLETE LIST OR EACH INDIVIDUAL SERIAL NUMBER.</td>	1021-51, REV. 0, 1022-57, REV. 0, 1023-30, REV. 0 ECO 5014-117, REV. 0 ECO 1023-30, REV. 1 ECO 1021-71, REV. 0 ECO 1021-77, REV. 0, 1021-53, REV. 0 ECO 1021-77, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 CTIFICATION RECORD (VIR) NUMBER IS A COMPUTER OF PROPRIATE REVIEW OF THIS DRAWING ARE DOCUMENTED FOR COMP	BY SLC JJB SLC JJB SLC SLC SLC	DATE 9/27/04 04/11/05 06/17/05 06/17/05 04/07/06 10/05/06 02/06/08	89001 79255 67405 47815 78291 82938 96115	 DELETED LOCAL GRINDING OF THE MPC SHE IN BASE METAL THEINIESS OVER HASE METAL THEINIESS OVER HASE METAL AN ADDITIONAL ALLO THEINIESS B ALLOWED OVER TH SUND FAILBRACE ACCETAL WH ORINIENS SHALL BE CONTINUED BOINTONS SHALL BE CONTINUED APPROVED DESIGN DEVIATIONS F TO ILLENSIONS NOTED AS NORMAL I CONV. IN ORDER TO INDICATE THE PREMICIPAL OF THE COMPONING WIT AND NISPECTED IN NORMAL DIRENT ADD SPECTED IN NORMAL DIRENT THE FABRICATION PROCESS. 	ELL SHALL NOT RESULT IN GREATER THAN 10% LC ANY AREA WHICH EXCEEDS I MICHES IN THE XOWARES OF 0.02 LOSS IN NOMINAL BASE NETAL E ENTRE LENGT LOSS IN NOMINAL BASE NETAL TAL LOSS BHALL NOT EXCEED 10% OCH AREA YOU TE XANIANTON AS APPROPRIATE. USIONS OF EITHER ASME IX OR AVIS MAY BE ASME CODE MPC ENCLOSURE VESSEL MATERIAL PLETON RECORD (CCR) FOR THE COMPLETE LIST OR EACH INDIVIDUAL SERIAL NUMBER. VIENANIAL SIZE OF THE COMPLETE LIST OR EACH INDIVIDUAL SERIAL NUMBER.
DESCRIP ENSING DRAWING PAC DESCRIP OVER SHEET IPC ENCLOSURE VESSEL GENERAL ARRANN IPC ENCLOSURE VESSEL ELEVATION DETAILS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	EETS /			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2 SHEETS 4 & 6 3 SHEET 5 4 SHEET 5 5 SHEET 5 3 & 5 6 SHEETS 1 & 3 & 4 & 7 7 SHEETS 1 & 3 4 THE VALIDATION IDES 1 THE VALIDATION IDES	1021-51, REV. 0, 1022-57, REV. 0, 1023-30, REV. 0 ECO 5014-117, REV. 0 ECO 1023-30, REV. 1 ECO 1021-71, REV. 0 ECO 1021-77, REV. 0, 1021-53, REV. 0 ECO 1021-77, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 CTIFICATION RECORD (VIR) NUMBER IS A COMPUTER OF PROPRIATE REVIEW OF THIS DRAWING ARE DOCUMENTED FOR COMP	SLC JJB SLC JJB SLC SLC SLC	9/27/04 04/11/05 04/27/05 06/17/05 04/07/06 10/05/06 02/06/08	79255 67405 47815 78291 82938 96115	 LOCAL GRINDING OF THE MIC OWNERS OWNER LONGITUDINAL OF CIRCUMPERENT DASK INFORMATIONAL ALCOMENTIONAL ALCOMENTIONAL ALCOMENTIONAL ALCOMENTIONAL ALCOMENTIONAL THICKNESS IS ALL AREAS OF LOCAL INET INFORMATION INFORMATIONAL ALCOMENTIONE INFORMATION INFORMATION INFORMATION FOLLOWED. TO LERANCES FOR THICKNESS OF SPECIFICIEN ASME SECTION II. REFER TO THE COMPONENT COME APPROVED DESIGN DESTION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION ADD RESPECTED. NOMINAL DIMENSIONS THE FAREINCATION IN ACCOMENCESS. 	VISIONS OF EITHER ASME IX OR AWS MAY BE ASME CODE MPC ENCLOSURE VESSEL MATERIAL PLETION RECORD (CER), FOR THE COMPLETE LIST OR EACH INDIVIDUAL SERIAL NUMEER (EACH INDIVIDUAL SERIAL NUMEER) (ENERAL SIZE OF THE COMPONENT OR PART), TH OTHER DWANNES MAY TAR ARE TO LENARCOS NOT SARE NOT SPECIFICALLY VERIFIED DURING
DESCRIP OVER SHEET IPC ENCLOSURE VESSEL GENERAL ARRAN IPC ENCLOSURE VESSEL ELEVATION DETAL IPC ENCLOSURE VESSEL ID DETALS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	PTION Gement LIS LID Details			11 11 11 11 11 11 11 11 11 11 11 11 11	3 SHEET 5 4 SHEET 6 5 SHEET 8 3 8 5 6 SHEET 8 1 8 3 7 SHEET 8 1 8 3 1 THE VALIDATION IDES + THE VALIDATION IDES	ECO 1023-30, REV. 1 ECO 1021-71, REV. 0 ECO 1021-77, REV. 0 ECO 1021-77, REV. 0, 1021-83, REV. 0 ECO 1021-94, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 ECO 1021-94, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-94, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-94, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0 CO 1021-74, REV. 0, 1022-73, REV. 0, 1023-74, REV. 0,	S.LC JJB S.LC S.LC S.LC	04/27/05 06/17/05 04/07/06 10/05/06 02/06/08	67405 47815 78291 82938 96115	14. FOR NON-CODE WELDS, THE PROV FOLLOWED. 15. TOLERANCES FOR THICKNESS OF SPECIFIC M ASM SECTION II. 16. REFER TO THE COMPONENT COMMON APPROVED DESIGN DEVISION SF TO IMMENSIONS NOTED AS NOMMAL (ONLY, IN ORDER TO INDEXNET TO AND WISPECTED, NOMINAL DIREN FARING TON IN ACCORDANCE WIT AND WISPECTED, NOMINAL DIREN THE FARINGLATION PROCESS.	VISIONS OF EITHER ASME IX OR AVVS MAY BE ASME CODE MPC ENCLOSURE VESSEL MATERIA PLETION RECORD ICCR, FOR THE COMPOLETE LIS OR EACH INDIVIDUAL SERIAL NUMBER. ISTREMAL SIZE OF THE COMPOLENT OR PART. TH OTHER DIMENSION STATAT ARE TO REINCORMATIO RECOMPOLENT OF THE COMPOLENT OR PART. TH OTHER DIMENSION STATAT ARE TO LERANCE SIGNES ARE NOT SPECIFICALLY VERIFIED DURING
DESCRIP OVER SHEET IPC ENCLOSURE VESSEL GENERAL ARRAN IPC ENCLOSURE VESSEL ELEVATION DETAL IPC ENCLOSURE VESSEL ID DETALS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	PTION Gement LIS LID Details			1. 1; 1; 10 1 1	4 SHEETS 3 & 5 5 SHEETS 3 & 5 6 SHEETS 1, 3, 4, 8, 7 7 SHEETS 1, 8, 3 - - <	ECO 1021-71, REV. 0 ECO 1021-71, REV. 0, 1021-83, REV. 0 ECO 1021-77, REV. 0, 1021-83, REV. 0 ECO 1021-84, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 ECO 1021-84, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 TOPICATION RECYRD, VIR, NUMBER IS A COMPUTER OF PROPRIATE REVIEWS OF THIS DRAWING ARE DOCUME	JJB S.LC S.LC S.LC	06/17/05 04/07/06 10/05/06 02/06/08	47815 78291 82938 96115	14. FOR NON-CODE WELDS, THE PROV FOLLOWED. 15. TOLERANCES FOR THICKNESS OF SPECIFIC M ASM SECTION II. 16. REFER TO THE COMPONENT COMMON APPROVED DESIGN DEVISION SF TO IMMENSIONS NOTED AS NOMMAL (ONLY, IN ORDER TO INDEXNET TO AND WISPECTED, NOMINAL DIREN FARING TON IN ACCORDANCE WIT AND WISPECTED, NOMINAL DIREN THE FARINGLATION PROCESS.	VISIONS OF EITHER ASME IX OR AVVS MAY BE ASME CODE MPC ENCLOSURE VESSEL MATERIA PLETION RECORD ICCR, FOR THE COMPOLETE LIS OR EACH INDIVIDUAL SERIAL NUMBER. ISTREMAL SIZE OF THE COMPOLENT OR PART. TH OTHER DIMENSION STATAT ARE TO REINCORMATIO RECOMPOLENT OF THE COMPOLENT OR PART. TH OTHER DIMENSION STATAT ARE TO LERANCE SIGNES ARE NOT SPECIFICALLY VERIFIED DURING
DESCRIP OVER SHEET IPC ENCLOSURE VESSEL GENERAL ARRAN IPC ENCLOSURE VESSEL ELEVATION DETAL IPC ENCLOSURE VESSEL ID DETALS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	PTION Gement LIS LID Details			1! 10 1 1	5 SHEETS 3 & 5 6 SHEETS 1, 3, 4, & 7 7 SHEETS 1, 8, 3 7 SHEETS 1, 8, 4, 8, 7 7 SHEETS 1, 8, 3 SHEETS 1, 8, 4, 8, 7 7 SHEETS 1, 8, 3 SHEETS 1, 8, 4, 8, 7 7 SHEETS 1, 8, 3 SHEETS 1, 8, 7 7 SHEETS 1,	ECO 1023-42, REV. 0 ECO 1021-77, REV. 0, 1021-63, REV. 0 ECO 1021-64, REV. 0, 1022-73, REV. 0, 1023-61, REV. 0	S.L.C S.L.C S.L.C	04/07/06 10/05/06 02/06/08	78291 82938 96115	14. FOR NON-CODE WELDS, THE PROV FOLLOWED. 15. TOLERANCES FOR THICKNESS OF SPECIFIC M ASM SECTION II. 16. REFER TO THE COMPONENT COMMON APPROVED DESIGN DEVISION SF TO IMMENSIONS NOTED AS NOMMAL (ONLY, IN ORDER TO INDEXNET TO AND WISPECTED, NOMINAL DIREN FARING TON IN ACCORDANCE WIT AND WISPECTED, NOMINAL DIREN THE FARINGLATION PROCESS.	VISIONS OF EITHER ASME DX OR AVVS MAY BE ASME CODE MPC ENCLOSURE VESSEL MATERIA PLETION RECORD (CCR) FOR THE COMPLETE LIS OR EACH INDIVIDUAL SERIAL NUMBER. EACH INDIVIDUAL SERIAL NUMBER. ISTAREAL SEEN OF THE COMPUTERT OR PARTI. TH OTHER OTHER OTHERIONS THAT ARE TOLERANCE SIGNERAL SEEN OT SPECIFICALLY VERIFIED DURING SIGNER ARE NOT SPECIFICALLY VERIFIED DURING
OVER SHEET IPC ENCLOSURE VESSEL GENERAL ARRAN IPC ENCLOSURE VESSEL ELEVATION DETA IPC ENCLOSURE VESSEL LID DETAILS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	GEMENT ILS LID DETAILS			GI	6 бнееть 1, 3, 4, 4, 7 7 мееть 1, 8, 4, 4, 7 7 мееть 1, 8, 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ECO 1021-77, REV. 0, 1021-83, REV. 0 ECO 1021-94, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 ECO 1021-94, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0 TIPICATION RECYRD (VIR) NUMBER IS A COMPLETER OF PROPRIATE REVIEWS OF THIS DRAWING ARE DOCUME	S.L.C S.L.C	10/05/06	82938 96115	5. TOLERANCES FOR THICKNESS OF SPECIFICIA SME SECTION I. CAREFR TO THE COMPONENT COMP APPROVED DESIGN DEVIATIONS FO TO UNENSION NOTED AS NOMMALT ONLY. IN ORDER TO INDICATE THE PARTICIDUM ACCORDINCE WIT AND SUSPECTED. NOMINAL DIREN THE FARISATION IN ACCORDANCE WIT AND SUSPECTED. NOMINAL DIREN THE FARISATION IN ACCORDANCE WIT AND SUSPECTED. NOMINAL DIRENT	ASME CODE MPC ENCLOSURE VESSEL MATERIA PLETION RECORD (CCR) FOR THE COMPLETE LIS OF EACH INDIVIDUAL SERVIL INUMER. (NOAL) IN THIS BRAVING ARE FOR INFORMATIO SENERAL SIZE OF THE COMPONENT ON PART. IN OTHER OTHER DIVENSIONS THAT ARE TOLERANCE SIGNES ARE NOT SPECIFICALLY VERIFIED DURING
OVER SHEET IPC ENCLOSURE VESSEL GENERAL ARRAN IPC ENCLOSURE VESSEL ELEVATION DETA IPC ENCLOSURE VESSEL LID DETAILS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	GEMENT ILS LID DETAILS			GI	7 SHEETS 18 3	ECO 1021-94, REV. 0, 1022-73, REV. 0, 1023-51, REV. 0	S.LC	02/06/08	96115	16. REFER TO THE COMPONENT COMP APPROVED DESIGN DEVIATIONS FC 17. DIMENSIONS NOTED AS NOMINAL (ONLY. IN ORDER TO INDICATE THE NOMINAL DIMENSIONS HAVE NO S FABRICATION HACORDANIC AND AND MISPECTED, NOMINAL DIMENS THE FABRICATION PROCESS.	PLETION RECORD (CCR) FOR THE COMPLETE LIS OR EACH INDIVIDUAL SERIAL NUMBER. CNOM, IN THE DRAWING ARE FOR INFORMATIO STRUCTURE DRAWING ARE FOR INFORMATION INFORMED TOLERNICE, BUT MAR HET THROUGH INFORMED TOLERNICE, BUT MAR HET DLERNICE SIGNS ARE NOT SPECIFICALLY VERIFIED DURING SIGNS ARE NOT SPECIFICALLY VERIFIED DURING
IPC ENCLOSURE VESSEL GENERAL ARRAN IPC ENCLOSURE VESSEL ELEVATION DETA IPC ENCLOSURE VESSEL LID DETAILS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	ILS LID DETAILS			GI 1.	THE VALIDATION IDE CONFIRMS THAT ALL A ENERAL NOTES:	TIFICATION RECORD (VIB) NUMBER IS A COMPLETE OF OF PROPRIATE REVIEWS OF THIS DRAWING ARE DOCUME			· · · · · · · · · · · · · · · · · · ·	17. DIMENSIONS NOTED AS NOMINAL (ONLY, IN ORDER TO INDICATE THE NOMINAL DIMENSIONS HAVE NO S FABRICATION IN ACCORDANCE WT AND UNSPECTED, NOMINAL DIMENS THE FABRICATION PROCESS.	('NOM.') IN THIS DRAWING ARE FOR INFORMATIC GENERAL SIZE OF THE COMPONENT OR PART. PRECIPIC TOLERANCE, BUT ARE MET THROUGH ITH OTHER DIMENSIONS THAT ARE TOLERANCE! SIONS ARE NOT SPECIFICALLY VERIFIED DURING
APC ENCLOSURE VESSEL ELEVATION DETA IPC ENCLOSURE VESSEL LID DETAILS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	ILS LID DETAILS			1.	ENERAL NOTES:	TIFICATION RECORD (VIR) NUMBER IS A COMPLETER GE PPROPRIATE REVIEWS OF THIS DRAWING ARE DOCUME	INTERATED RANDO	M NUMBER WHICH	H		
IPC ENCLOSURE VESSEL LID DETAILS IPC FUEL SPACER DETAILS IPC SERIAL #1021-040 ENCLOSURE VESSEL	LID DETAILS			1.	ENERAL NOTES:	TIFICATION RECORD (VIR) NUMBER IS A COMPLETER GE PPROPRIATE REVIEWS OF THIS DRAWING ARE DOCUME	INTERATED RANDO	M NUMBER WHIC Y'S NETWORK	H		
IPC SERIAL #1021-040 ENCLOSURE VESSEL				1.	ENERAL NOTES:	TIFICATION RECORD (VIR) NUMBER IS A COMPLETER GE PPROPRIATE REVIEWS OF THIS DRAWING ARE DOCUME	NERATED RANDO	M NUMBER WHIC	H	△△15. DIFFERENCES BETWEEN THE GAN	ENG MIC ENCLOSURE VESSEL AND THE IPT MP
				1.	ENERAL NOTES:	TIFICATION RECORD (VIR) NUMBER IS A COMPLETER GE PPROPRIATE REVIEWS OF THIS DRAWING ARE DOCUME	NERATED RANDO	M NUMBER WHIC	h		
				1.	ENERAL NOTES:		NERATED RANDO	DM NUMBER WHIC	Ĥ		. •
				1.	ENERAL NOTES:		NERATED RANDO	M NUMBER WHIC	Ħ	· · ·	
				1.	ENERAL NOTES:		NERATED RANDO	M NUMBER WHIC	Ħ		
				1.	ENERAL NOTES:		NERATED RANDO	M NUMBER WHIC	H ·		
· · · · · · · · · · · · · · · · · · ·				1.							
			•		. THE EQUIPMENT DESIGN DO				· .		
						DCUMENTED IN THIS DRAWING PACKAGE HAS Y WITH THE SAFETY ANALYSES DESCRIBED IN					$\overline{(\cdot)}$
·				, · · · 2.	DIMENSIONAL TOLERANCES DESIGN IS CONSISTENT WIT	S ON THIS DRAWING ARE PROVIDED TO ENSUF IH THE SUPPORTING ANALYSES, HARDWARE SS, WHICH MAY HAVE MORE RESTRICTIVE TOU T-CASE TOLERANCE STACK-UP FROM THIS DR	RE THAT THE E	QUIPMENT	NCE		
		······	· 1							P	
	·····		· · · ·	• • • •	THE REVISION LEVEL OF EA THIS COVER SHEET. A REVI OF ALL SHEETS TO THE NE	CH INDIVIDUAL SHEET IN THIS PACKAGE IS TH SION TO ANY SHEET(S) IN THIS PACKAGE REQ AT REVISION NUMBER	E SAME AS TH UIRES UPDATI	E REVISION LE NG OF REVISIO	VEL OF IN NUMBERS		
<u>.</u>		·				•		DENDA	•		
		· · ·			THROUGH 1997 IS THE GOVI ALTERNATIVES AS LISTED IN THE MRC ENCLOSURE VESS	SSURE VESSEL CODE (ASME CODE), 1995 EDI ERNING CODE FOR THE MPC ENCLOSURE VES N SAR TABLE 1.3.2 (TRANSPORTATION) AND FS SEL IS CONSTRUCTED IN ACCORDANCE WITH J	SSEL, WITH CEI SAR TABLE 2.2.	RTAIN APPROV 15 (STORAGE).	ED		
				· · · · .	NB WITH CERTAIN APPROVE FSAR (STORAGE). NEW OR F	SEL IS CONSTRUCTED IN ACCORDANCE WITH A ED CODE ALTERNATIVES AS DESCRIBED IN TH REVISED ASME CODE ALTERNATIVES REQUIRE	E SAR (TRANS E PRIOR NRC A	PORTATION) A	ND ORE		
<u> </u>				· •	IMPLEMENTATION.			-			
				<u>-</u>	ALLOY X IS ANY OF THE FO MATERIAL MUST COMPLY W	EL STRUCTURAL MATERIALS ARE "ALLOY X" U LLOWING STAINLESS STEEL TYPES: 316, 316LP ATH ASME SECTION II, PART A. WELD MATERIA RESSEL WALL (I.E. CYCLINDER SHELL) WILL BE ESS STEEL.	N, 304, AND 304	LN. ALLOY X	TION II.		
					THE SAME TYPE OF STAINLE	ESS STEEL.	FABRICATED	JF PIEÇES MAL	JE PROM		
		<u> </u>		6.	ALL WELDS REQUIRE VISUA AS REQUIRED. NDE TECHNIC	L EXAMINATION (VT), ADDITIONAL NDE INSPEC QUES AND ACCEPTANCE CRITERIA ARE GOVE	CTIONS ARE NO	DTED ON THE L	ORAWING AND III,		
		· · ·									MPC ENCLOSURE VESSEL ISOMETRIC VIEW
											0.407
		<u> </u>		10	ACCEPTABLE WITHIN THE	LIMITS SPECIFIED IN THE ASME CODE, AS APP	PLICABLE.	NUEROILE WE	LUS ARE		GENERAL
<u> </u>	······································	<u> </u>		1.1.1	· . · · ·	· ·					ONAL MPC ENCLOSURE
						•				And a state of	st
	·				· · · · · ·					Pares 5014	3923 1
<u> </u>	7	<u> </u>	6	<u> </u>	1 5	→ 4		3		N/A2	HI-STORM 100 FSAR Revision 6; February 7, 2
	•					· · · · · · · · · · · · · · · · · · ·	•	<u>.</u>			,
					a tan a ta						
	· · ·		· *								
					7 8 9 11 11	7. UNLESS OTHERWISE NOTED 8. FUEL BASKET SUPPORTS AL 0N THE INDMIDUAL FUEL B 0. DIFFERENCES BETWEEN TH VESSEL ARE SPECIFICALLY 10. ALL WELD SUES ARE MINI ACCEPTABLE WITHIN THE	7. UNLESS OTHERWISE NOTED, FULL PENETRATION WELDS MAY BE MADE F 8. FUEL BASKET SUPPORTS ARE ILLUSTRATIVE. ACTUAL FUEL BASKET SUP 0. THE INDIVIDUAL FUEL BASKET DRAWINGS. 0. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND TH VESSEL ARE SPECIFICATIVE NOTED (FOR PART 71 USE ONLY). 10. ALL WELD SIZES ARE MINIMUS LARGER WELDS ARE PERMITTED LOC ACCEPTABLE WITHIN THE LIMITS SPECIFIED IN THE ASME CODE, AS APP	7. UNLESS OTHERWISE NOTED, FULL PENETRATION WELDS MAY BE MADE FROM EITHER S 6. FUEL BASKET SUPPORTS ARE ILLUSTRATIVE, ACTUAL FUEL BASKET SUPPORT ARRANG 0. ON THE INOMOUSL FUEL BASKET ORANNOS. 8. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLA VESSEL ARE SPECIFICALLY NOTED, FOR PART 71 USE ONLY). 10. ALL WELD SIZES ARE MINIMUSS. ACCEPTABLE WITHIN THE LIMITS SPECIFIED IN THE ASME CODE, AS APPLICABLE.	7. UNLESS OTHERWISE NOTED, FULL PENETRATION WELDS MAY BE MADE FROM EITHER SIDE OF A COM 8. FUEL BASKET SUPPORTS ARE ILLUSTRATIVE, ACTUAL FUEL BASKET SUPPORT ARRANGEMENTS ARE SO IN THE INDIVIDUAL FUEL BASKET DRAWINGS. 8. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLO 9. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLO 9. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLO 9. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLO 9. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLO 9. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLO 9. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLO 9. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLO 9. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLO 9. DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL ARE SPECIFICALLY NOTED FOR PART 71 USE ONLY. 10. ALL WELD SIZE ARE MINIMUMS LARGER PREMITTED. LOCAL AREAS OF UNDERSIZE WE 9. ACCEPTABLE WITHIN THE LIMITS SPECIFIED IN THE ASME CODE, AS APPLICABLE.	6 ALL WELDS REQUIRE VISUAL EXAMINATION (VT). ADDITIONAL NDE INSPECTIONS ARE MOTED ON THE DRAWING 6 ALL WELDS REQUIRE VISUAL EXAMINATION (VT). ADDITIONAL NDE INSPECTIONS ARE MOTED ON THE DRAWING 6 ALL WELDS REQUIRED WE TECHNIQUES AND ACCEPTANCE GRITERINED BY ASME SECTIONS AND III, NE INSPECTIONS ARE MOTED ON THE DRAWING 6 ALL WELDS REQUIRE VISUAL EXAMINATION (VT). ADDITIONAL NDE INSPECTIONS ARE MOTED ON THE DRAWING 6 ALL WELDS REQUIRE VISUAL EXAMINATION (VT). ADDITIONAL NDE INSPECTIONS ARE MOTED ON THE DRAWING 6 ALL WELDS REQUIRE VISUAL EXAMINATION (VT). ADDITIONAL NDE INSPECTIONS ARE MOTED ON THE DRAWING 6 ALL WELDS RECOURE VISUAL EXAMINATION (VT). ADDITIONAL NDE INSPECTIONS ARE MOTED ON THE DRAWING 7 UP AND ADDITIONAL THE DRAWING AND ADDITIONAL NDE INSPECTIONS ARE MOTED ON THE DRAWING 9 DIFFERENCES BETWEEN THE GENERIC MPC ENCLOSURE VESSEL AND THE TROJAN PLANT MPC ENCLOSURE VESSEL ARE SPECIFICALLY NOTED (FOR PART TO USE DIV). 10. ALL WELD SIZES ARE MINIMUMS, LARGER WELDS ARE EXAMPLE ADDITIONAL NDE INSPECTICABLE 7 6 5 4 3	7. UNLESS OTHERMISE NOTED, FULL PENETRATION WELDS MAY BE MADE FROM ETHER SIDE OF A COMPONENT. 8. FUEL BASKET SUPPORTS ARE ILLUSTRATIVE, ACTUAL FUEL BASKET SUPPORT ARRANGEMENTS ARE SHOWN ON THE INDIMULAL FUEL BASKET SUPPORTS. 9. DIFFERENCES BETWEEN THE GENERIC MCC ENCLOSURE VESSEL AND THE TROJAN PLANT MCC ENCLOSURE VESSEL ARE SPECIFICALLY NOTED (FOR PART 71 USE ONLY). 10. ALL WELD SIZES ARE MINIMUMS. LANGER PREMITTED. LOCAL AREAS OF UNDERSIZE WELDS ARE ACCEPTABLE WITHIN THE LIMITS SPECIFIED IN THE ASME CODE, AS APPLICABLE. HOL LT IN THE RINK ONLY AND



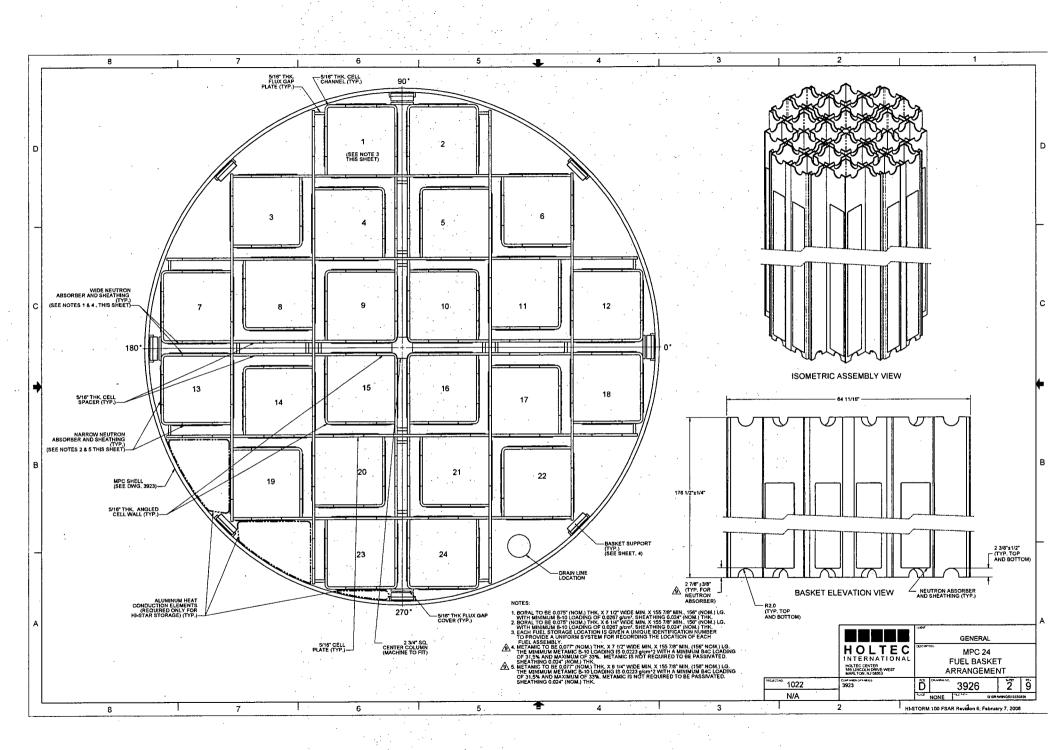


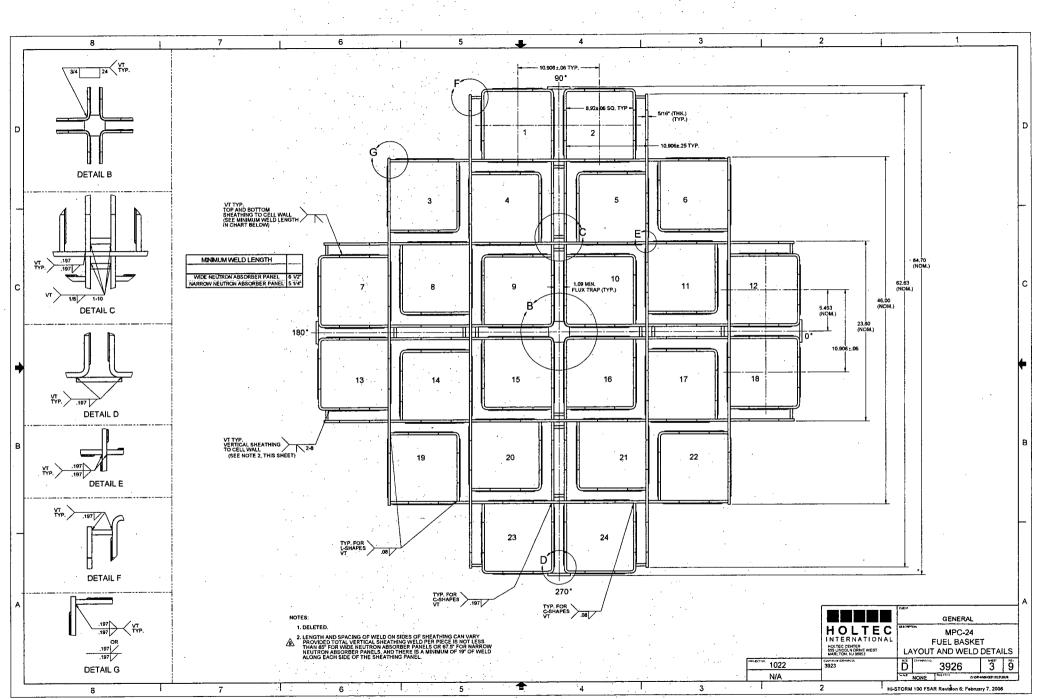


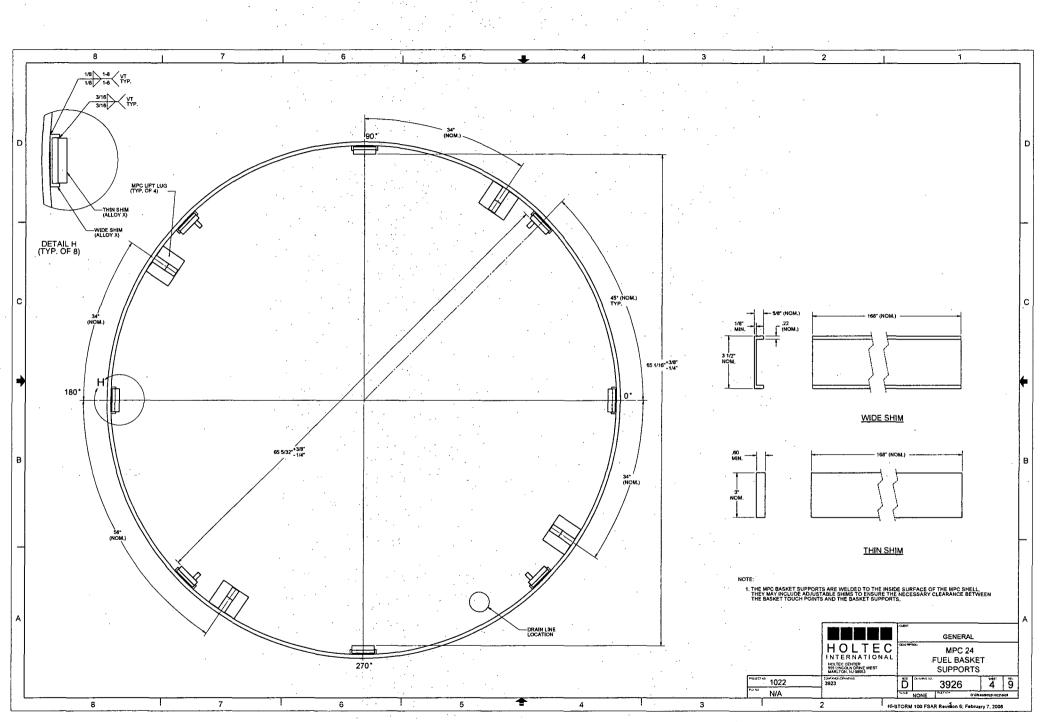
. . ..

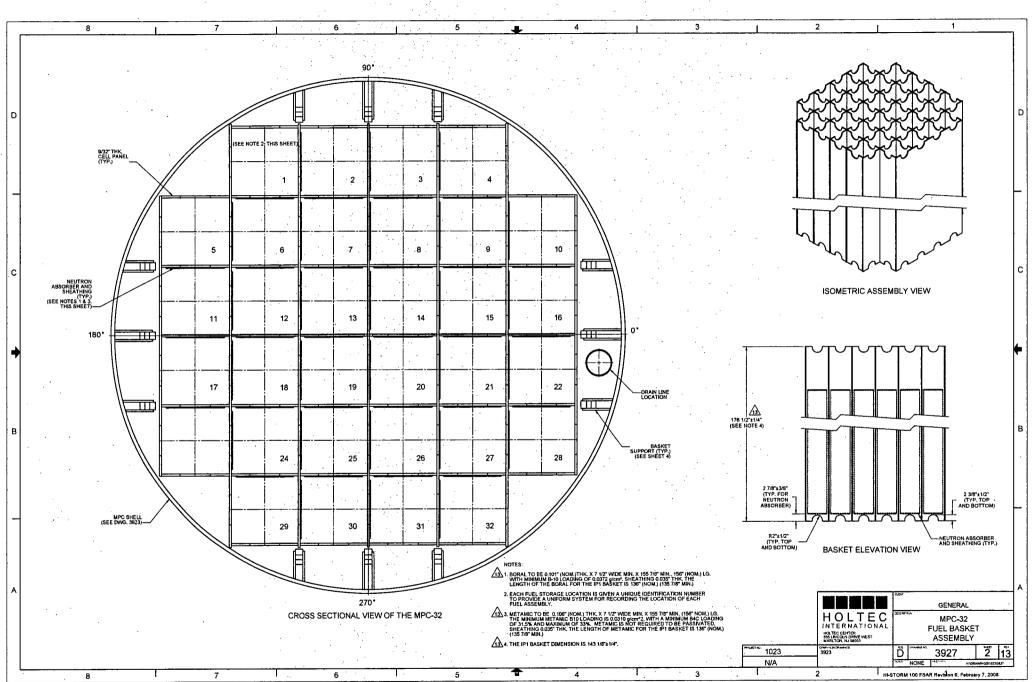


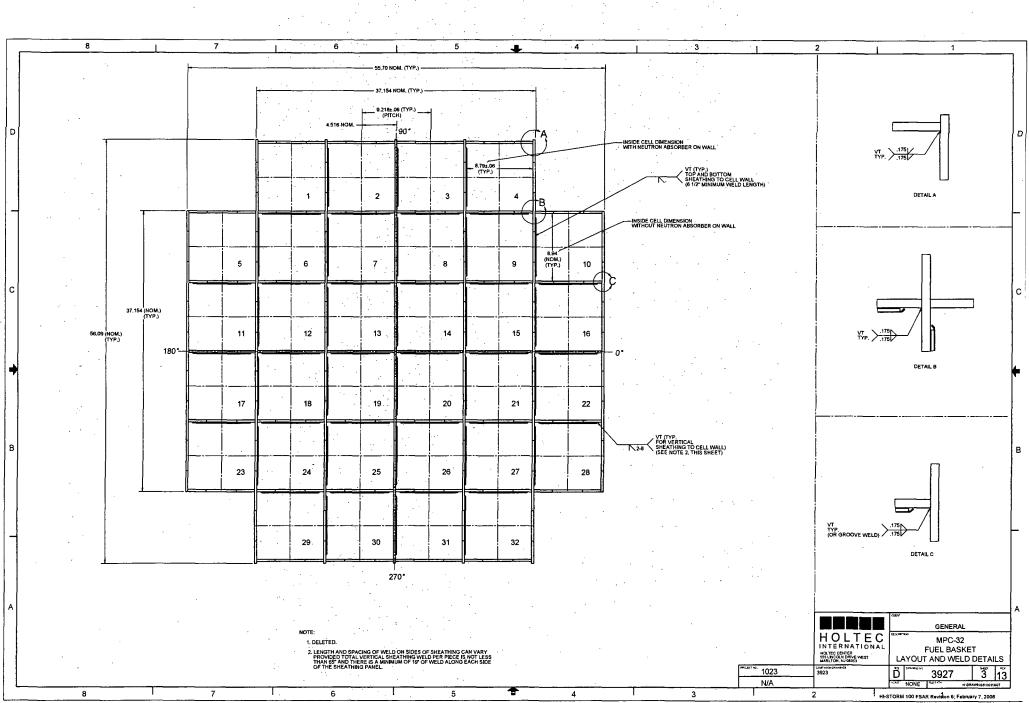
PROJECT NO). 1022	P.O. NO. N/A									13. DELETED. 14. TOLERANCES FOR THICKNESS OF ASME CODE MATERIAL
DRAWING PACKAGE I.I	3925	TOTAL Z	4		•	· · · ·	REVISION LOG		•		ARE SPECIFIED IN ASME SECTION II.
		SHELTO			REV	AFFECTED DRAWING	SUMMARY OF CHANGES/ AFFECTED ECOs	PREPARED	APPROVAL	VIR# +	LOCAL AREAS OF UNDERSIZE WELDS ARE ACCEPTABLE WITHIN THE LIMITS SPECIFIED IN THE ASME CODE, AS CLARIFIED IN THE (F)SAR.
		1			0	SHEET NUMBERS	1022-38	. SLC	5/30/02	17385	16. REFER TO THE COMPONENT COMPLETION RECORD (CCR) FOR THE COMPLETE LIST OF APPROVED DESIGN DEVIATIONS FOR
Lle	ENSING DRAWI	NG PACKAGE CON	TENTS:		1	ALL	1022-38, REV. 1	SLC	8/28/02	69345	EACH INDIVIDUAL SERIAL NUMBER. 17. THE MPC-24E/EF IS CERTIFIED FOR STORAGE AND TRANSPORTATION
					2	SHEETS 2 & 3	1022-30, REV. 0 & 5014-82, REV. 0	SLC	4/23/03	61822	17. THE MPC-24E/EF IS CERTIFIED FOR STORAGE AND TRANSPORTATI OF INTACT AND DAMAGED PWR FUEL AND PWR FUEL CLASSIFIED FUEL DEBRIS, AS SPECIFIED IN COC6 72-1014, AND 71-9261.
SHEET		ESCRIPTION	· · · · · ·		3	SHEETS 1, 2, 8 4	1022-48	SLC	5/19/03	40190	18. DIMENSIONS NOTED AS NOMINAL ("NOM.") IN THE DRAWING ARE FO
	OVER SHEET	· · · · · · · · · · · · · · · · · · ·	· ·	1	4	SHEETS 1, 3, & 4	1022-51	SLC	7/11/03	34515	18. DIMENSIONS NOTED AS NOMINAL ("NOM.") IN THE DRAWING ARE F(INFORMATION ONLY. IN ORDER TO INDICATE THE GENERAL SIZE O THE COMPONENT OR PART. NOMINAL DIMENSIONS HAVE NO SPEC TOLERANCE, BUT ARE MET THROUGH FABRICATION IN ACCORDAN INFORMATION IN ACCORDAN
	UEL BASKET ARRANGEMENT			· · ·	5	SHEET 2	1022-57	SLC	9/27/04	57814	 WITH OTHER DIMENSIONS THAT ARE TOLERANCED AND INSPECTE NOMINAL DIMENSIONS ARE NOT SPECIFICALLY VERIFIED DURING T FABRICATION PROCESS.
	UEL BASKET LAYOUT AND WELD	DETAILS	÷		6	SHEETS 2, 3, & 4	1022-69. REV. 0	SLC	06/14/06	49580	
4	UEL BASKET SUPPORT DETAILS			l' ·	7	-+	1022-68, REV. 0	SLC	06/14/06		19. NEUTRON ABSORBER PANELS MAY BE MADE UP OF ONE LONG PAN OF INDICATED WIDTH OR TWO SHORTER PANELS OF INDICATED AN A SLONG AS THE TOTAL LENGTH IS MAINTAINED AS INDICATED AN
				1		SHEETS 1, 2, & 3	1062-97, REV. U		00/0/06	35683	GAP BETWEEN PANELS IS MAINTAINED AT NO MORE THAN 1/4".
				· .	.		· · · · · · · · · · · · · · · · · · ·				20. NEUTRON ABSORBER PANELS MAY HAVE A REDUCTION IN WIDTH (UP TO 1/32 OVER A LENGTH OF NO MORE THAN 12" PROVIDED THA AVERAGE WIDTH OF THE PANEL IS NO LESS THAN THE MINIMUM
						· · · · · · · · · · · · · · · · · · ·		<u> </u>	1		SPECIFIED.
-						† THE VALIDATION IDENT CONFIRMS THAT ALL AP	FICATION RECORD (VIR) NUMBER IS A COMPUTER O PROPRIATE REVIEWS OF THIS DRAWING ARE DOCUM	MENERATED RANDO	M NUMBER WHIC	.н	
				AN SU AL 5. ALI 6. ALI 7. FA 8. DO 9. ALI 316 10. DI 11. BC ▲ TO N	D FSAR 1 BSECTION TERNATIN MPLIES CHNIQUE PLICABLE BRICATO NOT MAL STRUCT STRUCT STRUCT D HAVE N FFERENC OTH BOR D HAVE N FFERENC D HAVE N F THE PA EACH PJ ONG ON A) THE 1 B) THE 1 C) THE 1	TABLE 22.15 (STORAGE), T. IN IG AS DESCRIBED IN THE VES REQUIRE PRIOR NRC . SIXET STRUCTURAL MATE WITH THE REQUIREMENTS REQUIRE VISUAL EXAMINA IS AND ACCEPTANCE (ATI IS SIGNIFICANT FLAWS, HA NELS INTO THE MPC FUEL AL AND METAMIC ARE APP IO SIGNIFICANT FLAWS, HA NEL MAS BEEN ANAL YZE IE EDGE OF A PANEL ONLY TOTAL AREA OF DAMAGE ID DAMAGE IS LOCATED WITH DAMAGE IS LOCATED WITH DAMAGE DOES NOT EXTEN	ISSEL CODE (ASME CODE), 1995 EDITION W WITH CERTIAN APPROVED ALTERNATIVES HE MPC FUEL BASKET IS CONSTRUCTED IN IE SAR (TRANSPORTATION) AND FSAR (ST APPROVAL BEFORE IMPLEMENTATION. RIALS COMPLY WITH THE REQUIREMENTS OF ASME SECTION II, PART C. ATION (VT), ADDITIONAL NDE INSPECTIONS RIA ARE GOVERNED BY ASME SECTIONS RTS. TCH WELDS AT THEIR DISCRETION. VELD BETWEEN THE SHEATHING AND THE LOY X" UNLESS OTHERWISE NOTED. ALLO NO VEC TO ACCOUNT FOR MANUFACTUR BASKET, NEUTRON ABSORBER NOVED FOR USE AN EVENTON ABSORBER DAVEVET, TO ACCOUNT FOR MANUFACTUR BASKET, NEUTRON ABSORBER DAVEVET, TO ACCOUNT FOR MANUFACTUR DAVEVET, ACCOUNT FOR MANUFACTUR DAVEVET, TO ACCOUNT FOR MANUFACTUR DAVEVET, TO ACCOUNT FOR MANUFACTUR DAVEVET, TO ACCOUNT FOR MANUFACTUR DAVEVET, ACCOUNT FOR MANUFACTUR DAVEVET, TO ACCOUNT FOR MANUFACTUR DAVEVET	N ACCORDANCE ORAGE). NEW O OF ASME SECTI SARE NOTED ON V AND III. RESPI CELL WALL. JY X IS ANY OF T PLANT MPC-24E SINEUTRON AS SINEUTRON AS SINEUTRON AS SINEUTRON AS DEVIATIONS SINEUTRON AS SINEUTRON	WITH ASMES R REVISED AS ION II, PART A. I THE DRAWIN ECTIVELY, AS (HE FOLLOWIN VEF BASKET AJ	ECTION III, ME CODE WELD MATEF G AS REQUIR CLARIFIED IN IG STAINLESS RE SPECIFICA	RIAL RED_NDE ITHE S STEEL TYPES: ALLY NOTED. ENDED ALLATION TER HOLE IDAMAGE GENERAL Identity GENERAL
		······································		12, TH CL	D) NO M	· · · · · · · · · · · · · · · · · · ·	WITHIN A BASKET HAVE THIS CONDITION. ITS-A BASED ON THE HIGHEST CLASSIFICA SAR TABLE 1.3.3 (TRANSPORTATION) AND		UBCOMPONEN .6 (STORAGE).	IT. SUBCOMP	INTERNATIONAL HOLTEC CENTER 55 UNCOUNTRY WEST
	·····	····							· · .		P.D. NU. N/A PERMIT GYDRAWNIGST

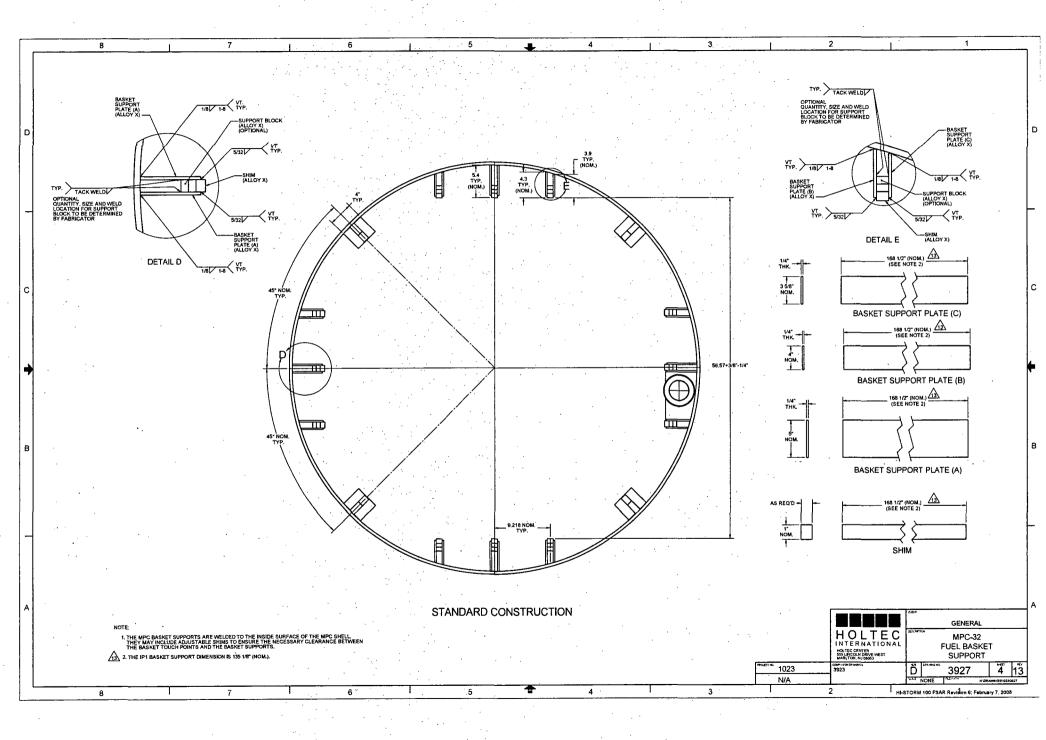




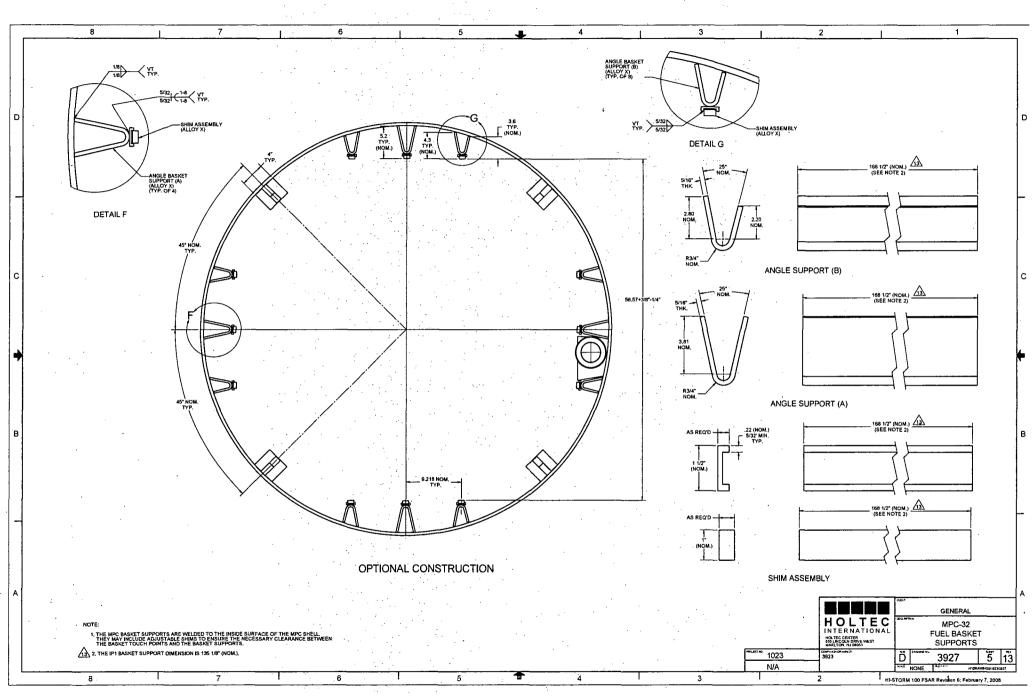

·. ·.. •


· •	•		· · · ·			
	• •				1	
						·
	7 6	6 5	4	3		2 1 1
		<u> </u>	\		<u> </u>	
CLIENT	· .		ING DRAW	ING PA	KAGE (COVER SHEET
GEN	NERAL					
BBO JECT NO. 1022						
PROJECT NO. 1022	P.O. NO. N/A		· · ·	•	14. TOLERANC ARE SPEC	CES FOR THICKNESS OF ASME CODE MATERIAL OFIED IN ASME SECTION II.
DRAWING 3926	TOTAL 4		REVISION LOG		15. ALL WELD LOCAL ARI	SIZES ARE MINIMUMS. LARGER WELDS ARE PERMITTED. EAS OF UNDERSIZE WELDS ARE ACCEPTABLE WITHIN S SPECIFIED IN THE ASME CODE, AS CLARIFIED IN THE
PACKAGE I.D. 5520	SHEETS 7	AFFECTED DRAWING	SUMMARY OF CHANGES/	PREPARED APPROVAL	(r)SAR.	3 SPECIFIED IN THE ASME CODE, AS CLARIFIED IN THE
		SHEET NUMBERS	AFFECTED ECOs	BY DATE	THE COMP	THE COMPONENT COMPLETION RECORD (CCR) FOR PLETE LIST OF APPROVED DESIGN DEVIATIONS FOR IVIDUAL SERIAL NUMBER.
LICENSING DRAWIN	NG PACKAGE CONTENTS:		1022-38	SLC 5/30/02		IVIDUAL SERIAL NUMBER. 24 IS CERTIFIED FOR STORAGE AND TRANSPORTATION T PWR FUEL, AS SPECIFIED IN COC\$ 72-1008, 72-1014.
			1022-38, REV, 1	SLC 8/28/02 SLC 10/9/02	AND 71-92	T PWR FUEL, AS SPECIFIED IN COCs 72-1008, 72-1014, 51.
	DESCRIPTION	2 SHEET 1 3 SHEET 3	1022-43, REV. 0	SLC 10/9/02 SLC 3/25/03	84086 18. DIMENSIOI INFORMAT 70654 THE COMP	NS NOTED AS NOMINAL ("NOM.") IN THE DRAWING ARE FOR TION ONLY, IN ORDER TO INDICATE THE GENERAL SIZE OF
SHEET [1 COVER SHEET	DESCRIPTION	3 SHEET 3 4 SHEETS 1, 2, 8.4	5014-82, REV. 0 1022-48	SLC 5/19/03	13075 WITH OTH	PONENT OR PART, NOMINAL DIMENSIONS HAVE NO SPECIFIC CE, BUT ARE MET THROUGH FABRICATION IN ACCORDANCE IER DIMENSIONS THAT ARE TO I FRANCED AND INSPECTED
2 FUEL BASKET ARRANGEMENT		5 SHEETS 1.3, & 4	1022-51	SLC · 7/11/03	81349 NOMINAL E	DIMENSIONS ARE NOT SPECIFICALLY VERIFIED DURING THE ION PROCESS.
S FUEL BASKET LAYOUT AND WEL 4 FUEL BASKET SUPPORTS	DETAILS	6 SHEETS 1, 2 & 3	1022-58 REV. 1	JJB 05/12/05	19. NEUTRON 70914 OF INDICA	ABSORBER PANELS MAY BE MADE UP OF ONE LONG PANEL ITED WIDTH OR TWO SHORTER PANELS OF INDICATED MIDT AS THE TOTAL LENGTH IS MAINTAINED AS INDICATED AND TI VEEN PANELS IS MAINTAINED AT NO MORE THAN 1/4".
		7 SHEETS 1& 2	1022-59 REV. 1	JJB 06/17/05		
		8 SHEETS 2 & 4	1022-68, REV. 0	SLC 06/14/06	34908 20. NEUTRON	ABSORBER PANELS MAY HAVE A REDUCTION IN WIDTH OF 2" OVER A LENGTH OF NO MORE THAN 12" PROVIDED THE WIDTH OF THE PANEL IS NO LESS THAN THE MINIMUM
		9 SHEETS 1, 2 & 3	1022-67, REV, 0	SLC 10/05/06	86844 SPECIFIEI	2.
		† THE VALIDATION IDE CONFIRMS THAT ALL	NTIFICATION RECORD (VIR) NUMBER IS A COMPUTER O APPROPRIATE REVIEWS OF THIS DRAWING ARE DOCUM	GENERATED RANDOM NUMBER WHI MENTED IN COMPANY'S NETWORK.	сн	
		GENERAL NOTES:		*		
·	···	1. THE EQUIPMENT DESIGN DOC TO COMPLY WITH THE SAFET	UMENTED IN THIS DRAWING PACKAGE HAS Y ANALYSES DESCRIBED IN THE SAFETY AN	BEEN CONFIRMED BY HOLTE IALYSIS REPORT.	C INTERNATIONAL	a man
		2. DIMENSIONAL TOLERANCES (WITH THE SUPPORTING ANAL	N THIS DRAWING ARE PROVIDED TO ENSUR YSIS. HARDWARE IS FABRICATED IN ACCOR LERANCES. TO ENSURE COMPONENT FIT-UP	RE THAT THE EQUIPMENT DES DANCE WITH THE DESIGN DR	SIGN IS CONSISTENT AWINGS, WHICH MAY	
	·	FROM THIS DRAWING TO DET	ERMINE COMPONENT FIT-UP.			
		3. THE REVISION LEVEL OF EACI SHEET. A REVISION TO ANY S NEXT REVISION NUMBER.	HINDIVIDUAL SHEET IN THIS PACKAGE IS TH HEET(S) IN THIS PACKAGE REQUIRES UPDAT	E SAME AS THE REVISION LEV ING OF REVISION NUMBERS	VEL OF THIS COVER OF ALL SHEETS TO THE	
s			SURE VESSEL CODE (ASME CODE), 1995 EDIT	TION WITH ADDENDA THROUG	SH 1997, IS THE GOVERNING	
	······	CODE FOR THE HI-STAR 100 S AND FSAR TABLE 2.2.15 (STOF SUBSECTION NG AS DESCRIB	SURE VESSEL CODE (ASME CODE), 1995 EDIT YSTEM, WITH CERTAIN APPROVED ALTERNA AGE), THE MPC FUEL BASKET IS CONSTRUC ED IN THE SAR (TRANSPORTATION) AND FSA	ATIVES AS LISTED IN SAR TAB CTED IN ACCORDANCE WITH A AR (STORAGE) NEW OR REVI	LE 1.3.2 (TRANSPORTATION) ASME SECTION III, SED ASME CODE	
·		ALTERNATIVES REQUIRE PRIC	OR NRC APPROVAL BEFORE IMPLEMENTATIC			
		COMPLIES WITH THE REQUIR	EMENTS OF ASME SECTION II, PART C.			
		6. ALL WELDS REQUIRE VISUAL NDE TECHNIQUES AND ACCEP THE APPLICABLE SAFETY ANA	EXAMINATION (VT), ADDITIONAL NDE EXAMIN PTANCE CRITERIA ARE GOVERNED BY ASME LYSIS REPORTS,	SECTIONS ARE NOTED ON THE SECTIONS V AND III, RESPEC	TIVELY, AS CLARIFIED IN	
]	· · · · · · · · · · · · · · · · ·		TO STITCH WELDS AT THEIR DISCRETION.			
		8. DO NOT MAKE A CONTINUOUS	SEAL WELD BETWEEN THE SHEATHING AND	D THE CELL WALL.		
		9. ALL STRUCTURAL MATERIALS TYPES: 316, 316 LN, 304, AND 3	ARE "ALLOY X" UNLESS OTHERWISE NOTED 804 LN.	, ALLOY X IS ANY OF THE FOL	LOWING STAINLESS STEEL	What had a ball
			ARE APPROVED FOR USE AS NEUTRON ABS AWS. HOWEVER, TO ACCOUNT FOR MANUFA PC FUEL BASKET, NEUTRON ABSORBER DAN	ORBERS, NEUTRON ABSORBE	R PANELS ARE INTENDED	MPC-24 FUEL BASKET ISOMETRIC VIEW
·		OF THE PANELS INTO THE M IN EACH PANEL HAS BEEN A	C FUEL BASKET, NEUTRON ABSORBER DAN ALYZED AND FOUND TO BE ACCEPTABLE.	AGE OF UP TO THE EQUIVAL	ENT OF A 1" DIAMETER HOLE	
		11. THIS COMPONENT IS CLASSI CLASSIFICATIONS ARE PROV	FIED AS ITS-A BASED ON THE HIGHEST CLAS IDED IN SAR TABLE 1.3.3 (TRANSPORTATION	SIFICATION OF ANY SUBCOM	PONENT, SUBCOMPONENT RAGE),	
	·····		VINUM HEAT CONDUCTION ELEMENTS ARE F	REQUIRED.		HOLTEC GENERAL
		13. DELETED			e	INTERNATIONAL FUELBASKET
				and any star a		HOLTEC CONTEN SAULTICOL IN DRIVE WEST MARL TONIN AN OWEST MARL TONIN AND OWEST MARL TONIN
			· · · · · · · · · · · · · · · · · · ·	· · · · · ·		Model No. 1022 Disability 3926 Metel 1 2 PA.NO N/A Tel: Hol- Grad Average Stretches Grad Average
8	7 6	6 5	1 4	3		2 HI-STORM 100 FBAR Revision 6: February 7, 2008
1					. · ·	
			· · ·	· . · ·	· ·	





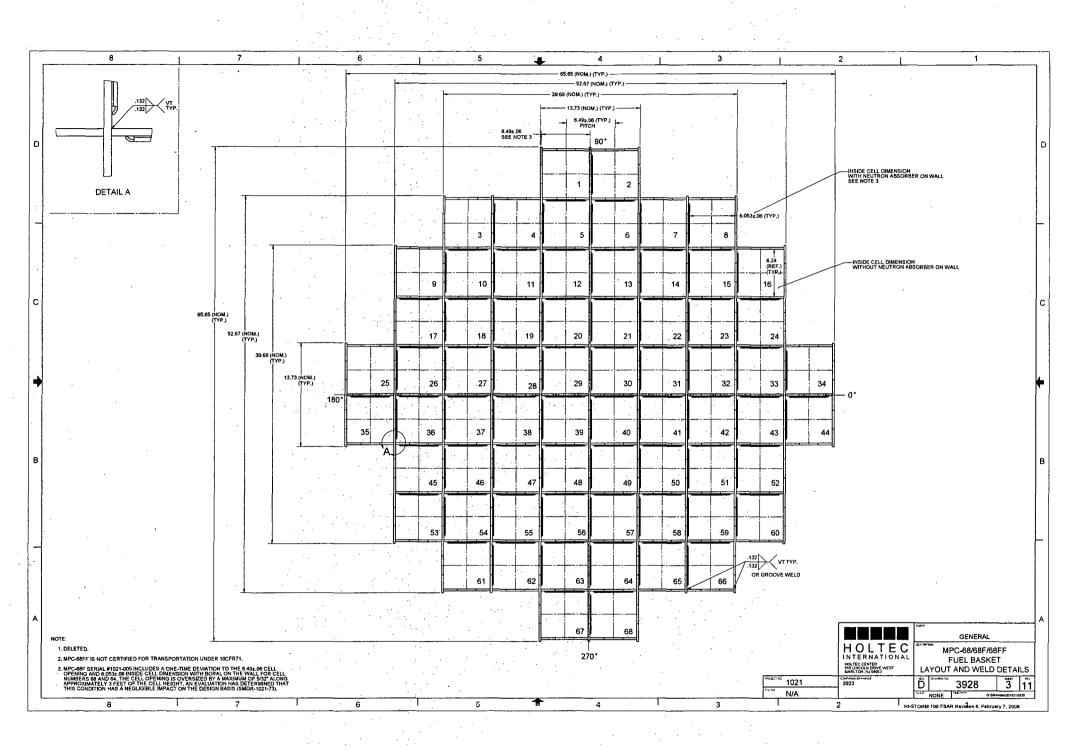
			· · ·	· .					· . ·		· . · ·				
	8 1	7		6		· .	5	 	4	1	3		1 2	·	1
LIENT	G	ENERAL				l		SING D	RAWIN	1G	PAC	CKA	GE CO	VER	SHEET
ROJECT N	IO. 1023	P.O. NO.	N/A						ION LOG	•	· · ·				
RAWING ACKAGE I.	_{.D.} 3927	TOTAL SHEETS	5	· · ·			IT IS MANDATORY DIRECTORY NAPDOX EACH ATTACHED DRAW	AT EACH REVISION TO COMPLI WINWORKING/DBAL BY ALL RE ING SHEET CONTAINS ANNOTA	TE THE REVIEW & APPROVA LEVANT TECHNICAL DISCIPL ED TRIANGLES INDICATING	L LOG STOREI LINES, PM AND THE REVISION	O IN HOLTEC'S O A PERSONNEL N TO THE DRAWN	NG.	ARE SPECIFIED I	N ASME SECTION II.	
		· · ·			1.	REV	AFFECTED DRAWING SHEET NUMBERS	SUMMARY OF AFFECTE	CHANGES/ ECOs	PREPARED BY	APPROVAL DATE	VIR# +	THE LIMITS SPEC	CIFIED IN THE ASME	CODE, AS CLARIFIED IN THE
						.11	SHEET 4	1023-48 REV. 0.		SLC	09/21/06	93452	15. REFER TO THE C THE COMPLETE	OMPONENT COMPL	ETION RECORD (CCR) FOR DESIGN DEVIATIONS FOR
<u>C</u>	DESIGN DRAWIN	G PACKAGE CO	ONTENTS:			12	SHEETS 1 & 2	1023-43, REV. 0	. , ,	SLC	10/03/06	72109			
·	r ·					13	SHEETS 1, 2, 4, & 5	1023-50, REV. 0		SLC	02/06/08	79022	OF INTACT PWR	FUEL, AS SPECIFIEI	D IN COCs 72-1014, AND 71-92
SHEET		DESCRIPTION				<u> </u>					· · · · · · ·		FOR INFORMATIC	DN ONLY, IN ORDER	TO INDICATE THE GENERAL NOMINAL DIMENSIONS HAV
2		π	·····			·	<u>.</u>		· · ·			· · · · ·	- IN ACCORDANCE	WITH OTHER DIMENSION	NSIONS THAT ARE TOLERAN
3							······································	•				<u> </u>	VERIFIED DURIN	G THE FABRICATION	PROCESS.
4		······		· · ·									OF INDICATED W AS LONG AS THE	IDTH OR TWO SHOP	RTER PANELS OF INDICATED
			· · · · ·					· · ·					UP TO 1/32" OVE AVERAGE WIDTI	R A LENGTH OF NO I H OF THE PANEL IS I	MORE THAN 12" PROVIDED T NO LESS THAN THE MINIMUN
		· · · · · · · · · · · · · · · · · · ·	·		· ·					· .			A 20. DIFFERENCES BI	TWEEN THE GENER	RIC MPC-32 AND THE IP1 MPC
		······	· .		· ·		† THE VALIDATION ID CONFIRMS THAT ALL	ENTIFICATION RECORD (VIR) NU APPROPRIATE REVIEWS OF TH	MBER IS A COMPUTER GENE S DRAWING ARE DOCUMENT	RATED RANDO	M NUMBER WHE	ich		LT NOTED (FOR PAP	RI 12 USE ONLT).
•		······································	·····	· · ·			· · · · · · · · · · · · · · · · · · ·								
				_		1. 1		,							
				· .										and a	
	·,												-	SF SF	
				·		MITH TH	E SUPPORTING ANALYSI	ANCES, TO ENSURE COM	ED IN ACCORDANCE W ONENT FIT-UP. DO NOT	TH THE DE	SIGN DRAWIN	GS, WHICH MA	AY K-UP		-toto-
					1 1	-ROM IF	IS DRAWING TO DETERM	INE COMPONENT FIT-UP.							
	``````````````````````````````````````				I	NUMBER	L j				<i>.</i>			· ·	
				-	4.1	HE ASM	E BOILER AND PRESSUR	E VESSEL CODE (ASME CO EM, WITH CERTAIN APPRO	DE), 1995 EDITION WITH	HADDENDA	THROUGH 19 SAR TABLE 1.3	7. IS THE GO	VERNING RTATION)		
						AND FSA SUBSEC	R TABLE 2.2.15 (STORAG FION NG AS DESCIBED IN ATIVES REQUIRE PRIOR N	E). THE MPC FUEL BASKET THE SAR (TRANSPORTAT IRC APPROVAL BEFORE IN	IS CONSTRUCTED IN A ON) AND FSAR (STORAG	GE). NEW O	R REVISED AS	SME CODE			
				·											
					5	SAFETY	ANALYSIS REPORTS.		· · ·	CODES AS	GLARIFIED IN	THE APPLICA		Ļ	ليه ا
				-											
		· · · · · · · · · · · · · · · · · · ·			9.4		JCTURAL MATERIALS AR	E "ALLOY X" UNLESS OTHE		-	THE FOLLOW	ING STAINLES	SS STEEL	MPC- ISC	32 FUEL BASKET METRIC VIEW
			<u> </u>						EUTRON ABSORBERS	NEUTRON A	BSORBER PAI	ELS ARE INT	ENDED		
			•	·		TO HAV OF THE	E NO SIGNIFICANT FLAW PANELS INTO THE MPC I PANEL HAS BEEN ANAI	S. HOWEVER, TO ACCOUN UEL BASKET, NEUTRON A YZED AND FOUND TO BE A	FOR MANUFACTURING BSORBER DAMAGE OF I CCEPTABLE.	DEVIATION UP TO THE I	IS OCCURING	DURING INST	TER HOLE		кх ^и
			· · · · · · · · · · · · · · · · · · ·	_					* · · · · · · · · · · · · · · · · · · ·			NT. SUBCOM			GENERAL MPC-32
.						DELETE		a in onn male 1.3.3 (1104				-,-			FUEL BASKET ASSEMBLY
	LIENT ROJECT N RAWING ACKAGE I	GI ROJECT NO. 1023 RAWING ACKAGE I.D. 3927 DESIGN DRAWIN SHEET 1 COVER SMEET 2 FUEL BASKET ARRANGEMEN 3 FUEL BASKET ARRANGEMEN 3 FUEL BASKET LAYOUT AND I 4 STANDARD FUEL BASKET SU	LIENT GENERAL ROJECT NO. 1023 P.O. NO. RAWING ACKAGE I.D. 3927 TOTAL SHEETS DESIGN DRAWING PACKAGE CO SHEET DESCRIPTION COVER SMEET CUEL BASKET ARRANGEMENT CUEL BASKET LAYOUT AND WELD DETAILS COVER SMEET SUPPORTS COVER SMEET	LIENT GENERAL ROJECT NO. 1023 P.O. NO. N/A RAWING ACKAGE I.D. 3927 TOTAL SHEETS 5 DESIGN DRAWING PACKAGE CONTENTS:           SHEET         DESCRIPTION           1         COVER SMEET           2         FUEL BASKET ARRANGEMENT           3         FUEL BASKET SUPPORTS	LIENT GENERAL ROJECT NO. 1023 P.O. NO. N/A RAWING ACKAGE I.D. 3927 DESIGN DRAWING PACKAGE CONTENTS:  SHEET COVER SHEET COVER SHEET FUEL BASKET ARRANGEMENT GIVEN COVER SHEET FUEL BASKET LAYOUT AND WELD DETAILS FUEL BASKET BASKET LAYOUT AND WELD DETAILS FUEL BASKET BASKE	LIENT  GENERAL  ROJECT NO. 1023 P.O. NO. N/A  RAWING ACKAGE I.D. 3927 TOTAL SHEET  DESIGN DRAWING PACKAGE CONTENTS:   DESIGN DRAWING PACKAGE CONTENTS:  SHEET  COVER SHEET  CO	LIENT         GENERAL           ROJECT NO. 1023         P.O. NO. N/A           RAWING ALD.         3927           TOTAL S         5           DESIGN DRAWING PACKAGE CONTENTS:           SHEET         DESCRIPTION           1         COVER SHEET           2         FUEL BASKET ARRANGEMENT           3         FUEL BASKET SUPPORTS           4         STANDAD FUEL BASKET SUPPORTS           5         OPTIONAL FUEL BASKET SUPPORTS           6         OPTIONAL FUEL BASKET SUPPORTS           7         COVER SHEET           2         COVER SHEET           2         COVER SHEET           3         FUEL BASKET SUPPORTS           4         STANDAD FUEL BASKET SUPPORTS           5         OPTIONAL FUEL BASKET SUPPORTS           6         OPTIONAL FUEL BASKET SUPPORTS           7         COVER SHEET           2         DESCRIPTION           2         DESCRIPTION           4         STANDAD FUEL BASKET SUPPORTS           5         COTIONAL FUEL BASKET SUPPORTS           6         CONTRACT           7         CONTRACT           7         CONTRACT           7         C	LIENT GENERAL LUCENS CONSTRUCTION GENERAL GENERAL CUCCENS CUCC	LIENT         GENERAL         LICEENSING DI           ROJECT NO. 1023         P.O. NO. N/A         REVIS           RAMING ACKAGE I.D. 3927         TOTAL SHEETS         <						

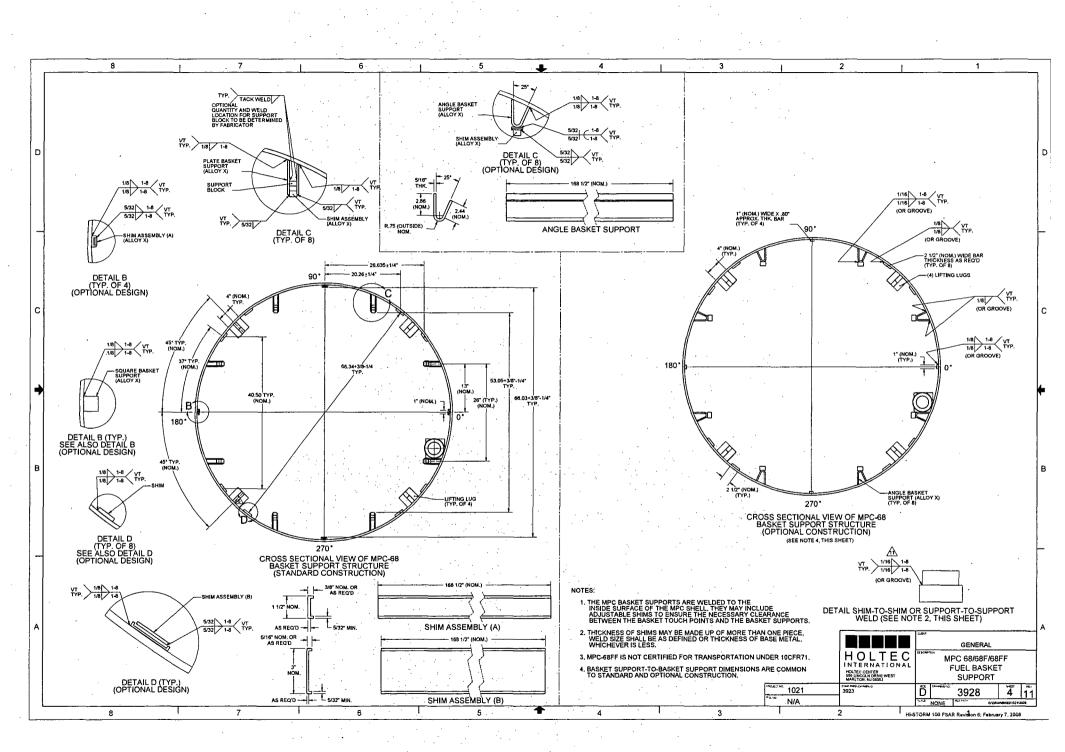


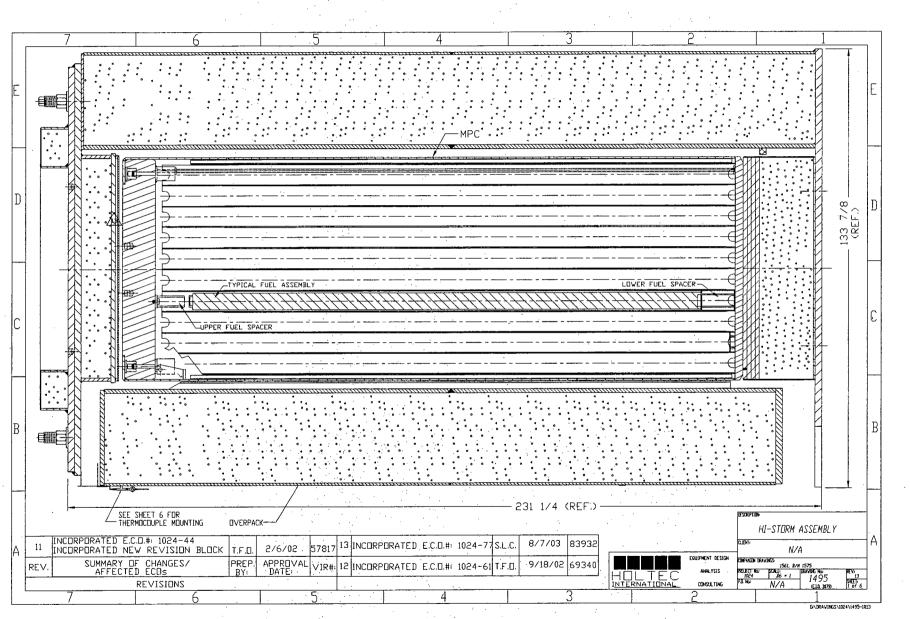


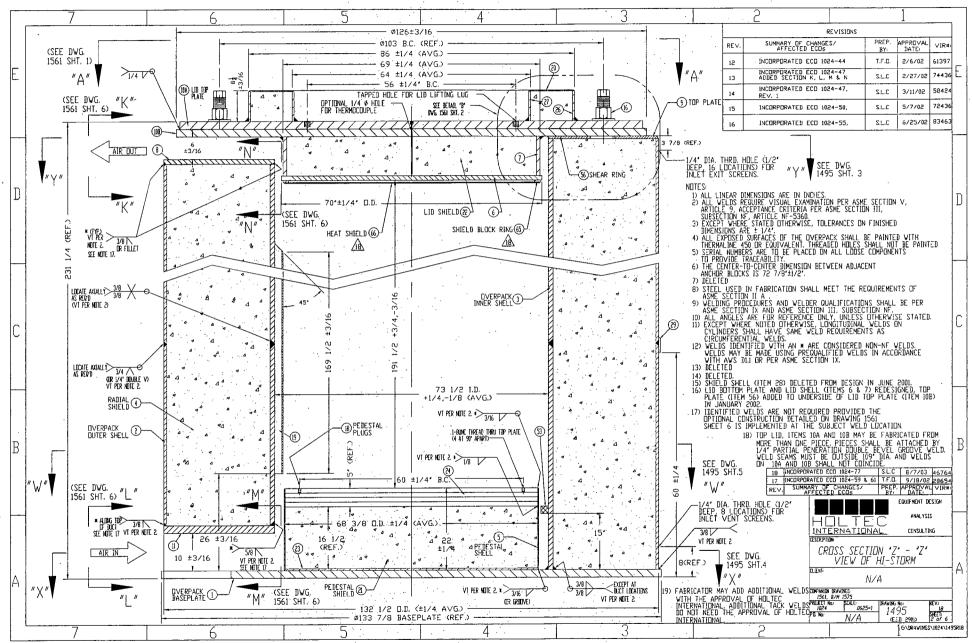

···

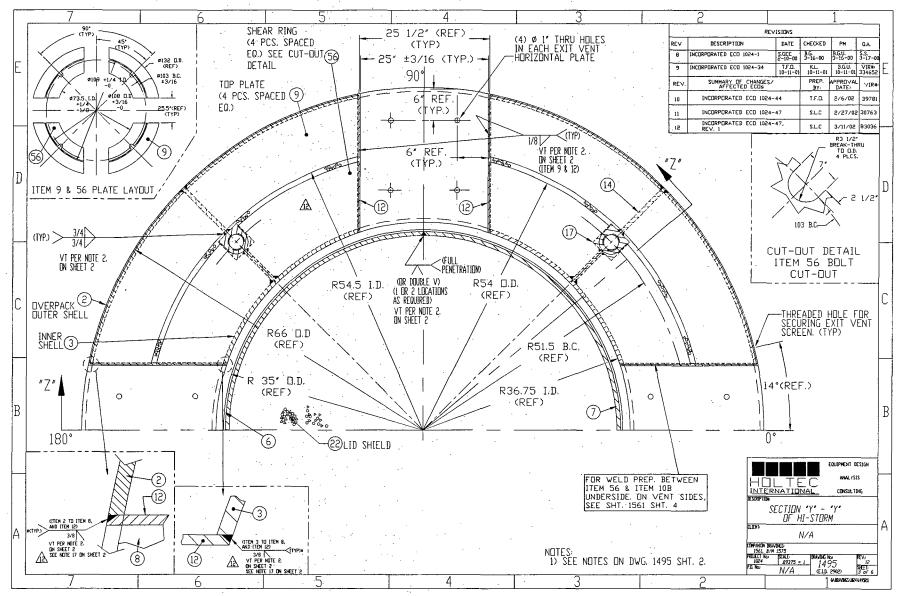



•





1		8	7	I	6			5	+	4		3	·	2		1
CI	LIENT	GE	NERAL			· .	Ľ	ICENS	ING [	DRAWI	NG	PAC	CKA	GE CC	OVER S	HEET
PF	ROJECT	NO. 1021		N/A		- - -	• •		· · ·	·			· · ·	13. TOLERANCES FO ARE SPECIFIED IN	R THICKNESS OF ASME C	ODE MATERIAL
	RAWING ACKAGE	I.D. <b>3928</b>	TOTAL SHEETS	4			-			SION LOG				14. ALL WELD SIZES / LOCAL AREAS OF THE LIMITS SPEC	ARE MINIMUMS. LARGER UNDERSIZE WELDS ARE IFIED IN THE ASME CODE	WELDS ARE PERMITTE ACCEPTABLE WITHIN , AS CLARIFIED IN THE
							REV	AFFECTED DRAWING SHEET NUMBERS		Y OF CHANGES/ CTED ECOs	PREPARED	DATE	VIR(# 1	(F)SAR.		
	1	ICENSING DRAV	ING PACKAGE	CONTENTS:	. '	· · ·	11	SHEET 4	ECO 1021-89	· · · · ·	RLS	12/04/06	91256		OMPONENT COMPLETION IST OF APPROVED DESIG SERIAL NUMBER.	
	-			<u>.</u>								:		OF INTACT AND I FUEL DEBRIS, AS THE MPC-68EF IS	S CERTIFIED FOR STORA DAMAGED BWR FUEL AND SPECIFIED IN COCS 72-1 CERTIFIED ONLY FOR ST	BWR FUEL CLASSIFIE 008, 72-1014, AND 71-92 ORAGE OF INTACT AN
	SHEET		DESCRIPTION	· · ·		·								IN THE HI-STORM	100 SYSTEM UNDER CO	5 72-1014.
	2	COVER SHEET FUEL BASKET ARRANGEMENT			-						<u>.</u>			17. DIMENSIONS NOT INFORMATION ON THE COMPONENT	'ED AS NOMINAL ("NOM.") ILY, IN ORDER TO INDICA ' OR PART, NOMINAL DIMI	IN THE DRAWING ARE TE THE GENERAL SIZE ENSIONS HAVE NO SPE
	3	FUEL BASKET LAYOUT AND W	ELD DETAILS		-					· · · · · · · · · · · · · · · · · · ·				WITH OTHER DIM NOMINAL DIMENS	ARE MET THROUGH FAB ENSIONS THAT ARE TOLE IONS ARE NOT SPECIFIC	RANCED AND INSPECT
					- -									FABRICATION PRO		DE UP OF ONE LONG P
		   .									•	· · .		WIDTH AS LONG A	BER PANELS MAY BE MAI DTH OR TWO SHORTER F AS THE TOTAL LENGTH IS TWEEN PANELS IS MAINT.	MAINTAINED AS INDIC AINED AT NO MORE TH
			. •				.   .			· · · · · · · · · · · · · · · · · · ·				19. NEUTRON ABSOR UP TO 1/32" OVER	BER PANELS MAY HAVE A A LENGTH NO MORE THA OF THE PANEL IS NO LES	A REDUCTION IN WIDTH AN 12" PROVIDED THE
								+ THE VALIDATION IDEN	TIFICATION RECORD (VI	NUMBER IS A COMPUTER G	ENERATED RAND	M NUMBER WIII	сн	SPECIFIED.		
					`.		<u>ـــــا</u>	CONFIRMS THAT ALL A	PPROPRIATE REVIEWS OF	THIS DRAWING ARE DOCUM	ENTED IN COMPAN	A S NETWORK		·		
					-			· · · · ·	•						- ምድመድ	ATA TAL
						÷ *	•	·	•			• .• •	•			
							NERAL I	NOTES: JIPMENT DESIGN DOCUM PLY WITH THE SAFETY A	ENTED IN THIS DRAN	NING PACKAGE HAS BEE		BY HOLTEC I	NTERNATIONA	L	10000	
				· · · · · · · · · · · · · · · · · · ·	-	2.[		ONAL TOLERANCES ON E SUPPORTING ANALYSI DRE RESTRICTIVE TOLER HIS DRAWING TO DETERI	THIS DRAWING ARE I	PROVIDED TO ENSURE T	HAT THE EQUI	PMENT DESIG	IN IS CONSISTE	NT MAY		
			-												·	
						1 1	REVISIO	ISION LEVEL OF EACH IN ON TO ANY SHEET(S) IN N NUMBER.				· · .				
					-	4.		IE BOILER AND PRESSUR OR THE HI-STAR 100 SYS IR TABLE 2.2.15 (STORAG TION NG AS DESCRIBED ATIVES REQUIRE PRIOR	E VESSEL CODE (AS FEM, WITH CERTAIN F) THE MPC FUEL B	ME CODE), 1995 EDITION APPROVED ALTERNATIV ASKET IS CONSTRUCTED	WITH ADDENI ES AS LISTED	DA THROUGH IN SAR TABLE NCE WITH ASI	1997, IS THE G 1.3.2 (TRANSP ME SECTION III	OVERNING ORTATION)		
					-											
			· · · · · · · · · · · · · · · · · · ·	· · · ·	 			BASKET STRUCTURAL M							4	
					-	6./	ALL WEL AS REQU RESPEC	DS REQUIRE VISUAL EX JIRED, NDE TECHNIQUES TIVELY, AS CLARIFIED IN	AND ACCEPTANCE THE APPLICABLE SA	CRITERIA ARE GOVERNE FETY ANALYSIS REPOR	ED BY ASME SE	CTIONS V ANI	D III,			8FF FUEL BASKET
			·······	· · ·		1	7	TOR MAY ADD WELDS T			HE CELL WALL					
					1			UCTURAL MATERIALS AR SS STEEL TYPES: 316, 31					OWING		MPC-68FF IS N TRANSPORTAT	NOT CERTIFIED FOR ION UNDER 10CFR71
			· · · · · · · · · · · · · · · · · · ·					IORAL AND METAMIC ARI IENDED TO HAVE NO SIG ING DURING INSTALLATI EQUIVALENT OF A 1" DI						, j		GENERAL
				· · · ·	-									1   1		MPC-68/68F/68FF FUEL BASKET
		,			<b>-</b>		DELETE	OMPONENT IS CLASSIFIE OMPONENT CLASSIFICAT	ONS ARE PROVIDED	IN SAR TABLE 1.3.3 (TR/	NSPORTATION	) AND TABLE	2.2.6 (STORAG	E).	rec center INCOLN DRIVE WEST ITON NJ 08053 ** 1021	3928 1 1
		<u> </u>			- · ·			5		· · · · · · · · · · · · · · · · · · ·			•	P.1.0	N/A	
												3		2		00 FSAR Revision 6; February 7,

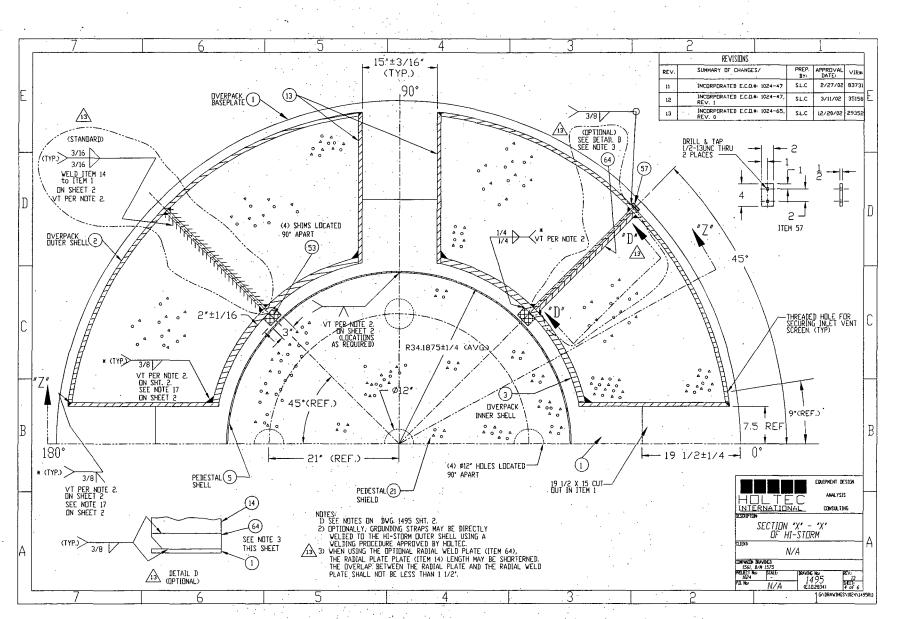


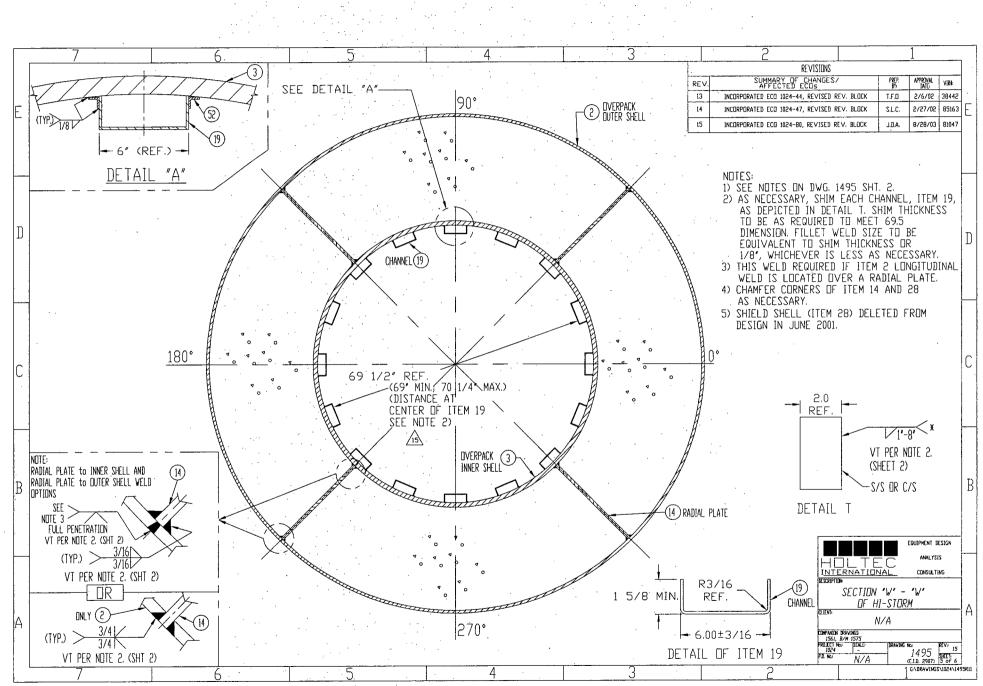


ວ <del>"</del>4'່



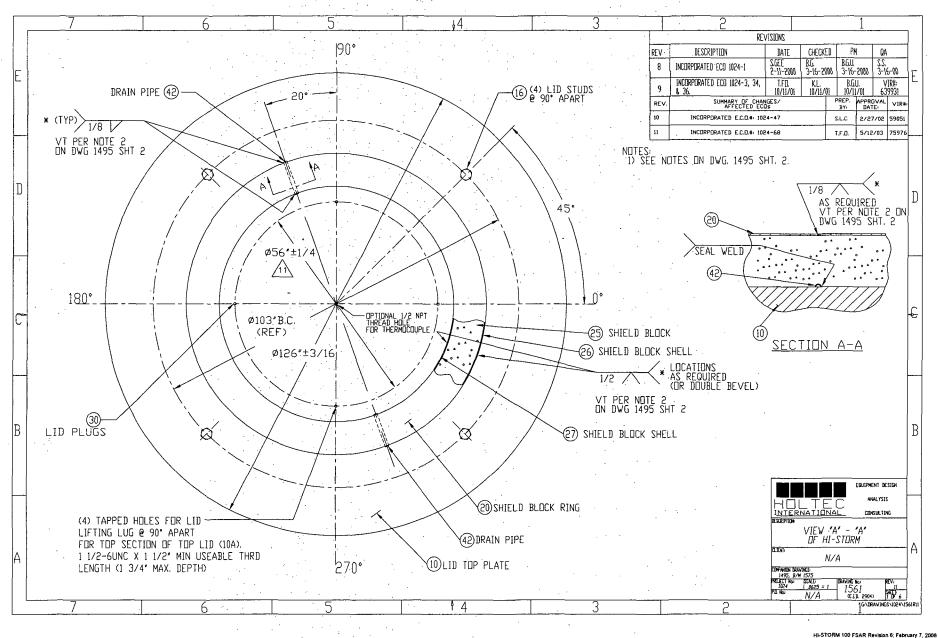




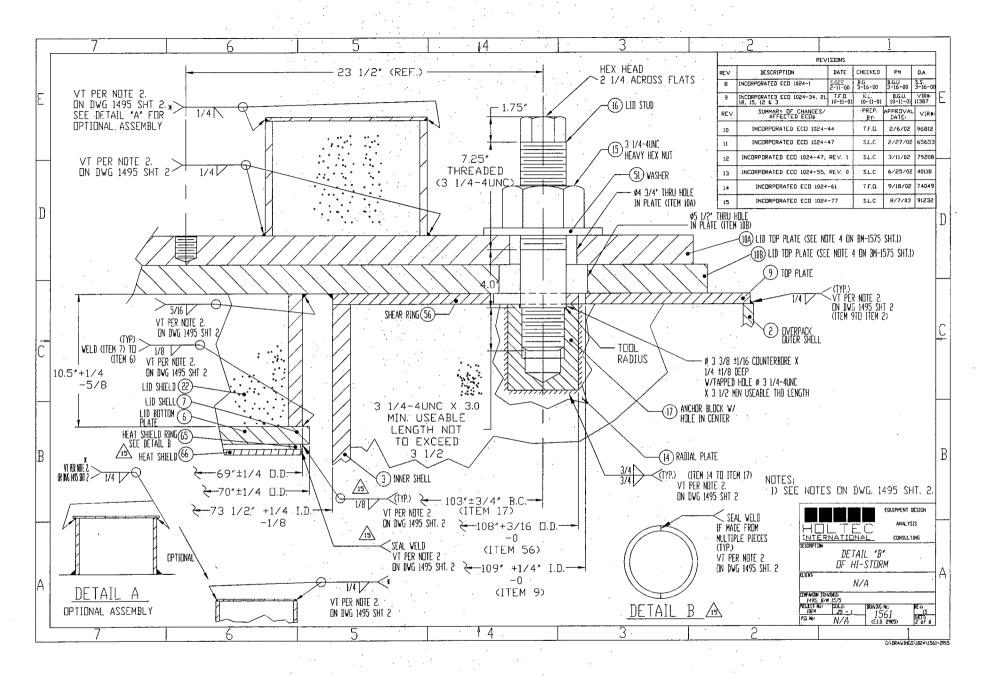


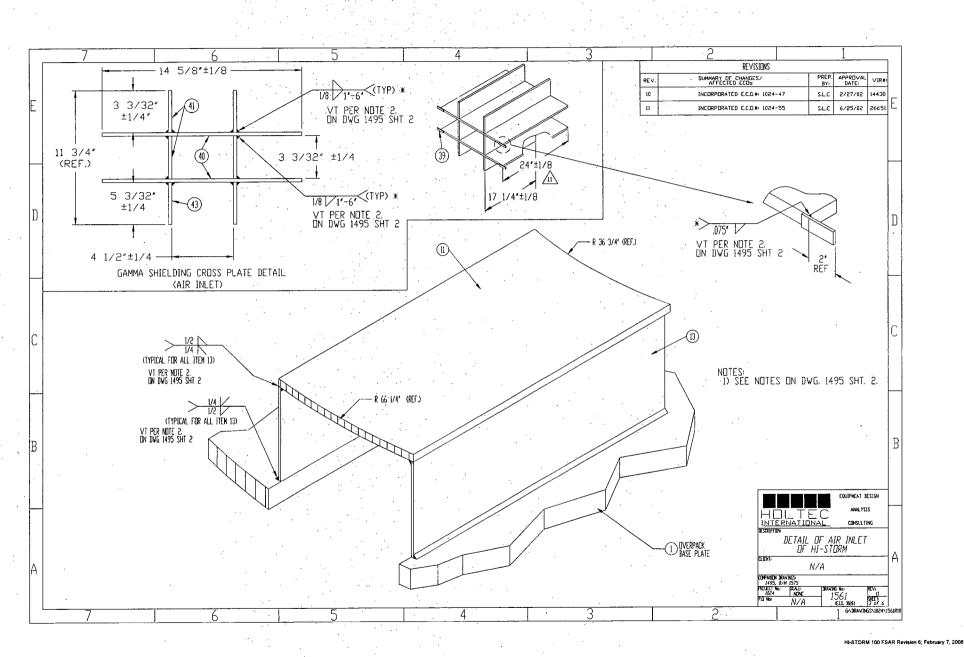



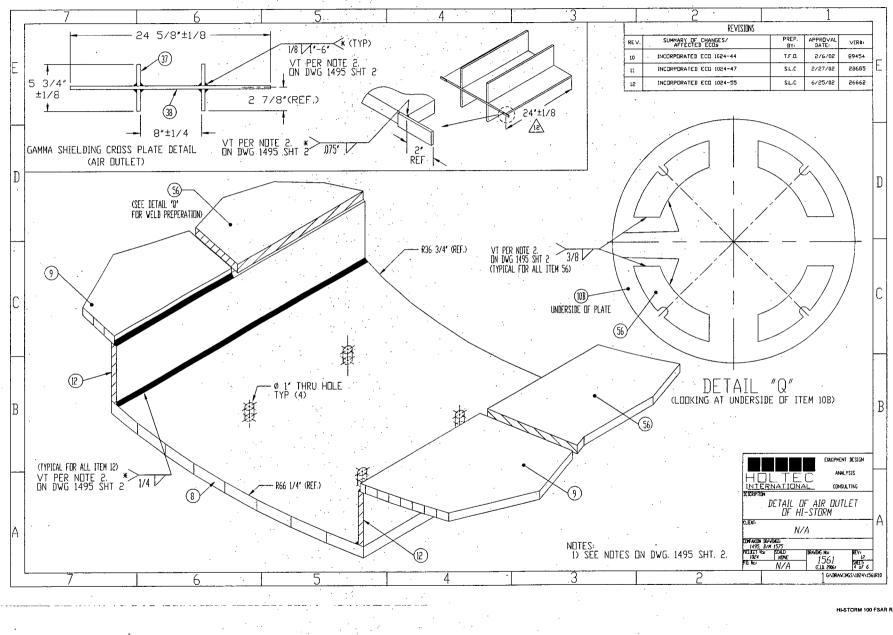

A second ranks ranks


221.55.55

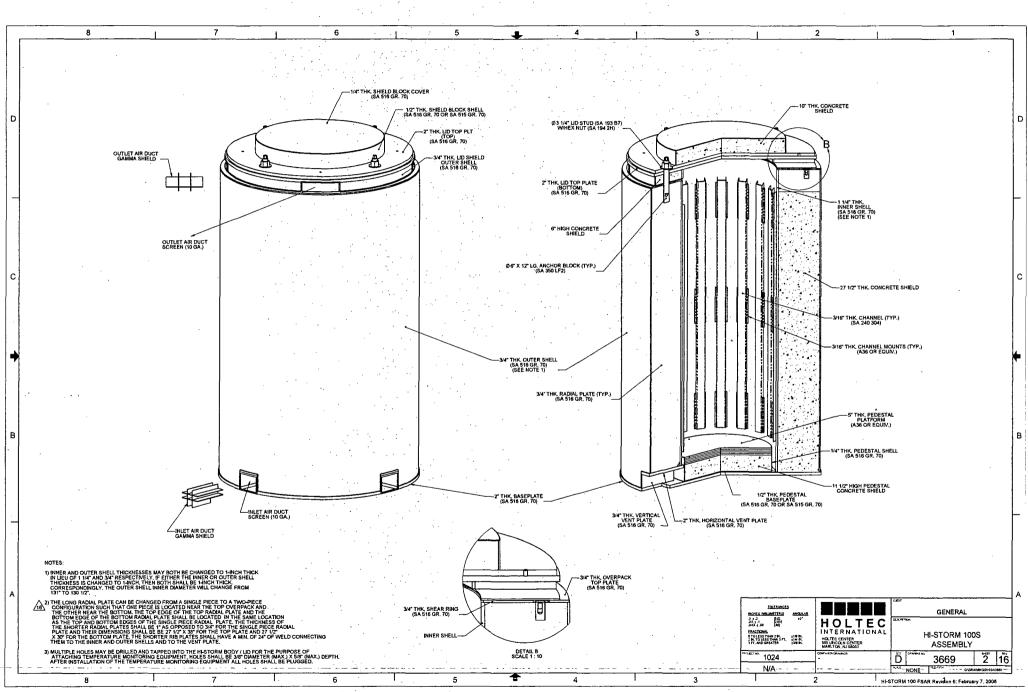
HI-STORM 100 FSAR Revision 6; February 7, 2008





HI-STORM 100 FSAR Revision 6; February 7, 2008

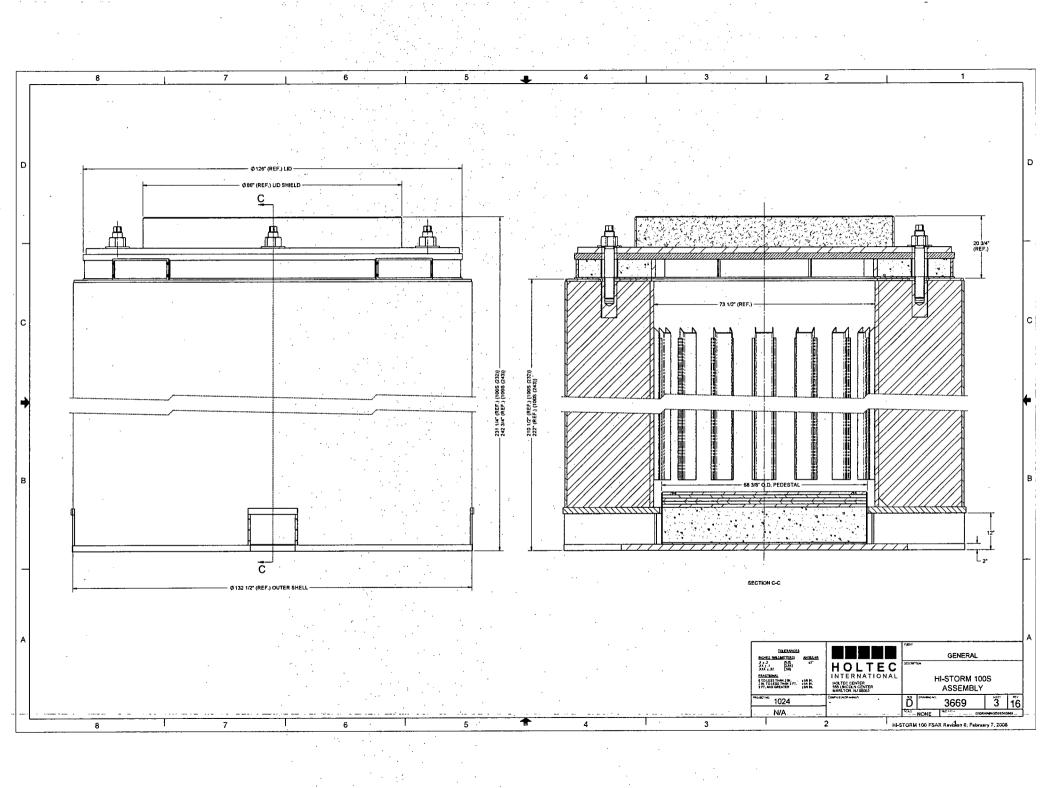


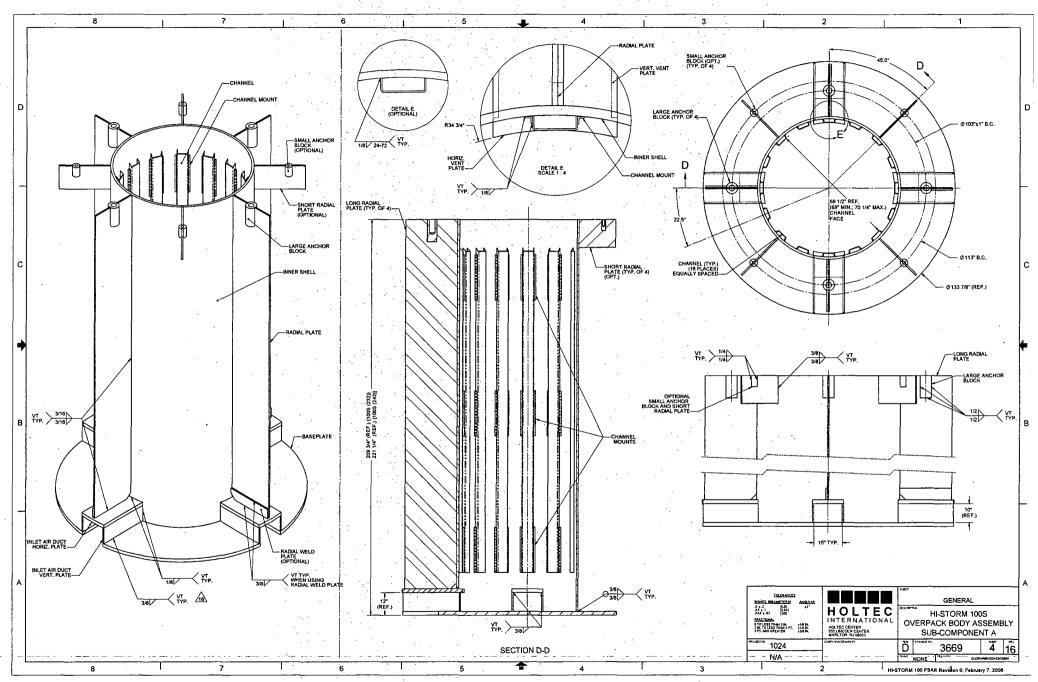

. . . .



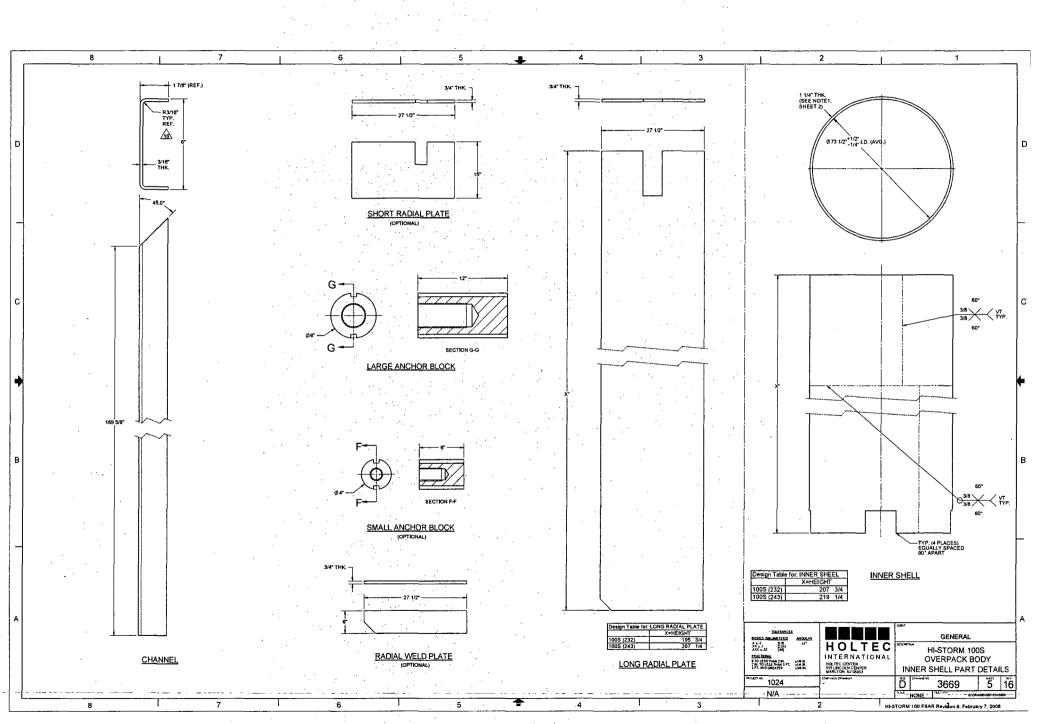





		in an an an	•••	•••						
	· · ·			·				· · · · ·		
		7		6	5	₽ 4		3	2	11
С	CLIENT	ENERAL			LICENSIN	G DRAW	/ING F	PACK	AGE CO	OVER SHEET
F	PROJECT NO. 1024	P.O. NO.	N/A			······································		- · · · · · · · · · · · · · · · · · · ·		
C F	DRAWING PACKAGE I.D. 3669	TOTAL SHEETS	12			<b>REVISION LOG</b>				
		<u>.</u>			REV         AFFECTED DRAWING           10         SHEETS 2, 4, 5, 8, 6	AFFECTED ECOs	BY	PROVAL VIR# DATE 3056		
	LICENSING DRAWIN	G PACKAGE CON	ITENTS:		10 SHEETS 2, 4, 5, 8 6	1024-108, R0 & QPV 454		04/13/06 2260		
					12 SHEETS 2, 4, 5, 8 6	1024-120, R0	D. Butler	04/26/06 11220	2	
ſ		RIPTION			13 SHEET 6	1024-122, RD	D. Butler	05/04/05 3605		
	COVER SHEET     ASSEMBLY DRAWING, NOTES AND B     OVERALL DIMENSIONS	BILL OF MATERIALS			14 SHEET 8	1024-124, RO	JJB	05/17/06 1651		
	OVERALL DIMENSIONS     INNER SHELL ASSEMBLY     S OVERPACK BODY INNER SHELL PAR	TDETAILS			15 SHEET 2	1024-126, R0	MAP	08/16/06 3241	-	· · · · · · · · · · · · · · · · · · ·
ŀ	6 OVERPACK BODY ASSEMBLY     7 PEDESTAL ASSEMBLY				. 16 SHEETS 2, 4, 5, 6, 7 & B	1024-137, R0	D, Butler	05/21/07 3134	0	
F	B LID ASSEMBLY     JUD STUD AND NUT					· · · ·				
	10 VENT SCREEN ASSEMBLIES 11 GAMMA SHIELD CROSS PLATES (INLE 12 OPTIONAL GAMMA SHIELD CROSS PL					······				
			· · · · · · · · · · · · · · · · · · ·		THE VALIDATION IDENTIFICATION     CONTINUES THAT ALL APPROXIMATE	RECORD (VIR) NUMBER IS A COMPUTE REVIEWS OF THIS DRAWING ARE DOC	R GENERATED RANDOM N	UMBER WHICH		
		******	· ·			REVIEWS OF THIS DRAWING ARE DOC	OMENTED IN COMPANY &		· · ·	•
ł	······					· · · · · · · · · · · · · · · · · · ·				
Ī			· · · · · · · · · · · · · · · · · · ·			•		• *		A A
ł								ан. Ал		
ļ			·····			_ ·		÷.,		
					NOTES: 1 THE FOLIIPMENT DOCLIMENTED IN TH	IS DRAWING PACKAGE HAS BEE	N .			
ł					1. THE EQUIPMENT DOCUMENTED IN TH CONFIRMED BY HOLTEC INTERNATION ANALYSES DESCRIBED IN THE HI-STO	NAL TO COMPLY WITH THE SAFE	ÊTY .			
			·····	:	2. DIMENSIONAL TOLERANCES ON THIS FOR LICENSING PURPOSES TO DEFIN NOMINAL DIMENSIONS USED IN LICEN	E REASONABLE LIMITS ON THE		•		
ŀ					IN ACCORDANCE WITH THE DESIGN D TOLERANCES, TO ENSURE COMPONE	RAWINGS, WHICH HAVE MORE I NT FIT-UP, DO NOT USE WORST	RESTRICTIVE I-CASE			
ł					TOLERANCE STACK-UP FROM THIS DF 3. THE REVISION LEVEL OF EACH INDIVID			1 A.		
		·····	·		3. THE REVISION LEVEL OF EACH INDIVID SAME AS THE REVISION LEVEL OF TH SHEET(S) IN THIS PACKAGE REQUIRE: OF ALL SHEETS TO THE NEXT REVISION	IS COVER SHEET. A REVISION T S UPDATING OF REVISION NUME ON NUMBER.	O ANY BERS			
ł					4. APPLICABLE CODES AND STANDARDS	ARE DELINEATED IN SECTION				
F				2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5. ALL WELDS REQUIRE VISUAL EXAMIN ARE NOTED ON THE DRAWING IF REQ ARE PROVIDED IN TABLE 9.1.4 OF THE	UIRED, NDE TECHNIQUES AND /	ACCEPTANCE CRITER		·	
f			· · · · · · · · · · · · · · · · · · ·	· · ·	6. UNLESS OTHEWISE NOTED, FULL PEN SIDE OF A COMPONENT.		E FROM EITHER			HI-STORM 100S ISOMETRIC VIEW
ļ					SIDE OF A COMPONENT IS IMPORTANT-TO- CLASSIFICATION OF ANY SUBCOMPOR PROVIDED ON THE DESIGN DRAWING	SAFETY, CATEGORY A, BASED ( NENT. SUBCOMPONENT CLASSI	ON THE HIGHEST FICATIONS ARE			
			· · · · · · · · · · · · · · · · · · ·							
		······································			8. ALL WELD SIZES ARE MINIMUMS EXCE CLARIFIED IN THE FSAR, FABRICATOR	•	CODÉS AS EC APPROVAL.			
					8. ALL WELD SIZES ARE MINIMUMS EXCE CLARIFIED IN THE FSAR, FABRICATOR					
					8. ALL WELD SIZES ARE MINIMUMS EXCE CLARIFIED IN THE FSAR. FABRICATOR	· . ·				HOLTEC

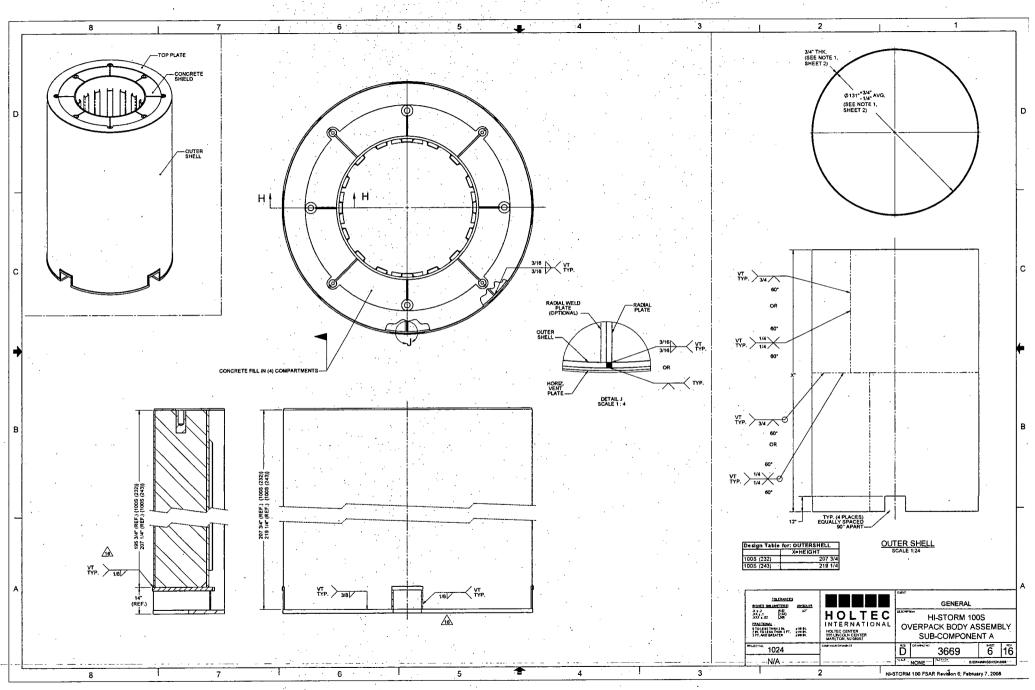



· . . . . . . .

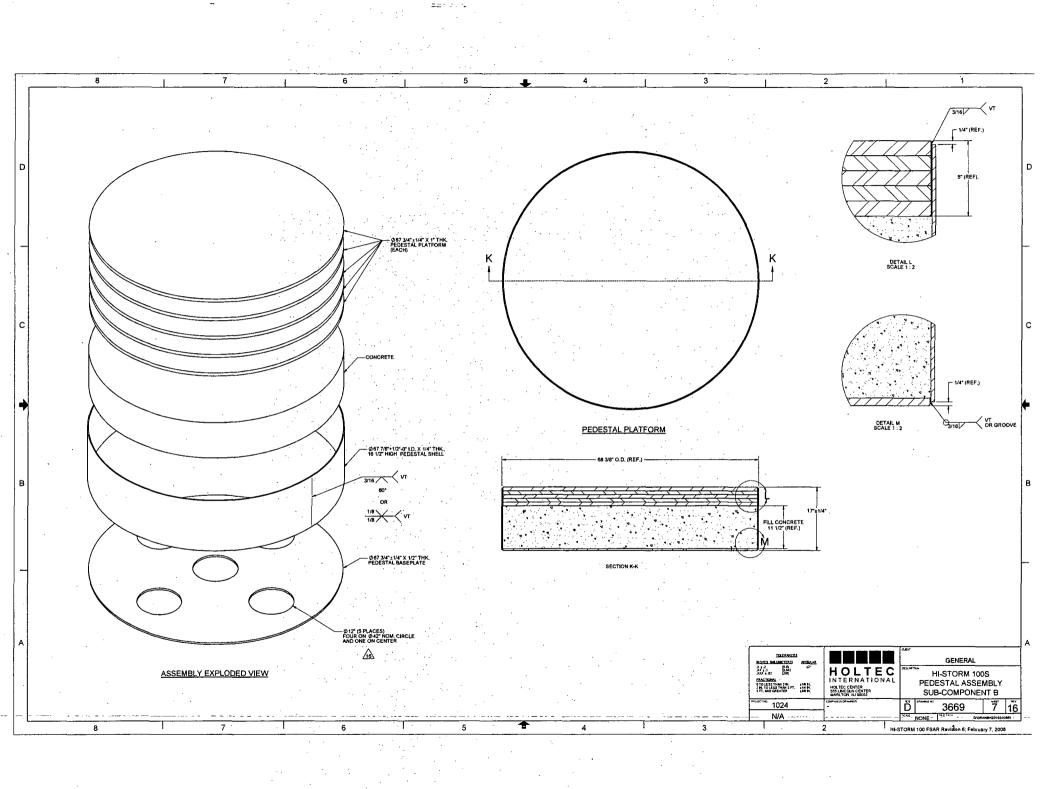

n, nin sim sin

· .



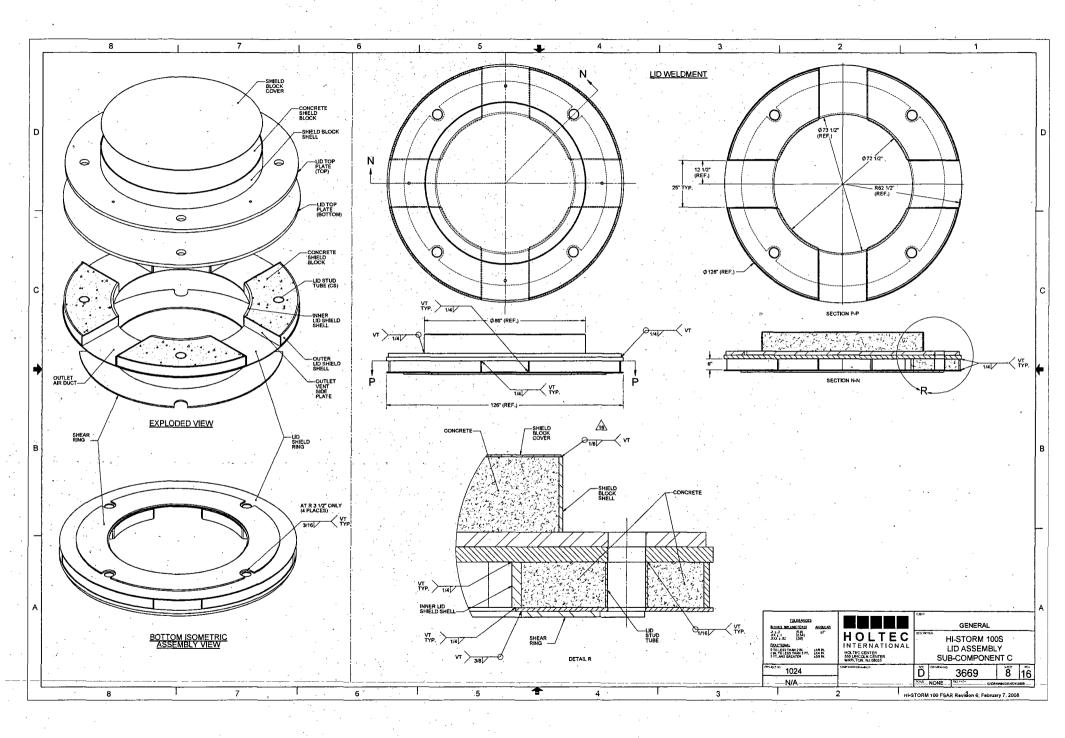


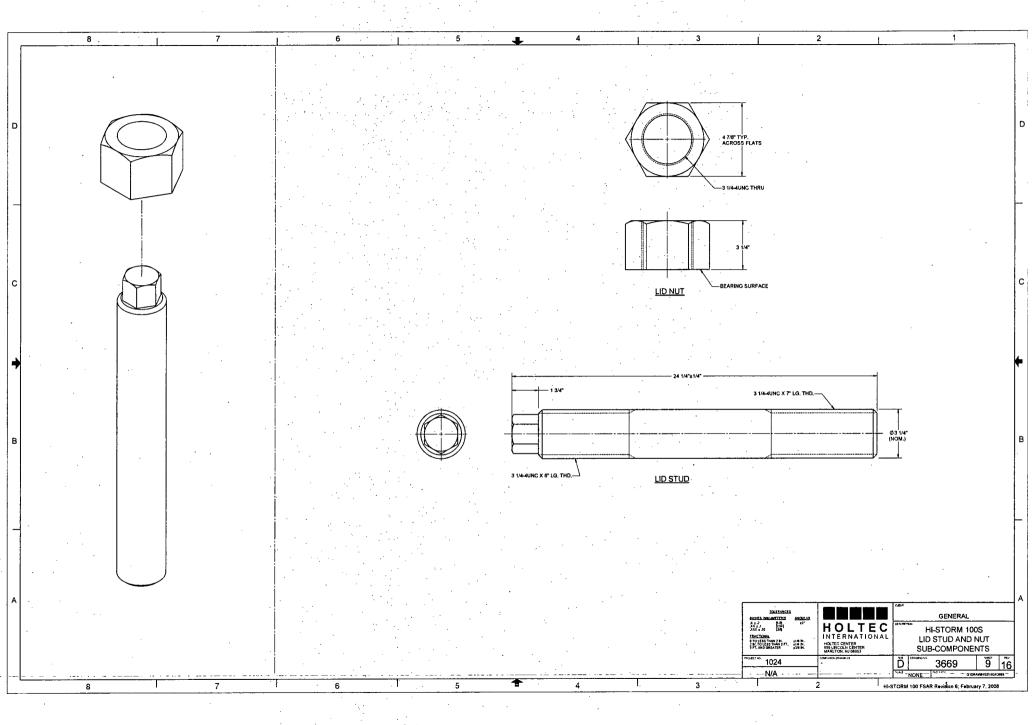

.

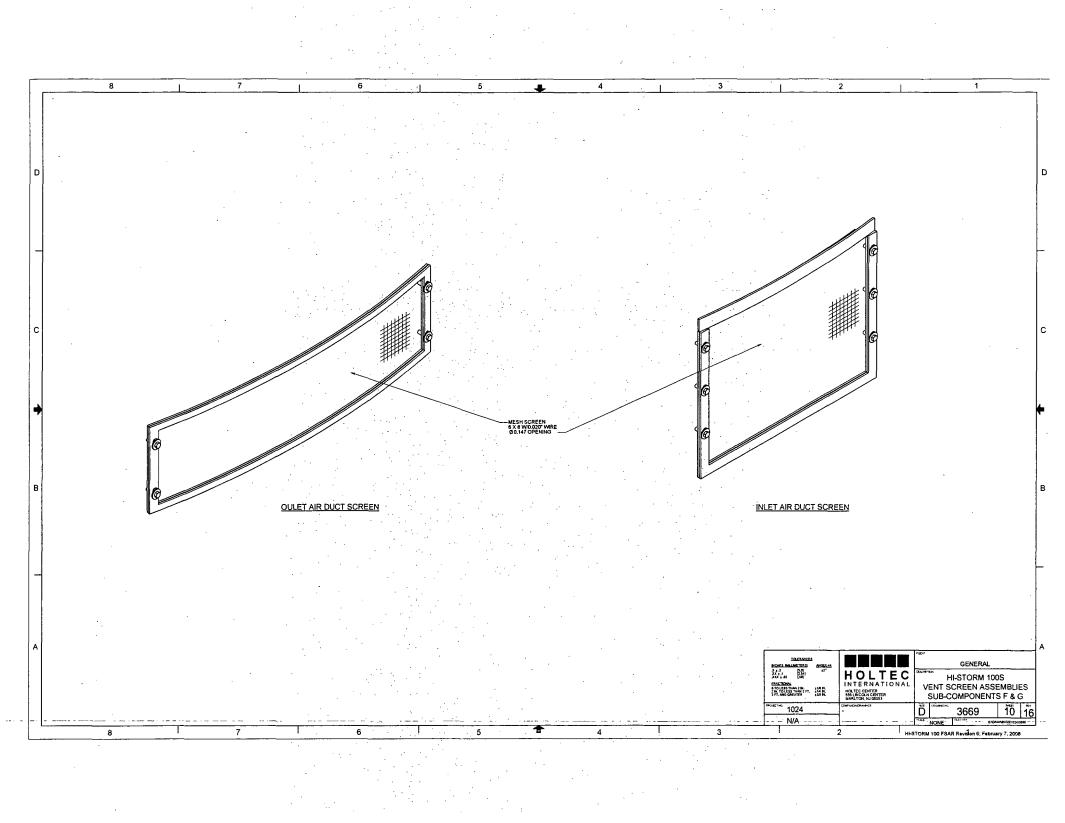


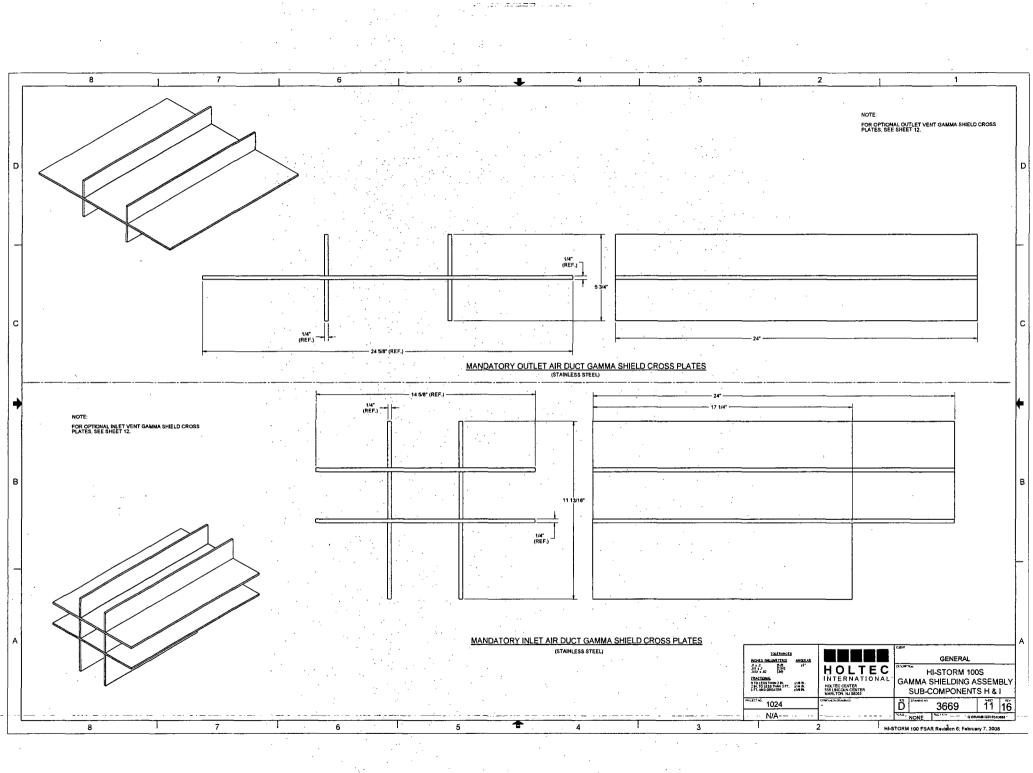

la <del>r</del>ajaa

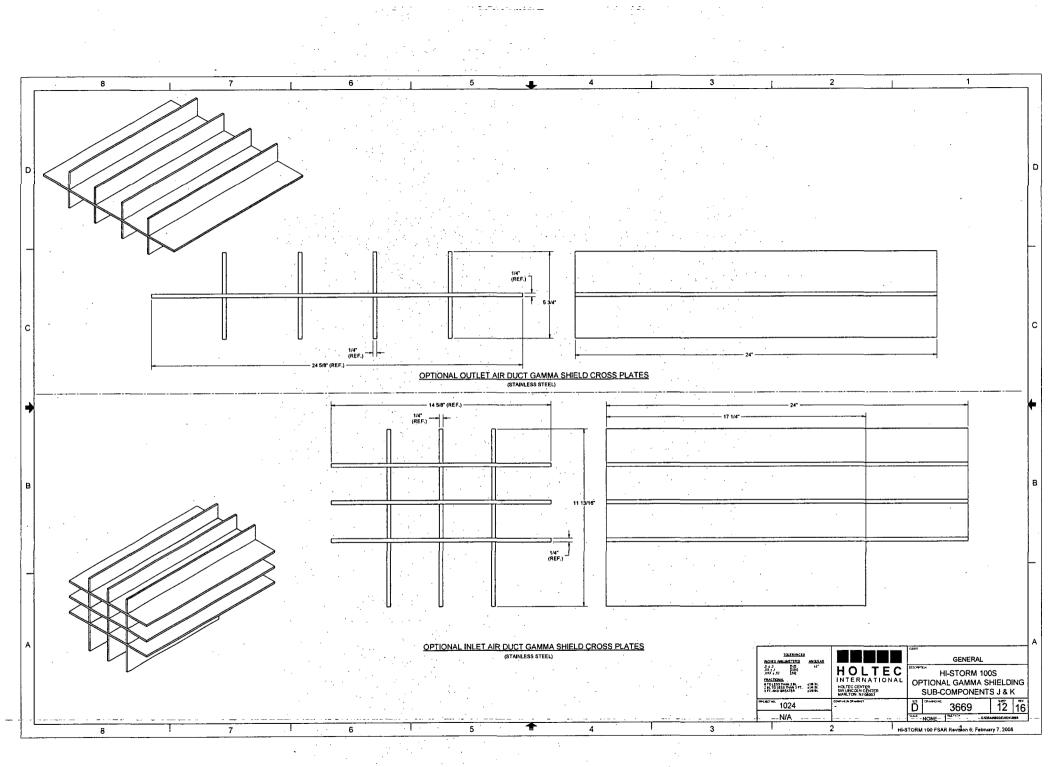
• •

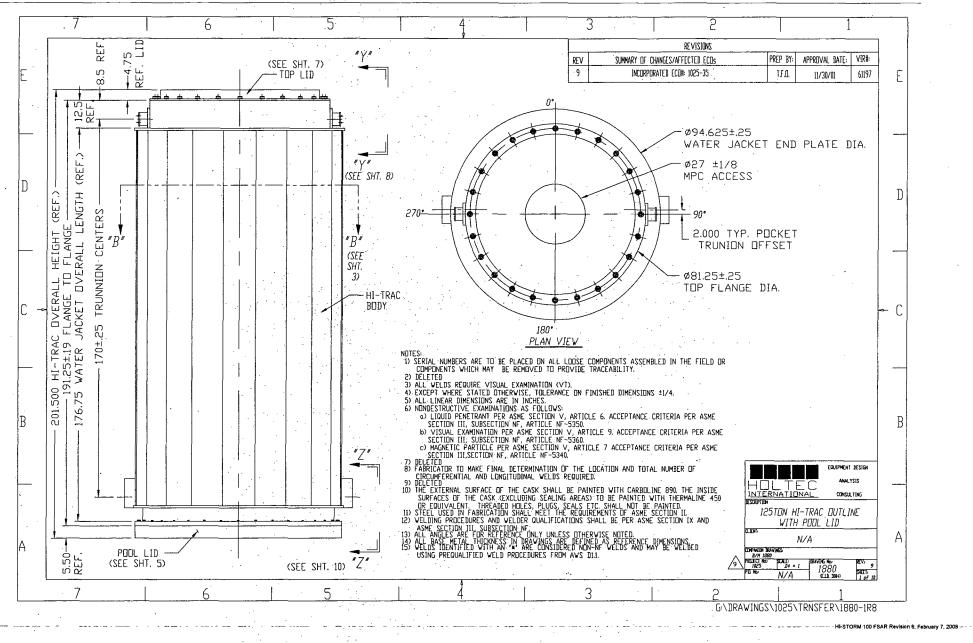


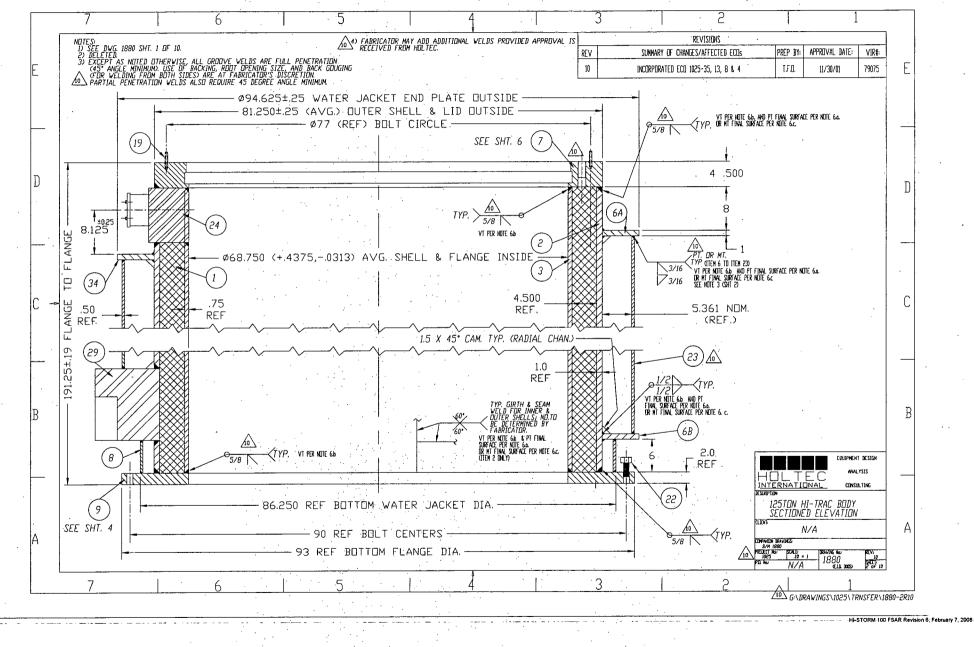


· · · ·

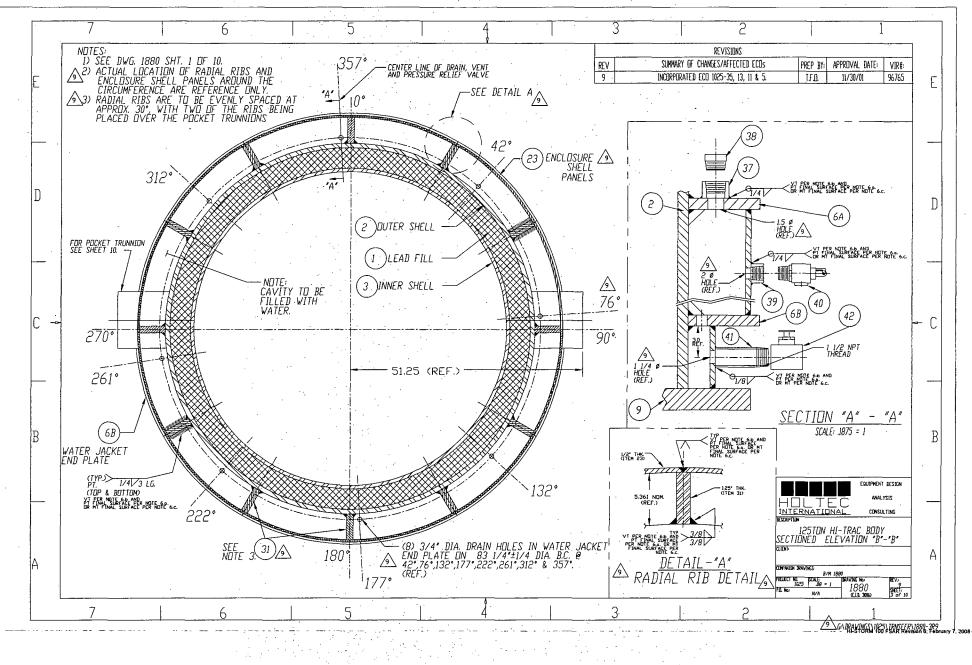




. .

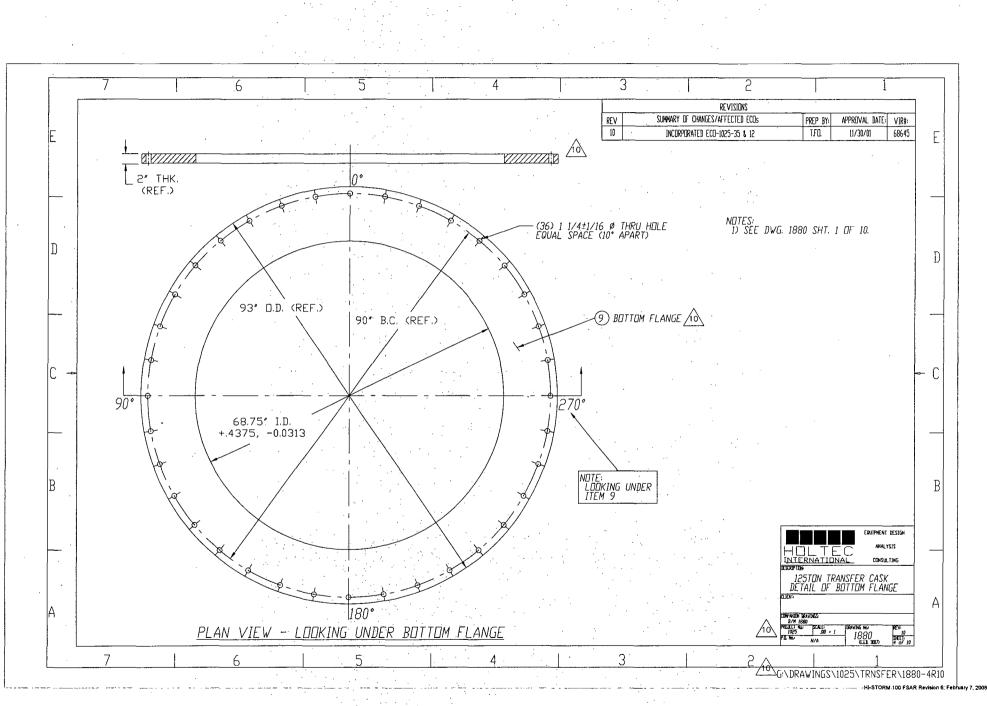


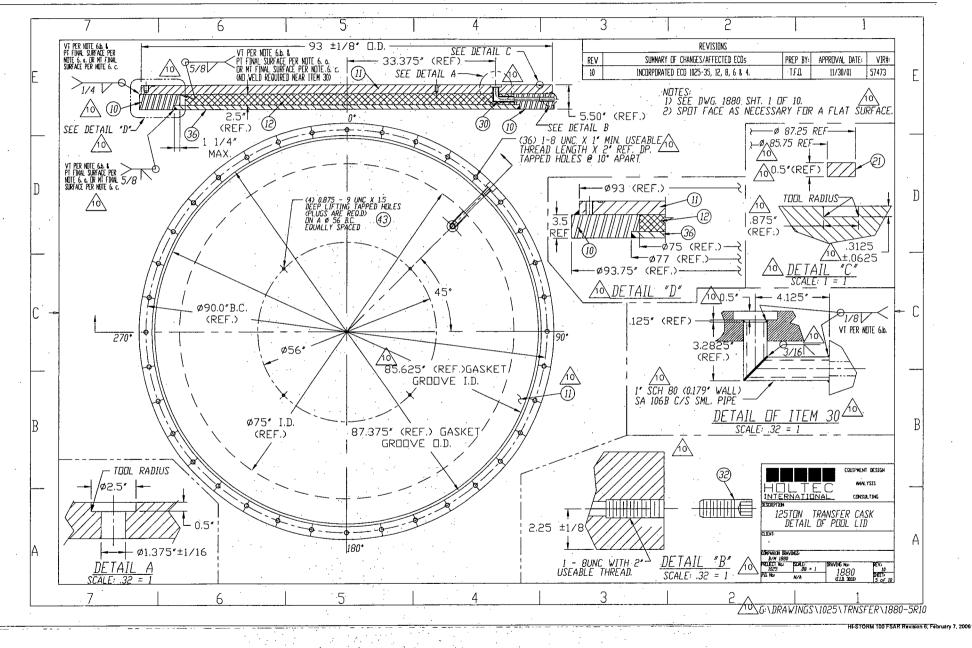



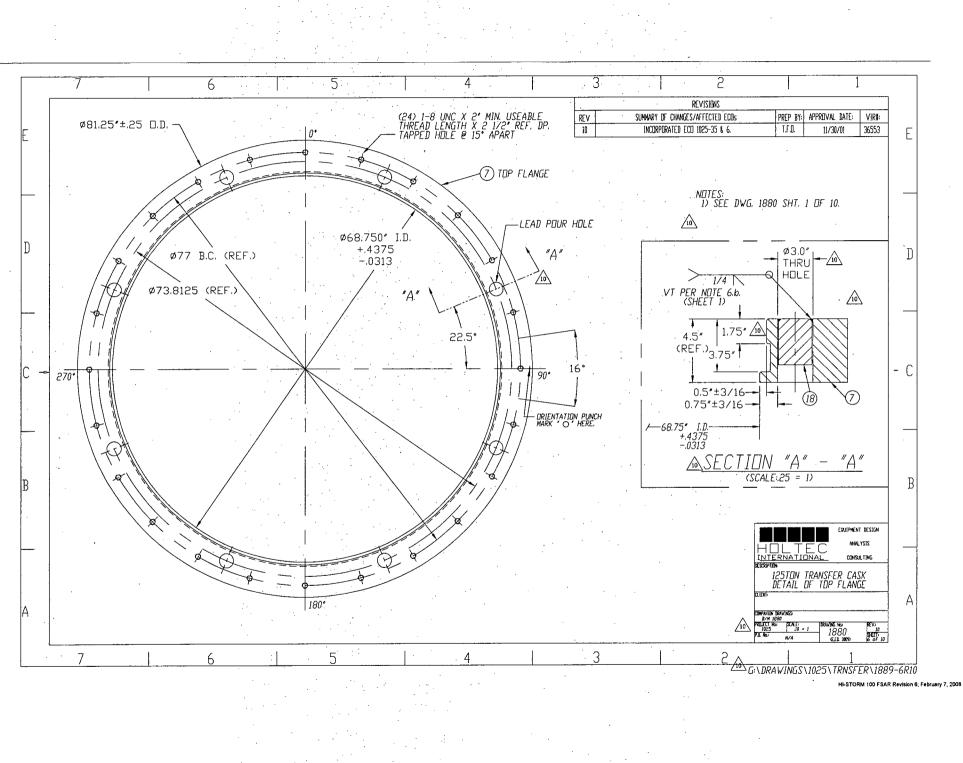





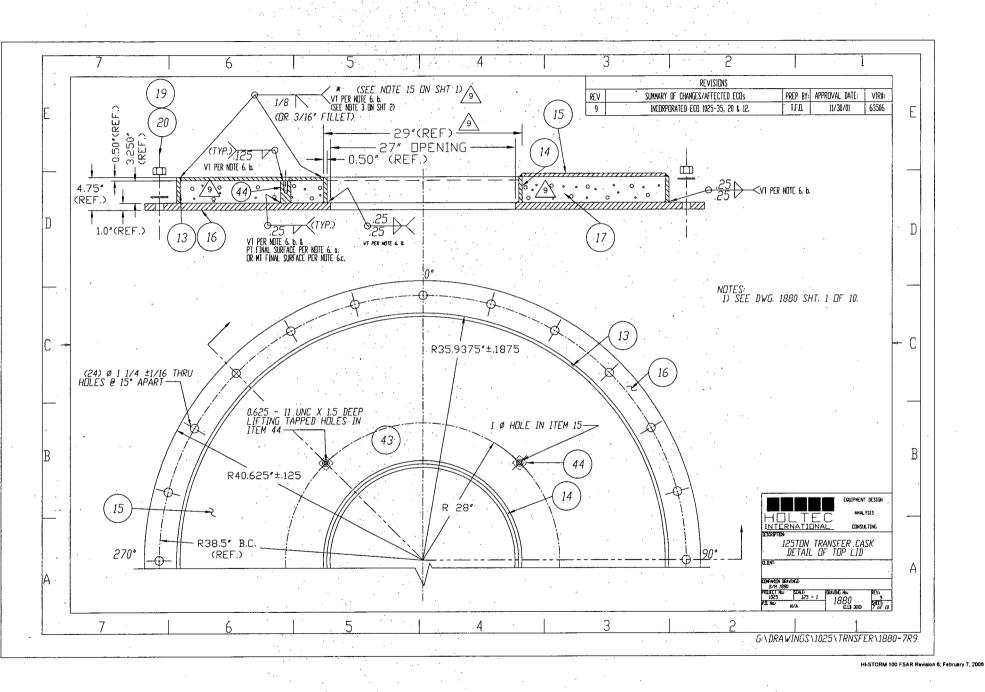





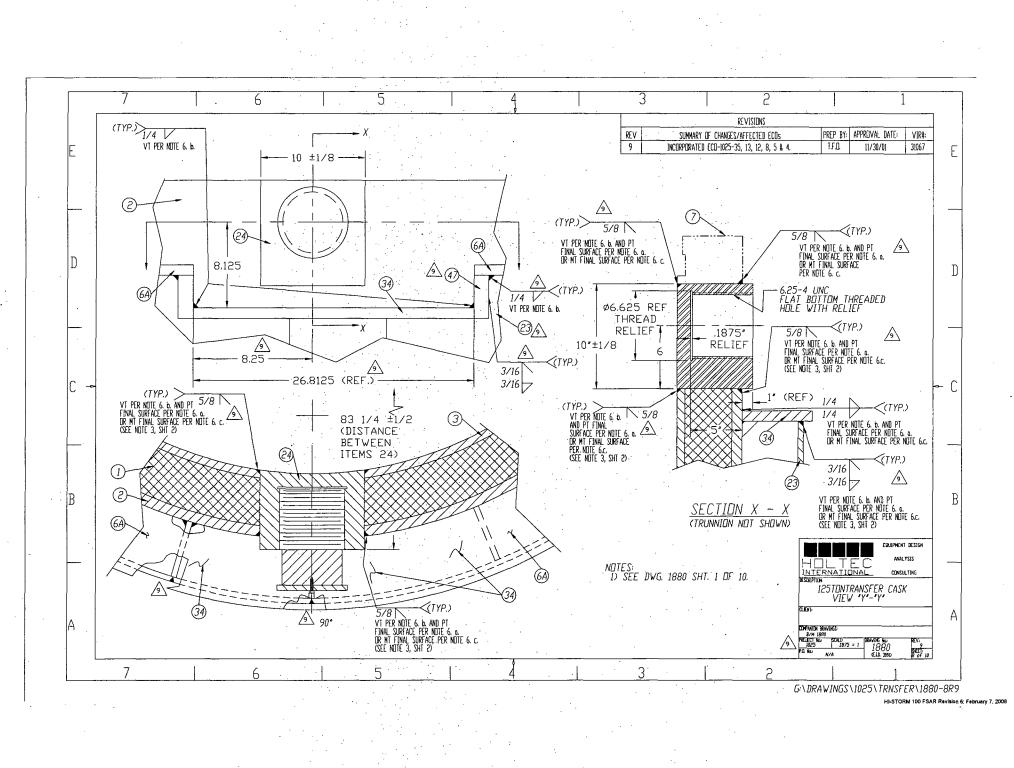

. - .--



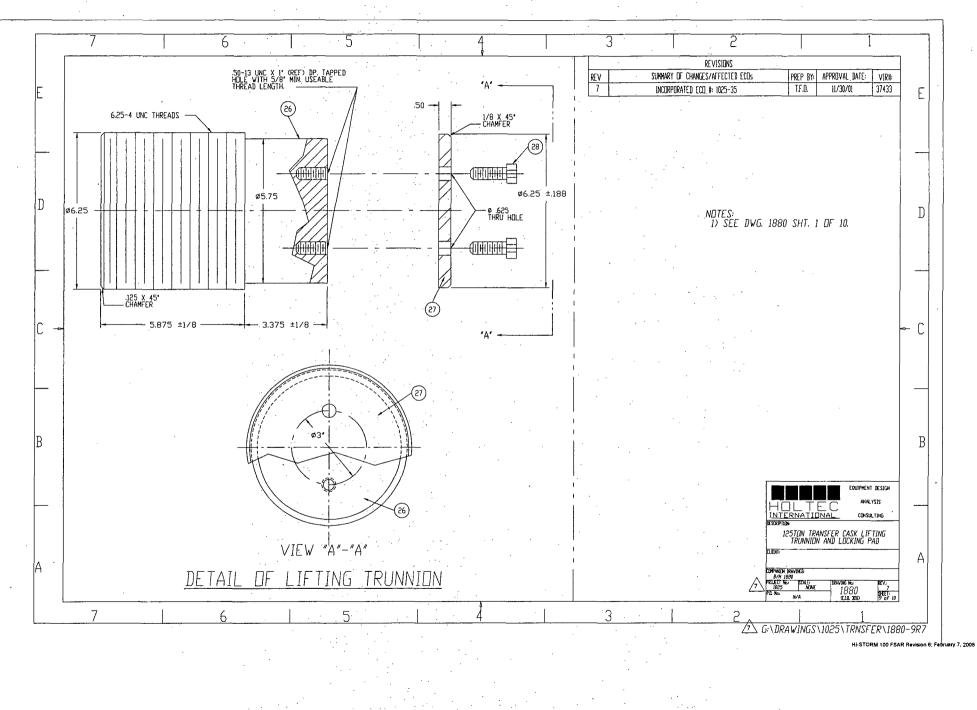



. . .

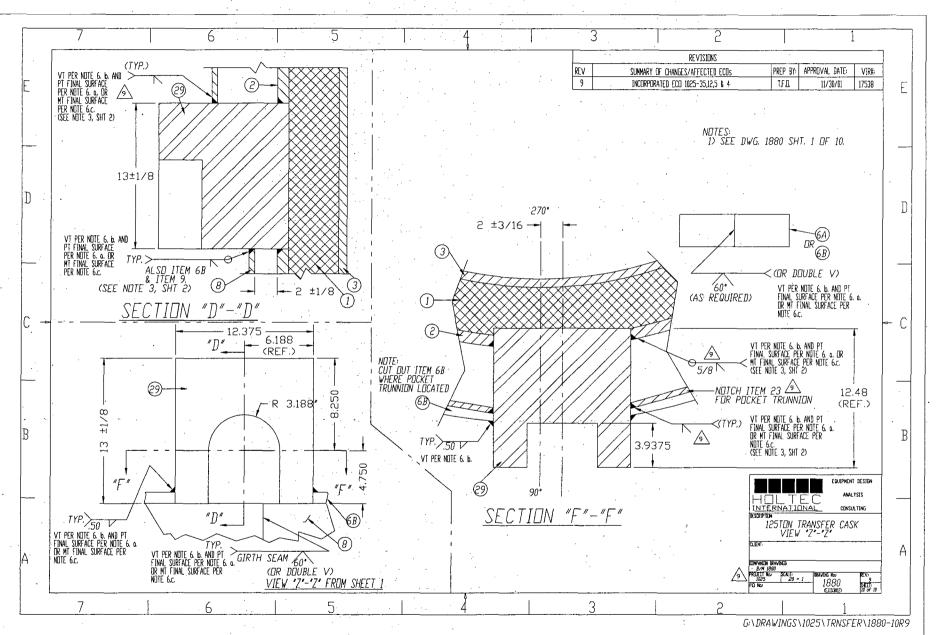



la canciana la c

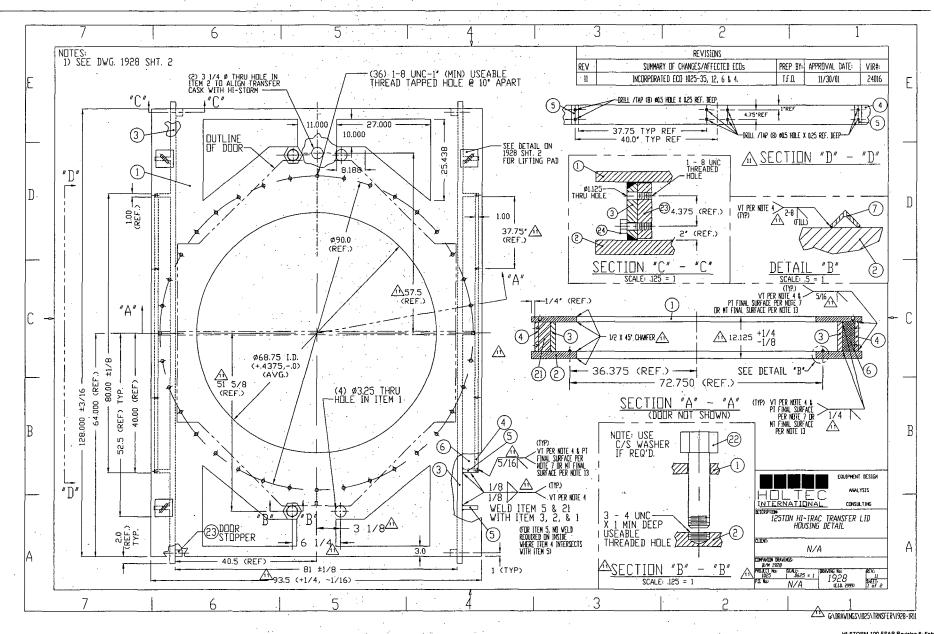



. . . .

τ.

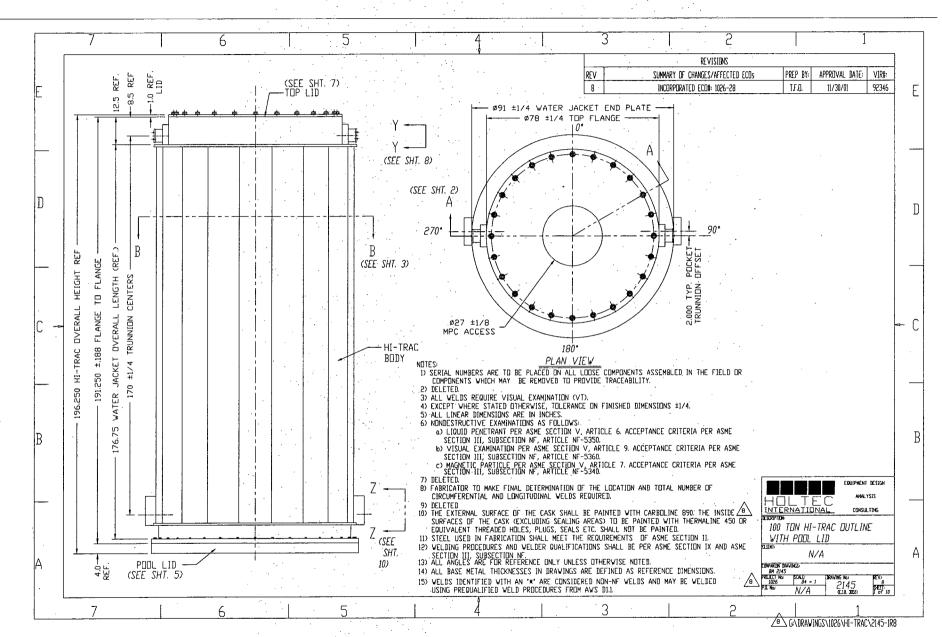

----



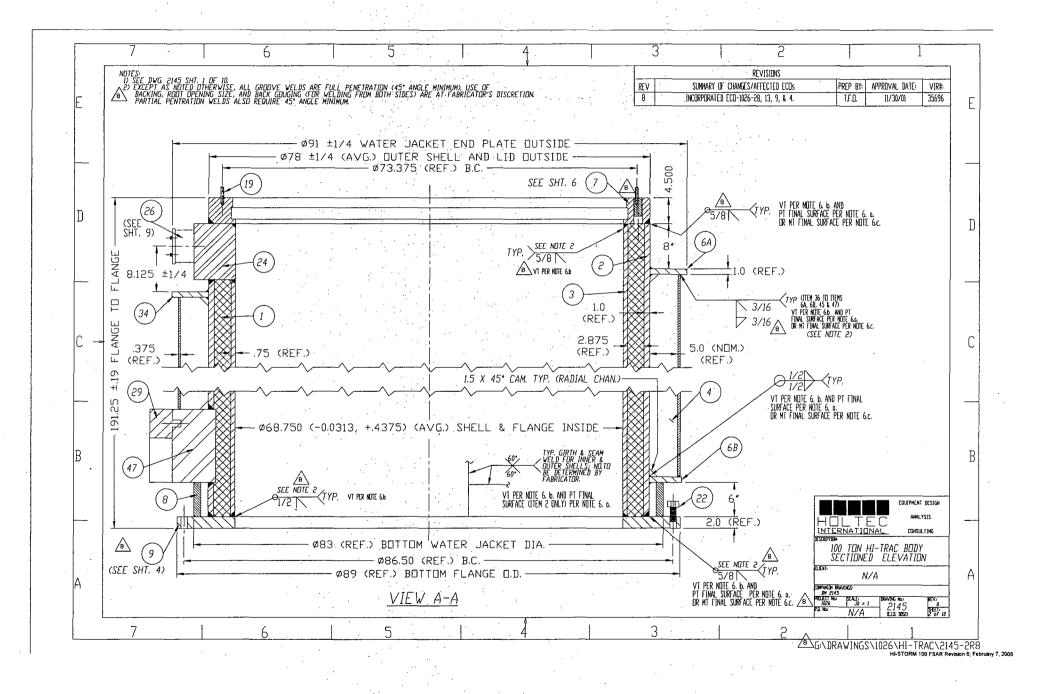

.




· •

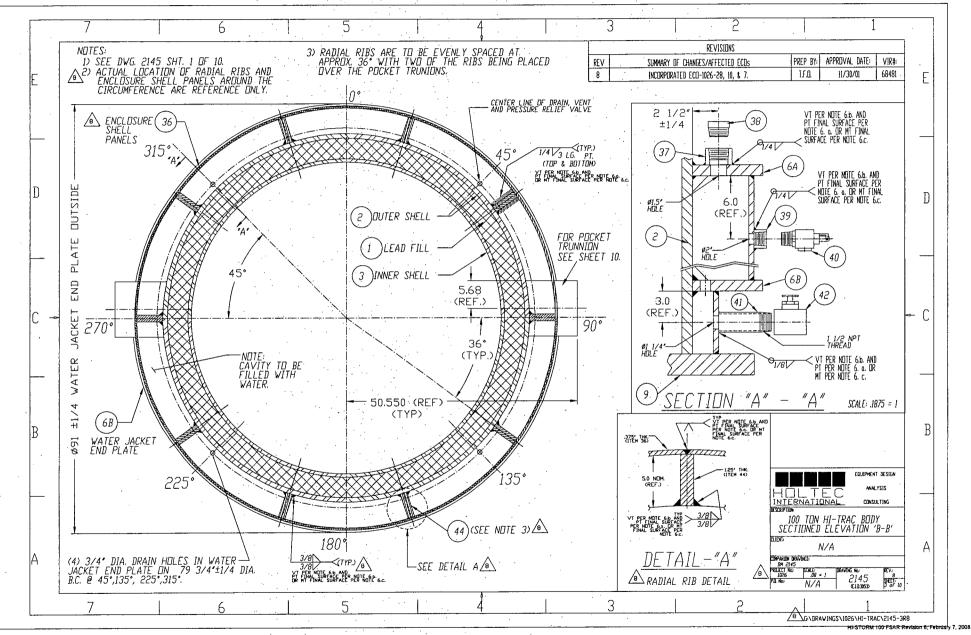


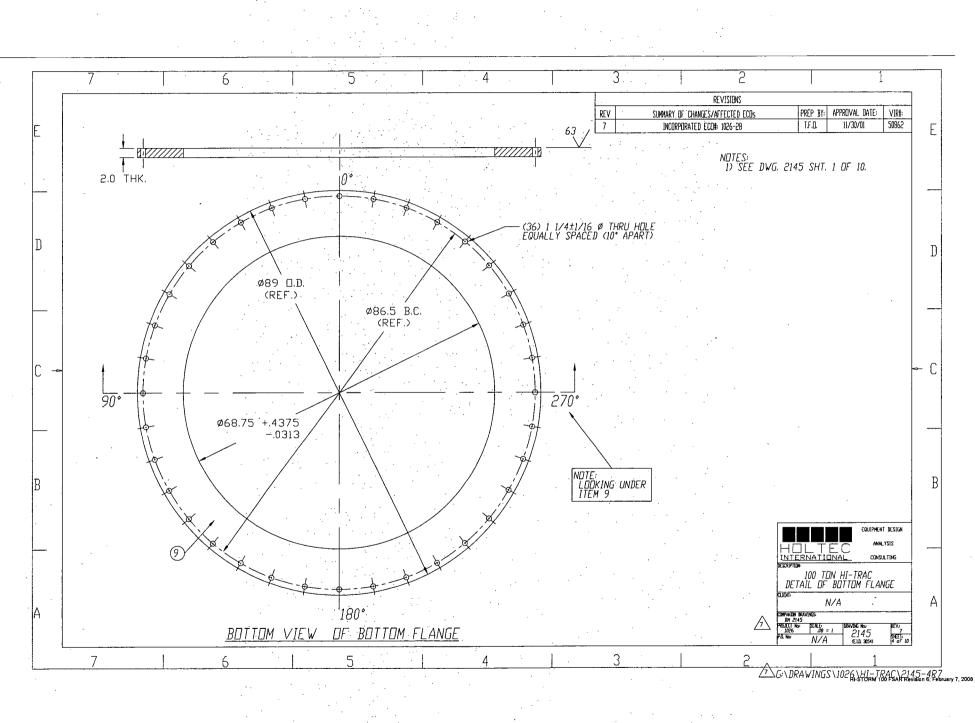

HI-STORM 100 FSAR Revision 6; February 7, 2008

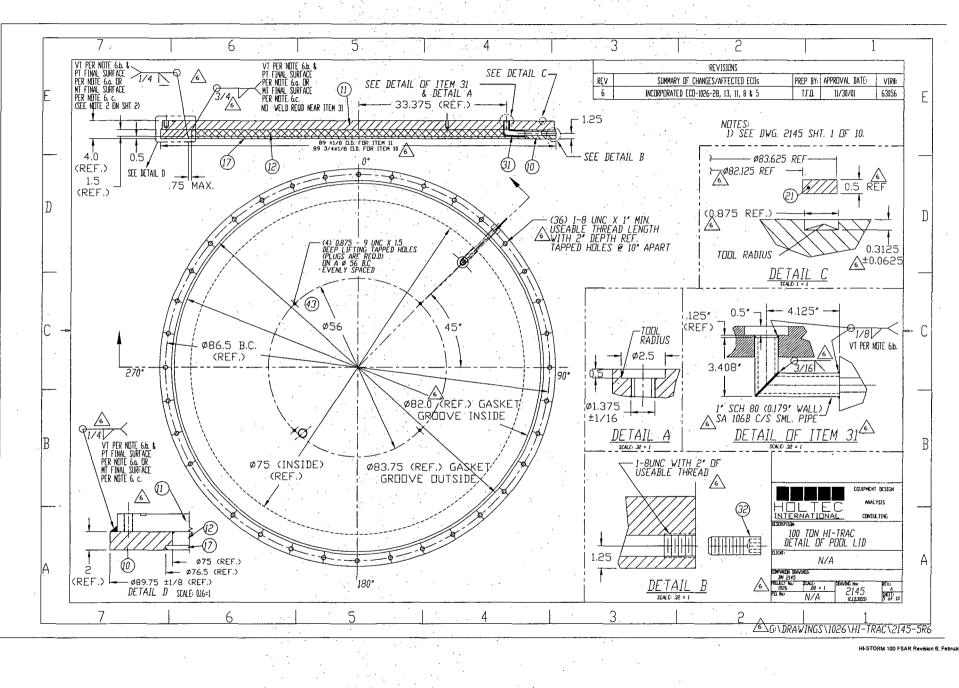



HI-STORM 100 FSAR Revision 6; February 7, 2008

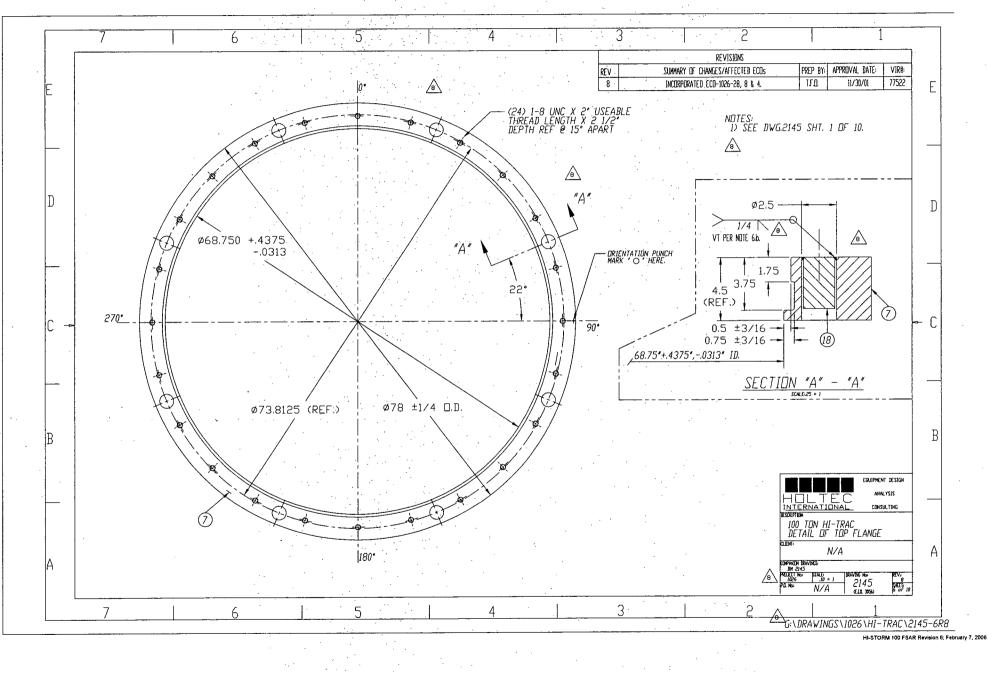


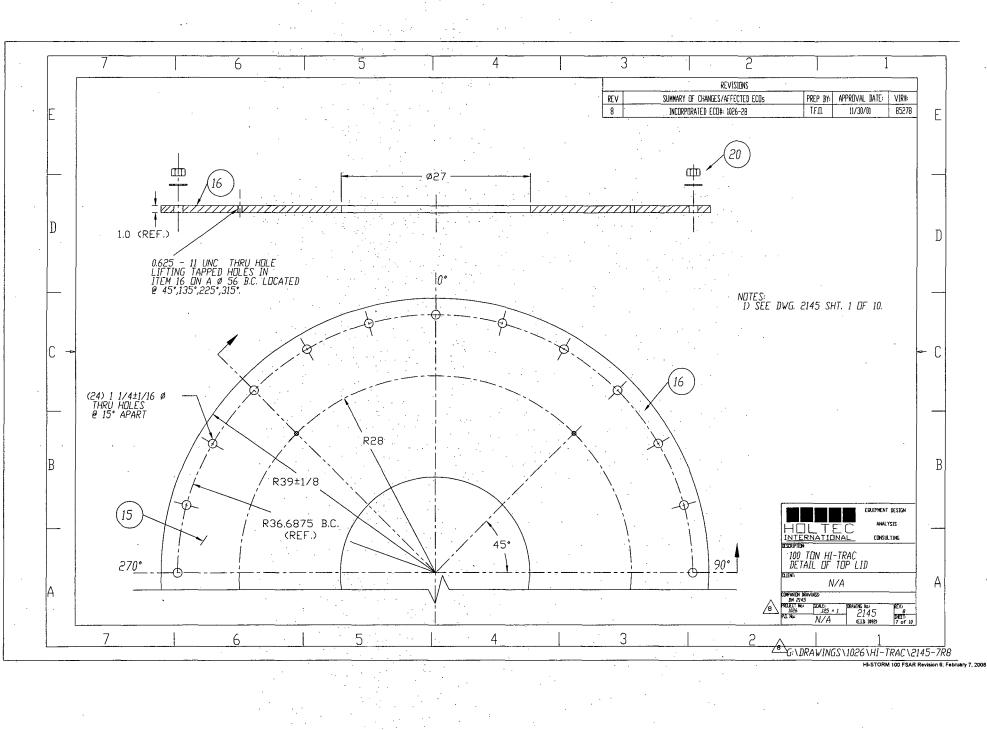


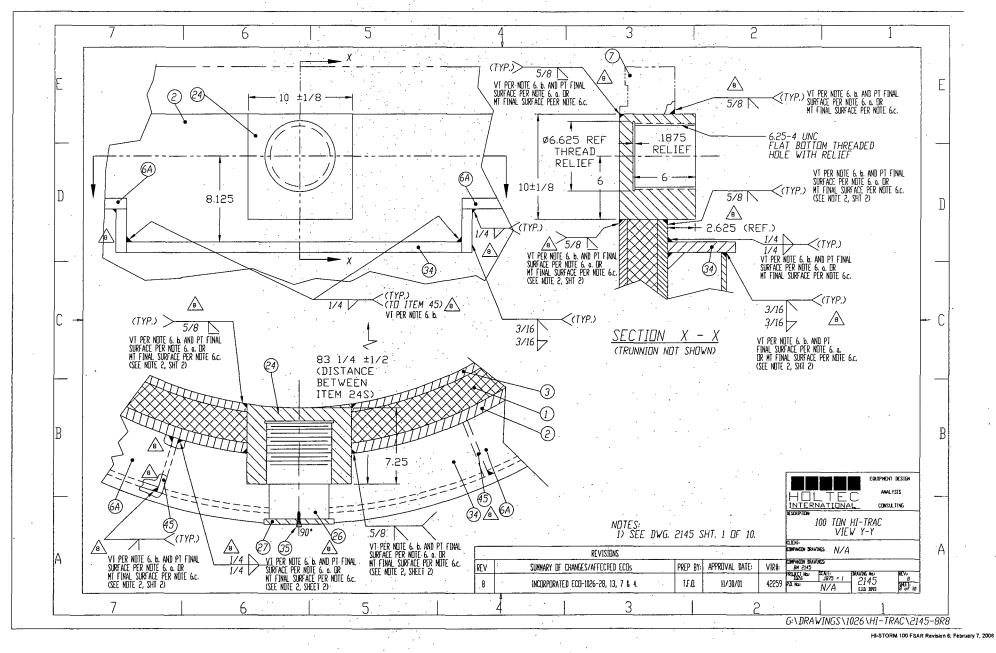


HI-STORM 100 FSAR Revision 6; February 7, 2008



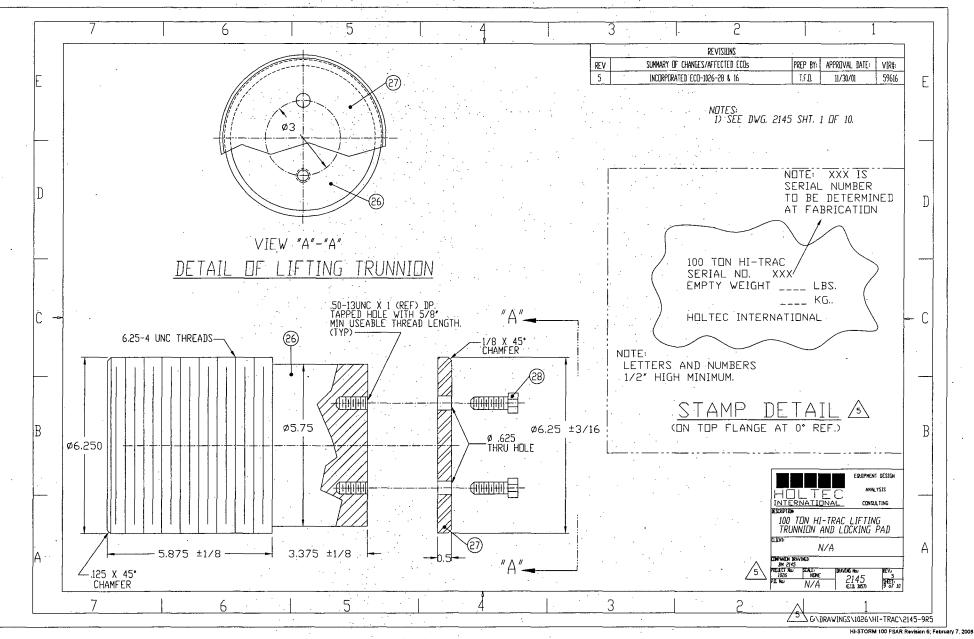

•

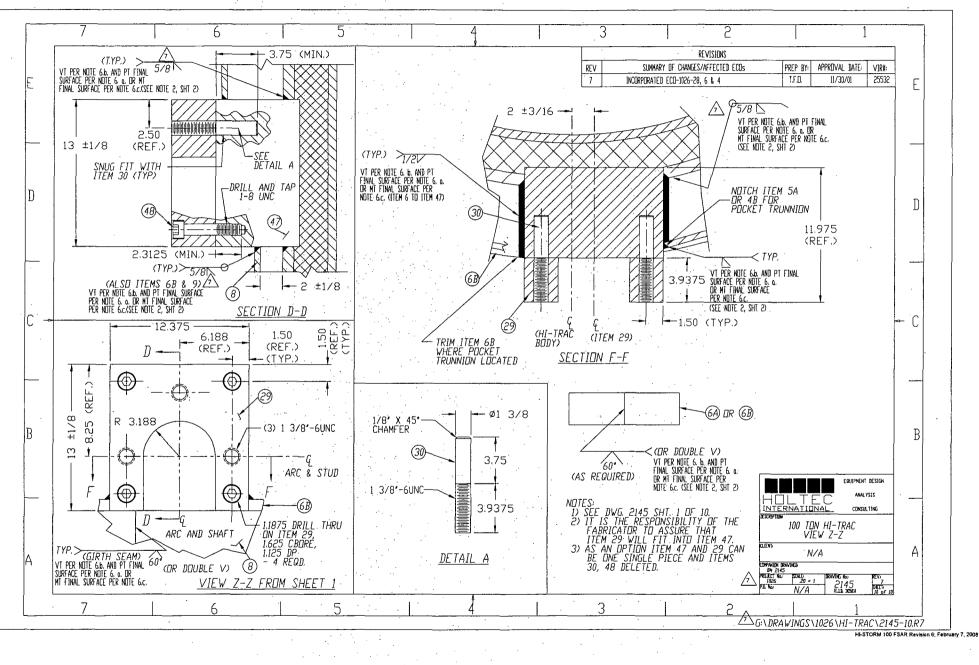

----

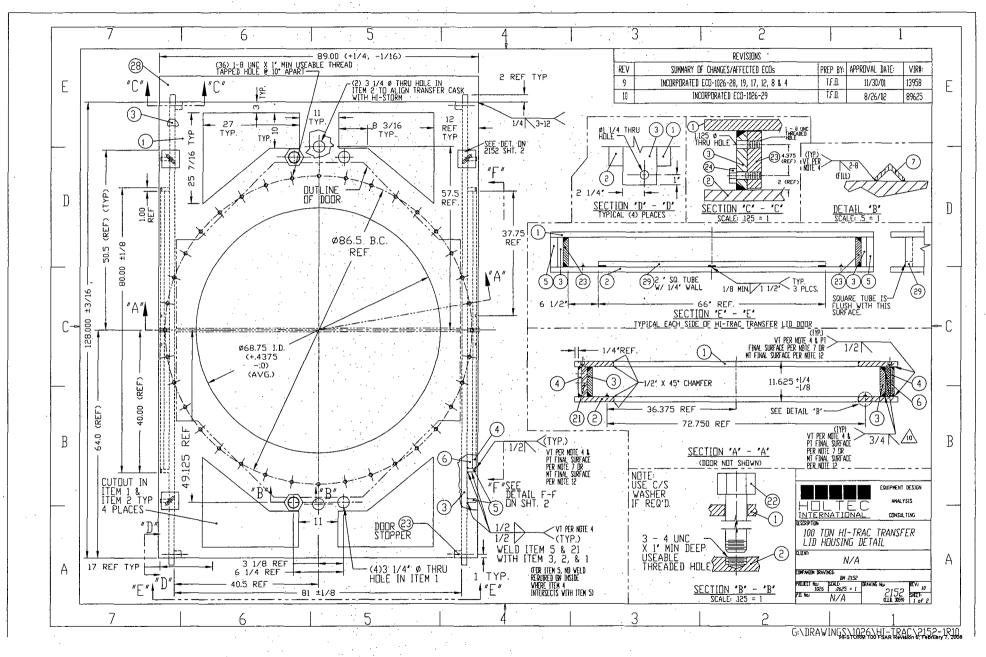


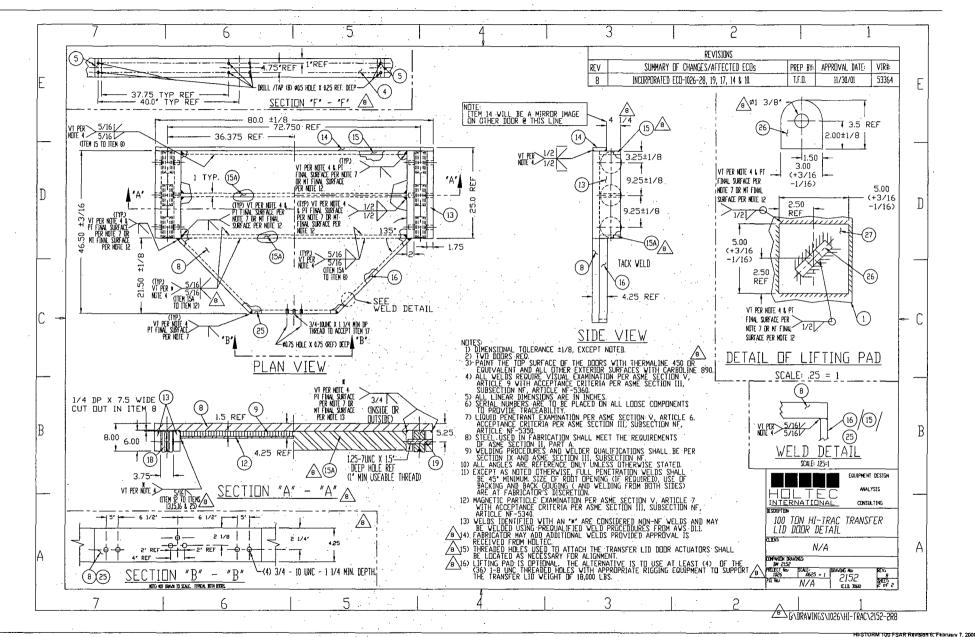





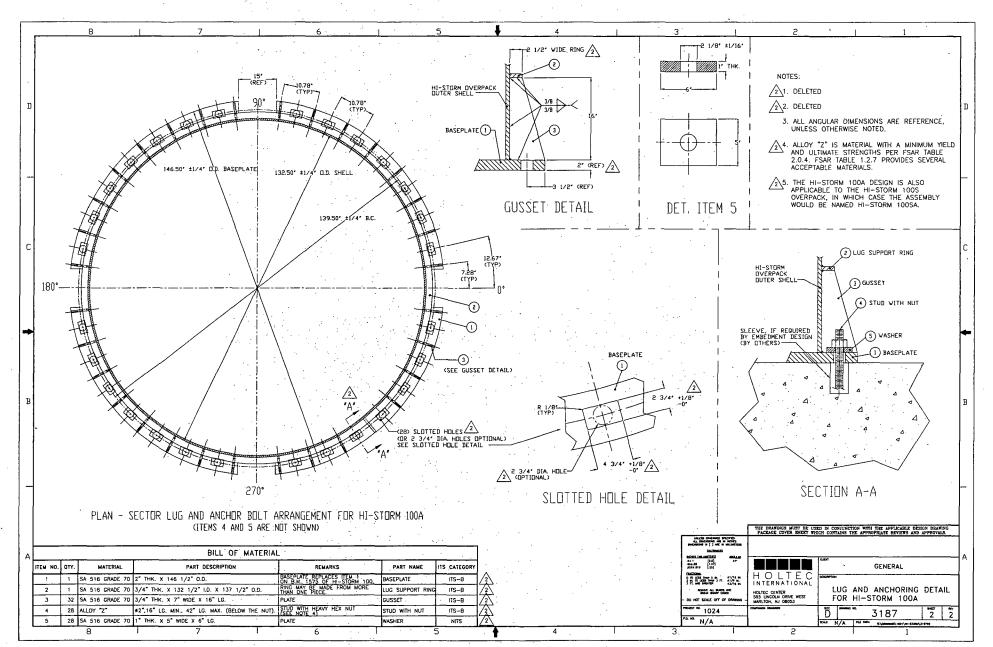


HI-STORM 100 FSAR Revision 6; February 7, 2008




· . . ·










		CLIENT	<u> </u>	ENERAL		6	· · · · ·		₅ DES	IGN DF	RAWIN	G P/	ACK4	GE	COVER SHEET
•	D	PROJEC	Γ NO. 1024		NO. N/A		<u></u>		IT IS MANDAT DIRECTORY NAS RACH ATTACHED I	REVI DIGITAL REVISION TO COM DIDITATIN WORKING DBAL BAVING SHEET CONTAINS ANNO	SION LOG	GVAL LOG STORED D D'LINES, PM AND QA IG THE REVISION TO	HOLTEC'S PERSONNEL. THE DRAWING.	······	
Í		DRAWING	- Z107	тота		2	R	CV.	FFECTED DRAWING	AFFECTE	DECOs	PREP. BY	APPROVAL DATE	VIR# 1	GENERAL NOTES: 1. THE EQUIPMENT DESIGN DOCUMENTED IN THIS DRAWING PACKAGE HAS BEEN CONFIRMED BY HOLTEC INTERNATIONAL TO COMPLY WITH ALL APPLICABLE CODES AND STANDARDS.
		PACKAG	E I.D. 5187	TOTA	L SHEETS	~			HTIAL ISSUE	INITIAL IS ADDED GUSSETS & SLOTTED HOLES	SUE	T.C.	8-7-00	<u>N/A</u>	2. THE PURCHASER OF THE FOURPMENT MUST ENSURE THAT IT WILL
						1	· -		HEETS 1 & 2.	& SLOTTED HOLES	4-43. OTHER	S. GEE	8-30-00	27911	INTERFACE WITH THE PURCHASER'S FACILITIES AND DEVICES WITHOUT INTERFERENCE OR EXCESSIVE CLEARANCES.
		DI	ESIGN DRAWING	PACKAG	<u>E CONTENTS:</u>			2 5		TRIANGLES		· · · ·	.,		3. THIS EQUIPMENT MUST BE DEPLOYED IN ACCORDANCE WITH HOLTEC INTERNATIONAL'S INSTRUCTIONS TO ENSURE PERSONNEL SAFETY AND TO MAINTAIN WARRANTY PROTECTION PROVIDED BY THE GOVERNING CONTRACT.
		SHEET		SCRIPTION .			F		<u></u>		<u> </u>				4. THE REVISION LEVEL OF EACH INDIVIDUAL SHEET IN THIS PACKA IS THE SAME AS THE REVISION LEVEL OF THIS COVER SHEET. A REVISION TO ANY SHEET(S) IN THIS PACKAGE REQUIRES UPD) OF REVISION NUMBERS OF ALL SHEETS TO THE NEXT REVISION
		1 2 .	COVER SHEET ASSEMBLY DRAWING, BILL OF	MATERIALS AND N	OTES				1	· .					5. CRITICAL DIMENSIONS (INDICATED BY AN *) ARE ESSENTIAL TO ASSURE EQUIPMENT FUNCTIONALITY.
	Ĭ							<u> </u>	· · · ·	· ·	. <u>.</u>				6. THE ITS CATEGORY OF A SUB-COMPONENT IS THE HIGHEST ITS LEVEL OF ALL PARTS THAT MAKE UP THE SUB-COMPONENT
								<u></u>	· · ·						
									THE VALIDATION	IDENTIFICATION RECORD (VIE) ALL APPROPRIATE REVIEWS OF	NUMBER IS & COMPUTER (	ENERATED RANDOM	NUMBER WHICH	······	
	ŀ						Ļ			ALL AFFRICTATES REVIEWS OF	THIS DRAWING ARE DOCOM		, ABIWORE.	I	
							· ·	; ·		PROPOSED	BILL OF L	ADING	· · ·		
1	в							SUB-	IT QTY.	DESCRIPTION		ITS CATEGORY (SEE NOTE 8)	APPROX. WT./LBS.	SHEET#	
			· ···				Ŀ	<b>A</b> · ·	1 LUG A	ND ANCHORING ASSEMBLY		ITS-B	11,650	2	
			······································				•				· · ·				
						·			н 	,					
	-		······												
			·····				 		•			·. ·	· · ·		A THE HERE
								·	· · · ·	· · ·					THE DEATINGS WHAT HE USED IN CONTUNCTION WITH THE APPLICABLE DESCH IN PACKAGE COTER SHEET VIECH CONTAINS THE APPROPRIATE REVIEWS AND APPR
							. :			•					
	4						. • •	•	•						HOLTEC
, f	4						× .								
4	A .						х. 				· · ·				LUG AND ANCHORING DETA HARTON, N BOOK WET MARTON, N 2002 MARTON, N 2002 MA



HI-STORM 100 FSAR Revision 6; February 7, 2008

		B	M-1575 (E.I	.D. 2839) BILL OF M	ATERIAL FOR HI-STORM (DWG. 1495, 1561) SHT	1 OF 2		
	REV	/.			MARY OF CHANGES/ ECTED E.C.O.S	PREP. BY:	APPROVAL DATEJ	VIR#
	10							
	19			RATED E.C.O.# 1024-67		T.F.O.	4/14/03	68570
	18 17			RATED E.C.D.# 1024-66		T.F.D.	3/28/03	80754
				RATED E.C.D.# 1024-62		SILIC TIFID.	9/30/02	35699 16734
	16			RATED E.C.D.# 1024-61	· · · · · · · · · · · · · · · · · · ·			
	15			RATED E.C.D.# 1024-54		S.L.C	6/20/02	32848
	<u>14</u> 13			RATED E.C.D.# 1024-50	CHANCER DEVICION DI DOM TO NEVA EDDIAT	SILIC T.F.D.	<u> </u>	46085 34436
		DTY.	SPECIFICATION	RATED E.C # 1024-44.,	CHANGED REVISION BLOCK TO NEW FORMAT	i,i	2/8/02	34430
		1	<u>SA 516 GR 70</u>	BASEPLATE				
쓌	2	1	SA 516 GR. 70	DUTER SHELL	2 THK, X 133 7/80 BASEPLATE 3/4 THK, X 224 1/2 LG, X 132 1/2 LD, CYLINDER OWY BE MORE DI SECT. 1 L/4 THK, X 224 L/2 LG, X 76 LD, CYLINDER (SEE NUTE D) 26 3/4 THK, RADIAL SHELD 26 3/4 THK, RADIAL SHELD 26 3/4 THK, RADIAL SHELD	DIG, SEE IMG 1492	(SEE NO	TE 5)
쓰	3	+	SA 516 GR. 70 CUNCRETE	RADIAL SHOELD	126 3/4 THK, RADIAL SHIFLD			
	5	1	SA 516 GR 70	PEDESTAL SHELL	174 THK X 68 378 U.J. X 21 578 Lb. CTLINDER			
	<u></u>		SA 516 GR. 70	LIII BUTTON PLATE				
	8	4	SA 516 GR. 70	EXIT VENT HURIZINIAL PLATE	1 THK, X 10 L/2" VIDE X 69 D.D. 1 1/4 THK, X 26 VIDE X 31 7/8 LG, PLATE (SEE DET. DVG 1561 3/4 THK, X 132 D.D. X 109 D.D. RING CUT IN 4 PLEDESS	SHT. 4)	·····	
	9	1	SA 516 GR. 70	TOP PLATE	3/4 THK. X 132 D.D. X 109 J.D. RING CUIT IN 4 PIEDESS			
	10A	J	28-216-10	ILIII TOP PLATE	2 THE X 124 10 PLATE (SEE NUTE 4)			
	10B 11		SA-516-70	LID TOP PLATE	2 THK X 126 Ø PLATE (SEE NOTE 4)	CUT 1		
			SA-516-70 Sa 516 gr. 70	INLET VENT HERIZENTAL PLATE		3111.37		·
		0	OR SA 515 (GR. 70	EXIT VENT VERTICAL PLATE	1/2 THK, X 5 1/4 VIDE X 30 7/16 APPRDX, LG, PLATE			
	13	8	sa 516 Gr. 70 Sa 516 Gr. 70	IINLET VENT VERTICAL PLATE. Idadiai di ate	3/4 THK, X 10 WIDE X 29 3/4 APPRIX, LG, PLATE 3/4 THK, X 27 1/2 WIDE X 224 1/2 LG, PLATE			
		i	SA 194 2H	TOP LOD NUT	3 1/4 - 4 UNC HEAVY HEX NUT	· · · ·	· · · · · · · · · · · · · · · · · · ·	
			54-564-630 AGE	LED. STLD	3 1/4- 4 UNC X 16 LG (SEE DWG, 1561, SHT 2)	•		
		4	SA 350 LF3 DR SA 213 E DR SA 330 LF E	BOLT ANCHOR BLOCK	5 x 5 x 6 Anchor Block v/ 3 1/4 - 4 unc x 5 lg hole in c (457 Round) bar nay be used in lieu of 5 x 5 square bar)	ENTERI		
*	<u>18</u> 19	4 16	SS SA 516 GR 71 DR SA240 TYPE 304	PEDESTAL PLUGS	I-BINC X LENGTH AS REPUTED SET SCREW 3/16 THK X 6 VIDE X 170 7/8 LG CHANNEL (SEE DETAIL 1495 S	H. 5) (GALV	ANTZE FIDE C/S)	
			SA240 TYPE 304 SA 516 GR 70	SHIELD BLOCK RING	1/4 1HK X 63 1/2 10. X 85 1/2 10. (MAY BE NADE FROM MIDE THAN 1 PILCE)			
	21	+			(NAY BE NADE FROM MURE THAN 1 PIEDE.)			
ł	22	<del>i  </del>	CONCRETE	PEDESTAL SHIELD	17" THK, PLATFORM 10 1/2 THK, TOP SHIELD		·····	
			SA 516 GR. 70 DR 5A 513 GR. 70	PEDESTAL PLATE	1/2 THK X 67 7/8 Ø			
	24		A36 OR EQUAL	PEDESTAL PLATFORM	5 THK, X 67 7/8 & PLATE ONAY USE NULTIPLE PLATES OF LESSE - NUMBER OF PLATES AND THICKNESS OF PLATES OPTIONAL)	R THICKNESS		
	25	1	CONCRETE	SHIELD BLOCK	8' THK.	· ·	<u> </u>	
ſ	26	1	SA 516 GR. 70 Dr sa 515 Gr. 70	SHIELD BLOCK SHELL	1/2 THK X BG D.D. CYLINDER X 8" HIGH ( NAY MAKE DUT OF MORE	THAN L PLE	Ð	
• [			SA 516 GR. 70 Dr sa 515 Gr. 70	SHIELD BLOCK SHELL	1/2 THK X 64 D.D. CYLINDER X 8" HIGH ( NAY MAKE DUT OF MORE	THAN L PLE	Ð	
_[	2B			DELETED				
ł			SA 240 304 C/S OR S/S	LTD PLUGS	14 GABE 00.0751 THK. ) X 4 WIDE X 10 LG. SHEET 11 1/2"-GUNC X I I/2" DP BOLT OR 1 1/2"-GUNC X 2" LG SET SCR	V		
	NOTES			[				
			NCRETE MAT	FRIAL IS TO MEET THE	REQUIREMENTS SPECIFIED IN APPENDIX 1.D OF THE		1100 FSAP	
ļ	זם	OCKE	T NUMBER 7	2-1014 (LATEST RE∨ISI	IN).			
					ARE APPROXIMATE DIMENSIONS EXCEPT THICKNESSES HAVE TULERANCES MEETING THE APPLICABLE SPEC			
	3) IŤ	EMS	VITH A * C	ONDIDERED NOT TO BE	NF CLASS 3 (NON STRUCTURAL).		•	
	45 40	s an	OPTION, ITE	MS 10A & 10B CAN BE (	COMBINED AS A SINGLE 4" THICK PLATE AT 126" Ø	WITH -	· .	
				IDI DO COD'I TA OTURO /	AS ITEM INA			
	SA			IDLES FOR LID STUDS				
∕₽	5) IN 3/	NER /41	AND DUTER	SHELL THICKNESSES MA	Y BOTH BE CHANGED TO 1-INCH THICK IN LIEU OF R OR DUTER SHELL THICKNESS IS CHANGED TO 1-JI			

G\DRAWINGS\1024\BM-1575-1R19

		BM-15	75 (E.I.D. 2836) BILL	OF MATERIAL FOR HI-STORM (DWG. 1495, 15	61) SHT	2 DF 2	
RE	EV.		SUMMAR	Y DF CHANGES/ CTED E.C.D.s	PREP. BY:	APPR⊡∨AL DATE:	VIR #
13	3		INCORPORATI	ED E.C.D.# 1024-47	S.L.C	2/27/02	72710
14	4 [:]		INCORPORAT	ED E.C.D.#: 1024-50	S.L.C	5/7/02	19678
15	5		INCORPORAT	ED E.C.D.#/ 1024-54	S:L.C	6/20/02	89834
16	5		INCORPORAT	ED E.C.D.#: 1024-56	-S.L.C	6/21/02	14060
17	 7			ED E.C.D.#: 1024-55	S.L.C	6/25/02	96106
18	3	· · ·		ED E.C.D.#: 1024-65	S.L.C	12/20/02	14428
19				ED E.C.D.#: 1024-77	S.L.C	8/7/03	69857
		SPECIFICATION			J.L.U		
31			DELETED				
32	4	SA 240 304	EXIT VENT SCREEN SHEET	16 GAGE (0.0595 THK.) X 6 1/4 WIDE X 40 LG. SHEET			
33		SA 240 304	EXIT VENT SCREEN FRAME	16 GAGE (0.0595 THK.) 16 WIDE X 212 LG 6 X 6 MESH 0.020 WIRE Ø 0.147 WIDTH OPEN FROM	· · · · · · · · ·		
34	1	COMMERCIAL	SCREEN	16 VIDE X 212 LG 6 X 6 MESH 0.020 VIRE Ø 0.147 VIDTH OPEN FROM MCMASTER-CARR 101 PAGE# 2521 ITEM# 9220T67 CUT AS NECESSARY OR EQUIV	ALENT		
35	4	SA 240 304	INLET VENT SCREEN FRAME	16 GAGE (0.0595 THK. )		···	
36	5	COMMERCIAL	THERMOCOUPLE OR RTD	1/8 Ø SHEATH WITH TEMPERATURE ELEMENT (BY USER).			
37	16	SA240-304	GAMMA SHIELD CROSS PLATE	1/4 THK X 2.75 X 24			
38 - 39 -	24	SA240-304 SA240-304	GAMMA SHIELD CROSS PLATE	1/4 THK X 24 X 24 5/8 .075 THK X 1/4 X 2 1/2	<u>entin anno 1888</u> Tha tha tha		
40		SA240-304	GAMMA SHIELD CROSS PLATE	1/4 THK X 14 5/8 X 24		· · · · · · · · · · · · · · · · · · ·	
41	16	SA240-304	GAMMA SHIELD CRDSS PLATE	1/4 THK X 3.09 X 24	e de la composition de		
42	2		DRAIN PIPE	3/4 SCH 160 PIPE X 11 1/2 LG		•	
43	8	SA240-304 316 SS	GAMMA SHIELD CROSS PLATE	1/4 THK X 5.09 X 17 1/4 1/8' X 1/4 NPT MALE PASS THRU COMPRESSION FITTING (OPTIONA	1 2		
44			PROTECTION HEAD	1/2 NPT X 1/2 NPT (OPTIONAL)	L/		
46	2	304 SS	BUSHING	1/4 X 1/2 NPT (OPTIONAL)	· · · ·		
47	2	304_SS	COUPLING	1/2 NPT COUPLING W/ MOUNTING STUD 1/2 DIA X 3" LG. (DPTION	AL)	· · · · · ·	·
48	2	<u>304 SS</u> 304 SS	HEX NIPPLE CONNECTION	1/2 X 1/2 NPT HEX NIPPLE (OPTIONAL) 1/2 NPT CONDUIT CONNECTION (OPTIONAL)			<del>.</del>
50	-28	S/S	SCREW	01/4' X LENGTH AS REQUIRED			
51	4	S/S	WASHER	1/2' MIN. THK. X 3 1/2' I.D. X 8' MIN. D.D.			
52	96 4	A36	CHANNEL MOUNTS SHIMS	3/16' X 1' X 1' X 24' LUNG 2' THK X 3' LONG X 2' HIGH	•		
54	4	S/S	BAR INLET SCREEN BASE	1/2' X 1' X 24 3/32' LG. BAR		- <u></u>	
55	8	S/S	BAR INLET SCREEN BASE	1/2" X 1" X 15" LG. BAR.			
56	1	SA516 GR. 70	SHEAR RING	3/4' THK. X 73 1/2' I.D. X 108' D.D. PLATE (CUT IN FOUR PIECES	;>		·
57	2	SA516 GR. 70 DR SA515 GR: 70	GROUNDING BLOCK	1/2' THK. X 2' WIDE X 4' LONG		·	_
58	16	. SA516 GR. 70	EXITVENT FRAME_LEG		·		-
59 60	8	SA516 GR. 70 SA516 GR. 70	EXITVENT FRAME TOP	3/8" THK. X 1" WIDE X 28 1/4" LG. (CUT AS REQUIRED) 3/8" THK. X 1" WIDE X 12" LG. (CUT AS REQUIRED)			
61	8	SA516 GR. 70	INLETVENT FRAME TOP	3/8' THK. X 1' WIDE X 18 3/4' LG. (CUT AS REQUIRED)			
62	4	<u>S/S</u>	EXIT SCREEN BASE	3/8' THK X 1/2' WIDE X 32 5/16' LG			
63	8	S/S	EXIT SCREEN BASE	3/8' THK. X 1/2' WIDE X 10' LG.			
64	4	SA516 GR. 70 C/S	RADIAL WELD PLATE HEAT SHIELD RING	3/4' THK. X. 6' WIDE X 27 1/2' LG. (DPTIDNAL) 3/8' THK. X. 1' WIDE X 69' D.D. (CAN BE MADE FROM MULTIPLE P.		· · · · · · · · · · · · · · · · · · ·	
66	1.		HEAT SHIELD KING	14 GAGE (0747 THK.) X 68' 0.D.		<del></del>	

G/DRAVINGS/1024/1495R12

	BM-1	880		LL OF MATERIAL FOR 125	TON	HI-TRAC (DWC	i. 1880) SHT. 1 OI	- 2
	REV.	ND.	AFF	RY DF CHANGES/ ECTED ECDs		PREP. BY	APPROVAL DATE:	VIR#
	9		INCORPE 15, 12,	)RATED ECD 1025-35, 8, 6 & 5.		T.F.D.	11/30/01	70889
	ITEM	QTY.	SPECIFICATION	NOMENCLATURE			DESCRIPTION	· ·
	1	1	ASTM B 29	RADIAL LEAD SHIELD	113	CU. FT. COMMON L	EAD, APPROX.	
ļ	2	1	SA 516 GR. 70	OUTER SHELL	<u>11 T</u>	<u>HK, X 81,25 D.D. X</u>	184.75 LG. CYLINDE	<u> </u>
	3		SA 516 GR. 70	INNER SHELL	0,75	<u>) THK. X 68.75 I.D</u>	X 184.75 LG. CYLIN	IDFK
<u>(</u>	4 4A	- "	· - ·	DELETED		<u>.</u>		
公	<u>4A</u> 4B		-					·
	5	- ·	_	DELETED DELETED	1.		-	
	5A	-		IDELETED				
	. 6A	2 :		WATER JACKET END PLATE	1 T (MA	HK. X 94.625 D.D. Y BE MADE FROM I	X 81.25 I.D. X 141° ( MDRE THAN 1 PIECE)	APP)
	6B	1	SA 516 GR. 70	WATER JACKET END PLATE			X 81.25 I.D. RING MORE THAN 1 PIECE>	
	7	1	SA 350 LF3	TOP FLANGE	4.5	ТНК. X 81.25 D.D.	X 68.75 I.D. RING	
ŀ	_8	1	SA 516 GR. 70	LOWER WATER JACKET SHELL	0.5	<u>ТНК. X. 86.25 D.D.</u>	X 6 LG. CYLINDER	
.	9	1.	SA 516 GR. 70 DR SA 350 LF3	BOTTOM FLANGE	2 T	НК. Х 93 П.Д. Х 6	8.75 I.D.	
A	10	1	SA 516 GR. 70 DR SA 203-E DR SA 350 LF3	POOL LID OUTER RING		ТНК. Х 93.75 П.Д.		
	11	1	SA 516 GR, 70	POOL LID TOP PLATE	2 T	HK, X 93 Ø PLATE	· · · · · · · · · · · · · · · · · · ·	
A	12	<u> </u>	ASTM B 29	POOL LID LEAD SHIELD	6.39	CU. FT. COMMON	LEAD APPROX	
	13		SA 516 GR. 70	TOP LID OUTER RING	0.5	<u>                                     </u>	X 3.25 LG. CYLINDE 3.25 LG. CYLINDER	<u>_R</u>
21	<u>14</u> 15	1	SA 516 GR. 70	TOP LID TOP PLATE	0.5		X 28.5 I.D. RING	
	16	1		TOP LID BOTTOM PLATE	1.0	THK. X 81.25 D.D.	X 27 I.D. RING	
ł	17	1	HOLTITE	TOP LID SHIELDING	5.41	CU. FT. APPROX.		
<u>A</u>	10	0			0 4	118 C 11 0 7 108 -	CYLINDER (MAYBE	MADE DF
נצי	18	8	24 210 UK. 10	FILL PORT PLUGS	MUL	TIPLE, UNATTACHE	D PIECES)	
	19	24	SA 193 B7	TOP LID STUD	1-8 TH	UNC X 4 3/8 LG. READ WITH WRENC	STUDS (4 3/8 FULL H FLAT AT ONE ENI	LENGTH
Ţ	50	24	SA 194 2H	TOP LID NUT	1-8	UNC HEAVY HEX	WITH WASHER	
/91	51	1.			811			LIAL
	55	36	SA 193 B7	POOL LID BOLT	THR	EAD LENGTH W/W	5. HEX. BOLTS X 1.25 ASHER	9 MIN
		N	DTE: 1) ALL SA-3 2) ALL DIMER 3) FOR ITEM SA-203-E	50-LF3 MATERIAL MAY BE REPL NSIONS ARE FOR REFERENCE ON 18, SA 516 GR.70 MAY BE REPL OR SA-350-LF 3 OR EQUIVALE	ACEI LY. ACEI NT.	D BY SA-203-E. D WITH	····	
· -	_					Z G'	DRAWINGS\1025\TRN	SFER\BM1880-1.F

HI-STORM 100 FSAR Revision 6: February 7, 2008

. •.

					· · · · · · · · ·			
			BM-1880 (E.I.I	D 3003) BILL DF MATERIAL				
	REV.	ND.		SUMMARY DF CHANGES/ AFFECTED ECDs	· · · · · · · · · · · · · · · · · · ·	PREP BY:	APPROVAL DATE:	VIR#:
	7			INCORPORATED ECO 1025-3 20, 13, 8 & 5	5,	T.F.D.	11/30/01	22562
	ITEM	QTY,	SPECIFICATION	NOMENCLATURE		DESCRIPTIE	]N	
A	23	12	SA 516 GR.70			i, X 168.75 LG, 30	DEG. SHELL SEGMENTS	
. [	24	2	SA 350 LF3	LIFTING TRUNNION BLOCK	7.625 (APPROX) X 10	X 10	······································	
	25			DELETED		AD		· · · · · · · · · · · · · · · · · · ·
	26 27	2	SB 637 N07718 SA 516 GR. 70	LIFTING TRUNNION	6.25 Ø X 9.25 LG. B 0.5 THK. X 6.25 Ø PL			· · · · · · · · · · · · · · · · · · ·
-	<u> </u>	4	SA 193 B7	LIFTING TRUNNION END CAP	0.5 - 13 UNC X 1 LC	LHIL 1. WITH 5/8 I G TH	READ	<u> </u>
	29	2	<u>SA 35</u> 0 LF3	POCKET TRUNNION	12.375 X 13 X 12.5 I	BI FICK		
	30	1	SA 106	DRAIN PIPE	1 SHC, 80 X 7 (APPR	ROXI) LG. PIPE		
$\mathbb{A}$	31	12	SA 516 GR.70		1.25 THK, X 5.361 W	X 168.75 LG.	· · · · · · · · · · · · · · · · · · ·	
	32	1	<u>SA 193 B7</u>		1 – 8UNC X 1.75 LG.	SUCKEL SEL SCRE	W	
	<u>33</u> 34	2	SA 516 GR. 70	DELETED WATER JACKET END PLATE	1 THK. X 94.625 D.D.	X 8125 IN X 39°	(APP)	
	34	<u> </u>		DELETED		X OLES LD: X OV		
1	36	1	SA 516 GR. 70	POOL LID BOTTOM PLATE	1 THK. X 77 Ø PLAT			
	37	1	COMMERCIAL	VENT COUPLING	1 1/2-3000 lb. SCREV			
	_38	1	COMMERCIAL	200	1 1/2-3000 lb. SCREWE			
$\mathbb{A}$	39	2	COMMERCIAL		2-3000 lb. SCREWED			
$\triangle$	40	2	COMMERCIAL		MEDIUM PRESSURE PL		ILAR)	···· <u>·</u>
	41	1	SA 106	JACKET DRAIN PIPE	1 1/2 SCH 40 X 5 L			
$\mathbb{A}$	42	1	COMMERCIAL	JACKET DRAIN VALVE	1 1/2 NONRISING ST	EM GATE VALVE ([	IR SIMILAR)	
	43	4	C/S DR S/S	HOLE PLUGS	N/A		· ·	
	44	4	SA 516 GR. 70	TOP LID LIFTING BLOCK	1.5 SQ. X 3.25 LG. B	LOCK		
A	45			DELETED			· · ·	
	46	·		DELETED				
A	47	4	SA 516 GR.70	SHORT RIB	0.5 THK. X 6.688" W	X 4.125 LG.		
l					la	A		

G:\DRAWINGS\1025\TRNSFER\BM1880-2.R7

	, <u>-</u>			<u></u>	<u> </u>	<u> </u>	-	
	В	M-1	928 (E.I.D. 300	1) BILL OF MATERIAL FOR	R 125 TON HI-	TRAC TRANSFER	LID (DWG, 1928)	I
	REV. N	0.	SU	MMARY OF CHANGES/AFFECTED E	COs	PREP BY:	APPROVAL DATE	VIR#:
	10			INCORPORATED ECO 1025-35, 10, 8, 6, & 4.		T.F.D.	11/30/01	87422
	ITEM Q		ISPECIFICATION	NOMENCLATURE		DESCRI		
$\wedge$		1	SA 516 GR. 70	LID TOP PLATE	15 THK Y 935 1	/IDE X 128 LG. PLA		
	2	1	SA 516 GR. 70	LID BOTTOM PLATE		DE X 128 LG. PLAT		
	2	2	SA 516 GR. 70	LID INTERMEDIATE PLATE		WIDE X 132 LG, PL		· · · <u>· · · · · · · · · · · · · · · · </u>
	4	2	SA 516 GR. 70	LEAD COVER PLATE		IDE X 78 LG PLAT		
70		8	SA 516 GR. 70	LEAD COVER SIDE PLATE	1 THK X 4.5 VID	E X 8.625 LG. PLAT		
	6	1	ASTM B 29	SIDE LEAD SHIELD	2.65 (APPREX.) CL			
10		2	SA 36	WHEEL TRACK		X 128 LG. ANGLE	······································	· · · ·
7103		2	SA 516 GR. 70	DOOR TOP PLATE			ATE (CUT AS NECESSA	ARY)
	9	2	ASTM B 29	DOOR LEAD SHIELD	2.9 (APPROX.) CU.	FT.	· · · · · · · · · · · · · · · · · · ·	
	10	2	SA 516 GR. 70	DOOR MIDDLE PLATE			CUT AS NECESSAR	Y)
	11	2	HOLTITE	DOOR SHIELDING	3.65 (APPROX.) CL			
		2	SA 516 GR. 70	DOOR BOTTOM PLATE	3/4 THK. X 47 W	IDE X 65 LG. PLAT	E (CUT AS NECESSAR	Y)
	13	4	SA 516-70	DOOR WHEEL HOUSING	1 778 THK X 6 V	VIDE X 25 LG. PLA	TE , · · · ·	· .
		.5	SA 516 GR, 70	DOOR INTERFACE PLATE		VIDE X 80 LG, PLA		
	15	2	SA 516 GR. 70	DOOR SIDE PLATE	1 THK. X 5.75 WI	DE X 65 LG PLATE		
	1011	4	SA 516 GR. 70	DOOR SIDE PLATE		DE X 65 LG. PLATE		
	_16	4	SA 516 GR. 70	DOOR SIDE PLATE	1 THK. X 5.75 WI	DE X 32.625 APPRO	X. LG. PLATE	
	17	2	C/S DR S/S	DOOR HANDLE	3/4-10UNC EYE B	OLT · ·	,	
	18	12	COMMERCIAL	DOOR WHEEL	6 X 3 V-GROOVE			· .
	19	12	SA 193-B7	WHEEL SHAFT	1.25-7UNC (1.25" SCREWDRIVER SI	THREAD LENGTH> X LOT FOR INSTALLAT	6.625 LG. BAR WITH ION AT UNTHREADED	END.
	20			DELETED			· · · · · · · · · · · · · · · · · · ·	
10	21	2		LID HOUSING STIFFENER		E X 8.625 LG. PLAT		· · · · · · · · · · · · · · · · · · ·
10	22	4	SA 193 B7	DOOR LOCK BOLT	3 - 4 UNC X 11.2 AT END	5" LG. HEX. BOLTS	W/ 1.5 LG. THREADED	]
	23	4	SA 516 GR. 70	DOOR STOP BLOCK	2 THK. X 2 WIDE	X 8 LG, BLOCK		
	24	8	SA 193 B7	DOOR STOP BLOCK BOLT	1 - 8 UNC X 3 L	G. BOLT V/ 2.5 LG	. THREADED AT END	
	25	2	SA 516 GR. 70	DOOR END PLATE		DE X 19 LG. PLATE		
	26	4	SA 516 GR. 70	LIFTING LUG	0.75 THK. X 3 WI	DE X 3.5 LG. PLATE	· · · · · · · · · · · · · · · · · · ·	
	27	4	SA 516 GR. 70	LIFTING LUG PAD	0.5 THK. X 5 SQ.	<u>PL</u> ATE [®] .	· · · · · · · · · · · · · · · · · · ·	

NOTE: 1) ALL DIMENSIONS ARE APPROXIMATE.

G:\DRAWINGS\1025\TRNSFER\BM-1928R10

		DM 7						
				9) BILL OF MATERIAL FOR		· · · · · · · · · · · · · · · · · · ·		•
	REV.	ND.	SUMM	ARY DF CHANGES/AFFECTED ECC	]s	PREP BY:	APPROVAL DATE:	VIR#:
	_6			INCORPORATED ECO-1026-28, 18, 7 & 5	8,	T.F.O.	11/30/01	70563
	ITEM	QTY.	SPECIFICATION	NOMENCLATURE	• •	DESCRIPTI	ON	
	1	1	ASTM B 29	RADIAL LEAD SHIELD	71.15 CU. FT. COMMON	I LEAD APPROX.	······································	
	2	1	SA 516 GR. 70	DUTER SHELL	1 THK X 78 D.D. X 1	84.75 LG: CYLINDER		•
^	3	1		INNER SHELL	0.75 THK. X 68.75 I.	<u>D. X 184.75</u> LG. CYL	INDER	
<u>کم</u>	4	-		DELETED				
A A	4A 4B		<u> </u>	DELETED DELETED				
	5	<u> </u>		DELETED	· · · · · · · · · · · · · · · · · · ·		·····	
Â	5A			DELETED			· · · · · · · · · · · · · · · · · · ·	
	6A	2			1 THK. X 91 D.D. X 7	8 ID RING X 132*	REF	
				WHILK SHOKET END TEHTE	(MAY BE MADE FROM MORE			
		1	SA 516 GR. 70	WATER JACKET END PLATE			(MAY BE MADE FROM	MORE THAN I PIECED
	7	1	SA 350 LF3	TDP FLANGE	4.5 THK. X 78.00 D.D.	X 68.75 LD. RING		
	8	1	SA 516 GR. 70	LOWER WATER JACKET SHELL	1.25 THK. X 83.00 D.I	), X 6 LG, CYLINDER	2	
	9	1	SA 350 LF3, DR SA 516 GR, 70	BOTTOM FLANGE	2 THK. X 89 D.D. X	68.75 I.D.		
	10	1	SA516 GR 70 DR SA 203-E DR SA350 LF3	POOL LID DUTER RING	2.0 THK X 89-3/4	D.D. X 75 I.D.	· · · · · · · · · · · · · · · · · · ·	
	11	1	SA 516 GR 70	POOL LID TOP PLATE	2 THK. X 89 Ø	· · · · · · · · · · · · · · · · · · ·	· · · · ·	<u>.</u>
	12	1	ASTM B 29	POOL LID LEAD SHIELD	3.84 CU FT APPROX.	COMMON LEAD		
	13			DELETED		· · · · · · · · · · · · · · · · · · ·		
	14			DELETED		·····	······································	
	15	·		DELETED	1.0 THK. X 78.00 D.D.		·	
	<u>16</u> 17		SA 516 GR. 70 SA 516 GR 70	TOP LID BOTTOM PLATE POOL LID BOTTOM PLATE	15 THK X 76.5 Ø			
A		8			3 1/4 LG. X Ø2 3/8	CYLINDER (MAYBE	MADE OF MULTIPLE	UNATTACHED
	18	0	SA 516 GR. 70	FILL PORT PLUGS	1-8 UNC X 5 LG. ST	PIECES		
ଛ∣	19	24	SA 193 B7	TOP LID STUD	UNE END)		•	NUT FLAI A)
$\triangle$	20	24	SA 194 2H	TOP LID NUT	1-8 UNC HEAVY HEX	WITH WASHER (3/1	6' MAX; OPTIONAL)	
$\land$	21	1		POOL LID GASKET	0.5* THK. X 83.625 C	I.D. X 82.125 I.D. CO	MMERCIAL	
æ	22	36		POOL LID BOLT	1-8UNC X 3.125 LG. (3/16' MAX; OPTIONA	HEX BULIS WITH 1.2 L)	25" MIN THRD LENGT	h w/washer
	23			DELETED				····
	24 25	2	SA 350 LF3	LIFTING TRUNNION BLOCK	7.25 (APP) X 10 X 10		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		· · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
		NOTES		F3 MATERIAL MAY BE REPLACED NS ARE FOR REFERENCE ONLY	) BY SA-203-E.			
					· ·	· · · ·		

....

G: DRAWINGS 1026 HI-TRAC BM2145-1RASTORM 100 FSAR Revision 6; February 7, 2008

.

÷

			0) BILL OF MATERIAL FOR			<u></u>					
REV.	ND.	. SL	IMMARY OF CHANGES/AFFECTED E	COs	PREP BY	APPROVAL DATE:	VIR#:				
5			NCORPORATED ECO-1026-10, 7 &	5.	T.F.D.	11/30/01	66474				
ITEM	QTY,	SPECIFICATION	NOMENCLATURE	· · ·	DESCRIP	TION					
26 27 28 29 30	2 2 4 2 6	SB 637 N07718 SA 516 GR 70 SA 193 B7 SA 350 LF3 SA564-630 (H1100)	LIFTING TRUNNIDN END CAP END CAP BOLTS REMOVARI E POCKET TRUNNION	6.25 Ø X 9.25 LG. BAR 0.5 THK. X 6.25 Ø PLATE 0.5 - 13 UNC X 1 LG. WITH 5/8 MIN THREAD. 3.9375 X 13 X 12.375 BLOCK 1. 3/8″ Ø BAR							
31 32 33	1 1 ·	SA 106 SA 193 B7	DELETED	1       THK. X 91 0.D. X 78 I.D. X 48° APP          0.375 THK. X 88.75 D.D. X 168.75 LG. 36 DEG. SHELL SEGMENT         1       1/2-3000 Ib. SCREWED HALF COUPLING (OR SIMILAR)							
34 35 36 37	2  10	SA 516 GR. 70  SA 516 GR. 70 COMMERCIAL	WATER JACKET END PLATE DELETED ENCLOSURE SHELL PANEL VENT COUPLING								
38 39 40	1 2 2	COMMERCIAL COMMERCIAL COMMERCIAL	VENT PLUG PRESSURE RELIEF COUPLING PRESSURE RELIEF VALVE	1 1/2-3000 lb. SCREW 2"-3000 lb. SCREWE MEDIUM PRESSURE P	ED HEXAGON HEAD P D HALF COUPLING OP VALVE (OR S						
41 42 43	1 1 . 4	SA 106 COMMERCIAL C/S DR S/S	JACKET DRAIN PIPE JACKET DRAIN VALVE HOLE PLUGS	<u> 1 1/2 SCH, 40 X 5 I  1 1/2 NONRISING ST</u>  N/A	_G. PIPE EM GATE VALVE	(OR SIMILAR)					
44 45 46	10 	SA 516 GR 70 SA 516 GR 70	RADIAL RIB SHIRT RIB DELETED	1.25 THK. X 168.75 L 0.5 THK. X 4.125 LG.	LU, X 5 WIDE X 5.375 WIDE	······································	· · · · · · · · · · · · · · · · · · ·				
47 48	2	SA 350 LF3 SA564-630 (H1100)	POCKET TRUNNION BASE POCKET TRUNNION BOLTS	8.03 X 13 X 12,375 1-8 UNC X 6.25 WIT	H 2.3125″ MIN LG	THREAD					
49			DELETED	<del></del>							

4

.

5-2**-**17 - 5-5-5

⚠ GINDRAWINGSN1026NHI-TRACNBM2145-2R5

]	3M-21	152 BILL OF	MATERIAL FOR 100	TON HI-TR	AC TRANSFER	<u>r LID (DWG. 2</u>	152)
REV	' <u>,</u> ND,		SUMMARY DF CHANGES/ AFFECTED ECDs		PREP BY:	APPROVAL DATE:	VIR#:
3	3	INCOF 10, 8	RPORATED ECO-1026-28, 19, 15, 14 & 4.	<b>,</b> .	T.F.D.	11/30/01	71621
▲ ITEM ▲ 1 ▲ 2 ▲ 3 ▲ 4 ▲ 5 - 6 4 - 6 - 7 - 8 - 7 - 8 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 1 - 1 - 2 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 14 - 15 - 14 - 14 - 15 - 14 - 15 - 14 - 15 - 14 - 15 - 15	QTY, 1 1 2 8 1 2 2  2 4 2 4 2 4 2 4 2 4 2 4 2 2 4 2 2 4 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2	SA 516 GR. 70 SA 516 GR. 70 SA 516 GR. 70	NOMENCLATURE LID TOP PLATE LID BOTTOM PLATE LID INTERMEDIATE PLATE LEAD COVER PLATE LEAD COVER SIDE PLATE SIDE LEAD SHIELD WHEEL TRACK DOOR TOP PLATE DOOR LEAD SHIELD  DOOR BOTTOM PLATE DOOR WHEEL HOUSING DOOR INTERFACE PLATE DOOR SIDE PLATE DOOR SIDE PLATE DOOR SIDE PLATE DOOR SIDE PLATE DOOR SIDE PLATE DOOR SIDE PLATE	1.5 THK. X 89. 1 1/2 THK. X 86. 1 5 THK. X 8.625 1 THK. X 8.625 1 THK. X 8.625 1 THK. X 2.5 V 1.136 APPRDX. 0.25 THK. X 4. 2.04 APPRDX C  1/2 THK. X 44 1 7/8 THK. X 44 1 7/8 THK. X 3 3/ 1 THK. X 5.75 1 THK. X 5.75 1 THK. X 2 WI 3/4-10UNC EYE	5 WIDE X 128 LG. 89.5 WIDE X 128 LG. 25 WIDE X 132 LG. 5 WIDE X 78 LG. P. VIDE X 8.625 LG. P CU. FT. 0 X 1.0 X 128 LG 7 WIDE X 80 LG. ( 0 WIDE X 65 LG. 1 6 WIDE X 65 LG. 1 6 WIDE X 80 LG. 4 WIDE X 80 LG. WIDE X 65 LG. PL. WIDE X 65 LG. PL. 0 X 29 APPRIX. L BOLT	G: PLATE PLATE LATE LATE CUT AS NECESSARY) PLATE (CUT AS NECE PLATE ATE ATE	ESSARY)
	12 12 2 4 4 4 8 2 4 4 4 4 4 4 4 1 2 2 1 1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1	SA 193 B7 SA 516 GR. 70 SA 516 GR. 70 SA 516 GR. 70	DOOR END PLATE LIFTING LUG LIFTING LUG PAD TOP PLATE EXTENSION AIR HOSE GUIDE	1 THK. X 1.5 W 3 - 4 UNC X AT END 2 THK. X 2 WI 1 - 8 UNC X 1 THK. X 2 WI 0.75 THK. X 3 0.5 THK. X 5 5 1 1/2" THK. X	25 THREAD LENGTH SLOT FOR INSTAL (IDE X 8.625 LG. P) 11.25 LG. HEX. BOLT (DE X 8 LG. BLOCK 3 LG. BOLT W/ 2.5 DE X 24 LG. PLATE WIDE X 3.5 LG. PL	IS W/ 1.5 LG. THREA LG. THREADED AT E ATE LG. PLATE	DED

@\DRAWIINGS\1026\HI-TRAC\BM2152R8

# LICENSING DRAWING PACKAGE COVER SHEET

3

2

1

125 TON HI-TRAC-125D

ASSEMBLY

1

12

3768

HI-STORM 100 FSAR Revision 6; February 7, 2008

NOLTEC CENTER 555 LINCOLN DRIVE WEST MARI, TON, NJ 08053

N/A

1025

2

D

#### CLIENT GENERAL PROJECT NO. 1025 P.O. NO. N/A D DRAWINĠ PACKAGE I.D. TOTAL SHEETS 3768

8

## 12

6

#### LICENSING DRAWING PACKAGE CONTENTS:

7

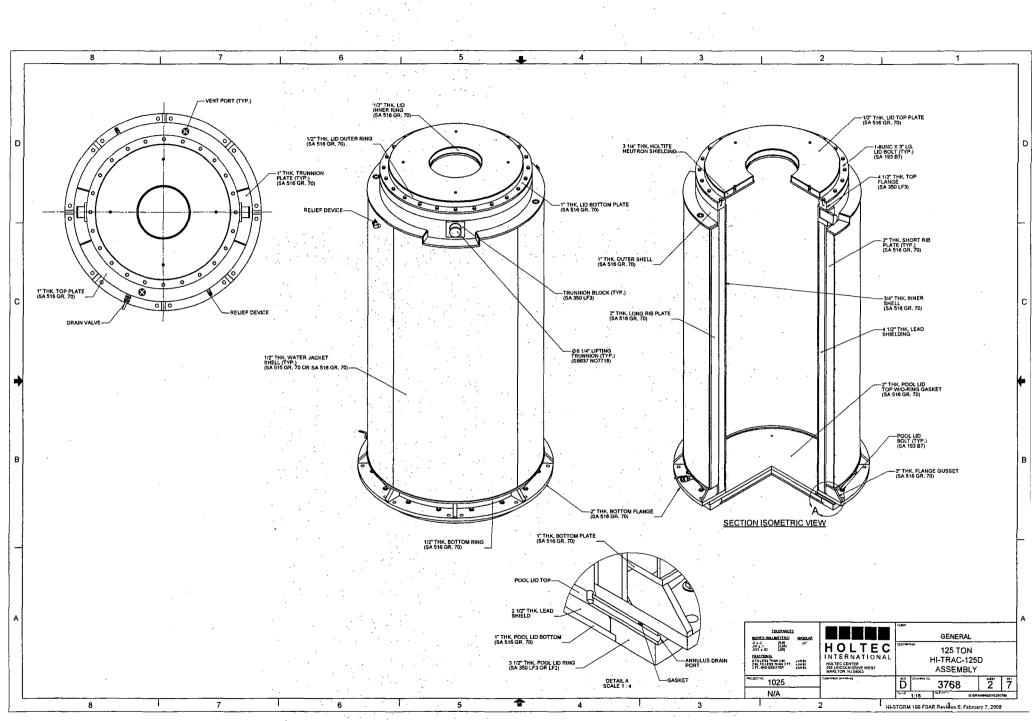
SHEET     DESCRIPTION       1     COVER SHEET       2     ASSEMBLY DRAWING AND BILL OF MATERIALS       3     OVERALL DIMENSIONS       4     POOL UD ASSEMBLY       5     BASE PLATE ASSEMBLY       6     OUTER SHELL ASSMELY       7     TOP FLANGE ASSEMBLY       8     TRUNNICH AND INNER SHELL ASSEMBLY       9     WATER JACKET SHELL ASSEMBLY       10     TOP UD ASSEMBLY       11     OPTIONAL RADIL RID DESIGN       12     OPTIONAL RADIL RID DESIGN		
2       ASSEMBLY DRAWING AND BILL OF MATERIALS         3       OVERALL DIMENSIONS         4       POOL UD ASSEMBLY         5       BASE FUATE ASSEMBLY         6       OUTER SHELLASSEMBLY         7       TOP FLANGE ASSEMBLY         8       TRUNNION AND INNER SHELL ASSEMBLY         9       WATER JACKET SHELL ASSEMBLY         10       TOP UD ASSEMBLY         11       OPTIONAL RADIAL RIB DESIGN         12       OPTIONAL BOTTOM FLANGE DESIGN         2		1
ASSEMELT DAVANCE AND BILL OF MALEMALS     ASSEMELT DIMENSIONS     OVERALL DIMENSIONS     OUTER SHELL ASSEMELY     OU		1
3       OVERALL DIMENSIONS         4       POOL UD ASSEMBLY         5       BASE FLATE ASSEMBLY         6       OUTER SHELLASSEMBLY         7       TOF FLANCE ASSEMBLY         8       TRUNNICN AND INNER SHELL ASSEMBLY         9       WATER JACKET SHELL ASSEMBLY         10       TOP LID ASSEMBLY         11       OPTIONAL RADIAL RIB DESIGN         12       OPTIONAL BOTTOM FLANGE DESIGN         1       OPTIONAL BOTTOM FLANGE DESIGN		
POOL LID ASSEMBLY     S BASE PLATE ASSEMBLY     OUTER SHELL ASSEMBLY     7 TOP FLANGE ASSEMBLY     8 TRUNNKON AND INNER SHELL ASSEMBLY     9 WATER JACKET SHELL ASSEMBLY     10 TOP LID ASSEMBLY     11 OPTIONAL RADIAL RIB DESIGN     12 OPTIONAL BOTTOM FLANGE DESIGN		1
S       BASE PLATE ASSEMBLY         6       OUTER SHELL ASSMBLY         7       TOP FLANGE ASSEMBLY         8       TRUNNION AND INNER SHELL ASSEMBLY         9       WATER JACKET SHELL ASSEMBLY         10       TOP I/D ASSEMBLY         11       OPTIONAL RADIAL RIB DESIGN         12       OPTIONAL BOTTOM FLANGE DESIGN         13       OPTIONAL BOTTOM FLANGE DESIGN		
OUTER SHELL ASSMELY     TOP FLANGE ASSEMELY     A TRUNNICN AND INNER SHELL ASSEMELY     B WATER JACKET SHELL ASSEMELY     10 TOP LID ASSEMELY     11 OPTIONAL RADIAL RIB DESIGN     12 OPTIONAL BOTTOM FLANGE DESIGN		· ·
7       TOP FLANGE ASSEMBLY         8       TRUNNION AND INNER SHELL ASSEMBLY         9       WATER JACKET SHELL ASSEMBLY         10       TOP UD ASSEMBLY         11       OPTIONAL RADIAL RID DESIGN         12       OPTIONAL BOTTOM FLANGE DESIGN         2       2         2       2         2       2         3       3         4       3         4       3         4       3         5       3         4       3         5       3         5       3         6       3         7       4         6       3         6       3         6       3         7       3         7       3         7       3         7       3         7       3         7       3         7       3         7       3         8       3         7       3         7       3         7       3         7       3         8       <		1.
TRUNNION AND INNER SHELL ASSEMBLY     WATER JACKET SHELL ASSEMBLY     U     TOP LID ASSEMBLY     10 TOP LID ASSEMBLY     11 OPTIONAL RADIAL RB DESIGN     12 OPTIONAL BOTTOM FLANGE DESIGN	<u> </u>	1
B         WATER JACKET SHELL ASSEMBLY           10         TOP LID ASSEMBLY           11         OPTIONAL RADIAL RIB DESIGN           12         OPTIONAL BOTTOM FLANGE DESIGN		
10         TOP LID ASSEMBLY           11         OPTIONAL RADIAL RIB DESIGN           12         OPTIONAL BOTTOM FLANGE DESIGN		
11         OPTIONAL RADIAL RB DESIGN           12         OPTIONAL BOTTOM FLANGE DESIGN		+ ·
12         OPTIONAL BOTTOM FLANGE DESIGN		-
		1 .
		4
		1
		1
		1.
		1.
	1. A. A.	
		1
	and the second	1
	· · · ·	1 ·
		1
		1
		1 .
		1
	· · · · · · · · · · · · · · · · · · ·	1
	<u>.</u>	1.
		1
		1
		{ `
	·	ļ
	1.1	

### **REVISION LOG**

4

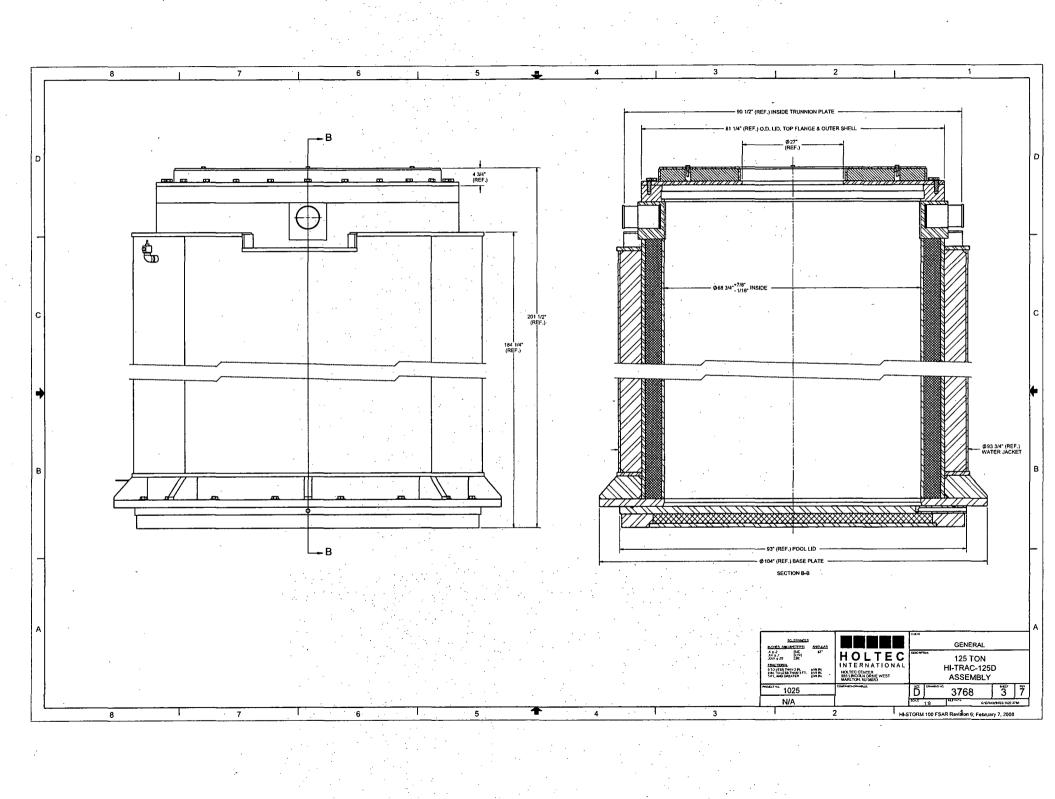
4

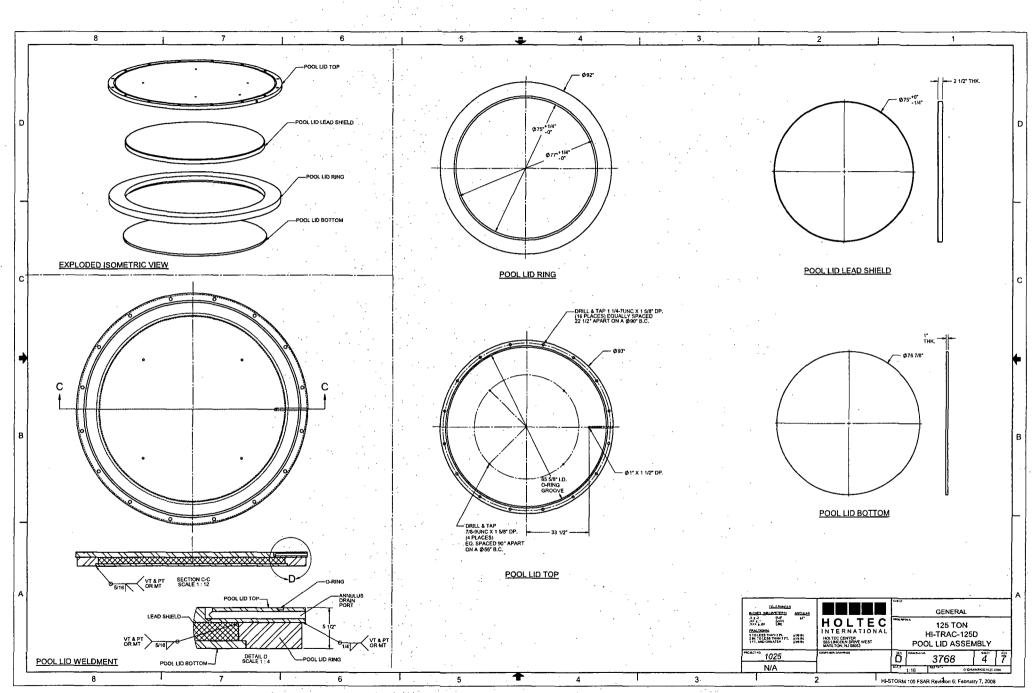
5

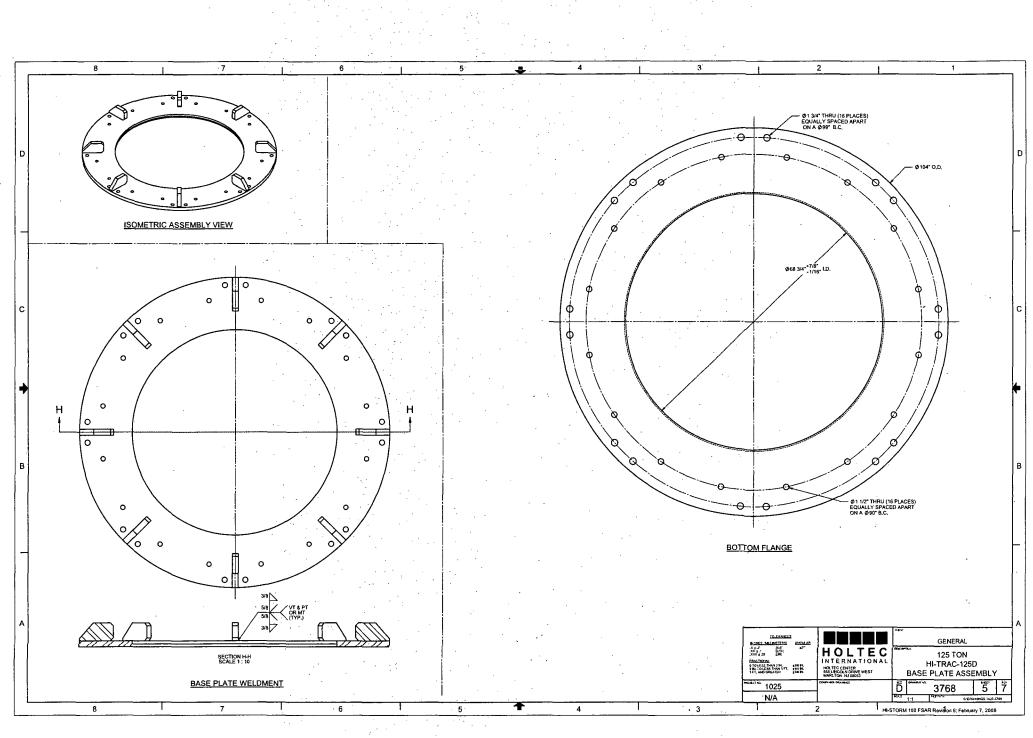

5

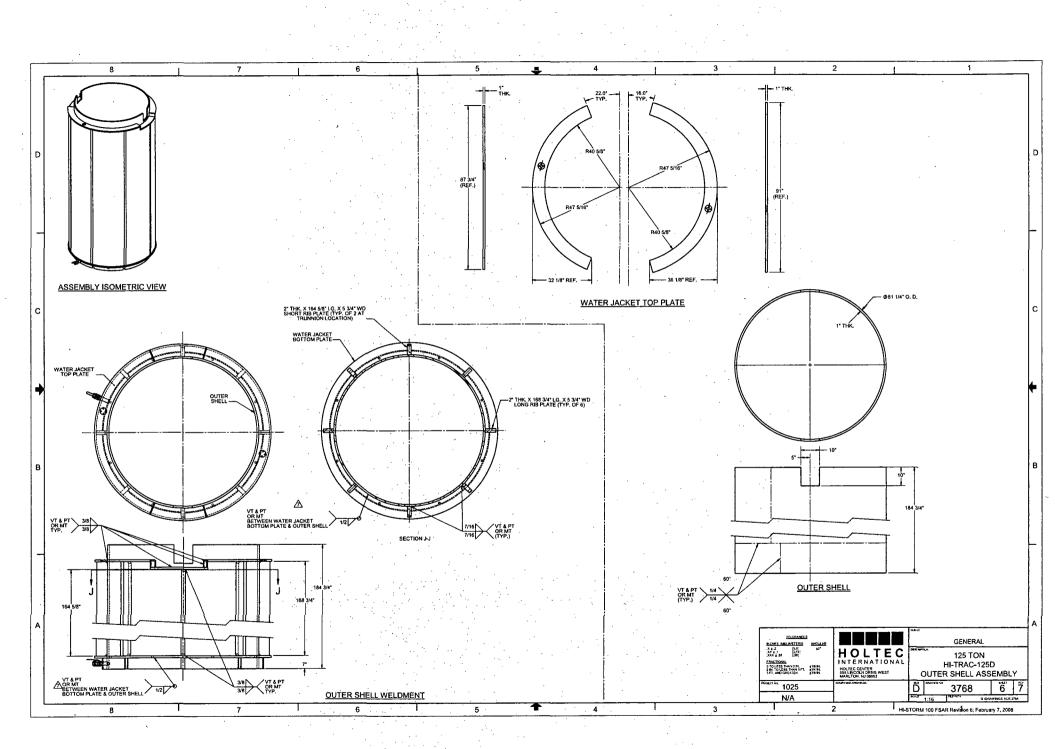
REV	AFFECTED DRAWING SHEET NUMBERS	SUMMARY OF CHANGES/ AFFECTED ECOs	PREPARED BY	APPROVAL DATE	VIR#
0	INITIAL ISSUE	1025-36	S.CAIN	11/15/01	37568
1	ALL	1025-36, REV. 1	S.CAIN	8/26/02	47339
2	SHEETS 9 & 11	1025-40, REV. 0	S.CAIN	10/21/02	81264
3	SHEET 4	1025-42, REV. 0	S.CAIN	12/11/02	40539
4	SHEETS 4 & 9	1025-44, REV. 0, 1025-45, REV. 0	S.CAIN	5/16/03	65098
5	SHEETS 1, 10 & 12	1025-46	S.CAIN	6/20/03	59183
6	SHEETS 6 & 8	1025-51, Rev. 0	D. Butler	10/05/04	28534
7	SHEET 6	1025-54, Rev. 0	D. Butler	03/11/05	35646
				· .	
			· · ·		

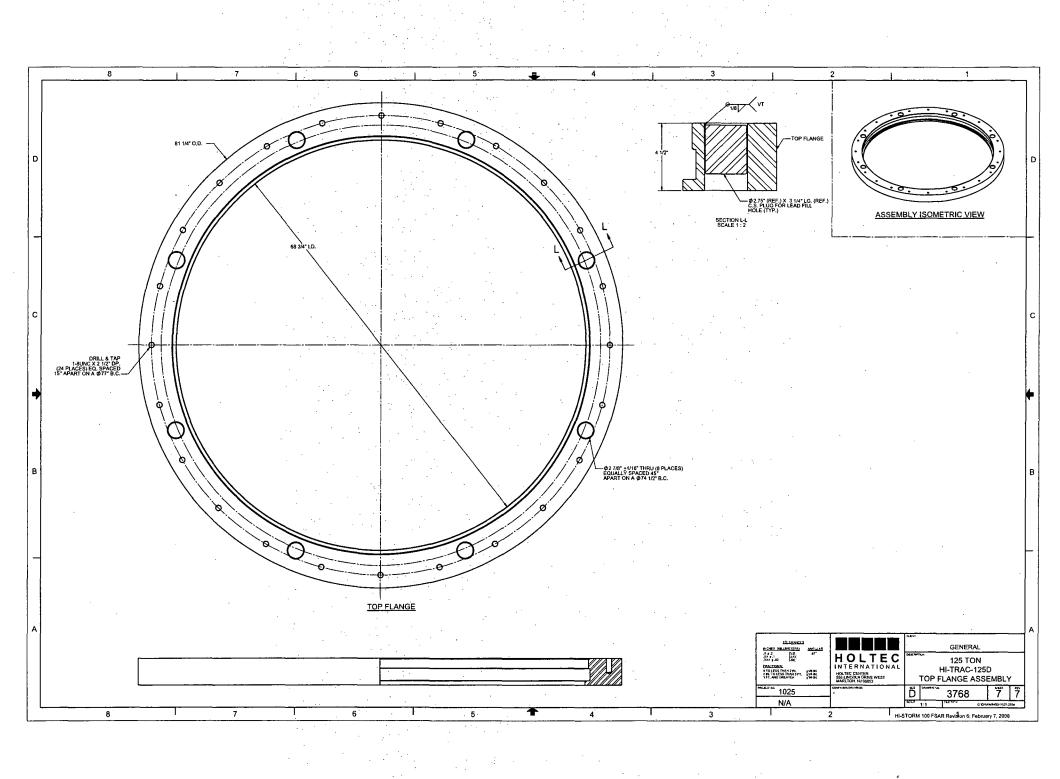
4


### NOTES: 1. THE EQUIPMENT DOCUMENTED IN THIS DRAWING PACKAGE HAS BEEN CONFIRMED BY HOLTEC INTERNATIONAL TO COMPLY WITH THE SAFETY ANALYSES DESCRIBED IN THE HIS-STORM FSAR. в 2. DIMENSIONAL TOLERANCES ON THIS DRAWING ARE PROVIDED SOLELY FOR LICENSING PURPOSES TO DEFINE REASONABLE LIMITS ON THE NOMINAL DIMENSIONS USED IN LICENSING WORK, HAROWARE IS FABRICATED IN ACCORDANCE WITH THE DESIGN DRAWINGS, WHICH HAVE MORE RESTRICTIVE TOLERANCES, TO ENSURE COMPONENT FIT-UP. DO NOT USE WORST-CASE TOLERANCE STACK-UP FROM THIS DRAWING TO DETERMINE COMPONENT FIT-UP. 3. THE REVISION LEVEL OF EACH INDIVIDUAL SHEET IN THE PACKAGE IS THE SAME AS THE REVISION LEVEL OF THIS COVER SHEET. A REVISION TO ANY SHEET(S) IN THIS PACKAGE REQUIRES UPDATING OF REVISION NUMBERS OF ALL SHEETS TO THE NEXT REVISION NUMBER. 4. APPLICABLE CODES AND STANDARDS ARE DELINEATED IN FSAR SECTION 2.2.4. 5. ALL WELDS REQUIRE VISUAL EXAMINATION. ADDITIONAL NDE INSPECTIONS ARE NOTED ON THE DRAWING, NDE TECHNIQUES AND ACCEPTANCE CRITERIA ARE PROVIDED IN FRAR TABLE 9.14. 6. UNLESS OTHEWISE NOTED, FULL PENETRATION WELDS MAY BE MADE FROM EITHER SIDE OF A COMPONENT. ISOMETRIC VIEW OF HI-TRAC 125D TRANSFER CASK 7. THIS COMPONENT IS IMPORTANT-TO-SAFETY, CATEGORY A, BASED ON THE HIGHEST CLASSIFICATION OF ANY SUBCOMPONENT, SUBCOMPONENT CLASSIFICATIONS ARE PROVIDED ON THE DESIGN DRAWING. 8. ALL WELD SIZES ARE MINIMUMS EXCEPT AS ALLOWED BY APPLICABLE CODES AS CLARIFIED IN THE FSAR. FABRICATOR MAY ADD WELDS WITH HOLTEC APPROVAL. GENERAL HOLTEC

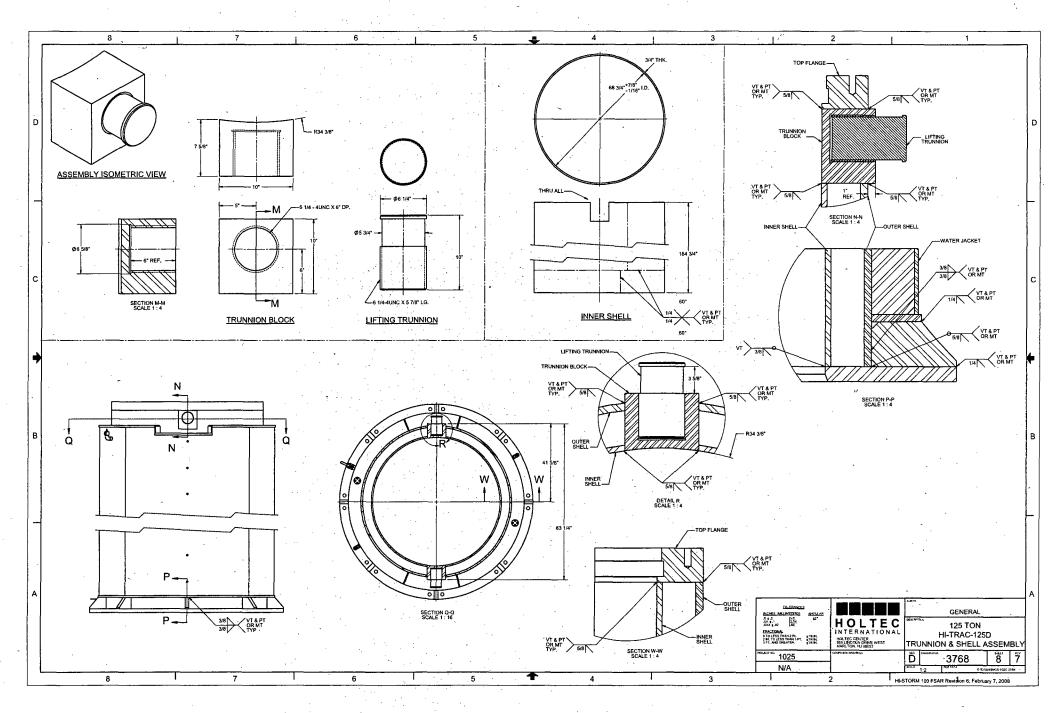

3



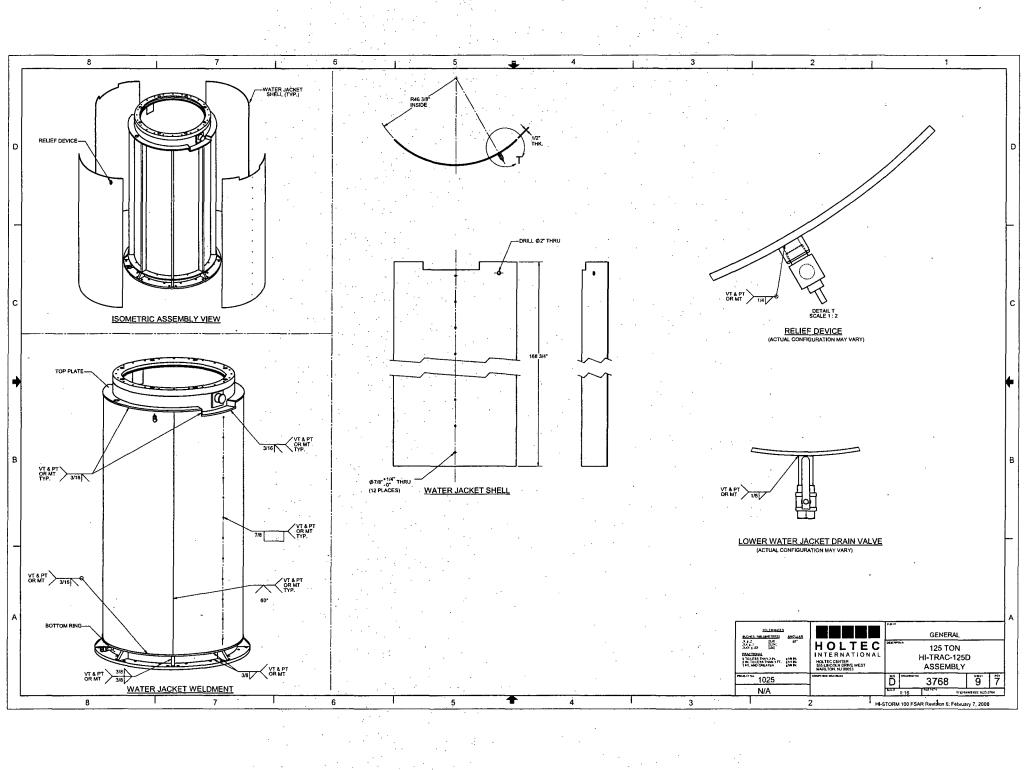


_ * t t *


. .

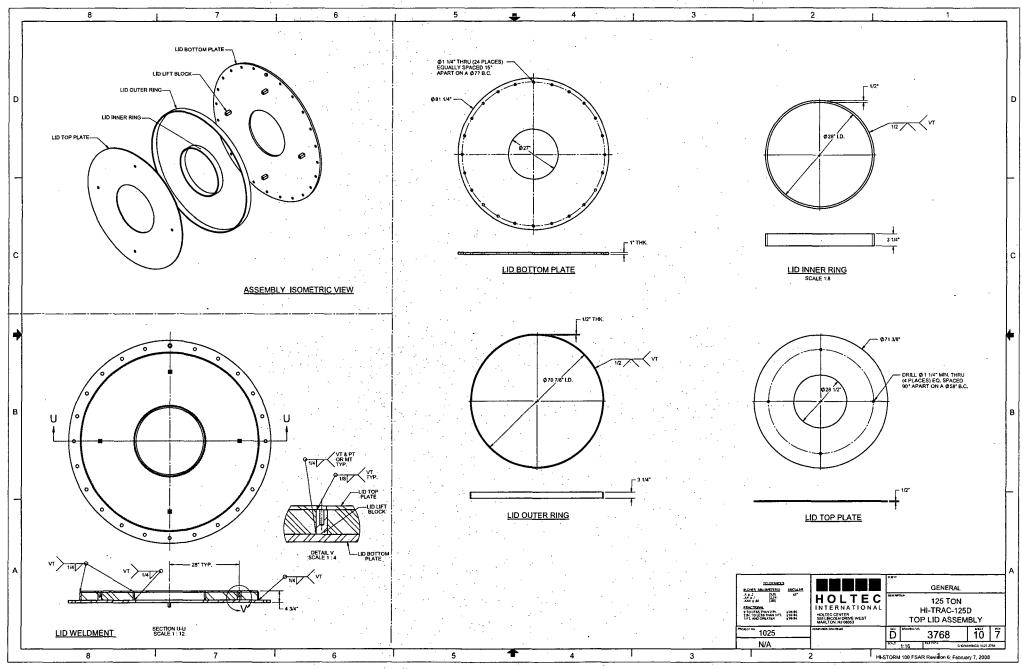


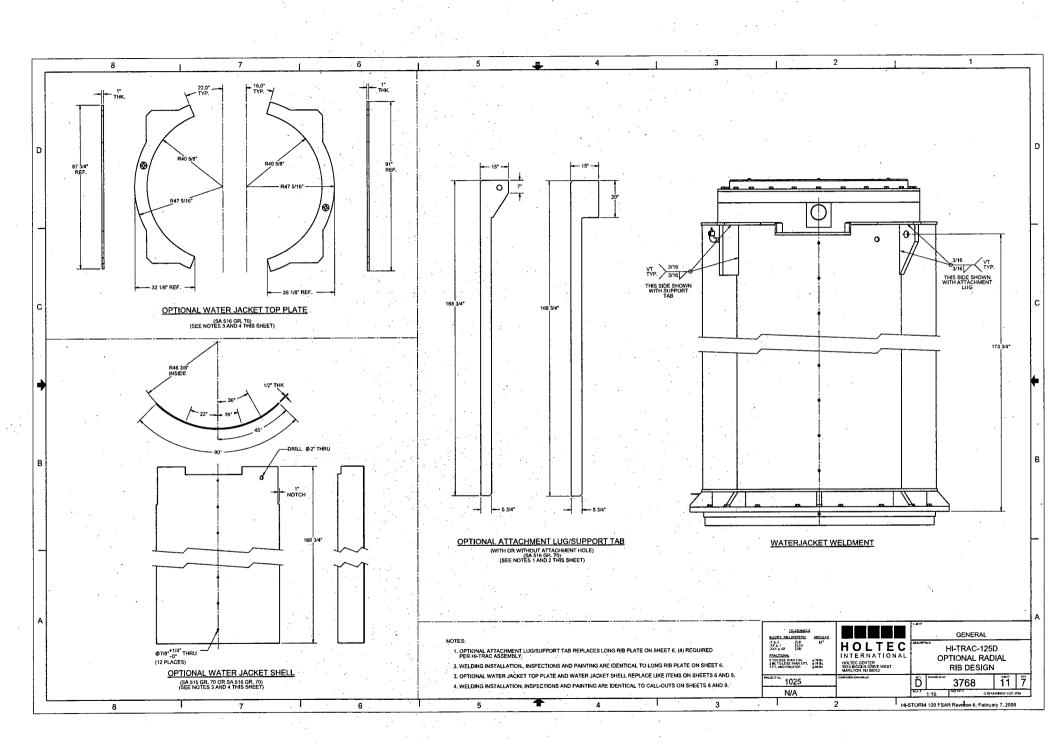


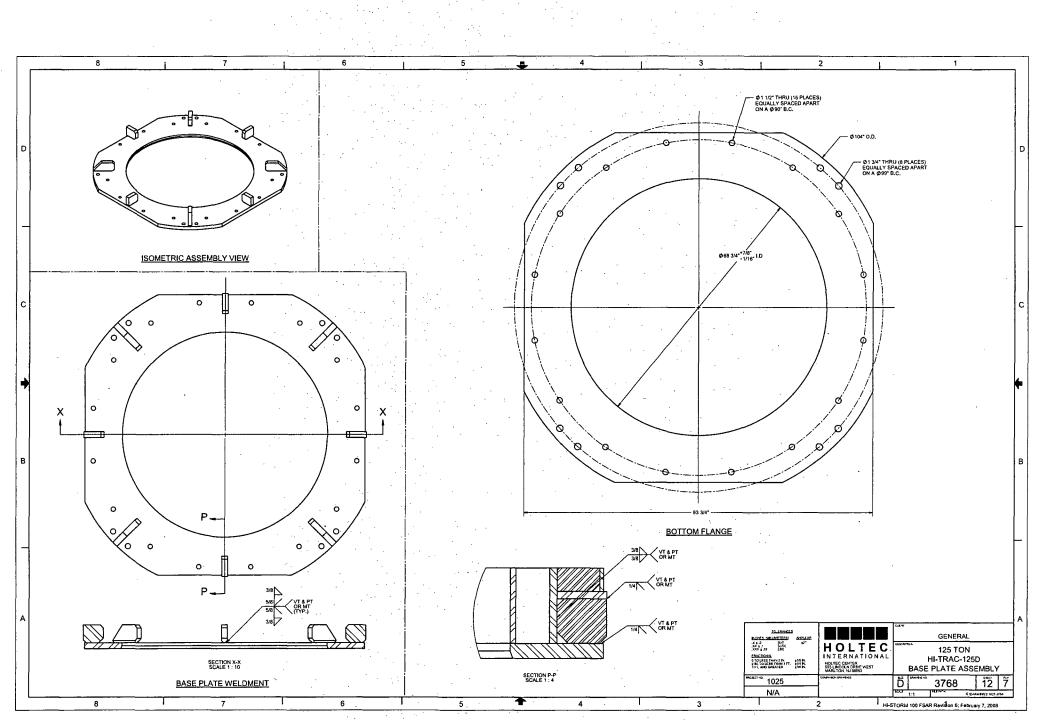






.

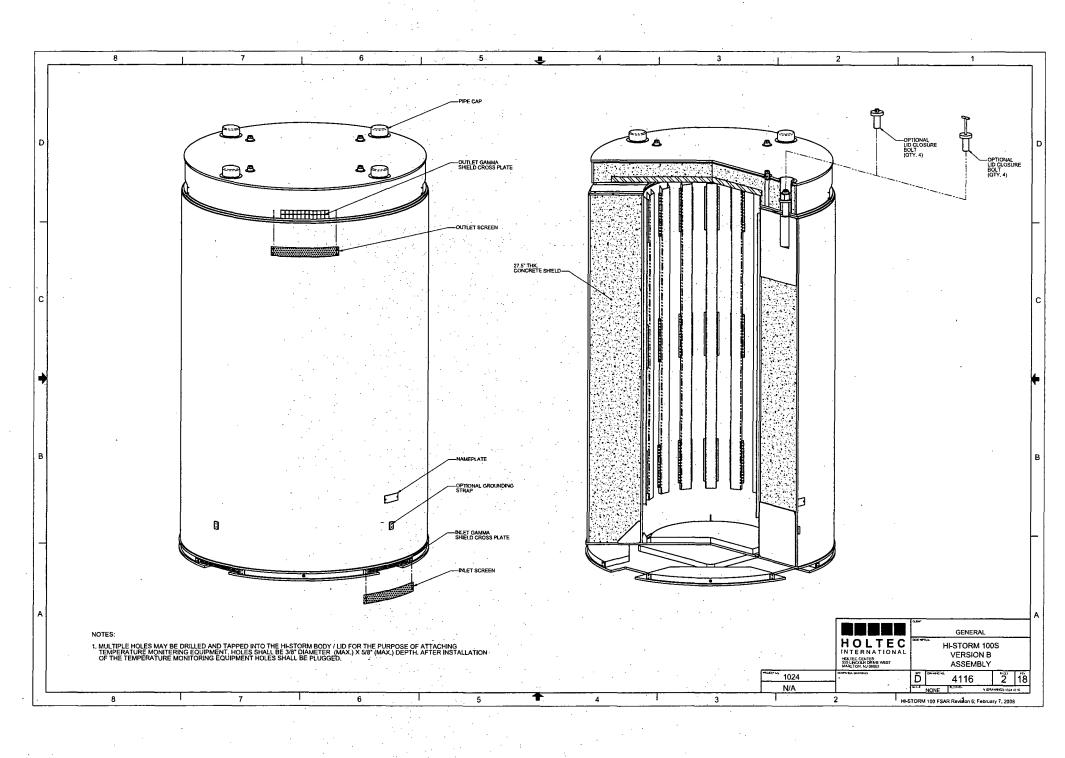




. .-.-

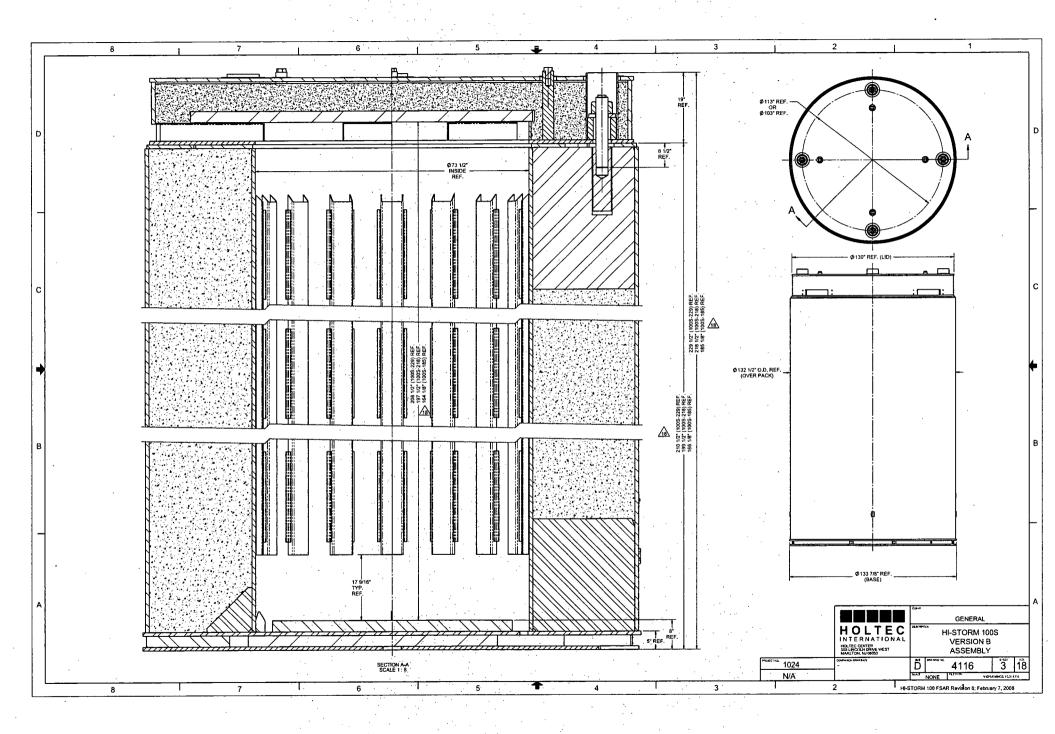


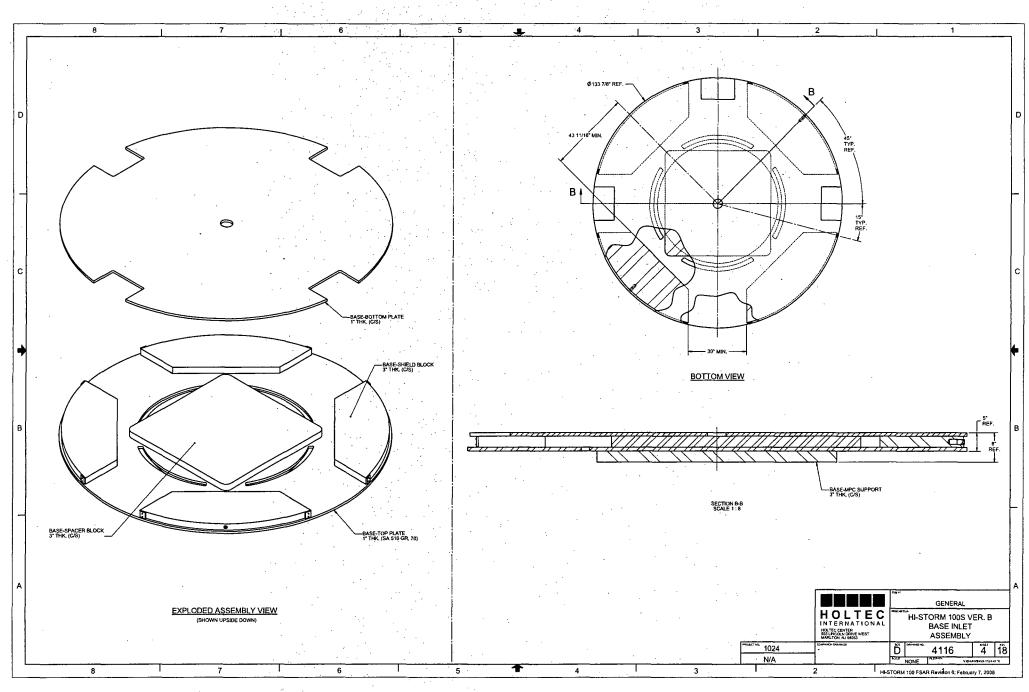
. .

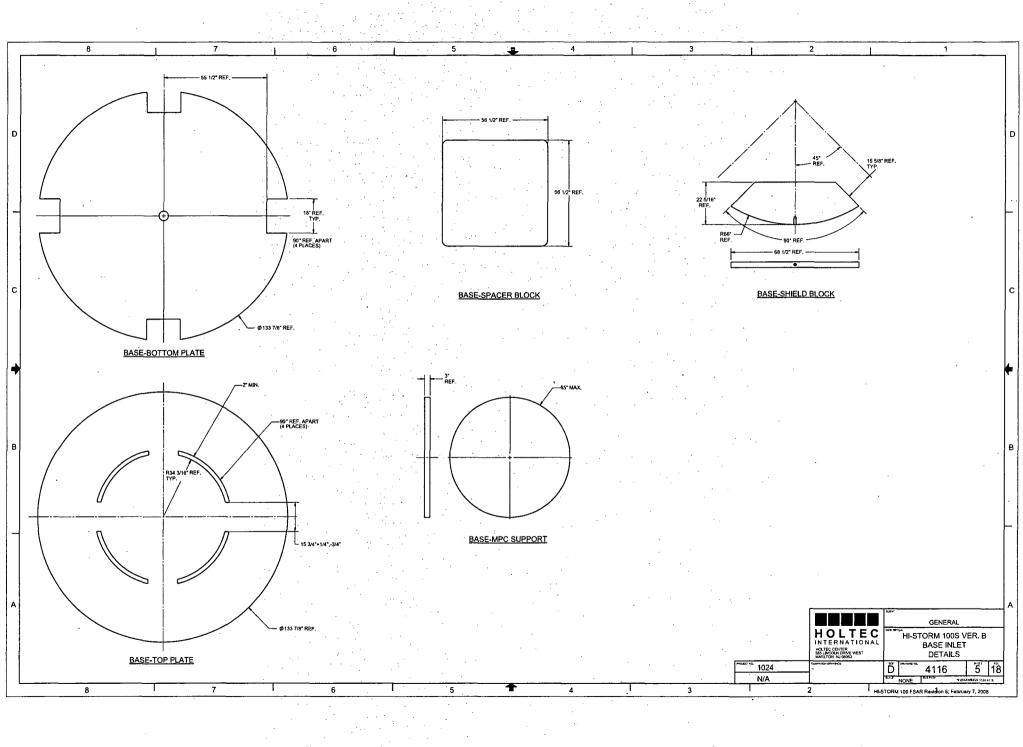




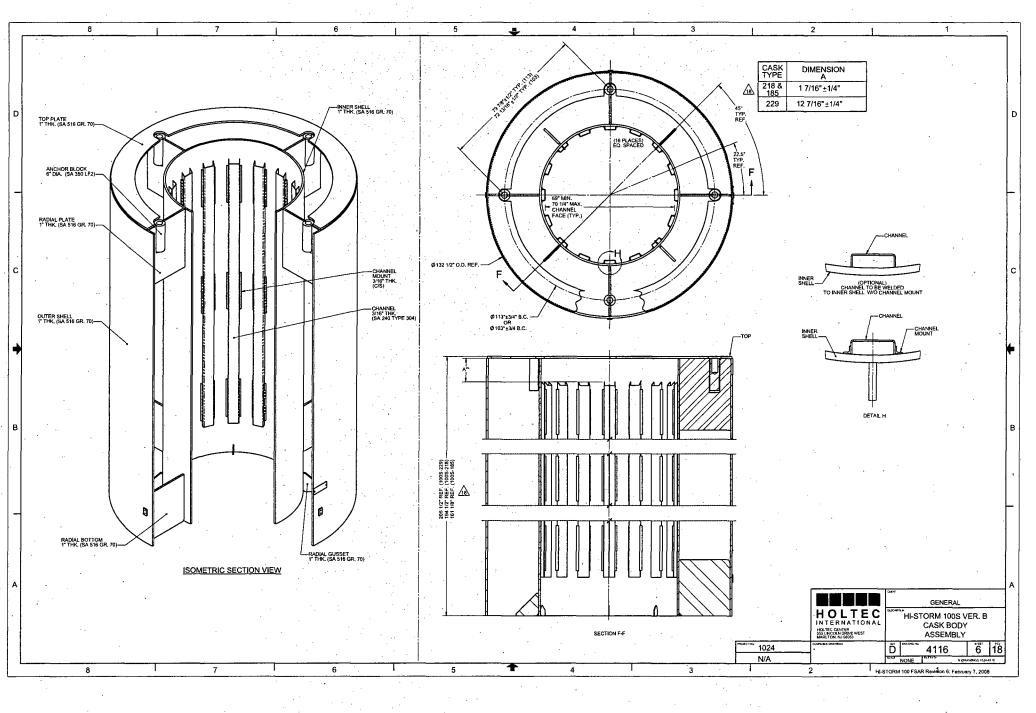


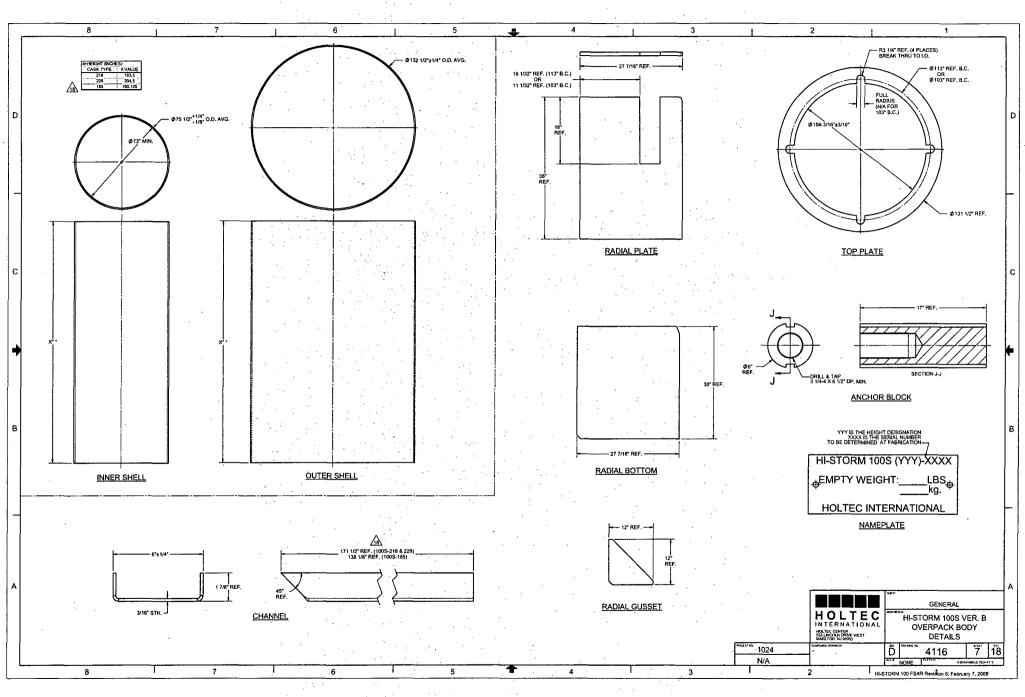


. . . . . . . . .

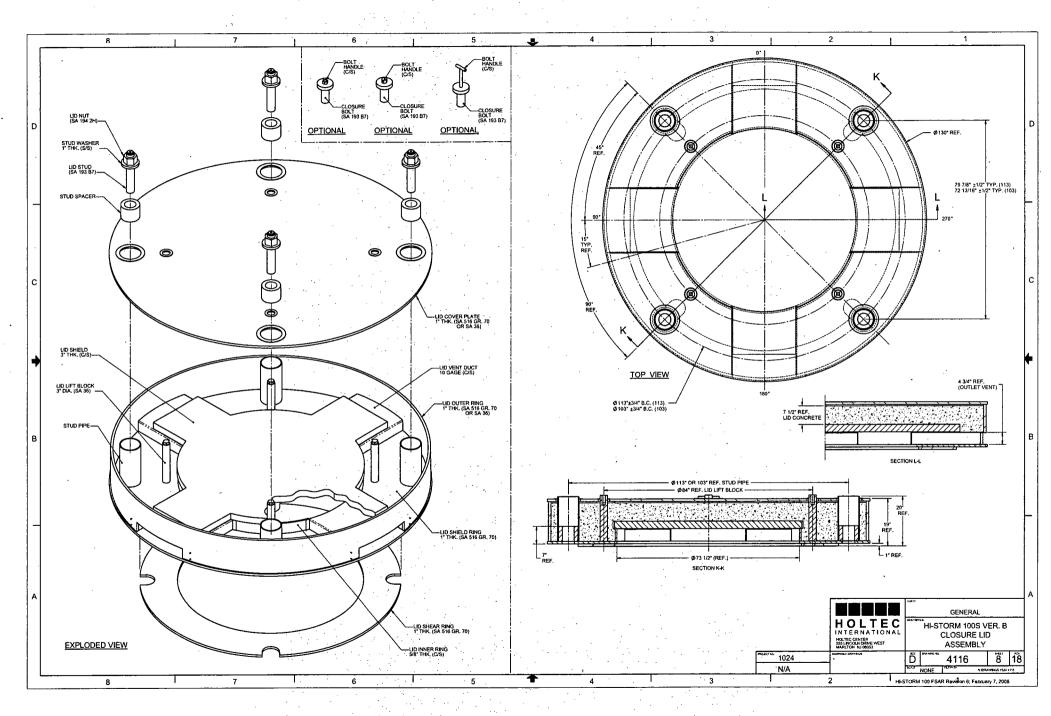

C		<u> </u>	7		6		<u>l</u>			<u></u>						
		GEN			·. ·		L					FAC				
PI	ROJECT	NO. 1024	P.O. NO. N	I/A			·		<b>REVISION</b>	LOG	А	· · · ·		* • •		
	RAWING ACKAGE		TOTAL SHEETS	13		•		IT IS MANDATORY AT DIRECTORY NOPDOXWI EACH ATTACHED DRAWING	FEACH REVISION TO COMPLETE THE R AWORKING-DBAL BY ALL RELEVANT IS SHEET CONTAINS ANNOTATED TRIA	REVIEW & APPROVA TECHNICAL DISCIPI INGLES INDICATING	L LOG STORED JNES. PM AND THE REVISION	IN HOLTEC'S OA PERSONNEL TO THE DRAWN	۱G.			·
	_						REV	AFFECTED DRAWING SHEET NUMBERS	SUMMARY OF CHANG AFFECTED ECOs	SES/	PREPARED BY	APPROVAL DATE	VIR#+			
					. 1	· · · · ·	12	SHEET 9	1024-119 REV. 0		D.C.B.	04/04/06	60064			
		LICENSING DRAWI	NG PACKAGE C	ONTENTS:			13	SHEETS 2, 4, 8, & 9	1024-121, REV. 0. 1024-123, REV. 0		ST.C	08/15/06	44522			
	_						14	SHEETS 2, 9, & 11	1024-126. REV. 0	Ţ	MAP .	08/16/06	30492			
	SHEET	C	DESCRIPTION				15	SHEETS 7,8,9	1024-131, REV. 0		LOV	1/9/07	.84320			
	1	COVER SHEET				·**	16	SHEETS 1.8	1024-134, REV. 0	· .	AG	03/19/07	57608			
	2	ASSEMBLY DRAWING ASSEMBLY	·	·······	- 1		17	SHEET 11	1024-135, REV: 1		SLC	05/17/07	89982			
	4	BASE INLET ASSEMBLY			1 1		18	SHEETS 1, 3, 6 & 7	1024-141 REV. 0		D.C.B.	01/29/08	31729			
	5	BASE INLET DETAILS	······		1 1				· · ·		••••••					
	6	CASK BODY ASSEMBLY			1	•	<u></u> +-									
		CASK BODY DETAILS CLOSURE LID ASSEMBLY														
		CLOSURE LID ASSEMBLY	<u></u>	· · · · · · · · · · · · · · · · · · ·												
	10	BASE INLET WELDS			1											
	11	CASK BODY WELDS					<u> </u>	THE VALIDATION IDENT	FICATION RECORD (VIR) NUMBER 15.4	A COMPUTER GENER	ATED RANDO	4 NUMBER WHI	я			
	12	CLOSURE LID WELDS GAMMA SHIELD SHIELD INI			┤ं╞		<u> </u>	CONFIRMS THAT ALL API	IFICATION RECORD (VIR) NUMBER IS A PROPRIATE REVIEWS OF THIS DRAWIN	G ARE DOCUMENTE	D IN COMPAN	'S NETWORK.	_		1	
						1.			I THIS DRAWING PACKAGE HAS TIONAL TO COMPLY WITH THE STORM FSAR. HIS DRAWING ARE PROVIDED S FINIE RASONABLE LIMITS ON CENSING WORK, HARDWARE IS CATION DRAWINGS, WHICH HA NSURE COMPONENT FIT-UP. DO UP FROM THIS DRAWING TO I		•					
·			· · · · · · · · · · · · · · · · · ·			3.	THE REV SAME AS	ISION LEVEL OF FACH IN	DIVIDUAL SHEET IN THE PACKA F THIS COVER SHEET, A REVISIO JIRES UPDATING OF REVISION N	GE IS THE				•		
						5. 6.	ALL WEL ARE NOT ARE PRO UNLESS SIDE OF	DS REQUIRE VISUAL EXA TED ON THE DRAWING IF IVIDED IN TABLE 9.1.4 OF OTHEWISE NOTED, FULL A COMPONENT.	RDS ARE DELINEATED IN SECT MINATION: ADDITIONAL NDE INS REQUIRED. NDE TECHNIQUES A THE FSAR. PENETRATION WELDS MAY BE	SPECTIONS AND ACCEPTANC MADE FROM EIT	E CRITERIA					
						. 8.		D SIZES ARE MINIMUMS E	XCEPT AS ALLOWED BY APPLIC	CABLE CODES A	s ·		* .		HI-STO	RM 100S VERSION B
			<u> </u>			9.	WELDS II USING PI	DENTIFIED WITH AN # ARI REQUALIFIED WELDS IN A	TORS MAY ADD WELDS WITH H E CONSIDERED NON-NF WELDS CCORDANCE WITH AWS D1.1 O	. WELDS MAY BE OR PER ASME SE	MADE CTION IX.	•				
									LD MAY BE APPLIED TO THE OU D MAY BE APPLIED ALTERNATE AN OVERLAP OF THE INNER ANI TYPE 185 IS ONLY APPROVED FO				1	·	HOLTEC	GENERAL HI-STORM 100S VERSION B
		``````````````````````````````````````	· · · · · · · · · · · · · · · · · · ·				 								HOLTEC CENTER SELECCENTER MARTON NJ 00051 MARTON NJ 00051 MARCT NA 1024	COVER SHEET
	L	8 1	7		1 6 ·		- <u></u> -	5	4		1	3			2 N/A	STORM 100 FSAR Revision 6; February 7, 200
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · ·			· · ·				

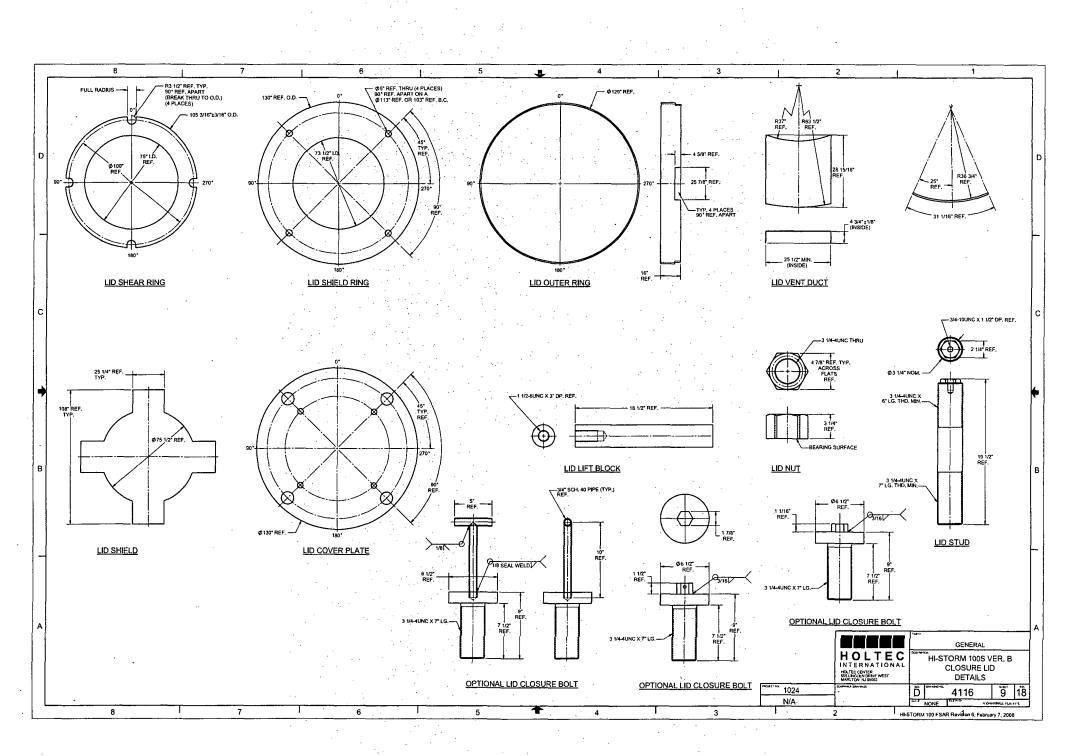

· · · ·

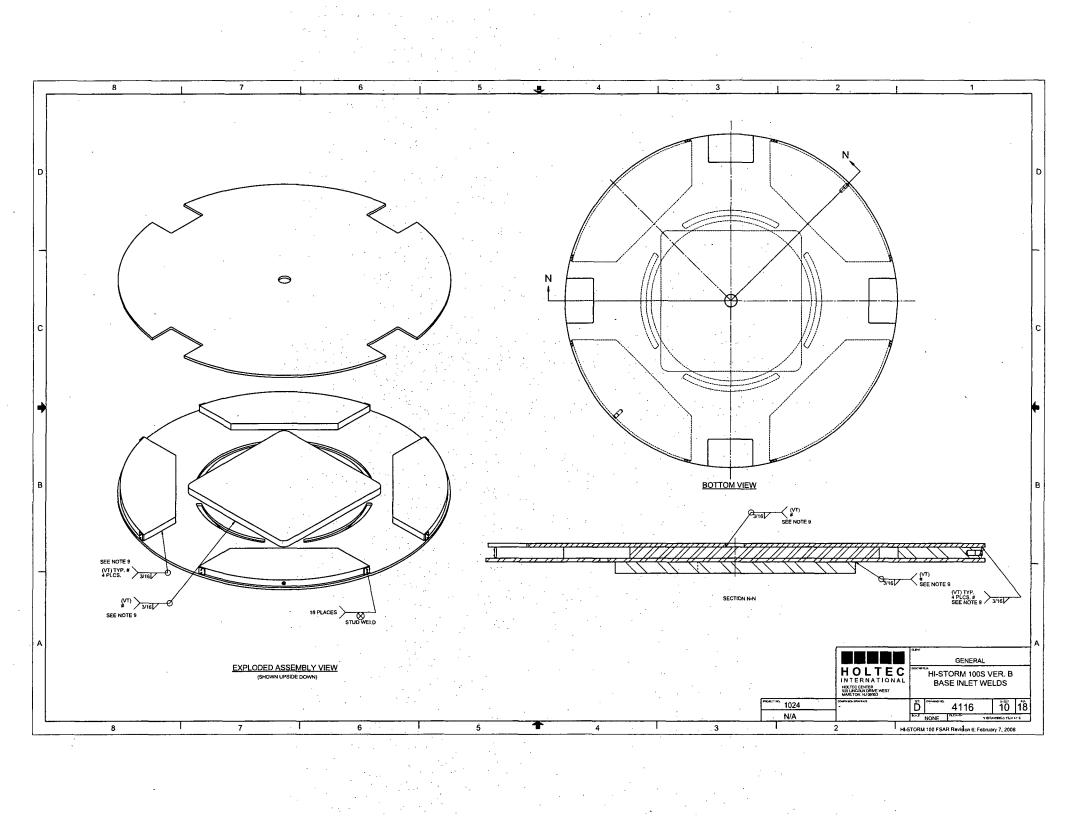
.

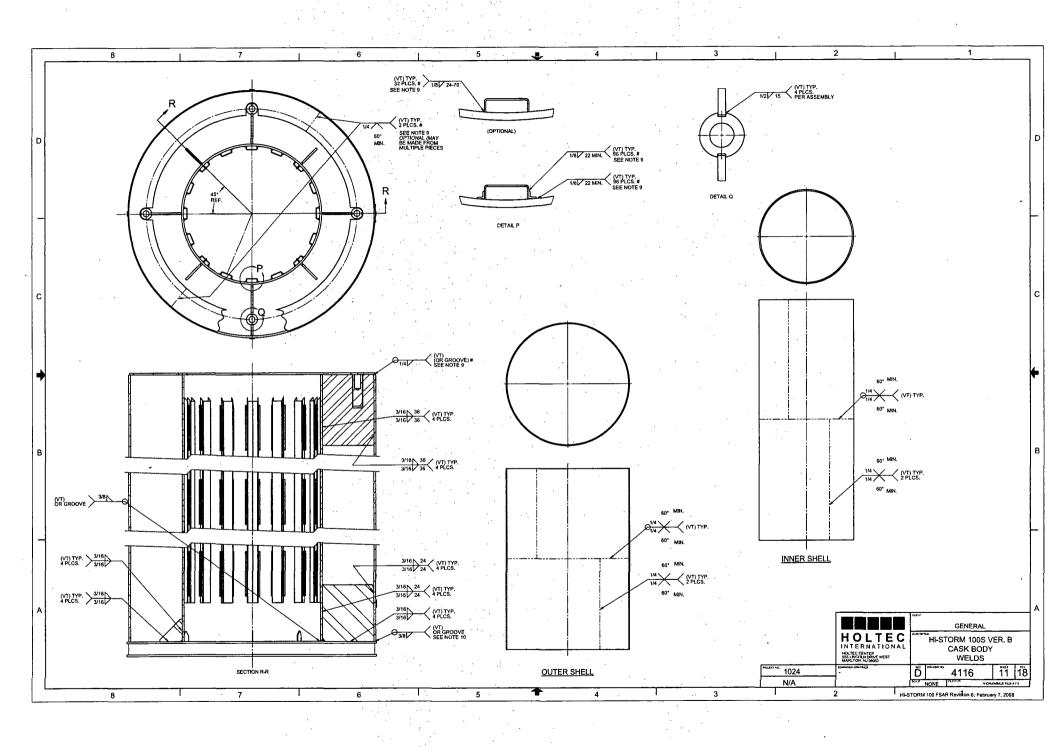


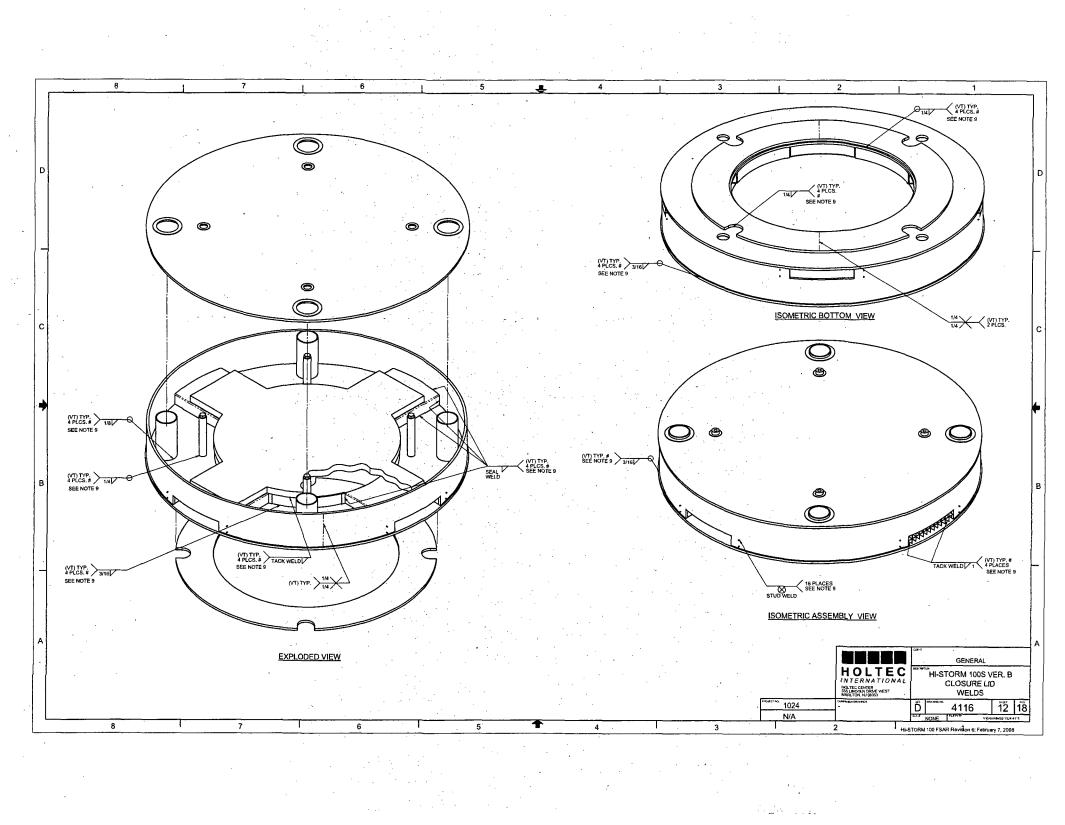


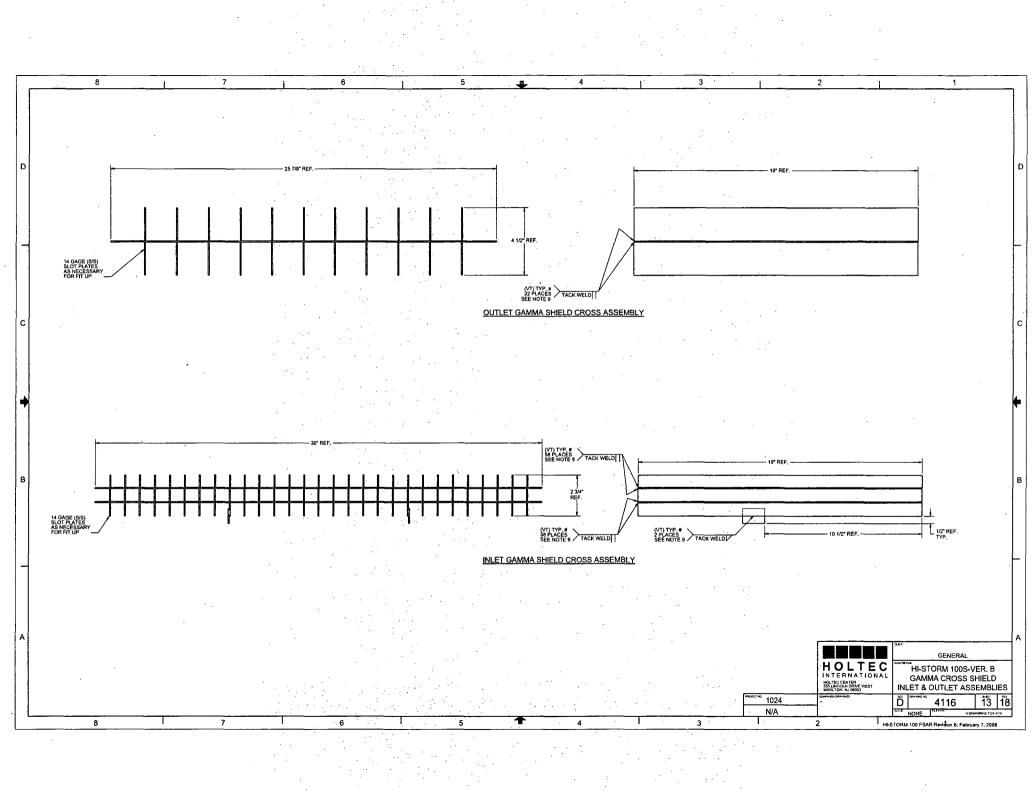

.

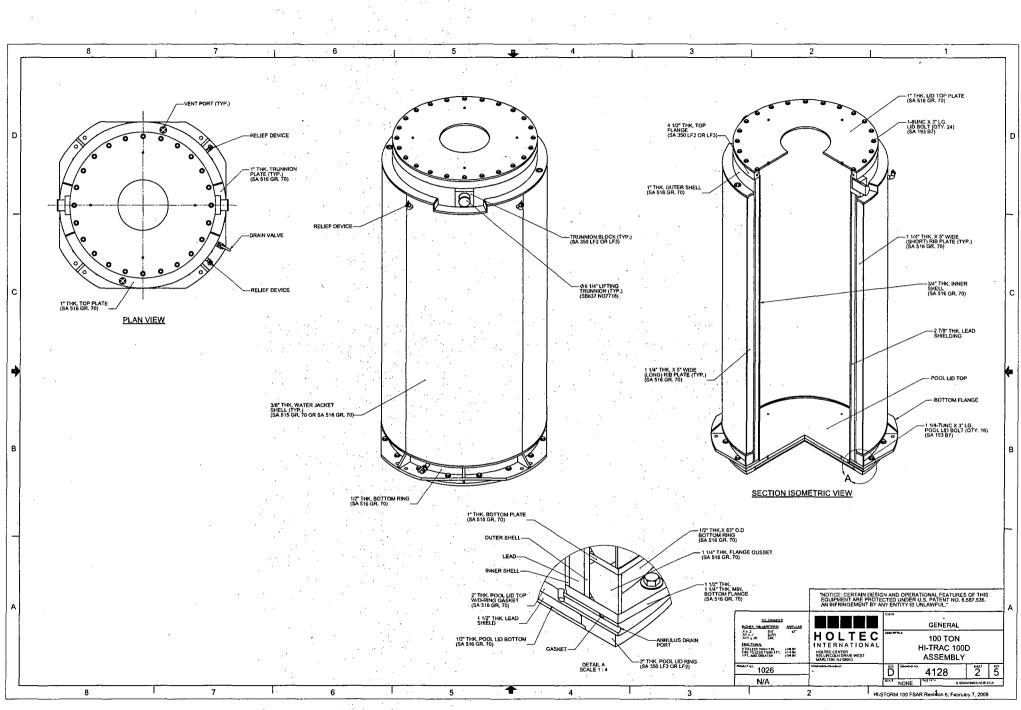

•

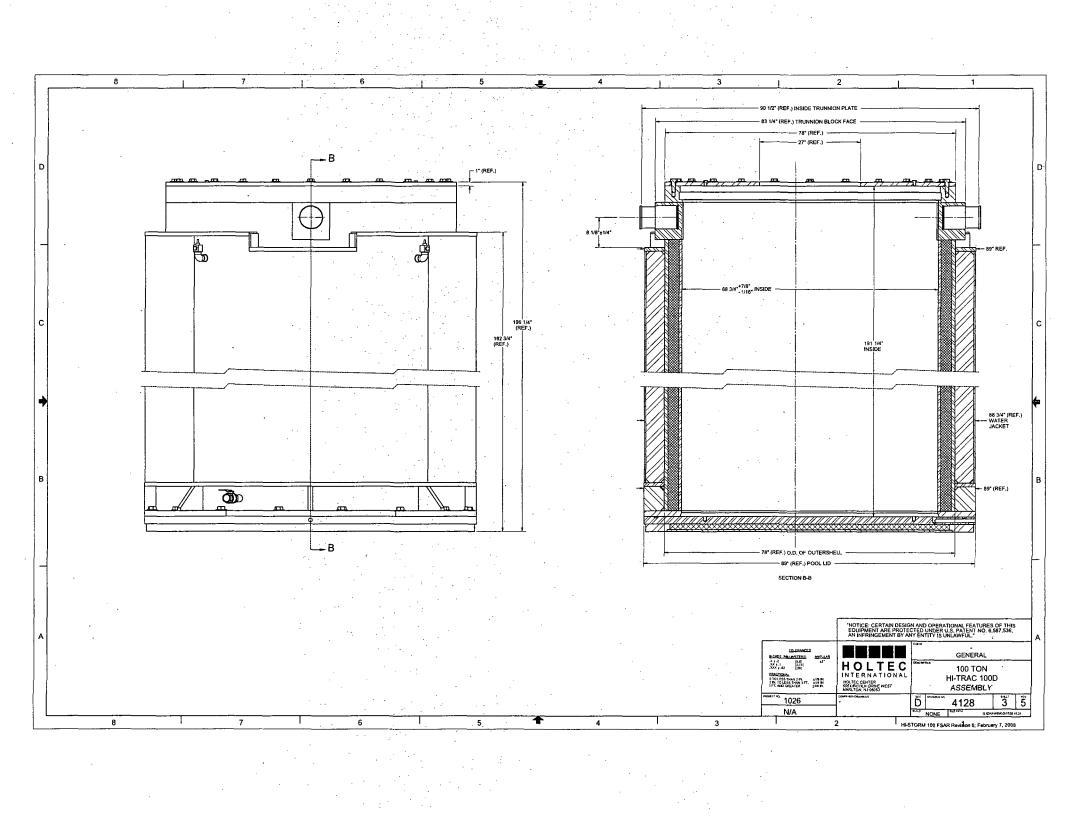


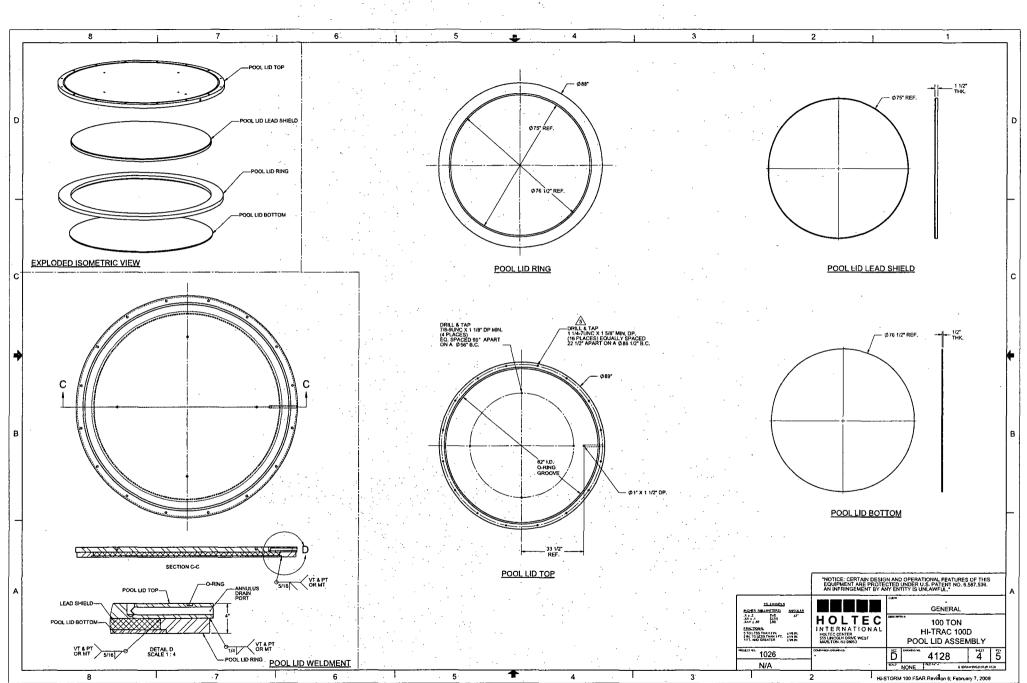


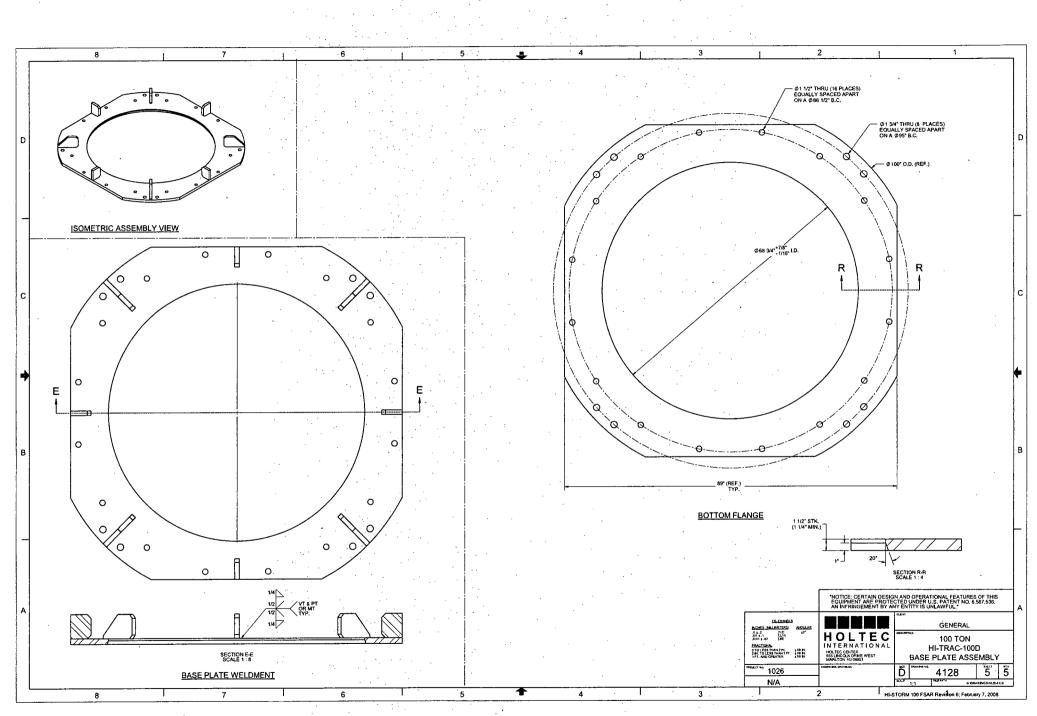

.

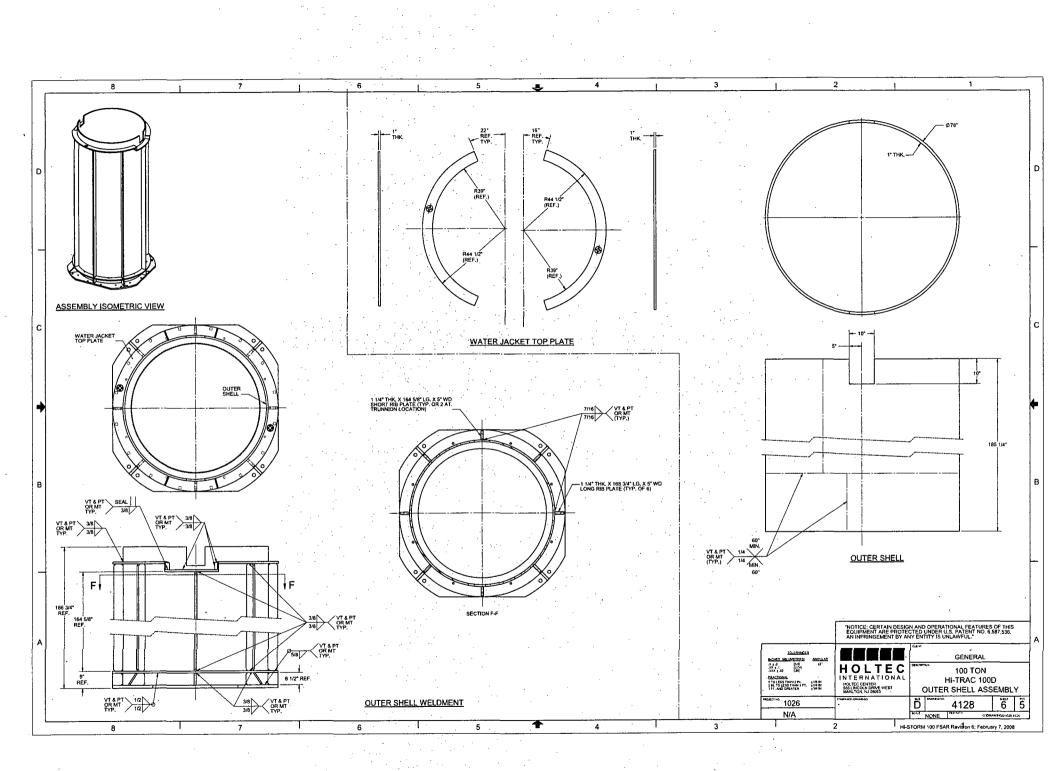


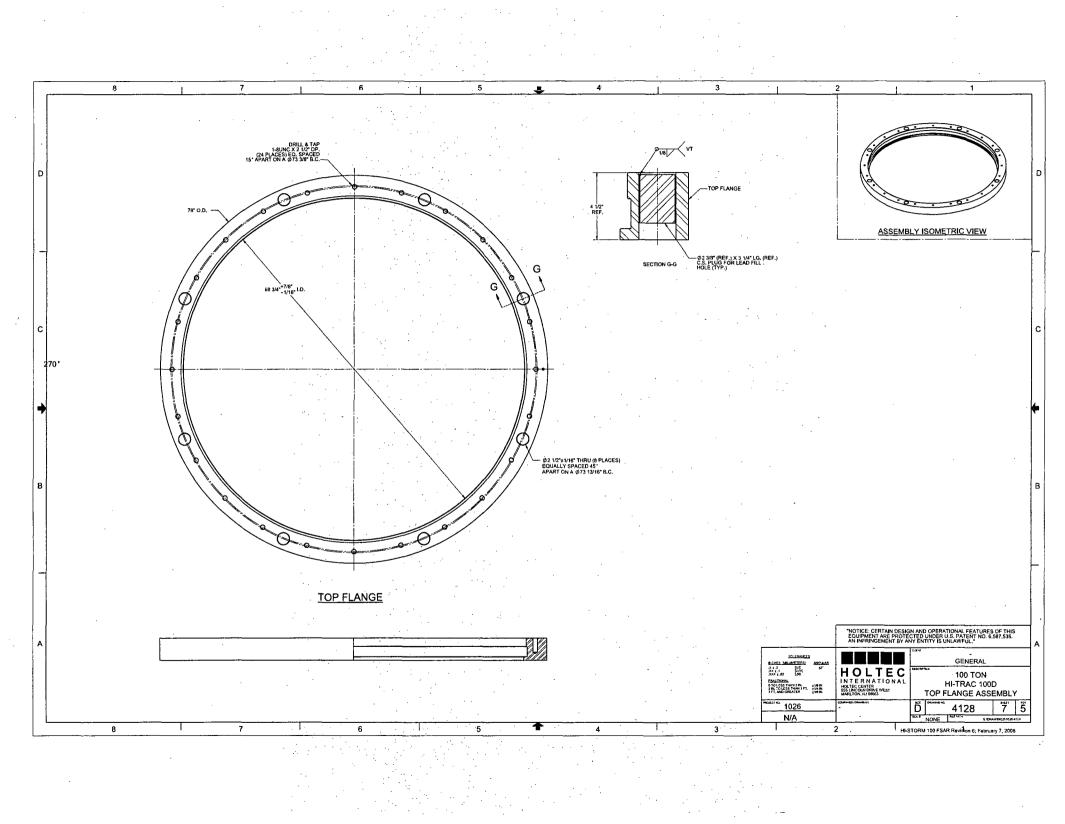


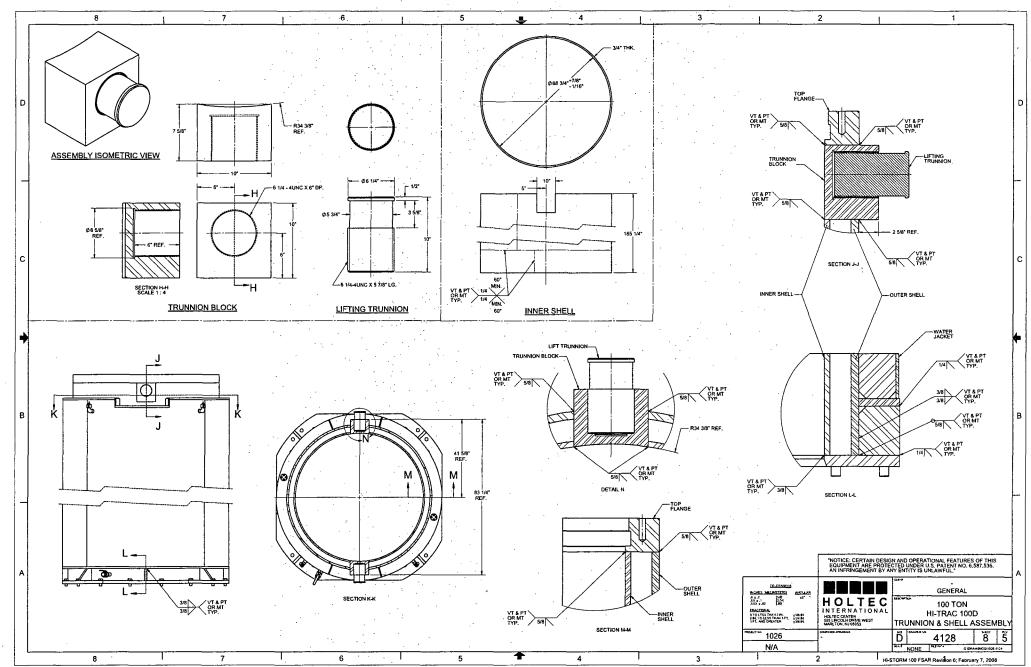




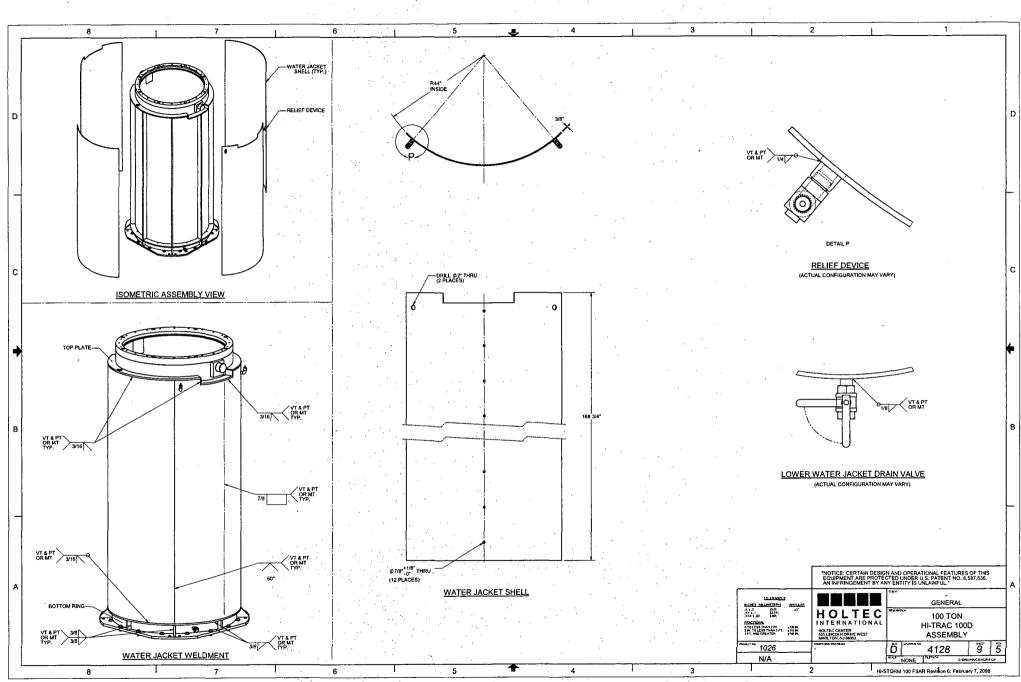

B 7 6 5 4 3 2 HISTORIA 100 FAR Revision 10 FAR	PROJECT NO. 1028 P.O. NO. NA DRAWING LD, 4128 TOTAL SHEETS 10 REVISION LOG LICENSING DRAWING PACKAGE CONTENTS: Series Objective memory is content of works and total Listensive is content and total Listensive is contened total Listensive is content and total Listensive is contenen		LIÉNT								· · · · · · · · · · · · · · · · · · ·				
				GENERAL		· · · · ·		LICENS	ING DRAW	ING	PAC	CKAG	E CO\	ER SHE	ET
			ROJECT NO. 1026	P.O. NO.	N/A	 					· · . · .				
		DF PA	RAWING ACKAGE I.D. 4128	TOTAL SHEETS	10	:	· · ·								
							· R	AFFECTED DRAWING SHEET NUMBERS	SUMMARY OF CHANGES/ AFFECTED ECOs	PREPARED	DAPPROVAL DATE	VIR# +			
							() INITIAL ISSUE	1026-30	S.CAIN	8/25/03	82748			
			LICENSING D	RAWING PACKAGE	CONTENTS:			ALL SHEETS	1026-31			{!			
1 Covers better 2 Additional of Marching Additional of Marcellands 3 OVERALL OPENING MARCHING OF MARCELLAND MARCHING ADDITIONAL OPENING							12	SHEET 4	1026-32	LEH	12/17/03				
				DESCRIPTION	· · · · · · · · · · · · · · · · · · ·										
	3 More and a constrained 4 More and a constrained 5 More and a constrained 6 More and a constrained 7 North and a constrained 8 More and a constrained 9 More and a constrained on a c			NG AND BILL OF MATERIALS				· · · · · ·			+ . +				
8 DARE INVAT ABOLENCY 9 DOPERANCE ABOLENCESSINGY 9 MATTER ABOLENCESINGY) SHEET 4	1020-41		2/15/06	00010			
e OUTRE SELLA SEGURALY 1 TORNOOL AND NORK SELELA SESURALY 8 TORNOOL AND NORK SELELA SESURALY 1 THE EQUIPMENT OCCLORENTEED IN THE DRAWING DACKAGE MAR BEEL 1 THE EQUIPMENT OCCLORENTEED IN THE DRAWING DACKAGE MAR BEEL 1 THE EQUIPMENT OCCLORENTEED IN THE DRAWING DACKAGE MAR BEEL 1 THE EQUIPMENT OCCLORENTEED IN THE DRAWING DACKAGE MAR BEEL 1 THE EQUIPMENT OCCLORENTEED IN THE DRAWING DACKAGE MAR BEEL 1 THE EQUIPMENT OCCLORENTEED IN THE DRAWING DACKAGE MAR BEEL 1 THE EQUIPMENT OCCLORENTEED IN THE DRAWING DACKAGE MAR BEEL <					· · · · · · · · · · · · · · · · · · ·		-		· · · · · · · · · · · · · · · · · · ·	· ·	1			-	
8 TUNNOW NO REFERENCE 9 TUNNOW NO REFERENCE 9 TOPULD ASSERDATY 9 TOPULD ASSERDATY 9 TOPULD ASSERDATY 9 TOPULD ASSERDATY NOTES 10 TOPULD ASSERDATY NOTES 10 TOPULD ASSERDATY NOTES 10 TOPULD ASSERDATY NOTES 10 TOPULD ASSERDATY NOTES 10 TOPULD ASSERDATY NOTES 10 TOPULD ASSERDATY 10 TOPULD ASSERDATY </td <td>8 TRUNNEN AUD REFERENCE 9 TRUNNEN AUD REFERENCE 9 TRUNNEN AUD REFERENCE 9 TOP LID ASSEMULY 9 TOP LID ASSEMULY 9 TOP LID ASSEMULY Provide Barry Lin Mark AUD REFERENCE TO COLLEGATE IN MERICAN EXCEPTION TO COLLEGATE IN THE DESIDENCE INTO TO COLLEGATE IN THE DESIDENCE INTO TO COLLEGATE IN THE DESIDENCE INTO TO COLLEGATE IN THE DESIDENCE INTO</td> <td></td> <td></td> <td></td> <td></td> <td>. F</td> <td></td> <td></td> <td>······································</td> <td></td> <td>1 · · · · · ·</td> <td></td> <td>·.</td> <td></td> <td></td>	8 TRUNNEN AUD REFERENCE 9 TRUNNEN AUD REFERENCE 9 TRUNNEN AUD REFERENCE 9 TOP LID ASSEMULY 9 TOP LID ASSEMULY 9 TOP LID ASSEMULY Provide Barry Lin Mark AUD REFERENCE TO COLLEGATE IN MERICAN EXCEPTION TO COLLEGATE IN THE DESIDENCE INTO TO COLLEGATE IN THE DESIDENCE INTO TO COLLEGATE IN THE DESIDENCE INTO TO COLLEGATE IN THE DESIDENCE INTO					. F			······································		1 · · · · · ·		·.		
9 WATER LANSE THE MALL ASSEMULY 10 TOP LID ASSEMULY 11 TOP LID ASSEMULY 12 TOP LID ASSEMULY 13 TOP LID ASSEMULY 14 TOP LID ASSEMULY 14 TOP LID ASSEMULY 14 TOP LID ASSEMULY 14 TOP LID ASSEMULY 15 TOP LID ASSEMULY 14 TOP LID ASSEMULY 14	9 WATER ASSERDENT 10 TOP LID ASSERDENT 10 TOP LID ASSERDENT 10 TOP LID ASSERDENT 10 TOP LID ASSERDENT 11 TESTALATTENEDTRENE TOP LID ASSERDENT 11 TESTALATTENEDTRENE TOP LID ASSERDENT TO LID ASSER														
NOTES 1. THE SUMPLEY TO CLEARENTED IN THIS DRAWING PACAGE MASSIERT 2. AND YEST DESCRIPTION THIS DRAWING PACAGE PROVING PACAGE MASSIERT 2. AND YEST DESCRIPTION THIS DRAWING PACAGE 2. AND YEST DESCRIPTION THE OPENNED PACAGE 2. AND YEST DESCRIPTION THE OPENNED PACAGE 2. AND YEST DESCRIPTION THE OPENNED PACAGE PROVIDER SECTION 22.4. 3. AND YEST DESCRIPTION THE OPENNED PACAGE PROVIDER SECTION 22.4. 4. AND YEST DESCRIPTION TO THE OPENNET THE OPENNED PACAGE PROVIDER SECTION 22.4. 5. AND YEST DESCRIPTION TO THE OPENNET THE	NOTES 1. DECREMENT DO COMMETTER INTER DRIVING ANCAGE MASSESH ANALYSIS DESCREMENT OF COMMETTER DRIVING ANCAGE MASSESH ANALYSIS DESCREMENT OF COMMETTER INTER DRIVING ANCAGE MASSESH ANALYSIS DESCREMENT OF COMMETTER ANALYSIS DRIVING ANCAGE MASSESH ANALYSIS DESCREMENT OF COMMETTER ANALYSIS DRIVING ANCAGE MASSESH ANALYSIS DESCREMENT OF COMMETTER ANALYSIS DRIVENT ANALYSIS DRIVING ANCAGE MASSESH ANALYSIS DESCREMENT OF COMMETTER ANALYSIS DRIVING ANCAGE MASSESH ANALYSIS DESCREMENT OF COMMETTER ANALYSIS DRIVER ANALYSIS DRIVENT ANALYSIS DRIVENT ANALYSIS DRIVER				· · ·					GENTE LITED BANTO	1	·····			
 In the course with the construction of the weak of the second of the	1. THE COUNTERNT TO CURRENT TO THE DRAWING PACKAGE HAS BEEN Image: Contract of the State of the		10 TOP LID ASSEMBL	/				CONFIRMS THAT ALL AP	PROPRIATE REVIEWS OF THIS DRAWING ARE DOCU	MENTED IN COMPA	NY'S NETWORK.		•		
 In the Durine try DOULetter DN THIS DEAVING PACAGE HAS BEEN YOR CARGE HAS BEEN YOR WAS BEEN YOR CARGE HAS BEEN YOR WAS BEEN YOR CARGE HAS BEEN YOR WAS BEEN YOR CARGE HAS B	1. The GRUPPENT DOCUMENTED IN THIS DRAWING PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. ThE CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. THE CHARLES DATABLE														
 In the Durine try DOULetter DN THIS DEAVING PACAGE HAS BEEN YOR CARGE HAS BEEN YOR WAS BEEN YOR CARGE HAS BEEN YOR WAS BEEN YOR CARGE HAS BEEN YOR WAS BEEN YOR CARGE HAS B	1. The GRUPPENT DOCUMENTED IN THIS DRAWING PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLED IN THE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. The CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. ThE CHARLES DATABLE DATABLE HASTON PACKAGE HAS BEEN 1. THE CHARLES DATABLE			•		. · · [,			
 In the course with the second resource in the Deannie of the vision numbers of the vision numbers	1. THE GRUPPENT DOCUMENTED IN THIS DRAWING PACKAGE HAS BEENT COMPARED BY THIS DRAWING PACKAGE HAS BEENT COMPARED BY THIS DRAWING THE SOLEN THIS SOLENT THE SOLENT MALKARDED SOLENT HAS TO COMPANY WITH THE SOLENT THE SOLENT THE DRAWING DISC DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DISC DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAWING TO DETERMINE COMPONENT FULL DRAWING DRAWING TO DETERMINE COMPONENT FULL DRAW						1			· .		· ·		l c	A
 In the course with the construction of the weak of the second of the	1. THE COUNTERNT TO CURRENT TO THE DRAWING PACKAGE HAS BEEN Image: Contract of the State of the							NOTES	· · ·						
AWATYSES DESCRIBED IN THE IN STORM FAX. DIMENSIONED STREED IN THE INSTORMANCE ARE PROVIDED SOLELY FOR DEPENSIONE STREED THE INTERNATION AND EXCEPT AS ALLOWED DATES THE THE PACKAGE DATES ACCORDANCE WITH THE DESCRIPTION PACKAGE WITHOUT AND EXCEPT AS ALLOWED DATES ACCORDANCE WITH THE DESCRIPTION PACKAGE WITHOUT AND EXCEPT AS ALLOWED DATES ACCORDANCE STACKATUP FROM THE RESTRETTING ACCORDANCE WITH THE DESCRIPTION PACKAGE WITHOUT AND EXCEPT AS ALLOWED DATES ACCORDANCE STACKATUP FROM THE RESTRETTING ACCORDANCE WITH THE DESCRIPTION PACKAGE WITH THE PACKAGE ACCORDANCE WITH THE DESCRIPTION ADDITIONAL HEADER STRETTING ACCORDANCE WITH THE SPACKAGE WAS ADDITIONAL HEADER STRETTING ADDITION OF ANY STRETT OF ANY STRETT CATEGORY AS ABSED ON THE HIGH ST ACCORDANCE WITH THE PACKAGE WAS ADDITIONAL HEADER STRETTING ACCORDANCE WITH THE PACKAGE WAS ADDITIONAL HEADER STRETTING ACCORDANCE WITH THE ADDITION ADDITIONAL HEADER STRETTING ACCORDANCE WITH ADDITION ADDITIONAL HEADER STRETT	Available Available Available						· • • .	4. A 199	CUMENTED IN THIS DRAWING PACKAGE H	AS BEEN					9
Bit Die Beginder under Orden Licksford Workt, Lacowarde E S ABRICATED IN THE DAY OF THE DA	Big Strategy Stra				<u>-</u>			ANALYSES DESCRIBI	ED IN THE HI-STORM FSAR.						
ACCORDUNCE WITH THE DESIDE DRAWINGS WIGHT HAVE MORE RESTRETION ACCORDINCE WITH THE DESIDE DRAWINGS OF MACHINE COMPOSITION THUS ACCORDINCE WITH THE DESIDE DRAWINGS OF MEMORY BY LUD. ACCORDINCE WITH THE DESIDE DRAWINGS OF MEMORY BY LUD. In the REVISION IL VEL OF EACH NOTING OF REVISION NUMBERS OF ALL STREETS IN THIS PACKAGE RECURRES UPONTING OF REVISION NUMBERS OF ALL STREETS IN THE STREETS IN THE PACKAGE RECURRES UPONTING OF REVISION NUMBERS OF ALL STREETS IN THE PACKAGE RECURRES UPONTING OF REVISION NUMBERS OF ALL STREETS IN THE PACKAGE RECORES AND STANDARDS ARE DELINATED IN SAAR SECTION 2.2.4. ALL WEDS RECURRES VISIL EXALINATION ADDITIONAL NOE INSECTIONS ARE NOTED ON THE DRAWING, NOE TECHNIQUES AND ACCEPTANCE CRITERIA ALL WEDS STOLENEST PHOLE CONFORMENT IS INFORMATION ADDITIONAL SAREED ON THE HIGHERST HIS COMPONENT IS INFORMATION SAREED ON THE HIGHERST HIS COMPONENT IS INFORMATION ADDITIONS ARE BALL WEDD STOLEN FRANCHING BALL WEDD STOLEN FRANCHTON AND WELDS WITH HOLTEC APPROVAL BALL WEDD STOLEN FRANCHTON ADDITIONS ARE BALL WEDD STOLEN FRANCHTON AND WELDS WITH HOLTEC APPROVAL BALL WEDD STOLEN FRANCHTON AND WELDS WITH HOLTEC APPROVAL BALL WEDD STOLEN FRANCHTON AND WELDS WITH HOLTEC APPROVAL BALL WEDD STOLEN AND MEMORY ADD WELDS WITH HOLTEC APPROVAL <td< td=""><td>ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WIGHT AND ADDRESS AND ADDRESS AND ADDRESS TREETHE ACCENTIONE OF WIGHT AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS TREETHE ACCENTIONE OF WIGHT AND ADDRESS AND A</td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · ·</td><td></td><td></td><td></td></td<>	ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WITH THE DESIDE DRAWINGS, WIGHT AVE ADDRE PESS TREETHE ACCENTIONE OF WIGHT AND ADDRESS AND ADDRESS AND ADDRESS TREETHE ACCENTIONE OF WIGHT AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS TREETHE ACCENTIONE OF WIGHT AND ADDRESS AND A			· · · · · · · · · · · · · · · · · · ·								· · ·			
3. THE REVISION LEVEL OF EACH NOMPLUM, SHEET IN THE PACKAGE IS THE 3. THE REVISION LEVEL OF EACH NOMPLUM, SHEET IN THE PACKAGE IS THE 3. THE REVISION LEVEL OF EACH NOMPLUM, SHEET IN THE PACKAGE IS THE 3. THE REVISION LEVEL OF EACH NOMPLUM, SHEET IN THE PACKAGE IS THE 3. THE REVISION LEVEL OF EACH NOMPLUM, SHEET IN THE PACKAGE IS THE 3. THE REVISION LEVEL OF EACH NOMPLUM, SHEET IN THE PACKAGE IS THE 3. THE REVISION LEVEL OF EACH NOMPLUM, SHEET IN THE PACKAGE IS THE 3. APPLICABLE CODES AND STANDARDS ARE DELINEATED IN FSAR SECTION 2.2.4. 5. ALL WELDS REDURE VSUL LEVEL OF INNUEDS AND ACCEPTANCE CRITERIA ARE PROVIDED IN THE DRIVING NORE TECHNIQUES AND ACCEPTANCE CRITERIA ARE PROVIDED IN THE DRIVING NORE TECHNIQUES AND ACCEPTANCE CRITERIA ARE PROVIDED DO THE DRIVING WORT TO SATELY CATEGORY AS ASSED ON THE DRIVING NUMBERS 3. ALL WELD STEPD. FULL PENETRATION WELDS MAY BE MADE FROM EITHER 3. B. ALL WELD STEPD. FULL PENETRATION ARE SEED ON THE DRIVING WALDS WITH HOLTED APPROVAL. 3. B. ALL WELD STEPD. FULL PENETRATION AND WELDS WITH HOLTED APPROVAL. 3. B. ALL WELD STEPD. THE DESTING AREA REVIEW AND ACCEPTAS ASL CODES AS CLARIFIED IN THE FSAR FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. MATTER COMPANY B. A. T. MELTINE SUBLEXAND	3. THE REVISION LEFEL OF EACH NOTIFIES OF REVISION NUMBERS 9. THE REVISION LEFEL OF EACH NOTIFIES OF REVISION NUMBERS 9. THE REVISION LEFEL OF EACH NOTIFIES OF REVISION NUMBERS 9. THE REVISION LEFEL OF EACH NOTIFIES OF REVISION NUMBERS 9. THE REVISION LEFEL OF EACH NOTIFIES OF REVISION NUMBERS 9. THE REVISION LEFEL OF EACH NOTIFIES OF REVISION NUMBERS 9. APPLICABLE CODES AND STADARDS ARE DELINEATED IN FASH SECTION 2.2.4. 9. APPLICABLE CODES AND STADARDS ARE DELINEATED IN FASH SECTION 2.2.4. 9. UNLESS OTHEWISE NOTED, FULL PERTATION WELDS MAY BE MADE FROM ETHER 9. UNLESS OTHEWISE NOTED, FULL PENETRATION WELDS MAY BE MADE FROM ETHER 9. UNLESS OTHEWISE NOTED, FULL PENETRATION WELDS MAY BE MADE FROM ETHER 9. UNLESS OTHEWISE 9. UNLESS OTHEWISE 9. ALL WELD SIZES ARE MINIMUMS EXCEPT AS ALLOWED BY APPLICABLE CODES AS 9. ALL WELD SIZES ARE MINIMUMS EXCEPT AS ALLOWED BY MITHIOLTEC APPROVAL 9. ALL WELD SIZES ARE MINIMUMS EXCEPT AS ALLOWED BY MITHIOLTEC APPROVAL 9. ALL WELD SIZES ARE MINIMUMS EXCEPT AS ALLOWED BY MITHIOLTEC APPROVAL 9. AT 6 5 9. AT 6 5 4 3 2 MARTINE CHARGE FROM AND ACCEPT AND ALLOWED AND ACCEPT AND ALLOWED				,,		·· ··	ACCORDANCE WITH TOLERANCES, TO EN	THE DESIGN DRAWINGS, WHICH HAVE MO SURE COMPONENT FIT-UP, DO NOT USE V	RE RESTRICTIV	E				
B 0 4 5 4 3 2 HISTORM 100 FAR Redulate Freezery 7, 2008 8 7 6 5 4 3 2 HISTORM 100 FAR Redulate Freezery 7, 2008	Image: Section of the rest in the state statown was dependent to the state statown was dependent to the rest in the state statown was dependent to the rest in the state statown was dependent to the rest in the state statown and the instance of the rest in the state statown and the instance of the rest integration in the rest integratin in the rest in the rest in the rest			· · · · · · · · · · · · · · · · · · ·			•				-OP				
4. APPLICABLE CODES AND STANDARDS ARE DELINEATED IN FSAR SECTION 2.2.4. 5. ALL WELDS REQUIRE VISUAL EXAMINATION. ADDITIONAL MCE INSPECTIONS ARE PROVIDED ON FFS ART BALLE S1.4. 6. ALL WELDS REQUIRE VISUAL EXAMINATION. ADDITIONAL MCE INSPECTIONS ARE PROVIDED ON FFS ART BALLE S1.4. 6. SUBC OF A COMPONENT SUBCOMPONENT CURSOR AD BERNATION WELDS MAY BE MADE FROM THE HIGHEST FLOSSIFICATION OF ANY SUBCOMPONENT SUBCOMPONENT CURSOR AD ASEE PROVIDED ON THE DESIGN DRAMMING. 8. ALL WELD SIZES ARE MINIMUM SECEPT AS ALLOWED BY APPLICABLE CODES AS CLARIFED IN THE FSAR, FABRICATOR MAY ADD WELDS WITH HOLTEC APPROVAL. 8 7 8 7 6 5 4 3 2	4. APPLICABLE CODES AND STANDARDS ARE DELINEATED IN FSAR SECTION 2.2.4. 6. ALL WELDS REQUIRE VISUAL EXAMINATION ADDITIONAL NDE INSPECTIONS ARE MOTEO ON THE DISKING ADD ECHNICAS DE TENDINAL NOE INSPECTIONS ARE MOTEO ON THE DISKING ADD ECHNICAS DE TENDINAL NOE INSPECTIONS ARE MOTEO ON THE DISKING ADD ECHNICAS DE TRADESIGN AND BE MADE FRAME ETHER SUBC OF A COMPONENT IS UNPORTANT TO SAFETY. CATEGORY A, BASED ON THE HIGHEST CLASSIFICATION OF THE DISKING ADD ECHNICASULE CODES AS 1				· · · · · · · · · · · · · · · · · · ·	:		SAME AS THE REVISI SHEET(S) IN THIS PAR	ON LEVEL OF THIS COVER SHEET. A REVIS CKAGE REQUIRES UPDATING OF REVISION	SION TO ANY NUMBERS	· · · ·				
ARE PROVIDED IN FSAR TABLE 9.1.4. ARE PROVIDED IN FSAR TABLE 9.1.4. 6. UNLESS OTHEWISE NOTED FULL PENETRATION WELDS MAY BE MADE FROM EITHER SIDE OF A COMPONENT. 7. THIS COMPONENT. 8. ALL WIELD SUES ARE PROVIDED IN THE DESIGN DAAWING. 8. ALL WIELD SUES ARE MINIMUME SUCCEPT AS ALLOWED BY APPLICABLE CODES AS CLARIFIED IN THE FSAR, FABRICATOR MAY ADD WELDS WITH HOLTEC APPROVAL. 8. ALL WIELD SUES ARE FABRICATOR MAY ADD WELDS WITH HOLTEC APPROVAL. 8. ALL WIELD SUES ARE MINIMUM SUBCOMPONENT SUBLOX SUBLOX SUBLOX SUBLOX SUBLOX SUBLOX SUBLOX SUBLOX SU	ARE PROVIDED IN THE SOLATION WELDS MAY BE MADE FROM EITHER SUB OF A COMPORTANT TO SAFETY. CATEGORY A, BASED ON THE HIGHEST CLASSIFICATION OF ANY SUBCOMPONENT CLASSIFICATIONS ARE B. ALL WELD SIZES ARE MINIMUMS EXCEPT AS ALLOWED BY APPLICABLE CODES AS CLARIFIED IN THE PSAR, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. Image: Clarified in the PSar, FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL.			t			•			R SECTION 2.2.4	4.				
ARE PROVIDED IN FSAR TABLE \$1.4. ANE PROVIDED IN FSAR TABLE \$1.4. Superson of the wise notion of the mise notion of the mise state of the mise stat	ARE PHONIDED IN FSAR TABLE 9.1.4. ARE PHONIDED IN FERTATION WELDS MAY BE MADE FROM EITHER SIDE OF A COMPONENT. 1. UNLESS OTTEMPORTANT TO SAFETY. CATEGORY A BASED ON THE HIGHEST CLASSIFICATION OF ANY SUBCOMPONENT CLASSIFICATIONS ARE 8. ALL WELD SIZES ARE MINIMUMS EXCEPT AS ALLOWED BY APPLICABLE CODES AS CLARIFED IN THE FSAR. FABRICATOR MAY ADD WELDS WITH HOLTED APPROVAL. 8 7 6 5 4 3 2 IN-STORM 100 FSAR Reviden 6. Frequenty 7. 2008			· · · • • • • • • • • • • • • • • • • •			· .	5. ALL WELDS REQUIRE	VISUAL EXAMINATION, ADDITIONAL NDE I	NSPECTIONS	-	an an thurs			
SIDE OF A COMPONENT. SIDE OF A COMPONENT. <td< td=""><td>SIDE OF A COMPONENT. SIDE OF A COMPONENT.<td></td><td></td><td></td><td>· · · ·</td><td>· ·</td><td></td><td>. ARE PROVIDED IN FS</td><td>AR TABLE 9.1.4.</td><td></td><td></td><td></td><td></td><td></td><td></td></td></td<>	SIDE OF A COMPONENT. SIDE OF A COMPONENT. <td></td> <td></td> <td></td> <td>· · · ·</td> <td>· ·</td> <td></td> <td>. ARE PROVIDED IN FS</td> <td>AR TABLE 9.1.4.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				· · · ·	· ·		. ARE PROVIDED IN FS	AR TABLE 9.1.4.						
B 7 6 5 4 3 2 HISTORIA TO PERATURATE PROVIDED ON THE DESIGN DAMAKES OF THIS SUBCOMPONENT COASSINCE TO DES AS ALLOWED BY APPLICABLE CODES AS CLARIFIED IN THE FSAR, FABRICATOR MAY ADD WELDS WITH HOLTEC APPROVAL.	B 7 6 5 4 3 2 HISTORIA 100 FSAR Revidend 6: February 7, 2008							SIDE OF A COMPONE	NT.				ISOMETRIC	VEW OF	1
8 7 6 5 4 3 2 HISTORIAN DE PARTINAL SE FARMELY 7.2008	B. ALL WELD SIZES ARE MINIMUMS EXCEPT AS ALLOWED BY APPLICABLE CODES AS CLARIFIED IN THE FSAR. FABRICATOR MAY ADD WELDS WITH HOLTEC APPROVAL. Image: Content and the protection of the					.	•	7. THIS COMPONENT IS CLASSIFICATION OF A PROVIDED ON THE D	IMPORTANT-TO-SAFETY, CATEGORY A, BA ANY SUBCOMPONENT, SUBCOMPONENT C ESIGN DRAWING	ASED ON THE HI	GHEST S ARE	·		~~~~	
B 7 6 5 4 3 2 Horston 10 FAR Revision 6: February 7, 2008	B 7 6 5 4 3 2 Historika 100 Faar Reviden 6; February 7, 2008									LICABLE CODES	AS	· · · .	*NOTICE: EQUIPMI AN INFR	CERTAIN DESIGN AND OPERATIONAL INT ARE PROTECTED UNDER U.S. PA NGEMENT BY ANY ENTITY IS UNLAWE	FEATURES OF THIS TENT NO. 6,587,536
B 7 6 5 4 3 2 HISTORY 10 FAR Revision 6: February 7, 2008	B 7 6 5 4 3 2 HISTORIN 100 FAAR Reviden 6: February 7, 2008						Ъ.,		AR. FABRICATOR MAY ADD WELDS WITH H	ULTEU APPROV	· AL	· · ·		CURVE	•
Image: Note of the second se	Image: Note of the second se							· · · · · ·					HO		
Matrix 1026 Matrix 4128 11 11 1	Image: married matrix								,				- INTERN	ATIONAL UITE	RAC 100D
8 7 6 5 4 3 2 HLSTORM 100 FSAR Revision 6: February 7, 2008	8 7 6 5 4 3 2 H-STORM 100 FSAR Reviden 6; February 7, 2008		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			1. e - e -	· · · ·						FRAME IN	
6 1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												8.3 m		
			8	1 7		6			4		3		2	HI-STORM 100 FSAR Revis	ion 6: February 7, 2008
					_ ·			· ·				•			

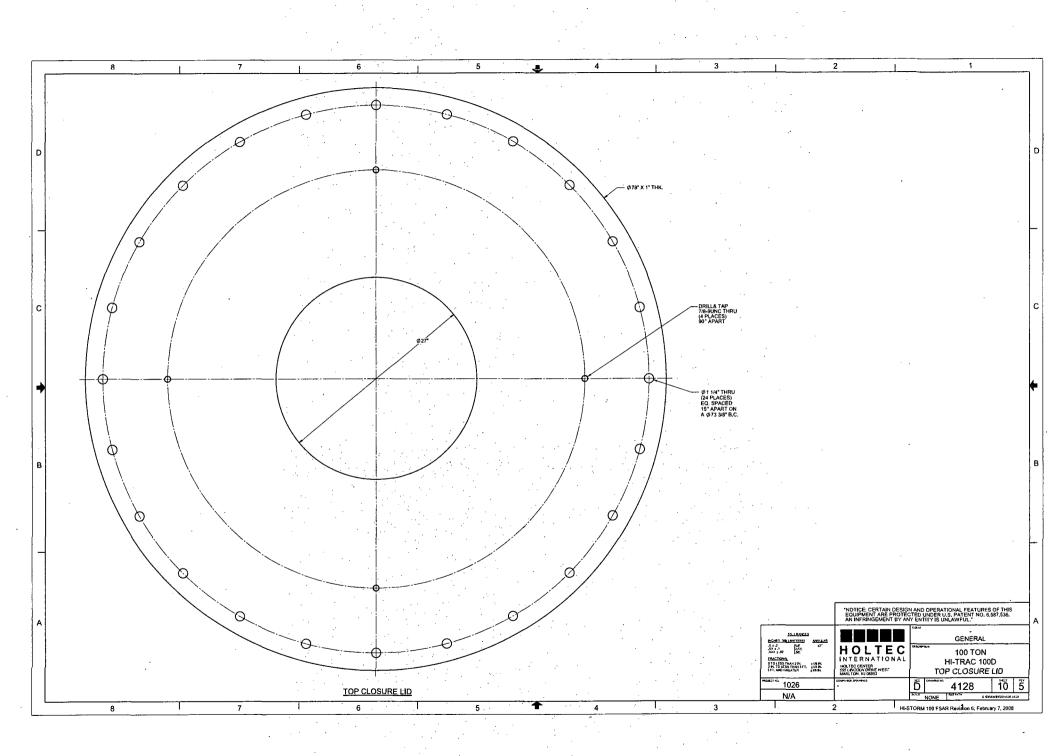


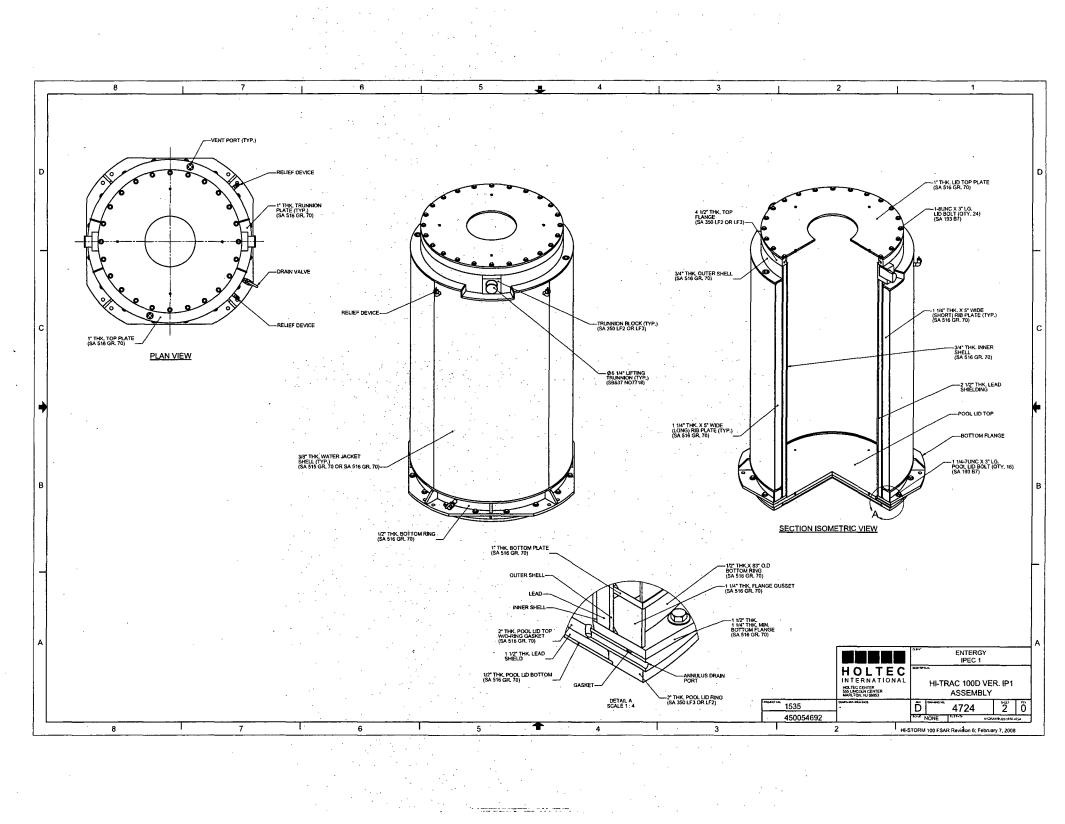


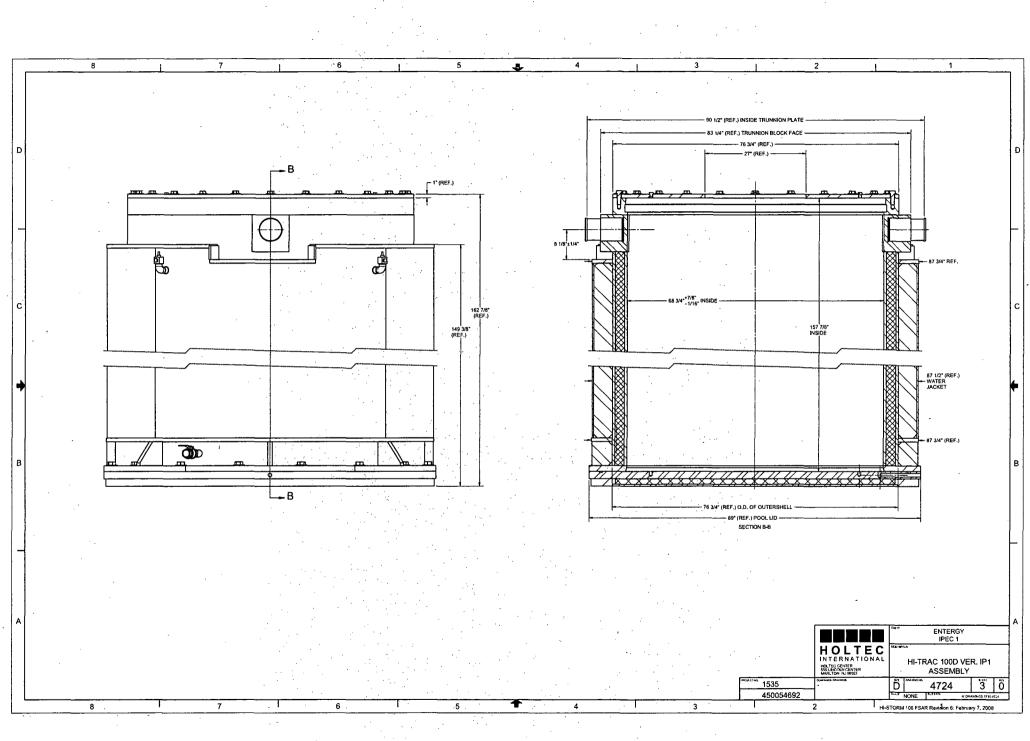


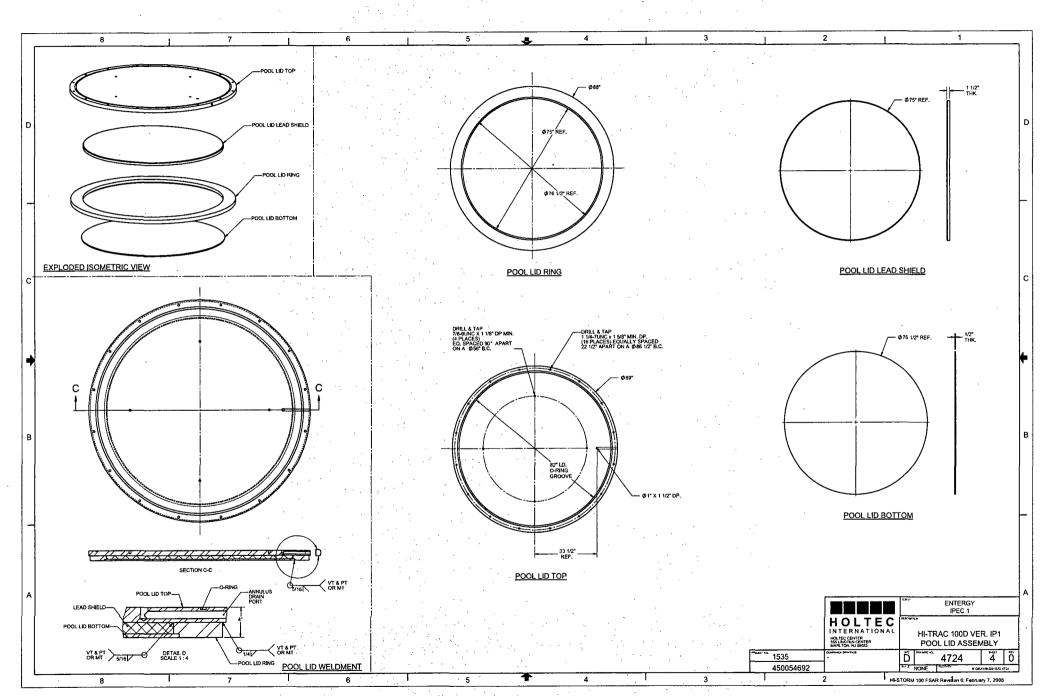
· · · · · ·

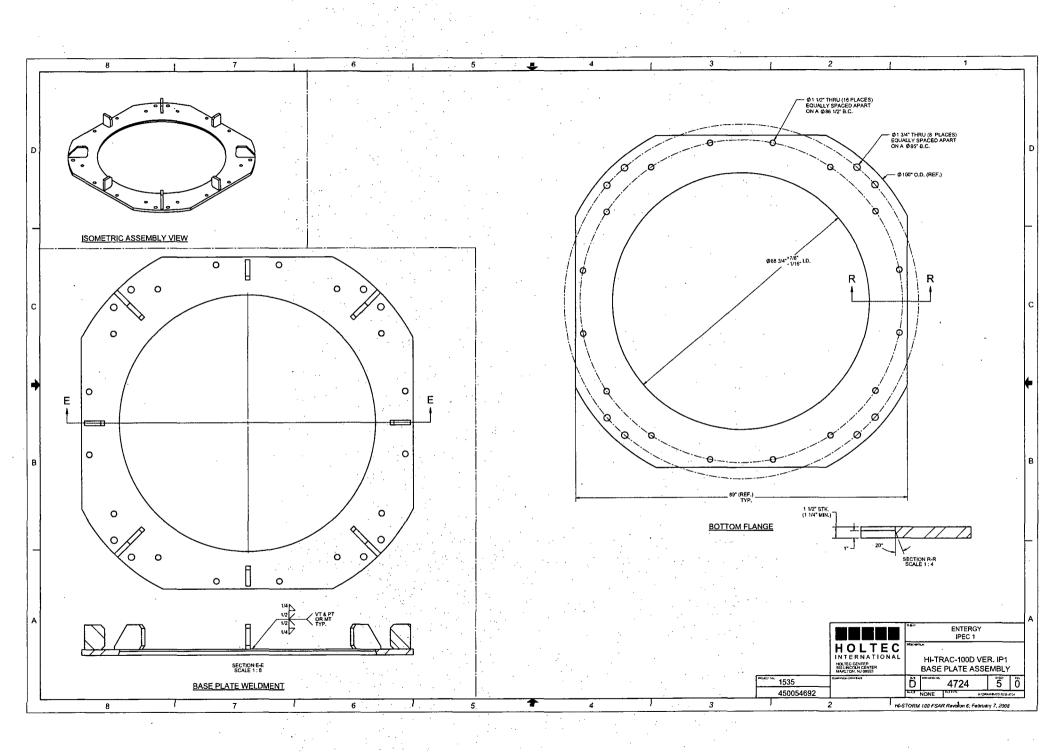


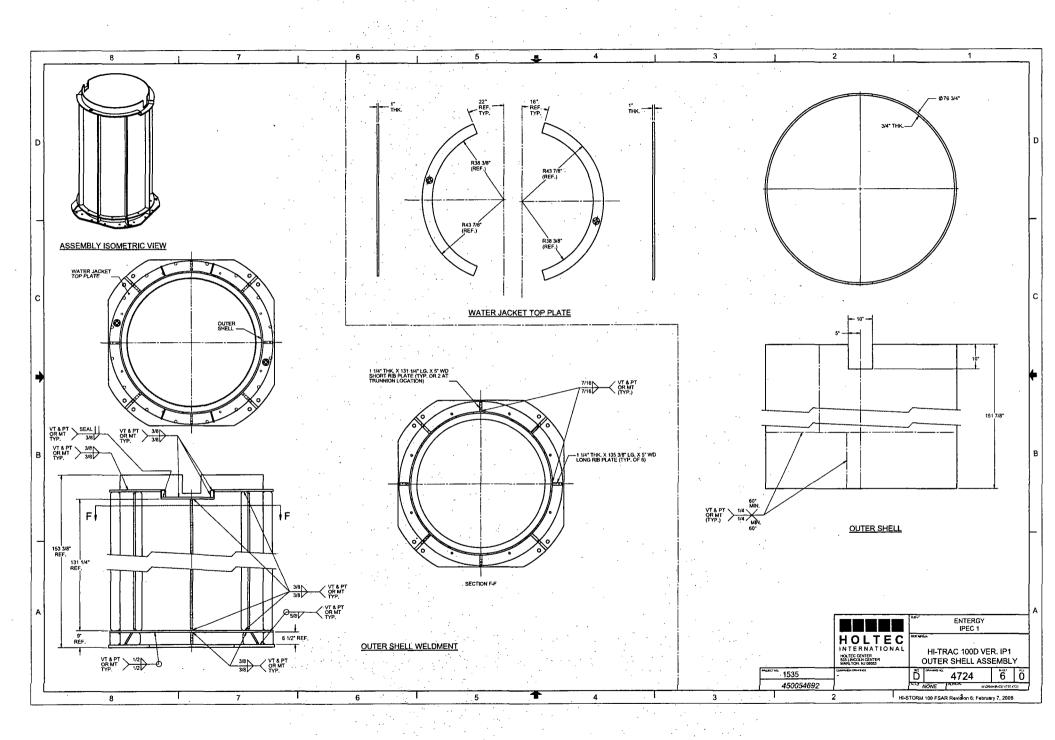

a din c

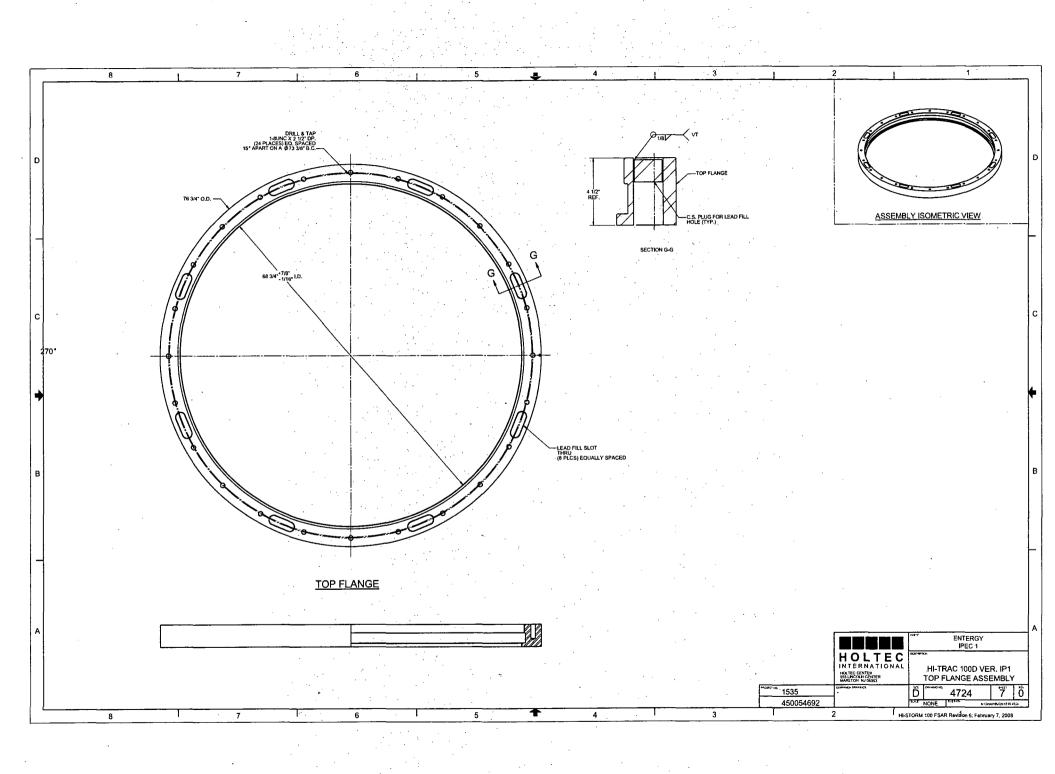

.

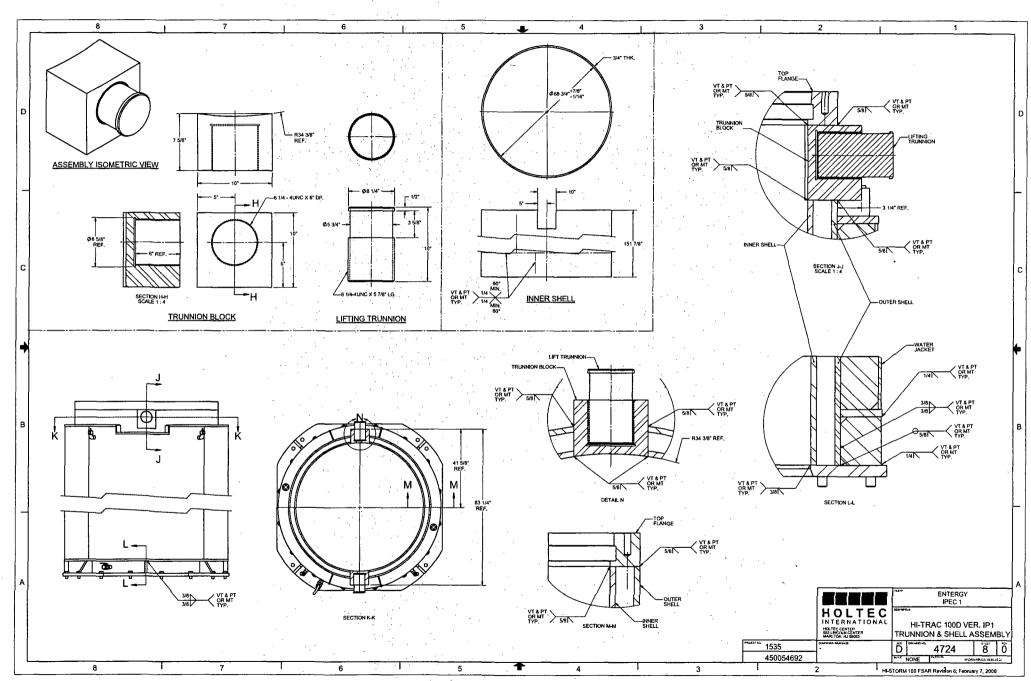


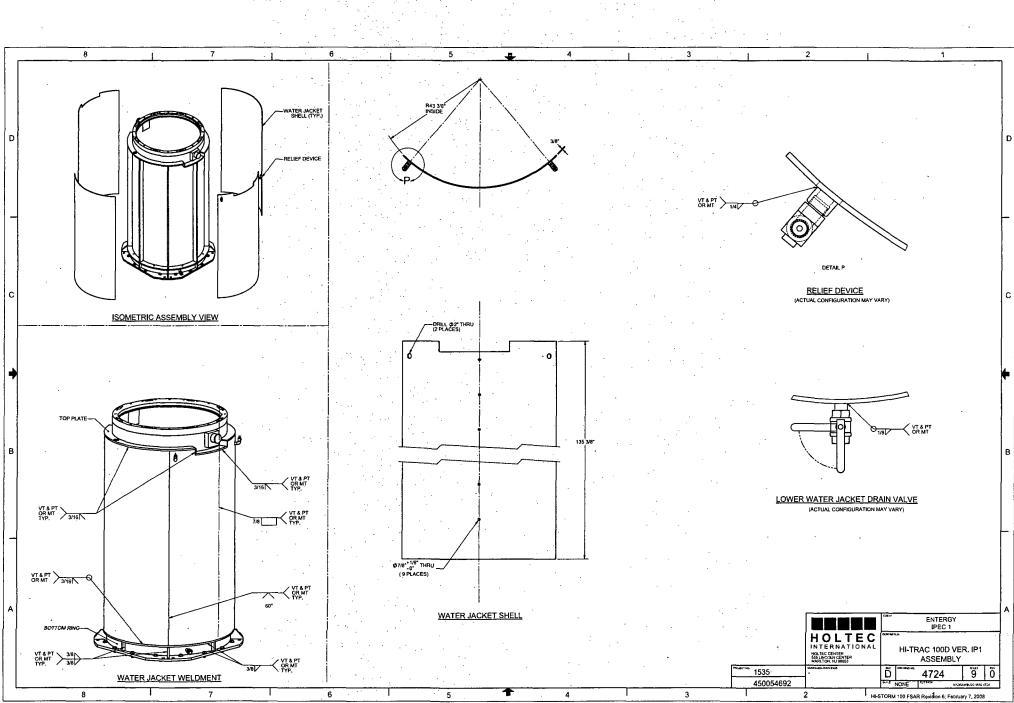


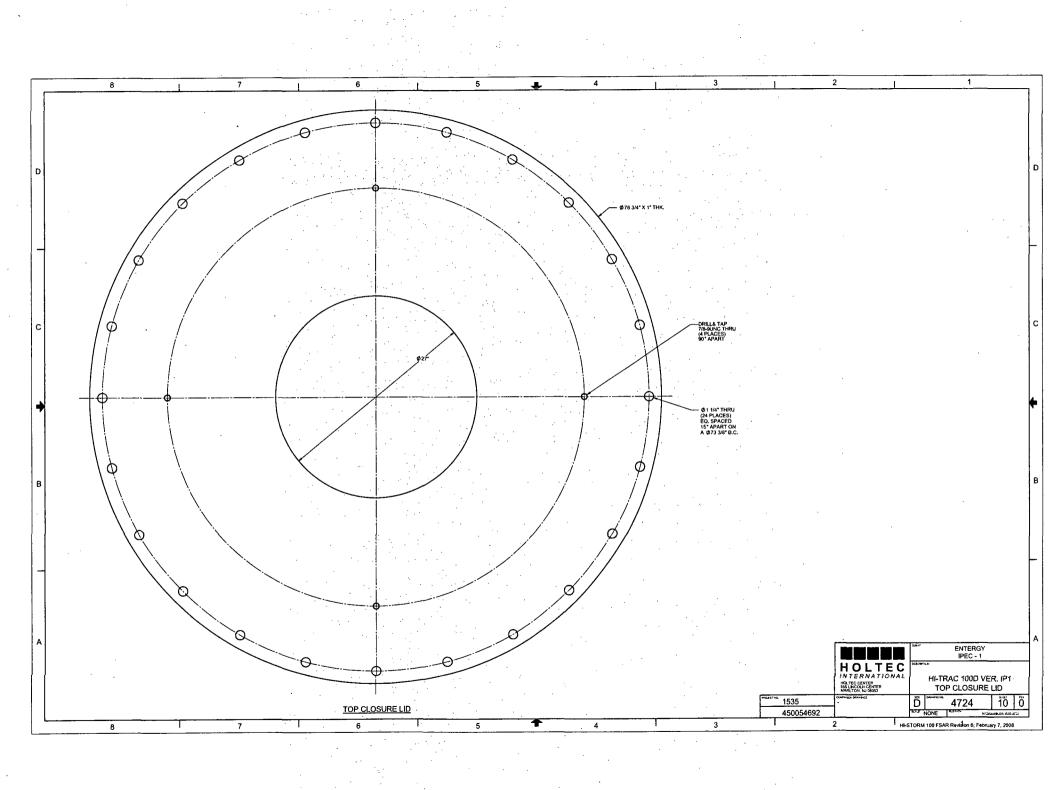

			•	· · · · ·				· · · ·		· · · · · · · ·		, .			
[8	7	6	••••		5		4		3			2	1	
	CLIENT ENTERG IPEC 1	Y			L	ICENS	ING DR	AŴI	NG	PAC	CKA	GE C	OVER	SHEET	
	PROJECT NO. 1535 P.0	D. NO. 450054692		• •										. <u> </u>	
D	DRAWING 4724	DTAL 10					REVISION	LOG		· · ·					
					REV	AFFECTED DRAWING SHEET NUMBERS	SUMMARY OF CHAI AFFECTED ECC	NGES/ Ds	PREPARED BY	APPROVAL DATE	VIR# +	· ·			
	LICENSING DRAWING P	ACKAGE CONTENTS:			0	INITIAL ISSUE	N/A		JJB	05/11/07	39820				
	SHEET DESCR		ן . ר										•		┝
	SHEET DESCR 1 COVER SHEET 2 ASSEMBLY DRAWING AND BILL OF			a a		· · · · · · · · · · · · · · · · · · ·	· · ·			·	<u>.</u>	-			
	OVERALL DIMENSIONS POOL LID ASSEMBLY														
с	5 BASE PLATE ASSEMBLY 6 OUTER SHELL ASSEMBLY	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		r.	· · · · · · · · · · · · · · · · · · ·					c
	7 TOP FLANGE DETAILS 8 TRUNNION AND INNER SHELL ASS	EMBLY	-				· · · · · · · · · · · · · · · · · · ·								
	9 WATER JACKET SHELL ASSEMBLY 10 TOP LID ASSEMBLY				· .	THE VALIDATION IDENTI CONFIRMS THAT ALL APP	FICATION RECORD (VIR) NUMBER I ROPRIATE REVIEWS OF THIS DRAW	S A COMPUTER GENE	ERATED RANDON TED IN COMPANY	NUMBER WHIC	я				
					t				•		· · · · ·				4
		· · · · · · · · · · · · · · · · · · ·		· · ·		· · · · · · · · · · · · · · · · · · ·	· .					· ·			
				•	1. 1. 1.	NOTES:							á		
	· · · · · · · · · · · · · · · · · · ·				·	1. THE EQUIPMENT DOCU CONFIRMED BY HOLTE ANALYSES DESCRIBED	UMENTED IN THIS DRAWING F EC INTERNATIONAL TO COMP D IN THE HI-STORM FSAR.	PACKAGE HAS BE	EN ETY		· .				
В		· · · · · · · · · · · · · · · · · · ·	╡.		·. ·	LICENSING PURPOSES DIMENSIONS USED IN	NCES ON THIS DRAWING AR TO DEFINE REASONABLE LI LICENSING WORK, HARDWAR	MITS ON THE NON						19	В
							HE DESIGN DRAWINGS, WHIC SURE COMPONENT FIT-UP: DO P FROM THIS DRAWING TO DI			. ·					
			1			3. THE REVISION LEVEL (SAME AS THE REVISIO SHEET(S) IN THIS PACH OF ALL SHEETS TO TH	DF EACH INDIVIDUAL SHEET I IN LEVEL OF THIS COVER SHE KAGE REQUIRES UPDATING C IE NEXT REVISION NUMBER.	N THE PACKAGE EET, A REVISION OF REVISION NUM	IS THE TO ANY IBERS						
						4. APPLICABLE CODES A	ND STANDARDS ARE DELINE			,					ŀ
		······································					VISUAL EXAMINATION, ADDITI RAWING, NDE TECHNIQUES A R TABLE 9.1.4. DTED, FULL PENETRATION WE			ier ·	·. ·	. *			
				· ·	, ·	SIDE OF A COMPONEN		•	· .		- ·		ISOMETRIC VIEW OF HI-TRAC 100-IP1 TRANSFER CASK		
A				· .			MIGN DRAWING. MINIMUMS EXCEPT AS ALLOW R. FABRICATOR MAY ADD WE							D OPERATIONAL FEATURES OF THIS O UNDER U.S. PATENT NO. 6,587,536. NTTY IS UNLAWFUL."	
				· · ·	÷							•		ENTERGY IPEC 1	ſ
			. 								· .		HOLTEC	HI-TRAC 100D VER. IP1 ASSEMBLY	
						•							**************************************	4724 1	
		7	6			5	4		1	3	. 1	- <u></u> .	2 450054692 HI-STOR	M 100 FSAR Revision 6; February 7, 2008	i


T S Z HISTORM 100 PSAR Revide









menter disease di men

<u>REFERENCES</u>

1.6

- [1.0.1] 10CFR Part 72, "Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation", Title 10 of the Code of Federal Regulations, 1998 Edition, Office of the Federal Register, Washington, D.C.
- [1.0.2] Regulatory Guide 3.61 (Task CE306-4) "Standard Format for a Topical Safety Analysis Report for a Spent Fuel Storage Cask", USNRC, February 1989.
- [1.0.3] NUREG-1536, "Standard Review Plan for Dry Cask Storage Systems", U.S. Nuclear Regulatory Commission, January 1997.
- [1.0.4] American Concrete Institute, "Code Requirements for Nuclear Safety Related Concrete Structures", ACI 349-85, ACI, Detroit, Michigan[†]
- [1.0.5] American Concrete Institute, "Building Code Requirements for Structural Concrete", ACI 318-95, ACI, Detroit, Michigan.
- [1.1.1] ASME Boiler & Pressure Vessel Code, Section III, Subsection NB, American Society of Mechanical Engineers, 1995 with Addenda through 1997.
- [1.1.2] USNRC Docket No.-72-1008, Final Safety Analysis Report for the (Holtec-International Storage, Transport, and Repository) HI-STAR System, latest revision.
- [1.1.3] USNRC Docket No. 71-9261 Safety Analysis Report for Packaging for the (Holter International Storage, Transport, and Repository) HI-STAR System, latestrevision.
 - [1.1.4] 10CFR Part 50, "Domestic Licensing of Production and Utilization Facilities", Title 10 of the Code of Federal Regulations, 1998 Edition, Office of the Federal Register, Washington, D.C.

[1.1.5] Deleted

- [1.2.2] Directory of Nuclear Reactors, Vol. II, Research, Test & Experimental Reactors, International Atomic Energy Agency, Vienna, 1959.
- [1.2.3] V.L. McKinney-and T. Rockwell III, "Boral: A New Thermal-Neutron Shield", USAEC Report AECD-3625, August 29, 1949.
- [†] The 1997 edition of ACI-349 is specified for ISFSI pad and embedment design for deployment of the anchored HI-STORM 100A and HI-STORM 100SA

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1. A second s

.<u>6</u>-1

HI-STORM 100 ESAR Revision 6; February 7; 2008

[1.2.4] Reactor Shielding Design Manual, USAEC Report TID-7004, March 1956.
[1.2.5] "Safety Analysis Report for the NAC Storable Transport Cask", Revision 8, September 1994, Nuclear Assurance Corporation (USNRC Docket No. 71-9235).
[1.2.6] Deleted.
[1.2.7] Materials Handbook, 13th Edition, Brady, G.S. and H.R. Clauser, McGraw-Hill, 1991, Page 310.

[1.2.8] Deleted.

[1.2.9] ANSI N14.6-1993, "American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More for Nuclear Materials," American National Standards Institute, June, 1993.

[1.2.10] Deleted.

[1.2.1] "Qualification of METAMIC" for Spent Fuel Storage Application," EPRI, 1003137, Final Report, October 2001.

<u>.</u> .

[1.2.13] "Metamic 6061+40% Boron Carbide Metal Matrix Composite Test", California Consolidated Tech. Inc. Report dated August 21, 2001 to NAC International.

[1.2.14] "Recommendations for Preparing the Criticality Safety Evaluation for Transportation Packages," NUREG/CR-5661, USNRC, Dyer and Parks, ORNL

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

-

HI-STORM 100 FSAR Revision 6; February 7, 2008

APPENDIX 1.A: ALLOY X DESCRIPTION

1.A <u>ALLOY X DESCRIPTION</u>

1.A.1 <u>Alloy X Introduction</u>

Alloy X is used within this licensing application to designate a group of stainless steel alloys. Alloy X can be any one of the following alloys:

- Type 316
- Type 316LN
- Type 304
- Type 304LN

Qualification of structures made of Alloy X is accomplished by using the least favorable mechanical and thermal properties of the entire group for all MPC mechanical, structural, neutronic, radiological, and thermal conditions. The Alloy X approach is conservative because no matter which material is ultimately utilized, the Alloy X approach guarantees that the performance of the MPC will meet or exceed the analytical predictions.

This appendix defines the least favorable material properties of Alloy X.

1.A.2 Alloy X Common Material Properties

Several material properties do not vary significantly from one Alloy X constituent to the next. These common material properties are as follows:

• density

1.A.3

- specific heat
- Young's Modulus (Modulus of Elasticity)
- Poisson's Ratio

The values utilized for this licensing application are provided in their appropriate chapters.

Alloy X Least Favorable Material Properties

The following material properties vary between the Alloy X constituents:

- Design Stress Intensity (S_m)
- $_\bullet$ Tensile (Ultimate) Strength (S_u)
- Yield Strength (S_v)

- Coefficient of Thermal Expansion (α)
- Coefficient of Thermal Conductivity (k)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

1.A-1

د. با البه از البير زمره شهر الالف

HI-STORM FSAR REPORT HI-2002444 Rev. 4

Sector Andrews

Each of these material properties are provided in the ASME Code Section II [1.A.1]. Tables 1.A.1 through 1.A.5 provide the ASME Code values for each constituent of Alloy X along with the least favorable value utilized in this licensing application. The ASME Code only provides values to -20° F. The design temperature of the MPC is -40° F to 725° F as stated in Table 1.2.2. Most of the above-mentioned properties become increasingly favorable as the temperature drops. Conservatively, the values at the lowest design temperature for the HI-STORM 100 System have been assumed to be equal to the lowest value stated in the ASME Code. The lone exception is the thermal conductivity. The thermal conductivity decreases with the decreasing temperature. The thermal conductivity value for -40° F is linearly extrapolated from the 70° F value using the difference from 70° F to 100° F.

The Alloy X material properties are the minimum values of the group for the design stress intensity, tensile strength, yield strength, and coefficient of thermal conductivity. Using minimum values of design stress intensity is conservative because lower design stress intensities lead to lower allowables that are based on design stress intensity. Similarly, using minimum values of tensile strength and yield strength is conservative because lower values of tensile strength and yield strength lead to lower allowables that are based on tensile strength and yield strength. When compared to calculated values, these lower allowables result in factors of safety that are conservative for any of the constituent materials of Alloy X. Further discussion of the justification for using the minimum values are used for the coefficient of thermal expansion of Alloy X. The maximum and minimum coefficients of thermal expansion are used as appropriate in this submittal. Figures 1.A.1-1.A.5 provide a graphical representation of the varying material properties with temperature for the Alloy X materials.

1.A.4 References

[1.A.1] ASME Boiler & Pressure Vessel Code Section II, 1995 ed. with Addenda through 1997.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Hİ-STORM FSAR REPORT HI-2002444

1.A-2

Rev. 4

HI-STORM 100 FSAR Revision 6; February 7, 2008

· · · · · · · · · · · · · · · · · · ·	di di seconda di second				· .
Temp. (°F)	Туре 304	Type 304LN	Type 316	Type 316LN	Alloy X (minimum of constituent values)
-40	20.0	20.0	20.0	20.0	20.0
100	20.0	20.0	20.0	20.0	20.0
200	20.0	20.0	20.0	20.0	20.0
300	20.0	20.0	20.0	20.0	20.0
400	18.7	18.7	19.3	18.9	18.7
500	17.5	17.5	18.0	17.5	17.5
600	16.4	16.4	17.0	16.5	16.4
650	16.2	16.2	16.7	16.0	16.0
700	16.0	16.0	16.3	15.6	15.6
750	15.6	15.6	16.1	15.2	15.2
800	15.2	15.2	15.9	14.9	14.9

ALLOY X AND CONSTITUENT DESIGN STRESS INTENSITY (S_m) vs. TEMPERATURE

Notes:

1. Source: Table 2A on pages 314, 318, 326, and 330 of [1,A.1].

2. Units of design stress intensity values are ksi.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.A-3

			:		•
Temp. (°F)	Type 304	Type 304LN	Туре 316	Type 316LN	Alloy X (minimum of constituent values)
-40	75.0 (70.0)	75.0 (70.0)	75.0 (70.0)	75.0 (70.0)	75.0 (70.0)
100	75.0 (70.0)	75.0 (70.0)	75.0 (70.0)	75.0 (70.0)	75.0 (70.0)
200	71.0 (66.2)	71.0 (66.2)	75.0 (70.0)	75.0 (70.0)	71.0 (66.2)
300	66.0 (61.5)	66.0 (61.5)	73.4 (68.5)	70.9 (66.0)	66.0 (61.5)
400	64.4 (60.0)	64.4 (60.0)	71.8 (67.0)	67.1 (62.6)	64.4 (60.0)
500	63.5 (59.3)	63.5 (59.3)	71.8 (67.0)	64.6 (60.3)	63.5 (59.3)
600	63.5 (59.3)	63.5 (59.3)	71.8 (67.0)	63.1 (58.9)	63.1 (58.9)
650	63.5 (59.3)	63.5 (59.3)	71.8 (67.0)	62.8 (58.6)	62.8 (58.6)
700	63.5 (59.3)	63.5 (59.3)	71.8 (67.0)	62.5 (58.4)	62.5 (58.4)
750	63.1 (58.9)	63.1 (58.9)	71.4 (66.5)	62.2 (58.1)	62.2 (58.1)
800	62.7 (58.5)	62.7 (58.5)	70.9 (66.2)	61.7 (57.6)	61.7 (57.6)

ALLOY X AND CONSTITUENT TENSILE STRENGTH (Su) vs. TEMPERATURE

Notes:

1.

3.

Source: Table U on pages 437, 439, 441, and 443 of [1.A.1].

2. Units of tensile strength are ksi.

The ultimate stress of Alloy X is dependent on the product form of the material (i.e., forging vs. plate). Values in parentheses are based on SA-336 forged materials (type F304, F304LN, F316, and F316LN), which are used solely for the one-piece construction MPC lids. All other values correspond to SA-240 plate material.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.A-4

Temp. (°F)	Туре 304	Type 304LN	Type 316	Type 316LN	Alloy X (minimum of constituent values)
-40	30.0	30.0	30.0	30.0	30.0
100	30.0	30.0	30.0	30.0	30.0
200	25.0	25.0	25.8	25.5	25.0
300	22.5	22.5	23.3	22.9	22.5
400	20.7	20.7	21.4	21.0	20.7
500	19.4	19.4	19.9	19.4	19.4
600	18.2	18.2	18.8	18.3	18.2
650	17.9	17.9	18.5	17.8	17.8
700	17.7	17.7	18.1	17.3	17.3
750	17.3	17.3	17.8	16.9	16.9
800	16.8	16.8	17.6	16.6	16.6

ALLOY X AND CONSTITUENT YIELD STRESSES (Sy) vs. TEMPERATURE

Notes:

1.

2.

Source: Table Y-1 on pages 518, 519, 522, 523, 530, 531, 534, and 535 of [1.A.1].

Units of yield stress are ksi.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.A-5

Tabl	le	1	.A	.4
1 40			• 1 1	• •

ALLOY X AND CONSTITUENT COEFFICIENT OF THERMAL EXPANSION vs. TEMPERATURE

Temp. (°F)	Type 304 and Type 304LN	Type 316 and Type 316LN	Alloy X Maximum	Alloy X Minimum
-40	8.55	8.54	8.55	8.54
100	8.55	8.54	8.55	8.54
150	8.67	8.64	8.67	8.64
200	8.79	8.76	8.79	8.76
250	8.90	8.88	8.90	8.88
300	9.00	8.97	9.00	8.97
350	9.10	9.11	9.11	9.10
400	9.19	9.21	9.21	9.19
450	9.28	9.32	9.32	9.28
500	9.37	9.42	9.42	9.37
550	9.45	9.50	9.50	9.45
600	9.53	9.60	9.60	9.53
650	9.61	9.69	9.69	9.61
700	9.69	9.76	9.76	9.69
750	9.76	9.81	9.81	9.76
800	9.82	9.90	9.90	9.82

Notes:

1. Source: Table TE-1 on pages 590 and 591 of [1.A.1].

2.

Units of coefficient of thermal expansion are in./in.- $^{\circ}$ F x 10⁻⁶.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

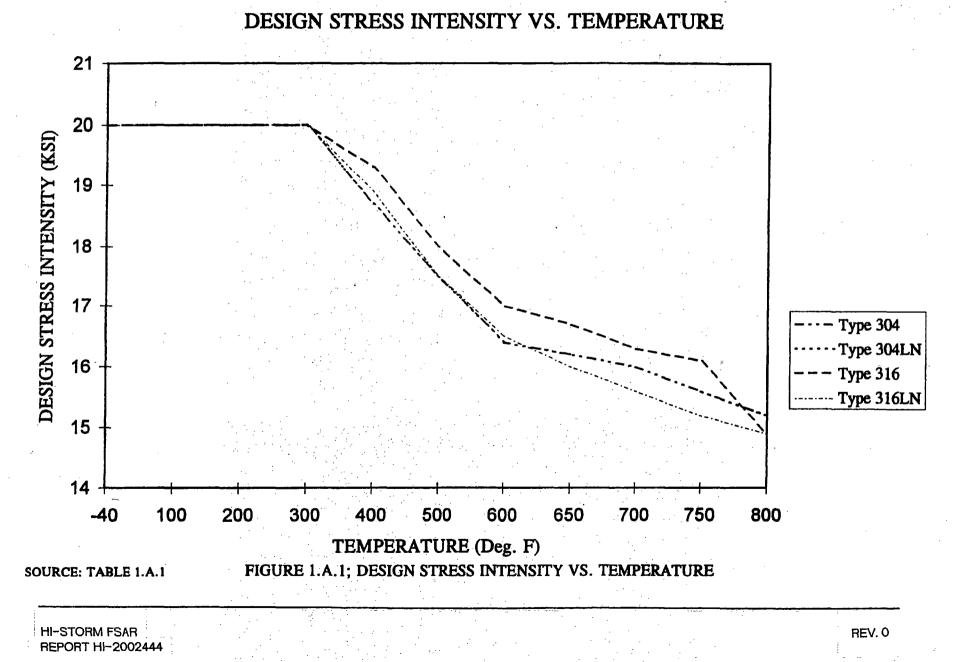
HI-STORM FSAR REPORT HI-2002444

1.A-6

ALLOY X AND CONSTITUENT THERMAL CONDUCTIVITY vs. TEMPERATURE

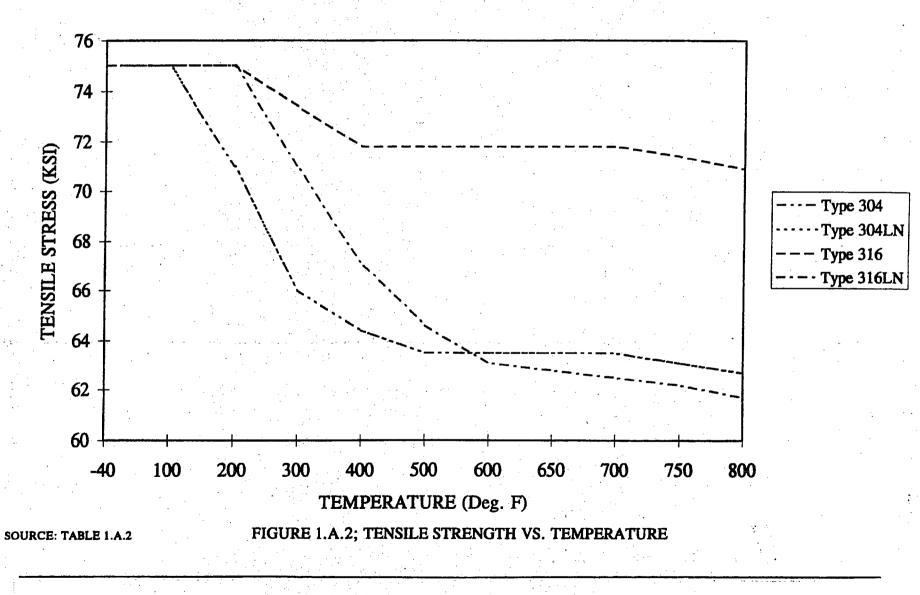
Temp. (^o F)	Type 304 and Type 304LN	Type 316 and Type 316LN	Alloy X (minimum of constituent values)
-40	8.23	6.96	6.96
70	8.6	7.7	7.7
100	8.7	7.9	7.9
150	9.0	8.2	8.2
200	9.3	8.4	8.4
250	9.6	8.7	8.7
300	9.8	9.0	9.0
350	10.1	9.2	9.2
400	10.4	9.5	9.5
450	10.6	9.8	9.8
500	10.9	10.0	10.0
550	11.1	10.3	10.3
600	11.3	10.5	10.5
650	11.6	10.7	10.7
700	11.8	11.0	11.0
750	12.0	11.2	11.2
800	12.2	11.5	11.5

Notes:


1. Source: Table TCD on page 606 of [1.A.1].

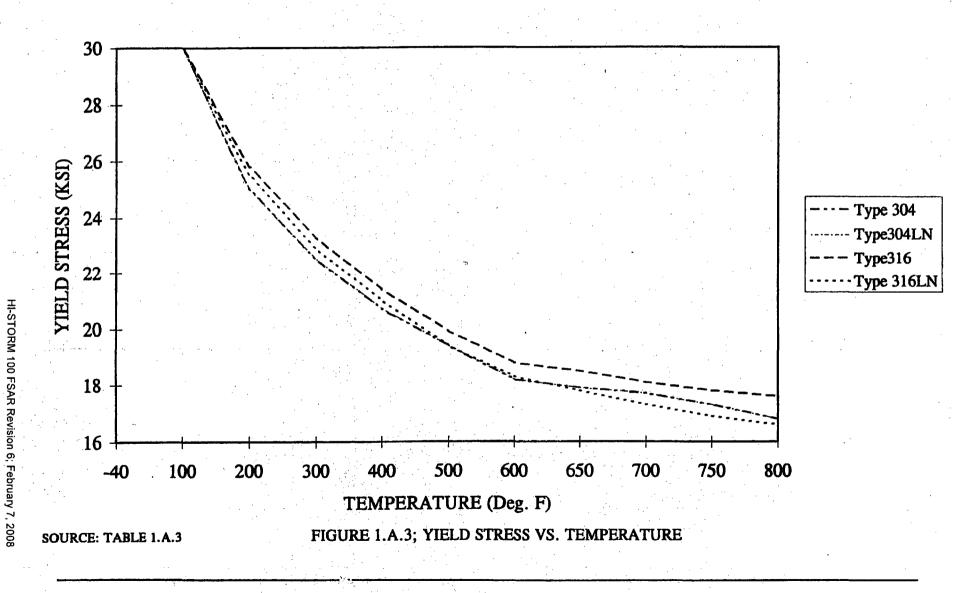
2. Units of thermal conductivity are Btu/hr-ft-°F.

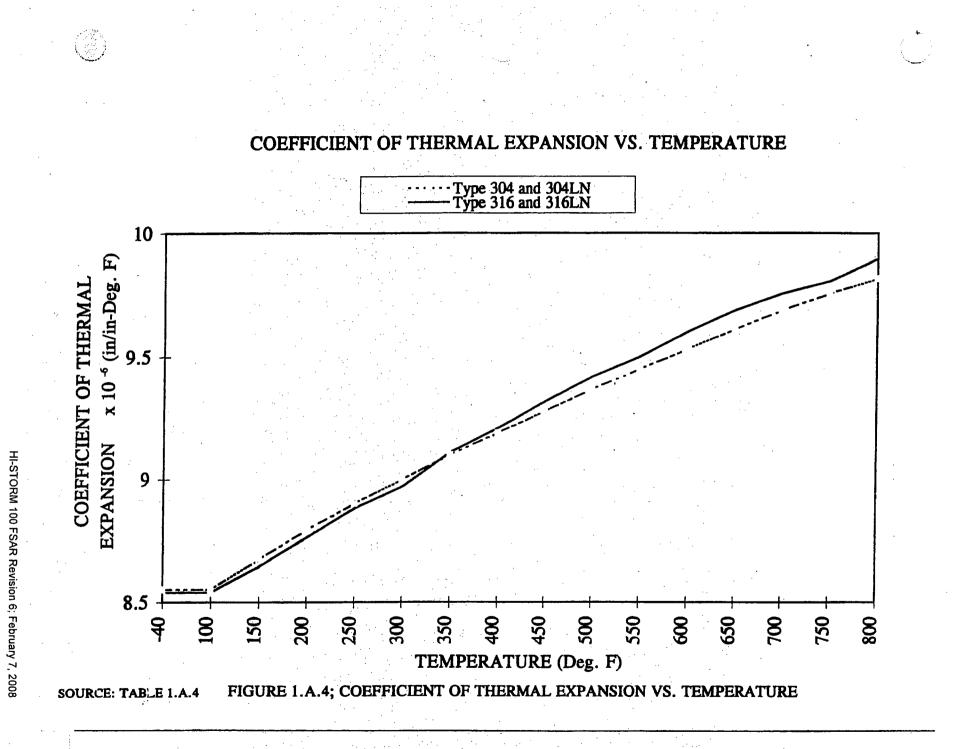
HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL


HI-STORM FSAR REPORT HI-2002444

1.A-7

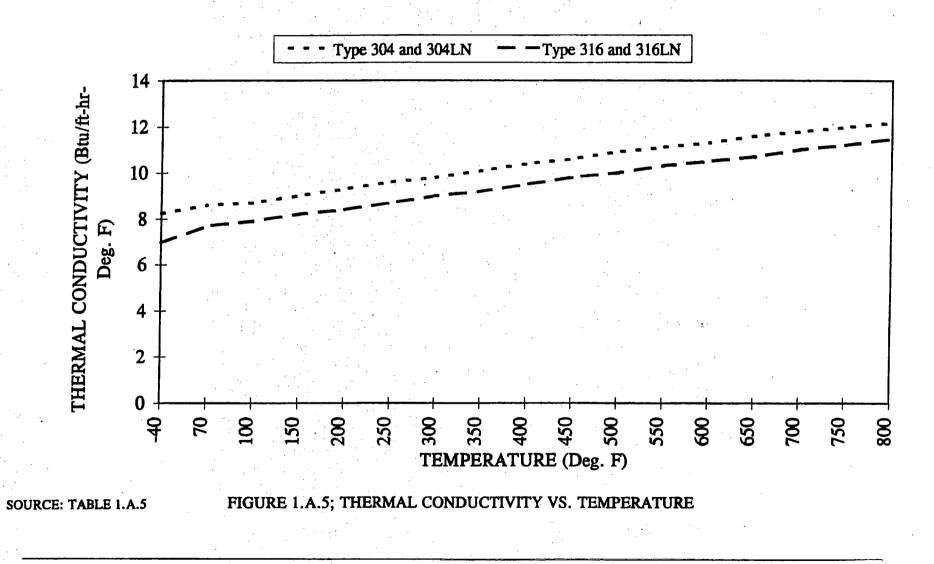
HI-STORM 100 FSAR Revision 6; February 7, 2008


TENSILE STRENGTH VS. TEMPERATURE


HI-STORM FSAR REPORT HI-2002444

HI-STORM 100 FSAR Revision 6; February

YIELD STRESS VS. TEMPERATURE



HI-STORM FSAR REPORT HI-2002444 REV. 0

HI-STORM FSAR REPORT HI-2002444 REV. 0

THERMAL CONDUCTIVITY VS. TEMPERATURE

HI-STORM FSAR REPORT HI-2002444

HI-STORM 100 FSAR Revision 6; February 7, 2008

REV. 0

APPENDIX 1.B: HOLTITE TM MATERIAL DATA

The information provided in this appendix describes the neutron absorber material, Holtite-A for the purpose of confirming its suitability for use as a neutron shield material in spent fuel storage casks. Holtite-A is one of the family of Holtite neutron shield materials denoted by the generic name HoltiteTM. It is currently the only solid neutron shield material approved for installation in the HI-TRAC transfer cask. It is chemically identical to NS-4-FR which was originally developed by Bisco Inc. and used for many years as a shield material with B₄C or Pb added.

Holtite-A contains aluminum hydroxide (Al(OH)₃) in an epoxy resin binder. Aluminum hydroxide is also known by the industrial trade name of aluminum tri-hydrate or ATH. ATH is often used commercially as a fire-retardant. Holtite-A contains approximately 62% ATH supported in a typical 2-part epoxy resin as a binder. Holtite-A contains 1% (nominal) by weight B₄C, a chemically inert material added to enhance the neutron absorption property. Pertinent properties of Holtite-A are listed in Table 1.B.1.

The essential properties of Holtite-A are:

- 1. the hydrogen density (needed to thermalize neutrons),
- 2. thermal stability of the hydrogen density, and
- 3. the uniformity in distribution of B_4C needed to absorb the thermalized neutrons.

ATH and the resin binder contain nearly the same hydrogen density so that the hydrogen density of the mixture is not sensitive to the proportion of ATH and resin in the Holtite-A mixture. B_4C is added as a finely divided powder and does not settle out during the resin curing process. Once the resin is cured (polymerized), the ATH and B_4C are physically retained in the hardened resin. Qualification testing for B_4C throughout a column of Holtite-A has confirmed that the B_4C is uniformly distributed with no evidence of settling or non-uniformity. Furthermore, an excess of B_4C is specified in the Holtite-A mixing and pouring procedure as a precaution to assure that the B_4C concentration is always adequate throughout the mixture.

The specific gravity specified in Table 1.B.1 does not include an allowance for weight loss. The specific gravity assumed in the shielding analysis includes a 4% reduction to conservatively account for potential weight loss at the design temperatures listed in Table 1.B.1. or an inability to reach theoretical density. Tests on the stability of Holtite-A were performed by Holtec International. The results of the tests are summarized in Holtec Reports HI-2002396, "Holtite-A Development History and Thermal Performance Data" and HI-2002420, "Results of Pre- and Post-Irradiation Test Measurements." The information provided in these reports demonstrates that Holtite-ATM possesses

H	HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL	
HI-STORM FSAR		Rev.
REPORT HI-2002444	1.B-1	

the necessary thermal and radiation stability characteristics to function as a reliable shielding material in the HI-TRAC transfer cask.

The Holtite-A is encapsulated in the HI-TRAC transfer cask lid and, therefore, should experience a very small weight reduction during the design life of the cask. The data and test results confirm that Holtite-A remains stable under design thermal and radiation conditions, the material properties meet or exceed that assumed in the shielding analysis, and the B_4C remains uniformly distributed with no evidence of settling or non-uniformity.

Based on the information described above, Holtite-A meets all of the requirements for an acceptable neutron shield material.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL HI-STORM FSAR

REPORT HI-2002444

1.B-2

Table 1.B.1

REFERENCE PROPERTIES OF HOLTITE-A NEUTRON SHIELD MATERIAL

PHYSICAL PROPERTIES	
% ATH	62 nominal
Specific Gravity	1.68 g/cc nominal
Max. Continuous Operating Temperature	300°F
Max. Short-Term Operating Temperature	350°F (Note 1)
Hydrogen Density	0.096 g/cc minimum
Radiation Resistance	Excellent
CHEMICAL PROPERTIES (Nominal)	
wt% Aluminum	21.5
wt% Hydrogen	6.0
wt% Carbon	27.7
wt% Oxygen	42.8
wt% Nitrogen	2.0
wt% B ₄ C	1.0

NOTES:

1. As defined in Section 2.2, all operations involving the HI-TRAC transfer cask are short-term operating conditions. The short-term operating temperature limit is, therefore, the appropriate maximum design temperature for the Holtite-A in the HI-TRAC transfer cask.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.B-3

APPENDIX 1.C: MISCELLANEOUS MATERIAL DATA (Total of 2 Pages Including This Page)

The information provided in this appendix specifies the paint properties and demonstrates their suitability for use in spent nuclear fuel storage casks.

Thermaline 450 or equivalent is specified to coat the overpack to the maximum extent practical and the inner cavity of the HI-TRAC transfer cask. Carboline 890 or equivalent is specified to coat external surfaces of the HI-TRAC transfer cask. The paints are suitable for the design temperatures (see Table 2.2.3) and the environment.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

PAGE 1.C-2 THROUGH 1.C-5 INTENTIONALLY DELETED

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL HI-STORM FSAR REPORT HI-2002444

1.C-2

Rev. 2

HI-STORM 100 FSAR Revision 6, February 7, 2008

APPENDIX 1.D: Requirements on HI-STORM 100 Shielding Concrete

1.D.1 Introduction

The HI-STORM 100 overpack utilizes plain concrete for neutron and gamma shielding. Plain | concrete used in the HI-STORM overpack provides only a compressive strength structural function due to the fact that both the primary and secondary load bearing members of the overpack are made of carbon steel. While most of the shielding concrete used in the HI-STORM 100 overpack is installed in the annulus between the concentric structural shells, smaller quantities of concrete are also present in the pedestal shield and the overpack lid. Because plain concrete has little ability to withstand tensile stresses, but is competent in withstanding compressive and bearing loads, the design of the HI-STORM 100 overpack places no reliance on the tension-competence of the shielding concrete.

During normal operations of the HI-STORM, the stresses in the concrete continuum are negligible, arising solely from its self-weight. ACI 318-95 provides formulas for permissible compressive and bearing stresses in plain concrete, which incorporate a penalty over the corresponding permissible values in reinforced concrete. The formulas for permissible compressive and bearing stresses set forth in ACI 318-95 are used in calculations supporting this FSAR in load cases involving compression or bearing loads on the overpack concrete. However, since the overpack concrete is designated as an ITS Category B material, it is appropriate to ensure that all "*critical characteristics*" of the concrete is completely enclosed by the overpack steel structure, protecting it from the deleterious effects of direct exposure to the environment, typical of most concrete structures governed by the ACI codes.

The "*critical characteristics*" of the plain concrete in the HI-STORM overpack are: (i) its density and (ii) its compressive strength. This appendix provides the complete set of criteria applicable to the plain concrete in the HI-STORM 100 overpack.

1.D.2 Design Requirements

The primary function of the plain concrete is to provide neutron and gamma shielding. As plain concrete is a competent structural member in compression, the plain concrete's effect on the performance of the HI-STORM overpack under compression loadings is considered and modeled in the structural analyses, as necessary. The formulas for permissible compressive and bearing stresses set forth in ACI 318-95 are used. However, as plain concrete has very limited capabilities in tension, no tensile strength capability is allotted to the HI-STORM concrete.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

The steel structure of the HI-STORM overpack provides the strength to meet all load combinations specified in Chapters 2 and 3, due to the fact that both the primary and secondary load bearing members (as defined in the ASME Code, Section III, Subsection NF-1215) of the HI-STORM overpack are made from carbon steel. Credit for the structural strength of the plain concrete is only taken to enhance the compressive load carrying capability of the concrete in calculations appropriate to handling and transfer operations, and to demonstrate that the HI-STORM 100 System continues to provide functional performance in a post-accident environment. Therefore, the load combinations provided in ACI 349 and NUREG-1536, Table 3-1 are not applicable to the plain concrete in the HI-STORM overpack.

The shielding performance of the plain concrete is maintained by ensuring that the minimum concrete density is met during construction and the allowable concrete temperature limits are not exceeded. The thermal analyses for normal and off-normal conditions demonstrate that the plain concrete does not exceed the allowable long term temperature limit provided in Table 1.D.1. Under accident conditions, the bulk of the plain concrete in the HI-STORM overpack does not exceed the allowable short term temperature limit provided in Table 1.D.1. Any portion of the plain concrete, which exceeds the short-term temperature limit under accident conditions, is neglected in the post-accident shielding analysis and in any post-accident structural analysis.

1.D.2.1 <u>Test Results to Support Normal Condition Temperature Limit</u>

Note 3 to Table 1.D.1 references Paragraph A.4.3 of ACI-349, which requires that normal condition temperatures in excess of 150°F bulk and 200°F local must be supported by test data to demonstrate that strength reductions are acceptable and that concrete deterioration does not occur. Such data are described and discussed in this subsection.

With respect to concrete compressive strength at bulk temperatures up to 300°F, test studies for elevated temperatures were performed by Carette and Malhorta [1.D.1] that examined conditions very similar to those of the HI-STORM concrete. Their tests were performed on 4" diameter by 8" long test cylinders. The test condition most closely matching the HI-STORM concrete was: 0.6 water-to-cement ratio, limestone aggregate and 300°F for four months. While the HI-STORM storage period is much greater than 4 months, the investigators state "any major strength loss is found to occur within the first month of exposure." The four-month compressive strength for these conditions was actually determined to be greater than the nominal concrete strengths despite the elevated temperatures. This is attributable to the increase in compressive strength that accompanies concrete aging, which more than offsets the temperature effects.

With respect to concrete shielding performance at local temperatures above 300°F, a report by Schneider and Horvath [1.D.2] examined weight loss of concrete at elevated temperatures. Tests were performed on 12mm diameter by 40 mm long test cylinders in an apparatus called a thermobalance. A variety of aggregates (i.e., quartz, limestone and basalt) were tested. The test results indicate a worst-case weight loss of 0.424% from 300°F to 365°F for quartz aggregates. This maximum level of weight loss would reduce the concrete density from 2.35 gm/cc to 2.34 gm/cc. If the entire weight loss is attributed to water loss, the corresponding limiting reduction in hydrogen

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.D-2

content is from 0.6% to 0.555%. As discussed in Section 5.3.2, such reductions are negligible with respect to shielding performance.

1.D.3 Material Requirements

Table 1.D.1 provides the material limitations and requirements applicable to the overpack plain concrete. These requirements, drawn from ACI 349-85 and supplemented by the provisions of NUREG 1536 (page 3-21), are intended to ensure that the "*critical characteristics*" of the concrete placed in the HI-STORM overpack comply with the requirements of this Appendix and standard good practice. Two different minimum concrete densities are specified for the overpack concrete, based on the presence or absence of the steel shield shell. The steel shield shell was deleted from the overpack design after the construction of overpack serial number 1024-7.

ACI 349 was developed to govern the design and construction of steel reinforced concrete structures for the entire array of nuclear power plant applications, except for concrete reactor vessels and containment structures. Therefore, ACI 349 contains many requirements not germane to the plain concrete installed in and completely enclosed by the steel HI-STORM overpack structure. For example, the overpack concrete is not exposed to the environment, so provisions in the standard for protecting concrete from the environment would not be applicable to the concrete contained in the overpack.

In accordance with the requirement in Section 3.3 of Appendix B of the HI-STORM 100 CoC, Section 1.D.4, Table 1.D.1 and Table 1.D.2 were developed using the guidance of ACI 349-85, to the extent it needs to be applied to the unique application of placing unreinforced concrete inside the steel enclosure of the HI-STORM overpack. Other concrete standards were used, as appropriate, to provide the controls necessary to assure that the *critical characteristics* of the overpack concrete will be achieved and that the concrete will perform its design function.

1.D.3.1 Essential Requirements for Concrete Supplier and Lab Testing Support

The material used in HI-STORM related concrete shall be procured from suppliers that have been qualified under Holtec QA program through appropriate validation and surveillance. The QA surveillance record on the concrete supplier must be current at the time of concrete placement. Among the many missions of the surveillance program are activities that are crucial to insure that all required *critical characteristics* shall be met such as, all scales used in the batching process are calibrated, delivery trucks are in good working condition, and all aggregate material stored at the facility is segregated. These parameters ensure that the batched concrete is in compliance with the Holtec concrete mix design.

With respect to the test lab services, surveillance of the lab ensures that all equipment used in testing of aggregates and concrete cylinder samples are calibrated. Additionally, inspections are completed on the concrete cylinder storage facilities as well as basic material controls. With these controls in place, the results of any aggregate testing or concrete cylinder testing can be confirmed to be accurate and reliable.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.D-3

1.D.3.2 Concrete Mix Design and Material Requirements

A concrete mix design shall first be established to determine the necessary recipe to produce a HI-STORM concrete that meets the *critical characteristics* of the HI-STORM as specified in this section. Once the mix design is formulated, actual site testing shall be conducted to confirm the mix design. At the batch plant, the mix design will be used to make concrete for initial testing purposes. This initial batch shall be checked for slump and density. The mix design may be altered as necessary at this time until the desired results are achieved. Additionally, a total of ten cylinders from the final acceptable batch shall be taken for laboratory testing. These cylinders shall be used for compressive strength break test to determine the strength of the concrete mix.

With respect to individual aggregate testing, the provisions from ACI 349 those are germane to the plain concrete installed in and completely enclosed by the steel HI-STORM overpack structure are summarized herein. For example, the overpack concrete is not exposed to the environment, so provisions in the ACI standards for protecting concrete from the environment would not be applicable to the concrete contained in the overpack.

For the standard use local course and fine aggregates supplied by the local batch, a high level of confidence based on continued use in area concrete obviates the need for many of the aggregate testing recommended by ASTM C33. However, certain testing relevant to confirming the acceptability of the aggregate is required by this specification. For both the local fine and course aggregate, laboratory testing shall be carried out to confirm grading per ASTM C33 as well as the test per ASTM C117 to determine materials finer than 200 sieve. A laboratory technician shall also visually inspect the source pile to evaluate the aggregates for any deleterious substances or organic impurities. If this visual inspection reveals any evidence of deleterious substances per ASTM C33 for both fine and course aggregates as well as organic impurities testing per ASTM C40 for the local fine aggregate shall be conducted.

For the specially supplied dense aggregate that is supplied from an outside source, applicable grading and 200 sieve testing shall be completed.

1.D.4 Construction Requirements

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.D-4

Method of placement of the concrete is important to achieving the desired properties in the concrete. It is imperative to achieve a concrete placement with no voids. In order to accomplish this, procedural steps shall be in place to control the placement technique with respect to lift height and vibratory agitation. The concrete shall be placed in the HI-STORM in two foot (approximate) lifts. Vibration of poured concrete shall be such that the vibrator is inserted and removed in a vertical movement with no dragging of the vibrator through the concrete. Vibrator placement shall be based on the size of the vibrator as detailed in ACI-309R.

The slump of the concrete shall be checked as necessary prior to placement to ensure that the concrete is suitable for pumping.

Appropriate measures shall be taken for hot and cold weather conditions as prescribed by ACI-305R and ACI-306R, respectively.

1.D.5 Testing Requirements

Concrete may be tested for temperature, slump, and density for each truck prior to placement in the HI-STORM for informational purposes. Official samples, as required by the applicable Holtec procedure, shall be taken from the approximate middle of the truck discharge and will become the sample of record for slump, temperature, and density. Additionally, compressive test cylinder samples shall be taken as detailed in the governing Holtec procedure. Samples taken shall be of a quantity to support required break tests and shall be taken from two trucks per HI-STORM to ensure a representative sample of the concrete in each HI-STORM. Samples taken in the field should be stored as best possible to protect the samples from extreme temperature conditions. Compressive break strengths of the official concrete cylinder samples taken shall be tested for the required minimum concrete strength. The compressive strength of concrete is observed to increase monotonically with the time of curing [1.D.3]. Therefore, break tests resulting in a compressive strength exceeding the minimum required compressive strength may be used as the official concrete break data in lieu of waiting for 28-day breaks.

1.D.6 <u>References</u>

[1.D.1] Carette and Malhorta, "Performance of Dolostone and Limestone Concretes at Sustained High Temperatures," Temperature Effects on Concrete, ASTM STP 858.

- [1.D.2] Schneider and Horvath, "Behaviour of Ordinary Concrete at High Temperature," Vienna Technical University – Institute for Building Materials and Fire Protection, Research Report Volume 9.
- [1.D.3] Concrete Manual, 8th Edition, US Bureau of Proclamation, Denver, Colorado, 1975.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Table 1.D.1
Requirements for Plain Concrete

ITEM	APPLICABLE LIMIT OR REFERENCE
Density in overpack body (Minimum)	146 lb/ft ³ (HI-STORM 100 up to Serial Number
(see Table 3.2.1 for information on maximum	(S/N) 7), 155 lb/ft ³ (S/N 8 and higher)
concrete density)	
Density in lid and pedestal (Minimum)	146 lb/ft ³ (HI-STORM 100S Version B does not
(See Table 3.2.1 for information on maximum	have a concrete-filled pedestal)
concrete density)	
Specified Compressive Strength	3,300 psi (min.)
Compressive and Bearing Stress Limit	Deleted
Cement Type and Mill Test Report	Type II; (ASTM C 150 or ASTM C595)
Aggregate Type	Fine and coarse aggregate as required (Note 2)
Nominal Maximum Aggregate Size	1-1/2 (inch)
Water Quality	Deleted
Material Testing	See Note 4.
Admixtures	Deleted
Maximum Water to Cement Ratio	0.5 (Table 4.5.2)
Maximum Water Soluble Chloride Ion Cl in	
Concrete	Table 1.D.2, Note 1)
Concrete Quality	Deleted
Mixing and Placing	See Note 6.
Consolidation	Deleted
Quality Assurance	Per Holtec Quality Assurance Manual, 10 CFR Part
	72, Appendix G commitments
Through-Thickness Section Average [†] Temperature	300°F (See Note 3)
Limit Under Long Term Conditions	
Through-Thickness Section Average [†] Temperature	350°F (Appendix A, Paragraph A.4.2)
Limit Under Short Term Conditions	
Aggregate Maximum Value ^{††} of Coefficient of	6E-06 inch/inch/°F
Thermal Expansion (tangent in the range of 70°F to 100°F)	(NUREG-1536, 3.V.2.b.i.(2)(c)2.b)

The through-thickness section average is the same quantity as that defined in Paragraph A.4.3 of Appendix A to ACI 349 as the mean temperature distribution. A formula for determining this value, consistent with the inner and outer surface averaging used in this FSAR, is presented in Figure A-1 of the commentary on ACI 349. Use of this quantity as an acceptance criterion is, therefore, in accordance with the governing ACI code.

^{††} The following aggregate types are a priori acceptable: limestone, marble, basalt, granite, gabbros, or rhyolite. The thermal expansion coefficient limit does not apply when these aggregates are used. Careful consideration shall be given to the potential of long-term degradation of concrete due to chemical reactions between the aggregate and cement selected for HI-STORM overpack concrete.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

i

Table 1.D.1 (continued) Requirements for Plain Concrete

Notes:

1. Deleted

- 2. The coarse aggregate shall meet the requirements of ASTM C33 for class designation 1S from Table 3. However, if the requirements of ASTM C33 cannot be met, concrete aggregates that have been shown by special tests or actual service to produce concrete of adequate strength, unit weight, and durability meeting the requirements of Tables 1.D.1 and 1.D.2 are acceptable in accordance with ACI 349 Section 3.3.2. The high-density coarse aggregate percentage of Material Finer than No. 200 Sieve may be increased to 10 % if the material is essentially free of clay or shale.
- 3. The 300°F long term temperature limit is specified in accordance with Paragraph A.4.3 of Appendix A to ACI 349 for normal conditions considering the very low maximum stresses calculated and discussed in Section 3.4 of this FSAR for normal conditions. In accordance with this paragraph of the governing code, the specified concrete compressive strength is supported by test data and the concrete is shown not to deteriorate, as evidenced by a lack of reduction in concrete density or durability.
- 4. Tests of materials and concrete, as required, shall be made in accordance with standards of the American Society for Testing and Materials (ASTM) as specified here, to ensure that the *critical characteristics* for the HI-STORM concrete are achieved. ASTM Standards to be used include: C 31-96, C 33-82, C 39-96, C 88-76, C 131-81, C 138-92, C 143-98, C 150-97, C 172-90, C 192-95, C 494-92, C 637-73. More recent approved editions of the referenced standards may be used.
- 5. Deleted

6. Water and admixtures may be added at the job site to bring both the slump and wet unit weight of the concrete within the mix design limits. Water or admixtures shall not be added to the concrete after placement activities have started. The tolerance for individual and combined aggregate weights in the concrete batch may be outside of tolerances specified in ASTM C94, provided that the wet unit weight of the concrete is tested prior to placement and confirmed to be within the approved range.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.D-7

TEST	SPECIFICATION
Compression Test	ASTM C31, ASTM C39, ASTM C192
Unit Weight (Density)	ASTM C138
Maximum Water Soluble Chloride Ion Concentration	Federal Highway Administration Report FHWA-RD-77-85, "Sampling and Testing for Chloride Ion in Concrete" (Note 1)

Table 1.D.2: Testing Requirements for Plain Concrete

Notes:

 If the concrete or concrete aggregates are suspected of containing excessive amounts of chlorides, they will be tested to ensure that their contribution will not cause the watersoluble chloride concentration to exceed the required maximum. Factors to be considered will consist of the source of the aggregates (proximity to a salt water source, brackish area, etc.) and service history of the concrete made from aggregates originating from the same source. No specific tests are required unless the aggregates or water source are suspected of containing an excessive concentration of chloride ions.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

SUPPLEMENT 1.I

(This Section Reserved for Future Use)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR REPORT HI-2002444

1.I-1

SUPPLEMENT 1.II

GENERAL DESCRIPTION OF HI-STORM 100 SYSTEM FOR IP1

1.II.0 GENERAL INFORMATION

The HI-STORM 100 System has been expanded to include options specific for Indian Point Unit 1. Indian Point Unit 1 (IP1) fuel assemblies are approximately 137 inches in length which is considerably shorter than most PWR fuel assemblies. As a result of the shorter fuel assemblies and a reduced crane capacity at IP1, the HI-STORM 100 System now includes a shorter HI-STORM overpack, MPC, and HI-TRAC for IP1. Information pertaining to the HI-STORM 100 System modifications for IP1 is generally contained in the "II" supplements to each chapter of this FSAR. Certain sections of the main FSAR are also affected and are appropriately modified for continuity with the "II" supplements. Unless superseded or specifically modified by information in the "II" supplements, the information in the main FSAR is applicable to the HI-STORM 100 System for use at IP1.

1.II.1 INTRODUCTION

The HI-STORM 100 System as deployed at Indian Point Unit 1 will consist of a HI-STORM 100S Version B overpack, an MPC-32, and a HI-TRAC 100D.

1.II.2 GENERAL DESCRIPTION OF HI-STORM 100 SYSTEM FOR IP1

1.II.2.1 <u>System Characteristics</u>

The HI-STORM 100S Version B, MPC-32, and HI-TRAC 100D have been shortened for use at Indian Point Unit 1.

The HI-STORM 100S Version B overpack was shortened by approximately 33 inches. The other physical characteristics (e.g. inlet and outlet vents, inner and outer shells, and lid) of the HI-STORM 100S Version B overpack remain unchanged. This reduction in height creates another variant of the HI-STORM 100S Version B overpack, differing from the others variants by only height and weight. The variant for IP1 is referred to as the HI-STORM 100S-185 and is approximately 185 inches high.

The MPC-32 basket and shell, for use at IP1, were shortened by approximately 33 inches. The neutron absorber panels and sheathing were shortened by approximately 20 inches. The neutron absorber panels in the MPC-32 for IP1 effectively cover the entire height of the basket. Since the primary features that define an MPC-32 (e.g. cell opening, cell pitch, basket wall thickness, neutron absorber thickness and B-10 loading) are unchanged for use at IP1, the basket is still designated as an MPC-32. The MPC-32 for IP1 may be used with both the HI-STORM 100S-185 and the standard height HI-STORM 100S Version B (the HI-STORM 100S-218 also referred to as the HI-STORM 100S Version B (218)).

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.II-1

The HI-TRAC 100D was also shortened by approximately 33 inches. Due to a crane capacity of 75 tons at IP1 it was also necessary to reduce the thickness of the outer steel shell by a 1/4 inch and reduce the lead thickness by 3/8 inch. The water jacket thickness, pool lid, and bottom flange were not modified. This variant of the HI-TRAC 100D is referred to as the HI-TRAC 100D Version IP1.

Table 1.II.1 contains the key parameters for the HI-STORM 100 System that are unique for its use at IP1.

1.II.2.2 <u>Operational Characteristics</u>

With the exception of the helium fill requirements specified in Table 1.II.1, the operational characteristics of the IP1 specific HI-STORM 100 System and the generic HI-STORM 100 System (as described in Section 1.2.2) are identical.

I.II.2.2.1 Criticality Prevention

Criticality is controlled by geometry and neutron absorbing materials in the fuel basket. The MPC-32 for IP1 does not rely on soluble boron credit during loading or the assurance that water cannot enter the MPC during storage to meet the stipulated criticality limits.

Each MPC model is equipped with neutron absorber plates affixed to the fuel cell walls as shown on the drawings in Section 1.5. The minimum ¹⁰B areal density specified for the neutron absorber in each MPC model is shown in Table 1.2.2 in Section 1.2. These values are chosen to be consistent with the assumptions made in the criticality analyses.

1.II.2.3 Cask Contents

The MPC-32 and MPC-32F for IP1 are designed to accommodate up to thirty-two IP1 PWR fuel assemblies. All thirty-two of these fuel assemblies may be classified as intact or damaged fuel assemblies. Fuel debris is not permitted to be stored in the MPC-32 or MPC-32F for IP1.

1.II.3 IDENTIFICATION OF AGENTS AND CONTRACTORS

Same as in Section 1.3.

1.II.4 GENERIC CASK ARRAYS

Same as in Section 1.4.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.II-2

1.II.5 DRAWINGS

The drawings of the HI-STORM 100S Version B, MPC enclosure vessel, and MPC-32 provided in Section 1.5, contain notes regarding the IP1 specific variants. A separate drawing is provided in Section 1.5 for the HI-TRAC 100D Version IP1.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.II-3

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Table 1.II.1KEY PARAMETERS FOR HI-STORM 100 SYSTEM SPECIFIC TO IP1

Item	Value
IP1 MPC-32/32F storage capacity	Up to 32 intact or damaged stainless steel clad IP1 fuel assemblies with or without non-fuel hardware.
MPC internal environment Helium fill (99.995% fill helium purity)	(all pressure ranges are at a reference temperature of 70°F)
MPC-32/32F (heat load \leq 8.0 kW)	\geq 22.0 psig and \leq 33.3 psig

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1.11-4

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

CHAPTER 2[†]: PRINCIPAL DESIGN CRITERIA

This chapter contains a compilation of design criteria applicable to the HI-STORM 100 System. The loadings and conditions prescribed herein for the MPC, particularly those pertaining to mechanical accidents, are far more severe in most cases than those required for 10CFR72 compliance. The MPC is designed to be in compliance with both 10CFR72 and 10CFR71 and therefore certain design criteria are overly conservative for storage. This chapter sets forth the loading conditions and relevant acceptance criteria; it does not provide results of any analyses. The analyses and results carried out to demonstrate compliance with the design criteria are presented in the subsequent chapters of this report.

This chapter is in full compliance with NUREG-1536, except for the exceptions and clarifications provided in Table 1.0.3. Table 1.0.3 provides the NUREG-1536 review guidance, the justification for the exception or clarification, and the Holtec approach to meet the intent of the NUREG-1536 guidance.

2.0 PRINCIPAL DESIGN CRITERIA

The design criteria for the MPC, HI-STORM overpack, and HI-TRAC transfer cask are summarized in Tables 2.0.1, 2.0.2, and 2.0.3, respectively, and described in the sections that follow.

2.0.1 MPC Design Criteria

General

The MPC is designed for 40 years of service, while satisfying the requirements of 10CFR72. The adequacy of the MPC design for the design life is discussed in Section 3.4.12.

Structural

The MPC is classified as important to safety. The MPC structural components include the internal fuel basket and the enclosure vessel. The fuel basket is designed and fabricated as a core support structure, in accordance with the applicable requirements of Section III, Subsection NG of the ASME Code, with certain NRC-approved alternatives, as discussed in Section 2.2.4. The enclosure vessel is designed and fabricated as a Class 1 component pressure vessel in accordance with Section III, Subsection NB of the ASME Code, with certain NRC-approved alternatives, as discussed in accordance with Section III, Subsection NB of the ASME Code, with certain NRC-approved alternatives, as discussed in Section 2.2.4. The principal exception is the MPC lid, vent and drain port cover plates, and closure ring welds to the MPC lid and shell, as discussed in Section 2.2.4. In addition, the threaded holes in

† This chapter has been prepared in the format and section organization set forth in Regulatory Guide 3.61. However, the material content of this chapter also fulfills the requirements of NUREG-1536. Pagination and numbering of sections, figures, and tables are consistent with the convention set down in Chapter 1, Section 1.0, herein. Finally, all terms-of-art used in this chapter are consistent with the terminology of the glossary (Table 1.0.1) and component nomenclature of the Bill-of-Materials (Section 1.5).

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444 the MPC lid are designed in accordance with the requirements of ANSI N14.6 for critical lifts to facilitate vertical MPC transfer.

The MPC closure welds are partial penetration welds that are structurally qualified by analysis, as presented in Chapter 3. The MPC lid and closure ring welds are inspected by performing a liquid penetrant examination of the root pass and/or final weld surface (if more than one weld pass was required), in accordance with the drawings contained in Section 1.5. The integrity of the MPC lid weld is further verified by performing a volumetric (or multi-layer liquid penetrant) examination, and a Code pressure test.

The structural analysis of the MPC, in conjunction with the redundant closures and nondestructive examination, pressure testing, and helium leak testing, (performed on the vent and drain port cover plates), provides assurance of canister closure integrity in lieu of the specific weld joint requirements of Section III, Subsection NB.

Compliance with the ASME Code as it is applied to the design and fabrication of the MPC and the associated justification are discussed in Section 2.2.4. The MPC is designed for all design basis normal, off-normal, and postulated accident conditions, as defined in Section 2.2. These design loadings include postulated drop accidents while in the cavity of the HI-STORM overpack or the HI-TRAC transfer cask. The load combinations for which the MPC is designed are defined in Section 2.2.7. The maximum allowable weight and dimensions of a fuel assembly to be stored in the MPC are limited in accordance with Section 2.1.5.

Thermal

'i.'

ii.

The design and operation of the HI-STORM 100 System meets the intent of the review guidance contained in ISG-11, Revision 3 [2.0.8]. Specifically, the ISG-11 provisions that are explicitly invoked and satisfied are:

The thermal acceptance criteria for all commercial spent fuel (CSF) authorized by the USNRC for operation in a commercial reactor are unified into one set of requirements.

The maximum value of the *calculated* temperature for all CSF (including ZR and stainless steel fuel cladding materials) under long-term normal conditions of storage must remain below 400°C (752°F). For short-term operations, including canister drying, helium backfill, and on-site cask transport operations, the fuel cladding temperature must not exceed 400°C (752°F) for high burnup fuel and 570°C (1058°F) for moderate burnup fuel.

- iii. The maximum fuel cladding temperature as a result of an off-normal or accident event must not exceed 570°C (1058°F).
- iv. For High Burnup Fuel (HBF), operating restrictions are imposed to limit the maximum temperature excursion during short-term operations to 65°C (117°F).

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-2

To achieve compliance with the above criteria, certain design and operational changes are necessary, as summarized below.

i. The peak fuel cladding temperature limit (PCT) for long term storage operations and short term operations is generally set at 400°C (752°F). However, for MPCs containing all moderate burnup fuel, the fuel cladding temperature limit for short-term operations is set at 570°C (1058°F) because fuel cladding stress is shown to be less than approximately 90 MPa per Reference [2.0.9]. Appropriate analyses have been performed as discussed in Chapter 4 and operating restrictions added to ensure these limits are met (see Section 4.5).

ii.

iii.

For MPCs containing at least one high burnup fuel (HBF) assembly, the forced helium dehydration (FHD) method of MPC cavity drying must be used to meet the normal operations PCT limit and satisfy the 65°C temperature excursion criterion for HBF.

The off-normal and accident condition PCT limit remains unchanged (1058°F).

iv. For high burnup fuel, the Supplemental Cooling System (SCS) is required to ensure fuel cladding temperatures remain below the applicable temperature limit (see Section 4.5). The design criteria for the SCS are provided in Appendix 2.C.

The MPC cavity is dried using either a vacuum drying system, or a forced helium dehydration system (see Appendix 2.B). The MPC is backfilled with 99.995% pure helium in accordance with the limits in Table 1.2.2 during canister sealing operations to promote heat transfer and prevent cladding degradation.

The design temperatures for the structural steel components of the MPC are based on the temperature limits provided in ASME Section II, Part D, tables referenced in ASME Section III, Subsection NB and NG, for those load conditions under which material properties are relied on for a structural load combination. The specific design temperatures for the components of the MPC are provided in Table 2.2.3.

The MPCs are designed for a bounding thermal source term, as described in Section 2.1.6. The maximum allowable fuel assembly heat load for each MPC is limited as specified in Section 2.1.9.

Each MPC model, except MPC-68F, allows for two fuel loading strategies. The first is uniform fuel loading, wherein any authorized fuel assembly may be stored in any fuel storage location, subject to other restrictions, such as location requirements for damaged fuel containers (DFCs) and fuel with integral non-fuel hardware (e.g., control rod assemblies). The second is regionalized fuel loading, wherein the basket is segregated into two regions. Region 1 is the inner region where fuel assemblies with higher heat emission rates may be stored and Region 2 is the outer region where fuel assemblies with lower heat emission rates are stored. Regionalized loading allows for storage of fuel assemblies with higher heat emission rates (in Region 1) than would otherwise be authorized for loading under a uniform loading strategy. Regionalized loading strategies must also comply with other requirements, such as those for DFCs and non-

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

fuel hardware. Specific fuel assembly cooling time, burnup, and decay heat limits for regionalized loading are presented in Section 2.1.9. The two fuel loading regions are defined by fuel storage location number in Table 2.1.13 (refer to Figures 1.2.2 through 1.2.4). For MPC-68F, only uniform loading is permitted.

Shielding

The allowable doses for an ISFSI using the HI-STORM 100 System are delineated in 10CFR72.104 and 72.106. Compliance with these regulations for any particular array of casks at an ISFSI is necessarily site-specific and is to be demonstrated by the licensee, as discussed in Chapters 5 and 12. Compliance with these regulations for a single cask and several representative cask arrays is demonstrated in Chapters 5 and 10.

The MPC provides axial shielding at the top and bottom ends to maintain occupational exposures ALARA during canister closure and handling operations. The occupational doses are controlled in accordance with plant-specific procedures and ALARA requirements (discussed in Chapter 10).

The MPCs are designed for design basis fuel as described in Sections 2.1.7 and 5.2. The radiological source term for the MPCs is limited based on the burnup and cooling times specified in Section 2.1.9. Calculated dose rates for each MPC are provided in Section 5.1. These dose rates are used to perform an occupational exposure evaluation, as discussed in Chapter 10.

Criticality

The MPCs provide criticality control for all design basis normal, off-normal, and postulated accident conditions, as discussed in Section 6.1. The effective neutron multiplication factor is limited to $k_{eff} < 0.95$ for fresh unirradiated fuel with optimum water moderation and close reflection, including all biases, uncertainties, and MPC manufacturing tolerances.

Criticality control is maintained by the geometric spacing of the fuel assemblies, fixed borated neutron absorbing materials incorporated into the fuel basket assembly, and, for certain MPC models, soluble boron in the MPC water. The minimum specified boron concentration verified during neutron absorber manufacture is further reduced by 25% for criticality analysis for Boral-equipped MPCs and by 10% for METAMIC[®]-equipped MPCs. No credit is taken for burnup. The maximum allowable initial enrichment for fuel assemblies to be stored in each MPC is limited. Enrichment limits and soluble boron concentration requirements are delineated in Section 2.1.9 consistent with the criticality analysis described in Chapter 6.

Confinement

The MPC provides for confinement of all radioactive materials for all design basis normal, offnormal, and postulated accident conditions. As discussed in Section 7.1, the Holtec MPC design meets the guidance in Interim Staff Guidance 18 to classify confinement boundary leakage as non-

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

REPORT HI-2002444

HI-STORM FSAR

2.0-4

credible. Therefore, no confinement dose analysis is performed. The confinement function of the MPC is verified through pressure testing and helium leak testing on the vent and drain port cover plates and weld examinations performed in accordance with the acceptance test program in Chapter 9.

Operations

There are no radioactive effluents that result from storage or transfer operations. Effluents generated during MPC loading are handled by the plant's radwaste system and procedures.

Generic operating procedures for the HI-STORM 100 System are provided in Chapter 8. Detailed operating procedures will be developed by the licensee based on Chapter 8, site-specific requirements that comply with the 10CFR50 Technical Specifications for the plant, and the HI-STORM 100 System CoC.

Acceptance Tests and Maintenance

The fabrication acceptance basis and maintenance program to be applied to the MPCs are described in Chapter 9. The operational controls and limits to be applied to the MPCs are discussed in Chapter 12. Application of these requirements will assure that the MPC is fabricated, operated, and maintained in a manner that satisfies the design criteria defined in this chapter.

Decommissioning

The MPCs are designed to be transportable in the HI-STAR overpack and are not required to be unloaded prior to shipment off-site. Decommissioning of the HI-STORM 100 System is addressed in Section 2.4.

2.0.2 <u>HI-STORM Overpack Design Criteria</u>

General

The HI-STORM overpack is designed for 40 years of service, while satisfying the requirements of 10CFR72. The adequacy of the overpack design for the design life is discussed in Section 3.4.11.

Structural

The HI-STORM overpack includes both concrete and structural steel components that are classified as important to safety.

The concrete material is defined as important to safety because of its importance to the shielding analysis. The primary function of the HI-STORM overpack concrete is shielding of the gamma and neutron radiation emitted by the spent nuclear fuel.

Unlike other concrete storage casks, the HI-STORM overpack concrete is enclosed in steel inner and

HOI	LTEC INTERNATIONAL COPYRIGHTED MA	ATERIAL
HI-STORM FSAR		Rev. 6
REPORT HI-2002444	2.0-5	

outer shells connected to each other by radial ribs, and top and bottom plates. Where typical concrete storage casks are reinforced by rebar, the HI-STORM overpack is supported by the inner and outer shells connected by radial ribs. As the HI-STORM overpack concrete is not reinforced, the structural analysis of the overpack only credits the compressive strength of the concrete. Providing further conservatism, the structural analyses for normal conditions demonstrate that the allowable stress limits of the structural steel are met even with no credit for the strength of the concrete. During accident conditions (e.g., tornado missile, tip-over, end drop, and earthquake), only the compressive strength of the concrete is accounted for in the analysis to provide an appropriate simulation of the accident condition. Where applicable, the compressive strength of the concrete is calculated in accordance with ACI-318-95 [2.0.1].

In recognition of the conservative assessment of the HI-STORM overpack concrete strength and the primary function of the concrete being shielding, the applicable requirements of ACI-349 [2.0.2] are invoked in the design and construction of the HI-STORM overpack concrete as clarified in Appendix 1-D.

Steel components of the storage overpack are designed and fabricated in accordance with the requirements of ASME Code, Section III, Subsection NF for Class 3 plate and shell components with certain NRC-approved alternatives.

The overpack is designed for all normal, off-normal, and design basis accident condition loadings, as defined in-Section 2.2. At a minimum, the overpack must protect the MPC from deformation, provide continued adequate performance, and allow the retrieval of the MPC under all conditions. These design loadings include a postulated drop accident from the maximum allowable handling height, consistent with the analysis described in Section 3.4.10. The load combinations for which the overpack is designed are defined in Section 2.2.7. The physical characteristics of the MPCs for which the overpack is designed are defined in Chapter 1.

Thermal

HI-STORM FSAR

REPORT HI-2002444

The allowable long-term through-thickness section average_temperature limit for the overpack concrete is established in accordance with Paragraph A.4.3 of Appendix A to ACI 349, which allows the use of elevated temperature limits if test data supporting the compressive strength is available and an evaluation to show no concrete deterioration provided. Appendix 1.D specifies the cement and aggregate requirements to allow the utilization of the 300°F temperature limit. For short term conditions the through-thickness section average concrete temperature limit of 350°F is specified in accordance with Paragraph A.4.2 of Appendix A to ACI 349. The allowable temperatures for the structural steel components are based on the maximum temperature for which material properties and allowable stresses are provided in Section II of the ASME Code. The specific allowable temperatures for the structural steel components of the overpack are provided in Table 2.2.3.

The overpack is designed for extreme cold conditions, as discussed in Section 2.2.2.2. The structural steel materials used for the storage cask that are susceptible to brittle fracture are discussed in Section 3.1.2.3.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.0-6

The overpack is designed for the maximum allowable heat load for steady-state normal conditions, in accordance with Section 2.1.6. The thermal characteristics of the MPCs for which the overpack is designed are defined in Chapter 4.

Shielding

The off-site dose for normal operating conditions at the controlled area boundary is limited by 10CFR72.104(a) to a maximum of 25 mrem/year whole body, 75 mrem/year thyroid, and 25 mrem/year for other critical organs, including contributions from all nuclear fuel cycle operations. Since these limits are dependent on plant operations as well as site-specific conditions (e.g., the ISFSI design and proximity to the controlled area boundary, and the number and arrangement of loaded storage casks on the ISFSI pad), the determination and comparison of ISFSI doses to this limit are necessarily site-specific. Dose rates for a single cask and a range of typical ISFSIs using the HI-STORM 100 System are provided in Chapter 5. The determination of site-specific ISFSI dose rates at the site boundary and demonstration of compliance with regulatory limits is to be performed by the licensee in accordance with 10CFR72.212.

The overpack is designed to limit the calculated surface dose rates on the cask for all MPCs as defined in Section 2.3.5. The overpack is also designed to maintain occupational exposures ALARA during MPC transfer operations, in accordance with 10CFR20. The calculated overpack dose rates are determined in Section 5.1. These dose rates are used to perform a generic occupational exposure estimate for MPC transfer operations and a dose assessment for a typical ISFSI, as described in Chapter 10.

Confinement

The overpack does not perform any confinement function. Confinement during storage is provided by the MPC and is addressed in Chapter 7. The overpack provides physical protection and biological shielding for the MPC confinement boundary during MPC dry storage operations.

Operations

There are no radioactive effluents that result from MPC transfer or storage operations using the overpack. Effluents generated during MPC loading and closure operations are handled by the plant's radwaste system and procedures under the licensee's 10CFR50 license.

Generic operating procedures for the HI-STORM 100 System are provided in Chapter 8. The licensee is required to develop detailed operating procedures based on Chapter 8, site-specific conditions and requirements that also comply with the applicable 10CFR50 technical specification requirements for the site, and the HI-STORM 100 System CoC.

Acceptance Tests and Maintenance

The fabrication acceptance basis and maintenance program to be applied to the overpack are described in Chapter 9. The operational controls and limits to be applied to the overpack are

	HOLTEC INTEF	RNATIONAL COPYRIGE	ITED MAT	ERIAL	
HI-STORM FSAR		·		. ·	Rev. 6
REPORT HI-2002444	4	2.0-7			

contained in Chapter 12. Application of these requirements will assure that the overpack is fabricated, operated, and maintained in a manner that satisfies the design criteria defined in this chapter.

Decommissioning

Decommissioning considerations for the HI-STORM 100 System, including the overpack, are addressed in Section 2.4.

2.0.3 <u>HI-TRAC Transfer Cask Design Criteria</u>

<u>General</u>

The HI-TRAC transfer cask is designed for 40 years of service, while satisfying the requirements of 10CFR72. The adequacy of the HI-TRAC design for the design life is discussed in Section 3.4.11.

Structural

The HI-TRAC transfer cask includes both structural and non-structural biological shielding components that are classified as important to safety. The structural steel components of the HI-TRAC, with the exception of the lifting trunnions, are designed and fabricated in accordance with the applicable requirements of Section III, Subsection NF, of the ASME Code with certain NRC-approved alternatives, as discussed in Section 2.2.4. The lifting trunnions and associated attachments are designed in accordance with the requirements of NUREG-0612 and ANSI N14.6 for non-redundant lifting devices.

The HI-TRAC transfer cask is designed for all normal, off-normal, and design basis accident condition loadings, as defined in Section 2.2. At a minimum, the HI-TRAC transfer cask must protect the MPC from deformation, provide continued adequate performance, and allow the retrieval of the MPC under all conditions. These design loadings include a side drop from the maximum allowable handling height, consistent with the technical specifications. The load combinations for which the HI-TRAC is designed are defined in Section 2.2.7. The physical characteristics of each MPC for which the HI-TRAC is designed are defined in Chapter 1.

Thermal

The allowable temperatures for the HI-TRAC transfer cask structural steel components are based on the maximum temperature for material properties and allowable stress values provided in Section II of the ASME Code. The top lid of the HI-TRAC 125 and HI-TRAC 125D incorporate Holtite-A shielding material. This material has a maximum allowable temperature in accordance with the manufacturer's test data. The specific allowable temperatures for the structural steel and shielding components of the HI-TRAC are provided in Table 2.2.3. The HI-TRAC is designed for off-normal environmental cold conditions, as discussed in Section 2.2.2.2. The structural steel materials susceptible to brittle fracture are discussed in Section 3.1.2.3.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-8

The HI-TRAC is designed for the maximum heat load analyzed for storage operations. When the MPC contains any high burnup fuel assemblies, the Supplemental Cooling System (SCS) will be required for certain time periods while the MPC is inside the HI-TRAC transfer cask (see Section 4.5). The design criteria for the SCS are provided in Appendix 2.C. The HI-TRAC water jacket maximum allowable temperature is a function of the internal pressure. To preclude over pressurization of the water jacket due to boiling of the neutron shield liquid (water), the maximum temperature of the water is limited to less than the saturation temperature at the shell design pressure. In addition, the water is precluded from freezing during off-normal cold conditions by limiting the minimum allowable temperature and adding ethylene glycol. The thermal characteristics of the fuel for each MPC for which the transfer cask is designed are defined in Section 2.1.6. The working area ambient temperature limit for loading operations is limited in accordance with the design criteria established for the transfer cask.

Shielding

The HI-TRAC transfer cask provides shielding to maintain occupational exposures ALARA in accordance with 10CFR20, while also maintaining the maximum load on the plant's crane hook to below either 125 tons or 100 tons, or less, depending on whether the 125-ton or 100-ton HI-TRAC transfer cask is utilized. The HI-TRAC calculated dose rates are reported in Section 5.1. These dose rates are used to perform a generic occupational exposure estimate for MPC loading, closure, and transfer operations, as described in Chapter 10. A postulated HI-TRAC accident condition, which includes the loss of the liquid neutron shield (water), is also evaluated in Section 5.1.2. In addition,

HI-TRAC dose rates are controlled in accordance with plant-specific procedures and ALARA requirements (discussed in Chapter 10).

The HI-TRAC 125 and 125D provide better shielding than the HI-TRAC 100 or 100D. Provided the licensee is capable of utilizing the 125-ton HI-TRAC, ALARA considerations would normally dictate that the 125-ton HI-TRAC should be used. However, sites may not be capable of utilizing the 125-ton HI-TRAC due to crane capacity limitations, floor loading limits, or other site-specific considerations. As with other dose reduction-based plant activities, individual users who cannot accommodate the 125-ton HI-TRAC should perform a cost-benefit analysis of the actions (e.g., modifications), which would be necessary to use the 125-ton HI-TRAC. The cost of the action(s) would be weighed against the value of the projected reduction in radiation exposure and a decision made based on each plant's particular ALARA implementation philosophy.

The HI-TRAC provides a means to isolate the annular area between the MPC outer surface and the HI-TRAC inner surface to minimize the potential for surface contamination of the MPC by spent fuel pool water during wet loading operations. The HI-TRAC surfaces expected to require decontamination are coated. The maximum permissible surface contamination for the HI-TRAC is in accordance with plant-specific procedures and ALARA requirements (discussed in Chapter 10).

Confinement

The HI-TRAC transfer cask does not perform any confinement function. Confinement during MPC

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-9

transfer operations is provided by the MPC, and is addressed in Chapter 7. The HI-TRAC provides physical protection and biological shielding for the MPC confinement boundary during MPC closure and transfer operations.

Operations

There are no radioactive effluents that result from MPC transfer operations using HI-TRAC. Effluents generated during MPC loading and closure operations are handled by the plant's radwaste system and procedures.

Generic operating procedures for the HI-STORM 100 System are provided in Chapter 8. The licensee will develop detailed operating procedures based on Chapter 8, plant-specific requirements including the Part 50 Technical Specifications, and the HI-STORM 100 System CoC.

Acceptance Tests and Maintenance

The fabrication acceptance basis and maintenance program to be applied to the HI-TRAC Transfer Cask are described in Chapter 9. The operational controls and limits to be applied to the HI-TRAC are contained in Chapter 12. Application of these requirements will assure that the HI-TRAC is fabricated, operated, and maintained in a manner that satisfies the design criteria defined in this chapter.

Decommissioning

Decommissioning considerations for the HI-STORM 100 Systems, including the HI-TRAC Transfer Cask, are addressed in Section 2.4.

2.0.4 Principal Design Criteria for the ISFSI Pad

2.0.4.1 Design and Construction Criteria

In compliance with 10CFR72, Subpart F, "General Design Criteria", the HI-STORM 100 cask system is classified as "important-to-safety" (ITS). This final safety analysis report (FSAR) explicitly recognizes the HI-STORM 100 System as an assemblage of equipment containing numerous ITS components. The reinforced concrete pad on which the cask is situated, however, is designated as a non-ITS structure. This is principally because, in most cases, cask systems for storing spent nuclear fuel on reinforced concrete pads are installed as free-standing structures. The lack of a physical connection between the cask and the pad permits the latter to be designated as not important-to-safety.

However, if the ZPAs at the surface of an ISFSI pad exceed the threshold limit for free-standing HI-STORM installation set forth in this FSAR, then the cask must be installed in an anchored configuration (HI-STORM 100A).

In contrast to an ISFSI containing free-standing casks, a constrained-cask installation relies on the

HOLTEC INT	ERNATIONAL COPYRIGH	HTED MATERIAL	•••
HI-STORM FSAR REPORT HI-2002444	2.0-10		Rev. 6

structural capacity of the pad to ensure structural safety. The Part 72 regulations require consideration of natural phenomenon in the design. Since an ISFSI pad in an anchored cask installation participates in maintaining the stability of the cask during "natural phenomena" on the cask and pad, it is an ITS structure. The procedure suggested in Regulatory Guide 7.10 [2.0.4] and the associated NUREG [2.0.5] indicates that an ISFSI pad used to secure anchored casks should be classified as a Category C ITS structure.

Because tipover of a cask installed in an anchored configuration is not feasible, the pad does not need to be engineered to accommodate this non-mechanistic event. However, the permissible carry height for a loaded HI-STORM 100A overpack must be established for the specific ISFSI pad using the methodology described in this FSAR, if the load handling device is not designed in accordance with ANSI N 14.6 and does not have redundant drop protection design features. These requirements are specified in the CoC. However, to serve as an effective and reliable anchor, the pad must be made appropriately stiff and suitably secured to preclude pad uplift during a seismic event.

Because the geological conditions vary widely across the United States, it is not possible to, a'priori, define the detailed design of the pad. Accordingly, in this FSAR, the limiting requirements on the design and installation of the pad are provided. The user of the HI-STORM 100A System bears the responsibility to ensure that all requirements on the pad set forth in this FSAR are fulfilled by the pad design. Specifically, the ISFSI owner must ensure that:

- The pad design complies with the structural provisions of this report. In particular, the requirements of ACI-349-97 [2.0.2] with respect to embedments must be assured.
- The material of construction of the pad (viz., the additives used in the pad concrete), and the attachment system are compatible with the ambient environment at the ISFSI site.
- The pad is designed and constructed in accordance with a Part 72, Subpart G-compliant QA program.
- The design and manufacturing of the cask attachment system are consistent with the provisions of this report.
- Evaluations are performed (e.g., per 72.212) to demonstrate that the seismic and other inertial loadings at the site are enveloped by the respective bounding loadings defined in this report.

A complete listing of design and construction requirements for an ISFSI pad on which an anchored HI-STORM 100A will be deployed is provided in Appendix 2.A. A sample embedment design is depicted in Figure 2.A.1.

2.0.4.2 <u>Applicable Codes</u>

Factored load combinations for ISFSI pad design are provided in NUREG-1536 [2.1.5], which is

HOLTEC I	NTERNATIONAL COPYRIGHTED MATERIAL	
HI-STORM FSAR		Rev. 6
REPORT HI-2002444	2.0-11	

consistent with ACI-349-85. The factored loads applicable to the pad design consist of dead weight of the cask, thermal gradient loads, impact loads arising from handling and accident events, external missiles, and bounding environmental phenomena (such as earthquakes, wind, tornado, and flood). Codes ACI 360R-92, "Design of Slabs on Grade"; ACI 302.1R, "Guide for Concrete Floor and Slab Construction"; and ACI 224R-90, "Control of Cracking in Concrete Structures" should be used in the design and construction of the concrete pad, as applicable. The embedment design for the HI-STORM 100A (and 100SA) are the responsibility of the ISFSI owner and shall comply with Appendix B to ACI-349-97 as described in Appendix 2.A. A later Code edition may be used provided a written reconciliation is performed.

The factored load combinations presented in Table 3-1 of NUREG 1536 are reduced in the following to a bounding set of load combinations that are applied to demonstrate adherence to its acceptance criteria.

a. Definitions

D = dead load including the loading due to pre-stress in the anchor studs

- L = live load
- W = wind load
- $W_t = tornado load$
- T = thermal load
- F = hydrological load
- E = DBE seismic load
- A = accident load
- H = lateral soil pressure

 $T_a =$ accident thermal load

 U_c = reinforced concrete available strength

Note that in the context of a complete ISFSI design, the DBE seismic load includes both the inertia load on the pad due to its self mass plus the interface loads transmitted to the pad to resist the inertia loads on the cask due to the loaded cask self mass. It is only these interface loads that are provided herein for possible use in the ISFSI structural analyses. The inertia load associated with the seismic excitation of the self mass of the slab needs to be considered in the ISFSI owner's assessment of overall ISFSI system stability in the presence of large uplift, overturning, and sliding forces at the base of the ISFSI pad. Such considerations are site specific and thus beyond the purview of this document.

b. Load Combinations for the Concrete Pad

The notation and acceptance criteria of NUREG-1536 apply.

Normal Events

 $U_c > 1.4D + 1.7L$

 $U_c > 1.4D + 1.7 (L+H)$

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-12

Off-Normal Events

 $U_c > 1.05D + 1.275 (L+H+T)$ $U_c > 1.05D + 1.275 (L+H+T+W)$

Accident-Level Events

 $U_c > D+L+H+T+F$ $U_c > D+L+H+T_a$ $U_c > D+L+H+T+E$

 $U_{c} > D+L+H+T+W_{t}$ $U_{c} > D+L+H+T+A$

In all of the above load combinations, the loaded cask weight is considered as a live load L on the pad. The structural analyses presented in Chapter 3 provide the interface loads contributing to "E", "F" and "W_t", which, for high-seismic sites, are the most significant loadings. The above set of load combinations can be reduced to a more limited set by recognizing that the thermal loads acting on the ISFSI slab are small because of the low decay heat loads from the cask. In addition, standard construction practices for slabs serve to ensure that extreme fluctuations in environmental temperatures are accommodated without extraordinary design measures. Therefore, all thermal loads are eliminated in the above combinations. Likewise, lateral soil pressure load "H" will also be bounded by "F" (hydrological) and "E" (earthquake) loads. Accident loads "A", resulting from a tipover, have no significance for an anchored cask. The following three load combinations are therefore deemed sufficient for structural qualification of the ISFSI slab supporting an anchored cask system.

Normal Events

 $U_c > 1.4D + 1.7 (L)$

Off-Normal Events

 $U_c > 1.05D + 1.275 (L+F)$

Accident-Level Events

 $U_c > D + L + E$ (or W_t)

c. Load Combination for the Anchor Studs

The attachment bolts are considered to be governed by the ASME Code, Section III, Subsection NF and Appendix F [2.0.7]. Therefore, applicable load combinations and allowable stress limits for the attachment bolts are as follows:

Event Class and Load	Governing ASME Code Section
Combination	III Article for Stress Limits
Normal Events	

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

D	NF-3322.1, 3324.6
Off-Normal Events	
D+F	NF-3322.1, 3324.6 with all stress limits increased by 1.33
Accident-Level Events	
D+E and D+W _t	Appendix F, Section F-1334, 1335

2.0.4.3 Limiting Design Parameters

Since the loaded HI-STORM overpack will be carried over the pad, the permissible lift height for the cask must be determined site-specifically to ensure the integrity of the storage system in the event of a handling accident (uncontrolled lowering of the load). To determine the acceptable lift height, it is necessary to set down the limiting ISFSI design parameters. The limiting design parameters for an anchored cask ISFSI pad and the anchor studs, as applicable, are tabulated in Table 2.0.4. The design of steel embedments in reinforced concrete structures is governed by Appendix B of ACI-349-97. Section B.5 in that appendix states that "anchorage design shall be controlled by the strength of embedment steel...". Therefore, limits on the strength of embedment steel and on the anchor studs must be set down not only for the purposes of quantifying structural margins for the design basis load combinations, but also for the use of the ISFSI pad designer to establish the appropriate embedment anchorage in the ISFSI pad. The anchored cask pad design parameters presented in Table 2.0.4 allow for a much stiffer pad than the pad for free-standing HI-STORMs (Table 2.2.9). This increased stiffness has the effect of reducing the allowable lift height. However, a lift height for a loaded HI-STORM 100 cask (free-standing or anchored) is not required to be established if the cask is being lifted with a lift device designed in accordance with ANSI N14.6 having redundant drop protection design features.

In summary, the requirements for the ISFSI pad for free-standing and anchored HI-STORM deployment are similar with a few differences. Table 2.0.5 summarizes their commonality and differences in a succinct manner with the basis for the difference fully explained.

2.0.4.4 Anchored Cask/ISFSI Interface

The contact surface between the baseplate of overpack and the top surface of the ISFSI pad defines the structural interface between the HI-STORM overpack and the ISFSI pad. When HI-STORM is deployed in an anchored configuration, the structural interface also includes the surface where the nuts on the anchor studs bear upon the sector lugs on the overpack baseplate. The anchor studs and their fastening arrangements into the ISFSI pad are outside of the structural boundary of the storage cask. While the details of the ISFSI pad design for the anchored configuration, like that for the freestanding geometry, must be custom engineered for each site, certain design and acceptance criteria are specified herein (Appendix 2.A) to ensure that the design and construction of the pad fully comports with the structural requirements of the HI-STORM System.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-14

Table 2.0.1 MPC DESIGN CRITERIA SUMMARY

Туре	Criteria	Basis	FSAR Reference
Design Life:			
Design	40 yrs.	-	Table 1.2.2
License	20 yrs.	10CFR72.42(a) and 10CFR72.236(g)	-
Structural:			
Design Codes:			
Enclosure Vessel	ASME Code, Section III, Subsection NB	10CFR72.24(c)(4)	Section 2.0.1
Fuel Basket	ASME Code, Section III, Subsection NG for core supports (NG-1121)	10CFR72.24(c)(4)	Section 2.0.1
MPC Fuel Basket Supports (Angled Plates)	ASME Code, Section III, Subsection NG for internal structures (NG-1122)	10CFR72.24(c)(4)	Section 2.0.1
MPC Lifting Points	ANSI N14.6/NUREG-0612	10CFR72.24(c)(4)	Section 1.2.1.4
Dead Weights [†] :			·
Max. Loaded Canister (dry)	90,000 lb.	R.G. 3.61	Table 3.2.1
Empty Canister (dry)	42,000 lb. (MPC-24) 45,000 lb. (MPC-24E/EF) 39,000 lb. (MPC-68/68F/68FF) 36,000 lb. (MPC-32)	R.G. 3.61	Table 3.2.1
Design Cavity Pressures:			· · · · · · · · · · · · · · · · · · ·
Normal:	100 psig	ANSI/ANS 57.9	Section 2.2.1.3
Off-Normal:	110 psig	ANSI/ANS 57.9	Section 2.2.2.1
Accident (Internal)	200 psig	ANSI/ANS 57.9	Section 2.2.3.8
Accident (External)	60 psig	ANSI/ANS 57.9	Sections 2.2.3.6 and 2.2.3.1

[†] Weights listed in this table are bounding weights. Actual weights will be less, and will vary based on as-built dimensions of the components, fuel type, and the presence of fuel spacers and non-fuel hardware.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

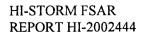
Туре	Criteria	Basis	FSAR Reference
Response and Degradation Limits	CNIF	10CEB 70 100/(b)(l)	Section 2.0.1
	SNF assemblies confined in dry, inert environment	10CFR72.122(h)(l)	Section 2.0.1
ermal:			
Maximum Design Temperatures:			
Structural Materials:			·
Stainless Steel (Normal)	725° F	ASME Code Section II, Part D	Table 2.2.3
Stainless Steel (Accident)	950° F	ASME Code Section II, Part D	Table 2.2.3
Neutron Poison:			
Neutron Absorber (normal)	800° F	See Table 4.3.1 and Section 1.2.1.3.1	Table 2.2.3
Neutron Absorber (accident)	950° F	See Table 4.3.1 and Section 1.2.1.3.1	Table 2.2.3
Canister Drying	\leq 3 torr for \geq 30 minutes (VDS)		
	$\leq 21^{\circ}$ F exiting the demoisturizer for ≥ 30	NUREG-1536, ISG-11, Rev. 3	Section 4.5, Appendix 2.B
	minutes or a dew point of the MPC exit gas $\leq 22.9^{\circ}$ F for		
	\geq 30 minutes(FHD)		
Canister Backfill Gas	Helium		Section 4.4
Canister Backfill	Varies (see Table 1.2.2)	Thermal Analysis	Section 4. 4
Fuel cladding temperature limit for long term storage conditions	752 °F (400 °C)	ISG-11, Rev. 3	Section 4.3
Fuel cladding temperature limit for normal short-term operating	752 °F (400 °C), except certain MPCs containing all moderate		
conditions (e.g., MPC drying and onsite transport)	burnup fuel (MBF) may use 1058°F (570°C) for normal short-term operating conditions	ISG-11, Rev. 3	Sections 4.3 and 4.5

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444 Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

2.0-16


Туре	Criteria	Basis	FSAR Reference
Fuel cladding temperature limit for Off-Normal and Accident Events	1058° F (570 °C)	ISG-11, Rev. 3	Sections 2.0.1 and 4.3
Insolation	Protected by overpack or HI-TRAC		Section 4.3
Confinement:		10CFR72.128(a)(3) and 10CFR72.236(d) and (e)	
Closure Welds:			
Shell Seams and Shell-to- Baseplate	Full Penetration		Section 1.5 and Table 9.1.4
MPC Lid	Multi-pass Partial Penetration	10CFR72.236(e)	Section 1.5 and Table 9.1.4
MPC Closure Ring	Partial Penetration		
Port Covers	Partial Penetration		
NDE:			· · · · · · · · · · · · · · · · · · ·
Shell Seams and Shell-to- Baseplate	100% RT or UT	-	Table 9.1.4
MPC Lid	Root Pass and Final Surface 100% PT;	-	Chapter 8 and Table 9.1.4
	Volumetric Inspection or 100% Surface PT each 3/8" of weld depth		
Closure Ring	Root Pass (if more than one pass is required) and Final Surface 100% PT		Chapter 8 and Table 9.1.4
Port Covers	Root Pass (if more than one pass is required) and Final Surface 100% PT		Chapter 8 and Table 9.1.4
Leak Testing:			
Welds Tested	Port covers-to-MPC lid	-	Section 9.1
Medium	Helium	ANSI N14.5	Section 9.1
Max. Leak Rate	Leaktight	ANSI N14.5	Section 9.1
Monitoring System	None	10CFR72.128(a)(1)	Section 2.3.2.1

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Туре	Criteria	Basis	FSAR Reference
Pressure Testing:			
Minimum Test Pressure	125 psig (hydrostatic) 120 psig (pneumatic)	-	Sections 8.1 and 9.1
Welds Tested	MPC Lid-to-Shell, MPC Shell seams, MPC Shell-to-Baseplate	- `	Sections 8.1 and 9.1
Medium	Water or helium	•	Section 8.1 and Chapter 9
Retrievability:			
Normal and Off-normal:	No Encroachment on Fuel	10CFR72.122(f) & (l)	Sections 3.4 and 3.1.2
Post (design basis) Accident	Assemblies		
Criticality:		10CFR72.124 & 10CFR72.236(c)	
Method of Control	Fixed Borated Neutron Absorber, Geometry, and Soluble Boron	-	Section 2.3.4
Min. ¹⁰ B Loading (Boral/METAMIC [®])	0.0267/0.0223 g/cm ² (MPC-24) 0.0372/0.0310 g/cm ² (MPC-68, MPC-68FF, MPC-24E,MPC- 24EF, MPC-32 and MPC-32F) 0.01 g/cm ² (MPC-68F)		Sections 2.1.8 and 6.1
Minimum Soluble Boron	Varies (see Tables 2.1.14 and 2.1.16)	Criticality Analysis	Sections 2.1.9 and 6.1
Max. k _{eff}	0.95	-	Sections 6.1 and 2.3.4
Min. Burnup	0.0 GWd/MTU (fresh fuel)	-	Section 6.1
Radiation Protection/Shielding:		10CFR72.126, & 10CFR72.128(a)(2)	
MPC:		· · · · ·	
(normal/off-normal/accident)			
MPC Closure	ALARA	10CFR20	Sections 10.1, 10.2, & 10.3
MPC Transfer	ALARA	10CFR20	Sections 10.1, 10.2, & 10.3
Exterior of Shielding: (normal/off-normal/accident)			

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Туре	Criteria	Basis	FSAR Reference
Transfer Mode Position	See Table 2.0.3	10CFR20	Section 5.1.1
ISFSI Controlled Area Boundary	See Table 2.0.2	10CFR72.104 & 10CFR72.106	Section 5.1.1 and Chapter 10
Design Bases:		10CFR72.236(a)	
Spent Fuel Specification:			
Assemblies/Canister	Up to 24 (MPC-24, MPC-24E & MPC-24EF)	_	Table 1.2.1 and Section 2.1.9
	Up to 32 (MPC-32 and MPC-32F) Up to 68 (MPC-68, MPC-68F, & MPC-68FF)		
Type of Cladding	ZR and Stainless Steel		Section 2.1.9
Fuel Condition	Intact, Damaged, and Debris	-	Sections 2.1.2, 2.1.3, and 2.1.9
PWR Fuel Assemblies:			
Type/Configuration	Various		Section 2.1.9
·			·
Max. Burnup	68,200 MWD/MTU		Sections 2.1.9 and 6.2
Max. Enrichment	Varies by fuel design		Table 2.1.3 and Section 2.1.9
Max. Decay Heat/ MPC [†] :	28.74 kW		Section 4.4
Minimum Cooling Time:	3 years (Intact ZR Clad Fuel) 8 years (Intact SS Clad Fuel)	-	Section 2.19
Max. Fuel Assembly Weight: (including non-fuel hardware and DFC, as applicable)	1,680 lb.	-	Section 2.1.9
Max. Fuel Assembly Length: (Unirradiated Nominal)	176.8 in.	-	Section 2.1.9
Max. Fuel Assembly Width	8.54 in.		Section 2.1.9

† Section 2.1.9.1 describes the decay heat limits per assembly

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Туре	Criteria	Basis	FSAR Reference
(Unirradiated Nominal)		· · · · · · · · · · · · · · · · · · ·	
BWR Fuel Assemblies:			
Туре	Various		Sections 2.1.9 and 6.2
Max. Burnup	65,000 MWD/MTU	-	Section 2.1.9
Max. Enrichment	Varies by fuel design	-	Section 2.1.9, Table 2.1.4
Max. Decay Heat/ MPC [†] .	28.19 kW	-	Section 4.4
Minimum Cooling Time:	3 years (Intact ZR Clad Fuel) 8 years (Intact SS Clad Fuel)		Section 2.1.9
Max. Fuel Assembly Weight:			
w/channels and DFC, as applicable	700 lb.	-	Section 2.1.9
Max. Fuel Assembly Length (Unirradiated Nominal)	176.5in.	-	Section 2.1.9
Max. Fuel Assembly Width (Unirradiated Nominal)	5.85 in.	•••••	Section 2.1.9
Normal Design Event Conditions:		10CFR72.122(b)(1)	
Ambient Temperatures	See Tables 2.0.2 and 2.0.3	ANSI/ANS 57.9	Section 2.2.1.4
Handling:			Section 2.2.1.2
Handling Loads	115% of Dead Weight	CMAA #70	Section 2.2.1.2
Lifting Attachment Acceptance Criteria	1/10 Ultimate 1/6 Yield	NUREG-0612 ANSI N14.6	Section 3.4.3
Attachment/Component Interface Acceptance Criteria	1/3 Yield	Regulatory Guide 3.61	Section 3.4.3
Away from Attachment Acceptance Criteria	ASME Code Level A	ASME Code	Section 3.4.3
Wet/Dry Loading	Wet or Dry	-	Section 1.2.2.2
Transfer Orientation	Vertical	-	Section 1.2.2.2
Storage Orientation	Vertical	-	Section 1.2.2.2

Section 2.1.9.1 describes the decay heat limits per assembly.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.0-20

Туре	Criteria	Basis	FSAR Reference
Fuel Rod Rupture Releases:		· · · · · · · · · · · · · · · · · · ·	
Source Term Release Fraction	1%	NUREG-1536	Sections 2.2.1.3
Fill Gases	100%	NUREG-1536	Sections 2.2.1.3
Fission Gases	30%	NUREG-1536	Sections 2.2.1.3
Snow and Ice	Protected by Overpack	ASCE 7-88	Section 2.2.1.6
Off-Normal Design Event Conditions:		10CFR72.122(b)(1)	
Ambient Temperature	See Tables 2.0.2 and 2.0.3	ANSI/ANS 57.9	Section 2.2.2.2
Leakage of One Seal	N/A	ISG-18	Sections 2.2.2.4 and 7.1
Partial Blockage of Overpack Air Inlets	Two Air Inlets Blocked	-	Section 2.2.2.5
Source Term Release Fraction:			
Fuel Rod Failures	10%	NUREG-1536	Sections 2.2.2.1
Fill Gases	100%	NUREG-1536	Sections 2.2.2.1
Fission Gases	30%	NUREG-1536	Sections 2.2.2.1
Design-Basis (Postulated) Accident Desig	gn Events and Conditions:	10CFR72.24(d)(2) & 10CFR72.94	
Tip Over	See Table 2.0.2		Section 2.2.3.2
End Drop	See Table 2.0.2	-	Section 2.2.3.1
Side Drop	See Table 2.0.3	-	Section 2.2.3.1
Fire	See Tables 2.0.2 and 2.0.3	10CFR72.122(c)	Section 2.2.3.3
Fuel Rod Rupture Releases:			
Fuel Rod Failures (including non-fuel hardware)	100%	NUREG-1536	Sections 2.2.3.8
Fill Gases	100%	NUREG-1536	Sections 2.2.3.8
Fission Gases	30%	NUREG-1536	Sections 2.2.3.8
Particulates & Volatiles	See Table 7.3.1	=	Sections 2.2.3.9
Confinement Boundary Leakage	None	ISG-18	Sections 2.2.3.9 and 7.1
Explosive Overpressure	60 psig (external)	10CFR72.122(c)	Section 2.2.3.10
Airflow Blockage:			

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Table 2.0.1 (continued) MPC DESIGN CRITERIA SUMMARY

Criteria	Basis	FSAR Reference
100% of Overpack Air	10CFR72.128(a)(4)	
Inlets Blocked		Section 2.2.3.13
Crud Depth	ESEERCO Project	Section 2.2.3.4
(Table 2.2.8)	EP91-29	
n Events and Conditions:	10CFR72.92 &	
	10CFR72.122(b)(2)	
125 ft.	ANSI/ANS 57.9	Section 2.2.3.6
See Table 2.0.2	10CFR72.102(f)	Section 2.2.3.7
Protected by Overpack	ASCE-7-88	Section 2.2.3.5
Protected by Overpack	RG 1.76 & NUREG-0800	Section 2.2.3.5
Maximum Decay Heat Load	-	Section 2.2.3.12
See Table 2.0.2	NFPA 78	Section 2.2.3.11
See Table 2.0.2	-	Section 2.2.3.14
	100% of Overpack Air Inlets Blocked Crud Depth (Table 2.2.8) n Events and Conditions: 125 ft. See Table 2.0.2 Protected by Overpack Protected by Overpack Maximum Decay Heat Load See Table 2.0.2	100% of Overpack Air Inlets Blocked10CFR72.128(a)(4)10epth (Table 2.2.8)ESEERCO Project EP91-29n Events and Conditions:10CFR72.92 & 10CFR72.122(b)(2)125 ft.ANSI/ANS 57.9See Table 2.0.210CFR72.102(f)Protected by OverpackASCE-7-88Protected by OverpackRG 1.76 & NUREG-0800Maximum Decay Heat Load-See Table 2.0.2NFPA 78

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-22

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Table 2.0.2 HI-STORM OVERPACK DESIGN CRITERIA SUMMARY

Туре	Type Criteria		FSAR Reference	
Design Life:				
Design	40 yrs.	-	Section 2.0.2	
License	20 yrs.	10CFR72.42(a) & 10CFR72.236(g)		
Structural:			· · · · · · · · · · · · · · · · · · ·	
Design & Fabrication Codes:				
Concrete				
Design	ACI 349 as clarified in Appendix 1.D	10CFR72.24(c)(4)	Section 2.0.2 and Appendix 1.D	
Fabrication	ACI 349 as clarified in Appendix 1.D	10CFR72.24(c)(4)	Section 2.0.2 and Appendix 1.D	
Compressive Strength	ACI 318-95 as clarified in Appendix 1.D	10CFR72.24(c)(4)	Section 2.0.2 and Appendix 1.D	
Structural Steel		·		
Design	ASME Code Section III, Subsection NF	10CFR72.24(c)(4)	Section 2.0.2	
Fabrication	ASME Code Section III, Subsection NF	10CFR72.24(c)(4)	Section 2.0.2	
Dead Weights [†] :				
Max. Loaded MPC (Dry)	90,000 lb. (MPC- 32)	R.G. 3.61	Table 3.2.1	
Max. Empty Overpack Assembled with Top Lid (150 pcf concrete/200pcf concrete)	270,000/320,000 lb.	R.G. 3.61	Table 3.2.1	
Max. MPC/Overpack (150 pcf concrete/200pcf concrete)	360,000/410,000 lb.	R.G. 3.61	Table 3.2.1	
Design Cavity Pressures	N/A	-	Section 2.2.1.3	

[†] Weights listed in this table are bounding weights. Actual weights will be less, and will vary based on as-built dimensions of the components, fuel type, and the presence of fuel spacers and non-fuel hardware, as applicable.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-23

Туре	Criteria	Basis	FSAR Reference
Response and Degradation Limits	Protect MPC from deformation	10CFR72.122(b)	Sections 2.0.2 and 3.1
		10CFR72.122(c)	
	Continued adequate performance	10CFR72.122(b)	
	of overpack	10CFR72.122(c)	
	Retrieval of MPC	10CFR72.122(1)	
Thermal:		· · · · · · · · · · · · · · · · · · ·	
Maximum Design Temperatures:			
Concrete			
Through-Thickness Section	300° F	ACI 349, Appendix A	Section 2.0.2, and Tables
Average (Normal)		(Paragraph A.4.3)	1.D.1 and 2.2.3
Through-Thickness Section	350° F	ACI 349 Appendix A	Section 2.0.2, and Tables
Average (Off-normal and Accident)		(Paragraph A.4.2)	1.D.1 and 2.2.3
Steel Structure (other than lid	350° F	ASME Code	Table 2.2.3
bottom and top plates)		Section II, Part D	
Lid Bottom and Top Plates	450°F		
Insolation:	Averaged Over 24 Hours	10CFR71.71	Section 4.4.1.1.8
Confinement:	None	10CFR72.128(a)(3) & 10CFR72.236(d) & (e)	N/A
Retrievability:			na sa na N
Normal and Off-normal	No damage that precludes	10CFR72.122(f) & (l)	Section 3.4
Accident	Retrieval of MPC		Section 3.4
Criticality:	Protection of MPC and Fuel	10CFR72.124 &	Section 6.1
· · · · · · · · · · · · · · · · · · ·	Assemblies	10CFR72.236(c)	· · · · · · · · · · · · · · · · · · ·
Radiation Protection/Shielding:		10CFR72.126 &	
		10CFR72.128(a)(2)	
Overpack (Normal/Off-normal/Accident)			
Surface	ALARA	10CFR20	Chapters 5 and 10
Position	ALARA	10CFR20	Chapters 5 and 10

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-24

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Туре	Criteria	Basis	FSAR Reference
Beyond Controlled Area During	25 mrem/yr. to whole body	10CFR72.104	Sections 5.1.1, 7.2, and 10.1
Normal Operation and Anticipated	75 mrem/yr. to thyroid		
Occurrences	25 mrem/yr. to any critical organ		
At Controlled Area Boundary from	5 rem TEDE or sum of DDE	10CFR72.106	Sections 5.1.2, 7.3, and 10.1
Design Basis Accident	and CDE to any individual organ	· · · · · ·	
	or tissue (other than lens of eye)		
	\leq 50 rem. 15 rem lens dose. 50		
	rem shallow dose to skin or		
	extremity.		
		· · · · · · · · · · · · · · · · · · ·	
Design Bases:			
Spent Fuel Specification	See Table 2.0.1	10CFR72.236(a)	Section 2.1.9
Normal Design Event Conditions:		10CFR72.122(b)(1)	
Ambient Outside Temperatures:			
Max. Yearly Average	80° F	ANSI/ANS 57.9	Section 2.2.1.4
Live Load [†] :		ANSI/ANS 57.9	-
Loaded Transfer Cask (max.)	250,000 lb.	R.G. 3.61	Table 3.2.4
	(HI-TRAC 125		Section 2.2.1.2
•	w/transfer lid)		
Dry Loaded MPC (max.)	90,000 lb.	R.G. 3.61	Table 3.2.1 and
			Section 2.2.1.2
Handling:		-	Section 2.2.1.2
Handling Loads	115% of Dead Weight	CMAA #70	Section 2.2.1.2
Lifting Attachment Acceptance	1/10 Ultimate	NUREG-0612	Section 3.4.3
Criteria	1/6 Yield	ANSI N14.6	
Attachment/Component	1/3 Yield	Regulatory Guide 3.61	Section 3.4.3
Interface Acceptance Criteria		- · · ·	
Away from Attachment	ASME Code	ASME Code	Section 3.4.3

[†] Weights listed in this table are bounding weights. Actual weights will be less, and will vary based on as-built dimensions of the components, fuel type, and the presence of fuel spacers and non-fuel hardware, as applicable.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-25

Туре	Criteria	Basis	FSAR Reference	
Acceptance Criteria	Level A			
Minimum Temperature During Handling Operations	0° F	ANSI/ANS 57.9	Section 2.2.1.2	
Snow and Ice Load	100 lb./ft ²	ASCE 7-88	Section 2.2.1.6	
Wet/Dry Loading	Dry	-	Section 1.2.2.2	
Storage Orientation	Vertical	-	Section 1.2.2.2	
Off-Normal Design Event Conditions:		10CFR72.122(b)(1)		
Ambient Temperature				
Minimum	-40° F	ANSI/ANS 57.9	Section 2.2.2.2	
Maximum	100° F	ANSI/ANS 57.9	Section 2.2.2.2	
Partial Blockage of Air Inlets	Two Air Inlet Ducts Blocked	_	Section 2.2.2.5	
Design-Basis (Postulated) Accident Desi	gn Events and Conditions:	10CFR72.94		
Drop Cases:				
End	11 in.	-	Section 2.2.3.1	
Tip-Over (Not applicable for HI-STORM 100A)	Assumed (Non-mechanistic)	-	Section 2.2.3.2	
Fire:				
Duration	217 seconds	10CFR72.122(c)	Section 2.2.3.3	
Temperature	1,475° F	10CFR72.122(c)	Section 2.2.3.3	
Fuel Rod Rupture	See Table 2.0.1	- ····	Section 2.2.3.8	
Air Flow Blockage:			· · · · · · · · · · · · · · · · · · ·	
Vent Blockage	100% of Air Inlets Blocked	10CFR72.128(a)(4)	Section 2.2.3.13	
Ambient Temperature	80° F	10CFR72.128(a)(4)	Section 2.2.3.13	
Explosive Overpressure External Differential Pressure	10 psid instantaneous, 5 psid steady state	10 CFR 72.128(a)(4)	Table 2.2.1	

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Туре	Criteria	Basis	FSAR Reference
Design-Basis Natural Phenomenon Desi	gn Events and Conditions:	10CFR72.92 &	· · · · · · · · · · · · · · · · · · ·
		10CFR72.122(b)(2)	·
Flood			· · · · ·
Height	125 ft.	RG 1.59	Section 2.2.3.6
Velocity	15 ft/sec.	<u>RG</u> 1.59	Section 2.2.3.6
Seismic			
Max. acceleration at top of	Free Standing:	10CFR72.102(f)	Section 3.4.7.1
ISFSI pad	$G_{\rm H} + 0.53 G_{\rm V} \le 0.53$		Section 3.4.7.3
	Anchored:		
	$G_{\rm H} \le 2.12, G_{\rm V} \le 1.5$		·
Tornado			
Wind			· .
Max. Wind Speed	360 mph	RG 1.76	Section 2.2.3.5
Pressure Drop	3.0 psi	RG 1.76	Section 2.2.3.5
Missiles			Section 2.2.3.5
Automobile			
Weight	1,800 kg	NUREG-0800	Table 2.2.5
Velocity	126 mph	NUREG-0800	Table 2.2.5
Rigid Solid Steel Cylinder			
Weight	125 kg	NUREG-0800	Table 2.2.5
Velocity	126 mph	NUREG-0800	Table 2.2.5
Diameter	8 in.	NUREG-0800	Table 2.2.5
Steel Sphere			
Weight	0.22 kg	NUREG-0800	Table 2.2.5
Velocity	126 mph	NUREG-0800	Table 2.2.5
Diameter	1 in.	NUREG-0800	Table 2.2.5
Burial Under Debris	Maximum Decay Heat Load	<u> </u>	Section 2.2.3.12
Lightning	Resistance Heat-Up	NFPA 70 & 78	Section 2.2.3.11
Extreme Environmental	125° F	-	Section 2.2.3.14
Temperature			
Load Combinations:	See Table 2.2.14 and Table 3.1.5	ANSI/ANS 57.9 and	Section 2.2.7

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Туре		Criteria	Basis	FSAR Reference
	·. · ·		NUREG-1536	
		·····		A
	1			
• ·				
	1			
	· · · · · ·			
	. •			
				. · ·
				•
	· · ·			
	•		•	
			•	
	· · ·			· ·
	· · · · · · · · · · · · · · · · · · ·			
	•			
			A Contraction of the second	
	• •			
	· · · · · · · · ·			
	· · · · · · · · ·			
	•			
	•		·	
	· · · ·			· _
	· ·		·	
				• .
	·. · ·			• •
			• •	•
	· · ·			·····
HI-STORM FSAR	· H	OLTEC INTERNATIONAL CO	YRIGHTED MATERIAL	
				Rev

TABLE 2.0.3 HI-TRAC TRANSFER CASK DESIGN CRITERIA SUMMARY

Туре	Criteria	Basis	FSAR Reference
Design Life:			
Design	40 yrs.	-	Section 2.0.3
License	20 yrs.	10CFR72.42(a) & 10CFR72.236(g)	
Structural:			
Design Codes:			
Structural Steel	ASME Code, Section III, Subsection NF	10CFR72.24(c)(4)	Section 2.0.3
Lifting Trunnions	NUREG-0612 & ANSI N14.6	10CFR72.24(c)(4)	Section 1.2.1.4
Dead Weights [†] :			
Max. Empty Cask:			
w/top lid and pool lid installed and water jacket filled	143,500 lb. (HI-TRAC 125) 102,000 lb. (HI-TRAC 100) 102,000 lb. (HI-TRAC 100D) 146,000 lb. (HI-TRAC 125D)	R.G. 3.61	Table 3.2.2
w/top lid and transfer lid installed and water jacket filled (N/A for HI-TRAC 100D and 125D)	155,000 lb. (HI-TRAC 125D) 155,000 lb. (HI-TRAC 125) 111,000 lb. (HI-TRAC 100)	R.G. 3.61	Table 3.2.2
Max. MPC/HI-TRAC with Yoke (in-pool lift):	250,000 lb. (HI-TRAC 125 and 125D) 200,000 lb. (HI-TRAC 100 and 100D)	R.G. 3.61	Table 3.2.4
Design Cavity Pressures:			
HI-TRAC Cavity	Hydrostatic	ANSI/ANS 57.9	Section 2.2.1.3
Water Jacket Cavity	60 psig (internal)	ANSI/ANS 57.9	Section 2.2.1.3

[†]Weights listed in this table are bounding weights. Actual weights will be less, and will vary based on as-built dimensions of the components, fuel type, and the presence of fuel spacers and non-fuel hardware, as applicable.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444 2.0-29

		TABLE 2.0.3 (continued)	
	· ·	HI-TRAC TRANSFER CASK DESIGN CRITERIA SUMMARY	
•			

Туре	Criteria	Basis	FSAR Reference
Response and Degradation Limits	Protect MPC from deformation	10CFR72.122(b) 10CFR72.122(c)	Section 2.0.3
	Continued adequate performance of HI-TRAC transfer cask	10CFR72.122(b) 10CFR72.122(c)	
	Retrieval of MPC	10CFR72.122(l)	· · · · · · · · · · · · · · · · · · ·
Thermal:			-
Maximum Design Temperature			
Structural Materials	400° F	ASME Code Section II, Part D	Table 2.2.3
Shielding Materials			
Lead	350° F (max.)		Table 2.2.3
Liquid Neutron Shield	307° F (max.)	-	Table 2.2.3
Solid Neutron Shield	300° F (max.) (long term) 350°F (max.) (short term)	Test Data	Appendix 1.B and Table 2.2.3
Insolation:	Averaged Over 24 Hours	10CFR71.71	Section 4.5.1.1.3
Confinement:	None	10CFR72.128(a)(3) & 10CFR72.236(d) & (e)	N/A
Retrievability:		_ _ _ _ _ _ _ _	
Normal and Off-normal	No encroachment on MPC	10CFR72.122(f) & (i)	Section 3.4
After Design-basis (Postulated) Accident			Sectio 3.4
Criticality:	Protection of MPC and Fuel Assemblies	10CFR72.124 & 10CFR72.236(c)	Section 6.1
Radiation Protection/Shielding:		10CFR72.126 & 10CFR72.128(a)(2)	
Transfer Cask (Normal/Off-normal/Accident)			·
Surface	ALARA	10CFR20	Chapters 5 and 10
Position	ALARA	10CFR20	Chapters 5 and 10

HI-STORM FSAR REPORT HI-2002444

Туре	Criteria	Basis	FSAR Reference
Design Bases:			
Spent Fuel Specification	See Table 2.0.1	10CFR72.236(a)	Section 2.1
Normal Design Event Conditions:		10CFR72.122(b)(1)	
Ambient Temperatures:			
Lifetime Average	100° F	ANSI/ANS 57.9	Section 2.2.1.4
Live Load [†]			
Max. Loaded Canister			
Dry	90,000 lb.	R.G. 3.61	Table 3.2.1
Wet (including water in HI- TRAC annulus)	106,570 lb.	R.G. 3.61	Table 3.2.4
Handling:			Section 2.2.1.2
Handling Loads	115% of Dead Weight	CMAA #70	Section 2.2.1.2
Lifting Attachment Acceptance Criteria	1/10 Ultimate 1/6 Yield	NUREG-0612 ANSI N14.6	Section 3.4.3
Attachment/Component Interface Acceptance Criteria	1/3 Yield	Regulatory Guide 3.61	Section 3.4.3
Away from Attachment Acceptance Criteria	ASME Code Level A	ASME Code	Section 3.4.3
Minimum Temperature for Handling Operations	0° F	ANSI/ANS 57.9	Section 2.2.1.2
Wet/Dry Loading	Wet or Dry	-	Section 1.2.2.2
Transfer Orientation	Vertical	-	Section 1.2.2.2
Test Loads:			
Trunnions	300% of vertical design load	NUREG-0612 & ANSI N14.6	Section 9.1.2.1
Off-Normal Design Event Conditions:		10CFR72.122(b)(1)	
Ambient Temperature			·
Minimum	0° F	ANSI/ANS 57.9	Section 2.2.2.2
Maximum	100° F	ANSI/ANS 57.9	Section 2.2.2.2

TABLE 2.0.3 (continued) HI-TRAC TRANSFER CASK DESIGN CRITERIA SUMMARY

[†] Weights listed in this table are bounding weights. Actual weights will be less, and will vary based on as-built dimensions of the components, fuel type, and the presence of fuel spacers and non-fuel hardware, as applicable.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-31

Туре	Criteria	Basis	FSAR Reference
	lent Design Events and Conditions:	10CFR72.24(d)(2)	
		& 10CFR72.94	
Side Drop	42 in.	· -	Section 2.2.3.1
Fire			
Duration	4.8 minutes	10CFR72.122(c)	Section 2.2.3.3
Temperature	1,475° F	10CFR72.122(c)	Section 2.2.3.3
Fuel Rod Rupture	See Table 2.0.1		Section 2.2.3.8
Design-Basis Natural Phenome	non Design Events and Conditions:	10CFR72.92	
		& 10CFR72.122(b)(2)	·
Missiles			Section 2.2.3.5
Automobile			
Weight	1800 kg	NUREG-0800	Table 2.2.5
Velocity	126 mph	NUREG-0800	Table 2.2.5
Rigid Solid Steel Cylinde	er		
Weight	125 kg	NUREG-0800	Table 2.2.5
Velocity	126 mph	NUREG-0800	Table 2.2.5
Diameter	8 in.	NUREG-0800	Table 2.2.5
Steel Sphere			
Weight	0.22 kg	NUREG-0800	Table 2.2.5
Velocity	126 mph	NUREG-0800	Table 2.2.5
Diameter	1 in.	NUREG-0800	Table 2.2.5
Load Combinations:	See Table 2.2.14 and Table 3.1.5	ANSI/ANS-57.9 &	Section 2.2.7
		NUREG-1536	

TABLE 2.0.3 (continued)HI-TRAC TRANSFER CASK DESIGN CRITERIA SUMMARY

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-32

HI-STORM 100 FSAR Revision 6; February 7, 2008

	·	TABLE 2.0.4		· · · · ·	
LIMITING DESIGN	N PARAMETERS FO	OR ISFSI PADS AND	ANCHOR	STUDS FOR	HI-STORM 100A

Item	Maximum Permitted Value [†]	Minimum Permitted Value
	ISFSI PAD	
Pad Thickness		48 inches
Subgrade Young's Modulus from Static Tests (needed if pad is not founded on rock)		10,000 psi
Concrete compressive strength at 28 days		4,000 psi
	ANCHOR STUDS	
Yield Strength at Ambient Temperature	None	80,000 psi
Ultimate Strength at Ambient Temperature	None	125,000 psi
Initial Stud Tension	65 ksi	55 ksi

[†] Pad and anchor stud parameters to be determined site-specifically, except where noted.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.0-33

HI-STORM 100 FSAR Revision 6; February 7, 2008

	Item	Free-Standing	Anchored	Comments
1.	Interface between cask and ISFSI	Contact surface between cask and top surface of ISFSI pad	Same as free-standing with the addition of the bearing surface between the anchor stud nut and the overpack baseplate. (The interface between the anchor stud and the anchor receptacle is at the applicable threaded or bearing surface).	All components below the top surface of the ISFSI pad and in contact with the pad concrete are part of the pad design. A non- integral component such as the anchor stud is not part of the embedment even though it may be put in place when the ISFSI pad is formed. The embedment for the load transfer from the anchor studs to the concrete ISFSI pad shall be exclusively cast-in-place.
2.	Applicable ACI Code	At the discretion of the ISFSI owner. ACI-318 and ACI-349 are available candidate codes.	ACI-349-97. A later edition of this Code may be used if a written reconciliation is performed.	ACI-349-97 recognizes increased structural role of the ISFSI pad in an anchored cask storage configuration and imposes requirements on embedment design.
3.	Limitations on the pad design parameters	Per Table 2.2.9	Per Table 2.0.4	In free-standing cask storage, the non- mechanistic tipover requirement limits the stiffness of the pad. In the anchored storage configuration, increased pad stiffness is permitted; however, the permissible HI- STORM carry height is reduced.
4.	HI-STORM Carry Height	11 inches (for ISFSI pad parameter Set A or Set B) or, otherwise, site-specific. Not applicable if the cask is lifted with a device designed in accordance with ANSI N14.6 and having redundant drop protection features.	Determined site-specifically. Not applicable if the cask is lifted with a device designed in accordance with ANSI N14.6 and having redundant drop protection features.	Appendix 3.A provides the technical basis for free-standing installation. Depending on the final ISFSI pad configuration (thickness, concrete strength, subgrade,etc.), and the method of transport, an allowable carry height may need to be established.

TABLE 2.0.5 ISFSI PAD REQUIREMENTS FOR FREE-STANDING AND ANCHORED HI-STORM INSTALLATION

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

· `.

	Item	Free-Standing	Anchored	Comments
5.	Maximum seismic input on the pad/cask contact surface. G _H is the vectorial sum of the	$G_H + \mu G_V \le \mu$ (see note 1 below)	$G_{\rm H} \leq 2.12$ AND	
	two horizontal ZPAs and G _v is the vertical ZPA		G _V ≤1.5	
6.	Required minimum value of cask to pad static coefficient of friction (μ , must be confirmed by testing if a value greater than 0.53 is used).	Greater than or equal to 0.53 (per Table 2.2.9).	Not applicable	
7.	Applicable Wind and Large Missile Loads	Per Table 2.2.4, missile and wind loading different from the tabulated values, require 10CFR 72.48 evaluation	The maximum overturning moment at the base of the cask due to lateral missile and/or wind action must be less than 1×10^7 ft- lb.	The bases are provided in Section 3.4.8 for free-standing casks; the limit for anchored casks ensures that the anchorage system will have the same structural margins established for seismic loading.
8.	Small and medium missiles (penetrant missile)	Per Table 2.2.5, missiles and wind loading different from the tabulated value, require 10CFR 72.48 evaluation.	Same as for free-standing cask construction.	
9.	Design Loadings for the ISFSI Pad	Per load combinations in Section 2.0.4 using site-specific load.	Same as for free-standing cask.	

 TABLE 2.0.5 (continued)

 ISFSI PAD REQUIREMENTS FOR FREE-STANDING AND ANCHORED HI-STORM INSTALLATION

Note 1 – GH and GV may be the coincident values of the instantaneous horizontal and vertical accelerations, and the inequality shall be evaluated at each time step.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.1 SPENT FUEL TO BE STORED

2.1.1 Determination of The Design Basis Fuel

The HI-STORM 100 System is designed to store most types of fuel assemblies generated in the commercial U.S. nuclear industry. Boiling-water reactor (BWR) fuel assemblies have been supplied by The General Electric Company (GE), Siemens, Exxon Nuclear, ANF, UNC, ABB Combustion Engineering, and Gulf Atomic. Pressurized-water reactor (PWR) fuel assemblies are generally supplied by Westinghouse, Babcock & Wilcox, ANF, and ABB Combustion Engineering. ANF, Exxon, and Siemens are historically the same manufacturing company under different ownership. Within this report, SPC is used to designate fuel manufactured by ANF, Exxon, or Siemens. Publications such as Refs. [2.1.1] and [2.1.2] provide a comprehensive description of fuel discharged from U.S. reactors. A central object in the design of the HI-STORM 100 System is to ensure that a majority of SNF discharged from the U.S. reactors can be stored in one of the MPCs.

The cell openings and lengths in the fuel basket have been sized to accommodate the BWR and PWR assemblies listed in Refs. [2.1.1] and [2.1.2] except as noted below. Similarly, the cavity length of the multi-purpose canisters has been set at a dimension which permits storing most types of PWR fuel assemblies and BWR fuel assemblies with or without fuel channels. The one exception is as follows:

i.

The South Texas Units 1 & 2 SNF, and CE 16x16 System 80 SNF are too long to be accommodated in the available MPC cavity length.

In addition to satisfying the cross sectional and length compatibility, the active fuel region of the SNF must be enveloped in the axial direction by the neutron absorber located in the MPC fuel basket. Alignment of the neutron absorber with the active fuel region is ensured by the use of upper and lower fuel spacers suitably designed to support the bottom and restrain the top of the fuel assembly. The spacers axially position the SNF assembly such that its active fuel region is properly aligned with the neutron absorber in the fuel basket. Figure 2.1.5 provides a pictorial representation of the fuel spacers positioning the fuel assembly active fuel region. Both the upper and lower fuel spacers are designed to perform their function under normal, off-normal, and accident conditions of storage.

In summary, the geometric compatibility of the SNF with the MPC designs does not require the definition of a design basis fuel assembly. This, however, is not the case for structural, confinement, shielding, thermal-hydraulic, and criticality criteria. In fact, a particular fuel type in a category (PWR or BWR) may not control the cask design in all of the above-mentioned criteria. To ensure that no SNF listed in Refs. [2.1.1] and [2.1.2] which is geometrically admissible in the MPC is precluded, it is necessary to determine the governing fuel specification for each analysis criterion. To make the necessary determinations, potential candidate fuel assemblies for each qualification criterion were considered. Table 2.1.1 lists the PWR fuel assemblies that were evaluated. These fuel assemblies were evaluated to define the governing design criteria for PWR fuel. The BWR fuel assembly designs evaluated are listed in Table 2.1.2. Tables 2.1.3 and 2.1.4 provide the fuel characteristics determined to be acceptable for storage in the HI-STORM 100 System. Section 2.1.9 summarizes the authorized contents for the HI-STORM 100 System. Any fuel assembly that has fuel characteristics

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444 within the range of Tables 2.1.3 and 2.1.4 and meets the other limits specified in Section 2.1.9 is acceptable for storage in the HI-STORM 100 System. Tables 2.1.3 and 2.1.4 present the groups of fuel assembly types defined as "array/classes" as described in further detail in Chapter 6. Table 2.1.5 lists the BWR and PWR fuel assembly designs which are found to govern for three qualification criteria, namely reactivity, shielding, and thermal. Substantiating results of analyses for the governing assembly types are presented in the respective chapters dealing with the specific qualification topic. Additional information on the design basis fuel definition is presented in the following subsections.

2.1.2 Intact SNF Specifications

Intact fuel assemblies are defined as fuel assemblies without known or suspected cladding defects greater than pinhole leaks and hairline cracks, and which can be handled by normal means. The design payload for the HI-STORM 100 System is intact ZR or stainless steel (SS) clad fuel assemblies with the characteristics listed in Tables 2.1.17 through 2.1.24.

Intact fuel assemblies without fuel rods in fuel rod locations cannot be loaded into the HI-STORM 100 unless dummy fuel rods, which occupy a volume greater than or equal to the original fuel rods, replace the missing rods prior to loading. Any intact fuel assembly that falls within the geometric, thermal, and nuclear limits established for the design basis intact fuel assembly, as defined in Section 2.1.9 can be safely stored in the HI-STORM 100 System.

The range of fuel characteristics specified in Tables 2.1.3 and 2.1.4 have been evaluated in this FSAR and are acceptable for storage in the HI-STORM 100 System within the decay heat, burnup, and cooling time limits specified in Section 2.1.9 for intact fuel assemblies.

2.1.3 <u>Damaged SNF and Fuel Debris Specifications</u>

Damaged fuel and fuel debris are defined in Table 1.0.1.

To aid in loading and unloading, damaged fuel assemblies and fuel debris will be loaded into stainless steel damaged fuel containers (DFCs) provided with mesh screens having between 40x40 and 250x250 openings per inch, for storage in the HI-STORM 100 System (see Figures 2.1.1 and 2.1.2B, C, and D). The MPC-24E and MPC 32 are designed to accommodate PWR damaged fuel. The MPC-24EF and MPC-32F are designed to accommodate PWR damaged fuel and fuel debris. The MPC-68 is designed to accommodate BWR damaged fuel. The MPC-68F and MPC-68FF are designed to accommodate BWR damaged fuel and fuel debris. The appropriate structural, thermal, shielding, criticality, and confinement analyses have been performed to account for damaged fuel and fuel debris and are described in their respective chapters that follow. The limiting design characteristics for damaged fuel assemblies and restrictions on the number and location of damaged fuel containers authorized for loading in each MPC model are provided in Section 2.1.9. Dresden Unit 1 fuel assemblies contained in Transnuclear-designed damaged fuel canisters and one Dresden Unit 1 thoria rod canister have been approved for storage directly in the HI-STORM 100 System without re-packaging (see Figures 2.1.2 and 2.1.2A).

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR
REPORT HI-2002444

MPC contents classified as fuel debris are required to be stored in DFCs and in the applicable "F" model MPC as specified in Section 2.1.9. The "F" (or "FF") indicates the MPC is qualified for storage of intact fuel, damaged fuel, and fuel debris, in quantities and locations specified in Section 2.1.9. The basket designs for the standard and "F" model MPCs are identical. The lid and shell designs of the "F" models are unique in that the upper shell portion of the canister is thickened for additional strength needed under hypothetical accident conditions of transportation under 10 CFR 71. This design feature is not required for dry storage, but must be considered in fuel loading for dry storage to ensure the dual purpose function of the MPC by eliminating the need to re-package the fuel for transportation. Figure 2.1.9 shows the details of the differences between the standard and "F" model MPC shells. These details are common for both the PWR and BWR series MPC models.

2.1.4 Deleted

2.1.5 <u>Structural Parameters for Design Basis SNF</u>

The main physical parameters of an SNF assembly applicable to the structural evaluation are the fuel assembly length, envelope (cross sectional dimensions), and weight. These parameters, which define the mechanical and structural design, are specified in Section 2.1.9. The centers of gravity reported in Section 3.2 are based on the maximum fuel assembly weight. Upper and lower fuel spacers (as appropriate) maintain the axial position of the fuel assembly within the MPC basket and, therefore, the location of the center of gravity. The upper and lower fuel spacers are designed to withstand normal, off-normal, and accident conditions of storage. An axial clearance of approximately 2 to 2-1/2 inches is provided to account for the irradiation and thermal growth of the fuel assemblies. The suggested upper and lower fuel spacer lengths are listed in Tables 2.1.9 and 2.1.10. In order to qualify for storage in the MPC, the SNF must satisfy the physical parameters listed in Section 2.1.9.

2.1.6 <u>Thermal Parameters for Design Basis SNF</u>

The principal thermal design parameter for the stored fuel is the peak fuel cladding temperature; which is a function of the maximum heat generation rate per assembly and the decay heat removal capabilities of the HI-STORM 100 System. No attempt is made to link the maximum allowable decay heat per fuel assembly with burnup, enrichment, or cooling time. Rather, the decay heat per fuel assembly is adjusted to yield peak fuel cladding temperatures with an allowance for margin to the temperature limit. The same fuel assembly decay heats are used for all fuel assembly designs within a given class of fuel assemblies (i.e., ZR clad PWR, stainless steel clad BWR, etc.).

To ensure the permissible fuel cladding temperature limits are not exceeded, Section 2.1.9 specifies the allowable decay heat per assembly for each MPC model. For both uniform and regionalized loading of moderate and high burnup fuel assemblies, the allowable decay heat per assembly is presented in Section 2.1.9.

Section 2.1.9 also includes separate cooling time, burnup, and decay heat limits for uniform fuel loading and regionalized fuel loading. Regionalized loading allows higher heat emitting fuel assemblies to be stored in the center fuel storage locations than would otherwise be authorized for storage under uniform loading conditions.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-3

The fuel cladding temperature is also affected by the heat transfer characteristics of the fuel assemblies. There is no single fuel assembly design used in all thermal calculations that is bounding of all others. Instead, each thermal calculation, comprising the overall thermal analysis presented in Chapter 4, was performed using the fuel assembly design that results in the most conservative result for the individual calculation. By always using the fuel assembly design that is most conservative for a particular calculation, it is ensured that each calculation is bounding for all fuel assembly designs. The bounding fuel assembly design for each thermal calculation and fuel type is provided in Table 2.1.5.

Finally, the axial variation in the heat generation rate in the design basis fuel assembly is defined based on the axial burnup distribution. For this purpose, the data provided in Refs. [2.1.7] and [2.1.8] are utilized and summarized in Table 2.1.11 and Figures 2.1.3 and 2.1.4 for reference. These distributions are representative of fuel assemblies with the design basis burnup levels considered. These distributions are used for analyses only, and do not provide a criteria for fuel assembly acceptability for storage in the HI-STORM 100 System.

Except for MPC-68F, fuel may be stored in the MPC using one of two storage strategies, namely, uniform loading and regionalized loading. Uniform loading allows storage of any fuel assembly in any fuel storage location, subject to additional restrictions, such as those for loading of fuel assemblies containing non-fuel hardware as defined in Table 1.0.1. Regionalized fuel loading allows for higher heat emitting fuel assemblies to be stored in the central core basket storage locations (inner region) with lower heat emitting fuel assemblies in the peripheral fuel storage locations (outer region). Regionalized loading allows storage of higher heat emitting fuel assemblies to adding allows storage of higher heat emitting fuel assemblies in the peripheral fuel storage locations (outer region). Regionalized loading allows storage of higher heat emitting fuel assemblies than would otherwise be permitted using the uniform loading strategy. The definition of the regions for each MPC model provided in Table 2.1.13. Regionalized fuel loading is not permitted in MPC-68F.

2.1.7 Radiological Parameters for Design Basis SNF

The principal radiological design criteria for the HI-STORM 100 System are the 10CFR72.104 site boundary dose rate limits and maintaining operational dose rates as low as reasonably achievable (ALARA). The radiation dose is directly affected by the gamma and neutron source terms of the SNF assembly.

The gamma and neutron sources are separate and are affected differently by enrichment, burnup, and cooling time. It is recognized that, at a given burnup, the radiological source terms increase monotonically as the initial enrichment is reduced. The shielding design basis fuel assembly, therefore, is evaluated at conservatively high burnups, low cooling times, and low enrichments, as discussed in Chapter 5. The shielding design basis fuel assembly thus bounds all other fuel assemblies.

The design basis dose rates can be met by a variety of burnup levels and cooling times. Section 2.1.9 provides the procedure for determining burnup and cooling time limits for all of the authorized fuel assembly array/classes for both uniform fuel loading and regionalized loading. Table 2.1.11 and Figures 2.1.3 and 2.1.4 provide the axial distribution for the radiological source terms for PWR and BWR fuel assemblies based on the axial burnup distribution. The axial burnup distributions are representative of fuel assemblies with the design basis burnup levels considered. These distributions

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444 are used for analyses only, and do not provide a criteria for fuel assembly acceptability for storage in the HI-STORM 100 System.

Thoria rods placed in Dresden Unit 1 Thoria Rod Canisters meeting the requirements of Table 2.1.12 and Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source have been qualified for storage. Up to one Thoria Rod Canister is authorized for storage in combination with other intact and damaged fuel, and fuel debris as specified in Section 2.1.9.

Non-fuel hardware, as defined in Table 1.0.1, has been evaluated and is authorized for storage in the PWR MPCs as specified in Section 2.1.9.

2.1.8 Criticality Parameters for Design Basis SNF

As discussed earlier, the MPC-68, MPC-68F, MPC-68FF, MPC-32 and MPC-32F feature a basket without flux traps. In the aforementioned baskets, there is one panel of neutron absorber between two adjacent fuel assemblies. The MPC-24, MPC-24E, and MPC-24EF employ a construction wherein two neighboring fuel assemblies are separated by two panels of neutron absorber with a water gap between them (flux trap construction).

The minimum ¹⁰B areal density in the neutron absorber panels for each MPC model is shown in Table 2.1.15.

For all MPCs, the ¹⁰B areal density used for the criticality analysis is conservatively established below the minimum values shown in Table 2.1.15. For Boral, the value used in the analysis is 75% of the minimum value, while for METAMIC, it is 90% of the minimum value. This is consistent with NUREG-1536 [2.1.5] which suggests a 25% reduction in ¹⁰B areal density credit when subject to standard acceptance tests, and which allows a smaller reduction when more comprehensive tests of the areal density are performed.

The criticality analyses for the MPC-24, MPC-24E and MPC-24EF (all with higher enriched fuel) and for the MPC-32 and MPC-32F were performed with credit taken for soluble boron in the MPC water during wet loading and unloading operations. Table 2.1.14 and 2.1.16 provide the required soluble boron concentrations for these MPCs.

2.1.9 Summary of Authorized Contents

Tables 2.1.3, 2.1.4, 2.1.12, and 2.1.17 through 2.1.29 together specify the limits for spent fuel and non-fuel hardware authorized for storage in the HI-STORM 100 System. The limits in these tables are derived from the safety analyses described in the following chapters of this FSAR. Fuel classified as damaged fuel assemblies or fuel debris must be stored in damaged fuel containers for storage in the HI-STORM 100 System.

Tables 2.1.17 through 2.1.24 are the baseline tables that specify the fuel assembly limits for each of the MPC models, with appropriate references to the other tables in this section for certain other limits. Tables 2.1.17 through 2.1.24 refer to Section 2.1.9.1 for ZR-clad fuel limits on minimum cooling time, maximum decay heat, and maximum burnup for uniform and regionalized fuel loading.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Limits on decay heat, burnup, and cooling time for stainless steel-clad fuel are provided in Tables 2.1.17 through 2.1.24.

2.1.9.1 Decay Heat, Burnup, and Cooling Time Limits for ZR-Clad Fuel

Each ZR-clad fuel assembly and any PWR integral non-fuel hardware (NFH) to be stored in the HI-STORM 100 System must meet the following limits, in addition to meeting the physical limits specified elsewhere in this section, to be authorized for storage in the HI-STORM 100 System. The contents of each fuel storage location (fuel assembly and NFH) to be stored must be verified to have, as applicable:

- A decay heat less than or equal to the maximum allowable value.
- An assembly average enrichment greater than or equal to the minimum value used in determining the maximum allowable burnup.
- A burnup less than or equal to the maximum allowable value.
- A cooling time greater than or equal to the minimum allowable value.

The maximum allowable ZR-clad fuel storage location decay heat values are determined using the methodology described in Section 2.1.9.1.1 or 2.1.9.1.2 depending on whether uniform fuel loading or regionalized fuel loading is being implemented[†]. The decay heat limits are independent of burnup, cooling time, or enrichment and are based strictly on the thermal analysis described in Chapter 4. Decay heat limits must be met for all contents in a fuel storage location (i.e., fuel and PWR non-fuel hardware, as applicable).

The maximum allowable average burnup per fuel storage location is determined by calculation as a function of minimum enrichment, maximum allowable decay heat, and minimum cooling time from 3 to 20 years, as described in Section 2.1.9.1.3.

Section 12.2.10 describes how compliance with these limits may be verified, including practical examples.

2.1.9.1.1 Uniform Fuel Loading Decay Heat Limits for ZR-Clad Fuel

Table 2.1.26 provides the maximum allowable decay heat per fuel storage location for ZR-clad fuel in uniform fuel loading for each MPC model.

Note that the stainless steel-clad fuel limits apply to all fuel in the MPC, if a mixture of stainless steel and ZRclad fuel is stored in the same MPC. The stainless steel-clad fuel assembly decay heat limits may be found in Table 2.1.17 through 2.1.24

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-6

2.1.9.1.2 Regionalized Fuel Loading Decay Heat Limits for ZR-Clad Fuel

Table 2.1.27 provides the maximum allowable decay heat per fuel storage location for ZR-clad fuel in both the inner and outer regions for regionalized fuel loading in each MPC model.

2.1.9.1.3 Burnup Limits as a Function of Cooling Time for ZR-Clad Fuel

The maximum allowable ZR-clad fuel assembly average burnup varies with the following parameters, based on the shielding analysis in Chapter 5:

- Minimum required fuel assembly cooling time
- Maximum allowable fuel assembly decay heat
- Minimum fuel assembly average enrichment

The calculation described in this section is used to determine the maximum allowable fuel assembly burnup for minimum cooling times between 3 and 20 years, using maximum decay heat and minimum enrichment as input values. This calculation may be used to create multiple burnup versus cooling time tables for a particular fuel assembly array/class and different minimum enrichments. The allowable maximum burnup for a specific fuel assembly may be calculated based on the assembly's particular enrichment and cooling time.

- (i) Choose a fuel assembly minimum enrichment, E_{235} .
- (ii) Calculate the maximum allowable fuel assembly average burnup for a minimum cooling time between 3 and 20 years using the equation below:

Bu = (A x q) + (B x q²) + (C x q³) + [D x (E₂₃₅)²] + (E x q x E₂₃₅) + (F x q² x E₂₃₅) + G

Equation 2.1.9.3

Where:

- Bu = Maximum allowable assembly average burnup (MWD/MTU)
- q = Maximum allowable decay heat per fuel storage location determined in Section 2.1.9.1 or 2.1.9.2 (kW)
- E_{235} = Minimum fuel assembly average enrichment (wt. % ²³⁵U) (e.g., for 4.05 wt. %, use 4.05)

A through G = Coefficients from Tables 2.1.28 or 2.1.29 for the applicable fuel assembly array/class and minimum cooling time.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1.9.1.4 <u>Other Considerations</u>

In computing the allowable maximum fuel storage location decay heats and fuel assembly average burnups, the following requirements apply:

- Calculated burnup limits shall be rounded down to the nearest integer
- Calculated burnup limits greater than 68,200 MWD/MTU for PWR fuel and 65,000 MWD/MTU for BWR fuel must be reduced to be equal to these values.
- Linear interpolation of calculated burnups between cooling times for a given fuel assembly maximum decay heat and minimum enrichment is permitted. For example, the allowable burnup for a minimum cooling time of 4.5 years may be interpolated between those burnups calculated for 4 and 5 years.
- ZR-clad fuel assemblies must have a minimum enrichment, as defined in Table 1.0.1, greater than or equal to the value used in determining the maximum allowable burnup per Section 2.1.9.1.3 to be authorized for storage in the MPC.
- When complying with the maximum fuel storage location decay heat limits, users must account for the decay heat from both the fuel assembly and any PWR non-fuel hardware, as applicable for the particular fuel storage location, to ensure the decay heat emitted by all contents in a storage location does not exceed the limit.

Section 12.2.10 provides a practical example of determining fuel storage location decay heat, burnup, and cooling time limits and verifying compliance for a set of example fuel assemblies.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

HI-STORM 100 FSAR Revision 6; February 7, 2008

Table 2.1.1

PWR FUEL ASSEMBLIES EVALUATED TO DETERMINE DESIGN BASIS SNF

Assembly Class	Array Type
B&W 15x15	All
B&W 17x17	All
CE 14x14	All
CE 16x16	All except System 80 TM
WE 14x14	All
WE 15x15	All
WE 17x17	All
St. Lucie	All
Ft. Calhoun	All
Haddam Neck (Stainless Steel Clad)	All
San Onofre 1 (Stainless Steel Clad)	All
Indian Point 1	All

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Table 2.1.2

BWR FUEL ASSEMBLIES EVALUATED TO DETERMINE DESIGN BASIS SNF

Assembly Class	Array Type					
GE BWR/2-3	All 7x7	All 8x8	All 9x9	All 10x10		
GE BWR/4-6	All 7x7	All 8x8	All 9x9	All 10x10		
Humboldt Bay	All 6x6	All 7x7 (ZR Clad)				
Dresden-1	All 6x6	All 8x8				
LaCrosse (Stainless Steel Clad)	All			· · ·		

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-10

' Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Fuel Assembly Array/ Class	14x14 A	14x14 B	14x14 C	14x14 D	14x14E
Clad Material (Note 2)	ZR	ZR	ZR	SS	SS
Design Initial U (kg/assy.) (Note 3)	<u><</u> 365	<u>< 412</u>	<u><</u> 438	<u>≤</u> 400	<u>≤</u> 206
Initial Enrichment (MPC-24, 24E, and 24EF without soluble boron credit) (wt % ²³⁵ U) (Note 7)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	≤ 4.0 (24) ≤ 5.0 (24E/24EF)	N/A N/A
Initial Enrichment (MPC-24, 24E, 24EF, 32 or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	<u>≤</u> 5.0	≤ 5.0	<u>≤</u> 5.0	≤ 5.0	<pre><4.5 (MPC- 32/32F only - Note 9)</pre>
No. of Fuel Rod Locations	179	179	176	180	173
Fuel Clad O.D. (in.)	≥ 0.400	≥ 0.417	≥ 0.440	≥ 0.422	. <u>≥</u> 0.3415
Fuel Clad I.D. (in.)	≤ 0.3514	<u>≤</u> 0.3734	<u>≤</u> 0.3880	<u>≤</u> 0.3890	<u>≤</u> 0.3175
Fuel Pellet Dia. (in.) (Note 8)	<u>≤</u> 0.3444	<u>≤</u> 0.3659	<u>≤</u> 0.3805	<u>≤</u> 0.3835	<u>≤</u> 0.3130
Fuel Rod Pitch (in.)	<u>≤</u> 0.556	<u>≤</u> 0.556	<u>≤</u> 0.580	<u>≤</u> 0.556	Note 6
Active Fuel Length (in.)	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 144	<u>≤</u> 102
No. of Guide and/or Instrument Tubes	17	17	5 (Note 4)	16	0
Guide/Instrument Tube Thickness (in.)	<u>≥</u> 0.017	<u>≥</u> 0.017	≥ 0.038	<u>≥</u> 0.0145	N/A

 Table 2.1.3

 PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

HI-STORM FSAR REPORT HI-2002444

ļ

2.1-11

Fuel Assembly Array/Class	15x15 A	15x15 B	15x15 C	15x15 D	15x15 E	15x15 F
Clad Material (Note 2)	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 473	<u>≤</u> 473	<u>≤</u> 473	<u>≤</u> 495	<u>≤</u> 495	<u>≤</u> 495
Initial Enrichment (MPC-24, 24E, and 24EF without soluble boron credit) (wt % ²³⁵ U) (Note 7)	≤ 4.1 (24) ≤ 4.5 (24E/24EF)					
Initial Enrichment (MPC-24, 24E, 24EF, 32 or 32F with soluble boron credit – see Note 5) (wt % ²³⁵ U)	<u>≤</u> 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0	≤ 5.0
No. of Fuel Rod Locations	204	204	204	208	208	208
Fuel Clad O.D. (in.)	<u>≥</u> 0.418	<u>≥</u> 0.420	<u>≥</u> 0.417	≥ 0.430	<u>≥</u> 0.428	<u>≥</u> 0.428
Fuel Clad I.D. (in.)	<u>≤</u> 0.3660	<u>≤</u> 0.3736	<u>≤</u> 0.3640	≤ 0.3800	<u>≤</u> 0.3790	≤ 0.3820
Fuel Pellet Dia. (in.) (Note 8)	<u>≤</u> 0.3580	<u>≤</u> 0.3671	<u>≤</u> 0.3570	≤ 0.3735	<u>≤</u> 0.3707	≤ 0.3742
Fuel Rod Pitch (in.)	<u>≤</u> 0.550	<u>≤</u> 0.563	≤ 0.563	≤ 0.568	<u><</u> 0.568	<u>≤</u> 0.568
Active Fuel Length (in.)	<u>≤ 150</u>	<u>≤</u> 150	<u>≤</u> 150	<u>≤ 150</u>	<u>≤</u> 150	<u>≤</u> 150
No. of Guide and/or Instrument Tubes	21	21	21	17	17	17
Guide/Instrument Tube Thickness (in.)	<u>≥</u> 0.0165	≥ 0.015	≥ 0.0165	≥ 0.0150	<u>≥</u> 0.0140	≥ 0.0140

Table 2.1.3 (continued) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly Array and Class	15x15 G	15x15H	16x16 A	17x17A	17x17 B	17x17 C
Clad Material (Note 2)	SS	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note .3)	<u>≤</u> 420	<u>≤</u> 495	<u>≤</u> 448	≤ 4 33	≤ 474	<u>≤</u> 480
Initial Enrichment (MPC-24, 24E, and 24EF without soluble boron credit) (wt % ²³⁵ U) (Note 7)	≤ 4.0 (24) ≤ 4.5 (24E/24EF)	≤3.8 (24) ≤4.2 (24E/24EF)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	≤ 4.0 (24) ≤ 4.4 (24E/24EF)	≤ 4.0 (24) ≤ 4.4 (24E/24EF)	≤ 4.0 (24) ≤ 4.4 (24E/24EF)
Initial Enrichment (MPC-24, 24E, 24EF, 32 or 32F with soluble boron credit – see Note 5) (wt % ²³⁵ U)	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	≤ 5.0	≤ 5.0	≤ 5.0
No. of Fuel Rod Locations	204	208	236	264	264	264
Fuel Clad O.D. (in.)	≥ 0.422	≥ 0.414	≥ 0.382	≥ 0.360	≥ 0.372	≥ 0.377
Fuel Clad I.D. (in.)	<u>≤</u> 0.3890	<u>≤</u> 0.3700	≤ 0.3320	≤ 0.3150	<u>≤</u> 0.3310	<u>≤</u> 0.3330
Fuel Pellet Dia. (in.) (Note 8)	<u>≤</u> 0.3825	<u>≤</u> 0.3622	<u>≤</u> 0.3255	<u>≤</u> 0.3088	≤ 0.3232	≤ 0.3252
Fuel Rod Pitch (in.)	<u>≤ 0.563</u>	<u>≤</u> 0.568	<u>≤</u> 0.506	<u>≤</u> 0.496	≤ 0.496	<u>≤</u> 0.502
Active Fuel length (in.)	<u><</u> 144	<u>≤ 150</u>	<u>≤</u> 150	<u>< 150</u>	<u>≤</u> 150	<u>≤</u> 150
No. of Guide and/or Instrument Tubes	21	17	5 (Note 4)	25	25	25
Guide/Instrument Tube Thickness (in.)	<u>≥</u> 0.0145	≥ 0.0140	≥ 0.0400	≥ 0.016	≥ 0.014	≥ 0.020

Table 2.1.3 (continued) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

HI-STORM FSAR REPORT HI-2002444

Ŧ,

2.1-13

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Table 2.1.3 (continued) PWR FUEL ASSEMBLY CHARACTERISTICS

Notes:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- 2. See Table 1.0.1 for the definition of "ZR."
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each PWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 2.0 percent for comparison with users' fuel records to account for manufacturer's tolerances.
- 4. Each guide tube replaces four fuel rods.
- 5. Soluble boron concentration per Tables 2.1.14 and 2.1.16, as applicable.
- 6. This fuel assembly array/class includes only the Indian Point Unit 1 fuel assembly. This fuel assembly has two pitches in different sectors of the assembly. These pitches are 0.441 inches and 0.453 inches.
- 7. For those MPCs loaded with both intact fuel assemblies and damaged fuel assemblies or fuel debris, the maximum initial enrichment of the intact fuel assemblies, damaged fuel assemblies and fuel debris is 4.0 wt.% ²³⁵U.
- 8. Annular fuel pellets are allowed in the top and bottom 12" of the active fuel length.
- 9. This fuel assembly array/class includes only the Indian Point Unit 1 fuel assembly. This assembly class has been analyzed throughout this FSAR in all PWR MPCs, however it is only to be loaded into the MPC-32/32F.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-14

Fuel Assembly						
Array and Class	6x6 A	6x6 B	6x6 C	7x7 A	7x7 B	8x8 A
Clad Material (Note 2)	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u>< 110</u>	<u>≤</u> 110	<u>≤</u> 110	<u>≤</u> 100	<u>≤</u> 198	_≤120
Maximum Planar- Average Initial Enrichment (wt.% ²³⁵ U) (Note 14)	≤ 2 .7	\leq 2.7 for UO ₂ rods. See Note 4 for MOX rods	<u>≤</u> 2.7	<u>≤</u> 2.7	<u>≤</u> 4.2	<u>≤</u> 2.7
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 4.0	<u>≤</u> 4.0	<u>≤</u> 4.0	<u>≤</u> 5.5	≤ 5.0	<u>≤</u> 4.0
No. of Fuel Rod Locations	35 or 36	35 or 36 (up to 9 MOX rods)	36	49	49	63 or 64
Fuel Clad O.D. (in.)	<u>≥</u> 0.5550	≥ 0.5625	≥ 0.5630	<u>≥</u> 0.4860	<u>≥</u> 0.5630	≥ 0.4120
Fuel Clad I.D. (in.)	<u>≤</u> 0.5105	<u>≤</u> 0.4945	<u>≤</u> 0.4990	<i>≤</i> 0.4204	<u>≤</u> 0.4990	≤ 0.3620
Fuel Pellet Dia. (in.)	≤0.4980	<u>≤</u> 0.4820	≤ 0.4880	≤0.4110	<u>≤</u> 0.4910	≤ 0.3580
Fuel Rod Pitch (in.)	≤0.710	≤0.710	<u>≤</u> 0.740	≤0.631	≤ 0.738	≤ 0.523
Active Fuel Length (in.)	<u>≤</u> 120	<u>≤</u> 120	<u>≤</u> 77.5	<u>≤</u> 80	<u>≤</u> 150	≤ 120
No. of Water Rods (Note 11)	1 or 0	1 or 0	0	0	0	1 or 0
Water Rod Thickness (in.)	> 0	> 0	N/A	N/A	N/A	≥0
Channel Thickness (in.)	<u>≤</u> 0.060	≤ 0.060	<u>≤</u> 0.060	<u>≤</u> 0.060	<u>≤</u> 0.120	<u>≤</u> 0.100

Table 2.1.4BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

HI-STORM FSAR REPORT HI-2002444

2.1-15

Fuel Assembly Array and Class	8x8 B	8x8 C	8x8 D	8x8 E	8x8F	9x9 A
Clad Material (Note 2)	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 192	<u>≤</u> 190	<u>≤</u> 190	<u>≤</u> 190	<u>≤</u> 191	<u>≤</u> 180
Maximum Planar- Average Initial Enrichment (wt.% ²³⁵ U) (Note 14)	<u>≤</u> 4.2	<u>≤</u> 4.2	<u>≤</u> 4.2	<u>≤</u> 4.2	<u>≤</u> 4.0	<u>≤</u> 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<i>≤</i> 5.0	<u>≤</u> 5.0	≤ 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u><</u> 5.0
No. of Fuel Rod Locations	63 or 64	62	60 or 61	59	64	74/66 (Note 5)
Fuel Clad O.D. (in.)	<u>≥</u> 0.4840	<u>≥</u> 0.4830	<u>≥</u> 0.4830	<u>≥</u> 0.4930	<u>≥</u> 0.4576	≥ 0.4400
Fuel Clad I.D. (in.)	<i>≤</i> 0.4295	<u>≤ 0.4250</u>	≤ 0.4230	≤ 0.4250	≤ 0.3996	<u></u> ≤0.3840
Fuel Pellet Dia. (in.)	<u>≤</u> 0.4195	≤ 0.4160	<u>≤</u> 0.4140	<u>≤</u> 0.4160	<u>≤</u> 0.3913	<u>≤</u> 0.3760
Fuel Rod Pitch (in.)	<u>≤</u> 0.642	<u>≤</u> 0.641	<u>≤</u> 0.640	<u>≤</u> 0.640	≤ 0.609	<u>≤</u> 0.566
Design Active Fuel Length (in.)	<u>≤</u> 150	<u>< 150</u>	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 150
No. of Water Rods (Note 11)	1 or 0	2	1 - 4 (Note 7)	5	N/A (Note 12)	2
Water Rod Thickness (in.)	≥ 0.034	> 0.00	> 0.00	≥ 0.034	<u>≥</u> 0.0315	> 0.00
Channel Thickness (in.)	≤ 0.120	<u>≤</u> 0.120	<u>≤</u> 0.120	<u>≤</u> 0.100	≤ 0.055	≤ 0.120

Table 2.1.4 (continued) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

HI-STORM FSAR REPORT HI-2002444 Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Fuel Assembly Array and Class	9x9 B	9x9 C	9x9 D	9x9 E (Note 13)	9x9 F (Note 13)	9x9 G
Clad Material (Note 2)	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 180	<u>≤</u> 182	<u>≤ 182</u>	<u>≤</u> 183	<u><</u> 183	<u><</u> 164
Maximum Planar- Average Initial Enrichment (wt.% ²³⁵ U) (Note 14)	<u>≤</u> 4.2	<u>≤</u> 4.2	<u>≤</u> 4.2	<u>≤</u> 4.0	<u>≤</u> 4.0	<u>≤</u> 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u><</u> 5.0	≤ 5.0	<u>≤</u> 5.0
No. of Fuel Rod Locations	72	80	79	76	76	72
Fuel Clad O.D. (in.)	≥ 0.4330	≥ 0.4230	≥ 0.4240	≥ 0.4170	≥ 0.4430	≥ 0.4240
Fuel Clad I.D. (in.)	<u><</u> 0.3810	<u>≤</u> 0.3640	<u>≤</u> 0.3640	<u>≤</u> 0.3640	<u>≤</u> 0.3860	<u>≤</u> 0.3640
Fuel Pellet Dia. (in.)	<u>≤</u> 0.3740	<u>≤</u> 0.3565	<u>≤</u> 0.3565	≤0.3530	<u>≤</u> 0.3745	<u>≤</u> 0.3565
Fuel Rod Pitch (in.)	<u>≤</u> 0.572	<i>≤</i> 0.572	<u>≤</u> 0.572	≤ 0.572	≤ 0.572	≤ 0.572
Design Active Fuel Length (in.)	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 150
No. of Water Rods (Note 11)	1 (Note 6)	1	2	5	5	1 (Note 6)
Water Rod Thickness (in.)	> 0.00	≥ 0.020	≥ 0.0300	≥ 0.0120	≥ 0.0120	≥ 0.0320
Channel Thickness (in.)	≤ 0.120	<u>≤</u> 0.100	<u>≤</u> 0.100	≤0.120	<u>≤</u> 0.120	<u>≤</u> 0.120

Table 2.1.4 (continued)BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

HI-STORM FSAR REPORT HI-2002444

2.1-17

Fuel Assembly Array and Class	10x10 A	10x10 B	10x10 C	10x10 D	10x10 E
Clad Material (Note 2)	ZR	ZR	ZR	SS	SS
Design Initial U (kg/assy.) (Note 3)	í <u>≤</u> 188	<u>< 188</u>	<u>≤</u> 179	<u>≤</u> 125	≤ 125
Maximum Planar-Average Initial Enrichment (wt.% ²³⁵ U) (Note 14)	<u>≤</u> 4.2	≤ 4.2	≤ 4.2	<u>≤</u> 4.0	<u>≤</u> 4.0
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0
No. of Fuel Rod Locations	92/78 (Note 8)	91/83 (Note 9)	96	100	96
Fuel Clad O.D. (in.)	≥ 0.4040	≥ 0.3957	≥ 0.3780	≥ 0.3960	≥ 0.3940
Fuel Clad I.D. (in.)	\leq 0.3520	≤0.3480	<i>≤</i> 0.3294	≤ 0.3560	≤ 0.3500
Fuel Pellet Dia. (in.)	<u>≤</u> 0.3455	≤ 0.3420	<u>≤</u> 0.3224	<u>≤</u> 0.3500	<u>≤</u> 0.3430
Fuel Rod Pitch (in.)	<u>≤</u> 0.510	≤0.510 ·	<u>≤ 0.488</u>	≤ 0.565	≤ 0.557
Design Active Fuel Length (in.)	<u>≤ 150</u>	<u>≤</u> 150	<u>≤ 150</u>	<u>≤</u> 83	<u>≤ 83</u>
No. of Water Rods (Note 11)	2	1 (Note 6)	5 (Note 10)	0	4
Water Rod Thickness (in.)	≥ 0.030	> 0.00	≥ 0.031	N/A	≥ 0.022
Channel Thickness (in.)	<u>≤ 0.120</u>	≤ 0.120	≤ 0.055	<u>≤ 0.080</u>	≤ 0.080

Table 2.1.4 (continued) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Table 2.1.4 (continued)BWR FUEL ASSEMBLY CHARACTERISTICS

NOTES:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- 2. See Table 1.0.1 for the definition of "ZR."
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each BWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 1.5 percent for comparison with users' fuel records to account for manufacturer tolerances.
- 4. ≤ 0.635 wt. $\%^{235}$ U and ≤ 1.578 wt. % total fissile plutonium (²³⁹Pu and ²⁴¹Pu), (wt. % of total fuel weight, i.e., UO₂ plus PuO₂)
- 5. This assembly class contains 74 total rods; 66 full length rods and 8 partial length rods.
- 6. Square, replacing nine fuel rods.
- 7. Variable.
- 8. This assembly contains 92 total fuel rods; 78 full length rods and 14 partial length rods.
- 9. This assembly class contains 91 total fuel rods; 83 full length rods and 8 partial length rods.
- 10. One diamond-shaped water rod replacing the four center fuel rods and four rectangular water rods dividing the assembly into four quadrants.
- 11. These rods may also be sealed at both ends and contain Zr material in lieu of water.
- 12. This assembly is known as "QUAD+." It has four rectangular water cross segments dividing the assembly into four quadrants.
- 13. For the SPC 9x9-5 fuel assembly, each fuel rod must meet either the 9x9E or the 9x9F set of limits or clad O.D., clad I.D., and pellet diameter.
- 14. For those MPCs loaded with both intact fuel assemblies and damaged fuel assemblies or fuel debris, the maximum planar average initial enrichment for the intact fuel assemblies is limited to 3.7 wt.% ²³⁵U, as applicable.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Table 2.1.5

Criterion	BWR	PWR		
Reactivity (Criticality)	GE12/14 10x10 with Partial Length Rods (Array/Class 10x10A)	B&W 15x15 (Array/Class 15x15F)		
Shielding	GE 7x7	B&W 15x15		
Fuel Assembly Effective Planar Thermal Conductivity	GE-11 9x9	<u>W</u> 17x17 OFA		
Fuel Basket Effective Axial Thermal Conductivity	GE 7x7	<u>W</u> 14x14 OFA		
MPC Density and Heat Capacity	Dresden 6x6	<u>W</u> 14x14 OFA		
MPC Fuel Basket Axial Resistance to Thermosiphon Flow	GE-11 9x9	<u>W</u> 17x17 OFA		

DESIGN BASIS FUEL ASSEMBLY FOR EACH DESIGN CRITERION

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

 2.1-20

[•] Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Tables 2.1.6 through 2.1.8

INTENTIONALLY DELETED

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-21

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Table 2.1.9

Fuel Assembly Type	Assembly Length w/o NFH ¹ (in.)	Location of Active Fuel from Bottom (in.)	Max. Active Fuel Length (in.)	Upper Fuel Spacer Length (in.)	Lower Fuel Spacer Length (in.)
CE 14x14	157	4.1	137	9.5	10.0
CE 16x16	176.8	4.7	150	0	0
BW 15x15	165.7	8.4	141.8	6.7	4.1
W 17x17 OFA	159.8	3.7	144	8.2	8.5
W 17x17 Std	159.8	3.7	144	8.2	8.5
W 17x17 V5H	160.1	3.7	144	7.9	8.5
W 15x15	159.8	3.7	144	8.2	8.5
W 14x14 Std	159.8	3.7	145.2	9.2	7.5
W 14x14 OFA	159.8	3.7	144	8.2	8.5
Ft. Calhoun	146	6.6	128	10.25	20.25
St. Lucie 2	158.2	5.2	136.7	10.25	8.05
B&W 15x15 SS	137.1	3.873	120.5	19.25	19.25
W 15x15 SS	137.1	3.7	122	19.25	19.25
W 14x14 SS	137.1	3.7	120	19.25	19.25
Indian Point 1	137.2	17.705	101.5	18.75	20.0

SUGGESTED PWR UPPER AND LOWER FUEL SPACER LENGTHS

Note:

Each user shall specify the fuel spacer length based on their fuel assembly length, presence of a DFC, and allowing an approximate two to 2-1/2 inch gap under the MPC lid. Fuel spacers shall be sized to ensure that the active fuel region of intact fuel assemblies remains within the neutron poison region of the MPC basket with water in the MPC.

NFH is an abbreviation for non-fuel hardware, including control components. Fuel assemblies with control components may require shorter fuel spacers.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Fuel Assembly Type	Assembly Length (in.)	Location of Active Fuel from Bottom (in.)	Max. Active Fuel Length (in.)	Upper Fuel Spacer Length (in.)	Lower Fuel Spacer Length (in.)
GE/2-3	171.2	7.3	150	4.8	0
GE/4-6	176.2	7.3	150	0	0
Dresden 1	134.4	11.2	110	18.0	28.0
Humboldt Bay	95.0	8.0	79	40.5	40.5
Dresden 1 Damaged Fuel or Fuel Debris	142.1 [†]	11.2	110	17.0	16.9
Humboldt Bay Damaged Fuel or Fuel Debris	105.5 [†]	8.0	79	35.25	35.25
LaCrosse	102.5	10.5	83	37.0	37.5

SUGGESTED BWR UPPER AND LOWER FUEL SPACER LENGTHS

Note: Each user shall specify the fuel spacer length based on their fuel assembly length, presence of a DFC, and allowing an approximate two to 2-1/2 inch gap under the MPC lid. Fuel spacers shall be sized to ensure that the active fuel region of intact fuel assemblies remains within the neutron poison region of the MPC basket with water in the MPC.

[†] Fuel assembly length includes the damaged fuel container.

HI-STORM FSAR REPORT HI-2002444

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.1-23

PWR DISTRIBUTION ¹					
Interval	Axial Distance From Bottom of Active Fuel (% of Active Fuel Length)	Normalized Distribution			
1	0% to 4-1/6%	0.5485			
2	4-1/6% to 8-1/3%	0.8477			
3	8-1/3% to 16-2/3%	1.0770			
4	16-2/3% to 33-1/3%	1.1050			
5	33-1/3% to 50%	1.0980			
6	50% to 66-2/3%	1.0790			
7	66-2/3% to 83-1/3%	1.0501			
8	83-1/3% to 91-2/3%	0.9604			
.9	91-2/3% to 95-5/6%	0.7338			
10	95-5/6% to 100%	0.4670			
	BWR DISTRIBUTIO	DN ²			
Interval	Axial Distance From Bottom of Active Fuel (% of Active Fuel Length)	Normalized Distribution			
1	0% to 4-1/6%	0.2200			
2	4-1/6% to 8-1/3%	0.7600			
3	8-1/3% to 16-2/3%	1.0350			
4	16-2/3% to 33-1/3%	1.1675			
5	33-1/3% to 50%	1.1950			
6	50% to 66-2/3%	1.1625			
7	66-2/3% to 83-1/3%	1.0725			
8	83-1/3% to 91-2/3%	0.8650			
9	91-2/3% to 95-5/6%	0.6200			
10	95-5/6% to 100%	0.2200			

Table 2.1.11 NORMALIZED DISTRIBUTION BASED ON BURNUP PROFILE

Reference 2.1.7 Reference 2.1.8

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1

2

Tabl	le	2.1	1.1	2
------	----	-----	-----	---

DESIGN CHARACTERISTICS FOR THORIA	RODS IN D-1 THORIA ROD CANISTERS

PARAMETER	MPC-68 or MPC-68F
Cladding Type	Zircaloy
Composition	98.2 wt.% ThO ₂ , 1.8 wt.% UO ₂ with an enrichment of 93.5 wt. % 235 U
Number of Rods Per Thoria Canister	<u>< 18</u>
Decay Heat Per Thoria Canister	\leq 115 watts
Post-Irradiation Fuel Cooling Time and Average Burnup Per Thoria Canister	Cooling time ≥ 18 years and average burnup ≤ 16,000 MWD/MT1HM
Initial Heavy Metal Weight	≤ 27 kg/canister
Fuel Cladding O.D.	\geq 0.412 inches
Fuel Cladding I.D.	\leq 0.362 inches
Fuel Pellet O.D.	\leq 0.358 inches
Active Fuel Length	\leq 111 inches
Canister Weight	\leq 550 lbs., including Thoria Rods
Canister Material	Type 304 SS

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-25

MPC MODEL	REGION 1 FUEL STORAGE LOCATIONS*	REGION 2 FUEL STORAGE LOCATIONS	
MPC-24, 24E and 24EF	9, 10, 15, and 16	All Other Locations	
MPC-32/32F	7, 8, 12 through 15, 18 through 21, 25, and 26	All Other Locations	
MPC-68/68F/68FF	11 through 14, 18 through 23, 27 through 32, 37 through 42, 46 through 51, 55 through 58	All Other Locations	

Table 2.1.13 MPC Fuel Loading Regions

*Note: Refer to Figures 1.2.2 through 1.2.4

HI-STORM FSAR REPORT HI-2002444

2.1-26

Soluble Boron Requirements for MPC-24/24E/24EF Fuel Wet Loading and Unloading Operations

MPC MODEL	FUEL ASSEMBLY MAXIMUM AVERAGE ENRICHMENT (wt % ²³⁵ U)	MINIMUM SOLUBLE BORON CONCENTRATION (ppmb)
MPC-24	All fuel assemblies with initial enrichment ¹ less than the prescribed value for soluble boron credit	0
MPC-24	One or more fuel assemblies with an initial enrichment ¹ greater than or equal to the prescribed value for no soluble boron credit and ≤ 5.0 wt. %	≥ 400
MPC-24E/24EF	All fuel assemblies with initial enrichment ¹ less than the prescribed value for soluble boron credit	0
MPC-24E/24EF	All fuel assemblies classified as intact fuel assemblies and one or more fuel assemblies with an initial enrichment ¹ greater than or equal to the prescribed value for no soluble boron credit and ≤ 5.0 wt. %	≥ 300
MPC-24E/24EF	One or more fuel assemblies classified as damaged fuel or fuel debris and one or more fuel assemblies with initial enrichment > 4.0 wt.% and \leq 5.0 wt.%	<u>≥</u> 600

¹Refer to Table 2.1.3 for these enrichments.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-27

Tab	le	2.	1.	15
-----	----	----	----	----

MINIMUM ¹⁰ B LOADING (g/cm ²)			
Boral Neutron Absorber Panels	METAMIC Neutron s Absorber Panels		
0.0267	0.0223		
0.0372	0.0310		
0.0372	0.0310		
0.0372	0.0310		
0.01	N/A (Note 1)		
	(g/c Boral Neutron Absorber Panels 0.0267 0.0372 0.0372 0.0372		

MINIMUM BORAL ¹⁰B LOADING IN NEUTRON ABSORBER PANELS

Notes:

1. All MPC-68F canisters are equipped with Boral neutron absorber panels.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Fuel Assembly	All Intact Fu	All Intact Fuel Assemblies		Damaged Fuel r Fuel Debris
Array/Class (Note 2)	Max. Initial Enrichment ≤ 4.1 wt.% ²³⁵ U (ppmb)	Max. Initial Enrichment 5.0 wt.% ²³⁵ U (ppmb)	Max. Initial Enrichment $\leq 4.1 \text{ wt.}\%^{235}\text{U}$ (ppmb)	Max. Initial Enrichment 5.0 wt.% ²³⁵ U (ppmb)
14x14A/B/C/D/	1,300	1,900	1,500	2,300
15x15A/B/C/G	1,800	2,500	1,900	2,700
15x15D/E/F/H	1,900	2,600	2,100	2,900
16x16A	1,300	1,900	1,500	2,300
17x17A/B/C	1,900	2,600	2,100	2,900

Soluble Boron Requirements for MPC-32 and MPC-32F Wet Loading and Unloading Operations

Notes:

- 1. For maximum initial enrichments between 4.1 wt% and 5.0 wt% ²³⁵U, the minimum soluble boron concentration may be determined by linear interpolation between the minimum soluble boron concentrations at 4.1 wt% and 5.1 wt% ²³⁵U.
- 2. The soluble boron requirements for array/class 14x14E are specified in Supplement 2.II.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-29

PARAMETER	VALUE	
Fuel Type	Uranium oxide, PWR intact fuel assemblies meeting the limits in Table 2.1.3 for the applicable array/class	
Cladding Type	ZR or Stainless Steel (SS) as specified in Table 2.1.3 for the applicable array/class	
Maximum Initial Enrichment per Assembly	As specified in Table 2.1.3 for the applicable array/class	
Post-irradiation Cooling Time and Average Burnup per Assembly	ZR clad: As specified in Section 2.1.9.1 SS clad: ≥ 8 years and $\leq 40,000$ MWD/MTU	
Decay Heat Per Fuel Storage Location	ZR clad: As specified in Section 2.1.9.1 SS clad: \leq 710 Watts	
Non-Fuel Hardware Burnup and Cooling Time	As specified in Table 2.1.25	
Fuel Assembly Length	\leq 176.8 in. (nominal design)	
Fuel Assembly Width	\leq 8.54 in. (nominal design)	
Fuel Assembly Weight	\leq 1,680 lbs (including non-fuel hardware)	
Other Limitations	 Quantity is limited to up to 24 PWR intact fuel assemblies. Damaged fuel assemblies and fuel debris are not permitted for storage in MPC-24. One NSA is permitted in MPC-24. BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, and/or vibration suppressor inserts may be stored with fuel assemblies in any fuel cell location. CRAs, RCCAs, CEAs, NSAs and/or APSRs may be stored with fuel assemblies in fuel cell location. Soluble boron requirements during wet loading and unloading are specified in Table 2.1.14. 	

LIMITS FOR MATERIAL TO BE STORED IN MPC-24

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-30

PARAMETER	PARAMETER VALUE (Note 1)			
Fuel Type(s)	Uranium oxide, BWR intact fuel assemblies meeting the limits in Table 2.1.4 for the applicable array/class, with or without channels	Uranium oxide, BWR damaged fuel assemblies meeting the limits in Table 2.1.4 for the applicable array/class, with or without channels, placed in Damaged Fuel Containers (DFCs)	Mixed Oxide (MOX) BWR intact fuel assemblies meeting the limits in Table 2.1.4 for array/class 6x6B, with or without channels	Mixed Oxide (MOX) BWR damaged fuel assemblies meeting the limits in Table 2.1.4 for array/class 6x6B, with or without channels; placed in Damaged Fuel Containers (DFCs)
Cladding Type	ZR or Stainless Steel (SS) as specified in Table 2.1.4 for the applicable array/class	ZR or Stainless Steel (SS) as specified in Table 2.1.4 for the applicable array/class	ZR	ZR
Maximum Initial Planar-Average Enrichment per Assembly and Rod Enrichment	As specified in Table 2.1.4 for the applicable array/class	Planar Average: $\leq 2.7 \text{ wt}\%^{235}\text{U}$ for array/classes 6x6A, 6x6C, 7x7A, and 8x8A; $\leq 4.0 \text{ wt}\%^{235}\text{U}$ for all other array/classes Rod: As specified in Table 2.1.4	As specified in Table 2.1.4 for array/class 6x6B	As specified in Table 2.1.4 for array/class 6x6B

LIMITS FOR MATERIAL TO BE STORED IN MPC-68

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-31

PARAMETER		VALUE (N	Note 1)	
Post-irradiation Cooling Time and Average Burnup per Assembly	ZR clad: As specified in Section 2.1.9.1; except as provided in Notes 2 and 3. SS clad: Note 4	ZR clad: As specified in Section 2.1.9.1; except as provided in Notes 2 and 3. SS clad: Note 4.	Cooling time \geq 18 years and average burnup \leq 30,000 MWD/MTIHM.	Cooling time \geq 18 years and average burnup \leq 30,000 MWD/MTIHM.
Decay Heat Per Fuel Storage Location	ZR clad: As specified in Section 2.1.9.1; except as provided in Notes 2 and 3.	ZR clad: As specified in Section 2.1.9.1; except as provided in Notes 2 and 3.	≤ 115 Watts	≤ 115 Watts
	SS clad: ≤ 95 Watts	SS clad: ≤ 95 Watts		
Fuel Assembly Length	≤ 176.5 in. (nominal design)	Array/classes 6x6A, 6x6C, 7x7A, and 8x8A: ≤ 135.0 in. (nominal design) All Other array/classes: ≤ 176.5 in. (nominal design)	≤ 135.0 in. (nominal design)	≤ 135.0 in. (nominal design)
Fuel Assembly Width	≤ 5.85 in. (nominal design)	Array/classes 6x6A, 6x6C, 7x7A, and 8x8A: ≤ 4.7 in. (nominal design) All Other array/classes: ≤ 5.85 in. (nominal design)	≤4.70 in. (nominal design)	≤4.70 in. (nominal design)

LIMITS FOR MATERIAL TO BE STORED IN MPC-68

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-32

PARAMETER		VALUE (Note 1)		
Fuel Assembly Weight	\leq 700 lbs. (including channels)	Array/classes 6x6A, 6x6C, 7x7A, and 8x8A:	\leq 400 lbs, including channels	\leq 550 lbs, including channels and
		\leq 550 lbs. (including channels and DFC) All Other array/classes: \leq 700 lbs. (including channels and DFC)		DFC
Other Limitations	 Quantity is limited to up to one (1) Dresden Unit 1 thoria rod canister meeting the specifications listed in Table 2.1.12 plus any combination of array/class 6x6A, 6x6B, 6x6C, 7x7A, and/or 8x8A damaged fuel assemblies in DFCs and intact fuel assemblies up to a total of 68. Up to 16 damaged fuel assemblies from plants other than Dresden Unit 1 or Humboldt Bay may be stored in DFCs in fuel cell locations 1, 2, 3, 8, 9, 16, 25, 34, 35, 44, 53, 60, 61, 66, 67, and/or 68, with the balance comprised of intact fuel assemblies up to a total of 68 SS-clad fuel assemblies with stainless steel channels must be stored in fuel cell locations 19 through 22, 28 through 31, 38 through 41, and/or 47 through 50. Dresden Unit 1 fuel assemblies with one antimony-beryllium neutron source are permitted. The antimony-beryllium neutron source material shall be in a water rod location. 			

LIMITS FOR MATERIAL TO BE STORED IN MPC-68

Notes:

- 1. A fuel assembly must meet the requirements of any one column and the other limitations to be authorized for storage.
- 2. Array/class 6x6A, 6x6C, 7x7A, and 8x8A fuel assemblies shall have a cooling time \ge 18 years, an average burnup \le 30,000 MWD/MTU, and a maximum decay heat \le 115 Watts.
- 3. Array/class 8x8F fuel assemblies shall have a cooling time \geq 10 years, an average burnup \leq 27,500 MWD/MTU, and a maximum decay \leq 183.5 Watts.
- 4. SS-clad fuel assemblies shall have a cooling time ≥ 10 years, and an average burnup $\leq 22,500$ MWD/MTU.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-33

PARAMETER	VALUE (Notes 1 and 2)			
Fuel Type(s)	Uranium oxide, BWR intact fuel assemblies meeting the limits in Table 2.1.4 for array/class 6x6A, 6x6C, 7x7A, or 8x8A, with or without Zircaloy channels	Uranium oxide, BWR damaged fuel assemblies or fuel debris meeting the limits in Table 2.1.4 for array/class 6x6A, 6x6C, 7x7A, or 8x8A, with or without Zircaloy channels, placed in Damaged Fuel Containers (DFCs)	Mixed Oxide (MOX) BWR intact fuel assemblies meeting the limits in Table 2.1.4 for array/class 6x6B, with or without Zircaloy channels	Mixed Oxide (MOX) BWR damaged fuel assemblies or fuel debris meeting the limits in Table 2.1.4 for array/class 6x6B, with or without Zircaloy channels, placed in Damaged Fuel Containers (DFCs))
Cladding Type	ZR	ZR	ZR	ZR
Maximum Initial Planar-Average Enrichment per Assembly and Rod Enrichment	As specified in Table 2.1.4 for the applicable array/class	As specified in Table 2.1.4 for the applicable array/class	As specified in Table 2.1.4 for array/class 6x6B	As specified in Table 2.1.4 for array/class 6x6B
Post-irradiation Cooling Time, Average Burnup, and Minimum Initial Enrichment per Assembly	Cooling time \geq 18 years and average burnup \leq 30,000 MWD/MTU.	Cooling time ≥ 18 years and average burnup $\le 30,000$ MWD/MTU.	Cooling time ≥ 18 years and average burnup $\leq 30,000$ MWD/MTIHM.	Cooling time \geq 18 years and average burnup \leq 30,000 MWD/MTIHM.
Decay Heat Per Fuel Storage Location	\leq 115 Watts	\leq 115 Watts	\leq 115 Watts	≤ 115 Watts
Fuel Assembly Length	≤ 135.0 in. (nominal design)	\leq 135.0 in. (nominal design)	\leq 135.0 in. (nominal design)	≤ 135.0 in. (nominal design)
Fuel Assembly Width	≤ 4.70 in. (nominal design)	≤ 4.70 in. (nominal design)	\leq 4.70 in. (nominal design)	≤4.70 in. (nominal design)
Fuel Assembly Weight	\leq 400 lbs, (including channels)	\leq 550 lbs, (including channels and DFC)	\leq 400 lbs, (including channels)	\leq 550 lbs, (including channels and DFC)

LIMITS FOR MATERIAL TO BE STORED IN MPC-68F

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

PARAMETER	VALUE
Other Limitations	 Quantity is limited to up to four (4) DFCs containing Dresden Unit 1 or Humboldt Bay uranium oxide or MOX fuel debris. The remaining fuel storage locations may be filled with array/class 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A fuel assemblies of the following type, as applicable:
	- uranium oxide BWR intact fuel assemblies
	- MOX BWR intact fuel assemblies
	- uranium oxide BWR damaged fuel assemblies in DFCs
	- MOX BWR damaged fuel assemblies in DFCs
	- up to one (1) Dresden Unit 1 thoria rod canister meeting the specifications listed in Table 2.1.12.
	 Stainless steel channels are not permitted.
	 Dresden Unit 1 fuel assemblies with one antimony-beryllium neutron source are permitted. The antimony-beryllium neutron source material shall be in a water rod location.

LIMITS FOR MATERIAL TO BE STORED IN MPC-68F

Notes:

1.

2.

- A fuel assembly must meet the requirements of any one column and the other limitations to be authorized for storage.
- Only fuel from the Dresden Unit 1 and Humboldt Bay plants are permitted for storage in the MPC-68F.

HOLTEC INTERNATIONA	L COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

PARAMETER	VALUE	(Note 1)
Fuel Type	Uranium oxide PWR intact fuel assemblies meeting the limits in Table 2.1.3 for the applicable array/class	Uranium oxide PWR damaged fuel assemblies meeting the limits in Table 2.1.3 for the applicable array/class, placed in a Damaged Fuel Container (DFC)
Cladding Type	ZR or Stainless Steel (SS) assemblies as specified in Table 2.1.3 for the applicable array/class	ZR or Stainless Steel (SS) assemblies as specified in Table 2.1.3 for the applicable array/class
Maximum Initial Enrichment per Assembly	As specified in Table 2.1.3 for the applicable array/class	As specified in Table 2.1.3 for the applicable array/class
Post-irradiation Cooling Time, and Average Burnup per Assembly	ZR clad: As specified in Section 2.1.9.1 SS clad: ≥ 8 yrs and	ZR clad: As specified in Section 2.1.9.1 SS clad: \geq 8 yrs and
	≤ 40,000 MWD/MTU	≤ 40,000 MWD/MTU
Decay Heat Per Fuel Storage Location	ZR clad: As specified in Section 2.1.9.1 SS clad: ≤ 710 Watts	ZR clad: As specified in Section 2.1.9.1 SS clad: ≤ 710 Watts
Non-fuel hardware post-irradiation Cooling Time and Burnup	As specified in Table 2.1.25	As specified in Table 2.1.25
Fuel Assembly Length	\leq 176.8 in. (nominal design)	\leq 176.8 in. (nominal design)
Fuel Assembly Width	\leq 8.54 in. (nominal design)	\leq 8.54 in. (nominal design)
Fuel Assembly Weight	\leq 1680 lbs (including non-fuel hardware)	\leq 1680 lbs (including DFC and non-fuel hardware)

LIMITS FOR MATERIAL TO BE STORED IN MPC-24E

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

PARAMETER	VALUE	
Other Limitations	 Quantity is limited to up to 24 PWR intact fuel assemblies or up to four (4) damaged fuel assemblies in DFCs may be stored in fuel storage locations 3, 6, 19, and/or 22. The remaining fuel storage locations may be filled with intact fuel assemblies. 	
	 Fuel debris is not authorized for storage in the MPC-24E. One NSA is permitted in MPC-24E. BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, and/or vibration suppressor inserts may be stored with fuel assemblies in any fuel cell location. 	
	 CRAs, RCCAs, CEAs, NSAs, and/or APSRs may be stored with fuel assemblies in fuel cell locations 9, 10, 15, and/or 16. Soluble boron requirements during wet loading and unloading are specified in Table 2.1.14. 	

LIMITS FOR MATERIAL TO BE STORED IN MPC-24E

Notes:

1. A fuel assembly must meet the requirements of any one column and the other limitations to be authorized for storage.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-37

PARAMETER	VALUE (Notes 1 and 2)	
Fuel Type	Uranium oxide, PWR intact fuel assemblies meeting the limits in Table 2.1.3 for the applicable fuel assembly array/class.	Uranium oxide, PWR damaged fuel assemblies meeting the limits in Table 2.1.3 for the applicable fuel assembly array/class.
Cladding Type	ZR or Stainless Steel (SS) assemblies as specified in Table 2.1.3 for the applicable array/class	ZR or Stainless Steel (SS) assemblies as specified in Table 2.1.3 for the applicable array/class
Maximum Initial Enrichment per Assembly	As specified in Table 2.1.3 for the applicable fuel assembly array/class	As specified in Table 2.1.3 for the applicable fuel assembly array/class
Post-irradiation Cooling Time and Average Burnup per Assembly	ZR clad: As specified in Section 2.1.9.1	ZR clad: As specified in Section 2.1.9.1
	SS clad: \geq 9 years and \leq 30,000 MWD/MTU or \geq 20 years and \leq 40,000 MWD/MTU	SS clad: \geq 9 years and \leq 30,000 MWD/MTU or \geq 20 years and \leq 40,000 MWD/MTU
Decay Heat Per Fuel Storage Location	ZR-clad: As specified in Section 2.1.9.1	ZR-clad: As specified in Section 2.1.9.1
	SS-clad: \leq 500 Watts	SS-clad: < 500 Watts
Non-fuel hardware post-irradiation cooling time and burnup	As specified in Table 2.1.25	As specified in Table 2.1.25
Fuel Assembly Length	\leq 176.8 in. (nominal design)	\leq 176.8 in. (nominal design)
Fuel Assembly Width	\leq 8.54 in. (nominal design)	\leq 8.54 in. (nominal design)
Fuel Assembly Weight	\leq 1,680 lbs (including non- fuel hardware)	\leq 1,680 lbs (including DFC and non-fuel hardware)

LIMITS FOR MATERIAL TO BE STORED IN MPC-32

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

LIMITS FOR MATERIAL TO BE STORED IN MPC-32

PARAMETER	VALUE
Other Limits	 Quantity is limited to up to 32 PWR intact fuel assemblies and/or up to eight (8) damaged fuel assemblies in DFCs in fuel cell locations 1, 4, 5, 10, 23, 28, 29, and/or 32, with the balance intact fuel assemblies up to a total of 32.
	Fuel debris is not permitted for storage in MPC-32.One NSA is permitted in MPC-32.
	 BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, and/or vibration suppressor inserts may be stored with fuel assemblies in any fuel cell location.
	 CRAs, RCCAs, CEAs, NSAs, and/or APSRs may be stored with fuel assemblies in fuel cell locations 13, 14, 19, and/or 20.
	 Soluble boron requirements during wet loading and unloading are specified in Table 2.1.16.

NOTES:

1. A fuel assembly must meet the requirements of any one column and the other limitations to be authorized for storage.

2. The requirements stated in this table, with the exception of fuel assembly length, width, and weight, do not apply to array/class 14x14E, Indian Point Unit 1 fuel. Supplement 2.1I provides the limits for array/class 14x14E fuel assemblies to be stored in the MPC-32.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

PARAMETER	VALUE	
Fuel Type	Uranium oxide or MOX BWR	Uranium oxide or MOX BWR
	intact fuel assemblies meeting	damaged fuel assemblies or fuel
	the limits in Table 2.1.4 for the	debris meeting the limits in Table
	applicable array/class, with or	2.1.4 for the applicable
· · ·	without channels.	array/class, with or without
		channels, in DFCs.
Cladding Type	ZR or Stainless Steel (SS)	ZR or Stainless Steel (SS)
	assemblies as specified in Table	assemblies as specified in Table
	2.1.4 for the applicable	2.1.4 for the applicable
	array/class	array/class
Maximum Initial Planar Average	As specified in Table 2.1.4 for	Planar Average:
Enrichment per Assembly and	the applicable fuel assembly	235*** 0
Rod Enrichment	array/class	\leq 2.7 wt% ²³⁵ U for array/classes
	•	6x6A, 6x6B, 6x6C, 7x7A, and
		8x8A;
		23511 6 11 11
		\leq 4.0 wt% ²³⁵ U for all other
		array/classes
		Rod:
		Kou.
		As specified in Table 2.1.4
Post-irradiation cooling time and	ZR clad: As specified in	ZR clad: As specified in
average burnup per Assembly	Section 2.1.9.1; except as	Section 2.1.9.1; except as
average building per Assembly	provided in Notes 2 and 3.	provided in Notes 2 and 3.
	provided in Notes 2 and 5.	provided in reces 2 and 5.
	SS clad: Note 4	SS clad: Note 4.
Decay Heat Per Fuel Storage	ZR clad: As specified in Section	ZR clad: As specified in Section
Location	2.1.9.1; except as provided in	2.1.9.1; except as provided in
	Notes 2 and 3.	Notes 2 and 3.
•	SS clad: \leq 95 Watts	SS clad: < 95 Watts
Fuel Assembly Length	Array/classes 6x6A, 6x6B, 6x6C,	Array/classes 6x6A, 6x6B, 6x6C,
	$7x7A$, and $8x8A : \le 135.0$ in.	$7x7A$, and $8x8A$: ≤ 135.0 in.
	(nominal design)	(nominal design)
	All Other array/classes:	All Other array/classes:
	\leq 176.5 in. (nominal design)	\leq 176.5 in. (nominal design)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

į

PARAMETER	VALUE (Note 1)	
Fuel Assembly Width	Array/classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A: \leq 4.7 in. (nominal design) All Other array/classes: \leq 5.85 in. (nominal design)	Array/classes 6x6A, 6x6B, 6x6C, 7x7A, and $8x8A: \le 4.7$ in. (nominal design) All Other array/classes: ≤ 5.85 in. (nominal design)
Fuel Assembly Weight	Array/classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A: < 550 lbs. (including channels) All Other array/classes:	Array/classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A: \leq 550 lbs. (including channels and DFC) All Other array/classes:
	\leq 700 lbs. (including channels)	\leq 700 lbs. (including channels and DFC)
Other Limitations	 DFCs and intact fuel assemblies up to Up to 16 damaged fuel assemblies and classified as fuel debris from plants of Bay may be stored in DFCs in MPC-0 	Ted as fuel debris in DFCs, and any mboldt Bay damaged fuel assemblies in a total of 68. d/or up to eight (8) fuel assemblies ther than Dresden Unit 1 or Humboldt 58FF. DFCs shall be located only in fuel 35, 44, 53, 60, 61, 66, 67, and/or 68, with
	 locations 19 through 22, 28 through 3 Dresden Unit 1 fuel assemblies with a 	s steel channels must be stored in fuel cel 1, 38 through 41, and/or 47 through 50. one antimony-beryllium neutron source m neutron source material shall be in a

LIMITS FOR MATERIAL TO BE STORED IN MPC-68FF

 Array/class 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A fuel assemblies shall have a cooling time ≥ 18 years, an average burnup ≤ 30,000 MWD/MTU, and a maximum decay heat ≤ 115 Watts.

- 3. Array/class 8x8F fuel assemblies shall have a cooling time \geq 10 years, an average burnup \leq 27,500 MWD/MTU, and a maximum decay \leq 183.5 Watts.
- SS-clad fuel assemblies shall have a cooling time ≥ 10 years, and an average burnup ≤ 22,500 MWD/MTU.

	HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL	
HI-STORM FSAR		

REPORT HI-2002444

PARAMETER	VALUE	(Note 1)
Fuel Type	Uranium oxide PWR intact fuel assemblies meeting the limits in Table 2.1.3 for the applicable array/class	Uranium oxide PWR damaged fuel assemblies and/or fuel debris meeting the limits in Table 2.1.3 for the applicable array/class, placed in a Damaged Fuel Container (DFC)
Cladding Type	ZR or Stainless Steel (SS) assemblies as specified in Table 2.1.3 for the applicable array/class	ZR or Stainless Steel (SS) assemblies as specified in Table 2.1.3 for the applicable array/class
Maximum Initial Enrichment per Assembly	As specified in Table 2.1.3 for the applicable array/class	As specified in Table 2.1.3 for the applicable array/class
Post-irradiation Cooling Time, and Average Burnup per Assembly	ZR clad: As specified in Section 2.1.9.1 SS clad: \geq 8 yrs and \leq 40,000 MWD/MTU	ZR clad: As specified in Section 2.1.9.1 SS clad: ≥ 8 yrs and ≤ 40,000 MWD/MTU
Decay Heat Per Fuel Storage Location	ZR clad: As specified in Section 2.1.9.1	ZR clad: As specified in Section 2.1.9.1
Non-fuel hardware post-irradiation Cooling Time and Burnup	SS clad: \leq 710 Watts As specified in Table 2.1.25	$\frac{\text{SS clad:} \leq 710 \text{ Watts}}{\text{As specified in Table 2.1.25}}$
Fuel Assembly Length		\leq 176.8 in. (nominal design)
Fuel Assembly Width	\leq 8.54 in. (nominal design)	\leq 8.54 in. (nominal design)
Fuel Assembly Weight	1680 lbs (including non-fuel hardware)	\leq 1680 lbs (including DFC and non-fuel hardware)

LIMITS FOR MATERIAL TO BE STORED IN MPC-24EF

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

PARAMETER	VALUE
Other Limitations	 Quantity per MPC: up to 24 PWR intact fuel assemblies or up to four (4) damaged fuel assemblies and/or fuel classified as fuel debris in DFCs may be stored in fuel storage locations 3, 6, 19, and/or 22. The remaining fuel storage locations may be filled with intact fuel assemblies. One NSA is authorized for storage in the MPC-24EF. BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, and/or vibration suppressor inserts may be stored with fuel assemblies in any fuel cell location. CRAs, RCCAs, CEAs, NSAs, and/or APSRs may be stored with fuel assemblies in fuel cell locations 9, 10, 15, and/or 16. Soluble boron requirements during wet loading and unloading are specified in Table 2.1.14.

LIMITS FOR MATERIAL TO BE STORED IN MPC-24EF

Notes:

1. A fuel assembly must meet the requirements of any one column and the other limitations to be authorized for storage.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-43

PARAMETER	VALUE (Notes 1 and 2)					
Fuel Type	Uranium oxide, PWR intact fuel assemblies meeting the limits in Table 2.1.3 for the applicable fuel assembly array/class	Uranium oxide, PWR damaged fuel assemblies and fuel debris in DFCs meeting the limits in Table 2.1.3 for the applicable fuel assembly array/class				
Cladding Type	ZR or Stainless Steel (SS) as specified in Table 2.1.3 for the applicable fuel assembly array/class	ZR or Stainless Steel (SS) as specified in Table 2.1.3 for the applicable fuel assembly array/class				
Maximum Initial Enrichment per Assembly	As specified in Table 2.1.3	As specified in Table 2.1.3				
Post-irradiation Cooling Time, Average Burnup, and Minimum Initial Enrichment per Assembly	ZR clad: As specified in Section 2.1.9.1	ZR clad: As specified in Section 2,1.9.1				
	SS clad: \geq 9 years and \leq 30,000 MWD/MTU or \geq 20 years and \leq 40,000MWD/MTU	SS clad: \geq 9 years and \leq 30,000 MWD/MTU or \geq 20 years and \leq 40,000MWD/MTU				
Decay Heat Per Fuel Storage Location	ZR clad: As specified in Section 2.1.9.1	ZR clad: As specified in Section 2.1.9.1				
	SS clad: \leq 500 Watts	SS clad: \leq 500 Watts				
Non-fuel hardware post- irradiation Cooling Time and Burnup	As specified in Table 2.1.25	As specified in Table 2.1.25				
Fuel Assembly Length	\leq 176.8 in. (nominal design)	\leq 176.8 in. (nominal design)				
Fuel Assembly Width	\leq 8.54 in. (nominal design)	\leq 8.54 in. (nominal design)				
Fuel Assembly Weight	\leq 1,680 lbs (including non-fuel hardware)	\leq 1,680 lbs (including DFC and non-fuel hardware)				

LIMITS FOR MATERIAL TO BE STORED IN MPC-32F

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-44

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

PARAMETER	VALUE
Other Limitations	 Quantity is limited to up to 32 PWR intact fuel assemblies and/or up to eight (8) damaged fuel assemblies in DFCs in fuel cell locations 1, 4, 5, 10, 23, 28, 29, and/or 32, with the balance intact fuel assemblies up to a total of 32.
	 One NSA is permitted for storage in MPC- 32.
	 BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, and/or vibration suppressor inserts may be stored with fuel assemblies
	in any fuel cell location. • CRAs, RCCAs, CEAs, NSAs, and/or
	APSRs may be stored with fuel assemblies in fuel cell locations 13, 14, 19, and/or 20.
	 Soluble boron requirements during wet loading and unloading are specified in Table 2.1.16.

LIMITS FOR MATERIAL TO BE STORED IN MPC-32F

NOTES:

- 1. A fuel assembly must meet the requirements of any one column and the other limitations to be authorized for storage.
- 2. The requirements stated in this table, with the exception of fuel assembly length, width, and weight, do not apply to array/class 14x14E, Indian Point Unit 1 fuel. Supplement 2.11 provides the limits for array/class 14x14E fuel assemblies to be stored in the MPC-32F.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-45

Post-irradiation Cooling Time (yrs)	Inserts (Note 4) Maximum Burnup (MWD/MTU)	NSA or Guide Tube Hardware (Note 5) Maximum Burnup (MWD/MTU)	Control Component (Note 6) Maximum Burnup (MWD/MTU)	APSR Maximum Burnup (MWD/MTU)
<u>≥ 3</u>	<u>≤</u> 24,635	N/A (Note 7)	N/A	N/A
<u>≥</u> 4	<u>≤</u> 30,000	≤ 20,000	N/A	N/A
<u>≥</u> 5	<u>≤</u> 36,748	≤ 25,000	<u>≤</u> 630,000	≤ 45,000
<u>≥ 6</u>	≤ 44,102	≤ 30,000		<u>≤</u> 54,500
<u>></u> 7	<u>≤</u> 52,900	≤ 40,000	-	≤ 68,000
<u>≥ 8</u>	$\leq 60,000$	≤ 45,000	-	≤ 83,000
<u>≥</u> 9	-	≤ 50,000	-	≤ 111,000
≥ 10		≤ 60,000	-	≤ 180,000
≥ 11 · ·	-	≤ 75,000	-	≤ 630,000
<u>≥ 12</u>	-	≤ 90,000	-	-
≥ 13	-	<u>≤</u> 180,000		-
≥ 14		≤ 630,000	; -	-

NON-FUEL HARDWARE BURNUP AND COOLING TIME LIMITS (Notes 1, 2, and 3)

NOTES:

1.

Burnups for non-fuel hardware are to be determined based on the burnup and uranium mass of the fuel assemblies in which the component was inserted during reactor operation.

- 2. Linear interpolation between points is permitted, except that NSA or Guide Tube Hardware and APSR burnups > 180,000 MWD/MTU and \leq 630,000 MWD/MTU must be cooled \geq 14 years and \geq 11 years, respectively.
- 3. Applicable to uniform loading and regionalized loading.
- 4. Includes Burnable Poison Rod Assemblies (BPRAs), Wet Annular Burnable Absorbers (WABAs), and vibration suppressor inserts.
- 5. Includes Thimble Plug Devices (TPDs), water displacement guide tube plugs, and orifice rod assemblies.
- 6. Includes Control Rod Assemblies (CRAs), Control Element Assemblies (CEAs), and Rod Cluster Control Assemblies (RCCAs).
- 7. N/A means not authorized for loading at this cooling time.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-46

MPC Model	Decay Heat per Fuel Assembly (kW)
Intact Fu	el Assemblies
MPC-24	≤ 1.157
MPC-24E/24EF	<u>≤</u> 1.173
MPC-32/32F	<u>≤ 0.898</u>
MPC-68/68FF	<u>≤ 0.414</u>
Damaged Fuel Ass	semblies and Fuel Debris
MPC-24	≤ 1.099
MPC-24E/24EF	≤ 1.114
MPC-32/32F	≤ 0.718
MPC-68/68FF	≤ 0.393

MAXIMUM ALLOWABLE DECAY HEAT PER FUEL STORAGE LOCATION (UNIFORM LOADING, ZR-CLAD)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2,1-47

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

MPC Model	Number of Fuel Storage Locations in Inner and Outer Regions	Inner Region Maximum Decay Heat per Assembly (kW)	Outer Region Maximum Decay Heat per Assembly (kW)	
MPC-24	4 and 20	1.470	0.900	
MPC-24E/24EF	4 and 20	1.540	0.900	
MPC-32/32F	12 and 20	1.131	0.600	
MPC-68/68FF	32 and 36	0.500	0.275	

MPC FUEL STORAGE REGIONS AND MAXIMUM DECAY HEAT

Note: These limits apply to intact fuel assemblies, damaged fuel assemblies and fuel debris.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-48

Cooling	Array/Class 14x14A						
Time (years)	Α	В	С	D	E	F	G
<u>≥</u> 3	20277.1	303.592	-68.329	-139.41	2993.67	-498.159	-615.411
<u>≥</u> 4	35560.1	-6034.67	985.415	-132.734	3578.92	-723.721	-609.84
<u>≥</u> 5	48917.9	-14499.5	2976.09	-150.707	4072.55	-892.691	-54.8362
<u>≥</u> 6	59110.3	-22507	5255.61	-177.017	4517.03	-1024.01	613.36
≥ 7	67595.6	-30158.1	7746.6	-200.128	4898.71	-1123.21	716.004
<u>≥ 8</u>	74424.9	-36871.1	10169.4	-218.676	5203.64	-1190.24	741.163
<u>> 9</u>	81405.8	-44093.1	12910.8	-227.916	5405.34	-1223.27	250.224
≥ 10	86184.3	-49211.7	15063.4	-237.641	5607.96	-1266.21	134.435
≥11	92024.9	-55666.8	17779.6	-240.973	5732.25	-1282.12	-401.456
<u>≥ 12</u>	94775.8	-58559.7	19249.9	-246.369	5896.27	-1345.42	-295.435
<u>≥ 13</u>	100163	-64813.8	22045.1	-242.572	5861.86	-1261.66	-842.159
<u>≥ 14</u>	103971	-69171	24207	-242.651	5933.96	-1277.48	-1108.99
<u>≥15</u>	108919	-75171.1	27152.4	-243.154	6000.2	-1301.19	-1620.63
<u>≥</u> 16	110622	-76715.2	28210.2	-240.235	6028.33	-1307.74	-1425.5
<u>≥</u> 17	115582	-82929.7	31411.9	-235.234	5982.3	-1244.11	-1948.05
<u>≥ 18</u>	119195	-87323.5	33881.4	-233.28	6002.43	-1245.95	-2199.41
<u>≥19</u>	121882	-90270.6	35713.7	-231.873	6044.42	-1284.55	-2264.05
≥ 20	124649	-93573.5	37853.1	-230.22	6075.82	-1306.57	-2319.63

PWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Cooling	Array/Class 14x14B						
Time (years)	A	В	С	D	E	F	G
. ≥ 3	18937.9	70.2997	-28.6224	-130.732	2572.36	-383.393	-858.17
<u>≥</u> 4	32058.7	-4960.63	745.224	-125.978	3048.98	-551.656	-549.108
<u>≥</u> 5	42626.3	-10804.1	1965.09	-139.722	3433.49	-676.643	321.88
≥6	51209.6	-16782.3	3490.45	-158.929	3751.01	-761.524	847.282
<u>≥</u> 7 °	57829.9	-21982	5009.12	-180.026	4066.65	-846.272	1200.45
<u>≥ 8</u>	62758	-26055.3	6330.88	-196.804	4340.18	-928.336	1413.17
<u>≥ 9</u>	68161.4	-30827.6	7943.87	-204.454	4500.52	-966.347	1084.69
≥ 10	71996.8	-34224.3	9197.25	-210.433	4638.94	-1001.83	1016.38
≥11	75567.3	-37486.1	10466.9	-214.95	4759.55	-1040.85	848.169
≥12	79296.7	-40900.3	11799.6	-212.898	4794.13	-1040.51	576.242
≥13	82257.3	-43594	12935	-212.8	4845.81	-1056.01	410.807
<u>≥ 14</u>	83941.2	-44915.2	13641	-215.389	4953.19	-1121.71	552.724
≥15 [°]	87228.5	-48130	15056.9	-212.545	4951.12	-1112.5	260.194
<u>≥</u> 16	90321.7	-50918.3	16285.5	-206.094	4923.36	-1106.35	-38.7487
≥17	92836.2	-53314.5	17481.7	-203.139	4924.61	-1109.32	-159.673
≥18	93872.8	-53721.4	17865.1	-202.573	4956.21	-1136.9	30.0594
≥19	96361.6	-56019.1	19075.9	-199.068	4954.59	-1156.07	-125.917
≥ 20	98647.5	-57795.1	19961.8	-191.502	4869.59	-1108.74	-217.603

PWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HI-STORM FSAR REPORT HI-2002444

Cooling	Array/Class 14x14C						
Time (years)	A	В	С	D	Е	F	G
≥ 3	19176.9	192.012	-66.7595	-138.112	2666.73	-407.664	-1372.41
<u>≥</u> 4	32040.3	-4731.4	651.014	-124.944	3012.63	-530.456	-890.059
≥ 5	43276.7	-11292.8	2009.76	-142.172	3313.91	-594.917	-200.195
≥ 6	51315.5	-16920.5	3414.76	-164.287	3610.77	-652.118	463.041
≥ 7	57594.7	-21897.6	4848.49	-189.606	3940.67	-729.367	781.46
<u>≥ 8</u>	63252.3	-26562.8	6273.01	-199.974	4088.41	-732.054	693.879
<u>≥ 9</u>	67657.5	-30350.9	7533.4	-211.77	4283.39	-772.916	588.456
≥ 10	71834.4	-34113.7	8857.32	-216.408	4383.45	-774.982	380.243
<u>≥11</u>	75464.1	-37382.1	10063	-218.813	4460.69	-776.665	160.668
≥ 12	77811.1	-39425.1	10934.3	-225.193	4604.68	-833.459	182.463
≥ 13	81438.3	-42785.4	12239.9	-220.943	4597.28	-803.32	-191.636
≥ 14	84222.1	-45291.6	13287.9	-218.366	4608.13	-791.655	-354.59
≥ 15 [°]	86700.1	-47582.6	14331.2	-218.206	4655.34	-807.366	-487.316
≥16	88104.7	-48601.1	14927.9	-219.498	4729.97	-849.446	-373.196
≥17	91103.3	-51332.5	16129	-212.138	4679.91	-822.896	-654.296
<u>> 18</u>	93850.4	-53915.8	17336.9	-207.666	4652.65	-799.697	-866.307
≥ 19	96192.9	-55955.8	18359.3	-203.462	4642.65	-800.315	-1007.75
<u>≥</u> 20	97790.4	-57058.1	19027.7	-200.963	4635.88	-799.721	-951.122

PWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-51

÷

Cooling	Array/Class 15x15A/B/C						
Time (years)	A	В	С	D	Е	F	G
. <u>≥</u> 3	15789.2	119.829	-21.8071	-127.422	2152.53	-267.717	-580.768
<u>></u> 4	26803.8	-3312.93	415.027	-116.279	2550.15	-386.33	-367.168
≥ 5	36403.6	-7831.93	1219.66	-126.065	2858.32	-471.785	326.863
<u>≥</u> 6	44046.1	-12375.9	2213.52	-145.727	3153.45	-539.715	851.971
<u>≥</u> 7	49753.5	-16172.6	3163.61	-166.946	3428.38	-603.598	1186.31
<u>≥ 8</u>	55095.4	-20182.5	4287.03	-183.047	3650.42	-652.92	1052.4
<u>≥ 9</u>	58974.4	-23071.6	5156.53	-191.718	3805.41	-687.18	1025
≥ 10	62591.8	-25800.8	5995.95	-195.105	3884.14	-690.659	868.556
<u>≥ 11</u>	65133.1	-27747.4	6689	-203.095	4036.91	-744.034	894.607
<u>≥ 12</u>	68448.4	-30456	7624.9	-202.201	4083.52	-753.391	577.914
<u>≥ 13</u> .	71084.4	-32536.4	8381.78	-201.624	4117.93	-757.16	379.105
<u>≥ 14</u>	73459.5	-34352.3	9068.86	-197.988	4113.16	-747.015	266.536
≥ 15	75950.7	-36469.4	9920.52	-199.791	4184.91	-779.222	57.9429
≥ 16	76929.1	-36845.6	10171.3	-197.88	4206.24	-794.541	256.099
<u>≥ 17</u>	79730	-39134.8	11069.4	-190.865	4160.42	-773.448	-42.6853
<u>≥ 18</u>	81649.2	-40583	11736.1	-187.604	4163.36	-785.838	-113.614
≥ 19	83459	-41771.8	12265.9	-181.461	4107.51	-758.496	-193.442
<u>≥ 20</u>	86165.4	-44208.8	13361.2	-178.89	4107.62	-768.671	-479.778

PWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Cooling		Array/Class 15x15D/E/F/H							
Time (years)	Α	B	С	D	E	F	G		
≥ 3	15192.5	50.5722	-12.3042	-126.906	2009.71	-235.879	-561.574		
<u>≥</u> 4	25782.5	-3096.5	369.096	-113.289	2357.75	-334.695	-254.964		
≥ 5	35026.5	-7299.87	1091.93	-124.619	2664	-414.527	470.916		
<u>≥6</u>	42234.9	-11438.4	1967.63	-145.948	2945.81	-474.981	1016.84		
≥ 7	47818.4	-15047	2839.22	-167.273	3208.95	-531.296	1321.12		
<u>≥ 8</u>	52730.7	-18387.2	3702.43	-175.057	3335.58	-543.232	1223.61		
· ≥9 ·	56254.6	-20999.9	4485.93	-190.489	3547.98	-600.64	1261.55		
≥ 10	59874.6	-23706.5	5303.88	-193.807	3633.01	-611.892	1028.63		
<u>≥11</u>	62811	-25848.4	5979.64	-194.997	3694.14	-618.968	862.738		
<u>≥12</u>	65557.6	-27952.4	6686.74	-198.224	3767.28	-635.126	645.139		
≥ 13	67379.4	-29239.2	7197.49	-200.164	3858.53	-677.958	652.601		
<u>≥ 14</u>	69599.2	-30823.8	7768.51	-196.788	3868.2	-679.88	504.443		
≥15	71806.7	-32425	8360.38	-191.935	3851.65	-669.917	321.146		
<u>≥</u> 16	73662.6	-33703.5	8870.78	-187.366	3831.59	-658.419	232.335		
≥17 ·	76219.8	-35898.1	9754.72	-189.111	3892.07	-694.244	-46.924		
<u>≥ 18</u>	76594.4	-35518.2	9719.78	-185.11	3897.04	-712.82	236.047		
<u>≥ 19</u>	78592.7	-36920.8	10316.5	-179.54	3865.84	-709.551	82.478		
≥20	80770.5	-38599.9	11051.3	-175.106	3858.67	-723.211	-116.014		

PWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HI-STORM FSAR REPORT HI-2002444

Cooling	Array/Class 16x16A							
Time (years)	A	В	С	D	Е	F	G	
≥ 3	17038.2	158.445	-37.6008	-136.707	2368.1	-321.58	-700.033	
¹ ≥ 4	29166.3	-3919.95	508.439	-125.131	2782.53	-455.722	-344.199	
≥ 5	40285	-9762.36	1629.72	-139.652	3111.83	-539.804	139.67	
<u>≥</u> 6	48335.7	-15002.6	2864.09	-164.702	3444.97	-614.756	851.706	
≥ 7	55274.9	-20190	4258.03	-185.909	3728.11	-670.841	920.035	
· _ ≥ 8	60646.6	-24402.4	5483.54	-199.014	3903.29	-682.26	944.913	
≥ 9°	64663.2	-27753.1	6588.21	-215.318	4145.34	-746.822	967.914	
≥10	69306.9	-31739.1	7892.13	-218.898	4237.04	-746.815	589.277	
<u>≥</u> 11	72725.8	-34676.6	8942.26	-220.836	4312.93	-750.85	407.133	
≥ 12	76573.8	-38238.7	10248.1	-224.934	4395.85	-757.914	23.7549	
<u>≥</u> 13	.78569	-39794.3	10914.9	-224.584	4457	-776.876	69.428	
<u>≥</u> 14	81559.4	-42453.6	11969.6	-222.704	4485.28	-778.427	-203.031	
<u>≥ 15</u>	84108.6	-44680.4	12897.8	-218.387	4460	-746.756	-329.078	
<u>≥</u> 16	86512.2	-46766.8	13822.8	-216.278	4487.79	-759.882	-479.729	
<u>≥</u> 17	87526.7	-47326.2	14221	-218.894	4567.68	-805.659	-273.692	
<u>≥ 18</u>	90340.3	-49888.6	15349.8	-212.139	4506.29	-762.236	-513.316	
<u>≥ 19</u>	93218.2	-52436.7	16482.4	-207.653	4504.12	-776.489	-837.1	
≥ 20	95533.9	-54474.1	17484.2	-203.094	4476.21	-760.482	-955.662	

PWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Cooling			Array/Class 17x17A							
Time (years)	A	B	С	D	Е	F	G			
≥ 3 .	16784.4	3.90244	-10.476	-128.835	2256.98	-287.108	-263.081			
<u>≥ 4</u>	28859	-3824.72	491.016	-120.108	2737.65	-432.361	-113.457			
≥ 5	40315.9	-9724	1622.89	-140.459	3170.28	-547.749	425.136			
<u>≥</u> 6	49378.5	-15653.1	3029.25	-164.712	3532.55	-628.93	842.73			
<u>≥</u> 7	56759.5	-21320.4	4598.78	-190.58	3873.21	-698.143	975.46			
<u>≥ 8</u>	63153.4	-26463.8	6102.47	-201.262	4021.84	-685.431	848.497			
≥ 9	67874.9	-30519.2	7442.84	-218.184	4287.23	-754.597	723.305			
≥10	72676.8	-34855.2	8928.27	-222.423	4382.07	-741.243	387.877			
≥ 11	75623	-37457.1	9927.65	-232.962	4564.55	-792.051	388.402			
≥ 12	80141.8	-41736.5	11509.8	-232.944	4624.72	-787.134	-164.727			
≥13	83587.5	-45016.4	12800.9	-230.643	4623.2	-745.177	-428.635			
≥14	86311.3	-47443.4	13815.2	-228.162	4638.89	-729.425	-561.758			
≥ 15	87839.2	-48704.1	14500.3	-231.979	4747.67	-775.801	-441.959			
<u>≥16</u>	91190.5	-51877.4	15813.2	-225.768	4692.45	-719.311	-756.537			
<u>≥ 17</u>	94512	-55201.2	17306.1	-224.328	4740.86	-747.11	-1129.15			
<u>≥ 18</u>	96959	-57459.9	18403.8	-220.038	4721.02	-726.928	-1272.47			
<u>> 19</u>	99061.1	-59172.1	19253.1	-214.045	4663.37	-679.362	-1309.88			
<u>≥</u> 20	100305	-59997.5	19841.1	-216.112	4721.71	-705.463	-1148.45			

PWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-55

Cooling	Array/Class 17x17B/C							
Time (years)	A	В	С	D	E	F	G	
≥ 3	15526.8	18.0364	-9.36581	-128.415	2050.81	-243.915	-426.07	
<u>≥ 4</u>	26595.4	-3345.47	409.264	-115.394	2429.48	-350.883	-243.477	
<u>≥</u> 5	36190.4	-7783.2	1186.37	-130.008	2769.53	-438.716	519.95	
<u>≥</u> 6	44159	-12517.5	2209.54	-150.234	3042.25	-489.858	924.151	
<u>≥</u> 7	50399.6	-16780.6	3277.26	-173.223	3336.58	-555.743	1129.66	
<u>≥ 8</u>	55453.9	-20420	4259.68	-189.355	3531.65	-581.917	1105.62	
<u>≥ 9</u>	59469.3	-23459.8	5176.62	-199.63	3709.99	-626.667	1028.74	
<u>≥</u> 10	63200.5	-26319.6	6047.8	-203.233	3783.02	-619.949	805.311	
<u>≥11</u>	65636.3	-28258.3	6757.23	-214.247	3972.8	-688.56	843.457	
≥ 12	68989.7	-30904.4	7626.53	-212.539	3995.62	-678.037	495.032	
≥ 13	71616.6	-32962.2	8360.45	-210.386	4009.11	-666.542	317.009	
<u>≥ 14</u>	73923.9	-34748	9037.75	-207.668	4020.13	-662.692	183.086	
<u>≥ 15</u>	76131.8	-36422.3	9692.32	-203.428	4014.55	-655.981	47.5234	
≥ 16	77376.5	-37224.7	10111.4	-207.581	4110.76	-703.37	161.128	
<u>≥</u> 17	80294.9	-39675.9	11065.9	-201.194	4079.24	-691.636	-173.782	
≥ 18	82219.8	-41064.8	11672.1	-195.431	4043.83	-675.432	-286.059	
<u>≥ 19</u>	84168.9	-42503.6	12309.4	-190.602	4008.19	-656.192	-372.411	
≥20	86074.2	-43854.4	12935.9	-185.767	3985.57	-656.72	-475.953	

PWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-56

Cooling	Array/Class 7x7B							
Time (years)	Α	В	С	D	E	F	G	
≥ 3	26409.1	28347.5	-16858	-147.076	5636.32	-1606.75	1177.88	
<u>≥ 4</u>	61967.8	-6618.31	-4131.96	-113.949	6122.77	-2042.85	-96.7439	
≥ 5	91601.1	-49298.3	17826.5	-132.045	6823.14	-2418.49	-185.189	
≥ 6	111369	-80890.1	35713.8	-150.262	7288.51	-2471.1	86.6363	
≥ 7	126904	-108669	53338.1	-167.764	7650.57	-2340.78	150.403	
<u>≥ 8</u>	. 139181	-132294	69852.5	-187.317	8098.66	-2336.13	97.5285	
<u>≥9</u>	150334	-154490	86148.1	-193.899	8232.84	-2040.37	-123.029	
≥ 10	159897	-173614	100819	-194.156	8254.99	-1708.32	-373.605	
<u>≥11</u>	166931	-186860	111502	-193.776	8251.55	-1393.91	-543.677	
≥ 12	173691	-201687	125166	-202.578	8626.84	-1642.3	-650.814	
≥13	180312	-215406	137518	-201.041	8642.19	-1469.45	-810.024	
≥ 14	185927	-227005	148721	-197.938	8607.6	-1225.95	-892.876	
≥ 15	191151	-236120	156781	-191.625	8451.86	-846.27	-1019.4	
<u>≥16</u>	195761	-244598	165372	-187.043	8359.19	-572.561	-1068.19	
≥17	200791	-256573	179816	-197.26	8914.28	-1393.37	-1218.63	
≥ 18	206068	-266136	188841	-187.191	8569.56	-730.898	-1363.79	
≥19	210187	-273609	197794	-182.151	8488.23	-584.727	-1335.59	
≥ 20 s	213731	-278120	203074	-175.864	8395.63	-457.304	-1364.38	

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Cooling		Array/Class 8x8B							
Time (years)	A	В	С	D	E	F	G		
≥ 3 ·	28219.6	28963.7	-17616.2	-147.68	5887.41	-1730.96	1048.21		
<u>≥</u> 4	66061.8	-10742.4	-1961.82	-123.066	6565.54	-2356.05	-298.005		
· · ≥5	95790.7	-53401.7	19836.7	-134.584	7145.41	-2637.09	-298.858		
· ≥6	117477	-90055.9	41383.9	-154.758	7613.43	-2612.69	-64.9921		
≥ 7	134090	-120643	60983	-168.675	7809	-2183.3	-40.8885		
<u>≥ 8</u>	148186	-149181	81418.7	-185.726	8190.07	-2040.31	-260.773		
<u>≥</u> 9	159082	-172081	99175.2	-197.185	8450.86	-1792.04	-381.705		
≥ 10	168816	-191389	113810	-195.613	8359.87	-1244.22	-613.594		
<u>≥</u> 11	177221	-210599	131099	-208.3	8810	-1466.49	-819.773		
<u>≥</u> 12	183929	-224384	143405	-207.497	8841.33	-1227.71	-929.708		
<u>≥ 13</u>	191093	-240384	158327	-204.95	8760.17	-811.708	-1154.76		
<u>> 14</u>	196787	-252211	169664	-204.574	8810.95	-610.928	-1208.97		
≥ 15	203345	-267656	186057	-208.962	9078.41	-828.954	-1383.76		
<u>> 16</u>	207973	-276838	196071	-204.592	9024.17	-640.808	-1436.43		
≥ 17	213891	-290411	211145	-202.169	9024.19	-482.1	-1595.28		
<u>≥ 18</u>	217483	-294066	214600	-194.243	8859.35	-244.684	-1529.61		
<u>≥ 19</u>	220504	-297897	219704	-190.161	8794.97	-10.9863	-1433.86		
<u>≥</u> 20	227821	-318395	245322	-194.682	9060.96	-350.308	-1741.16		

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-58

Cooling	Array/Class 8x8C/D/E								
Time (years)	Α	В	С	D	E	F	G		
≥ 3	28592.7	28691.5	-17773.6	-149.418	5969.45	-1746.07	1063.62		
<u>≥</u> 4	66720.8	-12115.7	-1154	-128.444	6787.16	-2529.99	-302.155		
_≥5	96929.1	-55827.5	21140.3	-136.228	7259.19	-2685.06	-334.328		
≥ 6	118190	-92000.2	42602.5	-162.204	7907.46	-2853.42	-47.5465		
≥ 7 ·	135120	-123437	62827.1	-172.397	8059.72	-2385.81	-75.0053		
<u>≥ 8</u>	149162	-152986	84543.1	-195.458	8559.11	-2306.54	-183.595		
≥ 9	161041	-177511	103020	-200.087	8632.84	-1864.4	-433.081		
10 ≥ 10	171754	-201468	122929	-209.799	8952.06	-1802.86	-755.742		
≥ 11	179364	-217723	137000	-215.803	9142.37	-1664.82	-847.268		
≥ 12	186090	-232150	150255	-216.033	9218.36	-1441.92	-975.817		
≥13	193571	-249160	165997	-213.204	9146.99	-1011.13	-1119.47		
<u>≥ 14</u>	200034	-263671	180359	-210.559	9107.54	-694.626	-1312.55		
≥15	205581	-275904	193585	-216.242	9446.57	-1040.65	-1428.13		
≥16	212015	-290101	207594	-210.036	9212.93	-428.321	-1590.7		
≥17	216775	-299399	218278	-204.611	9187.86	-398.353	-1657.6		
≥18	220653	-306719	227133	-202.498	9186.34	-181.672	-1611.86		
≥ 19	224859	-314004	235956	-193.902	8990.14	145.151	-1604.71		
≥ 20	228541	-320787	245449	-200.727	9310.87	-230.252	-1570.18		

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HI-STORM FSAR REPORT HI-2002444

2.1-59

Cooling	Array/Class 9x9A								
Time (years)	A	В	С	D	E	F	G		
<u>≥ 3</u>	30538.7	28463.2	-18105.5	-150.039	6226.92	-1876.69	1034.06		
<u>≥</u> 4	71040.1	-16692.2	1164.15	-128.241	7105.27	-2728.58	-414.09		
≥ <u>5</u>	100888	-60277.7	24150.1	-142.541	7896.11	-3272.86	-232.197		
<u>≥ 6</u>	124846	-102954	50350.8	-161.849	8350.16	-3163.44	-91.1396		
<u>≥ 7</u>	143516	-140615	76456.5	-185.538	8833.04	-2949.38	-104.802		
. <u>≥</u> 8,	158218	-171718	99788.2	-196.315	9048.88	-2529.26	-259.929		
≥ 9	172226	-204312	126620	-214.214	9511.56	-2459.19	-624.954		
≥ 10 ×	182700	-227938	146736	-215.793	9555.41	-1959.92	-830.943		
≥11	190734	-246174	163557	-218.071	9649.43	-1647.5	-935.021		
≥ 12	199997	-269577	186406	-223.975	9884.92	-1534.34	-1235.27		
<u>≥ 13</u>	207414	-287446	204723	-228.808	10131.7	-1614.49	-1358.61		
<u>≥ 14</u>	215263	-306131	223440	-220.919	9928.27	-988.276	-1638.05		
<u>≥ 15</u>	221920	-321612	239503	-217.949	9839.02	-554.709	-1784.04		
<u>≥</u> 16	226532	-331778	252234	-216.189	9893.43	-442.149	-1754.72		
<u>≥ 17</u>	232959	-348593	272609	-219.907	10126.3	-663.84	-1915.3		
<u>≥ 18</u>	240810	-369085	296809	-219.729	10294.6	-859.302	-2218.87		
≥19	244637	-375057	304456	-210.997	10077.8	-425.446	-2127.83		
<u>≥</u> 20	248112	-379262	309391	-204.191	9863.67	100.27	-2059.39		

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-60

Cooling	Array/Class 9x9B						
Time (years)	Α	В	C	D	E	F	G
≥ 3	30613.2	28985.3	-18371	-151.117	6321.55	-1881.28	988.92
≥ 4	71346.6	-15922.9	631.132	-128.876	7232.47	-2810.64	-471.737
≥5	102131	-60654.1	23762.7	-140.748	7881.6	-3156.38	-417.979
≥ 6	127187	-105842	51525.2	-162.228	8307.4	-2913.08	-342.13
≥ 7	146853	-145834	79146.5	-185.192	8718.74	-2529.57	-484.885
<u>≥ 8</u>	162013	-178244	103205	-197.825	8896.39	-1921.58	-584.013
<u>≥ 9</u>	176764	-212856	131577	-215.41	9328.18	-1737.12	-1041.11
≥ 10	186900	-235819	151238	-218.98	9388.08	-1179.87	-1202.83
<u>≥11</u>	196178	-257688	171031	-220.323	9408.47	-638.53	-1385.16
<u>≥ 12</u>	205366	-280266	192775	-223.715	9592.12	-472.261	-1661.6
≥ 13 ·	215012	-306103	218866	-231.821	9853.37	-361.449	-1985.56
<u>≥14</u>	222368	-324558	238655	-228.062	9834.57	3.47358	-2178.84
≥15	226705	-332738	247316	-224.659	9696.59	632.172	-2090.75
<u>≥16</u>	233846	-349835	265676	-221.533	9649.93	913.747	-2243.34
≥ 17	243979	-379622	300077	-222.351	9792.17	1011.04	-2753.36
<u>≥ 18</u>	247774	-386203	308873	-220.306	9791.37	1164.58	-2612.25
<u>≥ 19</u>	254041	-401906	327901	-213.96	9645.47	1664.94	-2786.2
≥ 20	256003	-402034	330566	-215.242	9850.42	1359.46	-2550.06

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HI-STORM FSAR REPORT HI-2002444

2.1-61

Cooling	Array/Class 9x9C/D								
Time (years)	A	В	С	D	Е	F	G		
2 ≥ 3	30051.6	29548.7	-18614.2	-148.276	6148.44	-1810.34	1006		
<u>></u> 4	70472.7	-14696.6	-233.567	-127.728	7008.69	-2634.22	-444.373		
<u>≥ 5</u>	101298	-59638.9	23065.2	-138.523	7627.57	-2958.03	-377.965		
≥6	125546	-102740	49217.4	-160.811	8096.34	-2798.88	-259.767		
<u>≥</u> 7	143887	-139261	74100.4	-184.302	8550.86	-2517.19	-275.151		
<u>≥ 8</u>	159633	-172741	98641.4	-194.351	8636.89	-1838.81	-486.731		
<u>≥ 9</u>	173517	-204709	124803	-212.604	9151.98	-1853.27	-887.137		
<u>≥</u> 10	182895	-225481	142362	-218.251	9262.59	-1408.25	-978.356		
<u>≥</u> 11	192530	-247839	162173	-217.381	9213.58	-818.676	-1222.12		
<u>≥12</u>	201127	-268201	181030	-215.552	9147.44	-232.221	-1481.55		
<u>> 13</u>	209538	-289761	203291	-225.092	9588.12	-574.227	-1749.35		
<u>≥ 14</u>	216798	-306958	220468	-222.578	9518.22	-69.9307	-1919.71		
<u>≥ 15</u>	223515	-323254	237933	-217.398	9366.52	475.506	-2012.93		
<u>≥</u> 16	228796	-334529	250541	-215.004	9369.33	662.325	-2122.75		
· 17	237256	-356311	273419	-206.483	9029.55	1551.3	-2367.96		
<u>≥ 18</u>	242778	-369493	290354	-215.557	9600.71	659.297	-2589.32		
<u>> 19</u>	246704	-377971	302630	-210.768	9509.41	1025.34	-2476.06		
≥20	249944	-382059	308281	-205.495	9362.63	1389.71	-2350.49		

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HI-STORM FSAR REPORT HI-2002444

2.1-62

Cooling	Array/Class 9x9E/F								
Time (years)	A	В	С	D	E	F	G		
≥ 3	30284.3	26949.5	-16926.4	-147.914	6017.02	-1854.81	1026.15		
<u>≥ 4</u> , ¹	69727.4	-17117.2	1982.33	-127.983	6874.68	-2673.01	-359.962		
≥ 5	98438.9	-58492	23382.2	-138.712	7513.55	-3038.23	-112.641		
≥ 6	119765	-95024.1	45261	-159.669	8074.25	-3129.49	221.182		
<u>≥</u> 7	136740	-128219	67940.1	-182.439	8595.68	-3098.17	315.544		
<u>≥ 8</u>	150745	-156607	88691.5	-193.941	8908.73	-2947.64	142.072		
<u>≥</u> 9	162915	-182667	109134	-198.37	8999.11	-2531	-93.4908		
≥ 10	174000	-208668	131543	-210.777	9365.52	-2511.74	-445.876		
≥11	181524	-224252	145280	-212.407	9489.67	-2387.49	-544.123		
≥ 12	188946	-240952	160787	-210.65	9478.1	-2029.94	-652.339		
≥13	193762	-250900	171363	-215.798	9742.31	-2179.24	-608.636		
≥ 14	203288	-275191	196115	-218.113	9992.5	-2437.71	-1065.92		
≥15	208108	-284395	205221	-213.956	9857.25	-1970.65	-1082.94		
<u>≥</u> 16	215093	-301828	224757	-209.736	9789.58	-1718.37	-1303.35		
<u>≥</u> 17	220056	-310906	234180	-201.494	9541.73	-1230.42	-1284.15		
≥1 8	224545	-320969	247724	-206.807	9892.97	-1790.61	-1381.9		
<u>≥ 19</u>	226901	-322168	250395	-204.073	9902.14	-1748.78	-1253.22		
≥20	235561	-345414	276856	-198.306	9720.78	-1284.14	-1569.18		

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.1-63

Rev. 6

Cooling	Array/Class 9x9G								
Time (years)	Α	В	С	D	E	F	G		
≥ 3	35158.5	26918.5	-17976.7	-149.915	6787.19	-2154.29	836.894		
<u>≥</u> 4	77137.2	-19760.1	2371.28	-130.934	8015.43	-3512.38	-455.424		
≥ 5	113405	-77931.2	35511.2	-150.637	8932.55	-4099.48	-629.806		
≥ 6	139938	-128700	68698.3	-173.799	9451.22	-3847.83	-455.905		
≥ 7 [×]	164267	-183309	109526	-193.952	9737.91	-3046.84	-737.992		
<u>≥</u> 8	182646	-227630	146275	-210.936	10092.3	-2489.3	-1066.96		
≥ 9	199309	-270496	184230	-218.617	10124.3	-1453.81	-1381.41		
≥10	213186	-308612	221699	-235.828	10703.2	-1483.31	-1821.73		
≥11	225587	-342892	256242	-236.112	10658.5	-612.076	-2134.65		
<u>≥12</u>	235725	-370471	285195	-234.378	10604.9	118.591	-2417.89		
≥ 13 ·	247043	-404028	323049	-245.79	11158.2	-281.813	-2869.82		
· ≥ 14	253649	-421134	342682	-243.142	11082.3	400.019	-2903.88		
≥ 15	262750	-448593	376340	-245.435	11241.2	581.355	-3125.07		
<u>≥</u> 16	270816	-470846	402249	-236.294	10845.4	1791.46	-3293.07		
≥ 17 ·	279840	-500272	441964	-241.324	11222.6	1455.84	-3528.25		
≥ 18	284533	-511287	458538	-240.905	11367.2	1459.68	-3520.94		
· .≥19	295787	-545885	501824	-235.685	11188.2	2082.21	-3954.2		
≥ 20	300209	-556936	519174	-229.539	10956	2942.09	-3872.87		

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

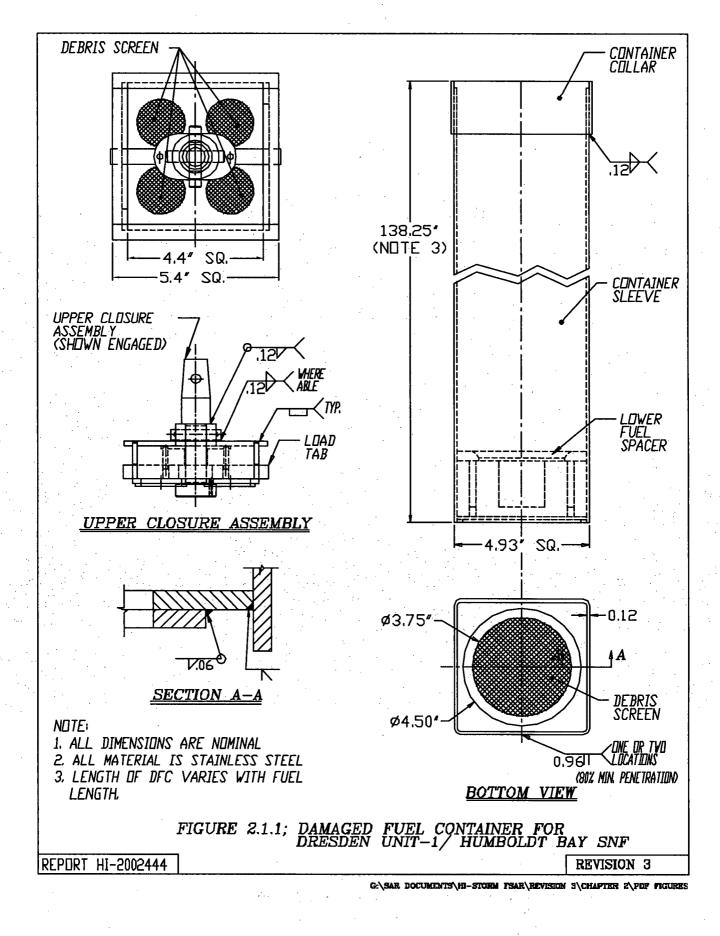
2.1-64

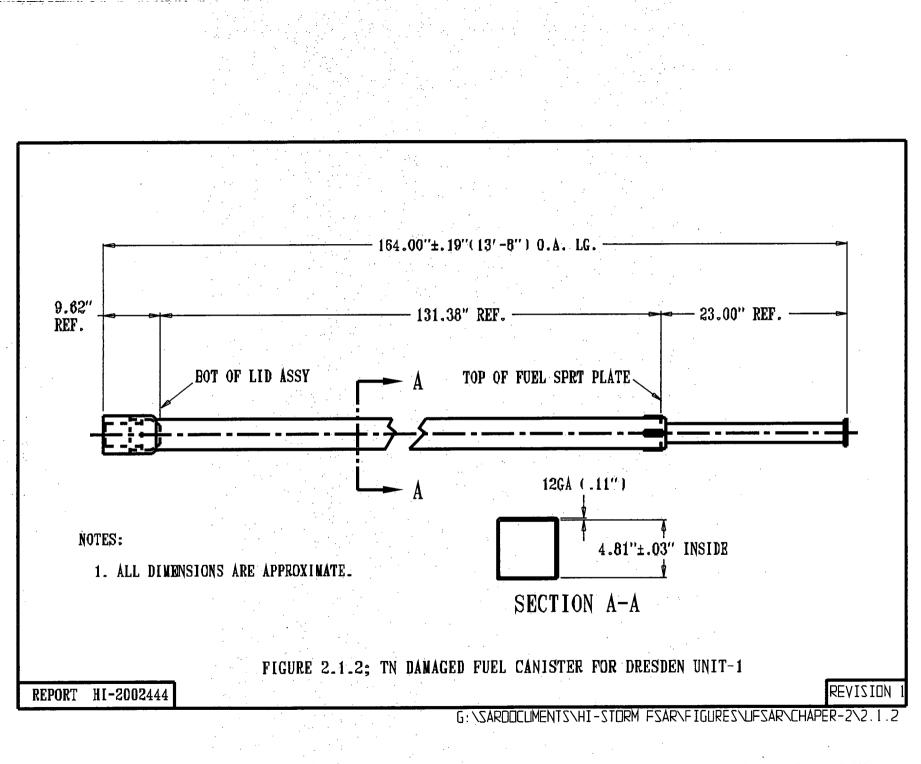
Cooling	Array/Class 10x10A/B								
Time (years)	A	В	С	D	Е	F	G		
<u>≥ 3</u>	29285.4	27562.2	-16985	-148.415	5960.56	-1810.79	1001.45		
<u>≥</u> 4	67844.9	-14383	395.619	-127.723	6754.56	-2547.96	-369.267		
≥ 5	96660.5	-55383.8	21180.4	-137.17	7296.6	-2793.58	-192.85		
<u>≥</u> 6	118098	-91995	42958	-162.985	7931.44	-2940.84	60.9197		
≥ 7	135115	-123721	63588.9	-171.747	8060.23	-2485.59	73.6219		
<u>≥ 8</u>	148721	-151690	84143.9	-190.26	8515.81	-2444.25	-63.4649		
<u>≥</u> 9	160770	-177397	104069	-197.534	8673.6	-2101.25	-331.046		
≥ 10	170331	-198419	121817	-213.692	9178.33	-2351.54	-472.844		
≥11 ·	179130	-217799	138652	-209.75	9095.43	-1842.88	-705.254		
≥ 12	186070	-232389	151792	-208.946	9104.52	-1565.11	-822.73		
<u>≥13</u>	192407	-246005	164928	-209.696	9234.7	-1541.54	-979.245		
≥ 14	200493	-265596	183851	-207.639	9159.83	-1095.72	-1240.61		
≥15 ·	205594	-276161	195760	-213.491	9564.23	-1672.22	-1333.64		
<u>≥</u> 16	209386	-282942	204110	-209.322	9515.83	-1506.86	-1286.82		
≥ 17	214972	-295149	217095	-202.445	9292.34	-893.6	-1364.97		
<u>≥ 18</u>	219312	-302748	225826	-198.667	9272.27	-878.536	-1379.58		
≥ 19	223481	-310663	235908	-194.825	9252.9	-785.066	-1379.62		
≥20	227628	-319115	247597	-199.194	9509.02	-1135.23	-1386.19		

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

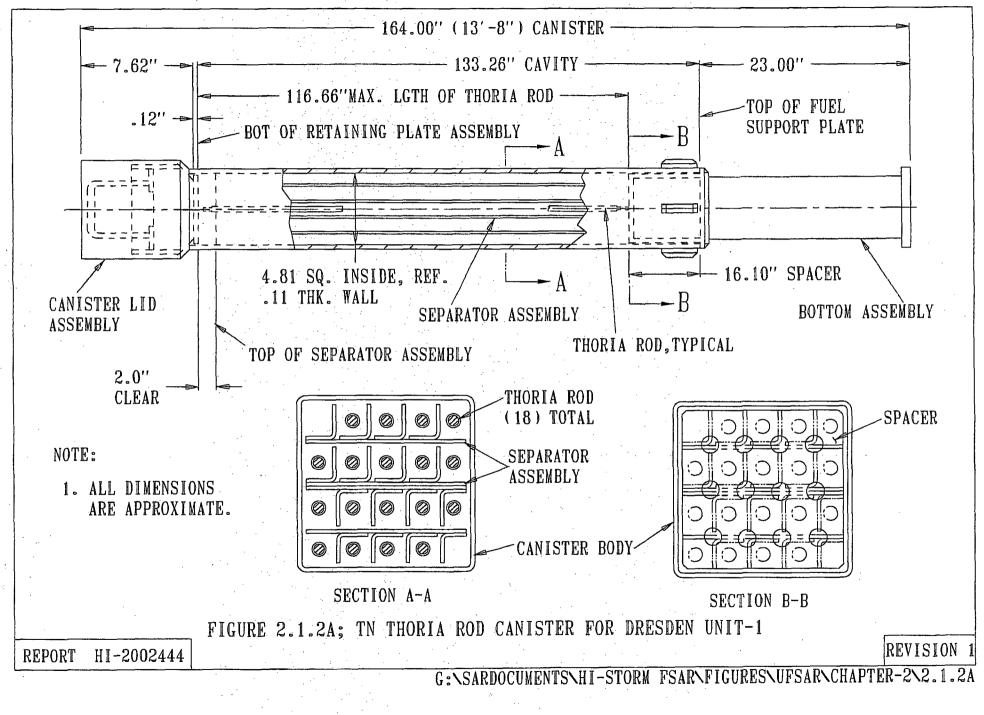
HI-STORM FSAR REPORT HI-2002444

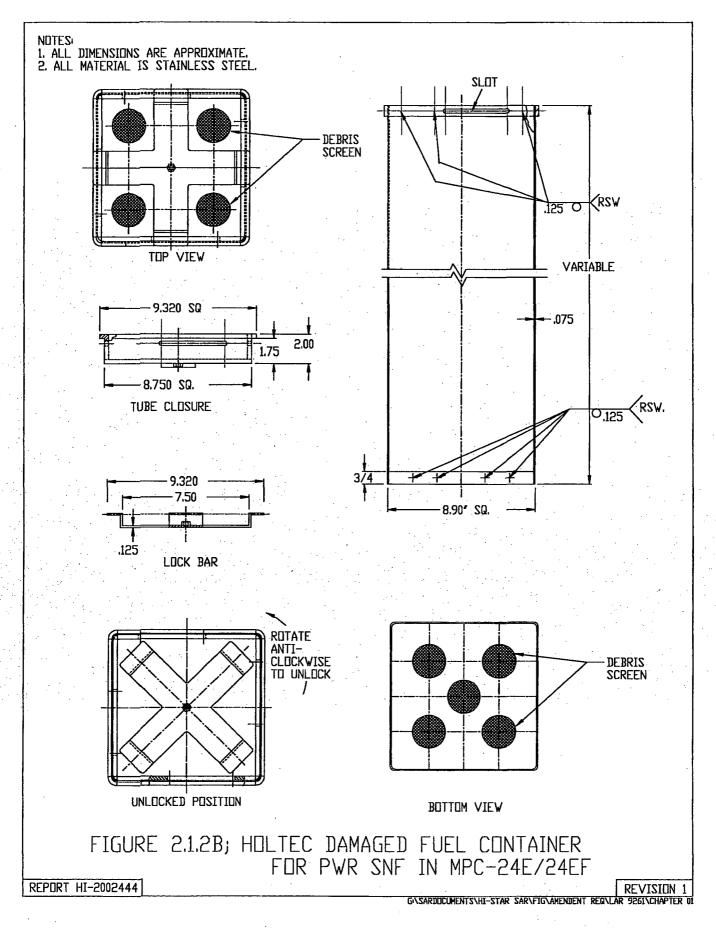
2.1-65

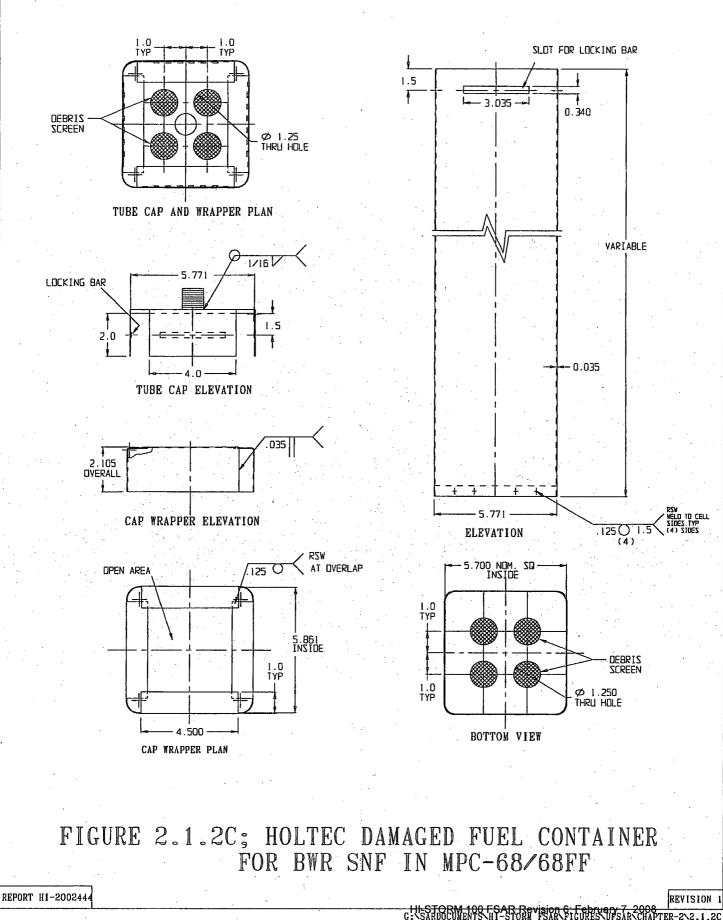

Cooling	Array/Class 10x10C								
Time (years)	Α	В	С	D	Е	F	G		
≥ 3	31425.3	27358.9	-17413.3	-152.096	6367.53	-1967.91	925.763		
≥ 4	71804	-16964.1	1000.4	-129.299	7227.18	-2806.44	-416.92		
≥ 5	102685	-62383.3	24971.2	-142.316	7961	-3290.98	-354.784		
≥ 6	126962	-105802	51444.6	-164.283	8421.44	-3104.21	-186.615		
≥ 7	146284	-145608	79275.5	-188.967	8927.23	-2859.08	-251.163		
<u>≥ 8</u>	162748	-181259	105859	-199.122	9052.91	-2206.31	-554.124		
· ≥9	176612	-214183	133261	-217.56	9492.17	-1999.28	-860.669		
<u>≥10</u>	187756	-239944	155315	-219.56	9532.45	-1470.9	-1113.42		
≥ 11	196580	-260941	174536	-222.457	9591.64	-944.473	-1225.79		
<u>≥12</u>	208017	-291492	204805	-233.488	10058.3	-1217.01	-1749.84		
<u>>13</u>	214920	-307772	221158	-234.747	10137.1	-897.23	-1868.04		
≥ 1.4	222562	-326471	240234	-228.569	9929.34	-183.47	-2016.12		
≥ 15	228844	-342382	258347	-226.944	9936.76	117.061	-2106.05		
≥16	233907	-353008	270390	-223.179	9910.72	360.39	-2105.23		
≥ 17	244153	-383017	304819	-227.266	10103.2	380.393	-2633.23		
<u>≥18</u>	249240	-395456	321452	-226.989	10284.1	169.947	-2623.67		
≥19	254343	-406555	335240	-220.569	10070.5	764.689	-2640.2		
<u>≥20</u>	260202	-421069	354249	-216.255	10069.9	854.497	-2732.77		

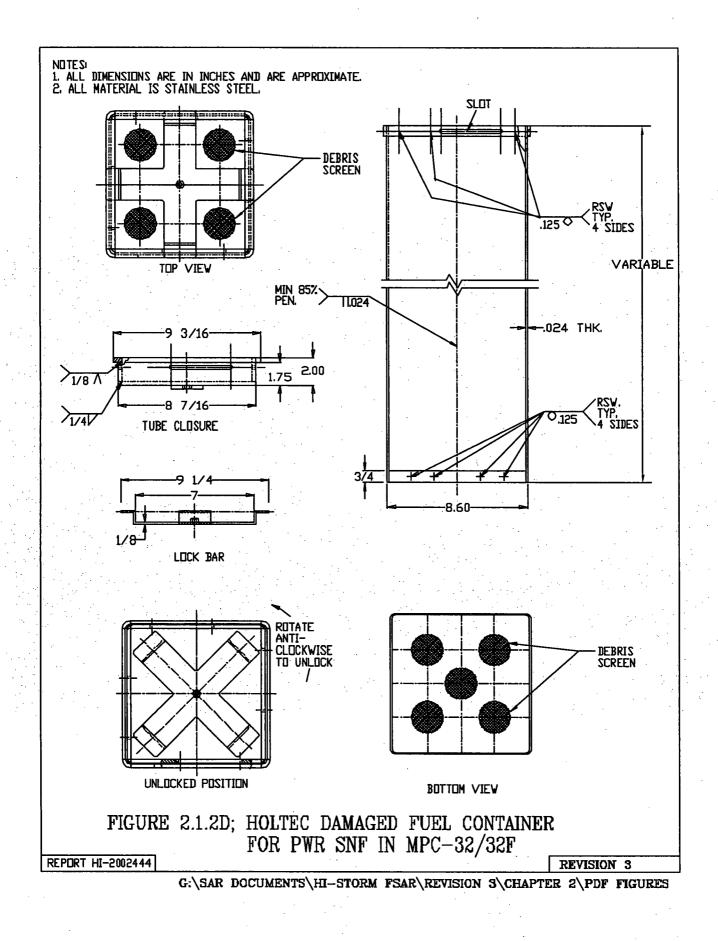

BWR FUEL ASSEMBLY COOLING TIME-DEPENDENT COEFFICIENTS (ZR-CLAD FUEL)

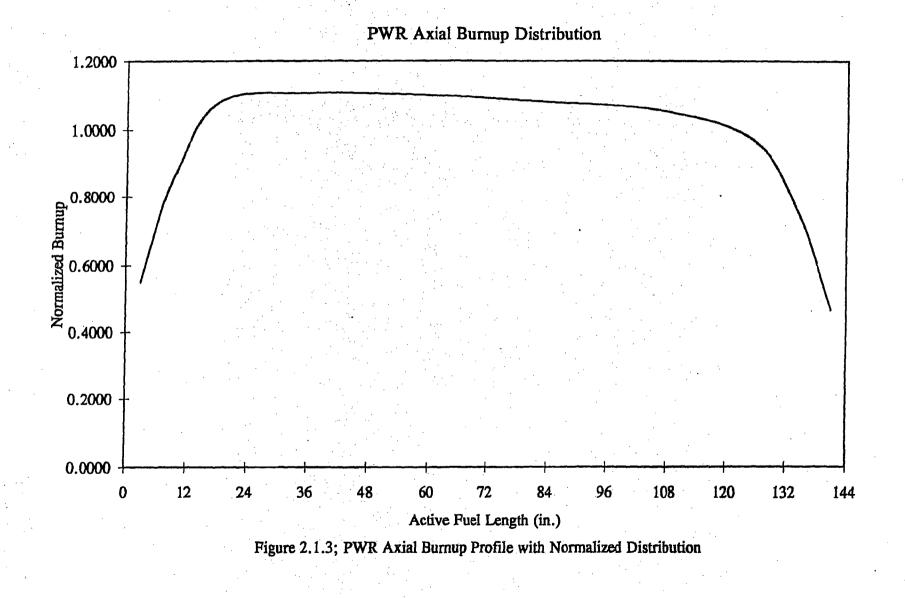
HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL


HI-STORM FSAR REPORT HI-2002444


2.1-66

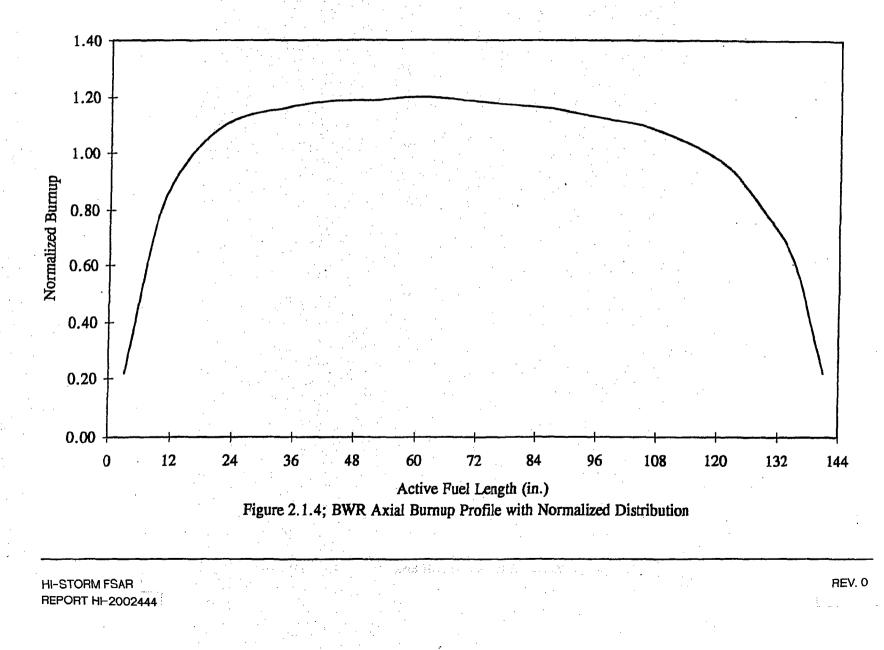

HI-STORM 100 FSAR Revision 6; February 7, 2008

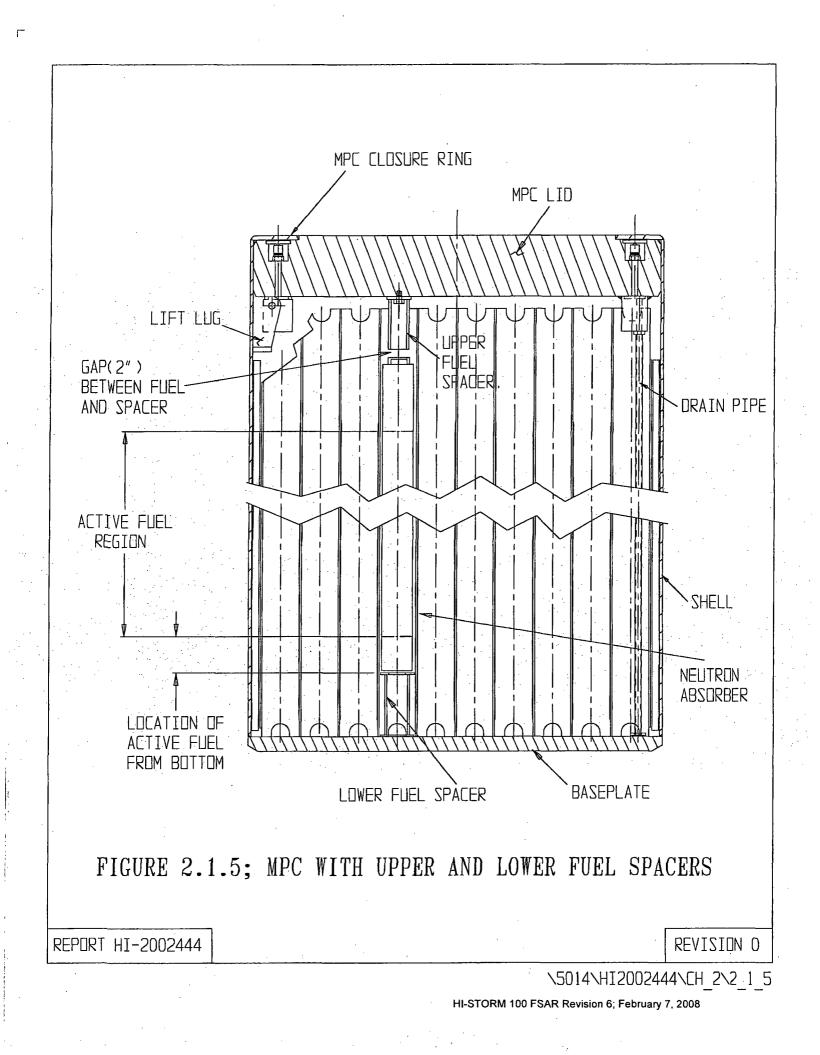




I

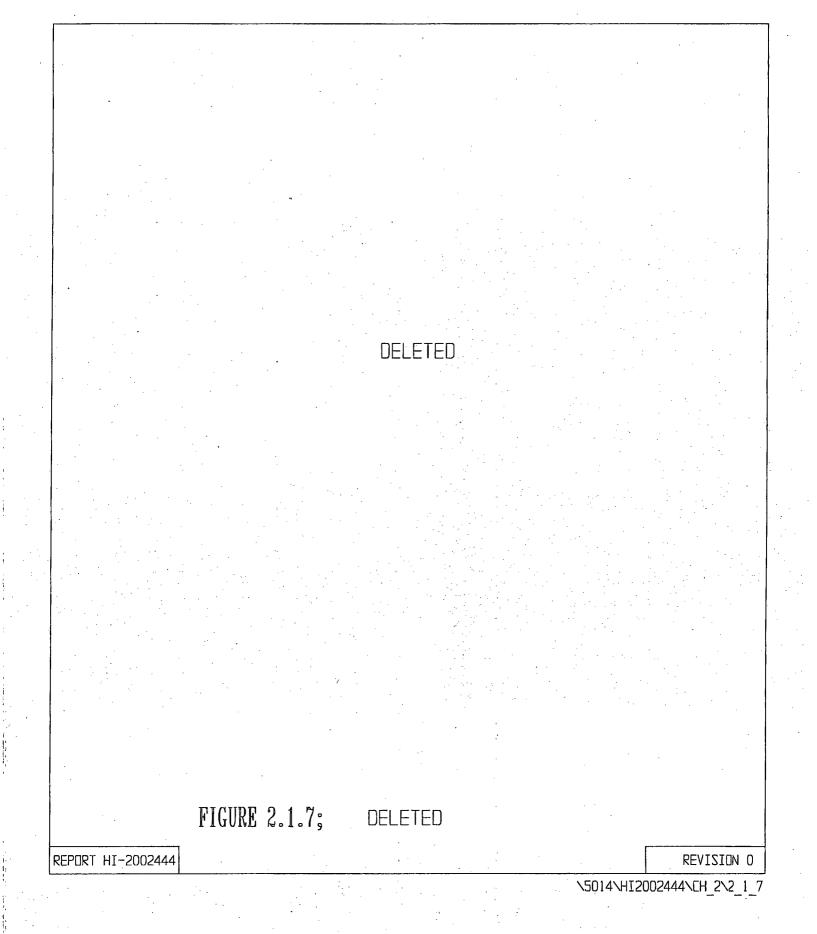
1

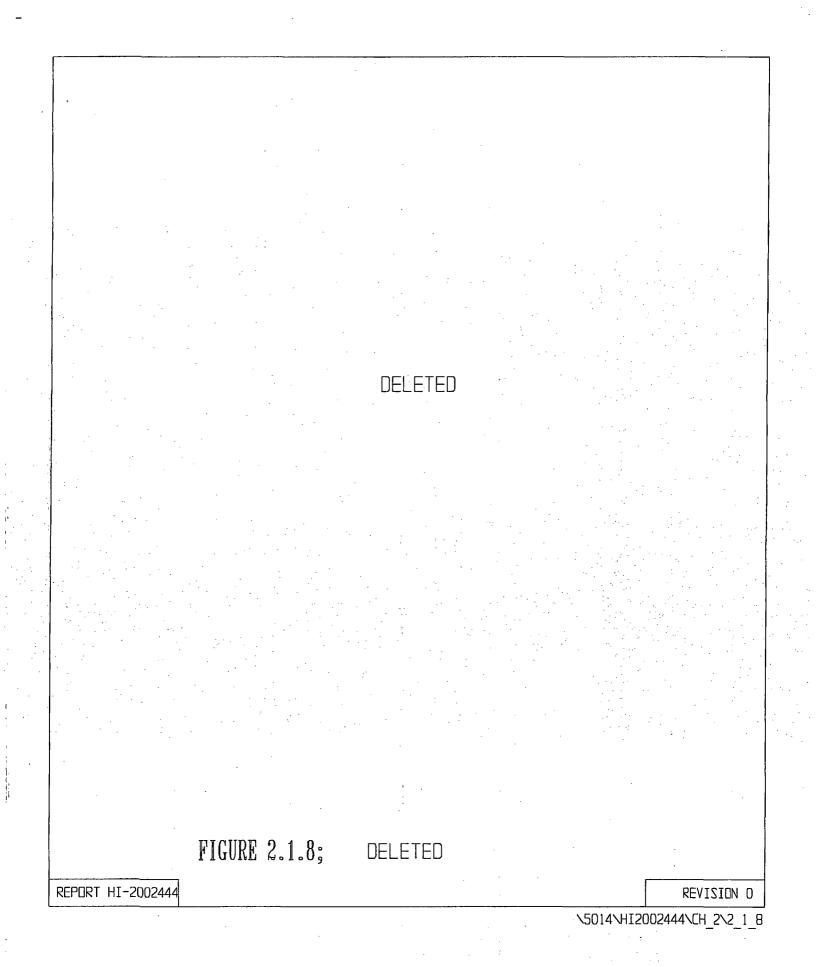


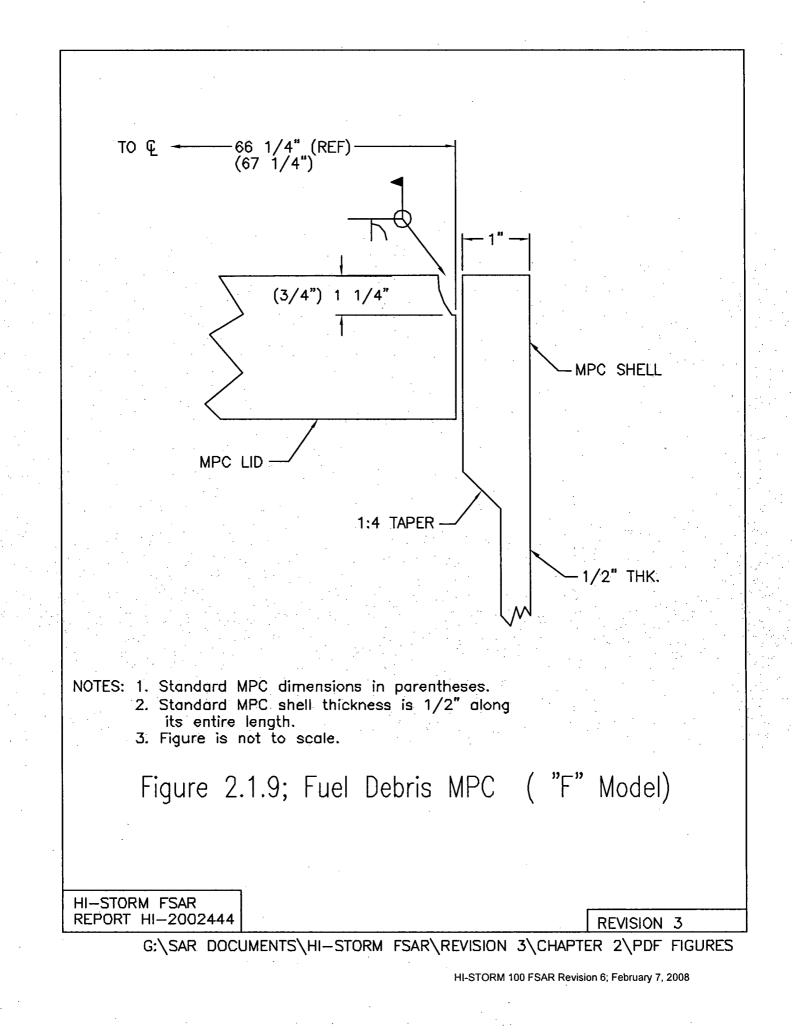


HI-STORM FSAR REPORT HI-2002444

BWR Axial Burnup Distribution


1.1




FIGURE 2.1.6

INTENTIONALLY DELETED

HI-STORM FSAR REPORT HI-2002444

2.2 <u>HI-STORM 100 DESIGN CRITERIA</u>

The HI-STORM 100 System is engineered for unprotected outside storage for the duration of its design life. Accordingly, the cask system is designed to withstand normal, off-normal, and environmental phenomena and accident conditions of storage. Normal conditions include the conditions that are expected to occur regularly or frequently in the course of normal operation. Off-normal conditions include those infrequent events that could reasonably be expected to occur during the lifetime of the cask system. Environmental phenomena and accident conditions include events that are postulated because their consideration establishes a conservative design basis.

Normal condition loads act in combination with all other loads (off-normal or environmental phenomena/accident). Off-normal condition loads and environmental phenomena and accident condition loads are not applied in combination. However, loads that occur as a result of the same phenomena are applied simultaneously. For example, the tornado winds loads are applied in combination with the tornado missile loads.

In the following subsections, the design criteria are established for normal, off-normal, and accident conditions for storage. Loads that require consideration under each condition are identified and the design criteria discussed. Based on consideration of the applicable requirements of the system, the following loads are identified:

Normal (Long-Term Storage) Condition: Dead Weight, Handling, Pressure, Temperature, Snow

<u>Off-Normal Condition</u>: Pressure, Temperature, Leakage of One Seal, Partial Blockage of Air Inlets, Off-Normal Handling of HI-TRAC, Supplemental Cooling System Power Failure

<u>Accident Condition:</u> Handling Accident, Tip-Over, Fire, Partial Blockage of MPC Basket Vent Holes, Tornado, Flood, Earthquake, Fuel Rod Rupture, Confinement Boundary Leakage, Explosion, Lightning, Burial Under Debris, 100% Blockage of Air Inlets, Extreme Environmental Temperature Supplemental Cooling System Operational Failure

<u>Short-Term Operations</u>: This loading condition is defined to accord with ISG-11, Revision 3 guidance [2.0.8]. This includes those normal operational evolutions necessary to support fuel loading or unloading activities. These include, but are not limited to MPC cavity drying, helium backfill, MPC transfer, and on-site handling of a loaded HI-TRAC transfer cask.

Each of these conditions and the applicable loads are identified with applicable design criteria established. Design criteria are deemed to be satisfied if the specified allowable limits are not exceeded.

HI-STORM FSAR REPORT HI-2002444

2.2-1

2.2.1 Normal Condition Design Criteria

2.2.1.1 Dead Weight

The HI-STORM 100 System must withstand the static loads due to the weights of each of its components, including the weight of the HI-TRAC with the loaded MPC atop the storage overpack.

2.2.1.2 <u>Handling</u>

The HI-STORM 100 System must withstand loads experienced during routine handling. Normal handling includes:

	vertical lifting and transfer to the ISFSI of the HI-STORM overpack with loaded
	MPC
i.	lifting, upending/downending, and transfer to the ISFSI of the HI-TRAC with loaded
	MPC in the vertical or horizontal position

iii. lifting of the loaded MPC into and out of the HI-TRAC, HI-STORM, or HI-STAR overpack

The loads shall be increased by 15% to include any dynamic effects from the lifting operations as directed by CMAA #70 [2.2.16].

Handling operations of the loaded HI-TRAC transfer cask or HI-STORM overpack are limited to working area ambient temperatures greater than or equal to 0° F. This limitation is specified to ensure that a sufficient safety margin exists before brittle fracture might occur during handling operations. Subsection 3.1.2.3 provides the demonstration of the adequacy of the HI-TRAC transfer cask and the HI-STORM overpack for use during handling operations at a minimum service temperature of 0° F.

Lifting attachments and devices shall meet the requirements of ANSI N14.6[†] [2.2.3].

2.2.1.3 <u>Pressure</u>

The MPC internal pressure is dependent on the initial volume of cover gas (helium), the volume of fill gas in the fuel rods, the fraction of fission gas released from the fuel matrix, the number of fuel rods assumed to have ruptured, and temperature.

The normal condition MPC internal design pressure bounds the cumulative effects of the maximum fill gas volume, normal environmental ambient temperatures, the maximum MPC heat load, and an assumed 1% of the fuel rods ruptured with 100% of the fill gas and 30% of the significant radioactive gases (e.g., H^3 , Kr, and Xe) released in accordance with NUREG-1536.

[†] Yield and ultimate strength values used in the stress compliance demonstration per ANSI N14.6 shall utilize confirmed material test data through either independent coupon testing or material suppliers= CMTR or COC, as appropriate. To ensure consistency between the design and fabrication of a lifting component, compliance with ANSI N14.6 in this FSAR implies that the guidelines of ASME Section III, Subsection NF for Class 3 structures are followed for material procurement and testing, fabrication, and for NDE during manufacturing.

Table 2.2.1 provides the design pressures for the HI-STORM 100 System.

For the storage of damaged fuel assemblies or fuel debris in a damaged fuel container, it is conservatively assumed that 100% of the fuel rods are ruptured with 100% of the rod fill gas and 30% of the significant radioactive gases (e.g., H^3 , Kr, and Xe) released for both normal and offnormal conditions. For PWR assemblies stored with non-fuel hardware, it is assumed that 100% of the gasses in the non-fuel hardware (e.g., BPRAs) is also released. This condition is bounded by the pressure calculation for design basis intact fuel with 100% of the fuel rods ruptured in all of the fuel assemblies. It is shown in Chapter 4 that the accident condition design pressure is not exceeded with 100% of the fuel rods ruptured in all of the design basis fuel assemblies. Therefore, rupture of 100% of the fuel rods in the damaged fuel assemblies or fuel debris will not cause the MPC internal pressure to exceed the accident design pressure.

The MPC internal design pressure under accident conditions is discussed in Subsection 2.2.3.

The HI-STORM overpack and MPC external pressure is a function of environmental conditions, which may produce a pressure loading. The normal and off-normal condition external design pressure is set at ambient standard pressure (1 atmosphere).

The HI-STORM overpack is not capable of retaining internal pressure due to its open design, and, therefore, no analysis is required or provided for the overpack internal pressure.

The HI-TRAC is not capable of retaining internal pressure due to its open design and, therefore, ambient and hydrostatic pressures are the only pressures experienced. Due to the thick steel walls of the HI-TRAC transfer cask, it is evident that the small hydrostatic pressure can be easily withstood; no analysis is required or provided for the HI-TRAC internal pressure. However, the HI-TRAC water jacket does experience internal pressure due to the heat-up of the water contained in the water jacket. Analysis is presented in Chapter 3 that demonstrates that the design pressure in Table 2.2.1 can be withstood by the water jacket and Chapter 4 demonstrates by analysis that the water jacket design pressure will not be exceeded. To provide an additional layer of safety, a pressure relief device set at the design pressure is provided, which ensures the pressure will not be exceeded.

2.2.1.4 Environmental Temperatures

To evaluate the long-term effects of ambient temperatures on the HI-STORM 100 System, an upper bound value on the annual average ambient temperatures for the continental United States is used. The normal temperature specified in Table 2.2.2 is bounding for all reactor sites in the contiguous United States. The "normal" temperature set forth in Table 2.2.2 is intended to ensure that it is greater than the annual average of ambient temperatures at any location in the continental United States. In the northern region of the U.S., the design basis "normal" temperature used in this FSAR will be exceeded only for brief periods, whereas in the southern U.S, it may be straddled daily in summer months. Inasmuch as the sole effect of the "normal" temperature is on the computed fuel cladding temperature to establish long-term fuel integrity, it should not lie below the time averaged

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

yearly mean for the ISFSI site. Previously licensed cask systems have employed lower "normal" temperatures (viz. 75° F in Docket 72-1007) by utilizing national meteorological data.

Likewise, within the thermal analysis, a conservatively assumed soil temperature of the value specified in Table 2.2.2 is utilized to bound the annual average soil temperatures for the continental United States. The 1987 ASHRAE Handbook (HVAC Systems and Applications) reports average earth temperatures, from 0 to 10 feet below grade, throughout the continental United States. The highest reported annual average value for the continental United States is 77° F for Key West, Florida. Therefore, this value is specified in Table 2.2.2 as the bounding soil temperature.

Confirmation of the site-specific annual average ambient temperature and soil temperature is to be performed by the licensee, in accordance with 10CFR72.212. The annual average temperature is combined with insolation in accordance with 10CFR71.71 averaged over 24 hours to establish the normal condition temperatures in the HI-STORM 100 System.

2.2.1.5 Design Temperatures

The ASME Boiler and Pressure Vessel Code (ASME Code) requires that the value of the vessel design temperature be established with appropriate consideration for the effect of heat generation internal or external to the vessel. The decay heat load from the spent nuclear fuel is the internal heat generation source for the HI-STORM 100 System. The ASME Code (Section III, Paragraph NCA-2142) requires the design temperature to be set at or above the maximum through thickness mean metal temperature of the pressure part under normal service (Level A) condition. Consistent with the terminology of NUREG-1536, we refer to this temperature as the "Design Temperature for Normal Conditions". Conservative calculations of the steady-state temperature field in the HI-STORM 100 System, under assumed environmental normal temperatures with the maximum decay heat load, result in HI-STORM component temperatures at or below the normal condition design temperatures for the HI-STORM 100 System defined in Table 2.2.3.

Maintaining fuel rod cladding integrity is also a design consideration. The fuel rod peak cladding temperature (PCT) limits for the long-term storage and short-term normal operating conditions meet the intent of the guidance in ISG-11, Revision 3 [2.0.8]. For moderate burnup fuel, the previously licensed PCT limit of 570°C (1058°F) may be used [2.0.9] (see also Section 4.5).

2.2.1.6 Snow and Ice

The HI-STORM 100 System must be capable of withstanding pressure loads due to snow and ice. ASCE 7-88 (formerly ANSI A58.1) [2.2.2] provides empirical formulas and tables to compute the effective design pressure on the overpack due to the accumulation of snow for the contiguous U.S. and Alaska. Typical calculated values for heated structures such as the HI-STORM 100 System range from 50 to 70 pounds per square foot. For conservatism, the snow pressure loading is set at a level in Table 2.2.8 which bounds the ASCE 7-88 recommendation.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2.2 Off-Normal Conditions Design Criteria

As the HI-STORM 100 System is passive, loss of power and instrumentation failures are not defined as off-normal conditions. The off-normal condition design criteria are defined in the following subsections.

A discussion of the effects of each off-normal condition is provided in Section 11.1. Section 11.1 also provides the corrective action for each off-normal condition. The location of the detailed analysis for each event is referenced in Section 11.1.

2.2.2.1 <u>Pressure</u>

The HI-STORM 100 System must withstand loads due to off-normal pressure. The off-normal condition MPC internal design pressure bounds the cumulative effects of the maximum fill gas volume, off-normal environmental ambient temperatures, the maximum MPC heat load, and an assumed 10% of the fuel rods ruptured with 100% of the fill gas and 30% of the significant radioactive gases (e.g., H^3 , Kr, and Xe) released in accordance with NUREG-1536.

2.2.2.2 Environmental Temperatures

The HI-STORM 100 System must withstand off-normal environmental temperatures. The offnormal environmental temperatures are specified in Table 2.2.2. The lower bound temperature occurs with no solar loads and the upper bound temperature occurs with steady- state insolation. Each bounding temperature is assumed to persist for a duration sufficient to allow the system to reach steady-state temperatures.

Limits on the peaks in the time-varying ambient temperature at an ISFSI site is recognized in the FSAR in the specification of the off-normal temperatures. The lower bound off-normal temperature is defined as the minimum of the 72-hour average of the ambient temperature at an ISFSI site. Likewise, the upper bound off-normal temperature is defined by the maximum of 72-hour average of the ambient temperature. The lower and upper bound off-normal temperatures listed in Table 2.2.2 are intended to cover all ISFSI sites in the continent U.S. The 72-hour average of temperature used in the definition of the off-normal temperature recognizes the considerable thermal inertia of the HI-STORM 100 storage system which reduces the effect of undulations in instantaneous temperature on the internals of the multi-purpose canister.

2.2.2.3 Design Temperatures

In addition to the normal condition design temperatures, which apply to long-term storage and shortterm normal operating conditions (e.g., MPC drying operations and onsite transport operations), we also define an "off-normal/accident condition temperature" pursuant to the provisions of NUREG-1536 and Regulatory Guide 3.61. This is, in effect, the temperature, which may exist during a transient event (examples of such instances are the overpack blocked air duct off-normal event and fire accident). The off-normal/accident design temperatures of Table 2.2.3 are set down to bound the maximax (maximum in time and space) value of the thru-thickness average temperature of the

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

structural or non-structural part, as applicable, during the transient event. These enveloping values, therefore, will bound the maximum temperature reached anywhere in the part, excluding skin effects during or immediately after, a transient event.

2.2.2.4 Leakage of One Seal

The MPC enclosure vessel is designed to have no credible leakage under all normal, off-normal, and hypothetical accident conditions of storage.

The confinement boundary is defined by the MPC shell, baseplate, MPC lid, port cover plates, closure ring, and associated welds. Most confinement boundary welds are inspected by radiography or ultrasonic examination. Field welds are examined by the liquid penetrant method on the root (if more than one weld pass is required) and final weld passes. In addition to liquid penetrant examination, the MPC lid-to-shell weld is pressure tested, and volumetrically examined or multipass liquid penetrant examined. The vent and drain port cover plates are subject to liquid penetrant examination. These inspection and testing techniques are performed to verify the integrity of the confinement boundary.

2.2.2.5 <u>Partial Blockage of Air Inlets</u>

The HI-STORM 100 System must withstand the partial blockage of the overpack air inlets. This event is conservatively defined as a complete blockage of two (2) of the four air inlets. Because the overpack air inlets and outlets are covered by fine mesh steel screens, located 90° apart, and inspected routinely (or alternatively, exit vent air temperature monitored), it is unlikely that all vents could become blocked by blowing debris, animals, etc. during normal and off-normal operations. Two of the air inlets are conservatively assumed to be completely blocked to demonstrate the inherent thermal stability of the HI-STORM 100 System.

2.2.2.6 Off-Normal HI-TRAC Handling

During upending and/or downending of the HI-TRAC 100 or HI-TRAC 125 transfer cask, the total lifted weight is distributed among both the upper lifting trunnions and the lower pocket trunnions. Each of the four trunnions on the HI-TRAC therefore supports approximately one-quarter of the total weight. This even distribution of the load would continue during the entire rotation operation. The HI-TRAC 100D and 125D transfer cask designs do not include pocket trunnions. Therefore, the entire load is held by the lifting trunnions.

If the lifting device cables begin to "go slack" while upending or downending the HI-TRAC 100 or HI-TRAC 125, the eccentricity of the pocket trunnions would immediately cause the cask to pivot, restoring tension on the cables. Nevertheless, the pocket trunnions are conservatively analyzed to support one-half of the total weight, doubling the load per trunnion. This condition is analyzed to demonstrate that the pocket trunnions in the standard HI-TRAC design possess sufficient strength to support the increased load under this off-normal condition.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-6

2.2.3 Environmental Phenomena and Accident Condition Design Criteria

Environmental phenomena and accident condition design criteria are defined in the following subsections.

The minimum acceptance criteria for the evaluation of the accident conditions are that the MPC confinement boundary maintains radioactive material confinement, the MPC fuel basket structure maintains the fuel contents subcritical, the stored SNF can be retrieved by normal means, and the system provides adequate shielding.

A discussion of the effects of each environmental phenomenon and accident condition is provided in Section 11.2. The consequences of each accident or environmental phenomenon are evaluated against the requirements of 10CFR72.106 and 10CFR20. Section 11.2 also provides the corrective action for each event. The location of the detailed analysis for each event is referenced in Section 11.2.

2.2.3.1 Handling Accident

The HI-STORM 100 System must withstand loads due to a handling accident. Even though the loaded HI-STORM 100 System will be lifted in accordance with approved, written procedures and may use lifting equipment which complies with ANSI N14.6-1993 [2.2.3], certain drop events are considered herein to demonstrate the defense-in-depth features of the design.

The loaded HI-STORM overpack will be lifted so that the bottom of the cask is at a height less than the vertical lift limit (see Table 2.2.8) above the ground. For conservatism, the postulated drop event assumes that the loaded HI-STORM 100 overpack falls freely from the vertical lift limit height before impacting a thick reinforced concrete pad. The deceleration of the cask must be maintained below 45 g's. Additionally, the overpack must continue to suitably shield the radiation emitted from the loaded MPC. The use of lifting devices designed in accordance with ANSI N14.6 having redundant drop protection features to lift the loaded overpack will eliminate the lift height limit. The lift height limit is dependent on the characteristics of the impacting surface, which are specified in Table 2.2.9. For site-specific conditions, which are not encompassed by Table 2.2.9, the licensee shall evaluate the site-specific conditions to ensure that the drop accident loads do not exceed 45 g's. The methodology used in this alternative analysis shall be commensurate with the analyses in Appendix 3.A and shall be reviewed by the Certificate Holder.

The loaded HI-TRAC will be lifted so that the lowest point on the transfer cask (i.e., the bottom edge of the cask/lid assemblage) is at a height less than the calculated horizontal lift height limit (see Table 2.2.8) above the ground, when lifted horizontally outside of the reactor facility. For conservatism, the postulated drop event assumes that the loaded HI-TRAC falls freely from the horizontal lift height limit before impact.

Analysis is provided that demonstrates that the HI-TRAC continues to suitably shield the radiation emitted from the loaded MPC, and that the HI-TRAC end plates (top lid and transfer lid for HI-TRAC 100 and HI-TRAC 125 and the top lid and pool lid for HI-TRAC 100D and 125D) remain

	HOLTEC INTERN	ATIONAL COPYR	IGHTED MATERIAL	
HI-STORM FSAR REPORT HI-200244	4	2.2-7		Rev. 6

attached. Furthermore, the HI-TRAC inner shell is demonstrated by analysis to not deform sufficiently to hinder retrieval of the MPC. The horizontal lift height limit is dependent on the characteristics of the impacting surface, which are specified in Table 2.2.9. For site-specific conditions, which are not encompassed by Table 2.2.9, the licensee shall evaluate the site-specific conditions to ensure that the drop accident loads do not exceed 45 g's. The methodology used in this alternative analysis shall be commensurate with the methodology described in this FSAR and shall be reviewed by the Certificate Holder. The use of lifting devices designed in accordance with ANSI N14.6 having redundant drop protection features during horizontal lifting of the loaded HI-TRAC outside of the reactor facilities eliminate the need for a horizontal lift height limit.

The loaded HI-TRAC, when lifted in the vertical position outside of the Part 50 facility shall be lifted with devices designed in accordance with ANSI N14.6 and having redundant drop protection features unless a site-specific analysis has been performed to determine a lift height limit. For vertical lifts of HI-TRAC with suitably designed lift devices, a vertical drop is not a credible accident for the HI-TRAC transfer cask and no vertical lift height limit is required to be established. Likewise, while the loaded HI-TRAC is positioned atop the HI-STORM 100 overpack for transfer of the MPC into the overpack (outside the Part 50 facility), the lifting equipment will remain engaged with the lifting trunnions of the HI-TRAC transfer cask or suitable restraints will be provided to secure the HI-TRAC. This ensures that a tip-over or drop from atop the HI-STORM 100 overpack is not a credible accident for the HI-TRAC transfer cask. The design criteria and conditions of use for MPC transfer operations from the HI-TRAC transfer cask to the HI-STORM 100 overpack at a Cask Transfer Facility are specified in Subsection 2.3.3.1 of this FSAR.

The loaded MPC is lowered into the HI-STORM or HI-STAR overpack or raised from the overpack using the HI-TRAC transfer cask and a MPC lifting system designed in accordance with ANSI N14.6 and having redundant drop protection features. Therefore, the possibility of a loaded MPC falling freely from its highest elevation during the MPC transfer operations into the HI-STORM or HI-STAR overpacks is not credible.

The magnitude of loadings imparted to the HI-STORM 100 System due to drop events is heavily influenced by the compliance characteristics of the impacted surface. Two "pre-approved" concrete pad designs for storing the HI-STORM 100 System are presented in Table 2.2.9. Other ISFSI pad designs may be used provided the designs are reviewed by the Certificate Holder to ensure that impactive and impulsive loads under accident events such as cask drop and non-mechanistic tip-over are less than the design basis limits when analyzed using the methodologies established in this FSAR.

2.2.3.2 <u>Tip-Over</u>

The free-standing HI-STORM 100 System is demonstrated by analysis to remain kinematically stable under the design basis environmental phenomena (tornado, earthquake, etc.). However, the HI-STORM 100 overpack and MPC shall also withstand impacts due to a hypothetical tip-over event. The structural integrity of a loaded HI-STORM 100 System after a tip-over onto a reinforced concrete pad is demonstrated by analysis. The cask tip-over is not postulated as an outcome of any environmental phenomenon or accident condition. The cask tip-over is a non-mechanistic event.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-8

The ISFSI pad for deploying a free-standing HI-STORM overpack must possess sufficient structural stiffness to meet the strength limits set forth in the ACI Code selected by the ISFSI owner. At the same time, the pad must be sufficiently compliant such that the maximum deceleration under a tip-over event is below the limit set forth in Table 3.1.2 of this FSAR.

During original licensing for the HI-STORM 100 System, a single set of ISFSI pad and subgrade design parameters (now labeled Set A) was established. Experience has shown that achieving a maximum concrete compressive strength (at 28 days) of 4,200 psi can be difficult. Therefore, a second set of ISFSI pad and subgrade design parameters (labeled Set B) has been developed. The Set B ISFSI parameters include a thinner concrete pad and less stiff subgrade, which allow for a higher concrete compressive strength. Cask deceleration values for all design basis drop and tipover events with the HI-STORM 100, HI-STORM 100S, and HI-STORM 100S Version B overpacks have been verified to be less than or equal to the design limit of 45 g's for both sets of ISFSI pad parameters.

The original set and the new set (Set B) of acceptable ISFSI pad and subgrade design parameters are specified in Table 2.2.9. Users may design their ISFSI pads and subgrade in compliance with either parameter Set A or Set B. Alternatively, users may design their site-specific ISFSI pads and subgrade using any combination of design parameters resulting in a structurally competent pad that meets the provisions of ACI-318 and also limits the deceleration of the cask to less than or equal to 45 g's for the design basis drop and tip-over events for the HI-STORM 100, HI-STORM 100S, and HI-STORM 100S Version B overpacks. The structural analyses for site-specific ISFSI pad design shall be performed using methodologies consistent with those described in this FSAR, as applicable.

If the HI-STORM 100 System is deployed in an anchored configuration (HI-STORM 100A), then tip-over of the cask is structurally precluded along with the requirement of target compliance, which warrants setting specific limits on the concrete compressive strength and subgrade Young's Modulus. Rather, at the so-called high seismic sites (ZPAs greater than the limit set forth in the CoC for free standing casks), the ISFSI pad must be sufficiently rigid to hold the anchor studs and maintain the integrity of the fastening mechanism embedded in the pad during the postulated seismic event. The ISFSI pad must be designed to minimize a physical uplift during extreme environmental event (viz., tornado missile, DBE, etc.). The requirements on the ISFSI pad to render the cask anchoring function under long-term storage are provided in Section 2.0.4.

2.2.3.3 <u>Fire</u>

The possibility of a fire accident near an ISFSI site is considered to be extremely remote due to the absence of significant combustible materials. The only credible concern is related to a transport vehicle fuel tank fire engulfing the loaded HI-STORM 100 overpack or HI-TRAC transfer cask while it is being moved to the ISFSI.

The HI-STORM 100 System must withstand temperatures due to a fire event. The HI-STORM overpack and HI-TRAC transfer cask fire accidents for storage are conservatively postulated to be the result of the spillage and ignition of 50 gallons of combustible transporter fuel. The HI-STORM

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

overpack and HI-TRAC transfer cask surfaces are considered to receive an incident radiation and forced convection heat flux from the fire. Table 2.2.8 provides the fire durations for the HI-STORM overpack and HI-TRAC transfer cask based on the amount of flammable materials assumed. The temperature of fire is assumed to be 1475° F in accordance with 10CFR71.73.

The accident condition design temperatures for the HI-STORM 100 System, and the fuel rod cladding limits are specified in Table 2.2.3. The specified fuel cladding temperature limits are based on the temperature limits specified in ISG-11, Rev. 3 [2.0.9].

2.2.3.4 Partial Blockage of MPC Basket Vent Holes

The HI-STORM 100 System is designed to withstand reduction of flow area due to partial blockage of the MPC basket vent holes. As the MPC basket vent holes are internal to the confinement barrier, the only events that could partially block the vents are fuel cladding failure and debris associated with this failure, or the collection of crud at the base of the stored SNF assembly. The HI-STORM 100 System maintains the SNF in an inert environment with fuel rod cladding temperatures below accepted values (Table 2.2.3). Therefore, there is no credible mechanism for gross fuel cladding degradation during storage in the HI-STORM 100. For the storage of damaged BWR fuel assemblies or fuel debris, the assemblies and fuel debris will be placed in damaged fuel containers prior to placement in the MPC. The damaged fuel container is equipped with mesh screens which ensure that the damaged fuel and fuel debris will not escape to block the MPC basket vent holes. In addition, each MPC will be loaded once for long-term storage and, therefore, buildup of crud in the MPC due to numerous loadings is precluded. Using crud quantities reported in an Empire State Electric Energy Research Corporation Report [2.2.6], a layer of crud of conservative depth is assumed to partially block the MPC basket vent holes. The crud depths for the different MPCs are listed in Table 2.2.8.

2.2.3.5 <u>Tornado</u>

The HI-STORM 100 System must withstand pressures, wind loads, and missiles generated by a tornado. The prescribed design basis tornado and wind loads for the HI-STORM 100 System are consistent with NRC Regulatory Guide 1.76 [2.2.7], ANSI 57.9 [2.2.8], and ASCE 7-88 [2.2.2]. Table 2.2.4 provides the wind speeds and pressure drops which the HI-STORM 100 overpack must withstand while maintaining kinematic stability. The pressure drop is bounded by the accident condition MPC external design pressure.

The kinematic stability of the HI-STORM overpack, and continued integrity of the MPC confinement boundary, while within the storage overpack or HI-TRAC transfer cask, must be demonstrated under impact from tornado-generated missiles in conjunction with the wind loadings. Standard Review Plan (SRP) 3.5.1.4 of NUREG-0800 [2.2.9] stipulates that the postulated missiles include at least three objects: a massive high kinetic energy missile that deforms on impact (large missile); a rigid missile to test penetration resistance (penetrant missile); and a small rigid missile of a size sufficient to pass through any openings in the protective barriers (micro-missile). SRP 3.5.1.4 suggests an automobile for a large missile, a rigid solid steel cylinder for the penetrant missile, and a solid sphere for the small rigid missile, all impacting at 35% of the maximum horizontal wind speed of the design basis tornado. Table 2.2.5 provides the missile data used in the analysis, which is based

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444 on the above SRP guidelines. The effects of a large tornado missile are considered to bound the effects of a light general aviation airplane crashing on an ISFSI facility.

During horizontal handling of the loaded HI-TRAC transfer cask outside the Part 50 facility, tornado missile protection shall be provided to prevent tornado missiles from impacting either end of the HI-TRAC. The tornado missile protection shall be designed such that the large tornado missile cannot impact the bottom or top of the loaded HI-TRAC, while in the horizontal position. Also, the missile protection for the top of the HI-TRAC shall be designed to preclude the penetrant missile and micro-missile from passing through the penetration in the HI-TRAC top lid, while in the horizontal position. With the tornado missile protection in place, the impacting of a large tornado missile on either end of the loaded HI-TRAC or the penetrant missile or micro-missile entering the penetration of the top lid is not credible. Therefore, no analyses of these impacts are provided.

2.2.3.6 <u>Flood</u>

The HI-STORM 100 System must withstand pressure and water forces associated with a flood. Resultant loads on the HI-STORM 100 System consist of buoyancy effects, static pressure loads, and velocity pressure due to water velocity. The flood is assumed to deeply submerge the HI-STORM 100 System (see Table 2.2.8). The flood water depth is based on the hydrostatic pressure which is bounded by the MPC external pressure stated in Table 2.2.1.

It must be shown that the MPC does not collapse, buckle, or allow water in-leakage under the hydrostatic pressure from the flood.

The flood water is assumed to be nonstagnant. The maximum allowable flood water velocity is determined by calculating the equivalent pressure loading required to slide or tip over the HI-STORM 100 System. The design basis flood water velocity is stated in Table 2.2.8. Site-specific safety reviews by the licensee must confirm that flood parameters do not exceed the flood depth, slide, or tip-over forces.

If the flood water depth exceeds the elevation of the top of the HI-STORM overpack inlet vents, then the cooling air flow would be blocked. The flood water may also carry debris which may act to block the air inlets of the overpack. Blockage of the air inlets is addressed in Subsection 2.2.3.13.

Most reactor sites are hydrologically characterized as required by Paragraph 100.10(c) of 10CFR100 and further articulated in Reg. Guide 1.59, "Design Basis Floods for Nuclear Power Plants" and Reg. Guide 1.102, "Flood Protection for Nuclear Power Plants." It is assumed that a complete characterization of the ISFSI's hydrosphere including the effects of hurricanes, floods, seiches and tsunamis is available to enable a site-specific evaluation of the HI-STORM 100 System for kinematic stability. An evaluation for tsunamis[†] for certain coastal sites should also be performed to demonstrate that sliding or tip-over will not occur and that the maximum flood depth will not be exceeded.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

[†] A tsunami is an ocean wave from seismic or volcanic activity or from submarine landslides. A tsunami may be the result of nearby or distant events. A tsunami loading may exist in combination with wave splash and spray, storm surge and tides.

Analysis for each site for such transient hydrological loadings must be made for that site. It is expected that the plant licensee will perform this evaluation under the provisions of 10CFR72.212.

2.2.3.7 <u>Seismic Design Loadings</u>

The HI-STORM 100 System must withstand loads arising due to a seismic event and must be shown not to tip over during a seismic event. Subsection 3.4.7 contains calculations based on conservative static "incipient tipping" calculations which demonstrate static stability. The calculations in Section 3.4.7 result in the values reported in Table 2.2.8, which provide the maximum horizontal zero period acceleration (ZPA) versus vertical acceleration multiplier above which static incipient tipping would occur. This conservatively assumes the peak acceleration values of each of the two horizontal earthquake components and the vertical component occur simultaneously. The maximum horizontal ZPA provided in Table 2.2.8 is the vector sum of two horizontal earthquakes.

For anchored casks, the limit on zero period accelerations is set by the structural capacity of the sector lugs and anchoring studs. Table 2.2.8 provides the limits for HI-STORM 100A for the maximum vector sum of two horizontal earthquake peak ZPA's along with the coincident limit on the vertical ZPA.

2.2.3.8 <u>100% Fuel Rod Rupture</u>

The HI-STORM 100 System must withstand loads due to 100% fuel rod rupture. For conservatism, 100 percent of the fuel rods are assumed to rupture with 100 percent of the fill gas and 30% of the significant radioactive gases (e.g., H^3 , Kr, and Xe) released in accordance with NUREG-1536. All of the fill gas contained in non-fuel hardware, such as Burnable Poison Rod Assemblies (BPRAs) is also assumed to be released in analyzing this event.

2.2.3.9 <u>Confinement Boundary Leakage</u>

No credible scenario has been identified that would cause failure of the confinement system. Section 7.1 provides a discussion as to why leakage of any magnitude from the MPC is not credible, based on the materials and methods of fabrication and inspection.

2.2.3.10 <u>Explosion</u>

The HI-STORM 100 System must withstand loads due to an explosion. The accident condition MPC external pressure and overpack pressure differential specified in Table 2.2.1 bounds all credible external explosion events. There are no credible internal explosive events since all materials are compatible with the various operating environments, as discussed in Section 3.4.1, or appropriate preventive measures are taken to preclude internal explosive events (see Section 1.2.1.3.1.1). The MPC is composed of stainless steel, neutron absorber material, and prior to CoC Amendment 2, possibly optional aluminum alloy 1100 heat conduction elements. For these materials, and considering the protective measures taken during loading and unloading operations there is no credible internal explosive event.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-12

2.2.3.11 <u>Lightning</u>

The HI-STORM 100 System must withstand loads due to lightning. The effect of lightning on the HI-STORM 100 System is evaluated in Chapter 11.

2.2.3.12 Burial Under Debris

The HI-STORM 100 System must withstand burial under debris. Such debris may result from floods, wind storms, or mud slides. Mud slides, blowing debris from a tornado, or debris in flood water may result in duct blockage, which is addressed in Subsection 2.2.3.13. The thermal effects of burial under debris on the HI-STORM 100 System is evaluated in Chapter 11. Siting of the ISFSI pad shall ensure that the storage location is not located near shifting soil. Burial under debris is a highly unlikely accident, but is analyzed in this FSAR.

2.2.3.13 <u>100% Blockage of Air Inlets</u>

For conservatism, this accident is defined as a complete blockage of all four bottom air inlets. Such a blockage may be postulated to occur during accident events such as a flood or tornado with blowing debris. The HI-STORM 100 System must withstand the temperature rise as a result of 100% blockage of the air inlets and outlets. The fuel cladding temperature must be shown to remain below the off-normal/accident temperature limit specified in Table 2.2.3.

2.2.3.14 Extreme Environmental Temperature

The HI-STORM 100 System must withstand extreme environmental temperatures. The extreme accident level temperature is specified in Table 2.2.2. The extreme accident level temperature occurs with steady-state insolation. This temperature is assumed to persist for a duration sufficient to allow the system to reach steady-state temperatures. The HI-STORM overpack and MPC have a large thermal inertia. Therefore, this temperature is assumed to persist over three days (3-day average).

2.2.3.15 Bounding Hydraulic, Wind, and Missile Loads for HI-STORM 100A

In the anchored configuration, the HI-STORM 100A System is clearly capable of withstanding much greater lateral loads than a free-standing overpack. Coastal sites in many areas of the world, particularly the land mass around the Pacific Ocean, may be subject to severe fluid inertial loads. Several publications [2.2.10, 2.2.11] explain and quantify the nature and source of such environmental hazards.

It is recognized that a lateral fluid load may also be accompanied by an impact force from a fluid borne missile (debris). Rather than setting specific limits for these loads on an individual basis, a limit on the static overturning base moment on the anchorage is set. This bounding overturning moment is given in Table 2.2.8 and is set at a level that ensures that structural safety margins on the sector lugs and on the anchor studs are essentially equal to the structural safety margins of the same components under the combined effect of the net horizontal and vertical seismic load limits in Table

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2.8.The ISFSI owner bears the responsibility to establish that the lateral hydraulic, wind, and missile loads at his ISFSI site do not yield net overturning moments, when acting separately or together, that exceed the limit value in Table 2.2.8. If loadings are increased above those values for free-standing casks, their potential effect on the other portions of the cask system must be considered.

2.2.4 <u>Applicability of Governing Documents</u>

The ASME Boiler and Pressure Vessel Code (ASME Code), 1995 Edition, with Addenda through 1997 [2.2.1], is the governing code for the structural design of the MPC, the metal structure of the HI-STORM 100 overpack, and the HI-TRAC transfer cask, except for Sections V and IX. The latest effective editions of ASME Section V and IX may be used, provided a written reconciliation of the later edition against the 1995 Edition, including addenda, is performed by the certificate holder. The MPC enclosure vessel and fuel basket are designed in accordance with Section III, Subsections NB Class 1 and NG Class 1, respectively. The metal structure of the overpack and the HI-TRAC transfer cask are designed in accordance with Section NF Class 3. The ASME Code is applied to each component consistent with the function of the component.

ACI 349 is the governing code for the plain concrete in the HI-STORM 100 overpack. ACI 318-95 is the applicable code utilized to determine the allowable compressive strength of the plain concrete credited during structural analysis. Appendix 1.D provides the sections of ACI 349 and ACI 318-95 applicable to the plain concrete.

Table 2.2.6 provides a summary of each structure, system and component (SSC) of the HI-STORM 100 System that is identified as important to safety, along with its function and governing Code. Some components perform multiple functions and in those cases, the most restrictive Code is applied. In accordance with NUREG/CR-6407, "Classification of Transportation Packaging and Dry Spent Fuel Storage System Components", and according to importance to safety, components of the HI-STORM 100 System are classified as A, B, C, or NITS (not important to safety) in Table 2.2.6. Section 13.1 provides the criteria used to classify each item. The classification of necessary auxiliary equipment is provided in Table 8.1.6.

Table 2.2.7 lists the applicable governing Code for material procurement, design, fabrication and inspection of the components of the HI-STORM 100 System. The ASME Code section listed in the design column is the section used to define allowable stresses for structural analyses.

Table 2.2.15 lists the alternatives to the ASME Code for the HI-STORM 100 System and the justification for those alternatives.

The MPC enclosure vessel and certain fuel basket designs utilized in the HI-STORM 100 System are identical to the MPC components described in the SARs for the HI-STAR 100 System for storage (Docket 72-1008) and transport (Docket 71-9261). To avoid unnecessary repetition of the large numbers of stress analyses, this document refers to those SARs, as applicable, if the MPC loadings for storage in the HI-STORM 100 System do not exceed those computed in the HI-STAR documents. Many of the loadings in the HI-STAR applications envelope the HI-STORM loadings on

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-14

the MPC, and, therefore, a complete re-analysis of the MPC is not provided in the FSAR. Certain individual MPC analyses may have been required to license a particular MPC fuel basket design for HI-STORM that was not previously licensed for HI-STAR. These unique analyses are summarized in the appropriate location in this FSAR.

Table 2.2.16 provides a summary comparison between the loading elements. Table 2.2.16 shows that most of the loadings remain unchanged and several are less than the HI-STAR loading conditions. In addition to the magnitude of the loadings experienced by the MPC, the application of the loading must also be considered. Therefore, it is evident from Table 2.2.16 that the MPC stress limits can be ascertained to be qualified a priori if the HI-STAR analyses and the thermal loadings under HI-STORM storage are not more severe compared to previously analyzed HI-STAR conditions. In the analysis of each of the normal, off-normal, and accident conditions, the effect on the MPC is evaluated and compared to the corresponding condition analyzed in the HI-STAR 100 System SARs [2.2.4 and 2.2.5]. If the HI-STORM loading is greater than the HI-STAR loading or the loading is applied differently, the analysis of its effect on the MPC is evaluated in Chapter 3.

2.2.5 <u>Service Limits</u>

a.

In the ASME Code, plant and system operating conditions are commonly referred to as normal, upset, emergency, and faulted. Consistent with the terminology in NRC documents, this FSAR utilizes the terms normal, off-normal, and accident conditions.

The ASME Code defines four service conditions in addition to the Design Limits for nuclear components. They are referred to as Level A, Level B, Level C, and Level D service limits, respectively. Their definitions are provided in Paragraph NCA-2142.4 of the ASME Code. The four levels are used in this FSAR as follows:

Level A Service Limits: Level A Service Limits are used to establish allowables for normal condition load combinations.

- b. Level B Service Limits: Level B Service Limits are used to establish allowables for off-normal condition load combinations.
- c. Level C Service Limits: Level C Service Limits are not used.
- d. Level D Service Limits: Level D Service Limits are used to establish allowables for accident condition load combinations.

The ASME Code service limits are used in the structural analyses for definition of allowable stresses and allowable stress intensities. Allowable stresses and stress intensities for structural analyses are tabulated in Chapter 3. These service limits are matched with normal, off-normal, and accident condition loads combinations in the following subsections.

The MPC confinement boundary is required to meet Section III, Class 1, Subsection NB stress intensity limits. Table 2.2.10 lists the stress intensity limits for the Levels A, B, C, and D service

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

limits for Class 1 structures extracted from the ASME Code (1995 Edition). The limits for the MPC fuel basket, required to meet the stress intensity limits of Subsection NG of the ASME Code, are listed in Table 2.2.11. Table 2.2.12 lists allowable stress limits for the steel structure of the HI-STORM overpack and HI-TRAC which are analyzed to meet the stress limits of Subsection NF, Class 3. Only service levels A, B, and D requirements, normal, off-normal, and accident conditions, are applicable.

2.2.6 <u>Loads</u>

Subsections 2.2.1, 2.2.2, and 2.2.3 describe the design criteria for normal, off-normal, and accident conditions, respectively. Table 2.2.13 identifies the notation for the individual loads that require consideration. The individual loads listed in Table 2.2.13 are defined from the design criteria. Each load is assigned a symbol for subsequent use in the load combinations.

The loadings listed in Table 2.2.13 fall into two broad categories; namely, (i) those that primarily affect kinematic stability, and (ii) those that produce significant stresses. The loadings in the former category are principally applicable to the overpack. Tornado wind (W'), earthquake (E), and tornado-borne missile (M) are essentially loadings which can destabilize a cask. Analyses reported in Chapter 3 show that the HI-STORM 100 overpack structure will remain kinematically stable under these loadings. Additionally, for the missile impact case (M), analyses that demonstrate that the overpack structure remains unbreached by the postulated missiles are provided in Chapter 3.

Loadings in the second category produce global stresses that must be shown to comply with the stress intensity or stress limits, as applicable. The relevant loading combinations for the fuel basket, the MPC, the HI-TRAC and the HI-STORM overpack are different because of differences in their function. For example, the fuel basket does not experience a pressure loading because it is not a pressure vessel. The specific load combination for each component is specified in Subsection 2.2.7.

2.2.7 Load Combinations

To demonstrate compliance with the design requirements for normal, off-normal, and accident conditions of storage, the individual loads, identified in Table 2.2.13, are combined into load combinations. In the formation of the load combinations, it is recognized that the number of combinations requiring detailed analyses is reduced by defining bounding loads. Analyses performed using bounding loads serve to satisfy the requirements for analysis of a multitude of separately identified loads in combination.

For example, the values established for internal and external pressures (P_i and P_o) are defined such that they bound other surface-intensive loads, namely snow (S), tornado wind (W'), flood (F), and explosion (E^*). Thus, evaluation of pressure in a load combination established for a given storage condition enables many individual load effects to be included in a single load combination.

Table 2.2.14 identifies the combinations of the loads that are required to be considered in order to ensure compliance with the design criteria set forth in this chapter. Table 2.2.14 presents the load combinations in terms of the loads that must be considered together. A number of load combinations

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

are established for each ASME Service Level. Within each loading case, there may be more than one analysis that is required to demonstrate compliance. Since the breakdown into specific analyses is most applicable to the structural evaluation, the identification of individual analyses with the applicable loads for each load combination is found in Chapter 3. Table 3.1.3 through 3.1.5 define the particular evaluations of loadings that demonstrate compliance with the load combinations of Table 2.2.14.

For structural analysis purposes, Table 2.2.14 serves as an intermediate classification table between the definition of the loads (Table 2.2.13 and Section 2.2) and the detailed analysis combinations (Tables 3.1.3 through 3.1.5).

Finally, it should be noted that the load combinations identified in NUREG-1536 are considered as applicable to the HI-STORM 100 System. The majority of load combinations in NUREG-1536 are directed toward reinforced concrete structures. Those load combinations applicable to steel structures are directed toward frame structures. As stated in NUREG-1536, Page 3-35 of Table 3-1, "Table 3-1 does not apply to the analysis of confinement casks and other components designed in accordance with Section III of the ASME B&PV Code." Since the HI-STORM 100 System is a metal shell structure, with concrete primarily employed as shielding, the load combinations of NUREG-1536 are interpreted within the confines and intent of the ASME Code.

2.2.8 Allowable Stresses

The stress intensity limits for the MPC confinement boundary for the design condition and the service conditions are provided in Table 2.2.10. The MPC confinement boundary stress intensity limits are obtained from ASME Code, Section III, Subsection NB. The stress intensity limits for the MPC fuel basket are presented in Table 2.2.11 (governed by Subsection NG of Section III). The steel structure of the overpack and the HI-TRAC meet the stress limits of Subsection NF of ASME Code, Section III for plate and shell components. Limits for the Level D condition are obtained from Appendix F of ASME Code, Section III for the steel structure of the overpack. The ASME Code is not applicable to the HI-TRAC transfer cask for accident conditions, service level D conditions. The HI-TRAC transfer cask has been shown by analysis to not deform sufficiently to apply a load to the MPC, have any shell rupture, or have the top lid, pool lid, or transfer lid (as applicable) detach.

The following definitions of terms apply to the tables on stress intensity limits; these definitions are the same as those used throughout the ASME Code:

- S_m: Value of Design Stress Intensity listed in ASME Code Section II, Part D, Tables 2A, 2B and 4
- S_v: Minimum yield strength at temperature
- S_u: Minimum ultimate strength at temperature

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-17

DESIGN PRESSURES

Pressure Location	Condition	Pressure (psig)
MPC Internal Pressure	Normal	100
·	Off-Normal	110
	Accident	200
MPC External Pressure	Normal	(0) Ambient
	Off-Normal	(0) Ambient
	Accident	60
Overpack External Pressure	Normal	(0) Ambient
	Off-Normal	(0) Ambient
	Accident	 10 (differential pressure for 1 second maximum)* or 5 (differential pressure steady state)
HI-TRAC Water Jacket	Normal	60
	Off-normal	60
	Accident	N/A (Under accident conditions, the water jacket is assumed to have lost all water thru the pressure relief valves)

* The overpack is also qualified to sustain without tip-over a lateral impulse load of 60 psi (differential pressure for 85 milliseconds maximum) [3.4.5].

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

ENVIRONMENTAL TEMPERATURES

Condition	Temperature (°F)	Comments
	HI-STORM 100 Over	pack
Normal Ambient (Bounding Annual Average)	80	
Normal Soil Temperature (Bounding Annual Average)	77	
Off-Normal Ambient (3-Day Average)	-40 and 100	-40°F with no insolation 100°F with insolation
Extreme Accident Level Ambient (3-Day Average)	125	125°F with insolation starting at steady-state off-normal high environment temperature
	HI-TRAC Transfer C	Cask
Normal (Bounding Annual Average)	100	
Off-Normal (3-Day Average)	0 and 100	0° F with no insolation 100° F with insolation

Note:

1. Handling operations with the loaded HI-STORM overpack and HI-TRAC transfer cask are limited to working area ambient temperatures greater than or equal to 0°F as specified in Subsection 2.2.1.2.

2.2-19

DESIGN TEMPERATURES

HI-STORM 100 Component	Long Term, Normal Condition Design Temperature Limits (Long-Term Events) (° F)	Off-Normal and Accident Condition Temperature Limits (Short-Term Events) [†] ([°] F)
MPC shell	500	775
MPC basket	725	950
MPC Neutron Absorber	800	950
MPC lid	550	775
MPC closure ring	400	775
MPC baseplate	400	775
MPC Heat Conduction Elements	725	950
HI-TRAC inner shell	400	600
HI-TRAC pool lid/transfer lid	350	700
HI-TRAC top lid	400	700
HI-TRAC top flange	400	700
HI-TRAC pool lid seals	350	N/A
HI-TRAC bottom lid bolts	350	700
HI-TRAC bottom flange	350	700
HI-TRAC top lid neutron shielding	300	350
HI-TRAC radial neutron shield	307	N/A
HI-TRAC radial lead gamma shield	350	600
Remainder of HI-TRAC	350	700
		752 or 1058 (Short Term Operations) ^{††}
Fuel Cladding	752	1058
		(Off-normal and Accident Conditions)
Overpack outer shell	350	600
Overpack concrete	300	350
Overpack inner shell	350	400
Overpack Lid Top and Bottom Plate	450	550

For accident conditions that involve heating of the steel structures and no mechanical loading (such as the blocked air duct accident), the permissible metal temperature of the steel parts is defined by Table 1A of ASME Section II (Part D) for Section III, Class 3 materials as 700°F. For the ISFSI fire event, the maximum temperature limit for ASME Section 1 equipment is appropriate (850°F in Code Table 1A).

^{††} Normal short term operations includes MPC drying and onsite transport per Reference [2.0.8]. The 1058°F temperature limit applies to MPCs containing all moderate burnup fuel as discussed in Reference [2.0.9]. The limit for MPCs containing one or more high burnup fuel assemblies is 752°F. See also Section 4.3.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

Table 2.2.3 (continued)

DESIGN TEMPERATURES

HI-STORM 100 Component	Long Term, Normal Condition Design Temperature Limits (Long-Term Events) (° F)	Off-Normal and Accident Condition Temperature Limits (Short-Term Events) [†] (° F)
Remainder of overpack steel structure	350	400

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL HI-STORM FSAR REPORT HI-2002444 2.2-21

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

TORNADO CHARACTERISTICS

.

Condition	Value
Rotational wind speed (mph)	290
Translational speed (mph)	70
Maximum wind speed (mph)	360
Pressure drop (psi)	3.0

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-22

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

TORNADO-GENERATED MISSILES

Missile Description	Mass (kg)	Velocity (mph)
Automobile	1800	126
Rigid solid steel cylinder (8 in. diameter)	125	126
Solid sphere (1 in. diameter)	0.22	126

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-23

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM MPC^(1,2)

		1					
Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Confinement	Shell	Α	ASME Section III; Subsection NB	Alloy X ⁽⁵⁾	See Appendix 1.A	NA	NA
Confinement	Baseplate	Α	ASME Section III; Subsection NB	Alloy X	See Appendix 1.A	. NA	NA
Confinement	Lid (One-piece design and top portion of optional two- piece design)	Α	ASME Section III; Subsection NB	Alloy X	See Appendix 1.A	NA	NA
Confinement	Closure Ring	A	ASME Section III; Subsection NB	Alloy X	See Appendix 1.A	NA	NA
Confinement	Port Cover Plates	Α	ASME Section III; Subsection NB	Alloy X	See Appendix 1.A	NA	NA
Criticality Control	Basket Cell Plates	Α	ASME Section III; Subsection NG core support structures (NG- 1121)	Alloy X	See Appendix 1.A	NA	NA
Criticality Control	Neutron Absorber	A	Non-code	• NA	NA	NA	Aluminum/SS
Shielding	Drain and Vent Shield Block	С	Non-code	Alloy X	See Appendix 1.A	NA	NA
Shielding	Plugs for Drilled Holes	NITS	Non-code	SA 193B8 (or equivalent)	See Appendix 1.A	NA	NA

Notes: 1) There are no known residuals on finished component surfaces

2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.

3) Component nomenclature taken from Bill of Materials in Chapter 1.

4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.

5) For details on Alloy X material, see Appendix 1.A.

6) Must be Type 304, 304LN, 316, or 316 LN with tensile strength \geq 75 ksi, yield strength \geq 30 ksi and chemical properties per ASTM A554.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR REPORT HI-2002444

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM MPC^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Shielding	Bottom portion of optional two-piece MPC lid design	В	Non-code	Alloy X	See Appendix 1.A	NA	NA
Structural Integrity	Upper Fuel Spacer Column	В	ASME Section III; Subsection NG (only for stress analysis)	Alloy X	See Appendix 1.A	NA	NA
Structural Integrity	Sheathing	· A	Non-code	Alloy X	See Appendix 1.A	Aluminum/SS	NA
Structural Integrity	Shims	NITS	Non-code (shims, welded directly to angle or parallel plate basket supports, are ASME Section II)	Alloy X	See Appendix 1.A	NA	NA
Structural Integrity	Basket Supports (Angled Plate or Parallel Plates with connecting end shim)	A	ASME Section III; Subsection NG internal structures (NG-1122)	Alloy X	See Appendix 1.A	NA	NA
Structural Form	Basket Supports (Flat Plates)	NITS	Non-Code	Alloy X	See Appendix 1.A	NA	NA
Structural Integrity	Lift Lug	С	NUREG-0612	Alloy X	See Appendix 1.A	NA	NA
Structural Integrity	Lift Lug Baseplate	С	Non-code	Alloy X	See Appendix 1.A	NA	NA

Notes:

1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) For details on Alloy X material, see Appendix 1.A.
- 6) Must be Type 304, 304LN, 316, or 316 LN with tensile strength \geq 75 ksi, yield strength \geq 30 ksi and chemical properties per ASTM A554.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-25

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM MPC^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Structural Integrity	Upper Fuel Spacer Bolt	NITS	Non-code	A193-B8 (or equiv.)	Per ASME Section	NA	NA
Structural Integrity	Upper Fuel Spacer End Plate	В	Non-code	Alloy X	See Appendix 1.A	NA	NA
Structural Integrity	Lower Fuel Spacer Column	В	ASME Section III; Subsection NG (only for stress analysis)	Stainless Steel. See Note 6	See Appendix 1.A	NA	NA
Structural Integrity	Lower Fuel Spacer End Plate	В	Non-code	Alloy X	See Appendix 1.A	NA	NA
Structural Integrity	Vent Shield Block Spacer	С	Non-code	Alloy X	See Appendix 1.A	NA	NA
Operations	Vent and Drain Tube	С	Non-code	S/S	Per ASME Section	Thread area surface hardened	NA
Operations	Vent & Drain Cap	С	Non-code	S/S	Per ASME Section II	NA	NA
Operations	Vent & Drain Cap Seal Washer	NITS	Non-code	Aluminum	NA	NA	Aluminum/SS
Operations	Vent & Drain Cap Seal Washer Bolt	NITS	Non-code	Aluminum	NA	NA	NA
Operations	Reducer	NITS	Non-code	Alloy X	See Appendix 1.A	NA	NA
Operations	Drain Line	NITS	Non-code	Alloy X	See Appendix 1.A	NA	NA

Notes: 1) There are no known residuals on finished component surfaces

2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.

3) Component nomenclature taken from Bill of Materials in Chapter 1.

4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.

5) For details on Alloy X material, see Appendix 1.A.

6) Must be Type 304, 304LN, 316, or 316 LN with tensile strength \geq 75 ksi, yield strength \geq 30 ksi and chemical properties per ASTM A554.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-26

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM MPC^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Operations	Damaged Fuel Container	C	ASME Section III;	S/S	See Appendix 1.A	NA	NA
			Subsection NG	(Primarily			
				304 S/S)			
Operations	Drain Line Guide Tube	NITS	Non-code	S/S	NA	NA	NA

Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) For details on Alloy X material, see Appendix 1.A.
- 6) Must be Type 304, 304LN, 316, or 316 LN with tensile strength \geq 75 ksi, yield strength \geq 30 ksi and chemical properties per ASTM A554.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR **REPORT HI-2002444**

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM OVERPACK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Shielding	Radial Shield	В	ACI 349, App. 1.D	Concrete	See Table 1.D.1	NA	NA
Shielding	Shield Block Ring (100)	В	See Note 6	SA516-70	See Table 3.3.2	See Note 5	NA
Shielding	Lid Shield Ring (100S and 100S Version B) and Shield Block Shell (100S) Shield Block Shell (100)	B	ASME Section III; Subsection NF See Note 6	SA516-70 or SA515-70 (SA515-70 not permitted for 100S Version B) SA516-70	See Table 3.3.2 See Table 3.3.2	See Note 5	NA
Smelding	Shield Block Shell (100)	В		SA516-70 or SA515-70	See Table 3.3.2	See Note 5	INA
Shielding	Pedestal Shield	В	ACI 349, App. 1-D	Concrete	See Table 1.D.1	NA	NA
Shielding	Lid Shield	В	ACI 349, App. 1-D	Concrete	See Table 1.D.1	NA	NA
Shielding	Shield Shell (eliminated from design 6/01)	В	See Note 6	SA516-70	See Table 3.3.2	NA	NA
Shielding	Shield Block	В	ACI 349, App. 1-D	Concrete	See Table 1.D.1	NÁ	NA
Shielding	Gamma Shield Cross Plates & Tabs	С	Non-code	SA240-304	NA	NA	NA

Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bills of Material and drawings in Chapter 1. All components are "as applicable" based in the overpack drawing/BOM unless otherwise noted.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) All exposed steel surfaces (except threaded holes) to be painted with Thermaline 450 or equivalent to the extent practical.
- 6) Welds will meet AWS D1.1 requirements for prequalified welds, except that welder qualification and weld procedures of ASME Code Section IX may be substituted.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR REPORT HI-2002444

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM OVERPACK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Structural Integrity	Baseplate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.3	See Note 5	NA
Structural Integrity	Outer Shell	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Inner Shell	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Concrete Form	Pedestal Shell	В	See Note 6	SA516-70	See Table 3.3.2	See Note 5	NA
Concrete Form	Pedestal Plate (100) Pedestal Baseplate (100S)	В	See Note 6	SA516-70 or SA515-70	See Table 3.3.2	See Table 3.3.2	NA
Structural Integrity	Lid Bottom Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Lid Shell	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Inlet Vent Vertical & Horizontal Plates	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Thermal	Exit Vent Horizontal Plate (100)	В	See Note 6	SA516-70	See Table 3.3.2	See Note 5	NA
Thermal	Exit Vent Vertical/Side Plate	В	See Note 6	SA516-70 or SA515-70	See Table 3.3.2	See Note 5	NA

Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bills of Material and drawings in Chapter 1. All components are "as applicable" based in the overpack drawing/BOM unless otherwise noted.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) All exposed steel surfaces (except threaded holes) to be painted with Thermaline 450 or equivalent to the extent practical.
- 6) Welds will meet AWS D1.1 requirements for prequalified welds, except that welder qualification and weld procedures of ASME Code Section IX may be substituted.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR **REPORT HI-2002444**

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM OVERPACK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Thermal	Heat Shield	В	N/A	C/S	N/A	See Note 5	N/A
Thermal	Heat Shield Ring	В	N/A	C/S	N/A	See Note 5	N/A
Structural Integrity	Top Plate, including shear ring	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Lid Top (Cover) Plate, including shear ring (100 and 100S)	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Radial Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Lid Stud & Nut	В	ASME Section II	SA564-630 or SA 193-B7 (stud) SA 194-2H (nut)	See Table 3.3.4	Threads to have cadmium coating (or similar lubricant for corrosion protection)	NA
Structural Integrity	100S Lid Washer	В	Non-Code	SA240-304	Per ASME Section II	NA	NA
Structural Integrity	Bolt Anchor Block	В	ASME Section III; Subsection NF ANSI N14.6	SA350-LF3, SA350-LF2, or SA203E	See Table 3.3.3	See Note 5	NA

Notes:

1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bills of Material and drawings in Chapter 1. All components are "as applicable" based in the overpack drawing/BOM unless otherwise noted.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) All exposed steel surfaces (except threaded holes) to be painted with Thermaline 450 or equivalent to the extent practical.
- 6) Welds will meet AWS D1.1 requirements for prequalified welds, except that welder qualification and weld procedures of ASME Code Section IX may be substituted.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-30

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM OVERPACK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Structural Integrity	Channel	В	ASME Section III; Subsection NF	SA516-70 (galvanized) or SA240-304	See Table 3.3.2 or Table 3.3.1	See Note 5	NA
Structural Integrity	Channel Mounts	В	ASME Section III; Subsection NF	A36 or equivalent	Per ASME Section II	See Note 5	NA
Shielding	Pedestal Platform	В	Non-Code	A36 or equivalent	NA	See Note 5	NA
Operations	Storage Marking Nameplate	NITS	Non-code	SA240-304	NA	NA	NA
Operations	Exit Vent Screen Sheet	NITS	Non-code	SA240-304	NA	NA	NA
Operations	Drain Pipe	NITS	Non-code	C/S or S/S	NA	See Note 5	NA
Operations	Exit & Inlet Screen Frame	NITS	Non-code	SA240-304	NA	NA	NA
Operations	Temperature Element & Associated Temperature Monitoring Equipment	С	Non-code	NA	NA	NA	NA
Operations	Screen	NITS	Non-code	Mesh Wire	NA	NA	NA
Operations	Paint	NITS	Non-code	Thermaline 450 or equivalent	NA	NA	NA

Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bills of Material and drawings in Chapter 1. All components are "as applicable" based in the overpack drawing/BOM unless otherwise noted.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) All exposed steel surfaces (except threaded holes) to be painted with Thermaline 450 or equivalent to the extent practical.
- 6) Welds will meet AWS D1.1 requirements for prequalified welds, except that welder qualification and weld procedures of ASME Code Section IX may be substituted.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR REPORT HI-2002444

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM OVERPACK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Structural Integrity	100S Version B Base Bottom Plate	В	ASME III; Subsection NF	Carbon Steel	See Table 3.3.6	See Note 5	NA
Structural Integrity	100S Version B Base Spacer Block	В	Non-code	Carbon Steel	NA	See Note 5	NA
Shielding	100S Version B Base Shield Block	В	Non-code	Carbon Steel	NA	See Note 5	NA
Structural Integrity	100S Version B Base Top Plate	В	ASME III; Subsection NF	SA 516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	100S Version B Base MPC Support	В	Non-code	SA36	NA	See Note 5	NA
Shielding	100S Version B Lid Outer Ring	В	ASME III; Subsection NF	SA516-70 or SA36	See Table 3.3.2 or Table 3.3.6	See Note 5	NA
Operations	100S Version B Lid Vent Duct	NITS	Non-code	Carbon Steel	NA	See Note 5	NA
Structural Integrity	100S Version B Lid Inner Ring	В	ASME III; Subsection NF	Carbon Steel	See Table 3.3.6	See Note 5	NA
Operations	100S Version B Lid Stud Pipe	NITS	Non-code	Carbon Steel	NA	See Note 5	NA
Operations	100S Version B Lid Stud Spacer	NITS	Non-code	Carbon Steel	NA	See Note 5	NA

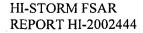
Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bills of Material and drawings in Chapter 1. All components are "as applicable" based in the overpack drawing/BOM unless otherwise noted.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
 - 5) All exposed steel surfaces (except threaded holes) to be painted with Thermaline 450 or equivalent to the extent practical.
 - 6) Welds will meet AWS D1.1 requirements for prequalified welds, except that welder qualification and weld procedures of ASME Code Section IX may be substituted.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR REPORT HI-2002444


MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM OVERPACK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Operations	100S Version B Lid Lift Block	В	ASME III; Subsection NF	SA36	See Table 3.3.2	See Note 5	NA
Shielding	100S Version B Lid Vent Shield	В	Non-code	Carbon Steel	NA	See Note 5	NA
Operations	100S Version B Lid Stud Washer	С	Non-code	Stainless Steel	NA	See Note 5	NA
Operations	100S Version B Lid Stud Cap	NITS	Non-code	PVC	NA	See Note 5	NA
Structural Integrity	100S Version B Radial Gusset	В	ASME III; Subsection NF	SA 516-70	NA	See Note 5	NA
Structural Integrity	100S Version B Lid Closure Bolt and Closure Bolt Handle	B (bolt) NITS (bolt Handle)	ASME Section II	SA 193-B7 (bolt) C/S (bolt handle)	See Table 3.3.4 (bolt) NA (bolt handle)	Threads to have cadmium coating (or similar lubricant for corrosion protection)	NA
Structural Integrity	100S Version B Lid Top (Cover) Plate	В	ASME Section III; Subsection NF	SA516-70 or SA36	See Table 3.3.2 or Table 3.3.6	See Note 5	NA
Structural Integrity	100S Version B Shear Ring	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA

Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bills of Material and drawings in Chapter 1. All components are "as applicable" based in the overpack drawing/BOM unless otherwise noted.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) All exposed steel surfaces (except threaded holes) to be painted with Thermaline 450 or equivalent to the extent practical.
- 6) Welds will meet AWS D1.1 requirements for prequalified welds, except that welder qualification and weld procedures of ASME Code Section IX may be substituted.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM HI-TRAC TRANSFER CASK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Shielding	Radial Lead Shield	В	Non-code	Lead	NA	NA	NA
Shielding	Pool Lid Lead Shield	В	Non-code	Lead	NA	NA	NA
Shielding	Top Lid Shielding	В	Non-code	Holtite	NA	NA	NA
Shielding	Plugs for Lifting Holes	NITS	Non-code	C/S or S/S	NA	NA	
Structural Integrity	Outer Shell	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Inner Shell	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Radial Ribs	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Water Jacket Enclosure Shell Panels (HI-TRAC 100 and 125)	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Water Jacket Enclosure Shell Panels (HI-TRAC 100D and 125D)	В	ASME Section III; Subsection NF	SA516-70 or SA515-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Water Jacket End Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Top Flange	В	ASME Section III; Subsection NF	SA350-LF3	See Table 3.3.3	See Note 5	NA
Structural Integrity	Lower Water Jacket Shell	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA

Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) All external surfaces to be painted with Carboline 890. Top surface of doors to be painted with Thermaline 450.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM HI-TRAC TRANSFER CASK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Structural Integrity	Pool Lid Outer Ring	В	ASME Section III; Subsection NF	SA516-70 or SA 203E	See Table 3.3.3	See Note 5	NA
				or SA350-LF3			
Structural Integrity	Pool Lid Top Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Top Lid Outer Ring	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Top Lid Inner Ring	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Top Lid Top Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Top Lid Bottom Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Fill Port Plugs	С	ASME Section III; Subsection NF	Carbon Steel	See Table 3.3.2	See Note 5	NA

Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) All external surfaces to be painted with Carboline 890. Top surface of doors to be painted with Thermaline 450.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-35

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM HI-TRAC TRANSFER CASK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Structural Integrity	Pool Lid Bolt	В	ASME Section III; Subsection NF	SA193-B7	See Table 3.3.4	NA	NA
Structural Integrity	Lifting Trunnion Block	В	ASME Section III; Subsection NF	SA350-LF3	See Table 3.3.3	See Note 5	NA
Structural Integrity	Lifting Trunnion	Α	ANSI N14.6	SB637 (N07718)	See Table 3.3.4	NA	NA
Structural Integrity	Pocket Trunnion (HI- TRAC 100 and HI-TRAC 125 only)	B	ASME Section III; Subsection NF ANSI N14.6	SA350-LF3	See Table 3.3.3	See Note 5	NA
Structural Integrity	Dowel Pins	В	ASME Section III; Subsection NF	SA564-630	See Table 3.3.4	NA	SA350-LF3
Structural Integrity	Water Jacket End Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Pool Lid Bottom Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Top Lid Lifting Block	C	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Bottom Flange Gussets (HI-TRAC 100D and 125D only)	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Operations	Top Lid Stud or bolt	В	ASME Section III; Subsection NF	SA193-B7	See Table 3.3.4	NA	NA

Notes: 1) There are no known residuals on finished component surfaces

2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.

3) Component nomenclature taken from Bill of Materials in Chapter 1.

4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.

5) All external surfaces to be painted with Carboline 890. Top surface of doors to be painted with Thermaline 450.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM HI-TRAC TRANSFER CASK^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Operations	Top Lid Nut	В	ASME Section III; Subsection NF	SA194-2H	NA	NA	NA
Operations	Pool Lid Gasket	· NITS	Non-code	Elastomer	NA	NA	NA
Operations	Lifting Trunnion End Cap (HI-TRAC 100 and HI- TRAC 125 only)	C	Non-code	SA516-70	See Table 3.3.2	See Note 5	NA
Operations	End Cap Bolts (HI-TRAC 100 and HI-TRAC 125 only)	NITS	Non-code	SA193-B7	See Table 3.3.4	NA	NA
Operations	Drain Pipes	NITS	Non-code	SA106	NA	NA	NA
Operations	Drain Bolt	NITS	Non-code	SA193-B7	See Table 3.3.4	NA	NA
Operations	Couplings, Valves and Vent Plug	NITS	Non-code	Commercial	NA	NA	NA

Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) All external surfaces to be painted with Carboline 890. Top surface of doors to be painted with Thermaline 450.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.2-37

HI-STORM FSAR REPORT HI-2002444

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM HI-TRAC TRANSFER LID (HI-TRAC 100 and HI-TRAC 125 ONLY)^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	Contact Matl. (if dissimilar)
Shielding	Side Lead Shield	В	Non-code	Lead	NA	NA	NA
Shielding	Door Lead Shield	В	Non-code	Lead	NA	NA	
Shielding	Door Shielding	В	Non-code	Holtite	NA	NA	NA
Structural Integrity	Lid Top Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Lid Bottom Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Lid Intermediate Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Lead Cover Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Lead Cover Side Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Door Top Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Door Middle Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Door Bottom Plate	B	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Door Wheel Housing	В	ASME Section III; Subsection NF	SA516-70 (SA350-LF3)	See Table 3.3.2 (Table 3.3.3)	See Note 5	NA
Structural Integrity	Door Interface Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA

Notes: 1) There are no known residuals on finished component surfaces

2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.

3) Component nomenclature taken from Bill of Materials in Chapter 1.

4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.

5) All external surfaces to be painted with Carboline 890. Top surface of doors to be painted with Thermaline 450.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR REPORT HI-2002444

TABLE 2,2.6

MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM HI-TRAC TRANSFER LID (HI-TRAC 100 and HI-TRAC 125 ONLY)^(1,2)

Primary Function	Component ⁽³⁾	Safety Class ⁽⁴⁾	Codes/Standards (as applicable to component)	Material	Strength (ksi)	Special Surface Finish/Coating	• Contact Matl. (if dissimilar)
Structural Integrity	Door Side Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Wheel Shaft	C	ASME Section III; Subsection NF	SA 193-B7	36 (yield)	See Note 5	NA
Structural Integrity	Lid Housing Stiffener	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Door Lock Bolt	В	ASME Section III; Subsection NB	SA193-B7	See Table 3.3.4	NA	NA
Structural Integrity	Door End Plate	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Structural Integrity	Lifting Lug and Pad	В	ASME Section III; Subsection NF	SA516-70	See Table 3.3.2	See Note 5	NA
Operations	Wheel Track	С	ASME Section III; Subsection NF	SA-36	36 (yield)	See Note 5	NA
Operations	Door Handle	NITS	Non-code	C/S or S/S	NA	See Note 5	NA
Operations	Door Wheels	NITS	Non-code	Forged Steel	NA	NA	NA
Operations	Door Stop Block	С	Non-code	SA516-70	See Table 3.3.2	See Note 5	NA
Operations	Door Stop Block Bolt	. C .	Non-code	SA193-B7	See Table 3.3.4	NA	NA

Notes: 1) There are no known residuals on finished component surfaces

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A, B, and C denote important to safety classifications as described in the Holtec QA Program. NITS stands for Not Important to Safety.
- 5) All external surfaces to be painted with Carboline 890. Top surface of doors to be painted with Thermaline 450.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR REPORT HI-2002444

2.2-39

HI-STORM 100 FSAR Revision 6; February 7, 2008

HI-STORM 100 Component	Material Procurement	Design	Fabrication	Inspection
Overpack steel structure	Section II, Section III, Subsection NF, NF-2000	Section III, Subsection NF, NF-3200	Section III, Subsection NF, NF-4000	Section III, Subsection NF, NF-5350, NF-5360 and Section V
Anchor Studs for HI-STORM 100A	Section II, Section III, Subsection NF, NF-2000*	Section III, Subsection NF, NF- 3300	NA	NA
MPC confinement boundary	Section II, Section III, Subsection NB, NB-2000	Section III, Subsection NB, NB-3200	Section III, Subsection NB, NB-4000	Section III, Subsection NB, NB-5000 and Section V
MPC fuel basket	Section II, Section III, Subsection NG, NG-2000; core support structures (NG- 1121)	Section III, Subsection NG, NG-3300 and NG-3200; core support structures (NG-1121)	Section III, Subsection NG, NG-4000; core support structures (NG-1121)	Section III, Subsection NG, NG-5000 and Section V; core support structures (NG-1121)
HI-TRAC Trunnions	Section II, Section III, Subsection NF, NF-2000	ANSI 14.6	Section III, Subsection NF, NF-4000	See Chapter 9
MPC basket supports (Angled Plates)	Section II, Section III, Subsection NG, NG-2000; internal structures (NG-1122)	Section III, Subsection NG, NG-3300 and NG-3200; internal structures (NG- 1122)	Section III, Subsection NG, NG-4000; internal structures (NG- 1122)	Section III, Subsection NG, NG-5000 and Section V; internal structures (NG- 1122)
HI-TRAC steel structure	Section II, Section III, Subsection NF, NF-2000	Section III, Subsection NF, NF-3300	Section III, Subsection NF, NF-4000	Section III, Subsection NF, NF-5360 and Section V
Damaged fuel container	Section II, Section III, Subsection NG, NG-2000	Section III, Subsection NG, NG-3300 and NG-3200	Section III, Subsection NG, NG-4000	Section III, Subsection NG, NG-5000 and Section V
Overpack concrete	ACI 349 as specified by Appendix 1.D	ACI 349 and ACI 318-95 as specified by Appendix 1.D	ACI 349 as specified by Appendix 1.D	ACI 349 as specified by Appendix 1.D

HI-STORM 100 ASME BOILER AND PRESSURE VESSEL CODE APPLICABILITY

* Except impact testing shall be determined based on service temperature and material type.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

ľ

2.2-40

Item	Condition	Value
Snow Pressure Loading (lb./ft ²)	Normal	100
Constriction of MPC Basket Vent Opening By Crud Settling (Depth of Crud, in.)	Accident	0.85 (MPC-68) 0.36 (MPC-24 and MPC-32)
Cask Environment During the Postulated Fire Event (Deg. F)	Accident	1475
HI-STORM Overpack Fire Duration (seconds)	Accident	217
HI-TRAC Transfer Cask Fire Duration (minutes)	Accident	4.8
Maximum submergence depth due to flood (ft)	Accident	125
Flood water velocity (ft/s)	Accident	15
Interaction Relation for Horizontal & Vertical acceleration for HI-STORM	Accident	$G_{H} + 0.53G_{V} = 0.53^{\dagger\dagger}$ (HI-STORM 100, 100S, and 100S Version B) $G_{H} = 2.12; G_{V} = 1.5$ (HI-STORM 100A)
Net Overturning Moment at base of HI-STORM 100A (ft-lb)	Accident	18.7x10 ⁶
HI-STORM 100 Overpack Vertical Lift Height Limit (in.)	Accident	11 ^{†††} (HI-STORM 100 and 100S), OR By Users (HI-STORM 100A)
HI-TRAC Transfer Cask Horizontal Lift Height Limit (in.)	Accident	42 ^{†††}

ADDITIONAL DESIGN INPUT DATA FOR NORMAL, OFF-NORMAL, AND ACCIDENT CONDITIONS

, **††**

See Subsection 3.4.7.1 for definition of G_H and G_V . The coefficient of friction may be increased above 0.53 based on testing described in Subsection 3.4.7.1

†††

For ISFSI and subgrade design parameter Sets A and B. Users may also develop a site-specific lift height limit.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-41

PARAMETER	PARAMETER SET "A" [†]	PARAMETER SET "B"
Concrete thickness, t _p (inches)	<u><</u> 36	<u>< 28</u>
Concrete Compressive Strength (at 28 days), f _c ', (psi)	≤ 4,200	≤ 6,000 psi
Reinforcement Top and Bottom (both directions)	Reinforcing bar shall be 60 ksi Yield Strength ASTM Material	Reinforcing bar shall be 60 ksi Yield Strength ASTM Material
Subgrade Effective Modulus of Elasticity ^{††} (measured prior to ISFSI pad installation), E, (psi)	≤ 28,000	<u>≤</u> 16,000

EXAMPLES OF ACCEPTABLE ISFSI PAD DESIGN PARAMETERS

NOTE: A static coefficient of friction of 0.53 between the ISFSI pad and the bottom of the overpack shall be used. If for a specific ISFSI a higher value of the coefficient of friction is used, it shall be verified by test. The test procedure shall follow the guidelines included in the Sliding Analysis in Subsection 3.4.7.1.

The characteristics of this pad are identical to the pad considered by Lawrence Livermore Laboratory (see Appendix 3.A).

An acceptable method of defining the soil effective modulus of elasticity applicable to the drop and tipover analysis is provided in Table 13 of NUREG/CR-6608 with soil classification in accordance with ASTM-D2487 Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System USCS) and density determination in accordance with ASTM-D1586 Standard Test Method for Penetration Test and Split/Barrel Sampling of Soils.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-42

STRESS CATEGORY	DESIGN	LEVELS A & B	LEVEL D ^{††}
Primary Membrane, P _m	S _m	N/A ^{†††}	AMIN (2.4S _m , .7S _u)
Local Membrane, P _L	1.5S _m	N/A	150% of P _m Limit
Membrane plus Primary Bending	1.5S _m	N/A	150% of P _m Limit
Primary Membrane plus Primary Bending	1.5S _m	N/A	150% of P _m Limit
Membrane plus Primary Bending plus Secondary	N/A	3S _m	N/A
Average Shear Stress ^{††††}	0.6S _m	0.6S _m	0.42S _u

Table 2.2.10 MPC CONFINEMENT BOUNDARY STRESS INTENSITY LIMITS FOR DIFFERENT LOADING CONDITIONS (ELASTIC ANALYSIS PER NB-3220)[†]

Stress combinations including F (peak stress) apply to fatigue evaluations only. Governed by Appendix F, Paragraph F-1331 of the ASME Code, Section III. No Specific stress limit applicable. Governed by NB-3227.2 or F-1331.1(d).

††

†††

††††

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-43

MPC BASKET STRESS INTENSITY LIMITS
FOR DIFFERENT LOADING CONDITIONS (ELASTIC ANALYSIS PER NG-3220)

STRESS CATEGORY	DESIGN	LEVELS A & B	LEVEL D^{\dagger}
Primary Membrane, P _m	S _m	S _m	AMIN $(2.4S_m, .7S_u)^{\dagger\dagger}$
Primary Membrane plus Primary Bending	1.5S _m	1.5S _m	150% of P _m Limit
Primary Membrane plus Primary Bending plus Secondary	N/A ^{†††}	3S _m	N/A

Governed by Appendix F, Paragraph F-1331 of the ASME Code, Section III. Governed by NB-3227.2 or F-1331.1(d). No specific stress intensity limit applicable.

††

†††

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.2-44

HI-STORM FSAR REPORT HI-2002444 Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Table 2.2.12STRESS LIMITS FOR DIFFERENTLOADING CONDITIONS FOR THE STEEL STRUCTURE OF THE OVERPACK AND HI-TRAC
(ELASTIC ANALYSIS PER NF-3260)

		SERVICE CONDITION		
STRESS CATEGORY	DESIGN + LEVEL A	LEVEL B	LEVEL D^{\dagger}	
Primary Membrane, P _m	S	1.33S	AMAX (1.2S _y , 1.5S _m) but < .7S _u	
Primary Membrane, P _m , plus Primary Bending, P _b	1.58	1.9958	150% of P _m	
Shear Stress (Average)	0.6S	0.65	<0.42S _u	

Definitions:

S = Allowable Stress Value for Table 1A, ASME Section II, Part D.

 S_m = Allowable Stress Intensity Value from Table 2A, ASME Section II, Part D

 $S_u = Ultimate Strength$

Governed by Appendix F, Paragraph F-1332 of the ASME Code, Section III.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444 Rev. 6

NOTATION FOR DESIGN LOADINGS FOR NORMAL, OFF-NORMAL, AND ACCIDENT CONDITIONS

NORMAL (CONDITION
LOADING	NOTATION
Dead Weight	D
Handling Loads	Н
Design Pressure (Internal)	P _i
Design Pressure (External) [†]	Po
Snow	S
Operating Temperature	Т
OFF-NORMA	L CONDITION
Loading	Notation
Off-Normal Pressure (Internal)	P _i '
Off-Normal Pressure (External) [†]	Po
Off-Normal Temperature	Τ'
Off-Normal HI-TRAC Handling	Н'
	•

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-46

Rev. 6

HI-STORM 100 FSAR Revision 6; February 7, 2008

Table 2.2.13 (continued)

NOTATION FOR DESIGN LOADINGS FOR NORMAL, OFF-NORMAL, AND ACCIDENT CONDITIONS

ACCIDENT	CONDITIONS
LOADING	NOTATION
Handling Accident	H'
Earthquake	Е
Fire	T*
Tornado Missile	М
Tornado Wind	W'
Flood	F
Explosion	E*
Accident Pressure (Internal)	Pi [*]
Accident Pressure (External)	P _o *

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-47

CONDITION	LOADING CASE	MPC	OVERPACK	HI-TRAC
Design (ASME Code Pressure Compliance)	1	P _i , P _o	N/A	N/A
Normal (Level A)	1	D,T,H,P _i	D,T,H	D, $T^{\dagger\dagger\dagger}$, H, P _{i (water jacket)}
Nomilal (Level A)	2	D, T, H, P _o	N/A	N/A
Off-Normal (Level B)	1.	D, T', H, P _i '	D, T', H	N/A ^{†††} (H' pocket trunnion)
	2	D, T', H, P _o	N/A	N/A
	1	D, T, P _i , H'	D, T, H'	D, T, H'
Accident (Level D)	2	D, T [*] , P _i [*]	N/A	N/A
	3	D, T, P _o *††††	$D, T, P_o^{*\dagger\dagger\dagger\dagger}$	D, T, P _o *††††
	4	N/A	D, T, (E, M, F, W') ^{†††††}	D, T, (M, W') ^{†††††}

 Table 2.2.14

 APPLICABLE LOAD CASES AND COMBINATIONS FOR EACH CONDITION AND COMPONENT^{†, ††}

The loading notations are given in Table 2.2.13. Each symbol represents a loading type and may have different values for different components. The different loads are assumed to be additive and applied simultaneously.

^{††} N/A stands for "Not Applicable."

t

^{†††} T (normal condition) for the HI-TRAC is 100°F and P_{i(water jacket)} is 60 psig and, therefore, there is no off-normal temperature or load combination because Load Case 1, Normal (Level A), is identical to Load Case 1, Off-Normal (Level B). Only the off-normal handling load on the pocket trunnion is analyzed separately.

^{††††} P_o^* bounds the external pressure due to explosion.

⁺⁺⁺⁺⁺ (E, M, F, W') means loads are considered separately in combination with D, T. E and F not applicable to HI-TRAC.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Rev. 6

HI-STORM FSAR REPORT HI-2002444

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification & Compensatory Measures
MPC, MPC basket assembly, HI-	Subsection NCA	General Requirements.	Because the MPC, overpack, and transfer cask are not
STORM overpack steel structure,		Requires preparation of a	ASME Code stamped vessels, none of the
and HI-TRAC transfer cask steel		Design Specification,	specifications, reports, certificates, or other general
structure.		Design Report,	requirements specified by NCA are required. In lieu of
		Overpressure Protection	a Design Specification and Design Report, the HI-
		Report, Certification of	STORM FSAR includes the design criteria, service
		Construction Report, Data	conditions, and load combinations for the design and
		Report, and other	operation of the HI-STORM 100 System as well as the
		administrative controls for	results of the stress analyses to demonstrate that
		an ASME Code stamped	applicable Code stress limits are met. Additionally, the
		vessel.	fabricator is not required to have an ASME-certified QA
			program. All important-to-safety activities are governed
			by the NRC-approved Holtec QA program.
			Because the cask components are not certified to the
			Code, the terms "Certificate Holder" and "Inspector"
· · · · · ·			are not germane to the manufacturing of NRC-
			certified cask components. To eliminate ambiguity,
			the responsibilities assigned to the Certificate Holder
			in the various articles of Subsections NB, NG, and NF
			of the Code, as applicable, shall be interpreted to
· · ·			apply to the NRC Certificate of Compliance (CoC)
			holder (and by extension, to the component
			fabricator) if the requirement must be fulfilled. The
			Code term "Inspector" means the QA/QC personnel
· · ·			of the CoC holder and its vendors assigned to oversee
		· ·	and inspect the manufacturing process.

LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

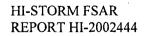

2.2-49

Table 2.2.15 (continued)

considered part of the component unless the weld is more than 2t from the pressure-retaining portion of the component, where t is the nominal thickness of the pressure-retaining material. NB-1132.2(e) requires that the first connecting weld of a welded nonstructural attachment to a component shall	Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification & Compensatory Measures
the first connecting weld of a nonpressure-retaining structural attachment to a component shall be considered part of the component unless the weld is more than 2t from the pressure-retaining portion of the component, where t is the nominal thickness of the pressure-retaining material. NB-1132.2(e) requires that the first connecting weld of a welded nonstructural attachment to a component shall	МРС	NB-1100	for Code stamping of	fabricated in accordance with ASME Code, Section III, Subsection NB to the maximum practical extent,
connecting weld is within 2t from the pressure- retaining portion of the	MPC basket supports and lift lugs	NB-1130	the first connecting weld of a nonpressure-retaining structural attachment to a component shall be considered part of the component unless the weld is more than 2t from the pressure-retaining portion of the component, where t is the nominal thickness of the pressure-retaining material. NB-1132.2(e) requires that the first connecting weld of a welded nonstructural attachment to a component shall conform to NB-4430 if the connecting weld is within 2t from the pressure-	The MPC basket supports (nonpressure-retaining structural attachment) and lift lugs (nonstructural attachments (relative to the function of lifting a loaded MPC) that are used exclusively for lifting an empty MPC) are welded to the inside of the pressure- retaining MPC shell, but are not designed in accordance with Subsection NB. The basket supports and associated attachment welds are designed to satisfy the stress limits of Subsection NG and the lift lugs and associated attachment welds are designed to satisfy the stress limits of Subsection NF, as a minimum. These attachments and their welds are shown by analysis to meet the respective stress limits for their service conditions. Likewise, non-structural items, such as shield plugs, spacers, etc. if used, can be attached to pressure-retaining parts in the same

LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

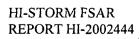
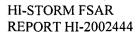


Table 2.2.15 (continued)

LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification & Compensatory Measures
MPC	NB-2000	Requires materials to be supplied by ASME- approved material supplier.	Materials will be supplied by Holtec approved suppliers with Certified Material Test Reports (CMTRs) in accordance with NB-2000 requirements.
MPC, MPC basket assembly, HI- STORM overpack, and HI-TRAC transfer cask	NB-3100 NG-3100 NF-3100	Provides requirements for determining design loading conditions, such as pressure, temperature, and mechanical loads.	These requirements are not applicable. The HI- STORM FSAR, serving as the Design Specification, establishes the service conditions and load combinations for the storage system.
MPC	NB-3350	NB-3352.3 requires, for Category C joints, that the minimum dimensions of the welds and throat thickness shall be as shown in Figure NB- 4243-1.	Due to MPC basket-to-shell interface requirements, the MPC shell-to-baseplate weld joint design (designated Category C) does not include a reinforcing fillet weld or a bevel in the MPC baseplate, which makes it different than any of the representative configurations depicted in Figure NB-4243-1. The transverse thickness of this weld is equal to the thickness of the adjoining shell (1/2 inch). The weld is designed as a full penetration weld that receives VT and RT or UT, as well as final surface PT examinations. Because the MPC shell design thickness is considerably larger than the minimum thickness required by the Code, a reinforcing fillet weld that would intrude into the MPC cavity space is not included. Not including this fillet weld provides for a higher quality radiographic examination of the full penetration weld.
			From the standpoint of stress analysis, the fillet weld serves to reduce the local bending stress (secondary stress) produced by the gross structural discontinuity defined by the flat plate/shell junction. In the MPC design, the shell and baseplate thicknesses are well beyond that required to meet their respective membrane stress intensity limits.


HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification & Compensatory Measures
MPC, MPC basket assembly, HI- STORM overpack steel structure, and HI-TRAC transfer cask steel structure	NB-4120 NG-4120 NF-4120	NB-4121.2, NG-4121.2, and NF-4121.2 provide requirements for repetition of tensile or impact tests for material subjected to heat treatment during fabrication or installation.	In-shop operations of short duration that apply heat to a component, such as plasma cutting of plate stock, welding, machining, coating, and pouring of lead are not, unless explicitly stated by the Code, defined as heat treatment operations. For the steel parts in the HI-STORM 100 System components, the duration for which a part exceeds the off-normal temperature limit defined in Chapter 2 of the FSAR shall be limited to 24 hours in a particular manufacturing process (such as the HI-TRAC lead pouring process).
MPC, HI-STORM overpack steel structure, HI-TRAC transfer cask steel structure	NB-4220 NF-4220	Requires certain forming tolerances to be met for cylindrical, conical, or spherical shells of a vessel.	The cylindricity measurements on the rolled shells are not specifically recorded in the shop travelers, as would be the case for a Code-stamped pressure vessel. Rather, the requirements on inter-component clearances (such as the MPC-to-transfer cask) are guaranteed through fixture-controlled manufacturing. The fabrication specification and shop procedures ensure that all dimensional design objectives,
			including inter-component annular clearances are satisfied. The dimensions required to be met in fabrication are chosen to meet the functional requirements of the dry storage components. Thus, although the post-forming Code cylindricity requirements are not evaluated for compliance directly, they are indirectly satisfied (actually exceeded) in the final manufactured components.

LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.2-52

LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification & Compensatory Measures
MPC Lid and Closure Ring Welds	NB-4243	Full penetration welds required for Category C Joints (flat head to main shell per NB-3352.3)	MPC lid and closure ring are not full penetration welds. They are welded independently to provide a redundant seal. Additionally, a weld efficiency factor of 0.45 has been applied to the analyses of these welds.
MPC Closure Ring, Vent and Drain Cover Plate Welds	NB-5230	Radiographic (RT) or ultrasonic (UT) examination required.	Root (if more than one weld pass is required) and final liquid penetrant examination to be performed in accordance with NB-5245. The closure ring provides independent redundant closure for vent and drain cover plates.
MPC Lid to Shell Weld	NB-5230	Radiographic (RT) or ultrasonic (UT) examination required.	Only UT or multi-layer liquid penetrant (PT) examination is permitted. If PT examination alone is used, at a minimum, it will include the root and final weld layers and each approx. 3/8" of weld depth.
MPC Enclosure Vessel and Lid	NB-6111	All completed pressure retaining systems shall be pressure tested.	The MPC vessel is seal welded in the field following fuel assembly loading. The MPC vessel shall then be pressure tested as defined in Chapter 9. Accessibility for leakage inspections preclude a Code compliant pressure test. All MPC vessel welds (except closure ring and vent/drain cover plate) are inspected by volumetric examination, except the MPC lid-to-shell weld shall be verified by volumetric or multi-layer PT examination. If PT alone is used, at a minimum, it must include the root and final layers and each approximately 3/8 inch of weld depth. For either UT or PT, the maximum undetectable flaw size must be determined in accordance with ASME Section XI methods. The critical flaw size shall not cause the primary stress limits of NB-3000 to be exceeded.
			The inspection results, including relevant findings (indications) shall be made a permanent part of the user's records by video, photographic, of other means which provide an equivalent record of weld integrity. The video or

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-53

LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification & Compensatory Measures
			photographic records should be taken during the final interpretation period described in ASME Section V, Article 6, T-676. The vent/drain cover plate and the closure ring welds are confirmed by liquid penetrant examination. The inspection of the weld must be performed by qualified personnel and shall meet the acceptance requirements of ASME Code Section III, NB-5350 for PT or NB-5332 for UT.
MPC Enclosure Vessel	NB-7000	Vessels are required to have overpressure protection.	No overpressure protection is provided. Function of MPC enclosure vessel is to contain radioactive contents under normal, off-normal, and accident conditions of storage. MPC vessel is designed to withstand maximum internal pressure considering 100% fuel rod failure and maximum accident temperatures.
MPC Enclosure Vessel	NB-8000	States requirements for nameplates, stamping and reports per NCA-8000.	The HI-STORM 100 System is to be marked and identified in accordance with 10CFR71 and 10CFR72 requirements. Code stamping is not required. QA data package to be in accordance with Holtec approved QA program.
MPC Basket Assembly	NG-2000	Requires materials to be supplied by ASME approved Material Supplier.	Materials will be supplied by Holtec approved supplier with CMTRs in accordance with NG-2000 requirements.

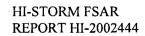
HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-54

LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL


HI-STORM FSAR REPORT HI-2002444

2.2-55

LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification & Compensatory Measures
MPC Basket Assembly	NG-8000	States requirements for nameplates, stamping and reports per NCA-8000.	The HI-STORM 100 System is to be marked and identified in accordance with 10CFR71 and 10CFR72 requirements. No Code stamping is required. The MPC basket data package is to be in conformance with Holtec's QA program.
Overpack Steel Structure	NF-2000	Requires materials to be supplied by ASME approved Material Supplier.	Materials will be supplied by Holtec approved supplier with CMTRs in accordance with NF-2000 requirements.
HI-TRAC Steel Structure	NF-2000	Requires materials to be supplied by ASME approved Material Supplier.	Materials will be supplied by Holtec approved supplier with CMTRs in accordance with NF-2000 requirements.
Overpack Baseplate and Lid Top Plate	NF-4441	Requires special examinations or requirements for welds where a primary member thickness of 1" or greater is loaded to transmit loads in the through thickness direction.	The margins of safety in these welds under loads experienced during lifting operations or accident conditions are quite large. The overpack baseplate welds to the inner shell, pedestal shell, and radial plates are only loaded during lifting conditions and have large safety factors during lifting. Likewise, the top lid plate to lid shell weld has a large structural margin under the inertia loads imposed during a non-mechanistic tipover event.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.2-56

LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification & Compensatory Measures
Overpack Steel Structure	NF-3256 NF-3266	Provides requirements for welded joints.	Welds for which no structural credit is taken are identified as "Non-NF" welds in the design drawings by an "*". These non-structural welds are specified in accordance with the pre-qualified welds of AWS D1.1. These welds shall be made by welders and weld procedures qualified in accordance with AWS D1.1 or ASME Section IX. Welds for which structural credit is taken in the safety analyses shall meet the stress limits for NF-3256.2, but are not required to meet the joint configuration requirements specified in these Code articles. The geometry of the joint designs in the cask structures are based on the fabricability and accessibility of the joint, not generally contemplated by this Code section governing supports.
HI-STORM Overpack and HI- TRAC Transfer Cask	NF-3320 NF-4720	NF-3324.6 and NF-4720 provide requirements for bolting	These Code requirements are applicable to linear structures wherein bolted joints carry axial, shear, as well as rotational (torsional) loads. The overpack and transfer cask bolted connections in the structural load path are qualified by design based on the design loadings defined in the FSAR. Bolted joints in these components see no shear or torsional loads under normal storage conditions. Larger clearances between bolts and holes may be necessary to ensure shear interfaces located elsewhere in the structure engage prior to the bolts experiencing shear loadings (which occur only during side impact scenarios).
			Bolted joints that are subject to shear loads in accident conditions are qualified by appropriate stress analysis. Larger bolt-to-hole clearances help ensure more efficient operations in making these bolted connections, thereby minimizing time spent by operations personnel in a radiation area. Additionally, larger bolt-to-hole clearances allow interchangeability of the lids from one particular fabricated cask to another.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.2-57

HI-STORM FSAR REPORT HI-2002444

Table 2.2.16

COMPARISON BETWEEN HI-STORM MPC LOADINGS WITH HI-STAR MPC LOADINGS †

Loading Condition	Difference Between MPC Loadings Under HI-STAR and HI-STORM Conditions		
Dead Load	Unchanged		
Design Internal Pressure (normal, off-normal, & accident)	Unchanged		
Design External Pressure (normal, off-normal, & accident)	HI-STORM normal and off-normal external pressure is ambient which is less than the HI-STAR 40 psig. The accident external pressure is unchanged.		
Thermal Gradient (normal, off- normal, & accident)	Determined by analysis in Chapters 3 and 4		
Handling Load (normal)	Unchanged		
Earthquake (accident)	Inertial loading increased less than 0.1g's (for free-standing overpack designs).		
Handling Load (accident)	HI-STORM vertical and horizontal deceleration loadings are less than those in HI-STAR, but the HI-STORM cavity inner diameter is different and therefore the horizontal loading on the MPC is analyzed in Chapter 3.		

[†]HI-STAR MPC loadings are those specified in the HI-STAR SAR under docket number 71-9261, which does not impose any off-normal condition loadings.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.2-58

2.3 <u>SAFETY PROTECTION SYSTEMS</u>

2.3.1 <u>General</u>

The HI-STORM 100 System is engineered to provide for the safe long-term storage of spent nuclear fuel (SNF). The HI-STORM 100 will withstand all normal, off-normal, and postulated accident conditions without any uncontrolled release of radioactive material or excessive radiation exposure to workers or members of the public. Special considerations in the design have been made to ensure long-term integrity and confinement of the stored SNF throughout all cask operating conditions. The design considerations, which have been incorporated into the HI-STORM 100 System to ensure safe long-term fuel storage are:

- 1. The MPC confinement barrier is an enclosure vessel designed in accordance with the ASME Code, Subsection NB with confinement welds inspected by radiography (RT) or ultrasonic testing (UT). Where RT or UT is not possible, a redundant closure system is provided with field welds, which are pressure tested and/or inspected by the liquid penetrant method (see Section 9.1).
- 2. The MPC confinement barrier is surrounded by the HI-STORM overpack which provides for the physical protection of the MPC.
- 3. The HI-STORM 100 System is designed to meet the requirements of storage while maintaining the safety of the SNF.
 - The SNF once initially loaded in the MPC does not require opening of the canister for repackaging to transport the SNF.
- 5.

4.

The decay heat emitted by the SNF is rejected from the HI-STORM 100 System through passive means. No active cooling systems are employed.

It is recognized that a rugged design with large safety margins is essential, but that is not sufficient to ensure acceptable performance over the service life of any system. A carefully planned oversight and surveillance plan, which does not diminish system integrity but provides reliable information on the effect of passage of time on the performance of the system is essential. Such a surveillance and performance assay program will be developed to be compatible with the specific conditions of the licensee's facility where the HI-STORM 100 System is installed. The general requirements for the acceptance testing and maintenance programs are provided in Chapter 9. Surveillance requirements are specified in the Technical Specifications in Appendix A to the CoC.

The structures, systems, and components of the HI-STORM 100 System designated as important to safety are identified in Table 2.2.6. Similar categorization of structures, systems, and components, which are part of the ISFSI, but not part of the HI-STORM 100 System, will

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-1

be the responsibility of the 10CFR72 licensee. For HI-STORM 100A, the ISFSI pad is designated ITS, Category C as discussed in Subsection 2.0.4.1.

2.3.2 Protection by Multiple Confinement Barriers and Systems

2.3.2.1 <u>Confinement Barriers and Systems</u>

The radioactivity which the HI-STORM 100 System must confine originates from the spent fuel assemblies and, to a lesser extent, the contaminated water in the fuel pool. This radioactivity is confined by multiple confinement barriers.

Radioactivity from the fuel pool water is minimized by preventing contact, removing the contaminated water, and decontamination.

An inflatable seal in the annular gap between the MPC and HI-TRAC, and the elastomer seal in the HI-TRAC pool lid prevent the fuel pool water from contacting the exterior of the MPC and interior of the HI-TRAC while submerged for fuel loading. The fuel pool water is drained from the interior of the MPC and the MPC internals are dried. The exterior of the HI-TRAC has a painted surface which is decontaminated to acceptable levels. Any residual radioactivity deposited by the fuel pool water is confined by the MPC confinement boundary along with the spent nuclear fuel.

The HI-STORM 100 System is designed with several confinement barriers for the radioactive fuel contents. Intact fuel assemblies have cladding which provides the first boundary preventing release of the fission products. Fuel assemblies classified as damaged fuel or fuel debris are placed in a damaged fuel container which restricts the release of fuel debris. The MPC is a seal welded enclosure which provides the confinement boundary. The MPC confinement boundary is defined by the MPC baseplate, shell, lid, closure ring, and port cover plates.

The MPC confinement boundary has been designed to withstand any postulated off-normal operations, internal change, or external natural phenomena. The MPC is designed to endure normal, off-normal, and accident conditions of storage with the maximum decay heat loads without loss of confinement. Designed in accordance with the ASME Code, Section III, Subsection NB, with certain NRC-approved alternatives, the MPC confinement boundary provides assurance that there will be no release of radioactive materials from the cask under all postulated loading conditions. Redundant closure of the MPC is provided by the MPC closure ring welds which provide a second barrier to the release of radioactive material from the MPC internal cavity. Therefore, no monitoring system for the confinement boundary is required.

Confinement is discussed further in Chapter 7. MPC field weld examinations, helium leakage testing and pressure testing are performed to verify the confinement function. Fabrication inspections and tests are also performed, as discussed in Chapter 9, to verify the confinement boundary.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-2

2.3.2.2 Cask Cooling

To facilitate the passive heat removal capability of the HI-STORM 100, several thermal design criteria are established for normal and off-normal conditions. They are as follows:

- The heat rejection capacity of the HI-STORM 100 System is deliberately understated by conservatively determining the design basis fuel that maximizes thermal resistance (see Section 2.1.6). Additional margin is built into the calculated cask cooling rate by using the design basis fuel assembly that offers maximum resistance to MPC internal helium circulation.
- The MPC fuel basket is formed by a honeycomb structure of stainless steel plates with full-length edge-welded intersections, which allows the unimpaired conduction of heat.
- The MPC confinement boundary ensures that the helium atmosphere inside the MPC is maintained during normal, off-normal, and accident conditions of storage and transfer. The MPC confinement boundary maintains the helium confinement atmosphere below the design temperatures and pressures stated in Table 2.2.3 and Table 2.2.1, respectively.
- The MPC thermal design maintains the fuel rod cladding temperatures below the values stated in Chapter 4 such that fuel cladding is not degraded during the long term storage period.
- The HI-STORM is optimally designed with cooling vents and an MPC to overpack annulus which maximize air flow, while providing superior radiation shielding. The vents and annulus allow cooling air to circulate past the MPC removing the decay heat.

Protection by Equipment and Instrumentation Selection

2.3.3.1 Equipment

2.3.3

Design criteria for the HI-STORM 100 System are described in Section 2.2. The HI-STORM 100 System may include use of ancillary or support equipment for ISFSI implementation. Ancillary equipment and structures utilized outside of the reactor facility's 10CFR Part 50 structures may be broken down into two broad categories, namely Important to Safety (ITS) ancillary equipment and Not Important to Safety (NITS) ancillary equipment. NUREG/CR-6407, "Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety", provides guidance for the determination of a component's safety classification. Certain ancillary equipment (such as trailers, rail cars, skids, portable cranes, transporters, or air pads) are not required to be designated as ITS for most

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

ISFSI implementations, if the HI-STORM 100 is designed to withstand the failure of these components.

The listing and ITS designation of ancillary equipment in Table 8.1.6 follows NUREG/CR-6407. ITS ancillary equipment utilized in activities that occur outside the 10CFR Part 50 structure shall be engineered to meet all functional, strength, service life, and operational safety requirements to ensure that the design and operation of the ancillary equipment is consistent with the intent of this Safety Analysis Report. The design for these components shall consider the following information, as applicable:

Functions and boundaries of the ancillary equipment

The environmental conditions of the ISFSI site, including tornado-borne missile, tornado wind, seismic, fire, lightning, explosion, ambient humidity limits, flood, tsunami and any other environmental hazards unique to the site.

Material requirements including impact testing requirements

4. Applicable codes and standards

1.

2.

3.

- 5. Acceptance testing requirements
- 6. Quality assurance requirements
- 7. Foundation type and permissible loading
- 8. Applicable loads and load combinations
- 9. Pre-service examination requirements

10. In-use inspection and maintenance requirements

- 11. Number and magnitude of repetitive loading significant to fatigue
- 12. Insulation and enclosure requirements (on electrical motors and machinery)
- 13. Applicable Reg. Guides and NUREGs.
- 14. Welding requirements
- 15. Painting, marking, and identification requirements
- 16. Design Report documentation requirements
- 17. Operational and Maintenance (O&M) Manual information requirements

All design documentation shall be subject to a review, evaluation, and safety assessment process in accordance with the provisions of the QA program described in Chapter 13.

Users may effectuate the inter-cask transfer of the MPC between the HI-TRAC transfer cask and either the HI-STORM 100 or the HI-STAR 100 overpack in a location of their choice, depending upon site-specific needs and capabilities. For those users choosing to perform the MPC inter-cask transfer using devices not integral to structures governed by the regulations of 10 CFR Part 50 (e.g., fuel handling or reactor building), a Cask Transfer Facility (CTF) is required. The CTF is a stand-alone facility located on-site, near the ISFSI that incorporates or is compatible with lifting devices designed to lift a loaded or unloaded HI-TRAC transfer cask, place it atop the overpack, and transfer the loaded MPC to or from the overpack. The detailed design criteria which must be followed for the design and operation of the CTF are set down in Paragraphs A through R below.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-4

The inter-cask transfer operations consist of the following potential scenarios of MPC transfer:

- Transfer between a HI-TRAC transfer cask and a HI-STORM overpack
- Transfer between a HI-TRAC transfer cask and a HI-STAR 100 overpack

In both scenarios, the standard design HI-TRAC is mounted on top of the overpack (HI-STAR 100, HI-STORM 100, HI-STORM 100S) and the MPC transfer is carried out by opening the transfer lid doors located at the bottom of the HI-TRAC transfer cask and by moving the MPC vertically to the cylindrical cavity of the recipient cask. For the HI-TRAC 100D and 125D designs, the MPC transfer is carried out in a similar fashion, except that there is no transfer lid involved - the pool lid is removed while the transfer cask is mounted atop the HI-STORM overpack with the HI-STORM mating device located between the two casks (see Figure 1.2.18). However, the devices utilized to lift the HI-TRAC cask to place it on the overpack and to vertically transfer the MPC may be of stationary or mobile type.

The specific requirements for the CTF employing stationary and mobile lifting devices are somewhat different. The requirements provided in the following specification for the CTF apply to both types of lifting devices, unless explicitly differentiated in the text.

1. General Specifications:

a.

b.

c.

The cask handling functions which may be required of the Cask Transfer Facility include:

Upending and downending of a HI-STAR 100 overpack on a flatbed rail car or other transporter (see Figure 2.3.1 for an example).

Upending and downending of a HI-TRAC transfer cask on a heavy-haul transfer trailer or other transporter (see Figure 2.3.2 for an example)

Raising and placement of a HI-TRAC transfer cask on top of a HI-STORM 100 overpack for MPC transfer operations (see Figure 2.3.3 for an example of the cask arrangement with the standard design HI-TRAC transfer cask. The HI-TRAC 100D and 125D designs would include the mating device and no transfer lid).

d. Raising and placement of a HI-TRAC transfer cask on top of a HI-STAR 100 overpack for MPC transfer operations (see Figure 2.3.4 for an example of the cask arrangement with the standard

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-5

design HI-TRAC transfer cask. The HI-TRAC 100D and 125D designs would include the mating device and no transfer lid).

- e. MPC transfer between the HI-TRAC transfer cask and the HI-STORM overpack.
- f. MPC transfer between the HI-TRAC transfer cask and the HI-STAR 100 overpack.

ii. Other Functional Requirements:

a.

e.

The CTF should possess facilities and capabilities to support cask operations such as :

- Devices and areas to support installation and removal of the HI-STORM overpack lid.
- b. Devices and areas to support installation and removal of the HI-STORM 100 overpack vent shield block inserts.
- c. Devices and areas to support installation and removal of the HI-STAR 100 closure plate.
- d. Devices and areas to support installation and removal of the HI-STAR 100 transfer collar.
 - Features to support positioning and alignment of the HI-STORM overpack and the HI-TRAC transfer cask.
- f. Features to support positioning and alignment of the HI-STAR 100 overpack and the HI-TRAC transfer cask.
- g. Areas to support jacking of a loaded HI-STORM overpack for insertion of a translocation device underneath.
- h. Devices and areas to support placement of an empty MPC in the HI-TRAC transfer cask or HI-STAR 100 overpack
- i. Devices and areas to support receipt inspection of the MPC, HI-TRAC transfer cask, HI-STORM overpack, and HI-STAR overpack.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-6

j. Devices and areas to support installation and removal of the HI-STORM mating device (HI-TRAC 100D and 125D only).

iii. Definitions:

The components of the CTF covered by this specification consist of all structural members, lifting devices, and foundations which bear all or a significant portion of the dead load of the transfer cask or the multipurpose canister during MPC transfer operations. The definitions of key terms not defined elsewhere in this FSAR and used in this specification are provided below. The following terms are used to define key components of the CTF.

• Connector Brackets: The mechanical part used in the load path which connects to the cask trunnions. A fabricated weldment, slings, and turnbuckles are typical examples of connector brackets.

• CTF structure: The CTF structure is the stationary, anchored portion of the CTF which provides the required structural function to support MPC transfer operations, including lateral stabilization of the HI-TRAC transfer cask and, if required, the overpack, to protect against seismic events. The MPC lifter, if used in the CTF design, is integrated into the CTF structure (see Lifter Mount).

HI-TRAC lifter(s): The HI-TRAC lifter is the mechanical lifting device, typically consisting of jacks or hoists, that is utilized to lift a loaded or unloaded HI-TRAC to the required elevation in the CTF so that it can be mounted on the overpack.[†]

• Lifter Mount: A beam-like structure (part of the CTF structure) that supports the HI-TRAC and MPC lifter(s).

• Lift Platform: The lift platform is the intermediate structure that transfers the vertical load of the HI-TRAC transfer cask to the HI-TRAC lifters.

The term overpack is used in this specification as a generic term for the HI-STAR 100 and the various HI-STORM overpacks.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-7

- Mobile crane: A mobile crane is a device defined in ASME B30.5-1994, Mobile and Locomotive Cranes. A mobile crane may be used in lieu of the HI-TRAC lifter and/or an MPC lifter provided all requirements set forth in this subsection are satisfied.
- MPC lifter: The MPC lifter is a mechanical lifting device, typically consisting of jacks or hoists, that is utilized to vertically transfer the MPC between the HI-TRAC transfer cask and the overpack.
- Pier: The portion of the reinforced concrete foundation which projects above the concrete floor of the CTF.
- Single-Failure-Proof (SFP): A single-failure-proof handling device is one wherein all directly loaded tension and compression members are engineered to satisfy the enhanced safety criteria given in of NUREG-0612.
- Translocation Device: A low vertical profile device used to laterally position an overpack such that the bottom surface of the overpack is fully supported by the top surface of the device. Typical translocation devices are air pads and Hillman rollers.

iv. Important to Safety Designation:

All components and structures which comprise the CTF shall be given an ITS category designation in accordance with a written procedure which is consistent with NUREG/CR-6407 and the Holtec quality assurance program.

B. Environmental and Design Conditions

- Lowest Service Temperature (LST): The LST for the CTF is 0° F (consistent with the specification for the HI-TRAC transfer cask in Subsection 3.1.2.3).
- ii. Snow and Ice Load, S: The CTF structure shall be designed to withstand the dead weight of snow and ice for unheated structures as set forth in ASCE 7-88 [2.2.2] for the specific ISFSI site.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-8

Tornado Missile, M, and Tornado Wind,W': The tornado wind and tornado-generated missile data applicable to the HI-STORM 100 System (Tables 2.2.4 and 2.2.5) will be used in the design of the CTF structure unless existing site design basis data or a probabilistic risk assessment (PRA) for the CTF site with due consideration of short operation durations indicates that a less severe tornado missile impact or wind loading on the CTF structure can be postulated. The PRA analysis can be performed in the manner of the EPRI Report NP-2005, "Tornado Missile Simulation and Design Methodology Computer Code Manual". USNRC Reg. Guide 1.117 and Section 2.2.3 of NUREG-800 may be used for guidance in establishing the appropriate tornado missile and wind loading for the CTF structure.

The following additional clarifications apply to the large tornado missile (4,000 lb. automobile) in Tables 2.2.4 and 2.2.5 in the CTF structure analysis:

- The missile has a platform area of 20 sq. ft. and impact force characteristics consistent with the HI-TRAC missile impact analysis.
- The large missile can strike the CTF structure in any orientation up to an elevation of 15 feet.

If the site tornado missile data developed by the ISFSI owner suggests that tornado missiles of greater kinetic energies than that postulated in this FSAR (Table 2.2.4 and 2.2.5) should be postulated for CTF during its use, then the integrity analysis of the CTF structure shall be carried out under the site-specific tornado missiles. This situation would also require the HI-TRAC transfer cask and the overpack to be re-evaluated under the provisions of 10CFR72.212 and 72.48.

The wind speed specified in this FSAR (Tables 2.2.4 and 2.2.5), likewise, shall be evaluated for their applicability to the site. Lower or higher site-specific wind velocity, compared to the design basis values cited in this FSAR shall be used if justified by appropriate analysis, which may include PRA.

Intermediate penetrant missile and small missiles postulated in this FSAR are not considered to be a credible threat to the functional integrity of the CTF structure and, therefore, need not be considered.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

iii.

- iv. Flood: The CTF will be assumed to be flooded to the highest elevation for the CTF facility determined from the local meteorological data. The flood velocity shall be taken as the largest value defined for the ISFSI site.
- v. Lightning: Meteorological data for the region surrounding the ISFSI site shall be used to specify the applicable lightning input to the CTF structure for personnel safety evaluation purposes.

vi. Water Waves (Tsunami, Y): Certain coastal CTF sites may be subject to sudden, short duration waves of water, denoted in the literature by various terms, such as tsunami. If the applicable meteorological data for the CTF site indicates the potential of such water-borne loadings on the CTF structure, then such a loading, with due consideration of the short duration of CTF operations, shall be defined for the CTF structure.

Design Basis Earthquake (DBE), E: The DBE event applicable to the CTF facility pursuant to 10CFR100, Appendix A, shall be specified. The DBE should be specified as a set of response spectra or acceleration time-histories for use in the CTF structural and impact consequence analyses.

viii.

ii.

vii.

Design Temperature: All material properties used in the stress analysis of the CTF structure shall utilize a reference design temperature of 150°F.

C. Heavy Load Handling:

Apparent dead load, D^* : The dead load of all components being lifted shall be increased in the manner set forth in Subsection 3.4.3 to define the Apparent Dead Load, D^* .

NUREG-0612 Conformance:

The Connector Bracket, HI-TRAC lifter, and MPC lifter shall comply with the guidance provided in NUREG-0612 (1980) for single failure proof devices. Where the geometry of the lifting device is different from the configurations contemplated by NUREG-0612, the following exceptions apply:

a. Mobile cranes at the CTF shall conform to the guidelines of Section 5.1.1 of NUREG-0612 with the exception that mobile

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-10

cranes shall meet the requirements of ANSI B30.5, "Mobile and Locomotive Cranes", in lieu of the requirements of ANSI B30.2, "Overhead and Gantry Cranes". The mobile crane used shall have a minimum safety factor of two over the allowable load table for the crane in accordance with Section 5.1.6(1)(a) of NUREG-0612, and shall be capable of stopping and holding the load during a DBE event.

b.

a.

b.

d. .

Section 5.1.6(2) of NUREG-0612 specifies that new cranes should be designed to meet the requirements of NUREG-0554. For mobile cranes, the guidance of Section 5.1.6(2) of NUREG-0612 does not apply.

iii. Defense-in-Depth Measures:

The lift platform and the lifter mount shall be designed to ensure that the stresses produced under the apparent dead load, D*, are less than the Level A (normal condition) stress limits for ASME Section III, Subsection NF, Class 3, linear structures.

The CTF structure shall be designed to ensure that the stresses produced in it under the apparent dead load, D*, are less than the Level A (normal condition) stress limits for ASME Section III, Subsection NF, Class 3, linear structures.

Maximum deflection of the lift platform and the lifter mount under the apparent dead load shall comply with the limits set forth in CMAA-70.

When the HI-TRAC transfer cask is stacked on the overpack, HI-TRAC shall be either held by the lifting device or laterally restrained by the CTF structure. Furthermore, when the HI-TRAC transfer cask is placed atop the overpack, the overpack shall be laterally restrained from uncontrolled movement, if required by the analysis specified in Subsection 2.3.3.1.N.

The design of the lifting system shall ensure that the lift platform (or lift frame) is held horizontal at all times and that the symmetrically situated axial members are symmetrically loaded.

f. In order to minimize occupational radiation exposure to ISFSI personnel, design of the MPC lifting attachment (viz., sling)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-11

should not require any human activity inside the HI-TRAC cylindrical space.

- g. The HI-TRAC lifter and MPC lifter shall possess design features to avoid side-sway of the payload during lifting operations.
- h.

The lifter (HI-TRAC and MPC) design shall ensure that any electrical malfunction in the motor or the power supply will not lead to an uncontrolled lowering of the load.

The kinematic stability of HI-TRAC or HI-STORM standing upright in an unrestrained configuration (if such a condition exists during the use of the CTF) shall be analytically evaluated and ensured under all postulated extreme environmental phenomena loadings for the CTF facility.

iv. Shielding Surety:

The design of the HI-TRAC and MPC lifters shall preclude the potential for the MPC to be removed, completely or partially, from the cylindrical space formed by the HI-TRAC and the underlying overpack.

Specific Requirements for Mobile Cranes:

A mobile crane, if used in the CTF in the role of the HI-TRAC lifter or MPC lifter is governed in part by ANSI/ASME N45.2.15 with technical requirements specified in ANSI B30.5 (1994).

When lifting the MPC from an overpack to the HI-TRAC transfer cask, limit switches or load limiters shall be set to ensure that the mobile crane is prevented from lifting loads in excess of 110% of the loaded MPC weight.

An analysis of the consequences of a potential MPC vertical drop which conforms to the guidelines of Appendix A to NUREG-0612 shall be performed. The analysis shall demonstrate that a postulated drop would not result in the MPC experiencing a deceleration in excess of its design basis deceleration specified in this FSAR.

vi.

Lift Height Limitation: The HI-TRAC lift heights shall be governed by the Technical Specifications.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-12

vii. Control of Side Sway: Procedures shall provide provisions to ensure that the load is lifted essentially vertically with positive control of the load. Key cask lifting and transfer procedures, as determined by the user, should be reviewed by the Certificate Holder before their use.

D. Loads and Load Combinations for the CTF Structure

The applicable loadings for the CTF have been summarized in paragraph B in the preceding. A stress analysis of the CTF structure shall be performed to demonstrate compliance with the Subsection NF stress limits for Class 3 linear structures for the service condition germane to each load combination. Table 2.3.2 provides the load combinations (the symbols in Table 2.3.2 are defined in the preceding text and in Table 2.2.13).

E. Materials and Failure Modes

i.

ii.

iii.

Acceptable Materials and Material Properties: All materials used in the design of the CTF shall be ASTM approved or equal, consistent with the ITS category of the part. Reinforced concrete, if used, shall comply with the provisions of ACI 318 (89). The material property and allowable stress values for all steel structures shall be taken from the ASME and B&PV Code, Section II, wherever such data is available; otherwise, the data provided in the ASTM standards shall be used.

Brittle Fracture: All structural components in the CTF structure and the lift platform designated as primary load bearing shall have an NDTT equal to 0°F or lower (consistent with the ductile fracture requirements for ASME Section III, Subsection NF, Class 3 structures).

Fatigue: Fatigue failure modes of primary structural members in the CTF structure whose failure may result in uncontrolled lowering of the HI-TRAC transfer cask or the MPC (critical members) shall be evaluated. A minimum factor of safety of 2 on the number of permissible loading cycles on the critical members shall apply.

iv.

Buckling: For all critical members in the CTF structure (defined above), potential failure modes through buckling under axial compression shall be considered. The margin of safety against buckling shall comply with the provisions of ASME Section III, Subsection NF, for Class 3 linear structures.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

1

2.3-13

F. CTF Pad

A reinforced concrete pad in conformance with the specification for the ISFSI pad set forth in this FSAR (see Table 2.2.9) may be used in the region of the CTF where the overpack and HI-TRAC are stacked for MPC transfer. Alternatively, the pad may be designed using the guidelines of ACI-318(89).

G. Miscellaneous Components

Hoist rings, turnbuckles, slings, and other appurtenances which are in the load path during heavy load handling at the CTF shall be single-failure-proof.

H. Structural Welds

All primary structural welds in the CTF structure shall comply with the specifications of ASME Section III for Class 3 NF linear structures.

I. Foundation

The design of the CTF structure foundation and piers, including load combinations, shall be in accordance with ACI-318(89).

Rail Access

J.

K.

The rail lines that enter the Cask Transfer Facility shall be set at grade level with no exposed rail ties or hardware other than the rail itself.

Vertical Cask Crawler/Translocation Device Access (If Required)

The cask handling bay in the CTF shall allow access of a vertical cask crawler or translocation device carrying a transfer cask or overpack. The building floor shall be equipped with a smooth transition to the cask travel route such that the vertical cask crawler tracks do not have to negotiate sharp lips or slope transitions and the translocation devices have a smooth transition. Grading of exterior aprons shall be no more than necessary to allow water drainage.

- ii. If roll-up doors are used, the roll up doors shall have no raised threshold that could damage the vertical cask crawler tracks (if a crawler is used).
- iii. Exterior aprons shall be of a material that will not be damaged by the vertical cask crawler tracks, if a crawler is used.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL HI-STORM FSAR REPORT HI-2002444 2.3-14

- L. Facility Floor
 - i. The facility floor shall be sufficiently flat to allow optimum handling of casks with a translocation device.
 - ii. Any floor penetrations, in areas where translocation device operations may occur, shall be equipped with flush inserts.

iii.

i.

The rails, in areas where translocation device operations may occur shall be below the finish level of the floor. Flush inserts, if necessary, shall be sized for installation by hand.

M. Cask Connector Brackets

Primary lifting attachments between the cask and the lifting platform are the cask connector brackets. The cask connector brackets may be lengthened or shortened to allow for differences in the vehicle deck height of the cask delivery vehicle and the various lifting operations. The connector brackets shall be designed to perform cask lifting, upending and downending functions. The brackets shall be designed in accordance with ANSI N14.6 [Reference 2.2.3] and load tested at 300% of the load applied to them during normal handling.

ii. The connector brackets shall be equipped with a positive engagement to ensure that the cask lifting attachments do not become inadvertently disconnected during a seismic event and during normal cask handling operations.

- iii. The design of the connector brackets shall ensure that the HI-TRAC transfer cask is fully secured against slippage during MPC transfer operations.
- N. Cask Restraint System

A time-history analysis of the stacked overpack/HI-TRAC transfer cask assemblage under the postulated ISFSI Level D events in Table 2.3.2 shall be performed to demonstrate that a minimum margin of safety of 1.1 against overturning or kinematic instability exists and that the CTF structure complies with the applicable stress limits (Table 2.3.2) and that the maximum permissible deceleration loading specified in the FSAR is not exceeded. If required to meet

the minimum margin of safety of 1.1, a cask restraining system shall be incorporated into the design of the Cask Transfer Facility to provide lateral restraint to the overpack (HI-STORM or HI-STAR 100).

O. Design Life

The Cask Transfer Facility shall be constructed to have a minimum design life of 40 years.

P. Testing Requirements

In addition to testing recommended in NUREG-0612 (1980), a structural adequacy test of the CTF structure at 125% of its operating load prior to its first use in a cask loading campaign shall be performed. This test should be performed in accordance with the guidance provided in the CMAA Specification 70 [2.2.16].

Q. Quality Assurance Requirements

All components of the CTF shall be manufactured in full compliance with the quality assurance requirements applicable to the ITS category of the component as set forth in the Holtec QA program.

Documentation Requirements

O&M Manual: An Operations and Maintenance Manual shall be prepared which contains, at minimum, the following items of information:

Maintenance Drawings

Operating Procedures

ii. Design Report: A QA-validated design report documenting full compliance with the provisions of this specification shall be prepared and archived for future reference in accordance with the provisions of the Holtec QA program.

2.3.3.2 Instrumentation

i.

R.

As a consequence of the passive nature of the HI-STORM 100 System, instrumentation which is important to safety is not necessary. No instrumentation is required or provided for HI-STORM 100 storage operations, other than normal security service instruments and TLDs.

HOLTEC INTER	RNATIONAL COPYRIGHTED MATER	IAL	
HI-STORM FSAR		Re	27
REPORT HI-2002444	2.3-16	· .	

However, in lieu of performing the periodic inspection of the HI-STORM overpack vent screens, temperature elements may be installed in two of the overpack exit vents to continuously monitor the air temperature. If the temperature elements and associated temperature monitoring instrumentation are used, they shall be designated important to safety as specified in Table 2.2.6.

The temperature elements and associated temperature monitoring instrumentation provided to monitor the air outlet temperature shall be suitable for a temperature range of -40° F to 500° F. At a minimum, the temperature elements and associated temperature monitoring instrumentation shall be calibrated for the temperatures of 32° F (ice point), 212° F (boiling point), and 449° F (melting point of tin) with an accuracy of $+/-4^{\circ}$ F.

2.3.4 <u>Nuclear Criticality Safety</u>

The criticality safety criteria stipulates that the effective neutron multiplication factor, k_{eff} , including statistical uncertainties and biases, is less than 0.95 for all postulated arrangements of fuel within the cask under all credible conditions.

2.3.4.1 <u>Control Methods for Prevention of Criticality</u>

The control methods and design features used to prevent criticality for all MPC configurations are the following:

Incorporation of permanent neutron absorbing material in the MPC fuel basket walls.

b. Favorable geometry provided by the MPC fuel basket

Additional control methods used to prevent criticality for the MPC-24, MPC-24E, and MPC-24EF (all with higher enriched fuel), and the MPC-32 and MPC-32F are the following:

Loading of PWR fuel assemblies must be performed in water with a minimum boron content as specified in Table 2.1.14 or 2.1.16, as applicable.

Prevention of fresh water entering the MPC internals.

Administrative controls and shall be used to ensure that fuel placed in the HI-STORM 100 System meets the requirements described in Chapters 2 and 6. All appropriate criticality analyses are presented in Chapter 6.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

a.

a.

h

2.3-17

2.3.4.2 Error Contingency Criteria

1

Provision for error contingency is built into the criticality analyses performed in Chapter 6. Because biases and uncertainties are explicitly evaluated in the analysis, it is not necessary to introduce additional contingency for error.

2.3.4.3 <u>Verification Analyses</u>

In Chapter 6, critical experiments are selected which reflect the design configurations. These critical experiments are evaluated using the same calculation methods, and a suitable bias is incorporated in the reactivity calculation.

2.3.5 <u>Radiological Protection</u>

2.3.5.1 Access Control

As required by 10CFR72, uncontrolled access to the ISFSI is prevented through physical protection means. A peripheral fence with an appropriate locking and monitoring system is a standard approach to limit access. The details of the access control systems and procedures, including division of the site into radiation protection areas, will be developed by the licensee (user) of the ISFSI utilizing the HI-STORM 100 System.

2.3.5.2 <u>Shielding</u>

The shielding design is governed by 10CFR72.104 and 10CFR72.106 which provide radiation dose limits for any real individual located at or beyond the nearest boundary of the controlled area. The individual must not receive doses in excess of the limits given in Table 2.3.1 for normal, off-normal, and accident conditions.

The objective of shielding is to assure that radiation dose rates at key locations are as low as practical in order to maintain occupational doses to operating personnel As Low As Reasonably Achievable (ALARA) and to meet the requirements of 10 CFR 72.104 and 10 CFR 106 for dose at the controlled area boundary. Three locations are of particular interest in the storage mode:

immediate vicinity of the cask
restricted area boundary
controlled area (site) boundary

Dose rates in the immediate vicinity of the loaded overpack are important in consideration of occupational exposure. Conservative evaluations of dose rate have been performed and are described in Chapter 5 based on the contents of the BWR and PWR MPCs permitted for storage as described in Section 2.1.9. Actual dose rates in operation will be lower than those reported in Chapter 5 for the following reasons:

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-18

- The shielding evaluation model has a number of conservatisms, as discussed in Chapter 5.
- No single cask will likely contain design basis fuel in each fuel storage location and the full compliment of non-fuel hardware allowed by Section 2.1.9.
- No single cask will contain fuel and non-fuel hardware at the limiting burnups and cooling times allowed by Section 2.1.9.

Consistent with 10 CFR 72, there is no single dose rate limit established for the HI-STORM 100 System. Compliance with the regulatory limits on occupational and controlled area doses is performance-based, as demonstrated by dose monitoring performed by each cask A design objective for the maximum average radial surface dose rate has been established as 135 mrem/hr. Areas adjacent to the inlet and exit vents which pass through the radial shield are limited to 135 mrem/hr. The average dose rate at the top of the overpack is limited to below 60 mrem/hr. Chapter 5 of this FSAR presents the analyses and evaluations to establish HI-STORM 100 compliance with these design objectives.

Because of the passive nature of the HI-STORM 100 System, human activity related to the system is infrequent and of short duration. Personnel exposures due to operational and maintenance activities are discussed in Chapter 10. Chapter 10 also provides information concerning temporary shielding which may be utilized to reduce the personnel dose during loading, unloading, transfer, and handling operations. The estimated occupational doses for personnel comply with the requirements of 10CFR20.

For the loading and unloading of the HI-STORM overpack with the MPC, several transfer cask designs are provided (i.e., HI-TRAC 125, HI-TRAC 100, HI-TRAC 100D and HI-TRAC 125D). The two 125 ton HI-TRAC provide better shielding than the HI-TRAC 100D and 125D due to the increased shielding thickness and corresponding greater weight. Provided the licensee is capable of utilizing the 125 ton HI-TRAC, ALARA considerations would normally dictate that the 125 ton HI-TRAC should be used. However, sites may not be capable of utilizing the 125 ton HI-TRAC should be used. However, sites may not be capable of utilizing the 125 ton HI-TRAC should be reduction-based plant activities, individual users who cannot accommodate the 125 ton HI-TRAC should perform a cost-benefit analysis of the actions (e.g., plant modifications) that would be necessary to use the 125 ton HI-TRAC. The cost of the action(s) would be weighed against the value of the projected reduction in radiation exposure and a decision made based on each plant's particular ALARA implementation philosophy.

Dose rates at the restricted area and site boundaries shall be in accordance with applicable regulations. Licensees shall demonstrate compliance with 10CFR72.104 and 10CFR72.106 for the actual fuel being stored, the ISFSI storage array, and the controlled area boundary distances.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL HI-STORM FSAR

REPORT HI-2002444

1

2.3-19.

The analyses presented in Chapters 5, 10, and 11 demonstrate that the HI-STORM 100 System is capable of meeting the above radiation dose limits.

2.3.5.3 <u>Radiological Alarm System</u>

There are no credible events that could result in release of radioactive materials or increases in direct radiation above the requirements of 10CFR72.106.

2.3.6 Fire and Explosion Protection

There are no combustible or explosive materials associated with the HI-STORM 100 System. No such materials would be stored within an ISFSI. However, for conservatism we have analyzed a hypothetical fire accident as a bounding condition for HI-STORM 100. An evaluation of the HI-STORM 100 System in a fire accident is discussed in Chapter 11.

Small overpressures may result from accidents involving explosive materials which are stored or transported near the site. Explosion is an accident loading condition considered in Chapter 11.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.3-20

Rev. 5

Table 2.3.1

RADIOLOGICAL SITE BOUNDARY REQUIREMENTS

BOUNDARY OF CONTROLLED AREA (m) (minimum)	100
NORMAL AND OFF-NORMAL CONDITIONS:	
Whole Body (mrem/yr)	25
Thyroid (mrem/yr)	75
Any Other Critical Organ (mrem/yr)	25
DESIGN BASIS ACCIDENT:	
TEDE (rem)	5
DDE + CDE to any individual organ or tissue (other than lens of the eye) (rem)	50
Lens dose equivalent (rem)	15
Shallow dose equivalent to skin or any extremity (rem)	50

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

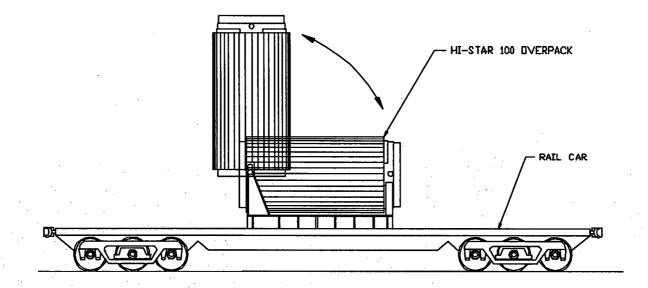
2.3-21

Table 2.3.2

Load Combination	Service Condition for Section III of the ASME Code for Definition of Allowable Stress	Comment
D*	Level A	All primary load bearing
D+S	Level A	members must satisfy Level A stress limits.
D+M ^{††} +W' D+F D+E or	Level D	Factor of safety against overturning shall be ≥ 1.1
D+Y		

Load Combinations[†] and Service Condition Definitions for the CTF Structure

The reinforced concrete portion of the CTF structure shall also meet factored combinations of the above loads set forth in ACI-318(89).


^{††} This load may be reduced or eliminated based on a PRA for the CTF site.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

ŧ

2.3-22

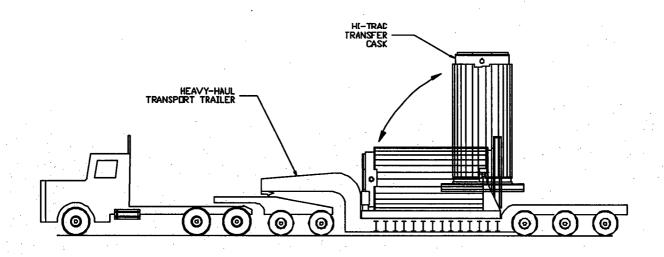


FIGURE 2.3.1; HI-STAR 100 UPENDING AND DOWNENDING ON A RAIL CAR

HI-STORM FSAR REPORT HI-2002444

1

Rev. 0

FIGURE 2.3.2; HI-TRAC UPENDING AND DOWNENDING ON A HEAVY-HAUL TRANSPORT TRAILER

HI-STORM FSAR REPORT HI-2002444

11.1

Rev. 0

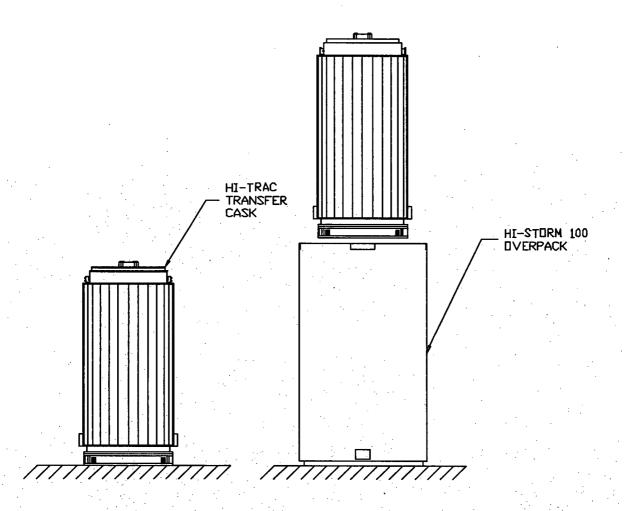
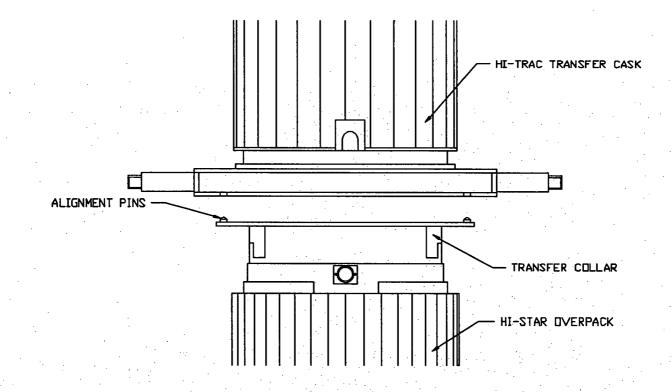



FIGURE 2.3.3; HI-TRAC PLACEMENT ON HI-STORM 100 FOR MPC TRANSFER OPERATIONS

HI-STORM FSAR REPORT HI-2002444

Rev. 0

FIGURE 2.3.4; HI-TRAC PLACEMENT ON HI-STAR 100 FOR MPC TRANSFER OPERATIONS

HI-STORM FSAR REPORT HI-2002444 Rev. 0

2.4 DECOMMISSIONING CONSIDERATIONS

Efficient decommissioning of the ISFSI is a paramount objective of the HI-STORM 100 System. The HI-STORM 100 System is ideally configured to facilitate rapid, safe, and economical decommissioning of the storage site.

The MPC is being licensed for transport off-site in the HI-STAR 100 dual-purpose cask system (Reference Docket No. 71-9261). No further handling of the SNF stored in the MPC is required prior to transport to a licensed centralized storage facility or licensed repository.

The MPC, which holds the SNF assemblies is engineered to be suitable as a waste package for permanent internment in a deep Mined Geological Disposal System (MGDS). The materials of construction permitted for the MPC are known to be highly resistant to severe environmental conditions. No carbon steel, paint, or coatings are used or permitted in the MPC. Therefore, the SNF assemblies stored in the MPC should not need to be removed. However, to ensure a practical, feasible method to defuel the MPC, the top of the MPC is equipped with sufficient gamma shielding and markings locating the drain and vent locations to enable semiautomatic (or remotely actuated) boring of the MPC lid to provide access to the MPC vent and drain. The circumferential welds of the MPC lid closure ring can be removed by semiautomatic or remotely actuated means, providing access to the SNF.

Likewise, the overpack consists of steel and concrete rendering it suitable for permanent burial. Alternatively, the MPC can be removed from the overpack, and the latter reused for storage of other MPCs.

In either case, the overpack would be expected to have no interior or exterior radioactive surface contamination. Any neutron activation of the steel and concrete is expected to be extremely small, and the assembly would qualify as Class A waste in a stable form based on definitions and requirements in 10CFR61.55. As such, the material would be suitable for burial in a near-surface disposal site as Low Specific Activity (LSA) material.

If the MPC needs to be opened and separated from the SNF before the fuel is placed into the MGDS, the MPC interior metal surfaces will be decontaminated using existing mechanical or chemical methods. This will be facilitated by the MPC fuel basket and interior structures' smooth metal surfaces designed to minimize crud traps. After the surface contamination is removed, the MPC radioactivity will be diminished significantly, allowing near-surface burial or secondary applications at the licensee's facility.

It is also likely that both the overpack and MPC, or extensive portions of both, can be further decontaminated to allow recycle or reuse options. After decontamination, the only radiological hazard the HI-STORM 100 System may pose is slight activation of the HI-STORM 100 materials caused by irradiation over a 40-year storage period.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.4-1

Due to the design of the HI-STORM 100 System, no residual contamination is expected to be left behind on the concrete ISFSI pad. The base pad, fence, and peripheral utility structures will require no decontamination or special handling after the last overpack is removed.

To evaluate the effects on the MPC and HI-STORM overpack caused by irradiation over a 40-year storage period, the following analysis is provided. Table 2.4.1 provides the conservatively determined quantities of the major nuclides after 40 years of irradiation. The calculation of the material activation is based on the following:

Beyond design basis fuel assemblies (B&W 15x15, 4.8% enrichment, 70,000 MWD/MTU, and five-year cooling time) stored for 40 years. A constant source term for 40 years was used with no decrease in the neutron source term. This bounds the source term associated with the limiting PWR burnup of 68,200 MWD/MTU.

Material quantities based on the drawings in Section 1.5.

A constant flux equal to the initial loading condition is conservatively assumed for the full 40 years.

Material activation is based on MCNP-4A calculations.

As can be seen from the material activation results presented in Table 2.4.1, the MPC and HI-STORM overpack activation is very low, even including the very conservative assumption of a constant flux for 40 years. The results for the concrete in the HI-STORM overpack can be conservatively applied to the ISFSI pad. This is extremely conservative because the overpack shields most of the flux from the fuel and, therefore, the ISFSI pad will experience a minimal flux.

In any case, the HI-STORM 100 System would not impose any additional decommissioning requirements on the licensee of the ISFSI facility per 10CFR72.30, since the HI-STORM 100 System could eventually be shipped from the site.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

日本に見ていた

Table 2.4.1 MPC ACTIVATION

Nuclide	Activity After 40-Year Storage (Ci/m ³)
⁵⁴ Mn	2.20e-3
⁵⁵ Fe	3.53e-3
⁵⁹ Ni	2.91e-6
⁶⁰ Co	3.11e-4
⁶³ Ni	9.87e-5
Total	6.15e-3

HI-STORM OVERPACK ACTIVATION

Nuclide	Activity After 40-Year Storage (Ci/m ³)
·	Overpack Steel
⁵⁴ Mn	3.62e-4
⁵⁵ Fe	7.18e-3
Total	7.18e-3
C	Overpack Concrete
³⁹ Ar	3.02e-6
⁴¹ Ca	2.44e-7
⁵⁴ Mn	1.59e-7
⁵⁵ Fe	2.95e-5
Total	3.43e-5

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.4-3

2.5 <u>REGULATORY COMPLIANCE</u>

Chapter 2 provides the principal design criteria related to structures, systems, and components important to safety. These criteria include specifications regarding the fuel, as well as, external conditions that may exist in the operating environment during normal and off-normal operations, accident conditions, and natural phenomena events. The chapter has been written to provide sufficient information to allow verification of compliance with 10CFR72, NUREG-1536, and Regulatory Guide 3.61. A more detailed evaluation of the design criteria and an assessment of compliance with those criteria is provided in Chapters 3 through 13.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.6 <u>REFERENCES</u>

- [2.0.1] American Concrete Institute, "Building Code Requirements for Structural Concrete", ACI 318-95, ACI, Detroit, Michigan.
- [2.0.2] American Concrete Institute, "Code Requirements for Nuclear Safety Related Concrete Structures", ACI 349-85, ACI, Detroit, Michigan[†]

[2.0.3] Deleted.

- [2.0.4] NRC Regulatory Guide 7.10, "Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material," USNRC, Washington, D.C. Rev. 1 (1986).
- [2.0.5] J.W. McConnell, A.L. Ayers, and M.J. Tyacke, "Classification of Transportation Packaging and Dry Spent Fuel Storage System Component According to Important to Safety," Idaho Engineering Laboratory, NUREG/CR-6407, INEL-95-0551, 1996.
- [2.0.6] NUREG-1567, Standard Review Plan for Spent Fuel Dry Storage Facilities, March 2000
- [2.0.7] ASME Code, Section III, Subsection NF and Appendix F, and Code Section II, Part D, Materials, 1995, with Addenda through 1997.
- [2.0.8] "Cladding Considerations for the Transportation and Storage of Spent Fuel," USNRC Interim Staff Guidance-11, Revision 3, November 17, 2003.
- [2.0.9] USNRC Memorandum from Christopher L. Brown to M. Wayne Hodges, "Scoping Calculations for Cladding Hoop Stresses in Low Burnup Fuel," dated January 29,2004.
- [2.1.1] ORNL/TM-10902, "Physical Characteristics of GE BWR Fuel Assemblies", by R.S. Moore and K.J. Notz, Martin Marietta (1989).
- [2.1.2] U.S. DOE SRC/CNEAF/96-01, Spent Nuclear Fuel Discharges from U.S. Reactors 1994, Feb. 1996.
- [2.1.3] Deleted.
- [2.1.4] Deleted.

[†] The 1997 edition of ACI-349 is specified for ISFSI pad and embedment design for deployment of the anchored HI-STORM 100A and HI-STORM 100SA.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.6-1

[2.1.5]	NUREG-1536, SRP for Dry Cask Storage Systems, USNRC, Washington, DC, January 1997.
[2.1.6]	DOE Multi-Purpose Canister Subsystem Design Procurement. Specification.
[2.1.7]	S.E. Turner, "Uncertainty Analysis - Axial Burnup Distribution Effects," presented in "Proceedings of a Workshop on the Use of Burnup Credit in Spent Fuel Transport Casks", SAND-89-0018, Sandia National Laboratory, Oct., 1989.
[2.1.8]	Commonwealth Edison Company, Letter No. NFS-BND-95-083, Chicago, Illinois.
[2.2.1]	ASME Boiler & Pressure Vessel Code, American Society of Mechanical Engineers, 1995 with Addenda through 1997.
[2.2.2]	ASCE 7-88 (formerly ANSI A58.1), "Minimum Design Loads for Buildings and Other Structures", American Society of Civil Engineers, New York, NY, 1990.
[2.2.3]	ANSI N14.6-1993, "Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 Kg) or More", June 1993.
[2.2.4]	Holtec Report HI-2012610, "Final Safety Analysis Report for the HI-STAR 100 Cask System", NRC Docket No. 72-1008, latest revision, .
[2.2.5]	Holtec Report HI-951251, "Safety Analysis Report for the HI-STAR 100 Cask System", NRC Docket No. 71-9261, latest revision.
[2.2.6]	"Debris Collection System for Boiling Water Reactor Consolidation Equipment", EPRI Project 3100-02 and ESEERCO Project EP91-29, October 1995.
[2.2.7]	Design Basis Tornado for Nuclear Power Plants, Regulatory Guide 1.76, U.S. Nuclear Regulatory Commission, April 1974.
[2.2.8]	ANSI/ANS 57.9-1992, "Design Criteria for an Independent Spent Fuel Storage Installation (dry type)", American Nuclear Society, LaGrange Park, Illinois.
[2.2.9]	NUREG-0800, SRP 3.5.1.4, USNRC, Washington, DC.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

54

2.6-2

- [2.2.10] United States Nuclear Regulatory Commission Regulatory Guide 1.59, "Design Basis Floods for Nuclear Power Plants", August 1973 and Rev. 1, April 1976.
- [2.2.11] "Estimate of Tsunami Effect at Diablo Canyon Nuclear Generating Station, California." B.W. Wilson, PG&E (September 1985, Revision 1).
- [2.2.12] Deleted.
- [2.2.13] Deleted.
- [2.2.14] Deleted.
- [2.2.15] Deleted.
- [2.2.16] Crane Manufacturer's Association of America (CMAA), Specification #70, 1988, Section 3.3.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.6-3

APPENDIX 2.A

GENERAL DESIGN AND CONSTRUCTION REQUIREMENTS FOR THE ISFSI PAD FOR HI-STORM 100A

2.A.1 General Comments

As stated in Section 2.0.4, an ISFSI slab that anchors a spent fuel storage cask should be classified as "important to safety." This classification of the slab follows from the provisions of 10CFR72, which require that the cask system retain its capacity to store spent nuclear fuel in a safe configuration subsequent to a seismic or other environmental event. Since the slab for anchored HI-STORM deployment is designated as ITS, the licensee is required to determine whether the reactor site parameters, including earthquake intensity and large missiles, are enveloped by the cask design bases. The intent of the regulatory criteria is to ensure that the slab meets all interface requirements of the cask design and the geotechnical characteristics of the ISFSI site.

This appendix provides general requirements for design and construction of the ISFSI concrete pad as an ITS structure, and also establishes the framework for ensuring that the ISFSI design bases are clearly articulated. The detailed design of the ISFSI pad for anchored HI-STORM deployment shall comply with the technical provisions set forth in this appendix.

2.A.2 General Requirements for ISFSI Pad

- 1. Consistent with the provisions of NUREG-1567 [2.0.6], all concrete work shall comply with the requirements of ACI-349-97 [2.0.2].
- 2. All reinforcing steel shall be manufactured from high strength billet steel conforming to ASTM designation A615 Grade 60.
- 3. The ISFSI owner shall develop appropriate mixing, pouring, reinforcing steel placement, curing, testing, and documentation procedures to ensure that all provisions of ACI 349-97 [2.0.2] are met.
 - The placement, depth, and design and construction of the slab shall take into account the depth of the frost line at the ISFSI location. The casks transmit a very small amount of heat into the cask pad through conduction. The American Concrete Institute guidelines on reinforced concrete design of ground level slabs to minimize thermal and shrinkage induced cracking shall be followed.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM	FSAR

4.

REPORT HI-2002444

2A-1

- 5. General Requirements for Steel Embedment: The steel embedment, excluding the pretensioned anchorage studs, is required to follow the provisions stipulated in ACI 349-97 [2.0.2], Appendix B "Steel Embedment" and the associated Commentary on Appendix B, as applicable. Later editions of this Code may be used provided a written reconciliation is performed. An example of one acceptable embedment configuration is provided in Figure 2.A.1. Site-specific embedment designs may vary from this example, depending on the geotechnical characteristics of the site-specific foundation. The embedment designer shall consider any current, relevant test data in designing the pad embedment for HI-STORM 100A and HI-STORM 100SA.
 - The ISFSI owner shall ensure that pad design analyses, using interface loads provided in this report, demonstrate that all structural requirements of NUREG-1567 and ACI-349-97 are satisfied.
 - Unless the load handling device is designed in accordance with ANSI N14.6 and incorporates redundant drop protection features, the ISFSI owner shall ensure that a permissible cask carry height is computed for the site-specific pad/foundation configuration such that the design basis deceleration set forth in this FSAR are not exceeded in the event of a handling accident involving a vertical drop.
 - The ISFSI owner shall ensure that the pad/foundation configuration provides sufficient safety margins for overall kinematic stability of the cask/pad/foundation assemblage.
 - The ISFSI owner shall ensure that the site-specific seismic inputs, established at the top surface of the ISFSI pad, are bounded by the seismic inputs used as the design basis for the attachment components. If required, the ISFSI owner shall perform additional analyses to ensure that the site-specific seismic event or durations greater than the design basis event duration analyzed in this report, do not produce a system response leading to structural safety factors (defined as allowable stress (load) divided by calculated stress (load)) less than 1.0. Table 2.0.5 and Table 2.2.8 provide the limiting values of ZPAs in the three orthogonal directions that must not be exceeded at an ISFSI site (on the pad top surface) to comply with the general CoC for the HI-STORM 100A (and 100SA) System.

An ISFSI pad used to support anchored HI-STORM overpacks, unlike the case of free standing overpacks, may experience tensile (vertically upward) anchorage forces in addition to compression loads. The reinforcing steel (pattern and quantity) must be selected to meet the demands of the anchorage forces under seismic and other environmental conditions that involve destabilizing loadings (such as the large tornado missile defined in this FSAR).

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR

6.

7:

8.

9.

10.

2A-2

2.A.3 <u>Steel Embedment for Anchored Casks</u>

Figure 2.A.1 shows a typical fastening arrangement for the HI-STORM 100A System. The details of the rebars in the pad (which are influenced by the geotechnical characteristics of the foundation and its connection to the underlying continuum) are not shown in Figure 2.A.1. Representative dimensions of the embedment and anchorage system are provided in Table 2.A.1.

The embedment detail illustrated in Figure 2.A.1 is designed to resist a load equal to the ASME Code, Section III Appendix F Level D load capacity of the cask anchor studs. The figure does not show the additional reinforcement required to ensure that tensile cracking of concrete is inhibited (see Figure B-4 in the Commentary ACI-349R-97) as this depends on the depth chosen for the ITS ISFSI pad concrete. The ACI Code contemplates ductile failure of the embedment steel and requires that the ultimate load capacity of the steel embedment be less than the limit pullout strength of the concrete surrounding the embedment that resists the load transferred from the cask anchor stud. If this criterion cannot be assured, then additional reinforcement must be added to inhibit concrete cracking (per Subsection B.4.4 of Appendix B of ACI-349-97).

The anchor stud receptacle described in Figure 2.A.1 is configured so that the cask anchor studs (which interface with the overpack baseplate as well as the pad embedment per Table 2.0.5 and are designed in accordance with ASME Section III, Subsection NF stress limits), sits flush with the ISFSI top surface while the cask is being positioned. Thus, a translocation device such as an "air pad" (that requires a flat surface) can be used to position the HI-STORM overpack at the designated location. Subsequent to positioning of the cask, the cask anchor stud is raised, the anchor stud nut installed, and the anchor stud preload applied. The transfer of load from the cask anchor stud to the embedment is through the bearing surface of the lower head of the cask anchor stud and the upper part of the anchor stud receptacle shown in the figure. The members of the anchoring system illustrated in Figure 2.A.1, as well as other geometries developed by the ISFSI designer, must meet the following criteria:

The weakest structural link in the system shall be in the ductile member. In other words, the tension capacity of the anchor stud/anchor receptacle group (based on the material ultimate strengths) shall be less than the concrete pull-out strength (computed with due recognition of the rebars installed in the pad).

The maximum ratio of embedment plus cask anchor stud effective tensile stiffness to the effective compressive stiffness of the embedment plus concrete shall not exceed 0.25 in order to ensure the effectiveness of the pre-load.

iii. The maximum axial stress in the cask anchor studs under normal and seismic conditions shall be governed by the provisions of ASME Section III Subsection NF (1995).

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR

ii.

REPORT HI-2002444

iv. The load-bearing members of the HI-STORM 100A anchorage system shall be considered important-to-safety. This includes the following components shown in Figure 2.A.1: anchor stud and nut, top ring, upper collar, anchor receptacle, and anchor ring.

For sites with lower ZPA DBE events, compared to the limiting ZPAs set down in this FSAR, the size of the anchor studs and their number can be appropriately reduced. However, the above three criteria must be satisfied in all cases.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR

REPORT HI-2002444

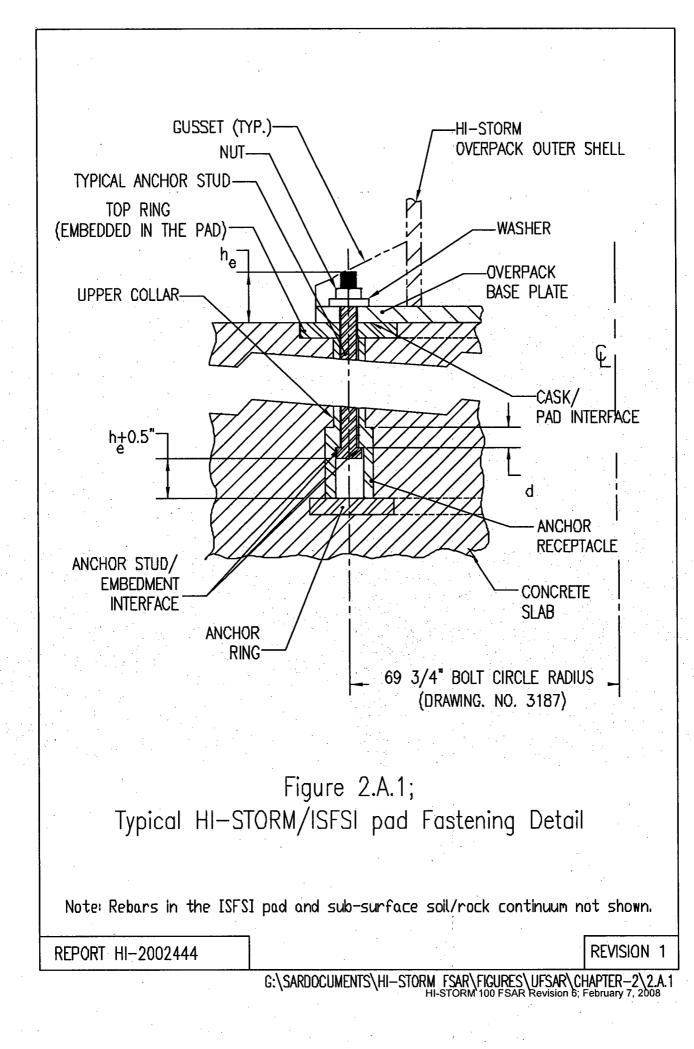
Rev. 2

HI-STORM 100 FSAR Revision 6; February 7, 2008

Table 2.A.1

Typical Embedment and Anchoring Data*

Nominal diameter of the anchor stud, (inch)	2		
Thickness of the embedment ring, (inch)	2		
I.D. of the embedment ring, (inch)	130		
Anchor receptacle:			
Upper Position O.D. and I.D. (inch)	O.D.: 2.5 / I.D.: 2.125 (min.)		
Lower portion O.D. and I.D. (inch)	O.D.: 4.875 / I.D.: 3.625 (min.)		
Depth of anchor receptacle collar, d, (inch)	2.5		
Free fall height of the anchor stud, he,(inch)	8		
Representative Materials of Construction a	are as follows: [†]		
Anchor Studs:	Per Table 2.0.4		
Anchor Receptacle:	Low carbon steel such as A-36, A-105		
Top Ring, Upper Collar, Anchor Ring:	Low carbon steel such as A-36, SA-516-Gr. 70		


* Refer to Figure 2.A.1

[†] The ISFSI designer shall ensure that all permanently affixed embedment parts (such as the anchor receptacle) made from materials vulnerable to deleterious environmental effects (e.g. low carbon steel) are protected through the use of suitably engineered corrosion barrier. Alternatively, the selected material of construction must be innately capable of withstanding the long term environmental conditions at the ISFSI site.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR

REPORT HI-2002444

Appendix 2.B The Forced Helium Dehydration (FHD) System

2.B.1 System Overview

The Forced Helium Dehydration (FHD) system is used to remove the remaining moisture in the MPC cavity after all of the water that can practically be removed through the drain line using a hydraulic pump or an inert gas has been expelled in the water blowdown operation. The FHD system is required to be used for MPCs containing at least one high burnup fuel assembly. The FHD method of moisture removal is optional for all other MPCs.

Expelling the water from the MPC using a conventional pump or a water displacement method using inert gas would remove practically all of the contained water except for the small quantity remaining on the MPC baseplate below the bottom of the drain line and an even smaller adherent amount wetting the internal surfaces. A skid-mounted, closed loop dehydration system will be used to remove the residual water from the MPC such that the partial pressure of the trace quantity of water vapor in the MPC cavity gas is brought down to ≤ 3 torr. The FHD system, engineered for this purpose, shall utilize helium gas as the working substance.

The FHD system, schematically illustrated in Figure 2.B.1, can be viewed as an assemblage of four thermal modules, namely, (i) the condensing module, (ii) the demoisturizer module, (iii) the helium circulator module and (iv) the pre-heater module. The condensing module serves to cool the helium/vapor mixture exiting the MPC to a temperature well below its dew point such that water may be extracted from the helium stream. The condensing module is equipped with suitable instrumentation to provide a direct assessment of the extent of condensation that takes place in the module during the operation of the FHD system. The demoisturizer module, engineered to receive partially cooled helium exiting the condensing module, progressively chills the recirculating helium gas to a temperature that is well below the temperature corresponding to the partial pressure of water vapor at 3 torr.

The motive energy to circulate helium is provided by the helium circulator module, which is sized to provide the pressure rise necessary to circulate helium at the requisite rate. The last item, labeled the pre-heater module, serves to pre-heat the flowing helium to the desired temperature such that it is sufficiently warm to boil off any water present in the MPC cavity.

The pre-heater module, in essence, serves to add supplemental heat energy to the helium gas (in addition to the heat generated by the stored SNF in the MPC) so as to facilitate rapid conversion of water into vapor form. The heat input from the pre-heater module can be adjusted in the manner of a conventional electric heater so that the recirculating helium entering the MPC is sufficiently dry and hot to evaporate water, but not unduly hot to place unnecessary thermal burden on the condensing module.

The FHD system described in the foregoing performs its intended function by continuously removing water entrained in the MPC through successive cooling, moisture removal and reheating of the working substance in a closed loop. In a classical system of the FHD genre, the moisture removal operation occurs in two discrete phases. In the beginning of the FHD system's

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR HI-2002444

2.B-1

operation (Phase 1), the helium exiting the MPC is laden with water vapor produced by boiling of the entrained bulk water. The condensing module serves as the principal device to condense out the water vapor from the helium stream in Phase 1. Phase 1 ends when all of the bulk water in the MPC cavity is vaporized. At this point, the operation of the FHD system moves on to steadily lowering the relative humidity and bulk temperature of the circulating helium gas (Phase 2). The demoisturizer module, equipped with the facility to chill flowing helium, plays the principal role in the dehydration process in Phase 2.

2.B.2 Design Criteria

i.

iii.

iv.

i.

ii.

The design criteria set forth below are intended to ensure that design and operation of the FHD system will drive the partial pressure of the residual vapor in the MPC cavity to ≤ 3 torr if the gas has met the specified temperature or dew point value and duration criteria. The FHD system shall be designed to ensure that during normal operation (i.e., excluding startup and shutdown ramps) the following criteria are met:

The temperature of helium gas in the MPC shall be at least 15°F higher than the saturation temperature at coincident pressure.

ii. The pressure in the MPC cavity space shall be less than or equal to 60.3 psig (75 psia).

The recirculation rate of helium shall be sufficiently high (minimum hourly throughput equal to ten times the nominal helium mass backfilled into the MPC for fuel storage operations) so as to produce a turbulated flow regime in the MPC cavity.

The partial pressure of the water vapor in the MPC cavity will not exceed 3 torr. The limit will be met if the gas temperature at the demoisturizer outlet is verified by measurement to remain $\leq 21^{\circ}$ F for ≥ 30 minutes or if the dew point of the gas exiting the MPC is verified by measurement to remain $< 22.9^{\circ}$ F for > 30 minutes.

In addition to the above system design criteria, the individual modules shall be designed in accordance with the following criteria:

The condensing module shall be designed to de-vaporize the recirculating helium gas to a dew point of 120°F or less.

- The demoisturizer module shall be configured to be introduced into its helium conditioning function <u>after</u> the condensing module has been operated for the required length of time to assure that the bulk moisture vaporization in the MPC (defined as Phase 1 in Section 2.B.1) has been completed.
- iii. The helium circulator shall be sized to effect the minimum flow rate of circulation required by the system design criteria described above.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR HI-2002444 iv. The pre-heater module shall be engineered to ensure that the temperature of the helium gas in the MPC meets the system design criteria described above.

2.B.3 Analysis Requirements

i.

ii.

The design of the FHD system shall be subject to the confirmatory analyses listed below to ensure that the system will accomplish the performance objectives set forth in this FSAR.

- System thermal analysis in Phase 1: Characterize the rate of condensation in the condensing module and helium temperature variation under Phase 1 operation (i.e., the scenario where there is some unevaporated water in the MPC) using a classical thermal-hydraulic model wherein the incoming helium is assumed to fully mix with the moist helium inside the MPC.
 - System thermal analysis in Phase 2: Characterize the thermal performance of the closed loop system in Phase 2 (no unvaporized moisture in the MPC) to predict the rate of condensation and temperature of the helium gas exiting the condensing and the demoisturizer modules. Establish that the system design is capable to ensure that partial pressure of water vapor in the MPC will reach \leq 3 torr if the temperature of the helium gas exiting the demoisturizer is predicted to be at a maximum of 21°F for 30 minutes.
- iii. Fuel Cladding Temperature Analysis: A steady-state thermal analysis of the MPC under the forced helium flow scenario shall be performed using the methodology described in HI-STORM 100 FSAR Subsections 4.4.1.1.1 through 4.4.1.1.4 with due recognition of the forced convection process during FHD system operation. This analysis shall demonstrate that the peak temperature of the fuel cladding under the most adverse condition of FHD system operation (design maximum heat load, no moisture, and maximum helium inlet temperature), is below the peak cladding temperature limit for normal conditions of storage for the applicable fuel type (PWR or BWR) and cooling time at the start of dry storage.

2.B.4 Acceptance Testing

The first FHD system designed and built for the MPC drying function required by HI-STORM's technical specifications shall be subject to confirmatory testing as follows:

- a. A representative quantity of water shall be placed in a manufactured MPC (or equivalent mock-up) and the closure lid and RVOAs installed and secured to create a hermetically sealed container.
- b. The MPC cavity drying test shall be conducted for the worst case scenario (no heat generation within the MPC available to vaporize water).

HOLTEC INTERNATIONAL COPYRIGHTED MATERIA	L
--	---

HI-STORM FSAR HI-2002444

- c. The drain and vent line RVOAs on the MPC lid shall be connected to the terminals located in the pre-heater and condensing modules of the FHD system.
- d. The FHD system shall be operated through the moisture vaporization (Phase 1) and subsequent dehydration (Phase 2). The FHD system operation will be stopped after the temperature of helium exiting the demoisturizer module has been at or below 21°F for thirty minutes (nominal). Thereafter, a sample of the helium gas from the MPC will be extracted and tested to determine the partial pressure of the residual water vapor in it. The FHD system will be deemed to have passed the acceptance testing if the partial pressure in the extracted helium sample is less than or equal to 3 torr.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

2.B-4

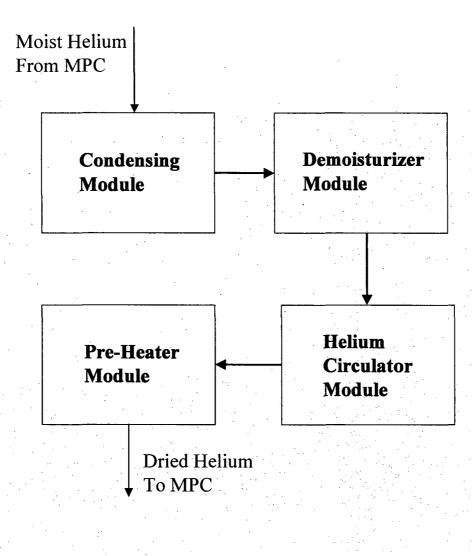


FIGURE 2.B.1: SCHEMATIC OF THE FORCED HELIUM DEHYDRATION SYSTEM

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR HI-2002444

Appendix 2.C

The Supplemental Cooling System

2.C.1 Purpose

The Supplemental Cooling System (SCS) will be utilized, as necessary, to maintain the peak fuel cladding temperature below the limit set forth in Chapter 2 of the FSAR during normal short-term operations (as defined in Section 2.2).

2.C.2 General Description and Requirements

The SCS is a water circulation system for cooling the MPC inside the HI-TRAC transfer cask during on-site transport. The system consists of a skid-mounted coolant pump and an air-cooled heat exchanger. During normal SCS operation, heat is removed by water from the HI-TRAC annulus and rejected to the heat sink (ambient air) across the air cooler heat exchange surfaces. The SCS shall be designed to meet the following criteria:

- (i) The pump is sized to limit the coolant temperature rise (from annulus inlet to outlet) to a reasonably low value (20°F) and the air-cooled heat exchanger sized for the design basis heat load at an ambient air temperature of 100°F. The pump and air-cooler fan are powered by electric motors with a backup power supply for uninterrupted operation.
- (ii) The closed loop cooling circuit will utilize a contamination-free fluid medium in contact with the external surfaces of the MPC and inside surfaces of the HI -TRAC transfer cask to minimize corrosion. Figure 2.C.1 shows a typical P&ID for a SCS.
- (iii) The number of active components in the SCS will be minimized.
- (iv) All passive components such as tubular heat exchangers, manually operated valves and fittings shall be designed to applicable standards (TEMA, ANSI).
- 2.C.3 Thermal/Hydraulic Design Criteria
 - (i) The heat dissipation capacity of the SCS shall be equal to or greater than the minimum necessary to ensure that the peak cladding temperature is below the ISG-11, Rev. 3 limit of 400°C (752°F). All heat transfer surfaces in heat exchangers shall be assumed to be fouled to the maximum limits specified in a widely used heat exchange equipment standard such as the Standards of Tubular Exchanger Manufacturers Association.
 - (ii) The coolant utilized to extract heat from the MPC shall be high purity water. Antifreeze may be used to prevent water from freezing if warranted by operating conditions.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR HI-2002444

2.C-1 .

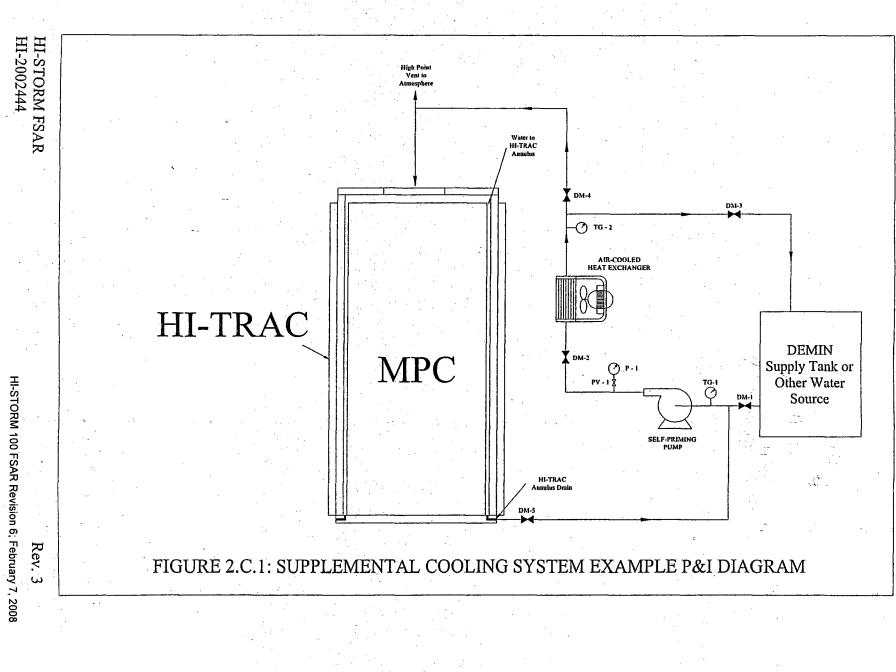
2.C.4 Mechanical Requirements

- (i) All pressure boundaries (as defined in the ASME Boiler and Pressure Vessel Code, Section VIII Division 1) shall have pressure ratings that are greater than the maximum system operating pressure by at least 15 psi.
- (ii) All ASME Code components shall comply with Section VIII Division 1 of the ASME Boiler and Pressure Vessel Code.

(iii) Prohibited Materials

The following materials will not be in contact with the system coolant in the SCS.

- Lead
- Mercury
- Sulfur
- Saran
- Silastic L8-53
- Cadmium
- Tin
- Antimony
- Bismuth
- Mischmetal
- Neoprene or similar gasket materials made of halogen containing elastomers
- Phosphorus
- Zinc
- Copper and Copper Alloys
- Rubber-bonded asbestos
- Nylon
- Magnesium oxide (e.g., insulation)
- Materials that contain halogens in amounts exceeding 75 ppm
- (iv) All gasketed and packed joints shall have a minimum design pressure rating of the pump shut-off pressure plus 15 psi.
- (v) The SCS skid shall be equipped with appropriate lifting lugs to permit its handling by the plant's lifting devices in full compliance with NUREG-0612 provisions.


2.C.5 Regulatory Requirements

The SCS is classified as Important-to-Safety Category B.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR HI-2002444

2.C-2

SUPPLEMENT 2.I

(This Section Reserved for Future Use)

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.I-1

SUPPLEMENT 2.II

PRINCIPAL DESIGN CRITERIA FOR THE HI-STORM 100 SYSTEM FOR IP1

2.II.0 OVERVIEW OF THE PRINCIPAL DESIGN CRITERIA

<u>General</u>

A description of the HI-STORM 100 System as expanded for Indian Point Unit 1 (IP1) is provided in Supplement 1.II. The design criteria presented in Section 2.0 for all components are applicable to the HI-STORM 100 System at IP1 unless otherwise noted below. Drawings of the components shortened for IP1 (HI-STORM 100S Version B, MPC-32, and HI-TRAC 100D Version IP1) are provided in Section 1.5.

Thermal

The MPC-32 for IP1 is designed for a bounding uniformly distributed thermal source term. Regionalized fuel loading is not considered in the MPC-32 for IP1.

Shielding

The HI-TRAC 100D Version IP1 transfer cask provides shielding to maintain occupational exposures ALARA in accordance with 10CFR20, while also maintaining the maximum load on the plant's crane hook to below 75 tons.

2.II.1 SPENT FUEL TO BE STORED

IP1 fuel is authorized for loading into the IP1 MPC-32 as outlined in this supplement. The requirements in this supplement supersede the requirements in Chapter 2 for the MPC-32 for array/class 14x14E. Requirements from Chapter 2 that are not superseded in this supplement remain in effect.

Table 2.1.3 in Chapter 2 provides the acceptable fuel characteristics for the IP1 fuel assemblies, array/class 14x14E, for storage in the HI-STORM 100 System.

2.II.1.1 Intact SNF, Damaged SNF, and Fuel Debris Specifications

Fuel debris from Indian Point Unit 1 is not authorized for storage in the IP1 MPC-32 or IP1 MPC-32F. Section 2.II.1.4 specifies the acceptable limits for IP1 fuel assemblies to be stored in the IP1 MPC-32 or MPC-32F.

In order to simplify the fuel selection and fuel placement in an MPC-32 or MPC-32F at IP1, all IP1 fuel assemblies are required to be stored in a damaged fuel container (DFC). Figure 2.II.1 describes the Holtec designed damaged fuel container for IP1 fuel.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.II-1

Since the MPC-32 and MPC-32F for IP1 have been shortened, fuel spacers will not be necessary inside the MPC.

2.II.1.2 Radiological Parameters for Design Basis SNF

Indian Point Unit 1 used Antimony-Beryllium as a secondary source during reactor operations. These secondary source devices were installed in the fuel assemblies and replaced a single fuel rod. Supplement 5.II discusses the acceptability of storing these devices.

2.II.1.3 Criticality Parameters for Design Basis SNF

The minimum ¹⁰B areal density in the neutron absorber panels for each MPC model is shown in Table 2.1.15 in Chapter 2.

The criticality analyses for the IP1 specific MPC-32 and MPC-32F were performed without credit for soluble boron in the MPC water during wet loading and unloading operations. Therefore the required soluble boron level in the IP1 MPC-32 or MPC-32F water is 0 ppmb.

2.II.1.4 Summary of Authorized Contents

Table 2.II.1 specifies the limits for Indian Point Unit 1 fuel, array/class 14x14E, for storage in the IP1 MPC-32 and MPC-32F. The limits in these tables are derived from the safety analyses described in the following chapters and supplements of this FSAR. All IP1 fuel assemblies classified as intact or damaged must be stored in damaged fuel containers for storage in the IP1 MPC-32 and IP1 MPC-32F. Indian Point Unit 1 fuel debris is not permitted for storage in these MPCs.

2.II.2 HI-STORM 100 DESIGN CRITERIA

2.II.2.1 <u>Handling Accident</u>

A loaded HI-STORM 100S Version B overpack containing Indian Point Unit 1 fuel will be lifted so that the bottom of the cask is at a height less than the vertical lift limit (see Table 2.II.2) above the ground. The use of lifting devices designed in accordance with ANSI N14.6 having redundant drop protection features to lift the loaded overpack will eliminate the lift height limit. The lift height limit is dependent on the characteristics of the impacting surface, which are specified in Table 2.2.9 in Chapter 2. For site-specific conditions, which are not encompassed by Table 2.2.9, the licensee shall evaluate the site-specific conditions to ensure that the drop accident loads do not exceed 45 g's. Even if the site specific drop height which ensures that the drop accident loads do not exceed 45 g's. The methodology used in this alternative analysis shall be commensurate with the analyses in Appendix 3.A and shall be reviewed by the Certificate Holder.

The loaded HI-TRAC 100D Version IP1, when lifted in the vertical position outside of the Part 50

HOL	TEC INTERNA	TIONAL COPYR	IGHTED MATERI	AL	
HI-STORM FSAR	· .			•	Rev. 6
REPORT HI-2002444		2.11-2			
		•			

HI-STORM 100 FSAR Revision 6; February 7, 2008

facility shall be lifted with devices designed in accordance with ANSI N14.6 and having redundant drop protection features unless a site-specific analysis has been performed to determine a vertical lift height limit. Horizontal lifting of a loaded HI-TRAC 100D Version IP1 is not permitted.

2.II.3 SAFETY PROTECTION SYSTEMS

Same as in Section 2.3.

2.II.4 DECOMMISSIONING CONSIDERATIONS

Same as in Section 2.4.

2.II.5 REGULATORY COMPLIANCE

Same as in Section 2.5.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.II-3

Table 2.II.1

PARAMETER	VALUE		
Fuel Type	Uranium oxide, PWR intact and damaged fuel assemblies meeting the limits in Table 2.1.3 for the array/class 14x14E		
Cladding Type	Stainless Steel (SS)		
Maximum Initial Enrichment per Assembly	As specified in Table 2.1.3 for the array/class 14x14E		
Post-irradiation Cooling Time and Average Burnup per Assembly	\geq 30 years and \leq 30,000 MWD/MTU		
Decay Heat Per Fuel Storage Location	≤250 Watts		
Other Limits	 Quantity is limited to up to 32 PWR intact fuel assemblies and/or damaged fuel assemblies. Both intact and damaged fuel assemblies must be stored in a damaged fuel container. Fuel debris is not permitted for storage in IP1 MPC-32 or IP1 MPC-32F. Each fuel assembly may contain a single Antimony-Beryllium secondary source that replaces a fuel rod. 		

LIMITS FOR MATERIAL TO BE STORED IN IP1 MPC-32 OR IP1 MPC-32F

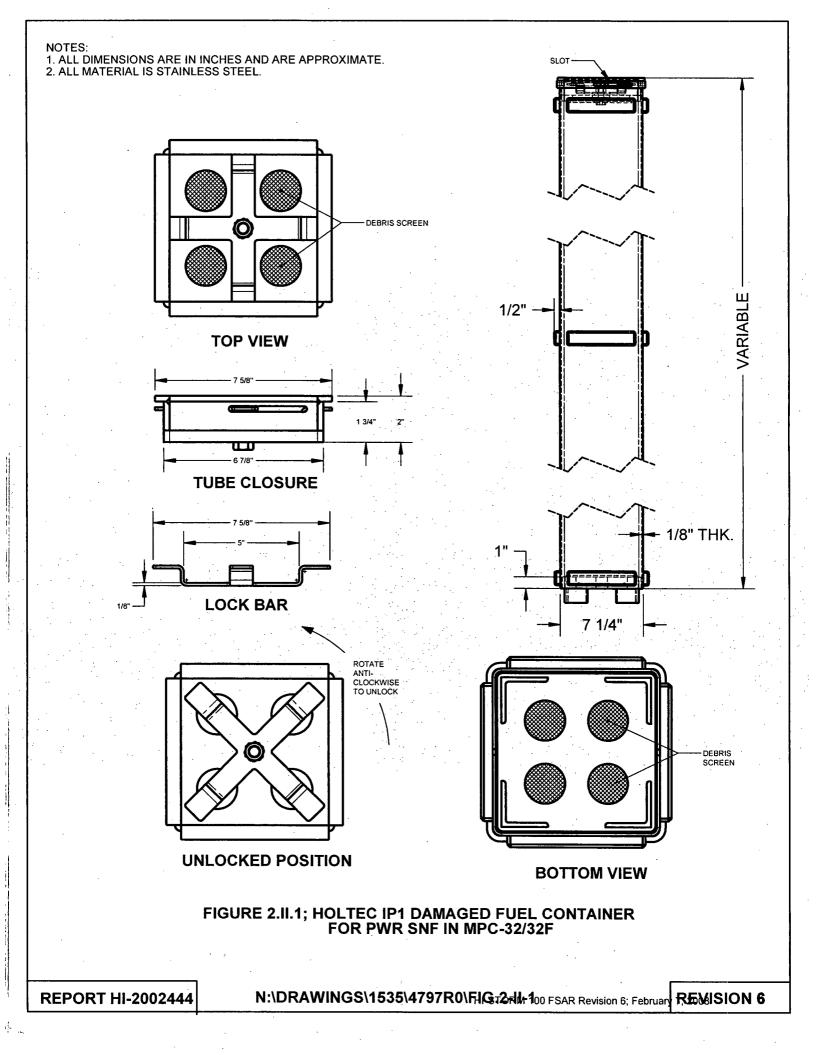
HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.II-4

Table 2.II.2

ItemConditionValueVertical Lift Height Limit for a HI-STORM 100S
Version B Overpack Loaded With Indian Point
Unit 1 Fuel (in.)Accident8†HI-TRAC 100D Version IP1 Transfer Cask
Horizontal Lift Height Limit (in.)AccidentNot permitted


ADDITIONAL DESIGN INPUT DATA FOR ACCIDENT CONDITIONS

[†] For ISFSI and subgrade design parameter Sets A and B specified in Table 2.2.9 of Chapter 2. Users may also develop a site-specific lift height limit.

HOLTEC INTERNATIONAL COPYRIGHTED MATERIAL

HI-STORM FSAR REPORT HI-2002444

2.II-5

