Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:

Advisory Committee on Reactor Safeguards

ESBWR Subcomittee

Docket Number:

(n/a)

Process Using ADAMS Template ACRS/ACNW-005

SUNSI Review Complete CEST

2-12-08

Location:

Rockville, Maryland

Date:

Thursday, January 17, 2008

ACRS OFFICE COPY

TO NOT BENOVE FROM ACRS OFFICE

Work Order No.:

NRC-1972

Pages 1-316

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

TRO4

DISCLAIMER

UNITED STATES NUCLEAR REGULATORY COMMISSION'S ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

January 17, 2008

The contents of this transcript of the proceeding of the United States Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards, taken on January 17, 2008, as reported herein, is a record of the discussions recorded at the meeting held on the above date.

This transcript has not been reviewed, corrected and edited and it may contain inaccuracies.

1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	MEETING
6	+ + + +
7	ESBWR SUBCOMMITTEE
8	+ + + +
9	THURSDAY,
10	JANUARY 17, 2008
11	+ + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	The Subcommittee met at the Nuclear
15	Regulatory Commission, Two White Flint North,
16	Room T2B3, 11545 Rockville Pike, at 8:30 a.m., Michael
17	Corradini, Chairman, presiding.
18	MEMBERS PRESENT:
19	MICHAEL CORRADINI Chairman
20.	SAID ABDEL-KHALIK Member
21	WILLIAM J. SHACK Member
22	J. SAM ARMIJO Member
23	SANJOY BANERJEE Member
24	DENNIS C. BLEY Member
25	THOMAS S. KRESS Member

1	MEMBERS PRESENT: (cont	.'d)	
2	JOHN D. SIEBER	Member	
3	ROBERT E. UHRIG	Member	
4	GRAHAM B. WALLIS,	Consultant	
5	GARY HAMMER, Desi	gnated Federal Official	
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

- 1	

TABLE OF CONTENTS

2		PAGE
3	Opening Remarks	4
4	DCD Chapter 15, "Transient and Accident	
5	Analysis"	5
6	SER with Open Items for Chapter 15	103
7	DCD Chapter 21, "Testing and Computer	196
8	Code Evaluation"	
9	SER with Open Items for Chapter 21	221
10		
11		
12		
13		
14	-	
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

1 P-R-O-C-E-E-D-I-N-G-S 2 (8:29 a.m.)3 So let us begin. CHAIRMAN CORRADINI: 4 will read a similar introduction, just in case we have 5 new people in the audience. So, again, this is the second day of a 6 7 meeting on the ESBWR Subcommittee. My name is Mike 8 Corradini, Chair of the Subcommittee. 9 Again, today we have other members in 10 attendance, Said Abdel-Khalik, Sam Armijo, Sanjoy 11 Banerjee, Otto Maynard, Bill Shack, Jack Sieber, and 12 we expect Dennis Bley. Graham Wallis and Tom Kress 13 are also attending as consultants to the Subcommittee. 14 Gary Hammer is the ACRS staff -- is the Designated 15 Federal Official for this meeting. 16 The purpose of the meeting, again, is to 17 review and discuss the Safety Evaluation Report with 18 open items for several chapters of the ESBWR design 19 certification. We will hear additional presentations 20 from the NRC's Office of New Reactors and GE-Hitachi 21 Nuclear Energy Americas, LLC. 22 The Subcommittee will gather information, 23 analyze relevant issues and facts, and formulate

proposed positions and actions as appropriate for deliberation by the full Committee.

24

25

The rules for participation -- again, let 1 2 me review -- have been announced as part of the notice 3 of the meeting, previously published in the Federal 4 Register. Portions of this meeting may be closed for 5 discussion of unclassified safeguards and propriety I will just say that if this is the 6 information. 7 case, I'd like GE or the staff to remind us, so we 8 don't accidentally stray down that path before we have 9 to back up, so we can check that. We have received no written comments or 10 .11 requests for time to make oral statements from members of the public regarding today's meeting. A transcript 12 13 of the meeting is being kept and will be made available as stated in the Federal Register notice. 14 15 Therefore, we request that participants in the meeting 16 use the microphones located throughout the meeting 17 room when addressing the Committee. The participants should first identify themselves and speak with 18 19 sufficient clarity and volume so that they may be 20 heard. 21 So we will proceed with the meeting, and 22 I guess, Dr. White, you'll start us off? 23 DR. WHITE: Yes. Good morning. CHAIRMAN CORRADINI: Good morning. 24 25 DR. WHITE: Thank you for having us.

1 Today we are going to begin a presentation 2 Chapter 15, the safety analysis. We will be 3 discussing the event classification development, the 4 criteria used, the types of events that we have 5 classified. 6 We're going to go into AOOs, of course, 7 design-based accidents. We'll talk about radiological 8 consequences of design-based accidents, and my 9 colleagues contributing today -- Wayne Marquino, Craig 10 Goodson, Dr. Pradip Saha, Dr. M.D. Alamgir, and Mr. Erik Kirstein. And I'm going to turn the floor over 11 to Mr. Marquino. 12 13 MR. MARQUINO: Now, I think we had a 14 request to go over one of Dr. Saha's slides. 15 MEMBER ABDEL-KHALIK: Right. Because 16 reading the staff's slide, they indicated that the Chapter 15 review significantly -- was significantly 17 affected by GEH's new proposed reactor power control 18 19 by varying the feedwater temperature. So I have a 20 couple of questions on the feedwater temperature 21 operating domain map that was presented yesterday --22 this particular figure, right. 23 Now, the line going from point C to 24 point A; at which burnup is that line? MR. MARQUINO: That was, I believe in end 25

of cycle burnup. So that's the maximum range. At some point in the cycle, the same temperature change might result in a smaller power change.

MEMBER ABDEL-KHALIK: Okay. Do you mean that? So at the beginning -- okay. You may have it backward, I think. So this is end of cycle. So what would be the feedwater temperature required at the beginning of cycle at 85 percent power to get you to the nominal 100 percent power condition?

MR. MARQUINO: Before I answer that, let me say that this map is -- limits the temperature change to a 486 increase, so there may be some points in the cycle where the operator effects a 486 temperature increase, and the power only drops eight percent.

MEMBER ABDEL-KHALIK: But that's what I'm getting at. This is sort of just a simple reactivity balance. You are balancing the power defect against -- in going from 85 percent to 100 percent against the positive reactivity that you get from the decreased void, as you decrease the feedwater temperature. So the that where you start up and where you end up depends on what your moderator void coefficient is and what your Doppler power defect is.

And the question is: how do these things

1	change with burnup in this particular reactor?
2	DR. SAHA: Wayne?
3	MR. MARQUINO: Yes.
4	DR. SAHA: May I interject? May I
5	clarify? This is Pradip Saha from GE-Hitachi Nuclear
6	Energy. Okay. Just for clarification, this is a
7	generalized operating domain that we are proposing for
8	ESBWR. So it really is not tied with any particular
9	exposure level. It is applicable this map is
10	basically applicable throughout a cycle.
11	Now, particular values of, say, DELCPR by
12	ICPR, which is kind of fractional change in the CPR,
13	may vary slightly with the cycle. But operation-wise,
14	the reactor may be operated, depending on the need, on
15	this line any time there is a need for.
16	MEMBER ABDEL-KHALIK: Okay. The question
17	I'm asking is: if I were to start at point A
18	DR. SAHA: Well, yes. For assuming
19	that you have reached point A with proper fuel
20	conditioning.
21	MEMBER ABDEL-KHALIK: Right.
22	DR. SAHA: Yes.
23	MEMBER ABDEL-KHALIK: And you're telling
24	me this is at the end of cycle.
25	DR. SAHA: Not necessarily. That is what

1	I am trying to clarify. This can happen, say, just
2	you have started up the reactor, and then there is a
3	reason to lower power without moving the control rod.
4	It could be the next exchange I mean, control rod
5	sequence exchange after three months.
6	MEMBER ABDEL-KHALIK: My question is
7	really a lot simpler than all of that.
8	DR. SAHA: Oh, okay.
9	MEMBER ABDEL-KHALIK: Okay? You have a
LO	66-degree temperature limit on feedwater, and you're
L1	saying that that gives you a 15 percent change in
L2	power.
L3	DR. SAHA: That is correct, yes.
L4	MEMBER ABDEL-KHALIK: Okay? Now, are you
.5	telling me this is at the end of cycle or
6	MR. MARQUINO: I don't think they're
L7	saying that.
L8	DR. SAHA: I'm not saying that's what
۱9	I want to clarify.
20	MR. MARQUINO: Let me the original
21	calculations that we ran with TRAC to determine what
22	temperature range we were going to use, I think we're
23	at with an end of cycle wrap-up file conditions.
24	DR. SAHA: Maybe we should go back and
25	see, because if I remember most of the calculation was

1	done at MOC, middle of cycle.
2	MR. MARQUINO: Okay. So you think they
3	were MOC?
4	DR. SAHA: I think so, in the in the
5	NEDO-33338, I think I remember it MOC.
6	MR. MARQUINO: And we did a range of
7	exposures in the 338
8	DR. SAHA: Yes. And also
9	MR. MARQUINO: transient analysis.
10	DR. SAHA: from our previous
11	exploration, which is in the DCD, for certain
12	transient we know that MOC is the worst case, or UOC
13	is the worst case. So you use that knowledge also.
14	MEMBER ABDEL-KHALIK: What I'm trying to
15	find out is: what is the range of delta P
16	MR. MARQUINO: Let us get back to you on
17	exactly what exposure point corresponds to the
18	MEMBER ABDEL-KHALIK: The 66
19	MR. MARQUINO: percent power change.
20	But as you point out, the value will be different at
21	different stay points from a 486
22	MEMBER ABDEL-KHALIK: Right.
23	MR. MARQUINO: temperature change.
24	MEMBER MAYNARD: I would assume at
25	whatever it comes out to be that you would end up with

1	limit on temperature and power that would be a part of
2	your operating and maybe tech specs or whatever, such
3	that your safety analysis takes the worst case points
4	into account.
5	MEMBER SIEBER: That's right.
6	MR. MARQUINO: Yes. And that's the
7	purpose of this diagram is to establish an envelope
8	within which the plant can operate.
9	MEMBER SIEBER: But you can operate any
10	place in that envelope and be in compliance with the
11	regulations and your technical specifications. You're
12	just explaining one technique that allows you to move
13	around in that envelope. Is this information in the
14	DCD?
15	MR. MARQUINO: No.
16	MEMBER SIEBER: No. Okay.
17	MS. CUBBAGE: I have
18	MEMBER SIEBER: So it's not required.
19	CHAIRMAN CORRADINI: Yes, I think this is
20	the point. Said wanted a clarification. I think
21	we've got the clarification, but staff has just
22	received the report, and it
23	MS. CUBBAGE: Right. And it is I have
24	it with me today. I can transfer it on stick to Gary,
25	so

1	MEMBER SIEBER: But it seems to me that,
2	since you're within bounds with regard to the safety
3	evaluation, as long as you're inside that curve,
4	wherever you end up in there is satisfies the
5	requirements for that reactor.
6	MEMBER ABDEL-KHALIK: That's what I'm
7	trying to find out, whether they can be within bounds
8	at all
9	MS. CUBBAGE: The intent of the
10	presentation yesterday was just to give you a hint
11	that this is coming. We're not asking for any formal
12	feedback on this issue. I mean, I understand the
13	interest, but at this time we are not asking for
14	feedback on it.
15	CHAIRMAN CORRADINI: So I guess the I
16	think for all of us I guess, when it's appropriate,
17	we'd like to see the
18	MS. CUBBAGE: Absolutely. Yes.
19	CHAIRMAN CORRADINI: Okay.
20	MEMBER ABDEL-KHALIK: Thank you.
21	MEMBER ARMIJO: But basically, the bottom
22	line is that at least I want to make sure I
23	understand it the area is burnup-dependent, that
24	area will change depending on burnup.
25	CHAIRMAN CORRADINI: They are looking for

	the envelope that's
2	MEMBER MAYNARD: That's no different than
3	for any of the other accidents. You have to evaluate
4	it. You have to look at what is the worst case:
5	beginning the life middle of life, what conditions,
6	low temperature, high temperature, for each accident.
7	MEMBER ARMIJO: I just want to make sure
8	that the and the maximum reduction in power that
9	you can get by this technique is of the order of 15
10	percent.
11	DR. SAHA: That is correct.
12	MEMBER ARMIJO: It's not going to be 20,
13	25 percent, at any other time in the cycle?
14	DR. SAHA: Probably not. Around 15
15	percent.
16	MEMBER ARMIJO: It's around 15, okay.
17	MR. MARQUINO: So the analogy to the power
18	flow map on the operating plants is that the
19	operator, there is points in the cycle where the slope
20	of the power flow map is different. Okay? And
21	changing core flow might put the core on a trajectory
22	that moves it outside the power flow map.
23	But the operator doesn't do that because
24	that's part of the plant's license, and he operates
25	within the plant's license. So from the same basis,

1	if there was a core which 15 F, temperature change,
2	produced an eight-degree power change, the operator is
3	not going to increase the feed temperature up to 500 F
4	to get a 15 percent power change, because this
5	envelope is the licensed operating condition for the
6	plant.
7	MEMBER ARMIJO: Okay.
8	MEMBER ABDEL-KHALIK: Hopefully, that
9	I guess maybe the topical report will have the
10	information on how the Doppler power defect changes
11	with burnup, and how the moderator void coefficient
12	changes with burnup.
13	MR. MARQUINO: Do we have thermal
14	hydraulics?
15	DR. SAHA: If I may clarify, this
16	particular report NEDO-33338 even the title
17	indicates it is basically safety evaluation. So there
18	is another report, Initial Core Report, I guess, from
19	the nuclear side. I think in that report, I don't
20	quite remember the number of that
21	MS. CUBBAGE: The transients?
22	DR. SAHA: No. Yes.
23	MS. CUBBAGE: Or the core? The initial
24	core or the initial core transients?
25	DR. SAHA: Initial core design.

1 MS. CUBBAGE: Okav. 2 DR. SAHA: I think 333326, probably, yes. 3 That has got much more neutronics or reactor physics 4 kind of information. The report that we are talking 5 about, 33338, has got more safety analysis, because we 6 want to find the safe operating region. 7 If I could just MR. SHUAIBI: Let me. 8 give --9 Okay. Well, just wait MEMBER SHACK: 10 until we look at it. 11 MR. SHUAIBI: Yes, just very quickly, just give you a status on where we are in terms of 12 13 reviewing this. As Amy indicated earlier, I mean, 14 this is -- this presentation was just to introduce the 15 topic to you, just to let you know that this has just 16 We're looking at it. We, the staff, have come in. 17 not gone through this topical report yet and done our evaluation. 18 19 We have not asked RAIs yet on this topical 20 report, so you'll get a similar presentation as you've 21 gotten on the other topics on this topical report when 22 that time comes. So you'll see the kind of evaluation 23 that we've done, the questions that we've asked, how we're -- you know, what open items we may have at that 24

So --

point in time.

25

MEMBER ABDEL-KHALIK: But, you know, the 1 2 reason why this whole discussion started is there is 3 statement here that says Chapter 15 significantly affected by GEH's new proposed reactor 4 power controls by varying the degree feedwater. 5 6 MR. SHUAIBI: Right. And we will need to 7 look at that and make sure that if there are any negative impacts that we've addressed them, and that 8 9 we have resolved them, and we will let you know how that comes about. I agree with you. I agree. We're 10 11 in agreement, I think. 12 MEMBER SHACK: Okay. Thank you. 13 CHAIRMAN CORRADINI: Back to the program. Well. thanks for 14 MR. MAROUINO: introduction process, and I'd like to thank the ACRS 15 members and the NRC staff for their thoughtful review 16 of our design and the professional discussion we had 17 yesterday. I will cover the first part of Chapter 15, 18 19 the safety analysis chapter for ESBWR. 20 Chapter 15 starts with And 21 classification of events. We have four event classes 22 -- anticipated operational occurrences, or AOOs which 23 are expected during the life of the plant. includes normal operation and evolution, startup, 24 shutdown, and unplanned occurrences and failures, like 25

load rejections. 1 2 Design basis accidents is another class, and these are primarily limiting events for evaluation 3 4 of dose consequences to show the mitigation capability 5 Special events are evaluated to show for systems. 6 acceptance to regulatory criteria, and these events 7 are specifically required by NRC regulation or 10 CFR. 8 And the acceptance criteria are specifically defined 9 for each event. 10 Infrequent is subset events of 11 accidents, and they are documented. In Chapter 15, 45 events are identified and analyzed, and Appendix 15A 12 13 is the event frequency calculations for --MR. WALLIS: It wasn't clear to me why you 14 15 would have entered this new category when it's not --16 what purpose does it serve? MR. MARQUINO: That leads me right into my 17 next slide. 18 19 CHAIRMAN CORRADINI: Perfect. 20 designed improved MR. MARQUINO: We 21 reliability into our ESBWR and ABWR plants. We have 22 three control channels typically in our fall-tolerant 23 infill controllers. We have multiple sensors that

input to those controllers, so that a sensor failure

can't cause a transient.

24

25

1	So a sensor failure won't cause a
2	transient, a controller failure won't cause a
3	transient, and then, if there what we can't do as
4	much about is the mechanical failures in the plant,
5	like a valve failing open or closed, or a pump
6	spuriously increasing in speed or decreasing in speed.
7	So what we've done in those areas is use
8	multiple actuators, so that if if we have, say, 12
9	bypass valves, and one of the valves fails to open on
10	demand, the effect is not as severe.
11	MR. WALLIS: So the purpose is to show
12	that it's a better plant, because some of the
13	accidents are unlikely and have very low consequences?
14	Is that the purpose?
15	MR. MARQUINO: That's the purpose. I
16	think this is a win-win situation for the public and
17	the utilities. The public benefits because there is
18	fewer initiating events, and the utility benefits
19	because this class has different acceptance criteria
20	from the AOO class, so that we can improve the fuel
21	economics of the plant.
22	MR. WALLIS: So by not calling them
23	accidents, you can say that your plant has fewer
24	accidents than other plants? The potential for fewer
25	accidents, is that the idea?

1	MR. MARQUINO: Well, in
2	MR. WALLIS: It's a better plant in some
3	way.
4	MR. MARQUINO: In the PRA actually, we
5	don't take a lot of credit for this in the PRA. There
6	were some questions from the ACRS about that, and we
7	don't take a lot of credit in the PRA, but we
8	specifically want to take credit in the CPR evaluation
9	for this.
10	Another benefit is improved availability.
11	A plant operates for a longer fraction of the cycle.
12	Next slide.
13	CHAIRMAN CORRADINI: I think we are going
14	to keep on coming back to this, because I am still
15	cloudy, but let's keep on going.
16	MR. MARQUINO: Okay. In general, I want
17	to go through you see, I'm going through this
18	pretty quickly, and then we'll see what discussion
19	points you want to hear more about. And after the
20	staff presents, if you have more questions, we're
21	prepared to answer them. If we can't answer them on
22	the spot, come back.
23	15.1 is the nuclear safety operational
24	analysis. It's similar to failure modes and effects
25	analysis. This material predates the PRA, so you'll

see it in operating plants, FSARs, as well. It is not 1 2 as detailed as a PRA. The purpose of this is to document the 3 primary success path credited in the safety analysis, 4 and then that feeds into the tech specs. There has 5 been some interaction with GE and the NRC on the tech 6 7 specs, asking, how did we develop the tech specs? How do you know that the system, structures, components 8 9 and the tech specs are adequate? And we point back to 10 this evaluation, and, when necessary, we make changes to it. 11 example, the control rod drive 12 For 13 hydraulic system, the high capacity system that we talked about yesterday, is not a primary success path 14 15 in the safety analysis, because the ICEs and the safety-related ADS and GDCS systems back that up in 16 terms of water level inventory. 17 18 But that's not too clear in our Chapter 15 analysis, so the staff is asking us about it, and 19 we've got to clean it up to make sure that that is 20 21 clear, and the tech spec representation was right. 22 Next slide, please. 15.2 is the first safety analysis section 23 in Chapter 15, and throughout the rest of 24 presentation, I'll use braces and italics to indicate 25

The section demonstrates that ESBWR 1 limiting events. 2 meets all the AOO acceptance criteria., specifically, 3 the critical power ratio that indicates a good heat transfer condition to ensure clad integrity 4 maintained such that 99.9 percent of the fuel rods do 5 6 not enter transition boiling. 7 Is it true that this -- the MR. WALLIS: 8 A00s don't really invoke or use any of the special 9 safety features of the ESBWRs, such as the gravity-fed They're just like normal BWR 10 cooling, and so on? 11 A00s? The GDCS and the ADS 12 MR. MARQUINO: 13 systems, that's true. We specifically have designed 14 the plant to avoid actuation of those systems. We use the IC for the loss of feedwater-type events in AOOs. 15 One of the interactions we had with the 16 staff was on the safety limit CPR. 17 That is part of 18 our analytical method for previous plants, but it's not part of the TRACG analytical method. So we did 19 20 not include a safety limit CPR in the tech specs. safety limit was 99.9 percent of the fuel rods avoid 21 22 transition boiling. The staff requested that we put a safety 23 limit CPR in the tech specs to provide them regulatory 24 25 oversight on fuel changes, and we've added a steady

_	state safety finite CFR back in the tech specs.
2	Reactor pressure
3	MEMBER ABDEL-KHALIK: Given the
4	uncertainty in the applicability of the GEXL
5	correlation to the GE-14E fuel, how can you do that
6	now?
7	MR. MARQUINO: Well, that GEXL correlation
8	is kind of plug-and-play in our safety analysis. So
9	yesterday, in Chapter 4, you were informed by Russ
10	Fawcett on the conservatism that we expect, and the
11	tests that we're going that we've conducted to
12	confirm it. And you're going to get a test report,
13	we're going to confirm that correlation, and, if
14	necessary, we can change the correlation and rerun the
15	safety analysis. And we don't expect a perturbation
16	to the operating limit on that. We think it will
17	the new tests will show the operating limit is
18	conservative.
19	MEMBER ABDEL-KHALIK: So the point is, you
20	may have to revisit all of this if it turns out that
21	you have to modify the GEXL correlation based on the
22	new full-scale testing of the GE-14E bundle?
23	MR. MARQUINO: Possibly. But it's a low
24	risk.
25	Reactor pressure, SRV actuation is

1 avoided. I'll get into more detail on that in a 2 Core water level, the core remains covered, 3 with no ADS required for any of the anticipated 4 occurrences. Next slide, please. Because we designed the plant for natural 6 circulation, the vessel was much taller. We've added 8 an eight-meter high chimney that replaces the upper plenum in current plants. That chimney is filled 10 mostly with steam. 11 In the event we isolate the steam lines or the turbine trips and sends a compression wave back, 12 that volume is available basically to cushion the pressurization. So we're able to avoid SRV actuation in AOOs. This event shows the pressure increasing 16 about .6 megapascal in a vessel isolation. It would have to increase another 1.0 megapascal before we 18 would open an SRV. Next slide, please. 20 Similarly, have to do we an 21 overpressure protection analysis to show that we have 22 adequate SRV capacity. In that event, we have to

> **NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS** 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

assume a failure of the first scram signal, MSIV

position. In addition, we've conservatively assumed

the feedwater pumps trip and the IC fails.

5

7

9

13

14

15

17

19

23

24

25

ASME

feedwater pump trip is assumed, 1 The because the feedwater would spray cold water in the 2 3 vessel dome and drop reactor pressure. So to minimize 4 the uncertainty in this analysis, we just assumed the pumps trip. 5 If that -- so given that we've bottled up 6 the reactor and disabled all -- most of the mitigation 7 8 features, the pressure is going to increase to the SRV setpoint. It takes -- it still takes about 38 seconds 9 for that to happen. And when it happens, if even only 10 11 one SRV opens, it's sufficient to stop the pressure 12 increase, and there is no dynamic overshoot 13 pressure, as most of the earlier plants have. So this also feeds into the CPR response 14 15 for the pressurization events, like load rejections. 16 We see very low CPR consequences for those events. MEMBER SIEBER: That's all due to the size 17 1.8 of the reactor vessel: the fact that you've been able 19 lessen the effect of the -- all of these 20 parameters? And most of the new 21 MR. MARQUINO: Yes. filled cushion 22 volume is with steam, to 23 pressurization. Section 15.3 is the infrequent event 24 25 section, so this is the event class that was added.

	here we show that the radiological consequences are
2	less than 2.5 rem TEDE.
3	MR. WALLIS: I didn't understand this at
4	all. I mean, you have events where there is no fuel
5	damage, and then you assume 1,000 fuel rods are
6	damaged. It doesn't make any sense to me.
7	CHAIRMAN CORRADINI: I think they're
8	required to do that.
9	MR. WALLIS: But it doesn't make any
10	sense, though. It's ludicrous, so it
11	CHAIRMAN CORRADINI: Well, I'm sorry.
12	MR. WALLIS: it doesn't have to
13	CHAIRMAN CORRADINI: I should let you
14	explain. I'm sorry.
15	MR. WALLIS: The thousand is just some
16	number picked out of the air when the real number
17	should be close to zero or zero.
18	MR. MARQUINO: No. In well, in the
19	licensing analysis, this there are some events in
20	this class, or there's one event in this class that
21	would fail about half that many fuel rods.
22	MR. WALLIS: There is one event in here.
23	MR. MARQUINO: Yes.
24	MEMBER ARMIJO: What event is that?
25	MR. MARQUINO: Realistically, it's the
ŀ	

1	loss of feedwater heating, assuming failure of the
2	SRI.
3	MR. WALLIS: Because you've gotten into
4	you've got into to go beyond nuclear boiling,
5	although you don't uncover. Is that what it is or
6	MR. MARQUINO: Right. Right.
7	MR. WALLIS: Okay.
8	MR. MARQUINO: And that event is slow, so
9	that that condition would exist long enough that
10	there actually might be fuel failure.
11	MR. WALLIS: So this thousand is something
12	imposed on you by the regulation?
13	MR. MARQUINO: No, it's not. A thousand
14	was set by analyzing the events, calculating the
15	number of rod failures, and then picking a number that
16	bounded the actual rod failures for the dose
17	consequences.
18	MR. WALLIS: And so it gives you a bad
19	image, though. I mean, it looks rather superficially
20	when you read this stuff - it says there's a thousand
21	fuel rods damaged when, in fact, it's not true for
22	most of these events.
23	MEMBER BANERJEE: Are there events where
24	you get significant fuel rod damage?
25	CHAIRMAN CORRADINI: I think he is going

1	to come are you going to come to this in the
2	presentation, or is this the best place to ask these
3	questions?
4	MR. MARQUINO: This is the best place to
5	ask these questions.
6	CHAIRMAN CORRADINI: Okay. So can you
7	repeat the bounding event, so that we're all on the
8	same page?
9	MR. MARQUINO: Okay. There are two events
10	of concern in this category loss of feedwater
11	heating, assuming failure of the highly reliable SRI
12	and SCRRI function. You see the event frequency is
13	something like once in 4,000 years, that order of
14	magnitude. And then, the other event of concern is a
15	pressurization event, load rejection with failure of
16	all the bypass valves.
17	They have similar CPR changes, but the
18	pressurization event is terminated by a scram very
19	quickly. So, realistically, there wouldn't be any
20	fuel rod failures in that event considering all of the
21	time and temperature data that is available.
22	CHAIRMAN CORRADINI: So remind me of your
23	acronym. So the first one is limiting. So loss of
24	feedwater heating and failure of?
25	MR. MARQUINO: Of the select okay,

1	there's two acronyms together SRI, select rod
2	insert. That's like a scram of a subset of the
3	blades, about 10 I think it's eight blades in the
4	SRI function, and it staggers. There's more detail on
5	the DCD about it.
6	SCRRI is S-C-R-R-I, select control rod
7	run-in, and that's an electrical insertion of
8	CHAIRMAN CORRADINI: With defined motion
9	control?
10	MR. MARQUINO: Yes.
11	CHAIRMAN CORRADINI: Okay.
12	MR. MARQUINO: Of a large number of
13	blades.
14	CHAIRMAN CORRADINI: So this has to be a
15	failure of both.
16	MR. MARQUINO: Yes.
17	MEMBER ARMIJO: Okay. And what happens to
18	the fuel? Is it a DNB-type failure mechanism, or is
19	it a clad strain failure mechanism? What is the
20	mechanism?
21	MR. MARQUINO: It's a DMBCPR concern.
22	MEMBER BANERJEE: VNV means it's
23	MEMBER ARMIJO: Oxidation.
24	MEMBER BANERJEE: No, no. It's not a
25	dryoUT. It's really a blanket of bubbles forming on

1	the fuel in water.
2	MR. MARQUINO: Yes.
3	MEMBER BANERJEE: Or is it a dryoUT?
4	MR. MARQUINO: Okay. It's a point I think
5	Dr. Saha wants to correct me on.
6	DR. SAHA: Yes. This is Pradip Saha from
7	GEH. I just want to clarify, you know, we do we
8	have a very, very conservative assumption. We assume
9	that, as soon as a rod goes into boiling transition it
10	fails. We all know that that is not true. I just
11	want to
12	MEMBER BANERJEE: Yes. But what we are
13	asking right now is; what sort of a boiling transition
14	is it?
15	DR. SAHA: It gets a dryout time, because
16	we use a GEXL correlation, which is
17	MEMBER BANERJEE: But what do you
18	actually have a dryout mechanism here, that you don't
19	have lots of water in the core, or not in that local
20	region?
21	MR. WALLIS: How does it dry out if it's
22	covered with water?
23	MEMBER SIEBER: It can't.
24	MEMBER BANERJEE: Is it film boiling?
25	Explain to us what it is.
	NEAL P. CPOSS

1	CHAIRMAN CORRADINI: I was going to say
2	the correlation is exceeded.
3	MEMBER BANERJEE: That doesn't that is
4	not what we are asking. What is the mechanism? What
5	is the mechanism
6	DR. SAHA: Okay. The GEXL correlation, as
7 .	we all know, it is a critical quality boiling
8	correlation, and this has got, I don't know, maybe 20
9	or 25 constants.
10	MR. WALLIS: The symptom you get is that
11	the temperature begins to increase?
12	DR. SAHA: Correct.
13	MR. WALLIS: But it doesn't say it goes up
14	very high.
15	DR. SAHA: No, not very high. That is why
16	I have come here and explained that, as soon as this
17	GEXL correlation limit is exceeded, which Professor
18	Corradini
19	MR. WALLIS: It assumes.
20	DR. SAHA: said it rightly, then we
21	assume that there is fuel failure, which is highly
22	conservative. That's all.
23	MR. WALLIS: What kind of damage do you
24	then assume happens?
25	DR. SAHA: Okay. Maybe we are

1	MR. WALLIS: That is also
2	MR. MOEN: This is Steve Moen from GEH.
3	When you go back and look at the testing that we do
4	for the GEXL correlation, what we're looking for is
5	or what we do is a gradual power increase until you
6	start to see the temperature shoot up.
7	When the temperature is shooting up, that
8	is the onset of film boiling. And typically, it's an
9.	unstable situation, because you still have quite a bit
10	of water in the channel. But, yes, it's really quite
11	fun to watch.
12	MR. WALLIS: So it is film boiling. It's
13	not a dryout, then.
14	MR. MOEN: It's not a dryout, no. But
15	that's the point that's the point at which we
16	assume that fuel failure occurs.
17	MR. WALLIS: Because dryout tends to be
18	not quite so sudden and abrupt and
19	MR. MOEN: Yes. If you've got real
20	dryout, you're actually at much higher powers.
21	MEMBER SIEBER: Yes, you're on your way.
22	MEMBER ARMIJO: The failure mechanism that
23	is going on is accelerated oxidation of the cladding
24	at that point. Is that it, or is it a clad strain
25	failure?

1	MR. MARQUINO: Well, we don't postulate a
2	failure mechanism at this point, because we to get
3	into further justification of which rods fail and
4	which rods don't fail, to go to a time and temperature
5	basis of the analysis, that would involve model
6	development, NRC review. We simply
7	MEMBER ARMIJO: Well, you are silent on
8	the mechanism. You said it exceeds the correlation.
9	We count the number of rods that exceed the
10	correlation. We say they're failed.
11	MR. MARQUINO: Yes.
12	MEMBER ARMIJO: And you have a gap
13	release.
14	MR. MARQUINO: Yes. I'll defer to 15.4 to
15	talk about the dose. Well, I'll defer to the 15.4
16	section to talk about the dose analysis.
17	MEMBER BANERJEE: So let me ask you again,
18	because I want to be sure, there is lots of water
19	around still when this is happening, because it's a
20	film boiling transition.
21	MR. MOEN: That's correct.
22	MEMBER BANERJEE: All right. That
23	clarifies it. So it is not a dryout transition, then.
24	Let's not call it dryout.
25	MR. MOEN: Correct. Okay.

1	MEMBER ABDEL-KHALIK: So let me follow up
2	on that. For this, say, a loss of feedwater heater
3	heating transient, at what elevation do you reach the
4	minimum CPR?
5	MR. WALLIS: It must depend on time of
6	cycle.
7	MR. MARQUINO: Near the top of the fuel
8	bundle.
9	MEMBER ABDEL-KHALIK: Is it near the top?
10	MR. WALLIS: It's rather
11	MR. MARQUINO: Near the top of the fuel
12	bundle.
13	MEMBER ABDEL-KHALIK: So it may still be
14	a dryout.
15	MR. WALLIS: It may still be a dryout.
16	CHAIRMAN CORRADINI: I don't think they
17	know. I think those
18	MEMBER BANERJEE: We are not getting a
19	straight answer, then, about what the mechanism
20	CHAIRMAN CORRADINI: But I think I
21	guess just to interpose, I mean, that's this is
22	all interesting, but I think their approach is is
23	bounding in the sense that they go they go across
24	the correlation, they assume failure, they assume gap
25	release, and look at the worst case. And then, if
	1

1	they fit, they're okay, they move on.
2	MEMBER ABDEL-KHALIK: Provided, of course,
3	that they are entirely within the range of the
4	correlation.
5	MEMBER ARMIJO: Very conservative.
6	MEMBER BANERJEE: Depending on the
7	mechanism, they can
8	MEMBER ABDEL-KHALIK: I don't know what
9	full-scale testing
10	MR. WALLIS: Radiation heat
11	MEMBER ABDEL-KHALIK: whether you are
12	within the full range of the correlation.
13	DR. SAHA: This is Pradip again, Pradip
14	Saha from GEH again. Let me just clarify, we all
15	know, when we say transition boiling, does not mean it
16	is all steam. You know, maybe there is just a vapor
17	film at the wall, at the heated wall, and there are
18	still entrained droplets in the core of the flow.
19	Some of the droplets, they come back to the wall
20	again.
21	So when we do the testing, you know, full
22	bundle testing, basically whenever the temperature
23	goes up beyond the normal, or when you get nuclear
24	boiling, by say 20 degrees or 30 degrees Centigrade,
25	and then declare that it has now in the dryout.

1	So dryout does not mean all steam. So
2	that's all I wanted to
3	MEMBER BANERJEE: So your criteria for
4	dryout is a temperature rise and not a rate of
5	temperature rise?
6	DR. SAHA: I think as far as I know
7	and, again, you know, these are the details about the
8	testing procedure and all of that
9	MEMBER BANERJEE: That's very important.
10	DR. SAHA: and that's
11	CHAIRMAN CORRADINI: We're going to have
12	to go back and look at this when we do the Stern Lab
13	report
14	DR. SAHA: That's correct.
15	CHAIRMAN CORRADINI: via the staff.
15 16	CHAIRMAN CORRADINI: via the staff. DR. SAHA: That is correct.
16	DR. SAHA: That is correct.
16 17	DR. SAHA: That is correct. MR. WALLIS: So you can prevent all of
16 17 18	DR. SAHA: That is correct. MR. WALLIS: So you can prevent all of this by scramming the reactor.
16 17 18 19	DR. SAHA: That is correct. MR. WALLIS: So you can prevent all of this by scramming the reactor. CHAIRMAN CORRADINI: Yes.
16 17 18 19 20	DR. SAHA: That is correct. MR. WALLIS: So you can prevent all of this by scramming the reactor. CHAIRMAN CORRADINI: Yes. MR. WALLIS: You just don't want to do it.
16 17 18 19 20 21	DR. SAHA: That is correct. MR. WALLIS: So you can prevent all of this by scramming the reactor. CHAIRMAN CORRADINI: Yes. MR. WALLIS: You just don't want to do it. You want to
16 17 18 19 20 21 22	DR. SAHA: That is correct. MR. WALLIS: So you can prevent all of this by scramming the reactor. CHAIRMAN CORRADINI: Yes. MR. WALLIS: You just don't want to do it. You want to CHAIRMAN CORRADINI: They assume the

1	MR. WALLIS: It's not the scram that
2	fails. It's not an ATWS.
3	MR. MARQUINO: Well, in terms of scram,
4	there might not be an automatic scram in this event,
5	because the power level approaches in our TRAC
6	analysis, it comes up slightly higher than the scram
7	setpoint in some cases. And initially, we in the
8	equilibrium core analysis in the DCD, we didn't credit
9	the scram in that case. So there might be an operator
10	action to effect this scram.
11	MEMBER ABDEL-KHALIK: So what was the
12	basis for selecting the 115 percent high flux strength
13	setpoint?
14	MR. MARQUINO: That is based on our
15	operating experience. It has enough margin that noise
16	doesn't cause inadvertent trips. It allows us to have
17	some mild transients and not initiate a trip in the
18	BWR.
19	MEMBER SIEBER: Local transient
20	particularly.
21	MEMBER ARMIJO: Do you do a clad strain
22	analysis in that event, in feedwater heater at 116
23	percent?
24	MR. MARQUINO: Yes. That's one of the
25	RAIs I think we've got from the staff. We did clad

1	strain analyses for the AOO events, the MOPs and TOPs,
2	mechanical overpower and thermal overpower analysis.
3	Craig, do you have anything to add to
4	that?
5	MR. GOODSON: Not that I recall.
6	MEMBER ARMIJO: You know, if you remember,
7	just roughly, is it far less than the one percent
8	strain criteria that you get during this event?
9	MR. MARQUINO: These two events, I don't
10	think we have an issue.
11	MEMBER ARMIJO: But you did calculate it.
12	There is a number someplace?
13	MR. MARQUINO: I have to check on whether
14	we did an exact calculation or we just looked at the
15	heat flux change in the event. These two events are
16	pretty global, so the local peaking effects aren't too
17	bad in terms of the LHTR.
18	The SRI and SCRRI features of a plant are
19	what cause us to do a specific clad strain evaluation,
20	because those produce local peaking and LHTR
21	increases. The power shifts to the top of the fuel,
22	and that is where we're doing specific strain
23	evaluations.
24	MEMBER SIEBER: But the fact remains is
25	you don't go above 2,200 degrees, right? And you

1	don't oxidize more than 17 percent. You are still
2	coolable when you're done, which is a basic
3	requirement.
4	MR. MARQUINO: That's right. And this
5	MEMBER SIEBER: Even if it doesn't trip.
6	CHAIRMAN CORRADINI: So can we get to
7	this, unless this is the point that we shouldn't do
8	it. I guess I wanted to understand the
9	radiological consequences is pinned, because it is
10	still a consequence for an AOO or for a DBA? That is
11	where this infrequent event gets me fuzzy.
12	MR. MARQUINO: This is not the consequence
13	for a DBA. This is 10 percent of the consequence of
14	a DBA.
15	MR. WALLIS: Right. So you have defined
16	a new regulatory category?
17	MR. MARQUINO: No. No. It was in it
18	was in the regulations already, and I think other
19	and I think
20	CHAIRMAN CORRADINI: If this a better
21	thing for the staff to discuss, we can wait.
22	MS. CUBBAGE: It's a fraction of the dose
23	limit, so it there is precedence, and GE proposed
24	the 2.5 rem criteria. The staff has not disagreed
25	with that
ı	1

1	CHAIRMAN CORRADINI: Okay.
2	MS. CUBBAGE: proposal. And then, they
3	selected the thousand rods as a measure to ensure that
4	they did not exceed 2.5 rem.
5	CHAIRMAN CORRADINI: Okay, fine. Thank
6	you.
7	Go ahead. I'm sorry.
8	MR. MARQUINO: All right. In this
9	category of events, the water level is not a
10	particular concern. There is a special event, station
11	blackout, which bounds all of the events in this
12	class.
13	Similarly, the pressurization is not a big
14	concern. The event that pressurizes the highest is
15	the load rejection with failure of all the bypass
16	valves, but there is still no SRV actuation. So it is
17	bounded by the ASME overpressure analysis event.
18	Next slide, please.
19	And I will turn it over to Erik Kirstein
20	to go over the dose analysis for ESBWR.
21	MEMBER SIEBER: One quick question. Under
22	those circumstances that you mentioned, with the core
23	completely isolated, even if it's tripped, you've got
24	decay heat, and eventually some safety valve somewhere
25	will lift, right?

1 MR. MARQUINO: The IC didn't fail. So even in the load-reject with failure of all the bypass 2 3 valves, the IC functioned and it would keep the SRVs 4 from lifting. 5 MEMBER SIEBER: Okay. Thank you. MR. KIRSTEIN: All right. My name is Erik 6 7 I'll be discussing -- briefly discussing Kirstein. 8 Section 15.4, the radiological consequences of design 9 basis accidents. 10 You can see in the first bullet we have 11 listed the various DBAs that we have considered in 12 15.4. You'll notice the control rod drop accident. 13 Actually, we did not -- as we discussed yesterday, we 14 didn't calculate the dose consequences of the control 15 rod drop accident. 16 However, I guess in this context, we'll 17 talk about the 15.3 thousand-rod failure accident. We 18 followed the methodology. The thousand rods that 19 failed probably did not -- the dose consequence at 20 calculation of the methodology of the control rod drop accident, as specified in Regulatory Guide 1.183. 21 22 In the next bullet, you can see, as I had 23 dose calculations mentioned. the that we have calculated in 15.4 were performed in accordance with 24 25 the guidance with Regulatory Guide 1.183, the NUREG-

	1465 alternate source term.
2	The dose criteria that we had to meet
3	MR. WALLIS: Well, let's go back to this
4	again. I mean, is this one of these regulatory things
5	again where you are assuming something unrealistic?
6	What is the real fuel damage during these events?
7	MR. KIRSTEIN: There is no fuel damage
8	in
9	MR. WALLIS: Well, where does the
10	radiation come from? What does all this dose come
11	from?
12	MR. KIRSTEIN: It comes from reg guide
13	1.183.
14	MR. MARQUINO: Okay. Well, I think some
15	of you were working in the nuclear industry in the
16	'70s, and there was a lot of focus on fuel rod heatup
17	during LOCA events. And I forgot to bring my burst
18	fuel rod, because we we were doing tests to show
19	the fuel rod would heat up and balloon out, and then
20	you get a burst and oxidation on both sides. And we
21	had to qualify our models for all of that, and that is
22	the licensing basis of the current plants as
23	MR. WALLIS: Well, we've all seen the
24	pictures and things.
25	MR. MARQUINO: as you say. On the

1	other hand, ESBWR keeps water over the core in all of
2	the events. But in dose consequence terms, the
3	regulatory guides require us to assume significant
4	core damage and
5	MR. WALLIS: Well, this seems to me
6	ludicrous.
7	MR. MARQUINO: Well, you know, considering
8	Three Mile Island, I understand the philosophy
9	CHAIRMAN CORRADINI: I think the staff has
10	an input.
11	MS. CUBBAGE: They are required by
12	regulation to evaluate the dose.
13	MR. WALLIS: But if the regulations are
14	ludicrous, they shouldn't be enforced. They should be
15	changed.
16	MEMBER SIEBER: Well, then, we need to get
17	a rulemaking.
18	MS. CUBBAGE: What I'd like to say is, you
19	know, I know you're seeing that the ESBWR has a large
20	margin to core uncovery for a design basis LOCA. But
21	we don't allow
22	MR. WALLIS: Not when it covers something
23	for the public which says
24	MS. CUBBAGE: people to melt the core
25	for any plant.

1	MR. WALLIS: there are going to be
2	accidents that irradiate people when they don't. It
3	doesn't make any sense, does it?
4	MEMBER SIEBER: That's where SOARCA came
5	from.
6	MR. WALLIS: Right.
7	CHAIRMAN CORRADINI: I think I think
8	what the staff is saying politely is this bounds it.
9	And the effort to make it more precise is
10	MS. CUBBAGE: It's the balance between
11	prevention and mitigation.
12	MEMBER KRESS: These are design basis
13	accidents, and that's what they are for to develop
14	the design. They don't have anything to do with
15	reality.
16	MEMBER BANERJEE: It's the wrong
17	discussion.
18	MR. WALLIS: Well, I am just protesting.
19	CHAIRMAN CORRADINI: Once again.
20	MR. WALLIS: I guess I have to be quiet,
21	but I am really mystified by what you're doing.
22	MR. KIRSTEIN: I think you have a
23	potential helper. I like what I'm hearing.
24	(Laughter.)
25	The resulting doses that we've calculated

1	for design basis accidents meet the criteria of the
2	regulatory criteria of 10 CFR 50.34A and GDC-19 for
3	the control room operators. And as we've pointed out
4	well, in dose space, we do deal with a lot of
5	conservatism, and what we've done to add a level of
6	conservatism is; all of the accidents, with the
7	exception of the LOCA, we conservatively assumed no
8	credit of the control room emergency
9	MR. WALLIS: Why don't you call them IEs?
10	Then, you might be able to reduce this?
11	(Laughter.)
12	MR. KIRSTEIN: But, yes, we assume no
13	credit for emergency charcoal filtration for all of
14	the accidents, with the exception of the LOCA.
15	For a little bit more detailed discussion
16	of the accident scenario that we considered in the
17	LOCA, I'd like to turn it back over to Wayne Marquino.
18	MR. MARQUINO: The ESBWR containment
19	system removes some fission products in a LOCA event.
20	They would plate out on containment structures, the
21	walls of the containment. Some would be transported
22	into the PCC, because there's a flow through that from
23	the steam generated by the core, and be removed in the
24	condensate of the PCC.
25	To quantify that, we used the MELCOR code

1	to calculate a fission product removal coefficient,
2	and we investigated a range of scenarios with
3	different thermodynamic conditions, because those
4	conditions affect the removal and the release the
5	conditions relative to when the release occurs affects
6	the removal and the overall effect.
· 7	The specific scenarios we looked at
8	included low pressure core failure LOCA, specifically
9	a bottom drainline LOCA, with failure of the IC, SLCS,
10	GDCS, and we assumed the ADS system worked. So we
11	have a leak at the bottom of the vessel. The ADS
12	system functions and depressurizes the vessel, but
13	then no other water comes in, and eventually we get
14	core damage.
15	Consistent with the alternate source
16	term
17	MEMBER BANERJEE: So the equalization line
18	doesn't work here?
19	MR. MARQUINO: Right, right.
20	MR. WALLIS: So there is real core damage,
21	then.
22	MR. MARQUINO: Right, right. So we
23	MEMBER SIEBER: Sooner or later it doesn't
24	work.
25	MR. MARQUINO: So we assume multiple
	NEAL R. GROSS

1	multiple failures to the
2	MEMBER BANERJEE: Why do you presume so
3	many failures? Is there a reason for it?
4	MR. MARQUINO: Because, consistent with
5	the alternate source term methodology, which
6	MR. WALLIS: You keep assuming failures
7	until you get a source. That's again ludicrous, isn't
8	it?
9	MR. MARQUINO: So this
10	MR. WALLIS: You might as well just assume
11	the source and forget about what the accident is,
12	right?
13	MEMBER BANERJEE: So let me understand.
14	The GDCS fails, the equalization line doesn't open,
15	and you have a bottom drainline failure or something
16	like that.
17	MR. MARQUINO: Bottom drainline break,
18	yes.
19	MEMBER BANERJEE: Break, okay. So this is
20	the scenario.
21	MR. MARQUINO: Yes.
22	CHAIRMAN CORRADINI: But something
23	eventually works.
24	MR. MARQUINO: Yes. The alternate
25	CHAIRMAN CORRADINI: Or else we go into

1	another regime.
2	MR. MARQUINO: Yes. So where we draw the
3	line between this evaluation and the PRA with, you
4	know, failure, core on the floor, is we recover core
5	cooling just before the bottom head failed. So we ran
6	the MELCOR code until it predicted the bottom head
7	failed, and then we ran it again and turned the ECCS
8	systems on just before that.
9	MEMBER BANERJEE: So what is the scenario
10	now? What starts to work at this point?
11	MR. MARQUINO: Then, we turn everything
12	on.
13	MR. WALLIS: Well, why does that work?
14	Everything else didn't work. Why does this suddenly
15	work?
16	CHAIRMAN CORRADINI: I think they're
17	developing a stylized scenario to test their fission
18	product removal system in containment.
19	MR. WALLIS: That's all they're doing.
20	CHAIRMAN CORRADINI: It's not supposed to
21	be
22	MR. WALLIS: There's nothing realistic
23	about it, whatsoever.
24	CHAIRMAN CORRADINI: That's the impression
25	I get.

1	DR. WHITE: We are causing it to fail.
2	CHAIRMAN CORRADINI: Staff seems to be
3	okay with that interpretation.
4	MEMBER BANERJEE: But there is no physical
5	mechanism. I mean, you are doing this to get the
6	timings, right? I mean, you are going through this
7	scenario to get the timings. So to get realistic
8	timings, but then is that a realistic scenario when
9	things come back on due to something happening or
10	MR. MARQUINO: Well, I'd say operator
11	action would be
12	MEMBER BANERJEE: Okay.
13	MR. MARQUINO: the thing that you
14	know, that would make this like a I'm not a PRA
15	expert, but, you know, let's say this this is
16	probably like a 10^{-7} event.
17	MEMBER BANERJEE: Well, yes, forget it.
18	I mean, you are going through this at a stylized
19	scenario, so it has to be a stylized scenario as to
20	how the cooling comes back on.
21	MR. MARQUINO: Yes.
22	MEMBER BANERJEE: So operator action
23	brings it back on
24	MR. MARQUINO: Yes.
25	MEMBER BANERJEE: in some ways.
	NEAL D. CDOSS

1	MR. MARQUINO: Yes.
2	MEMBER BANERJEE: And how many hours do
3	you have for that?
4	MR. MARQUINO: Well, that again, there
5	is not it's not that we investigated, well, if this
6	happened, how long will it take the operator to act?
7	Because the
8	MEMBER BANERJEE: Well, let's say how many
9	hours before the bottom of the vessel starts to fail.
10	How many hours is that?
11	MR. MARQUINO: We're talking like two
12	hours, three hours.
13	MEMBER BLEY: We're asking questions that
14	make this sound like a real scenario, and my
15	impression is
16	CHAIRMAN CORRADINI: It's not.
17	MEMBER BLEY: you're turning switches
18	to get the source term you want.
19	CHAIRMAN CORRADINI: Right.
20	MEMBER BLEY: You would be better off not
21	to say everything you did, just said we dummied up the
22	source term.
23	MEMBER BANERJEE: No, because they want
24	the timing.
25	MEMBER SIEBER: They actually have to do

1	it, though, because you have to make sure you didn't
2	miss one that's more severe.
3	MR. WALLIS: Well, I'm very puzzled
4	because I looked I thought in Chapter 15, I was
5	going to see analysis of accidents.
6	CHAIRMAN CORRADINI: That was in
7	Chapter 6.
8	MR. WALLIS: Well, so I know I saw it
9	in Chapter 6, too. But Chapter 15 seems to be in a
10	different world all together.
11	CHAIRMAN CORRADINI: Well, but I think
12	that's a function of the system is that they said that
13	it's not uncovered, so that they still have to go
L4	through and show that all of their various systems are
L5	designed with some limit. So in some sense, they are
L6	developing
L7	MR. WALLIS: They don't protest at that
L8	when
L9	MEMBER BANERJEE: Defense in depth.
20	CHAIRMAN CORRADINI: I don't think the
21	staff would listen to the protestations for very long.
22	That's what I
23	MR. MARQUINO: We did we had some good
24	interactions with the staff, you know, from we
25	submitted our Rev 0 in August, and I think in

1 September or October we had a phone call from Jay Lee, and we started discussing this, and we had meetings 2 3 with them. 4 through all the we've gone regulations with them, and in order to have a 5 6 challenge to the containment, the containment 7 supposed to contain radioactivity in the event, okay? 8 leak-tight, passive removal It's and we have 9 mechanisms here. We don't have a standby treatment system. So this is how we demonstrate that 10 11 everything is going to be okay in our containment, even if --12 MR. WALLIS: That makes a lot of sense, if 13 it's defense in depth that you're talking about. But 14 15 don't call it a LOCA analysis, and don't call it an 16 analysis of an accident. MEMBER BANERJEE: No. They are calling it 17 containment fission product removal system. 18 MR. MARQUINO: Yes. I think what we need 19 to clean up or clarify is that the design basis LOCA 20 doesn't produce any fuel failures, but in spite of 21 that this is what we do for the dose analysis, and 22 23 it's conservative. We have a few words like that in Chapter 15, but we should probably make it clear. 24 25 CHAIRMAN CORRADINI: That might be good.

I quess in terms of the 1 MR. SHUAIBI: 2 regulatory structure and how we deal with these kinds 3 of things, we can take a shot at that when we're up at 4 the table. 5 CHAIRMAN CORRADINI: Okay. 6 MR. SHUAIBI: We'll try to explain why it 7 is that we do things that go beyond where we think the Chapter 15 and how the AOOs and the accidents take 8 9 It is defense in depth, but we'll take a shot at 10 trying to explain them. 11 CHAIRMAN CORRADINI: Move ahead. 12 MR. MARQUINO: Okay. So we have these 13 three different scenarios to look at how the passive 14 different fission product removal works under 15 conditions. We have significant core damage in all of 16 the scenarios, as I said, and we recover ECCS just 17 before the lower head fails. 18 MEMBER BANERJEE: I quess what Graham was 19 concerned about, and in a way we are, is when we first 20 saw this, you know, concept, we had the impression 21 this was going to be a lot safer than anything we have 22 seen. 23 There is nothing going to happen at LOCA, the core is never going to uncover, and all of these 24 25 advantages that we are really very far from dryout

1	limits, and there are very few things that will give
2	us problems, the passive system was working fine. We
3	didn't need we needed blowers, and all this sort of
4	stuff.
5	Now, when you tell the story this way,
6	that doesn't come out, that this system is way beyond
7	what we've seen in terms of its safety implications,
8	because nothing happens during a LOCA.
9	MR. MARQUINO: I agree with that. I'm
10	kind of frustrated that we don't have the opportunity
11	to present a more nominal evaluation.
12	CHAIRMAN CORRADINI: Well, you haven't
13	shown us the PRA yet, so don't worry. You'll have
14	your chance.
15	(Laughter.)
16	MEMBER BANERJEE: You know, PRA is okay,
17	but what you really want to say is, nothing happens
18	during a loss of coolant accident.
19	MEMBER MAYNARD: Chapter 15 is more about
20	evaluating, I guess, the regulatory requirements and
21	meeting the regulatory requirements is a safety
22	analysis of, this is what we really expect to happen.
23	It's to show the conservative in meeting the bounding
24	analysis, meeting the regulatory requirements on what
25	have to be aggumed

1	CHAIRMAN CORRADINI: Right.
2	MEMBER MAYNARD: You end up, if you meet
3	those requirements, that you are safe. But it's not
4	a safety analysis in the going through and trying
5	to
6	MR. WALLIS: That's what it's called.
7	It's called safety analysis.
8	MEMBER SIEBER: It's not a realistic
9	analysis.
10	MEMBER MAYNARD: But that's not what the
11	applicant
12	CHAIRMAN CORRADINI: So here's the
13	analogy. I think we have to move on, but here's the
14	analogy. If I took a trigger reactor, a university
15	research reactor, and I and all non-power reactors
16	have to do a safety analysis. It would be very
17	interesting to see their Chapter 15 equivalent, which
18	is they have to assume all of the water disappears,
19	and they have to go to air cooling. How did the water
20	disappear from a 40-foot pool? Doesn't matter.
21	That's how I have to develop a source term to
22	determine boundaries. It's essentially that.
23	MR. WALLIS: Yes. But this does a great
24	disservice to the future of the country. If you're
25	trying to make politicians make decisions based on

1	CHAIRMAN CORRADINI: You must have read my
2	e-mail.
3	MR. MARQUINO: I guess, if I may, one
4	thing
5	MEMBER BANERJEE: Well, I think it does a
6	disservice to the concept. And it doesn't come across
7	as being
8	CHAIRMAN CORRADINI: But I think Mr.
9	Marquino's point, and I think we've got to move on, is
10	that perhaps they can rewrite how the DCD is
11	presented, but I do think, by regulation, they must
12	show this that they are bounded on the regulation.
13	MEMBER SIEBER: Then, it has got to be
14	written in a legal different way to show that.
15	MR. KRESS: And regulations specify that
16	you can use this source term, alternative source term,
17	in your analyses or not, if you can justify another
18	source term. It is so hard for most plants to justify
19	a different source term. It's easier just to go ahead
20	and use it and show that you meet these stylistic
21	accident conditions, which are in the regulation. You
22	have to meet the regulations. That's the rule.
23	MR. WALLIS: It's like saying a patient
24	goes in the emergency room, you've got to treat cancer
25	whether the patient has cancer or not.

1	MR. KRESS: No, it's not exactly that.
2	MEMBER MAYNARD: I don't think that's a
3	good analogy, because that may be if you're trying to
4	qualify whether the hospital is capable of treating
5	cancer or not, but it's not getting to the patient.
6	I think this is important but not not for the
7	ESBWR. I mean, we're talking about changing
8	regulations, and they are talking about complying with
9	the current regulations. I think we need to
10	MR. KRESS: We would have gotten rid of
11	all of this if we would have got our version of the
12	technology nuclear
13	(Laughter.)
	(2003110021)
14	CHAIRMAN CORRADINI: Let's go on.
14	CHAIRMAN CORRADINI: Let's go on.
14	CHAIRMAN CORRADINI: Let's go on. MR. KRESS: We tried our best, you know.
14 15 16	CHAIRMAN CORRADINI: Let's go on. MR. KRESS: We tried our best, you know. MEMBER BANERJEE: Well, at least it should
14 15 16 17	CHAIRMAN CORRADINI: Let's go on. MR. KRESS: We tried our best, you know. MEMBER BANERJEE: Well, at least it should be presented as a defense in depth argument.
14 15 16 17	CHAIRMAN CORRADINI: Let's go on. MR. KRESS: We tried our best, you know. MEMBER BANERJEE: Well, at least it should be presented as a defense in depth argument. MR. KRESS: It's meeting the regulations
14 15 16 17 18	CHAIRMAN CORRADINI: Let's go on. MR. KRESS: We tried our best, you know. MEMBER BANERJEE: Well, at least it should be presented as a defense in depth argument. MR. KRESS: It's meeting the regulations as they are written.
14 15 16 17 18 19 20	CHAIRMAN CORRADINI: Let's go on. MR. KRESS: We tried our best, you know. MEMBER BANERJEE: Well, at least it should be presented as a defense in depth argument. MR. KRESS: It's meeting the regulations as they are written. CHAIRMAN CORRADINI: So can we I think
14 15 16 17 18 19 20 21	CHAIRMAN CORRADINI: Let's go on. MR. KRESS: We tried our best, you know. MEMBER BANERJEE: Well, at least it should be presented as a defense in depth argument. MR. KRESS: It's meeting the regulations as they are written. CHAIRMAN CORRADINI: So can we I think we've got to let the our colleagues from GEH move
14 15 16 17 18 19 20 21 22	CHAIRMAN CORRADINI: Let's go on. MR. KRESS: We tried our best, you know. MEMBER BANERJEE: Well, at least it should be presented as a defense in depth argument. MR. KRESS: It's meeting the regulations as they are written. CHAIRMAN CORRADINI: So can we I think we've got to let the our colleagues from GEH move on.
14 15 16 17 18 19 20 21 22 23	CHAIRMAN CORRADINI: Let's go on. MR. KRESS: We tried our best, you know. MEMBER BANERJEE: Well, at least it should be presented as a defense in depth argument. MR. KRESS: It's meeting the regulations as they are written. CHAIRMAN CORRADINI: So can we I think we've got to let the our colleagues from GEH move on. MR. MARQUINO: Okay. Before I leave this

1	3. Scenario 2 is a high pressure core failure LOCA.
2	Again, it's a bottom drainline break failure of the
3	of all of the systems, including ADS, so the vessel
4	doesn't depressurize. It's got a hole in the bottom.
5	It's squirting the coolant out. The core uncovers.
6	The core failure is at a higher pressure, and, again,
7	then we recover the ECCS systems, depressurize, and
8	let the systems flood the core.
9	Scenario 3 is no LOCA, no break, no high
10	pressure systems, loss of AC power and feedwater, IC,
11	SLCS, and ADS. And, again, we let the accident
12	progress until just before bottom head failure, and
13	then we allow the systems to function and reflood the
14	core.
15	Okay. Now, Mr. Kirstein is going to cover
16	the pH evaluation.
17	MR. KIRSTEIN: Yes, one quick slide. We
18	considered the pH in containment pools, formation of
19	acids. We credited SLCS injection for buffering to
20	keep the pH up. A couple of contributors to decrease
21	to the pH analysis were the degradation of cable
22	due to radiolytic conditions of containment, and also
23	production of nitric acid, among others.
24	And the evaluation of pH in containment
25	pools, we intend on revising that for DCD, Revision 5.

1	MR. KRESS: Any effect of the fission
2	products?
3	MR. KIRSTEIN: I'm sorry?
4	MR. KRESS: No, no, not radiation, just
5	the effects of the fission products themselves. A lot
6	of them are
7	MEMBER SIEBER: They're chemicals.
8	MR. KRESS: Yes.
9	MEMBER BLEY: What is leading you to
10	revise it, by the way?
11	MR. KIRSTEIN: I'm sorry?
12	MEMBER BLEY: What is leading you to
13	revise it in the next DCD? Is there specific chemical
14	reactions or something you're accounting for you
15	didn't before?
16	MR. KIRSTEIN: I believe one change we do
17	have to make, and it's not necessarily a pH
18	consideration, I believe the NUREG-1465, the alternate
19	source term, also forces us to enter the alternate
20	source the source term into the suppression pool in
21	conjunction to containment. And we didn't do that for
22	the prior revision.
23	MR. MARQUINO: Yes. And, frankly, there
24	is an error in our analysis, and we didn't consider
25	the radioactivity in the suppression pool. We only

1	had the suppression pool air space, so we have to
2	revise it.
3	MR. WALLIS: Does the suppression pool
4	take out a lot of the fission products in your
5	analysis?
6	MR. MARQUINO: Yes.
7	MR. WALLIS: A huge amount.
8	MR. KIRSTEIN: Yes. Once again, there is
9	some guidance in, I believe SRP 6.5.5, that provides
10	a maximum decontamination factor of 10. In our MELCOR
11	analysis, we've actually shown that the
12	decontamination factors are considerably higher. But,
13	once again, we've reverted back to the
14	MR. WALLIS: At the time of the reactor on
15	Long Island, which operated for a day, there was a
16	claim that the factor was much bigger than that
17	enormous.
18	MR. KIRSTEIN: Yes. We've seen some
19	ranging from a couple thousand to orders of magnitude
20	greater.
21	MR. WALLIS: That's right.
22	MR. KIRSTEIN: Once again, from a
23	regulatory standpoint
24	MR. WALLIS: And you are forced to assume
25	10.
1	

1	MR. KIRSTEIN: Yes.
2	MR. KRESS: Even 10 is useful, because it
3	gets a lot of it. But the issue is whether or not you
4	reevaporate iodine out of there, and that depends on
5	the sources of radioactivity and the pH of
6	MR. WALLIS: And the pH.
7	MR. KIRSTEIN: Okay. I would like to turn
8	it over now to my colleague to the right, Dr. Alamgir.
9	He will discuss DCD Section 15.5.
LO	DR. ALAMGIR: 15.5 is special events, and
L1	its purpose is to show compliance to the regulatory
L2	acceptance criteria.
L3	I will be talking about TRAC analysis of
L4	in summary form for limiting ATWS events,
L5	followed by a confirmation to CFD of boron mixing in
L6	the ESBWR bypass spaces.
L7	MR. WALLIS: I'm sorry. There were two
L8	events about control rod withdrawal during refueling
L9	and during startup. Did you talk about those at all?
20	Are they part of the they're part of the accident
21	analysis, aren't they?
22	MR. MARQUINO: They are in 15.3. There's
23	a rod withdrawal error event in
24	MR. WALLIS: It's another one of the
25	things you're forced to assume, or is this a realistic
	I .

1	thing, or what is that?
2	MR. MARQUINO: The rod withdrawal?
3	MR. WALLIS: Yes, during startup or during
4	refueling. You are supposed it's not a very good
5	thing to do, withdraw rods during
6	MR. MARQUINO: No, it's not.
7	MR. WALLIS: Something you have to assume,
8	or what is that?
9	MR. MARQUINO: Well, no, it's we are
10	using a probability treatment on it, and it's an
11	infrequent event. We've had some staff questions
12	about what happened at the Japanese plants, and we see
13	two differences. One is their procedure compliance
14	MR. WALLIS: So this is another defense in
15	depth thing. It might happen; that's why you have to
16	see what the consequences are.
17	MEMBER BANERJEE: Well, it has happened.
18	It has a slip problem, yes. Several times.
19	MR. WALLIS: So we don't need to worry
20	about how likely it is. We just need to say that
21	you've analyzed it and you find that this you meet
22	the TEDE requirements, is that it?
23	MR. MARQUINO: Yes.
24	MR. WALLIS: We don't need to discuss the
25	probabilities of it at all. No? All right. Fine.
	NEAL D. CDOCC

1	MR. KRESS: Do you lower the water level
2	in the core to deal with the ATWS?
3	MR. MARQUINO: Yes. Yes.
4	MR. KRESS: And do you need that when the
5	SLC operates, or the SLC shuts it all down?
6	MR. MARQUINO: Well, we the SLC could
7	bring the reactors subcritical with the water level up
8	high. It's much more effective with the water level
9	low and that's factored into, say, the pool
10	temperature here.
11	MEMBER BANERJEE: What do you mean by
12	SLCS-bounding? I guess, Mohammed, you explained this
13	to us, right?
14	DR. ALAMGIR: I haven't gotten to that
15	slide yet, but
16	(Laughter.)
17	MEMBER ARMIJO: You probably will never
18	get there.
19	DR. ALAMGIR: The specific line you are
20	looking at?
21	MEMBER BANERJEE: Just the title.
22	DR. ALAMGIR: This is a limiting event.
23	MR. WALLIS: You'll have to speak to the
24	mic.
25	DR. ALAMGIR: Yes. I think I'm speaking
	NEAL B. ABOOS

1 to that.

MR. WALLIS: Okay.

DR. ALAMGIR: This is a bounding case where we are assuming that the mitigation is to the standby liquid control system, and other -- there are other systems available for mitigation of ATWS, such as alternate rod insertion, FMCRD electrical run-in, feedwater run-back, which is of course a precursor to the SLCS injection, and then the boron itself.

Does that answer your question?

MEMBER BANERJEE: Yes, okay.

DR. ALAMGIR: Back to the slide on the screen. Here we are seeing the key results of acceptance, against acceptance criteria, measured in terms of three locations -- the integrity of the vessel, the integrity of the containment, and the fuel integrity.

Now, before I compare those results, I want to mention that we have analyzed limiting cases by choosing events, special events, and the key special event here is the main steam isolation valve closure. We have also analyzed nominal cases, which means that, for example, the power is 100 percent as opposed to a bounding case where the power is 102 percent.

1	There are other additional bounding inputs
2	that we have considered in the calculation. For
3	example, feedwater enthalpy has been increased to 105
4	percent. So we have pushed the limit for these MSIV
5	closure transients.
6	MR. WALLIS: Do you know how to analyze
7	the mixing of the boron with the other water?
8	MEMBER BANERJEE: He is going to tell us.
9	DR. ALAMGIR: I am going to show you a
10	we have
11	MEMBER BANERJEE: I'm sorry.
12	MR. WALLIS: You're going to show us.
13	Okay
14	DR. ALAMGIR: We have a TRAC analysis
15	where we do a conservative calculation in order to
16	define what conservative is.
17	MR. WALLIS: Okay. Thank you.
18	DR. ALAMGIR: And then, we back it up by
19	showing a realistic analysis.
20	MR. WALLIS: So you are bounding
21	assumptions about the SLC mixing, as well.
22	DR. ALAMGIR: That's correct.
23	MR. WALLIS: Okay.
24	MEMBER MAYNARD: I believe the staff has
25	also done some confirmatory analysis or review of the
	NEAL R. GROSS

. 1

1	mixing, too.
2	MS. CUBBAGE: Yes.
3	MR. WALLIS: But presumably, if they use
4	CFD, that's not bounding, that's realistic.
5	MS. CUBBAGE: I just wanted to clarify
6	that we did run some CFD, and we are going to talk
7	about that if we get a chance to come up.
8	(Laughter.)
9	CHAIRMAN CORRADINI: Fair enough.
10	DR. ALAMGIR: I want to provide a
11	disclaimer that our safety analysis has been provided
12	by our GRC consultant associate. I am not a CFD
13	expert, but I can always talk about thermohydraulics
14	and mixing.
15	MEMBER BANERJEE: Same thing.
16	(Laughter.)
17	DR. ALAMGIR: This particular slide show
18	that I would like to stand up and teach. It's more
19	comfortable that way. Thank you.
20	So here we show that the vessel pressure
21	is below the SRV surface level 3C, 1,300 psi, and we
22	are at 1,364 for the MSIV bounding transient. For the
23	containment, we show that the suppression pool
24	temperature is much less than the acceptance criteria

of 121 C.

25

1	MEMBER ABDEL-KHALIK: I know this is the
2	result for this particular transient, but which
3	transient gives you the highest suppression pool
4	temperature?
5	DR. ALAMGIR: This is the one.
6	MEMBER ABDEL-KHALIK: This is the one that
7	gives you the highest suppression pool temperature?
8	DR. ALAMGIR: It has more power.
9	MEMBER ABDEL-KHALIK: Now, at 163 degrees,
10	the partial pressure of steam is 5 psi. And if I look
11	at the transient that was presented yesterday, the
12	highest pressure in the containment was about 53 psi.
13	So that means the partial pressure of non-condensables
14	is about 50 psi. Does that make sense?
15	MR. WALLIS: That makes sense.
16	DR. ALAMGIR: You saw the LOCA results
17	yesterday?
18	MEMBER ABDEL-KHALIK: We saw the steam
19	line break, yes.
20	DR. ALAMGIR: Okay. This is an ATWS
21	simulation where we do do calculate the total
22	pressure in the containment, and it is below 45 psig,
23	the design.
24	MR. WALLIS: Where does it come from?
25	MR. MARQUINO: I am not clear on the
	NEAL D. CDOSS

1	question. Are you asking about the LOCA containment
2	pressure, or the ATWS containment pressure?
3	MEMBER ABDEL-KHALIK: I was trying to find
4	out where we stand with this transient, so he told me
5	first that this transient produces the highest
6	containment temperature.
7	DR. ALAMGIR: In ATWS.
8	MEMBER ABDEL-KHALIK: In ATWS, okay.
9	MEMBER MAYNARD: For special events.
10	MEMBER ABDEL-KHALIK: All right. So let's
11	focus on those. You're telling me that for this
12	particular transient the total containment pressure
13	was 45 psi. Is that correct?
14	DR. ALAMGIR: That's the design limit.
15	It's below that. The numbers are below that.
16	MR. WALLIS: Well below that.
17	MEMBER BANERJEE: So what was the what
18	was the maximum containment pressure?
19	DR. ALAMGIR: Can you please look up? I
20	don't
21	MR. WALLIS: You don't have it?
22	DR. ALAMGIR: We'll be able to provide it.
23	You have it on it's in the DCD as well. It's one
24	of the key output parameters.
25	Should I go on? Thanks.
ļ	1

1	The fuel in this case, this is a
2	scenario where the fuel heats up. Again, whether it
3	said DNB or dryout, there is little they are not
4	I feel it is not a DNB of the PWR TYPE.
5	PARTICIPANT: It's high void fraction.
6	DR. ALAMGIR: Yes. We know it's high void
7	fraction from the void calculation, which is void
8	fraction of 90 percent plus.
9	And the PCT is limit is 2,200 F. We
10	have about 1,560.
11	MEMBER BLEY: Close to an ATWS.
12	DR. ALAMGIR: Yes. And very little
13	oxidation. So very, very safe in terms of ATWS
14	performance.
15	Next slide, please.
16	MEMBER BANERJEE: And no ATWS instability.
17	DR. ALAMGIR: We have analyzed ATWS
18	instability cases.
19	MEMBER BANERJEE: Is there a separate
20	subject or
21	DR. ALAMGIR: It is included in special
22	events, and we showed that when we perturb during a
23	for example, a loss of feedwater accident, the
24	oscillations die out very quickly.
25	There is an RAI that we talked about,

1	staff talked about yesterday, related to
2	MEMBER BANERJEE: Right. It was referred
3	to yesterday.
4	DR. ALAMGIR: Yes. And that is in
5	process.
6	MEMBER ABDEL-KHALIK: I guess you are in
7	the process of looking up what the maximum containment
8	pressure is?
9	MR. MARQUINO: Yes.
10	MEMBER ABDEL-KHALIK: Thank you.
11	MS. CUBBAGE: Wayne, is it 29.9?
12	MR. MARQUINO: Yes, sounds right.
13	MEMBER ABDEL-KHALIK: So let me, then,
14	ask: which transient, aside from ATWS, gets you
15	closest to the limit on the maximum suppression pool
16	temperature?
17	DR. ALAMGIR: The overview is Wayne has
18	the overview. I can give you some numbers, but
19	MR. MARQUINO: Do you mean which non-LOCA
20	which non-LOCA transient besides ATWS produces a
21	high containment pressure?
22	MEMBER ABDEL-KHALIK: Correct.
23	MR. MARQUINO: I can't think of any,
24	because the what is producing the high pressure
25	well, the pressure in this case is discharge to the

1	pool through the SRVs. That heats the COLA, and
2	purging the drywell of non-condensables through the
3	SRV flow. So some of the SRVs discharge into the
4	drywell, and the steam flow will bring non-
5	condensables into the wet well air space. So we've
6	got a warm pool and compressed low air space.
7	But you you know, we avoid SRV opening
8	in ESBWR, so
9	MR. WALLIS: Well, I think what happens is
10	that the non-condensables are in the wet well, and so
11	they get compressed in there. So that's how you get
12	the high pressure.
13	MEMBER ABDEL-KHALIK: Well, that's what
14	I'm trying to figure out, whether the
15	MR. WALLIS: The drywell is full of steam,
16	right? That's the way you get a high pressure.
17	DR. ALAMGIR: We've put conservative
18	assumptions. We assume all of the non-condensables is
19	in the wet well.
20	MR. WALLIS: That's right, so it's the
21	that's why they get that's how the pressure gets so
22	big. All of the non-condensables is going to the wet
23	well. It's a much smaller volume than they started
24	at, so they are compressed.
25	MEMBER BANERJEE: You probably just make

1	a conservative assumption there.
2	DR. ALAMGIR: In addition to not allowing
3	the pool to mix.
4	MEMBER BANERJEE: Not allowing the pool to
5	mix?
6	DR. ALAMGIR: I mean, the SRV. I'm sorry,
7	the suppression pool, after the SRV discharge, we
8	don't let it mix.
9	MR. MARQUINO: But that but for ATWS,
10	we mix the pool.
11	MEMBER BANERJEE: Yes, you must.
12	DR. ALAMGIR: I mean, there is no active
13	system or anything like that.
14	MEMBER BANERJEE: No, but
15	DR. ALAMGIR: Natural separation, natural
16	convection, whatever you call it.
17	MEMBER BANERJEE: I am puzzled by this
18	now. If you are only getting a 5 psi pressurized, due
19	to the saturation, is that a mixed pool temperature,
20	or is it the pool surface temperature that
21	MR. MARQUINO: We go up to
22	MEMBER BANERJEE: Go back to the previous
23	slide.
24	MR. MARQUINO: No. We go up to 29.9, so
25	we're increasing the pressure about 15 psi, and the

1	split is, like, 5 due to the saturation pressure
2	increase and 10 due to the compression.
3	MEMBER BANERJEE: But that's assuming a
4	well mixed pool, isn't it?
5	MR. MARQUINO: It is, yes.
6	MEMBER BANERJEE: That's what I thought.
7	Otherwise it's too small.
8	MR. MARQUINO: Yes. The reason we have
9	concerns about stratification in the LOCA is
10	MEMBER BANERJEE: It's a different
11	problem.
12	MR. MARQUINO: it's coming in in point
13	like three-quarters of a meter within the surface
14	in the long term. In this ATWS, it is discharging
15	either through the vents or through SRVs, and it's
16	coming in lower in the pool.
17	MEMBER BANERJEE: Right. So it should mix
18	up the pool.
19	MR. MARQUINO: Yes.
20	DR. ALAMGIR: There is no active mechanism
21	that
22	MEMBER BANERJEE: But that's sufficient.
23	DR. ALAMGIR: Yes, that's sufficient.
24	Thanks for clarifying, Wayne.
25	All right. Now I'll transition to the CFD
	NEAL P. CPOSS

1 analysis, but before that let me mention why we 2 consider TRAC analysis for the same MSIV ATWS 3 transient as bounding. 4 In the TRAC calculation, if we -- can you 5 please put up Figure 4.1.1 from DCD? We will first show a format, and then show how the TRACG analysis 6 7 has been configured to make it bounding for boron 8 mixing. 9 MR. WALLIS: Well, how does TRAC make it 10 subcritical, if it doesn't let anything in? DR. ALAMGIR: Well, there is a -- I will 11 just show you that. In general, let me just try it 12 13 this way -- that if you consider the core shroud as the outer circle, then from the center line of the 14 15 core to the core shroud we divide it into three 16 segments, three rings, with proportionately an equal number of bundles. 17 We block -- SLCS comes -- boron comes in 18 19 in outer ring. We block the outer ring all the way, 20 except near the core plate where there are leakage holes into the bundle, so it can flow down in the 21 peripheral bypass and then go into the fuel bundle, 22 23 but not directly into the center of the core radially. That's what we define as conservatism in TRAC. We do 24 25 not let boron migrate radially other than -- in TRAC,

1,	other than to go down and then go
2	MEMBER ABDEL-KHALIK: Do you do a sanity
3	check on TRAC results and do an overall mass balance
4	on boron?
5	MR. MARQUINO: Yes. And let me add
6	something. We have test data for boron injection at
7	several different locations injecting into the
8	lower plenum, injecting into the upper plenum,
9	injecting into the jet pumps. There is full-scale
10	data and scale data, but we don't have data at exactly
11	the elevation that we inject at for ESBWR. So
12	MEMBER BANERJEE: What elevation is that?
13	MR. MARQUINO: That is the lower part of
14	the core bypass region. So it going back to the
15	SLC
16	MEMBER BANERJEE: Do you have a little
17	diagram or something?
18	MR. MARQUINO: Let me
19	MEMBER BANERJEE: Maybe it was shown,
20	but
21	MR. MARQUINO: You know, if we switch
22	computers
23	MS. CUBBAGE: Hold on, hold on, hold on.
24	He's got it.
25	MR. MARQUINO: So while they're bringing

_	chat up, we have two shes systems. They come in from
2	opposite azimuths to the vessel. They go into the
3	shroud, and then branch, split and branch, so that at
4	four locations, 90 degrees apart, we have a vertical
5	pipe in the peripheral bypass area. The peripheral
6	bypass is the space between the outermost fuel bundle
7	and the core shroud, and then we also distributed
8	axially, so at four locations on that vertical pipe
9	there is a nozzle that injects the boron tangentially
10	to the shroud. And we'll show you some CFD
11	MEMBER ARMIJO: Well, you've got 16 points
12	of entry for boron
13	MR. MARQUINO: Yes.
14	MEMBER ARMIJO: the way you describe
15	it.
16	MR. MARQUINO: Yes.
17	MEMBER BANERJEE: And tangentially, not
18	radially.
19	MR. WALLIS: It's injected into the
20	downcomer, isn't it? Or does it go
21	MR. MARQUINO: It's in between the bypass.
22	MR. WALLIS: But shouldn't it be injected
23	into the core, not into the bypass?
24	DR. ALAMGIR: Here is how it works. There
25	are two pipes that come in, penetrate the core shroud.

1	MR. WALLIS: Right.
2	DR. ALAMGIR: Then, each pipe becomes a
3	semi-circle or a sparger.
4	MR. WALLIS: In the bypass.
5	DR. ALAMGIR: Inside the bypass, just
6	inside the bypass.
7	MR. WALLIS: How does it get from the
8	bypass to where it does some good?
9	DR. ALAMGIR: That's what we'll show.
10	Then, at the end of this semi-circle are injectors,
11	and there are four elevations at which
12	MR. WALLIS: But it has to get down, and
13	then up, and into the fuel somehow.
14	MR. MARQUINO: That's right. So to
15	understand why we do that, the BWR ATWS emergency
16	procedures direct the operator to lower water level,
17	and we actually have an automatic feedwater run-back
18	in ESBWR to do that.
19	MR. WALLIS: Yes.
20	MR. MARQUINO: So during the at the
21	time the boron injects, the water level is low, and
22	we've stopped circulation from the downcomer into the
23	core. So if we inject it into the downcomer, the
24	boron wouldn't get in.

MR. WALLIS: Oh, okay.

25

1	MR. MARQUINO: So we considered that this
2	location and what we've done, then, is set up an
3	internal natural circulation loop between the bypass
4	and the fuel channels. There's holes at the bottom of
5	the fuel bundles that let flow come in from the
6	bypass. So that's why our design is the way it is.
7	MR. WALLIS: But it relies on some
8	internal mixing inside the core to somehow get that
9	MR. MARQUINO: Yes.
10	MR. WALLIS: stuff from the outside
11	into the middle.
12	MR. MARQUINO: Right. Right.
13	MEMBER BANERJEE: You don't directly
14	inject it into the core in any way. It just comes
15	into the bypass.
16	DR. ALAMGIR: The peripheral bypass.
17	MR. MARQUINO: Yes.
18	MEMBER BANERJEE: Peripheral bypass.
19	DR. ALAMGIR: Yes.
20	MR. WALLIS: It might be better to spray
21	it in the top.
22	MR. MARQUINO: Well, the BWR 5 and 6
23	plants have a high pressure core spray over the upper
24	plenum, and they inject the boron there. But,
25	again

1	MEMBER BANERJEE: You've got chimneys now,
2	right?
3	MR. MARQUINO: We have chimneys. We don't
4	have that sparger. And, additionally, when you spray
5	it there, because the flow is coming out of the core,
6	it is going to some if it is going to get pushed
7	out and go down anyway. So that's why we have the
8	design
9	MR. WALLIS: Have you got boiling going on
10	during all of this process?
11	MR. MARQUINO: Yes.
12	MR. WALLIS: So CFD isn't going to do you
13	much good.
14	MR. MARQUINO: No, it's single phase in
15	the bypass region.
16	MR. WALLIS: Okay, in the bypass.
17	MEMBER BANERJEE: There is no boiling in
18	the bypass?
19	MR. MARQUINO: No.
20	MEMBER BANERJEE: In these conditions?
21	MR. MARQUINO: No.
22	MR. WALLIS: Okay. Well, I guess we can
23	this is a subject to investigate.
24	MEMBER BANERJEE: Okay. So can you show
25	us you don't have a little diagram of this

1	injection system anywhere?
2	MEMBER SIEBER: There is a schematic of
3	it.
4	DR. ALAMGIR: I think we went into
5	MEMBER BANERJEE: He is talking about a
6	sparger with a nozzle at the end. I mean, it is quite
7	a complicated-sounding system.
8	MR. MARQUINO: We can get it up. I've got
9	it on my computer. Is Jerry here? Because I
10	MEMBER BANERJEE: Well, you can do it
11	later.
12	MR. MARQUINO: We can do it another time,
13	if need be. After a break, we'll get something up.
14	MEMBER BANERJEE: All right.
15	DR. ALAMGIR: So just stay with the DCD
16	CHAIRMAN CORRADINI: Switch back to
17	your
18	MEMBER ARMIJO: That's a torturous path,
19	to go through all of those gaps.
20	MEMBER BANERJEE: Yes. The only thing is
21	that we'd like to see the layout to understand how
22	realistic a CFD calculation might be, or how realistic
23	even TRAC's assumptions might be.
24	MR. MARQUINO: Okay. Do you
25	MEMBER BANERJEE: To understand the

1	geometry of these events.
2	MR. MARQUINO: Do you want to
3	MEMBER BANERJEE: Later.
4	MR. MARQUINO: take a break or let us
5	like flip computers or something?
6	MEMBER BANERJEE: No. I think
7	CHAIRMAN CORRADINI: We want you to finish
8	by 10:10.
9	(Laughter.)
10	MEMBER BANERJEE: Give us the results
11	right now, and then we'll discuss the realism of the
12	results later. So let's see the bottom line first.
13	CHAIRMAN CORRADINI: Can we go back to
14	your presentation?
15	DR. ALAMGIR: I was going to say, if you
16	are going to show the geometry, then we don't need it.
17	I was going to say where the jets are and
18	MEMBER BANERJEE: Yes. Why don't you show
19	us where the jets are. That's fine.
20	DR. ALAMGIR: So if you imagine a circle
21	circumscribing this core, that will be the core
22	shroud. The pipe that brings the SLCS fluid is the
23	point over here. Comes in through this non-uniform
24	area, so it would come in here, one pipe, branch out
25	into

	MR. WALLIS: It goes through the core
2	shroud, then.
3	DR. ALAMGIR: I'm sorry?
4	MR. WALLIS: It does go through the core
5	shroud.
6	DR. ALAMGIR: Yes. And then, there are
7	two pipes. One coming in from this side, the other
8	coming from the opposite side.
9	MR. WALLIS: And that's how it's diffused
10	through the core?
11	DR. ALAMGIR: I will show you where the
12	injectors are first, and then then, it branches out
13	into a sparger, which is a semi-circle, a sparger. It
14	ends up one end of the sparger ends up in along
15	these flaps, just like that, and the other end
16	vertical along that flap. And so there is a
17	corresponding pair.
18	This sparger then ends up with a nozzle
19	that has two injectors.
20	MR. WALLIS: Which points inwards.
21	DR. ALAMGIR: Which then they are at a
22	slightly in an angle more, so they don't inject
23	normally, don't inject slightly in an angular fashion.
24	Two sets of injectors right along these flaps.
25	MR. WALLIS: The ideal that it penetrates

1	through there or not?
2	DR. ALAMGIR: Through the spaces. I guess
3	to be able to spray or inject in this region, and then
4	hopefully it will get through these, and it does.
5	MR. WALLIS: Hopefully?
6	DR. ALAMGIR: And it does.
7	MR. WALLIS: Hopefully?
8	DR. ALAMGIR: Yes.
9	(Laughter.)
10	You always hope for the best, and then
11	you
12	(Laughter.)
13	CHAIRMAN CORRADINI: Prepare for the
14	worst, hope for the best.
15	MEMBER BANERJEE: The spargers themselves,
16	of course, have holes in them, right?
17	DR. ALAMGIR: The spargers are they
18	don't have holes, but they end up with
19	MEMBER BANERJEE: Why do you call them
20	spargers, if there are no holes?
21	CHAIRMAN CORRADINI: It's the header.
22	DR. ALAMGIR: It's the header.
23	MEMBER BANERJEE: Okay. Terminology. I
24	thought the thing had little holes and then two
25	nozzles, so now it's just a header.

1	DR. ALAMGIR: Header with nozzles at the
2	end.
3	MEMBER BANERJEE: At the end, okay.
4	DR. ALAMGIR: And there are four such
5	elevations, so four such headers. The top-most one is
6	at the middle of the bypass, height-wise, elevation-
7	wise.
8	MEMBER BANERJEE: Okay.
9	DR. ALAMGIR: So we end up with 32 holes.
10	MEMBER ARMIJO: So the issue is migration
11	of that boron through the gaps between the bundles.
12	DR. ALAMGIR: Correct.
13	MEMBER BANERJEE: Well, it is also, it
14	goes down the bypass and comes up from the bottom,
15	right?
16	DR. ALAMGIR: It can do realistically,
17	it can do both.
18	MEMBER BANERJEE: Yes.
19	DR. ALAMGIR: Go down as well as migrate.
20	MR. WALLIS: And what's happening? Is it
21	that it's boiling in the core, or at some level up
22	to some level?
23	DR. ALAMGIR: A single phase.
24	MR. WALLIS: It's all single phase?
25	DR. ALAMGIR: In the bypass. But
1	

1	MR. WALLIS: No, in the core. It's got to
2	get into the core, so it's got to go into a boiling
3	region of some sort.
4	DR. ALAMGIR: Correct.
5	MEMBER BANERJEE: Can you show us the
6	geometry of the system that is feeding the bottom?
7	What does it look like, or describe it to us?
8	DR. ALAMGIR: Yes.
9	MEMBER BANERJEE: From the bypass to the
10	core inlet.
11	MR. MARQUINO: I think the best thing is
12	for us to get through the slides. We have a movie,
13	and then, if we can get this material together that
14	you're asking for and show you.
15	MR. WALLIS: Maybe another day. We have
16	to investigate this.
17	MR. MARQUINO: Yes. Well
18	CHAIRMAN CORRADINI: I think you should
19	finish up, because you guys want to show a video of
20	the of a simulation, is that correct?
21	DR. ALAMGIR: A slide first, and then
22	two
23	MEMBER BANERJEE: But just in words, can
24	you just describe how it's coming in?
25	CHAIRMAN CORRADINI: Let's do it in words

Τ	later. Let's move on. I really think we've got to
2	finish.
3	DR. ALAMGIR: Realistically, or in TRAC
4	conservative analysis? Which one?
5	MR. WALLIS: Realistically.
6	DR. ALAMGIR: Realistically, what I would
7	expect. And I have seen the animation, and that's how
8	it looks like. Convection is the dominant mode, not
9	diffusion. Let me clarify that.
10	MR. WALLIS: Okay. Diffusion would take
11	forever.
12	DR. ALAMGIR: Any cooling for diffusion
13	for TRAC, I know it takes forever, yes.
14	You would expect that more of it will go
15	down readily because of it's heavier, and then
16	spread out to the core plate, across the core plate,
17	and then find the holes in the lower part of the
18	bundles.
19	It will also fall down like a jet, try to
20	find the spaces convenient to it, and eventually reach
21	towards the center line, affecting the bundle.
22	Now, boron negative reactivity, whether
23	it's inside the bypass or inside the core, is
24	doesn't really matter. But if it goes really inside
25	the core, its effect is right away. So what we will

1	see is the CFD analysis for boron is only for the
2	spaces external to the channels boxes.
3	We also show how it is ingested into the
4	channels. That is the scenario
5	MEMBER ARMIJO: In this analysis, the
6	boron doesn't get inside the channel. There is no way
7	that the boron can get in, or
8	DR. ALAMGIR: We are showing how it
9	MEMBER BANERJEE: It can from the bottom.
10	DR. ALAMGIR: Yes. We are showing how it
11	reaches the leakage holes, and how much of elemental
12	boron is ingested into the bottom. But not what
13	happens when it goes inside.
14	MR. WALLIS: In fact, the control rods
15	aren't there, most of it helps it to get in, is it?
16	DR. ALAMGIR: The case we analyzed with
17	all rods out. Also, we analyzed the sensitivity case
18	where all rods are in for a particular
19	MEMBER BLEY: Some rods are in.
20	MR. WALLIS: I think they blocked the flow
21	passage.
22	DR. ALAMGIR: Because some rods were in,
23	and then but not
24	CHAIRMAN CORRADINI: So can we move on
25	with the presentation?

1	DR. ALAMGIR: Yes. We will go to the
2	slide that has two red curves, please, in the
3	presentation.
4	MS. CUBBAGE: All right, all right, all
5	right.
6	MR. WALLIS: I think we're spending time
7	on this because it's a realistic case where something
8	bad might really happen.
9	MEMBER BANERJEE: Unlike the other
10	scenarios we have seen.
11	DR. ALAMGIR: Okay. Let me clarify a
12	couple of things. One is that we are just bringing
13	your recollection. The case I just made, the TRAC
14	in TRAC analysis, the outermost ring is solid. I
15	mean, the not the outermost, the second ring is
16	solid. That means it cannot penetrate radially into
17	the bypass. It has to go down and come up.
18	Therefore, here what we are showing is the
19	red curves are CFD analysis, the black curve is TRAC,
20	and we are showing mass of boron first in the bypass
21	as a function of time. And 185 seconds is
22	approximately the time, or 190 seconds, when the SLCS
23	system is turned on.
24	We are seeing that in CFD analysis the
25	mass is much more than in TPAC because in TPAC we

1	don't allow it to migrate radially.
2	MR. WALLIS: What does this do to
3	criticality? Can you show that on the map, too?
4	DR. ALAMGIR: That is in DCD.
5	MR. WALLIS: Oh, it's in the DCD. But
6	that's what really matters, isn't it?
7	DR. ALAMGIR: Yes, we have enough negative
8	reactivity insertion, so
9	CHAIRMAN CORRADINI: They are just showing
10	the way I view it is you are showing the bounding
11	analysis of TRAC shows reactivity insertion. Reality
12	is probably much better.
13	DR. ALAMGIR: Right. We are showing a
14	delayed and less
15	MR. WALLIS: TRAC does almost nothing.
16	MEMBER MAYNARD: Yes, I wouldn't even use
17	it.
18	MR. WALLIS: TRAC makes it go down and
19	come up again.
20	DR. ALAMGIR: Go down and then approach
21	the leakage holes and come up.
22	MR. WALLIS: Is that included in this
23	curve here?
24	DR. ALAMGIR: On the right-hand side?
25	MR. WALLIS: Does this include the other

1	way it goes in?
2	DR. ALAMGIR: I will explain the
3	difference between the two curves.
4	MR. WALLIS: But TRAC seems to be showing
5	almost nothing going in at all. So there's just
6	DR. ALAMGIR: The left-hand curve is the
7	mass of boron in the bypass spaces. The right-hand
8	curve shows the mass that is going into the channels
9	through the leakage holes.
10	MR. WALLIS: Almost nothing.
11	DR. ALAMGIR: Total mass, simulated mass.
12	MR. WALLIS: So TRAC says that it doesn't
13	work.
14	DR. ALAMGIR: No, that's
15	PARTICIPANT: TRAC says it goes up by
16	about three kilograms.
17	DR. ALAMGIR: No. She should understand
18	that this is the actual elemental mass of boron, not
19	just the liquid carrying it. So
20	MR. MARQUINO: TRAC says that enough goes
21	in to shut the core down within about a minute.
22	DR. ALAMGIR: I would say about 120, two
23	minutes.
24	MR. MARQUINO: Okay. Two minutes. TRAC
25	says the core shuts down in two minutes.

1	MR. WALLIS: But on the figure it seems to
2	be putting in almost nothing. I mean, one or two
3	kilograms. It's enough?
4	MR. MARQUINO: It doesn't take much.
5	DR. ALAMGIR: Even then it does shut it
6	down.
7	MEMBER ARMIJO: Well, what would you have
8	to do to TRAC to make it look more like the CFD
9	results? You've done a lot of artificial things with
10	TRAC.
11	MR. MARQUINO: So let me explain why we in
12	this case
13	MEMBER ARMIJO: But it shuts it down.
14	Does it shut it down?
15	MR. MARQUINO: Yes.
16	MEMBER ARMIJO: Okay.
17	MEMBER ARMIJO: What is the boron mass
18	kilogram that shuts it down? You know, draw a
19	horizontal line. At what point does TRAC shut it
20	down?
21	DR. ALAMGIR: If you look at
22	MEMBER ARMIJO: Is it 1 or .5 or where?
23	DR. ALAMGIR: About 320 seconds we shut
24	down in TRAC.
25	CHAIRMAN CORRADINI: I think what they're

1	asking, though, is
2	MR. MARQUINO: How many kilograms
3	DR. ALAMGIR: If you look at the area
4	under this black curve, that is equivalent to the
5	MR. MARQUINO: zero kilograms.
6	DR. ALAMGIR: to the mass, so
7	MR. MARQUINO: 3.0 kilograms.
8	MEMBER ARMIJO: Well, TRAC never gets
9	there.
10	MEMBER BANERJEE: This is not area
11	MR. MARQUINO: I'm sorry. I'm sorry.
12	MR. WALLIS: You don't get three on the
13	right there. On the right you get about one or one
14	and a half or something.
15	MR. MARQUINO: Yes, it's like one and a
16	half. Right.
17	MR. WALLIS: Well, maybe we need to look
18	at this separately another day.
19	CHAIRMAN CORRADINI: I would suggest they
20	move on. We'll look at this separately. I have it
21	listed.
22	DR. ALAMGIR: So, in summary here, it
23	lists summarizes
24	(Laughter.)
25	That's fine. I needed a break.

1	The conclusions are that there is
2	increased radial transport in the realistic CFD
3	analysis, great amount of boron entering the fuel
4	bundles compared to TRAC, and that that affects the
5	shutdown of the core. It's faster.
6	MR. WALLIS: So what do you propose to
7	argue now? That you should use CFD?
8	DR. ALAMGIR: We propose to argue that our
9	TRAC analysis is conservative, so, therefore, the
10	numbers we have provided in DCD that show certain
11	margin is even better with the realistic analysis.
12	MEMBER BANERJEE: Well, we will have to
13	look at this very carefully.
14	MEMBER ARMIJO: Well, maybe I missed the
15	point. But by looking at your chart, I'd say that you
16	won't be able to shut it down if you depend on that
17	analysis. But there must be a line there that I'm
18	missing that says
19	MR. UPTON: Way, this is Hugh Upton with
20	GEH. Are you guys being misled? Because what's
21	plotted here is just the boron mass in the inner ring,
22	in the inner core.
23	MR. WALLIS: The inner core. Well,
24	basically, you should
25	MR. UPTON: So it's not the total mass.

1	MR. WALLIS: fuel core and other parts
2	of the core.
3	MR. MARQUINO: There's a lot more boron
4	that's in the peripheral.
5	MR. WALLIS: Other parts of the core.
6	MR. UPTON: Correct.
7	MR. WALLIS: So if you would plot it if
8	you had plotted the reactivity, that might have helped
9	us.
10	MEMBER BANERJEE: I think this is too
11	superficial for us to read any
12	DR. ALAMGIR: And let me clarify the
13	driving reason for showing this plot is that there has
14	been some curiosity in terms of whether boron will be
15	able to penetrate.
16	MR. WALLIS: Right.
17	DR. ALAMGIR: And that this
18	MR. WALLIS: But you have experiments, do
19	you, and you have CFD, which just experiments?
20	DR. ALAMGIR: We have experiments in
21	yes.
22	MEMBER BANERJEE: It's pretty hard to
23	well, to do experiments I mean, CFD with boiling
24	stuff. So if the bypass in that bypass region, we
25	are not boiling, then it might be more realistic.

1	DR. ALAMGIR: That is the case.
2	MEMBER BANERJEE: Okay.
3	DR. ALAMGIR: We'll move on to the first
4	movie, which is which will show jet 1.
5	MR. WALLIS: Is this a movie of CFD or of
6	TRAC?
7	DR. ALAMGIR: This is the CFD
8	calculations, and that shows the lowest injector, and
9	it will show two of the nozzles on the side and about
10	30 to 45 seconds, how the boron spreads into these
11	are from outside to the center of the core.
12	MEMBER BLEY: On that other chart, when
13	you say inner core, how small a region are we talking
14	about?
15	DR. ALAMGIR: There are three rings. If
16	you divide 1,132 by three, that's the number of
17	bundles roughly in each.
18	MEMBER BLEY: Okay. Is the red the boron?
19	DR. ALAMGIR: Okay. So let's turn it on
20	again. I didn't look at the
21	MR. WALLIS: Do you have a time scale here
22	somewhere?
23	DR. ALAMGIR: Yes. Not on this one,
24	but
25	MEMBER BANERJEE: It must be 320 seconds.
İ	NEAL D. GDOSS

1	MR. WALLIS: But you say some of it comes
2	in and goes out again, isn't that
3	DR. ALAMGIR: Okay. So the injectors are
4	in these two corners, upper end of the pipe. And you
5	see the red injectors that inject the boron.
6	MR. WALLIS: It's interesting. You put a
7	pipe in one place, and then you take it all the way
8	around and then inject it somewhere else.
9	DR. ALAMGIR: And it spreads out along the
10	periphery, then inward. And we can pause it at any
11	moment you want.
12	MR. WALLIS: So when is it subcritical?
13	Almost right away, when the yellow gets in there?
14	DR. ALAMGIR: From what we know in TRAC
15	MR. WALLIS: I'm a bit surprised that the
16	red is sort of fluctuating. It goes in and out again,
17	and it also seems rather like a heartbeat. What code
18	did you use?
19	MEMBER BLEY: What is the effects I
20	can't read the scale, but
21	DR. ALAMGIR: The scale is .1, and this is
22	zero.
23	MEMBER BLEY: Yes.
24	DR. ALAMGIR: And so red, yellow, and
25	orange, those are good.

	MR. WALLIS: And green is what you need to
2	make it subcritical, is it, or
3	DR. ALAMGIR: That is not really
4	superimposed timing, and so on, mass of boron. But
5	we see it's possible to
6	CHAIRMAN CORRADINI: I think we should
7	move on, and I think this is a topic we will want to
8	investigate further in a separate get-together.
9	DR. ALAMGIR: How about a free movie? I
10	have a second one.
11	CHAIRMAN CORRADINI: Okay.
12	DR. ALAMGIR: Let's get
13	MEMBER BANERJEE: Amuse us.
14	CHAIRMAN CORRADINI: Not too much
15	amusement today. We want to
16	DR. ALAMGIR: Critical slides on an
17	injector, just five degrees offset. So you see the
18	four injectors, they are injecting, and you see that
19	they go in and then slosh around.
20	MR. WALLIS: So it flows along the core
21	plate and
22	DR. ALAMGIR: Yes, and also at the
23	location of the injectors.
24	CHAIRMAN CORRADINI: This is still
25	external to the subassemblies.

	DR. ALAMGIR: External to the
2	subassemblies, yes. One more time, Dr. White, and
3	then my curiosity will
4	MR. WALLIS: It seems to really build up
5	at that whatever that place is that is part way in
6	there.
7	DR. ALAMGIR: That is the center of the
8	core. It's
9	MR. WALLIS: That's the center of the core
10	there? Which no, the place there. What is this
11	other blue bar there, the big blue bar?
12	DR. ALAMGIR: Oh, this we are looking
13	at an offset, a five-degree offset, so we are probably
14	seeing
15	MR. WALLIS: What is that big bar there?
16	MR. MARQUINO: I think that is where the
17	so the thin lines or gaps where you're looking at
18	the space between the sides of a channel, and there is
19	one place where a channel is exactly lined up.
20	CHAIRMAN CORRADINI: It sliced it. So you
21	are looking at it longitudinally rather than width-
22	wise, that's all.
23	MR. WALLIS: Oh, okay. So it's
24	artificial. It doesn't mean much.
25	MR. MARQUINO: So this CFD analysis has

1	proved that if you inject a dense fluid into a less
2	dense fluid, the dense fluid will settle at the
3	bottom.
4	MEMBER ARMIJO: That gravity works.
5	(Laughter.)
6	CHAIRMAN CORRADINI: Okay. Are you
7	what's next?
8	MR. MARQUINO: We're done with the CFD.
9	I think we have one slide on the other special events.
10	CHAIRMAN CORRADINI: Well, that would be
11	good. I was told that you guys wanted to show a CFD
12	of your special events.
13	DR. ALAMGIR: Dr. White just pulled up
14	another one, and, as we close, this is as if you are
15	inside a soft drink can looking at the rim, and it's
16	coming at you.
17	MEMBER BANERJEE: X-rated color fiction.
18	CHAIRMAN CORRADINI: So did you want to
19	show a simulation of another special event?
20	MR. MARQUINO: No.
21	CHAIRMAN CORRADINI: Oh, okay.
22	MR. MARQUINO: No, we just have one slide
23	on the other special events in 15.5.
24	CHAIRMAN CORRADINI: Okay.
25	MEMBER BLEY: But just to make sure if
	NEAL R GROSS

1	we never looked at this again, it's GEH's claim that
2	even with TRACG and all of the conservatisms that you
3	put in, and the way you set it up and run it, you can
4	shut this plant down.
5	MR. MARQUINO: Right.
6	DR. ALAMGIR: Yes.
7	MEMBER BLEY: The CFD just says you are
8	very conservative, but that's you don't need it.
9	MR. MARQUINO: Right.
10	MR. WALLIS: Well, I think with TRACG you
11	keep removing conservatisms until it works, and then
12	you still have some left.
13	MR. MARQUINO: Yes. To be truthful, there
14	was numerical diffusion before we did this
15	blockage, when we compare it to the test, it was
16	numerical diffusion, so we put the blockage in, and
17	the blockage is very conservative but it still meets
18	the acceptance criteria, so we're good.
19	MS. CUBBAGE: All right. Last slide in.
20	DR. ALAMGIR: Oh, yes. What's summarized
21	here are the special events, some of the measures
22	against acceptance criteria. The one level limiting
23	event is station blackout. It is just summarized in
24	here.
25	For the overpressure plant design, the

1	it's the MSIV isolation position scram event that
2	gives us pressures below 110 percent of design. Then,
3	the maximum pressure in the vessel for an ATWS we
4	showed was about 1,360, much less than the surface
5	level C, 120 percent, which is 1,500 psig.
6	And plant maintains good lower
7	temperature in containment and in the suppression
8	pool, and containment pressures are below the design
9	limit. So that is a summary of special events.
LO	Thank you for listening.
L1	MR. MARQUINO: Just to summarize, there is
L2	also two appendices in 15, the event frequency
L3	calculations in 15A and the radiation source term in
L4	15B.
L5	Next slide.
L6	Chapter 15 shows that ESBWR meets all of
L7	the regulatory requirements for AOO, special events,
18	and DBAs.
L9	MR. WALLIS: So some of those frequency
20	things will be very iffy. Predicting when someone is
21	going to remove control rods during refueling must be
22	extraordinarily difficult to do realistically.
23	MR. MARQUINO: I would agree that probably
24	some of the human factor probabilities have the most
25	uncertainty with them. Concerning ESBWR's design for

Τ.	l lower event frequency, we developed an infrequenc
2	event category and included it in the licensing basis
3	for the plant. ESBWR's passive safety features and
4	large vessel produce a slower dynamic, relative to
5	previous designs.
6	MR. WALLIS: You've done something I
7	mean, you've done a very good job, thermal-
8	hydraulically to design, but most serious events seem
9	to involve human error. Have you done something
10	really serious to reduce the probability of human
11	error?
12	MR. MARQUINO: Yes. We have a large human
13	factors engineering effort going on. I don't think
14	you've reviewed Chapter 18 yet.
15	MR. WALLIS: No.
16	MR. MARQUINO: But we are doing things
17	like developing there is like 40 simulators on
18	different computers.
19	MR. WALLIS: Have you made it very simple
20	to control, difficult to make mistakes, and that sort
21	of thing?
22	MR. MARQUINO: Lots of water.
23	MR. WALLIS: Okay. We'll hear about that.
24	MR. MARQUINO: That's the key.
25	CHAIRMAN CORRADINI: Okay.
ı	

T	MR. WALLIS: That's probably the most
2	important thing.
3	CHAIRMAN CORRADINI: Other questions for
4	the members?
5	MR. WALLIS: A lot of water above the
6	core.
7	CHAIRMAN CORRADINI: We'll take a 10-
8	minute break. Back at 10:30.
9	(Whereupon, the proceedings in the above-
10	entitled matter went off the record at
11	10:20 a.m. and resumed at 10:32 a.m.)
12	CHAIRMAN CORRADINI: Why don't we begin?
13	I was told that I've erred on the side of 15 minutes
14	is the canonical time, but we've got most of everybody
15	back, so let's get started.
16	Mr. Bavol? Bavol?
17	MR. BAVOL: Bavol.
18	CHAIRMAN CORRADINI: Bavol. Excuse me.
19	You'll start us off?
20	MR. BAVOL: Yes, I will.
21	CHAIRMAN CORRADINI: Okay.
22	MR. BAVOL: Good morning. For those of
23	you who were not present at yesterday's presentation,
24	my name is Bruce Bavol. I'm the lead project manager
25	for ESBWR design certification review for Chapter 15,
	T. Control of the con

Transient and Accident Analysis.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Our team of reviewers will be briefing the Subcommittee today on the ongoing review of ESBWR DCD, and the following sections are going to be covered, 15.1. Introduction; 15 Alpha, Event Frequency Determination; 15.2, Anticipated Operational Occurrences; 15.3, Infrequent Events; 15.4, Accident Analysis; and then we'll be talking about ATWS and boron mixing. And also, we are going to be answering the Committee's questions as we go along.

I would also like to note that 15.4, Jay
Lee will be speaking on Chapter 6.5, as was discussed
at yesterday's meeting.

I'd like to reiterate, Amy Cubbage is the lead -- the team leader for this project, Chapter -- or for the ESBWR project, and the lead technical reviewers are going to be George Thomas, Dr. John Lai, Dr. Lambrose Lewis, Jay Lee, Ben Parks, and Chris Boyd from Research.

This slide indicates a summary of the regulations and guidance, pass through that one. And Chapter 15, RAI Status Summary, is as follows. The original number of RAIs started out at 119. We resolved 94, and currently we have 25 open items.

With that, I would like to introduce

NEAL R. GROSS

1	George Thomas and Section 15.1.
2	MR. THOMAS: Good morning. I want to talk
3	about these four topics, the slide pages on the ESBWR,
4	and the events of evolution and the acceptance
5	criteria and the analysis method and the requirements.
6	So ESBWR GEH eliminated more than 10
7	activeESF systems. Also, there were four I&C channels
8	for the safety systems, and there were triple
9	processors for the control systems. And all the I&C
10	in the ESBWR are all pivotal, so because of all this
11	we agreed that the event frequency will be much less
12	than the current operating boiling water reactors.
13	MR. WALLIS: What do you mean it's
14	expected to be less? Do you mean you're going to hold
15	them to higher standards?
16	MR. THOMAS: Because they've got this N
17	minus 2.
18	MR. WALLIS: Just a general statement.
19	Does it mean anything in terms of regulation?
20	MR. THOMAS: The regulations don't
21	MR. WALLIS: Do you want new reactors to
22	have a lower frequency? Is there any kind of an
23	expectation in terms of numerical values?
24	MS. CUBBAGE: That wasn't meant to be an
25	expectation.

1	MR. WALLIS: Just
2	MS. CUBBAGE: It was meant to say that we
3	agree with GE's
4	MR. WALLIS: Just a kind of general
5	statement. It's not a regulatory statement of any
6	sort?
7	MR. THOMAS: It's a staff that did it, you
8	know, based on the
9	MR. WALLIS: But does it imply anything in
10	terms of how you're going to regulate?
11	MS. CUBBAGE: No.
12	MR. THOMAS: No.
13	MR. WALLIS: No, it doesn't. Okay. Thank
14	you.
15	MR. THOMAS: In the regulation, right.
16	Okay. The next one.
17	This terms the AOOs, infrequent events,
18	DBA, all these terms came before for I just want to
19	say all of these terms are defined in our standard
20	review plan, the new standard review plan which we
21	issued in March. So these terms are already commonly
22	known, actually.
23	Next one.
24	This table gives the details of the
25	criteria and the frequency of each category. Okay?

	And for this we assumed the pump is going to operate
2	for 100 years instead of 60 years. So the events, you
3	know, the AOOs, actually define which can have a more
4	than 10 ⁻² . Okay?
5	The infrequent will be less than 10^{-2} , and
6	the criteria for both AOOs and infrequent events are
7	there is no core inquiry. But the pressure is
8	different, the RPV pressure. For the AOOs, the
9	criteria is that it should be below 1,375 psig, but
LO	for infrequent events that can go up to 1,500 psig.
L1	So there is a difference between these two categories.
L2	And we had a problem in accepting this
L3	estimated criteria of 1,500 psig. We went to have
L4	discussions with GE. And we made a decision, because
L5	according to ASME Section 11 requirement, you know, if
L6	the RPV pressure exceeds 1,375 psig, then they had to
L7	do the inspection and the analysis. So which one
L8	that one we said, okay, you know, that can go up to
L9	Level C for these infrequent events.
20	CHAIRMAN CORRADINI: But your judgment
21	I just want to make sure I understand your judgment.
22	Your judgment was because the frequency is small
23	MR. THOMAS: Right.
24	CHAIRMAN CORRADINI: was lower, you
25	allowed them to come up to the criterion of 1,500.

1	MR. THOMAS: Level C limit.
2	CHAIRMAN CORRADINI: Okay. Thank you.
3	MR. THOMAS: Next one.
4	For the special events, you can see the
5	criterias are different on a case-by-case basis.
6	Station blackout, ATWS, you know, they all vary from
7	each case. You know, it's all different.
8	CHAIRMAN CORRADINI: But in some sense,
9	just to make sure I understand, too, with the
10	infrequent events, it was a staff judgment to come
11	down to 2.5 rem.
12	MR. THOMAS: Right.
13	CHAIRMAN CORRADINI: Of the TEDE
14	MR. THOMAS: Right.
15	CHAIRMAN CORRADINI: versus
16	MR. THOMAS: Right.
17	CHAIRMAN CORRADINI: Okay.
18	MR. THOMAS: That's a very small fraction
19	of the 25.
20	CHAIRMAN CORRADINI: Yes, I understand.
21	MR. THOMAS: 25 is the limit.
22	CHAIRMAN CORRADINI: Sure.
23	MR. THOMAS: So we only have a very small
24	
25	MR. WALLIS: You're accepting this, or is
1	

1	this the GE-Hitachi proposal?
2	MR. THOMAS: What?
3	MR. WALLIS: You are accepting this 2.5,
4	and all that sort of thing? Are you allowed to do
5	that?
6	MR. THOMAS: We've got the limit is 25,
7	so we are saying that it is
8	MR. WALLIS: You are accepting this new
9	category of accidents. Is this going to appear in the
10	regulations somewhere?
11	MR. THOMAS: Yes. The regulation says it
12	should be can go up to 25 rem.
13	MR. SHUAIBI: Because there is not a
14	regulation there is not a specific regulation on
15	every AOO and transient that is analyzed in
16	Chapter 15. So this is your question is: is this
17	their proposal, or is this something that we are
18	accepting? It's both. They proposed it.
19	We went through a long discussion with GE
20	about what this means and what it means in the context
21	of the frequency of the event and the consequences of
22	the event. And what we're briefing you today on is
23	that they proposed it, we've gone through that
24	discussion, we're accepting it.

MR. WALLIS: You are accepting it.

1	MS. CUBBAGE: And it is consistent with
2	regulations and other regulatory practice of similar
3	situations.
4	MR. WALLIS: So it has been done before?
5	MS. CUBBAGE: Not exactly, because we
6	haven't licensed an ESBWR before. But there are
7	similar situations where there is precedence for
8	having an event that is not a design the design
9	basis event that has a dose criteria that is a
10	fraction of the Part 100 limits.
11	MEMBER ABDEL-KHALIK: How do these how
12	does this accident category compare with the Condition
13	3 category in the whole ANS accident classification
14	scheme?
L5	MR. THOMAS: The BWR, we don't really
L6	follow that standard. We mostly
17	MEMBER ABDEL-KHALIK: I understand.
18	MR. THOMAS: You know, we are following
19	the regulations, and in the regulations there are
20	really two categories, AOOs and the accidents.
21	CHAIRMAN CORRADINI: I think what he's
22	asking you is that might be true, but did you
23	happen to compare?
24	MEMBER ABDEL-KHALIK: Yes. Right.
25	MR. THOMAS: In our standard review plan,

High

we -- they are not having this standard at all. I don't think the NRC endorses this standard. You know, in the old SRP, the standard was not there. MEMBER ABDEL-KHALIK: Okay. MR. THOMAS: This is the same approach we always use in the Chapter 15. frequency events can have a small consequence, and the lower frequencies can have more severe consequence. So this concept is not new at all, because they are always this way from the beginning. So we are not deviating from this approach.

Most of the events in Chapter 15 are all outlined the Part D, and we are going to talk about Part D today in the afternoon. And our position is that, you know, all AOOs and the infrequent events identified in the SRP, which are applicable for ESBWR, should be analyzed. And we don't do the Chapter 15 review or base it on a PRA. We are doing, you know, deterministic type of review.

So even though we calculate the event frequency, we don't do that review based around PRA. And when the COL applications come, then are we going to do only the limiting case, if they don't change the If they keep the same 14E, then the same thing, you know, then they are allowed to do all these events

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

	·
2	limited cases.
3	Now, Dr. John Lai will talk about the
4	event frequency. Oh, sorry, I've got one more, right?
5	Yes. Right.
6	MR. WALLIS: There was something you said
7	in your SER, the draft, that TRACG was not qualified
8	for these new kind of events, the IEs? And there
9	seemed to be the implication seemed to be that they
10	can't use it for
11	MR. THOMAS: I think this afternoon we are
12	going to cover Chapter 31. At that time, we will go
13	through TRACG for
14	MR. WALLIS: Well, I read on page 5 that
15	TRACG is not qualified for this new category of
16	events, these IEs. So how can they use it for
17	MR. THOMAS: No. In the subject of the
18	topical report, most of the events there are analyzed,
19	AOOs. They are not
20	MR. WALLIS: Yes. But now there is a new
21	category for which you can't use TRACG, apparently.
22	MR. THOMAS: Yes. That is one of the open
23	items in Chapter 31.
24	CHAIRMAN CORRADINI: Can we get a
25	clarification from the staff about that?

again in the COL stage. They have to do only the

1	MS. WILSON: Yes. Hi, Dr. Wallis. It's
2	more of a semantic thing. When the topical report for
3	TRACG on AOOs was submitted, I don't think at that
4	time GE had created the new category and separated the
5	events out. So the events that TRACG is qualified for
6	covers the infrequent events, but the topical report
7	just hadn't been updated to that point, so just that
8	the language
9	MR. WALLIS: Maybe it needs to be
10	MS. WILSON: was not updated.
11	MR. WALLIS: more clearly stated, then,
12	because I got the impression from what I read in your
13	draft SER that you couldn't use it for it hadn't
14	been qualified for AEs. I mean, that maybe just needs
15	to be clarified.
16	MR. DONOGHUE: I think you've got to
17	understand that we are writing an SE that was based on
18	Rev 3 and some preliminary information. And, you
19	know, now as more information is coming in, yes, we
20	have to update it. Right.
21	MR. THOMAS: Okay. We had a couple of
22	issues. You know, we went through this. Initially,
23	we did not want to put the safety limit of CPR in the
24	technical specifications, and they want to put only
25	the criteria. And we went through our discussions

	with GE, and GE agreed to the safety limit in CPR. So
2	that was an issue we spent a lot of time.
3	And this one, ASME Level C issue, I
4	already talk about that one.
5	CHAIRMAN CORRADINI: So could you take a
6	bit of time, just a minute, about the third bullet?
7	So what was I remember reading about this, but I
8	didn't appreciate the difference. GEH was suggesting
9	that acceptance criteria of 99.9 for fuel rods, and
10	your response was what?
11	MR. THOMAS: We wanted a numerical value
12	in the technical specification displayed in the
13	current plants, so that if there is in regulatory
14	actions, we had to put a penalty for the MCPR. So
15	that whenever you do a licensing action, we change the
16	safety limit MCPR.
17	CHAIRMAN CORRADINI: So the SLMCPR
18	MEMBER BANERJEE: They want a spec on
19	that.
20	MR. THOMAS: Right.
21	CHAIRMAN CORRADINI: Right. The spec
22	but it's a different spec. GEH was proposing a
23	different spec, which unless I'm trying to
24	understand the subtle difference. It would avoid the
25	same problem. The

there. They only say this criteria, 99.9 percentage
of the fuel rods would be expected to avoid boiling
transition.
CHAIRMAN CORRADINI: Right.
MR. THOMAS: They didn't want to put any
number there. So we
CHAIRMAN CORRADINI: That's a number.
That's just a different way of expressing the number.
I'm not
MR. THOMAS: No, no, that was the
criteria. That's not the actual number.
MEMBER BANERJEE: I think it is a lot
easier to deal with the way they are doing it.
MR. THOMAS: Right. Mostly it comes with
a I think it most likely may be like 1.19, and the
operating limit will be like 1.30. So there is a lot
of margin, and, you know, so that number 1.19 can be
there for, you know, a long time, if they don't, you
know
MEMBER BANERJEE: And you will put your
uncertainty on that number specifically, right?
MR. THOMAS: No, that comes with the
number.
MEMBER BANERJEE: And then, you will

1	put
2	MR. THOMAS: And we
3	MEMBER BANERJEE: your penalty on that.
4	MR. THOMAS: we will review that
5	number, and we
6	MEMBER BANERJEE: If necessary, yes.
7	MR. WALLIS: Now, this SLMCPR is something
8	that is plant-specific, isn't it?
9	MR. THOMAS: Yes.
10	MR. WALLIS: And I have always been
11	mystified by them.
12	CHAIRMAN CORRADINI: So let me just I'm
13	still not there yet. I'd like to hear from GEH about
14	this.
15	MR. MARQUINO: Okay. A lot of the
16	discussion with the staff had to do with the fact that
17	there is not a DNBR meter or a CPR meter in the plant.
18	And they pointed out the part of 10 CFR that requires
19	it says something like a plant parameter must be
20	measured and be a safety limit.
21	So we weren't asking for a change in the
22	99.9 value, but it was discussion about how is that
23	measured, and where we compromised on was to put a
24	safety limit, steady state CPR value in the tech spec
. 1	

as the safety limit CPR. And if we make a significant

1	fuel change where we want to change that number, that
2	allows the staff to review the justification of the
3	change.
4	CHAIRMAN CORRADINI: Okay. Thank you.
5	MR. SHUAIBI: Dr. Corradini, I guess the
6	short answer from our perspective is that by putting
7	safety limit MCPR in the tech specs it allows more
8	regulatory control over the changes that they could
9	make. They would have to come in for review if they
10	make certain changes when we have safety limit MCPR in
11	a tech spec, whereas if you put 99.9 percent, the way
12	it's worded in there, it gives more flexibility. So
13	that was kind of the discussion and debate that we
14	went through.
15	CHAIRMAN CORRADINI: Okay. Thank you.
16	MR. THOMAS: Just a bit on the temperature
17	operating domain. We already had discussions about
18	this yesterday, and this will come back under our
19	Chapter 15 review, so
20	CHAIRMAN CORRADINI: We'll come back to
21	this.
22	MR. THOMAS: Yes, right. Dr. John Lai
23	will talk about this.
24	DR. LAI: Yes, my name is John Lai. I am
25	in the PRA Branch for reviewing ESBWR and boiling
1	

water related PRA issues. I am going to talk about the staff evaluation of Chapter 15 Alpha, just that appendix.

I actually was hoping GE, you know, would make a presentation before me -- that, you know, you won't be the first one to hear me talking about that.

There are three methodologies used to determine the infrequent event frequency. The first one is the initiating event is modeled in the ESBWR PRA. The number is directly taken from the ESBWR PRA. The example is like for a turbine trip we have an initiating event frequency there, just taken directly from the PRA.

But in some instances, the more detail is required, then additional analysis, not giving the PRA, are conducted. For example, for the turbine trip with total turbine bypass valve failures, so that gets into a little bit more detailed evaluation, is presented in 15 Alpha, 15A.

The second one is the event frequency is determined on the actual BWR, with experience. But, you know, GE takes the credit for the new design. For instance, for stuck open lead valve frequency, they are not using the numbers directly from the operating experience. They are taking the credit of the new

1	designs. I don't know if I need to get into the
2	detail on that or not. Yes?
3	CHAIRMAN CORRADINI: No.
4	DR. LAI: No?
5	CHAIRMAN CORRADINI: I understand what
6	you're saying.
7	DR. LAI: Okay.
8	CHAIRMAN CORRADINI: Keep on going.
9	DR. LAI: All right. The next slide,
10	please.
11	The third one is, for events involving
12	multiple hardware failures or
13	MR. WALLIS: Wait a number. this
14	frequency the only criteria you have is that it's
15	lower than 10^{-1} , 10^{-2} .
16	DR. LAI: Exactly.
17	MR. WALLIS: Is the only criterion.
18	DR. LAI: Right.
19	MR. WALLIS: It's not very difficult to
20	meet that.
21	DR. LAI: Right. So
22	MR. WALLIS: So it's not a very useful
23	criterion.
24	DR. LAI: Yes. My job is just, you know,
25	verify that, for all of these IE

1	MR. WALLIS: But the real criterion for
2	this category is consequence, isn't it?
3	CHAIRMAN CORRADINI: No. No, it's
4	frequency.
5	MR. WALLIS: How do you decide
6	CHAIRMAN CORRADINI: This is selection
7	criteria.
8	MR. WALLIS: How do you decide it's not a
9	design basis accident?
10	CHAIRMAN CORRADINI: Frequency.
11	MR. WALLIS: Frequency? Consequence
12	doesn't come into it?
13	CHAIRMAN CORRADINI: If it's too frequent,
14	you're going to put a more stringent requirement on
15	it.
16	MR. WALLIS: If you had a frequency so
17	that an infrequent event could be worse in consequence
18	than a DBA?
19	CHAIRMAN CORRADINI: No. One-tenth the
20	consequence.
21	MR. WALLIS: Oh. So the consequence is
22	really what matters? The one-tenth the consequence is
23	what really makes them different.
24	CHAIRMAN CORRADINI: So the curve that you
25	don't want to go to in the technology-neutral

1	framework is the perfect way of thinking about this.
2	Frequency, consequence they are going down a step,
3	and they've said that their plant accident is low
4	enough frequency that they are allowed to go to a
5	different regime of consequence.
6	MEMBER KRESS: Makes a lot of sense.
7	CHAIRMAN CORRADINI: Makes a whole lot of
8	sense. Remember that, that we liked so much?
9	(Laughter.)
10	Just teasing with you.
11	MR. WALLIS: The DBA is going to be worse,
12	right? DBAs can be worse. That's what makes them
13	different.
14	CHAIRMAN CORRADINI: Yes.
15	MR. WALLIS: Okay. Thank you. That's the
16	real thing that makes them different.
17	MEMBER KRESS: And you have to throw in
18	sigma failure criteria.
19	MR. WALLIS: Because these infrequent
20	events could have a very, very low frequency, right?
21	CHAIRMAN CORRADINI: By definition, they
22	are infrequent. They are bounded, right? Let's go.
23	DR. LAI: The third methodology is for
24	events involving multiple hardware failures or human
25	errors. The event frequency is based on conservative

1	estimates of the hardware failures, including the
2	common cause failure, CCF, and the human errors, the
3	events. Using this methodology are a lot of feedwater
4	heating, also with the control rod run-in, and
5	inadvertent shutdown of cooling function operations.
6	The staff reviewed all the 16 infrequent
7	event frequencies, and we issued the two RAIs, and
8	they have been subsequently resolved. So we found the
9	results are acceptable.
LO	Okay. If there are no more questions, I
11	can introduce Dr. Lois.
L2	DR. LOIS: Thank you. It seems to me that
L3	just about everything I had to say has already been
4	discussed. Chapter 15.2, the AAOs and all that's been
L5	said in 15.3 for 15.2, which has been pointed out a
L6	number of times, is still a work in progress. We
L7	still have some responses to receive.
8	We already received resolved some of
L9	our original RAIs. However, they are not reflected in
20	my couple of slides that I have coming up.
21	As Mohammed Shuaibi pointed out, this is
22	based on Rev 3 of the DCD, and Rev 4 is out, and Rev 5
23	is forthcoming, which is not reflected in what
24	MR. WALLIS: Can I go back to my argument
25	here? Why isn't a LOCA an IE? It doesn't have any

1	consequences. It's infrequent, so why couldn't it be
2	called an IE?
3	CHAIRMAN CORRADINI: We're not asking what
4	consequences it has. We're asking what consequences
5	it's allowed to have.
6	MR. WALLIS: Oh. So the whole thing is an
7	imaginary game again, right?
8	CHAIRMAN CORRADINI: Well, it's a limit.
9	It's a limit.
10	MS. CUBBAGE: The ESBWR is being licensed
11	under our traditional licensing regime, our
12	traditional regulations. They are deterministic. GE
13	simply justified having a greater consequence for some
14	traditional AOOs based on their lower frequency.
15	MR. WALLIS: What matters here
16	MS. CUBBAGE: Everything else is
L7	MR. WALLIS: What matters to me is not
18	your games you are playing. It's what perception the
19	public has when they look at what you're doing. You
20	have defined a new class of accidents. You are saying
21	that the that they are somehow different. And
22	then, you are saying there are a certain kind of
23	stylized accidents which we still call DBAs, for
24	reasons which are not clear to me.

You are changing the words which describe

your job. And that to me is a very important thing. 1 2 You can't just casually do it. 3 MS. CUBBAGE: Okay. 4 MEMBER SIEBER: They will still be AOOs, 5 right? When you say you -- we 6 MR. DONOGHUE: 7 casually did something, you know, we changed the SRPs. 8 We went through a process that involved public 9 So, you know, I think we are doing interaction. 10 things in accordance with the regulations. We have 11 modified our guidance. We followed the procedures to 12 modify the guidance, and that's what we are using for 13 this review. I understand, you know, your point, and 14 there are, you know, mechanisms to use to change the 15 requirements that we are supposed to satisfy. 16 that's what our reviewers are using -- the regulations 17 and the guidance that are in place. Okay? 18 MR. MARQUINO: I have to stick up for the 19 staff here. 20 (Laughter.) 21 This is an area where the regulations were 22 very complex, and we had to go through them, together 23 with the staff, and GE was asking for something that was non-traditional. But we believe that it is 24 25 covered by the current regulations, and we were able

1 to work through to agreement eventually. 2 And to answer your specific question about 3 DBAs, basically, what we are doing here is, as Amy 4 said, there was a set of events called AOOs, and some 5 of the events that were in that bin weren't really 6 AOOs by the GDC definition, which is expected during 7 the life of the plant. 8 So all GE was asking for is these events 9 really aren't AOOs, and we can show you that they are 10 not AOOs, and we want to move them into something else 11 with relaxed acceptance criteria. And we are able to 12 work through and do that. 13 MEMBER BANERJEE: But did you need the 14 relaxed acceptance criteria? 15 MR. MAROUINO: In terms of needs, our 16 would like these relaxed customers acceptance 17 criteria, because it gives them better fuel economics. 18 CHAIRMAN CORRADINI: But why would -- I 19 mean, logically, if I have something -- if I have 20 something that is not going to occur once in the plant 21 lifetime, but once in 100 plant lifetimes, 22 wouldn't I allow for a relaxed acceptance criteria? 23 I don't want to impose the consequence of an AOO --24 MEMBER BANERJEE: I'm only asking a 25 rhetorical question.

1	CHAIRMAN CORRADINI: Oh.
2	MEMBER BANERJEE: Did you
3	MR. MARQUINO: Well, we could have
4	licensed the plant with a higher operating CPR limit,
5	and there would be more fuel bundles required every
6	refueling outage because of that.
7	MEMBER BANERJEE: So you get relaxation on
8	the OLMCPR.
9	MR. MARQUINO: Yes.
10	MEMBER BANERJEE: Is that what you were
11	looking for?
12	MR. MARQUINO: Yes.
13	MEMBER BANERJEE: Okay. That actually
14	explains why you are doing it.
15	MR. MARQUINO: But, Dr. Wallis, I also
16	want to add that for a LOCA
17	MEMBER BANERJEE: Nobody does stuff for
18	nothing.
19	MR. MARQUINO: Dr. Wallis, I also want to
20	add that the frequency of a LOCA is not just less than
21	10^{-2} . It's much less than that. So if you want to
22	put numbers on, what's the frequency of a LOCA, and
23	what's the frequency of an infrequent event, it would
24	be less than 10^{-2} , but it would be much less, so you
25	may want us to go 10^{-4} , or something like that, to say

	It's a DBA. So there is it makes sense what we re
2	doing.
3	MEMBER BANERJEE: So how much do you gain
4	on the OLMCPR?
5	(Laughter.)
6	From 1.4 to 1.3, or something like this?
7	MR. MARQUINO: It's about .05. If you
8	look in Chapter 15.3
9	MEMBER BANERJEE: .05.
10	MR. MARQUINO: Yes. We have the deltas in
11	15.3, so you can look at the worst delta in 15.3, the
12	worst delta from 15.2, and that's what we're gaining.
13	MR. WALLIS: So this is a relaxation of
14	the regulations that enables you to do something you
15	couldn't otherwise do.
16	MR. MARQUINO: Not a relaxation of the
17	regulations. It's within the it's sort of the
18	traditional BWR licensing basis. It's a change to
19	that, but it's still within the regulations.
20	MEMBER BANERJEE: It's based on our
21	frequency argument now.
22	MR. WALLIS: Within the regulations, if
23	you didn't have these IEs
24	MR. MARQUINO: Yes, because we would be
25	conservatively putting IE events in the AOO category.
ļ	

1	MEMBER BANERJEE: For the IE events, the
2	OLMCPRs are not calculated the same way, because the
3	frequencies are different. Therefore, the
4	uncertainties are different, and everything changes,
5	right?
6	MR. MARQUINO: Yes. Now you are getting
7	into the details of the analysis for the IEs. We set
8	the operating limit based on the AOO events, and then
9	we will do checks on the IE events to make sure that
10	that 1,000 fuel rod failure number doesn't change as
11	we come up with future core designs.
12	MR. WALLIS: Have you gone through that
13	procedure, or is it still to come?
14	MR. MARQUINO: No. Well, we've gone
15	through it for the equilibrium core and the initial
16	core.
17	MEMBER BANERJEE: For the IEs.
18	MR. MARQUINO: Yes.
19	CHAIRMAN CORRADINI: Okay. Go ahead.
20	DR. LAI: Actually, to echo what Marquino
21	said, a review of 15.2, the AOOs indicate that number
22	one, the number of frequencies implied number of these
23	events. And, number 2, that the design is sometimes
24	more forgiving than the classical BWRs that we already
25	have experience with.

Okay. Let's go on to the 15.3. For the 1 2 frequent events, we essentially analyzed them, or 3 reviewed them rather, like what classically in the 4 standard review plan is referred to as an accident, 5 regardless of what GEH -- what they call them. The, of course, LOCAs you can review 6 7 separately, and what was said before -- the operating 8 limit for the MCPR is 1.3. As far as we are 9 concerned, as far as this review is concerned, these values assumed -- and going back to Dr. Wallis' 10 11 argument before -- the topical report for the -- on which this is based and the analysis was done has not 12 reached us. 13 Mainly we assume that that report 14 15 correct, that that -- the code on which this analysis 16 was based will turn out to be okay. It's in that context that we are stating that the margins of the 17 18 ESBWR with respect to the upper limit are larger than 19 what --20 MR. WALLIS: But this OLMCPR does change 21 from plant to plant, doesn't it? 22 DR. LOIS: That is with the fuel change, 23 eventually. What is reviewed there is the equilibrium plant that Mr. Marquino referred to --24 25 MEMBER BANERJEE: But is this partly due

to the fact that some AOOs have moved to the IEs now? 1 2 DR. LOIS: Yes, that's part of it. There is, of course, 3 MEMBER BANERJEE: 4 other aspects, too. 5 MR. MARQUINO: Well, the other aspect is what we were -- we have written down, that we want to 6 7 see the -- with the 14E fuel, we want to see the data. 8 MEMBER BANERJEE: Right. 9 In that case, then let me DR. LOIS: 10 concentrate on some of the differences we had, and the arguments and the questions that we've asked GE. 11 12 There are two transients -- the regular load ejection 13 and the pressure regulator failure -- that they developed, for obvious reasons if you think about it 14 15 -- very sharp power peaks. And the DCD did not 16 contain an analysis of that either for the clad stress or possibly fuel melting. Those questions have been 17 answered in the Rev 4, which is not included here in 18 this review. 19 20 Next one. 21 The other problem we had with this is the 22 DCD stated that either these were impossible, not 23 going to happen, or inconceivable if you wish, and some of them they said, "Well, yes, it may happen. 24

However, it will be prevented with the extensive

1	instrumentation and the design of the plant."
2	As Mohammed Shuaibi pointed out yesterday,
3	we asked GE to analyze them, find out what the
4	consequences are, what the frequencies are, and then
5	we will decide how to dispose of them, and where in
6	that stage
7	MR. WALLIS: It is very difficult to
8	estimate the frequency of something like this. It is
9	very difficult to estimate the frequency.
10	DR. LOIS: Well, John Lai might have a
11	response to that.
12	DR. LAI: The staff in my section, we
13	are looking to this analysis by GE. GE's approach is
14	by using the we call it function linking analysis.
15	Eventually, just take in consideration all the data
16	amount possible, and come up with the initiating
17	event.
18	MR. WALLIS: So this analysis has been
19	submitted, and you're reviewing it now, or is it in
20	progress? Finished?
21	DR. LAI: This would be considered an AOO?
22	DR. LOIS: No, these are IEs. Which is
23	actually the classical
24	MR. WALLIS: Because the frequency is
25	low

1	DR. LOIS: Yes.
2	MR. WALLIS: you hope.
3	MEMBER BANERJEE: In spite of the fact
4	that it has occurred certainly in Japan, well, that is
5	one of the reasons that we are going to
6	DR. LAI: The Shika reactor, is that right?
7	MEMBER BANERJEE: in 1999. However, of
8	course, this design is different from the
9	MR. WALLIS: So it's
10	DR. LAI: But they also thought it was
11	pretty safe, I'm pretty sure.
12	DR. LOIS: Yes. As a matter of fact, I
13	went back and I checked and reviewed the argument that
14	the designer of that class of plants were offering and
15	what they said, the words were pretty much alike. The
16	arguments were pretty much the same. So
17	MR. WALLIS: It's an IE? It's an IE?
18	DR. LOIS: It's an IE.
19	MR. WALLIS: So they have to submit an
20	analysis showing that the consequences are below a
21	certain thing?
22	DR. LOIS: Yes. Hopefully, that is what
23	is done. Yes. And
24	MEMBER BANERJEE: Do you buy these
25	arguments, I mean, in spite of what happened in

1	DR. LOIS: We're not there yet, we're in
2	the process of getting to that point. From what we
3	know so far, this is I would like to say that this
4	is more resilient to the conventional plans to these
5	transients that we have examined so far.
6	MR. WALLIS: Okay.
7	DR. LOIS: And, again, as I said, it is a
8	work in progress. We still expect more information to
9	
10	MR. WALLIS: If the frequency became very
11	low, could it become a DBA, and thenit would be
12	allowed to have bigger event consequence?
13	DR. LOIS: Yes, it already has been
14	decided.
15	MR. WALLIS: I'm really mystified by this.
16	Again, this is
17	DR. LOIS: Yes.
18	MR. WALLIS: if you accepted a much
19	lower frequency than you might want to accept, it
20	could become a DBA, and then you would be they
21	would be allowed to have worse consequences?
22	DR. LOIS: Well, we don't know that yet.
23	And
24	MR. WALLIS: But it could be. It could
25	be
į	

1	MR. SHUAIBI: Let me try I guess let me
2	try to let me try to address that. I guess, you
3	know, had they come in and said we wanted to do that,
4	we would have had two years of discussion with them
5	about why is it okay to call something a DBA. We have
6	not gone there, so the what if scenarios, what if they
7	had proposed let's call these DBAs or
8	MR. WALLIS: If you don't know what it is,
9	call it a DBA, because that gives you the most
10	stringent requirements for consequences.
11	MR. SHUAIBI: No. These consequences are
12	not the DBA consequences.
13	MR. WALLIS: Less stringent.
14	MR. SHUAIBI: Or less stringent than the
15	DBA requirements.
16	MR. WALLIS: No. DBA requirements are
17	the consequences are more stringent.
18	MR. SHUAIBI: No, no. I want to make sure
19	no. The AOOs have
20	MR. WALLIS: That makes no sense. The
21	most infrequent thing should have the biggest
22	consequence, right?
23	MR. SHUAIBI: It does. We may be talking
24	past each other I guess.
25	MR. WALLIS: But that means they are the

1	biggest consequence.
2	DR. LAI: In addition to which what
3	Mohammed said, the standard review plan already names
4	the DBAs, and GE agreed to analyze those named in the
5	standard review plan as DBAs.
6	Thank you.
7	MR. WALLIS: Well, they have no what is
8	the incentive to make it an IE, then?
9	MEMBER BANERJEE: For this specific
10	accident, to make it an IE, I mean, this seems a
11	little bit of a stretch, right?
12	MR. WALLIS: Maybe, maybe not.
13	MEMBER BANERJEE: Well
14	MR. WALLIS: It depends on the design
15	and
16	MEMBER BANERJEE: But the experience
17	indicates that designs are fallible in this area.
18	MR. WALLIS: It has happened, right. It
19	has happened.
20	DR. LOIS: Well, it depends on
21	MEMBER BANERJEE: And we design and say
22	this happens. If you look at the original as you
23	say, you read the original Japanese, and the design
24	looks infallible also, and then it fails.
25	DR. LOIS: Well, this design is different.

1	MEMBER BANERJEE: It's more infallible.
2	(Laughter.)
3	DR. LOIS: This design, it appears to have
4	the frequencies of those events are lower, and the
5	consequences are also lower. So that pushes
6	everything
7	MEMBER BANERJEE: The frequencies will be
8	hard to prove, I would think, on this case.
9	DR. LOIS: Well, I would not argue with
10	this. However, there is some experience in quite a
11	number of those.
12	MEMBER BANERJEE: There's been a number of
13	events. It's not just Shika. There have been others.
14	I can probably give you a list of the Japanese ones.
15	DR. LOIS: It's priority work.
16	MEMBER BANERJEE: Yes. I'm sure you have
17	it, yes.
18	MR. SHUAIBI: But I guess that's where our
19	questions come from, is we look at what they propose,
20	we, you know, evaluate it to determine whether we
21	accept it or not, and we ask them questions to justify
22	what they propose. And I think that is exactly what
23	Lambros is saying is we know of some events that have
24	occurred, and we want them to look at this in that
25	context and show us and demonstrate and prove to us

1	that this is something that we should accept. We
2	haven't accepted it yet.
3	MR. LEE: Thank you.
4	MR. SHUAIBI: Is that
5	MR. LEE: Excellent. Thank you.
6	CHAIRMAN CORRADINI: I'd like to switch
7	out the next group here a new team.
8	Okay. I'd like to introduce Jay Lee, and
9	he is going to be covering Chapter 15.4 and
10	Chapter 6.5.
11	MR. LEE: Good morning. Yes. As Bruce
12	said, I will be discussing Section 15.4. And I
13	noticed this morning that GE-Hitachi got by with only
14	three slides, and I have only 23 slides, and so
15	(Laughter.)
16	this is not right.
17	CHAIRMAN CORRADINI: Something is wrong.
18	MR. LEE: I may have too detail in my
19	slides.
20	CHAIRMAN CORRADINI: So feel free to skip
21	a few.
22	(Laughter.)
23	MR. LEE: More detail than what you
24	expected or you anticipated
25	CHAIRMAN CORRADINI: Whatever you think
1	

∥ is --

MR. LEE: -- at this stage of review.

Okay. These are the key regulations and the review items we used. The Part 52.47 is, of course, content over application for standard reactor certifications, and the Part 100 is the siting criteria. Part 50, Appendix A, GDC-19, is a control room dose, control room operator dose, to meet 5 rem.

What we did, we used the SRP, the 15.03. This is a relatively new SRP we issued last year. We prepared this for the design certification review and also for the COL application with and without early site permit, and also the COL application with and without design certified reactors.

Under Regulatory Guide 1.183, this is -we prepared this guide for current operating reactors,
but most of guidance was provided in this particular
regulatory guide is also applicable to the advanced
reactor, like ESBWR. Then, NUREG-1465, this is the
excellent source of data, but this goes into more
detail in next slide.

Okay. This is a regulation we have. I guess it may answer some of your questions you came up with -- earlier questions you raised. This is direct quotation from the regulation, and this particular

wording really appears in more than one place, in 1 2 52.47, and also 10 CFR 50 -- excuse me, 10 CFR 3 50.34(a)(1), and also in siting criteria, 10 CFR 100. So this particular regulation appears more 4 than one place, and it says that the fission product 5 6 released assumed for this variation, for siting variation, shouldn't be based upon a major accident. 7 It doesn't say that, oh, this major accident, whether 8 9 it's a LOCA or a large break LOCA or a small break 10 LOCA, but it's just based on major accident. further, it states that --11 MR. WALLIS: It says it has to be based on 12 13 possible accidental events, and if it's something impossible --14 15 MR. LEE: Yes. 16 MR. don't have WALLIS: you to 17 postulate it, do you? Possible accidental 18 MR. LEE: Right. 19 events, such as fuel handling accidents, or main steam 20 line break accident, control rod accident -- and I'll 21 discuss those a bit later -- and this regulation further states that with the substantial meltdown of 22 23 the core and for the source term, it says appreciable quantities of a fission product. 24 25 It doesn't say how much of activity is

1 | 2 | 3 | 4 | 5 | 6 | |

going to be released, but it just states this quantities and -- so, really, regulation doesn't specify any particular source term, but just mentioned that we have to consider this amount of fission product release into the containment from the reactor core.

And the major accident and possible accidental events that -- just stated in the regulation is listed in SRP 15.3, Reg. Guide 1.183, and the staff -- we listed major accident as a LOCA, loss of coolant accident, typically a large break LOCA accident. And possible accidental events is, like I said, you know, such as main steam line break accident or coolant accident, small line break accident, or some other possible accident.

That regulation also stated that appreciable quantities of fission product released, or substantial meltdown of the core. This is given in the regulations.

CHAIRMAN CORRADINI: So at this point I guess, just to clarify, the way I view this -- and maybe this is an incorrect way, so I guess I'd look for your clarification -- is in some sense the alternative source term is the starting point. And one looks for an envelope of accidents, however non-

mechanistic --1 2 MR. LEE: That's correct. 3 CHAIRMAN CORRADINI: -- that would get you 4 that source term, and then you look to 5 containment and the systems within it to show that you 6 can bottle up or --7 MR. LEE: Mitigate. 8 CHAIRMAN CORRADINI: that you can 9 mitigate the source term. MR. LEE: Right. Yes. Like we discussed 10 this morning, GE discussed three particular accident 11 12 sequences. CHAIRMAN CORRADINI: Right, right. Right. 13 We made MELCOR -- such a way 14 MR. LEE: 15 that -- so it will say, yes, you've got fuel melt or 16 core melt. We have to have that fission product in the drywell, you know. That's the starting point for 17 18 evaluating the deviation. 19 And this NUREG has, as you know, the four 20 faces of release: CAD release, early SL release -- we 21 discussed this NUREG with ACRS way back in 1994 or so 22 in the 406th and 407th ACRS meeting, and you prepared 23 a letter agreeing with us. We're using this NUREG for the advanced reactor design, and SOL is using only GAP 24

and early invested releases for our evaluation.

So, really, regulatory issue for the review in this particular section, for 15.4, what the reviewer, he or she should keep in mind reviewing this section, is: does the ESBWR design, or any other design, provide adequate irrigation of radiological consequences in the event of a major reactor accident to meet the dose criteria?

Here we discussed this morning about prevention against the mitigation. This prevention is prevention of a core melt. The staff presented yesterday Chapter 6 dealing with ECCS systems, including the isolation condenser and standby control system, gravity drain, gravity-driven cooling system, and automatic depressurization system. Those are all ECCS system, and they are for preventing a core melt.

The mitigation part that I dealt this morning is just the mitigation, and prevention is of course first line of defense. The mitigation is defense in depth. And, Dr. Wallis, you asked this morning that -- where all of this activity is coming from, and this is not realistic to assume this.

But, you know, in the case in point like a TMI accident, the prevention part, they didn't play a role and the mitigation did. So this is strictly defense in depth.

1 MR. WALLIS: No, I understand that. 2 Yes. It's in the regulation. MR. LEE: 3 MR. WALLIS: I understand that. 4 MR. LEE: We follow that. 5 MR. WALLIS: So it gives me, you know --6 as my colleague, Dr. Kress, said, reason to maybe 7 reexamine what you're doing with regulations. When we 8 get into beyond design basis, we seem to tolerate 9 containment failure probabilities of .1, and yet when 10 we're doing this we don't do anything like that at 11 all. 12 So the real things that hurt the public 13 are the ones where we should probably be worried 14 about. 15 MR. LEE: Right. 16 All of this other stuff, MR. WALLIS: 17 maybe it has an effect on safety, maybe it doesn't. 18 MR. LEE: Right. And the fission product, 19 the way it's really releasing from the ESBWR reactor 20 design into the environment, we have two release 21 points, which is the containment leak and the main 22 steam isolation valve. Containment leak is the object 23 of the steam pole weight percent, and MSIV leak, which 24 bypass the containment as well as bypass the reactor 25 link, is at 200 cfh. These values are chosen by

applicant, and they are in the ESBWR tech spec as a 2 surveillance requirement. 3 And I understood that you raised 4 question about the potential leakage from isolation 5 condenser. In the case of isolation condenser, the GE design has four radiation monitors for each isolation 6 condenser pool compartment. There are four of them. 7 8 And any high radiation signal from two radiation 9 monitors out of the four will cause automatically main 10 steam flow into the isolation condenser, and also condensate return line valve. It will cause -- it 11 will isolate that. And also, the isolation condenser 12 will come in at the LOCA signal before automatic 13 depressurization system come on. 14 15 So, really, any steam or water in this 16 condenser is very low in activity to begin with, if 17 any. CHAIRMAN CORRADINI: So jus tone -- maybe 18 19 my memory is wrong, but I thought 10 CFR 100 had a 20 containment performance of .1 percent of volume per 21 day, and here you have a leak of .4. I thought it was 22 .5 I read. 23 The regulation doesn't MR. LEE: No. specify any containment leak. This containment leak 24 25 rate is strictly chosen by applicant to meet, and it's

1

coming in the few next slides, but --1 2 CHAIRMAN CORRADINI: But you have to have surveillance, right? 3 4 MR. LEE: Yes, they are. As I say, they are tech spec values, and they have to test I think 5 6 every -- every five or 10 years. A certain period 7 they do have to test and meet a requirement. leakage rate varies with a different reactor design. 8 Technical topics of interest is 9 Okav. this, that ESBWR design doesn't provide an active 10 11 fission product mitigation system, such as safety-12 related spray system, which I believe is 13 efficient mitigation system to remove a fission product in a containment. 14 15 they don't provide any safetyrelated filtration system other than the ones in the 16 control room that have been built in the system. 17 18 like a current operating PWR, all of them has like a 19 standby gas treatment system, which removes 20 aerosol particulate, a HEPA filter, and they have a charcoal filter to remove iodine. Those are very 21 effective in mitigation -- active mitigation system. 22 ESBWR, they do not have any such active 23 Instead, the design provides the 24 mitigation system. 25 six -- I listed here the passive fission product

1	mitigations. I'll go each item in subsequent slides,
2	but the first one is the fission product, natural
3	deposition in the containment. This is somewhat
4	similar to the AP600 and AP1000 approach. They also
5	claimed fission product removal by this natural
6	deposition. This plays a very major role in the ESBWR
7	design for removing a fission product.
8	And the next one is fission product
9	removal by passive containment cooling system. Of
10	course, this is very unique to the ESBWR design inside
11	of containment.
12	MR. WALLIS: How does it remove? Does it
13	flow into the condensate or something?
14	MR. LEE: Yes, the subsequent slide will
15	show I'll explain in more detail.
16	Also, they rely on low containment leak
17	rate. In this case, they have a .4 weight percent
18	but they the fission product holdup in the reactor
19	building, and control room pH water in the containment
20	pools to prevent any iodine reevolution from the
21	water, and also fission product natural deposition in
22	the main steam line and main condensers.
23	Those are the mitigation that GE depends
24	on their ESBWR design, and I'll go each item in more
25	detail.

1	The first and foremost important is the
2	fission product natural deposition process in the
3	containment, and which staff performed an independent
4	confirmatory calculation to verify the fission product
5	removal rate proposed.
6	MEMBER BANERJEE: How did GE perform these
7	calculations?
8	MR. LEE: GE proposed that calculation in
9	their DCD.
10	CHAIRMAN CORRADINI: But they used MELCOR
11	also.
12	MR. LEE: Yes.
13	CHAIRMAN CORRADINI: That's what I
14	MR. LEE: Right.
15	CHAIRMAN CORRADINI: That's what I think
16	you
17	MR. LEE: Doing this work using a MELCOR,
18	we did ask Sandia National Lab to help us to run this
19	MELCOR code and to verify their number. And, in fact,
20	we have two principal investigators from the Sandia is
21	here to assist perhaps any questions you may have.
22	And this deposition process involves three
23	processes in gravitational settling. This occurs
24	mainly in the containment drywell, containment
25	atmosphere. And the diffusiophoresis, this is the

process that mainly occurs in the PCCS condenser and 1 2 the thermophoresis is. 3 And the diffusiophoresis is, of course, 4 associated with steam condensation on the heat sink. 5 In this case, it is the heat exchanger tubes. CHAIRMAN CORRADINI: And then, once it's 6 deposited, would it wash away with the condensate? 7 Yes, it will. 8 MR. LEE: 9 CHAIRMAN CORRADINI: Okay. MR. LEE: And I have the slide for --10 11 CHAIRMAN CORRADINI: That's fine. I just wanted to understand. 12 MR. LEE: -- later. 13 Yes. And we used the MELCOR code. Actually, we 14 used the ESBWR specific containment model in the 15 MELCOR code to get the thermal hydraulic conditions, 16 such as drywell pressure and steam and water flow 17 18 rates and the condensation rates. Those thermal 19 hydraulic conditions came from the MELCOR code. 20 And also, we performed -- maybe I should 21 say we are performing -- oh, okay, in this case we did perform quantitative analysis of uncertainty 22 23 predicting the removal rate using Monte Carlo sampling This is -- again, Sandia did it for us, and 24 25

it shows in the next graph.

1	This is the accident scenario 1 that GE
2	described this morning. This is the reactor vessel
3	bottom drain line failure. This has well, this
4	assumed no isolation condenser, no standby liquid
5	control system, or no gravity-driven cooling systems
6	available. But automatic depressurization system will
7	work, and this is the removal rate we are comparing
8	with the GE values.
9	MEMBER BANERJEE: Now, you say used in
10	RADTRAD. Is that
11	MR. LEE: RADTRAD is
12	MEMBER BANERJEE: What is that?
13	MR. LEE: that's the computer code to
14	calculate the dose that GE used, and we would be using
15	also RADTRAD code.
16	MEMBER BANERJEE: But the black line is
17	MR. LEE: The black line is GE values.
18	MEMBER BANERJEE: How did they calculate
19	that, with MELCOR, the same code?
20	MR. LEE: Yes, I believe they used the
21	MELCOR code to calculate
22	MEMBER BANERJEE: And it was using a
23	different containment model, a different containment
24	nodalization, or what is different between the GE and
25	the Sandia calculations?

1	MR. KALINICH: Would you like me to
2	clarify this for you?
3	MEMBER BANERJEE: Yes.
4	MR. KALINICH: I probably don't need the
5	mic, but if you insist.
6	CHAIRMAN CORRADINI: They insist.
7	MR. KALINICH: Never had anyone tell me
8	I'm not loud enough.
9	CHAIRMAN CORRADINI: This is for
10	posterity, not for volume. This is to get it on tape,
11	not to
12	MR. KALINICH: No problem. My name is Don
13	Kalinich. I'm with Sandia National Labs. I work for
14	Randy Gauntt, and I guess what's our department
15	called now?
16	MR. GAUNTT: Reactor Model Analysis.
17	MR. KALINICH: There we go. And basically
18	what we what was done was GE ran a full ESBWR
19	reactor model, so they had the full core package, a
20	containment. They ran the model, MELCOR predicted how
21	the core would fail, what the release would be, how
22	that release would go to the containment, and they
23	calculated a containment removal coefficient.
24	What we did is we had a separate ESBWR
25	MELCOR model. We took the containment-only portion of

1	that, and then we used the flows between the reactor
2	side and the containment side from the GE model as
3	boundary conditions on our model. So our containment
4	is modeled slightly differently. I mean, you still
5	have a drywell and a wet well, and all of that, but
6	how you nodalize it and what your heat structures
7	might look like, there is some differences. So
8	MEMBER KRESS: When you say you use
9	MELCOR, MELCOR has meltdown models, fission product
LO	release models.
1	MR. KALINICH: That's right.
L2	MEMBER KRESS: You didn't do that.
L3	MR. KALINICH: We didn't do that. What we
4	did is that's what GE did. GE did a full-on, let
-5	MELCOR predict what's going to happen.
-6	MEMBER KRESS: And nothing happens, right?
7	MR. KALINICH: No. Actually, it does,
-8	because they go in and they do they walk through
.9	this stylized scenario where basically they suppress
20	the GDCS operation, so that they get a core melt. And
21	then, right before they get lower head failure, they
22	turn the system back on, so that you have something
23	MEMBER KRESS: So that's where they get
24	their source term.
25	MR KALINICH: That's where they get their

1	source term.
2	MEMBER BANERJEE: But this is the source
3	term coming out of the
4	MEMBER KRESS: Out of the containment
5	into containment.
6	MR. KALINICH: In the containment from
7	MEMBER BANERJEE: And what about
8	deposition within the system itself?
9	MR. KALINICH: That's what they
10	calculated.
11	MEMBER BANERJEE: Yes. No, no, I'm saying
12	within the primary cooling system.
13	MR. KALINICH: That would be included in
14	their calculation.
15	MR. LEE: Yes. NUREG-1465, those numbers
16	are already considered.
17	MEMBER BANERJEE: I'm just trying to
18	understand what you did.
19	MR. KALINICH: Well, I'm getting to that.
20	Okay? So that's what GE did. What we did is we
21	didn't run a full reactor model, because we wanted to
22	do an uncertainty analysis, and these models take on
23	the order of five to 10 days to run, and we wanted to
24	run 150 realizations. And even with a rack of
25	servers, it's just not tractable to run the full model

1	that way. So what we did was we said, okay, we just
2	want to run the containment side.
3	So we took a containment-only, just the
4	containment side, and we drove it using the results
5	from GE's work as boundary conditions.
6	MEMBER BANERJEE: But where was the
7	boundary condition?
8	MR. KALINICH: The boundary conditions
9	were
10	MEMBER BANERJEE: At the break or whatever
11	it was?
12	MR. KALINICH: The break, the flows from
13	the SRVs, the flows from the DV the
14	depressurization valves, the flow back into the
15	reactor out of the GDCS pools. So, basically, if you
16	think about it, if you just kind of drew a line
17	between the containment and the reactor vessel, what
18	we did is anything that was passing in and out as
19	through a MELCOR flow path, we turned into a source or
20	a sink in our containment-only model.
21	And we have a report where we go in and we
22	say, "Here is what GE's results look like in terms of
23	drywell temperature, drywell pressure, and we compare
24	our results to it to show that we are getting the same
25	gort of bobourier. So then what we did is rather so

1	the question now is: what source term did we use? We
2	used NUREG-1465, so we applied the NUREG-1465, you
3	know, what fractions come out in the gap, what
4	fractions come out for early in-vessel to the ESBWR,
5	core inventory, and then we just source those directly
6	into the drywell.
7	So we basically followed the regulatory
8	prescription, and then what we did is we varied the
9	aerosol physics parameters, things like what's the
LO	mass median particle size diameter? What's its
L1	geometric standard deviation? You know, things having
L2	to do with Cunningham Slip Factor. There's about 12
L3	of them, and we have those documented in a report,
L4	what we did, how we picked them.
L5	And we ran 150 realizations, and that's
L6	what you're seeing here. So this
L7	MR. WALLIS: Why does it wiggle so much?
18	What's happening to make it bounce around?
L9	MR. KALINICH: That's a good question.
20	And if you guys really want, we could try to sit down
21	and Not today. I don't think we want to. But we
22	have a report that explains that.
23	CHAIRMAN CORRADINI: I think that's what
24	we would like to get when it's appropriate from the
25	staff. But that would be the starting point.

1	MR. LEE: Yes. It is in draft form right
2	now, and we'll have it final form maybe sometime in
3	CHAIRMAN CORRADINI: I'll let Amy tell us
4	when we're allowed to see it.
5	MR. WALLIS: But something is really
6	happening every time it goes up and down, something to
7	make it happen?
8	MR. KALINICH: Well, what this is looking
9	at is this is looking at the instantaneous removal
10	coefficient, and so any slight change in the behavior
11	gives you some wiggles in there. And, you know, I
12	mean
13	MEMBER BANERJEE: But there are some
14	correlated wiggles.
15	MR. KALINICH: Well, we actually do we
16	actually have an we go in and we do a linear
17	regression on the uncertain parameters to see what is
18	driving the results.
19	MEMBER BANERJEE: So you have an
20	explanation for this? I mean, do you have an
21	explanation why that first dip occurs?
22	MR. KALINICH: Yes.
23	MEMBER KRESS: Is this primarily
24	diffusiophoresis?
25	MR. GAUNTT: I could offer a quick answer

1	to that.
2	MR. KALINICH: Okay.
3	MR. GAUNTT: My name is Randy Gauntt,
4	Sandia Labs. A quick answer to that is most of the
5	fine structure that you see there can be traced back
6	to thermal hydraulic nuances in the problem.
7	MEMBER BANERJEE: And what about the
8	correlated nuances, like all this behavior
9	MR. GAUNTT: Well, all of those
10	realizations are using the same thermal hydraulic
11	driving conditions. So
12	MR. KALINICH: Yes. The idea is to look
13	strictly at the uncertainty in aerosol physics.
14	MEMBER SIEBER: That's the spread.
15	MR. KALINICH: That's right. So this is
16	the spread. So any given realization, it is going
17	through the same thermal hydraulic signature. It's
18	just the distribution of particle sizes for the source
19	look different.
20	MEMBER BANERJEE: But say about one hour,
21	your removal coefficient is about two orders of
22	magnitude different from GE.
23	MR. KALINICH: Well, let me explain. The
24	GE curve what GE did is they ran one deterministic
25	simulation. They have a curve that probably looks

1	very similar. RADTRAD looks says you can have up
2	to 10 constant periods for a removal coefficient. And
3	so somehow they took their data and they said, "This
4	is the stair-step function we are going to put into
5	RADTRAD."
6	CHAIRMAN CORRADINI: RADTRAD requires
7	bins, and they have
8	MR. KALINICH: That's right.
9	CHAIRMAN CORRADINI: an array and it's
10	only 10, and so you've got to decide a number.
L1	MR. KALINICH: That's right. And so all
12	I've done is overlay GE's RADTRAD input, which is
13	derived from a MELCOR model, on top of our 150
14	realizations to see how they compare. And what we
L5	would like to see is that they lay somewhere within
L6	the bounds of what our results are, and, if not, then
L7	you need to start looking at what is the differences
18	between your models to determine what is going on
L9	there. But there is
20	MEMBER BANERJEE: If you use the same code
21	and the same thermal hydraulic driving conditions, why
22	do you expect it to be different at all?
23	MR. KALINICH: It could be different
24	well, because we are well, the purpose of this was
25	to look at what is the effect of uncertainty in

1	aerosol physics? And we didn't use exactly the same
2	model, like
3	MEMBER BANERJEE: Hopefully, both are
4	converted in some sense.
5	MR. KALINICH: And, in fact, I
6	MEMBER BANERJEE: It shouldn't make any
7	difference at all.
8	MR. KALINICH: What makes me kind of happy
9	about this analysis is the fact that even though we
10	didn't use exactly the same sort of containment
11	nodalization, we get results that are very similar.
12	So that's it's nice to know that, you know, you go
13	in and you change that, and you don't get results that
14	are widely divergent. It makes you feel comfortable
15	that your models are reasonable.
16	MEMBER BANERJEE: Okay. Well, thank you.
17	MR. KALINICH: But that's basically what
18	you are looking at here is 150 realizations of our
19	work with GE's single deterministic realization laid
20	over top of it.
21	MEMBER KRESS: Each determination uses a
22	constant shape factor?
23	MR. KALINICH: Excuse me.
24	MEMBER KRESS: Each determination keeps
25	the shape factor constant?
	NEAL D. CDOSS

1	MR. KALINICH: Yes. The shape factors
2	don't vary with time. They vary between realizations.
3	MEMBER KRESS: They vary between
4	realizations.
5	MEMBER BANERJEE: If I understand, you
6	varied these 12 parameters within what you said
7	were sort of three parameters and the problem within
8	a certain range in some way that
9	MR. KALINICH: It would depend like,
10	for example, the mass median particle size diameter,
11	we used the triangle distribution with a lower bound
12	of .1 micron, a peak of two, and a max of five. And,
13	you know, like I said, each one of those there is
14	the distribution and there is an explanation for why
15	we believe that's a reasonable distribution to use on
16	those on that parameter. It will be in the final
17	report that we provide to the NRC.
18	CHAIRMAN CORRADINI: So in the final
19	report you used RADTRAD also for the dose?
20	MR. KALINICH: No, sir.
21	CHAIRMAN CORRADINI: You used mass
22	MR. KALINICH: We're just predicting
23	we're just providing the removal coefficients, and
24	then the NRC is going to do their own RADTRAD
25	analysis.

1	CHAIRMAN CORRADINI: Okay. Thank you.
2	MEMBER ABDEL-KHALIK: Is the aerosol
3	physics the major source of uncertainty in this
4	problem, or could it be the boundary conditions that
5	you took from GE's calculation?
6	MR. KALINICH: Could be.
7	MEMBER ABDEL-KHALIK: So how do you
8	ascertain that?
9	MR. KALINICH: Jay, do you want to answer
10	that question?
11	MR. LEE: No, it's not
12	MR. KALINICH: No, you don't want to
13	answer it, or no, you
14	(Laughter.)
15	MR. LEE: Doesn't want to answer it.
16	MR. KALINICH: I'm going to let Jay answer
17	that. Oh, I'm going to defer to my boss on this one.
18	(Laughter.)
19	I was this was the problem I was asked
20	to analyze.
21	MR. GAUNTT: I'm trying to process the
22	question. The only variant that is shown in those
23	plots, if you want to call them that, is due to the
24	variance from sampling over aerosol
25	MEMBER ABDEL-KHALIK: That we understand.

1 MR. KALINICH: But they want to know if 2 like, for example, if there were things that would 3 influence the thermal hydraulic, would that be more 4 important than this? 5 MR. GAUNTT: Oh, I see. I see. Well, I 6 guess in a sense there are three separate scenarios 7 that we have analyzed here, and they all show 8 know, different thermal hydraulic slightly, you 9 transients. And so we've just run all three of those. We have not tried to include thermal hydraulic 10 11 uncertainty in any given scenario we analyzed here. 12 MEMBER KRESS: This is primarily played 13 out in the --14 Yes, and it's very --MR. GAUNTT: 15 MEMBER KRESS: How well you calculate 16 And probably a lot of it goes into the PCC -those. 17 It's a pretty fascinating MR. GAUNTT: 18 system. I think there are some more curves, some more 19 diagrams that Jay is going to show. But unlike, you know, your traditional PWR analysis where things just 2.0 21 kind of fall out, or you may spray them out, or things 22 like that, this is a very dynamic system. And the 23 vessel, you know, it is designed to sit there and boil water indefinitely. This steam goes into the drywell, 24 25 and it finds its way into the PCCS, and eventually

1	back into the vessel. So it's a big reflux system.
2	CHAIRMAN CORRADINI: So I guess I I
3	don't want to cut off this interesting discussion. We
4	have a time check. In half an hour you will the
5	whole team will be done.
6	MR. LEE: I'll try.
7	CHAIRMAN CORRADINI: You will be done in
8	half an hour, so I want you to decide how you want to
9	get there.
10	MR. WALLIS: How realistic
11	MR. BAVOL: Go fast.
12	MR. WALLIS: How realistic are the thermal
13	hydraulics that go into this? Is this just a vessel
14	that is boiling off into an environment, and it's
15	something that's pretty well understood?
16	CHAIRMAN CORRADINI: They use the same
17	thermal hydraulics as the GE folks.
18	MR. WALLIS: Well, is that something that
19	is contrived, like the way they got to this state, or
20	is it a realistic thing?
21	MEMBER KRESS: Well, you have non-
22	condensables affecting the condensation rate.
23	MR. WALLIS: So it's realistic thermal
24	hydraulics now?
25	MEMBER KRESS: Oh, yes. It's pretty good

1	thermal hydraulics.
2	MR. WALLIS: Okay. So it's not contrived,
3	like how we got to the beginning of this.
4	MEMBER KRESS: And, again, it's assumed
5	well
6	CHAIRMAN CORRADINI: The initial
7	conditions that initiate it, of course. The rest is
8	calculated.
9	MR. WALLIS: So we have some faith in the
10	thermal hydraulics. Okay.
11	MR. LEE: So the main point to show you,
12	this curve is the GE and our numbers is reasonably
13	agreed with, and that's
L4	MR. WALLIS: Well, you did you played
L5	the same game and got the same result, so I'm trying
16	to figure out if the game is realistic. That's all.
17	MEMBER BANERJEE: Hopefully, MELCOR
18	doesn't give random answers. Hopefully, MELCOR
L9	doesn't give random answers. We are reassured by
20	that.
21	MR. LEE: Yes. We did use the same MELCOR
22	code.
23	MR. WALLIS: We have to believe Tom Kress,
24	I think.
25	MR. LEE: Okay. This is just the same

Ή	curve and the same way we did, and this is for
2	accident scenario 2, as GE described it this morning.
3	There is a slight difference in the GE value and ours
4	from, let's say, five hours to the 10. GE values are
5	slightly higher than our numbers.
6	The Y-axis in the low scale, so we are
7	really talking about difference between .1 to the .5
8	removal rate. But when we reach this point, like
9	after six hours, most of the aerosol has been removed.
10	We are talking about the small, fine aerosol at this
11	stage of time.
12	MR. WALLIS: What matters is the
13	deviations from the values when they are big.
14	MR. LEE: Right.
15	MR. WALLIS: We don't really worry about
16	the small values. There are some fairly big
17	deviations at the beginning where it makes a
18	difference.
19	MR. LEE: We do have some explanation of
20	the way it the curve shapes, but we are not going
21	to go into detail. But we will give you an idea.
22	And the next curve is the accident
23	scenario 3. In this case, GE value is more
24	conservative.
25	MR. WALLIS: Well the real thing that

	matters is not all of these wiggles, or what is the
2	bottom line, how much did you remove?
3	MR. LEE: Yes. Bottom line is we have to
4	calculate the dose, how the dose
5	MR. WALLIS: Right.
6	MR. LEE: is affected, and we have not
7	done that yet, because there are other open issues
8	which I'll describe.
9	MR. WALLIS: That's what matters, isn't
10	it?
11	MR. LEE: Yes. Until we get those
12	remaining open items resolved, then we are able to
13	calculate the dose, actually compare the dose instead
14	of removal rate.
15	MEMBER BANERJEE: So in this specific
16	figure, there seems to be, at least at the longer
17	times, some significant deviation of the black line
18	from this bunch of
19	MR. LEE: Why we differ on these two
20	lines, and our our lines are not covering GE value
21	for the accident scenario 3.
22	MEMBER BANERJEE: And yours seem quite a
23	bit higher.
24	MR. LEE: Yes.
25	MEMBER BANERJEE: I mean, maybe it's

1	MR. KALINICH: I don't think you want me
2	up there if you want to get through this.
3	CHAIRMAN CORRADINI: No, we don't. And I
4	think we can defer this at this point, since you
5	haven't gotten a dose calculation from this. I think
6	when that occurs, then we can look at it
7	MR. WALLIS: Presumably, Sandia predicted
8	the integral of all of this removal?
9	MR. GAUNTT: Yes, we have. Yes.
10	MS. CUBBAGE: Right. I guess the
11	MR. WALLIS: You're not going to tell us
12	that? Did you how much did you remove?
13	MR. GAUNTT: Out at that point in time,
14	it's I don't know how many nines we're talking
15	about, but it's it's mainly residual, very fine
16	aerosol that's hanging up in the wet well vapor space.
17	MR. KALINICH: Yes. If you take a look,
18	what's driving the latter time curves is what is going
19	on with the small amount of material that's hanging
20	out in the wet well. And I don't even need to say
21	this, because you're not going to finish.
22	MS. CUBBAGE: I know, but for the
23	transcript you have to be at a mic.
24	MR. LEE: Next slide.
25	Okay. This fission product removal by
	II

WASHINGTON, D.C. 20005-3701

1	passive containment cooling system is a unique design
2	for ESBWR. This is our first scale of open issues,
3	and we are proceeding with the rate analysis of steady
4	state iodine transport within the containment. Again,
5	we asked this to the Sandia to come up with a
6	steady state transport phenomena between these various
7	components reactor pressure vessels and drywell,
8	PCCS, and GDCS, and to confirm the GE numbers. Randy
9	is doing this particular study.
10	MR. WALLIS: I read in your SER that
11	MELCOR was going to be used to estimate fission
12	product removal in the PCCS. Is MELCOR set up to
13	model the PCCS, so that it can predict fission product
14	removal? It is?
15	CHAIRMAN CORRADINI: Yes.
16	MR. WALLIS: Is there that much detail in
17	it?
18	CHAIRMAN CORRADINI: That was the point of
19	the original tool.
20	MR. WALLIS: Okay.
21	MEMBER BANERJEE: Is MELCOR the only
22	calculational methodology that you have at the moment?
23	MR. LEE: That's the only code the NRC
24	code we have, yes.
25	CHAIRMAN CORRADINI: Historically

1	MEMBER KRESS: Historically, you could use
2	contain, but
3	CHAIRMAN CORRADINI: Historically, contain
4	is inside of MELCOR. Hector is inside of MELCOR. All
5	of those basic physics have been subsumed into MELCOR.
6	MEMBER BANERJEE: And General Electric
7	uses the NRC code.
8	MR. LEE: MELCOR, yes. I suppose they
9	could have used MAPCODE, for example.
10	CHAIRMAN CORRADINI: Then you'd have more
11	questions.
12	MEMBER KRESS: Yes, you'd have lots of
13	questions then.
14	CHAIRMAN CORRADINI: I think you should be
15	happy.
16	(Laughter.)
17	MR. LEE: Randy, do you want to describe
18	this open item, and then we'll
19	MR. GAUNTT: Yes. Some work that is
20	ongoing right now for Jay is tied in with the dynamics
21	of iodine behavior in this reactor. And, in
22	particular, the chemistry leading to partitioning of
23	iodine, either in forms that are retained in the pools
24	or else that can be evolved out as an elemental form.
25	And this diagram here kind of shows the

illustrates the cycle that is in place. In the ESBWR, 1 2 there is always water in the primary system, and it is That is how the heat 3 continually boiling. 4 ultimately taken out of the core. That steam goes 5 into the drywell, ultimately through the PCCS system, condenses in the PCCS and drains into the GDCS and 6 ultimately back to the vessel. So there is a 7 8 continuous cycle there refluxing through the system. Now, in the regulatory model here that we 9 have, we toss in -- fission products into the drywell. 10 That is what the NUREG-1465 is, and those fission 11 products include cesium iodide, amount 12 some 13 And in the chemistry model, what elemental iodine. happens ultimately is the cesium iodide begins its 14 15 life in the drywell as particulate. The PCCS -- they 16 swept into the PCCS by the steam, effectively deposited on the water film in the PCCS. 17 18 Now, the cesium hydride -- the cesium 19 iodide is aqueous. And it makes its way back into the 20 vessel, and the chemistry model now assumes you have CS plus and I minus. So you have this collection, 21 22 this sweeping, this scavenging of the cesium iodide. 23 It's gathered into the vessel, becomes aqueous. MEMBER KRESS: It's in the vessel water. 24 25 MR. GAUNTT: It's in the vessel water.

_	MEMBER RRESS: Where there's a lot of
2	radiation.
3	MR. GAUNTT: Where there's a lot of
4	radiation.
5	MR. WALLIS: So, then, it's released again
6	when it comes out of the vessel? Is it steam?
7	MR. GAUNTT: Yes, it's a cycle here, and
8	we and we are out to characterize what is that
9	partitioning.
10	Now, in the vessel
11	MEMBER KRESS: This is a lot different
12	than normal.
13	MR. GAUNTT: A lot different than your
14	normal sump kind of situation in
15	MEMBER KRESS: Seems like you're just
16	moving iodine around.
17	MR. GAUNTT: You're moving it around, and
18	what we are attempting to do in our analysis is
19	understand the dominant rate processes here. Within
20	the vessel, there is iodine chemistry going on. It is
21	pH-dependent, and so our model considers the presence
22	of buffers, sodium pentaborate, it considers the
23	radiolysis of water, it considers the
24	MEMBER KRESS: It won't have any nitrogen
25	in there, will it?

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MR. GAUNTT: I'll get to the nitrogen. A little bit of a research uncertainty is how much cesium comes in as cesium hydroxide. And emerging evidence from Febus experiments suggests a lot less than we thought. And that has an impact on the pH of the vessel water.

And the pH is really the principal thing that determines how much iodine stays in that water and how much gets evolved out in gaseous form. That's the whole point of the water chemistry model is to determine what that pH is, and then determine the transport of gaseous iodine out of the water into the air space in the upper vessel.

From there, it is swept out into the drywell, and, again, back into the PCCS where gaseous iodine can, once again, return into the water film and be taken back to the vessel. So there are these rates going on within the atmosphere of the drywell. is -- then, it gets worse. There is radiolysis in the air, creating nitric acid.

In the lower drywell, there is radiolysis and thermal attack on cable insulation that's releasing hydrochloric. And both of these sources of acid are also swept through the PCCS system, and they find their way into the vessel as well. And this is

all tied into a calculation of the -- an analysis of 1 2 the pH. 3 Ultimately, long term these acids can 4 overpower the presence of any buffers, and possibly 5 take this pH from, you know, initially it might be as 6 high as eight, owing to the presence of the buffers, 7 but in time, as this acid content grows, it could take 8 the pH below seven. 9 MEMBER BANERJEE: What is the limiting --10 is it the chemical kinetics that limits things, or is 11 it the rate processes like mass transfer, and things 12 like that? 13 MR. GAUNTT: You know, that is what we're trying to determine from this, because it's a dynamic 14 problem. It's not like the -- as Tom mentioned, it's 15 16 not the PWR sump thing that we are used to thinking We have got this flux of materials, and we 17 want to know, does the uptake in the PCCS remove 18 19 gaseous iodine faster than it can evolve out of the 20 vessel? 21 MEMBER BANERJEE: Yes, I suppose -- I 22 mean, at one extreme you could use a lump parameter 23 model with the right chemistry and get more or less 24 the same answers, right? 25 MEMBER KRESS: It seems like you're going

Т	to get a some sort of steady state thing in those
2	rate
3	MR. GAUNTT: That's ultimately what we're
4	looking for is, what is quasi-steady I2 concentration
5	in the drywell?
6	MEMBER KRESS: And even if you have a leak
7	rate, it is going to it is going to try to hold it
8	at that steady state anyway. It's going to set there
9	and leak iodine out.
10	MEMBER BANERJEE: I guess the thing is:
11	what is really important here? What is the really
12	important series of steps here? What's the important
13	physics of chemistry?
14	MEMBER KRESS: Well, that's what they're
15	trying to find out.
16	CHAIRMAN CORRADINI: My guess is
17	MEMBER KRESS: What is this going to have
18	to do with this determination of the pH? That's not
19	an easy task.
20	CHAIRMAN CORRADINI: If I might just
21	interject, the complete presentation has got to be
22	finished in 15 minutes. How are you doing?
23	MR. LEE: Probably five. Next slide,
24	please.
25	(Laughter.)

WASHINGTON, D.C. 20005-3701

CHAIRMAN CORRADINI: Including your
colleagues next door there?
MS. CUBBAGE: Yes.
CHAIRMAN CORRADINI: What I guess I'm
trying to say is
MR. LEE: One colleague has just one
slide.
CHAIRMAN CORRADINI: Let me characterize
let me just characterize it a bit differently. So
there is a lot of details in the physics that we'd
like to know. But if you don't have a dose
calculation to compare to what we have from the
applicant at this point, perhaps we can delay this
until we have something to compare and investigate the
details of why it is the same or different.
I mean, it's interesting, but we're going
to ask you for a bottom line, and I can see you don't
have one on this part. So I don't think I want to
discuss this and rediscuss it later.
MS. CUBBAGE: Right. But I do think at
this stage, since we are several years into the
review, we definitely would like the nod that we are
headed in the right direction, asking the right
questions.

CHAIRMAN CORRADINI: Go ahead.

25

1	MR. LEE: Okay. Now, this is the GE
2	also depend on the low containment leakage in the case
3	of ESBWR. They are proposing .4 percent, but they
4	I just listed three more numbers. It's for comparison
5	purpose. And by the way, ESBWR do have a secondary
6	contained reactor building, so it was surrounding a
7	containment. So that may be a little bit higher, for
8	example, compared to the 81,000, which they do not
9	have a secondary containment.
10	And the ABWR, we certified with .5, and
11	the EPR is currently proposing .25, which is just for
12	the comparison. So every applicant, they pick their
13	own number
14	CHAIRMAN CORRADINI: Right.
15	MR. LEE: and whether they can meet the
16	dose at the site boundary.
17	Okay. This is a second open item, open
18	issue. This has to do with fission type of hold up in
19	a reactor building. Now, GE is not asking any errors
20	of deposition or played out in this reactor building,
21	but they do assume 40 percent mixing efficiency, which
22	means they have a perfect mixing in a 40 percent value
23	over reactor building. The reactor building is big,
24	like more than two million cubic feet.

And so they are just using the usual and

25

1	hold up in the decay purpose, and they are assuming 50
2	percent per day leak rate from the reactor building.
3	We are discussing with GE right now as what is the
4	basis for technical basis for assuming 40 percent
5	mixing efficiency.
6	MEMBER BANERJEE: Doesn't this come out of
7	your MELCOR calculation?
8	CHAIRMAN CORRADINI: This is outside of
9	the drywell. This is the reactor building on the
10	other side.
11	MEMBER BANERJEE: Okay. Oh, I see.
12	MEMBER KRESS: MELCOR can do that, too.
13	CHAIRMAN CORRADINI: Once they do the
14	analysis.
15	MR. LEE: Yes, but they are not requesting
16	an aerosol removal.
17	CHAIRMAN CORRADINI: We're at the point
18	now where you're asking for justification for their
19	number.
20	MR. LEE: Yes.
21	CHAIRMAN CORRADINI: Okay.
22	MR. LEE: We are still negotiating. This
23	is open.
24	MR. UPTON: And GE would like to comment
25	on that when there is an appropriate time and tell you

_	Wilde We I'm deling!
2	CHAIRMAN CORRADINI: Hold it for a moment.
3	MR. UPTON: Okay.
4	MR. LEE: The third open issue is control
5	of pH in the water over containment pools to prevent
6	iodine evolution. And there is like Randy
7	mentioned, there is acid formation of due to the
8	radiolysis of the cable insulation material producing
9	the hydrochloric acid, and also the nitric acid is
10	the
11	MS. CUBBAGE: Yes, I think we've
12	MR. LEE: reaction with the
13	MS. CUBBAGE: I think we've covered this
14	issue already.
15	MR. LEE: Yes, okay.
16	MS. CUBBAGE: Right?
17	MR. LEE: So the base formation I think
18	Randy covered, cesium hydroxide. We are injecting
19	sodium pentaborate
20	MR. WALLIS: I missed that. Is there
21	actually a plan to inject sodium pentaborate?
22	MR. LEE: Yes, that is the buffer.
23	MR. WALLIS: I wasn't sure. I missed that
24	when I read it.
25	MR. LEE: Yes. That goes to the

1	reactivity control, but certainly this will buffer the
2	water pH.
3	And the fourth and the last significant
4	open issue is aerosol deposition in the main steam
5	line and the main condenser. The GE ESBWR main steam
6	line, main steam drain line, and the main condenser
7	are all designed for the SSE criteria, and the main
8	steam isolation valve, like we discussed, is 200 cfh.
9	And GE is assuming that leak rate to continue for
10	entire duration of the LOCA accident, which is 30
11	days.
12	CHAIRMAN CORRADINI: So let me just make
13	sure I understand the point here. This is not that I
14	have failed to isolate. This is once I isolate, what
15	is leaked through the isolation.
16	MR. LEE: Right.
17	CHAIRMAN CORRADINI: Okay.
18	MR. LEE: It's leaking from
19	CHAIRMAN CORRADINI: Within the
20	MR. LEE: Right.
21	CHAIRMAN CORRADINI: Okay. Thank you.
22	MR. LEE: Yes. And we are performing
23	independent confirmatory calculations to verify that
24	removal rate GE proposed.
25	Now, these next to all of these

1	figures, we just received from Sandia last week.
2	CHAIRMAN CORRADINI: So let's move past
3	them.
4	MR. LEE: Okay. Significant open items,
5	we discussed all of these four items. Those are
6	significant. There are other open items, open issues,
7	but they are less significant and we are not going to
8	discuss them.
9	Okay. We have one COL action item. This
10	has to do with any COL applicant. What we have
11	referenced is ESBWR design has to demonstrate that
12	onsite chi over Q value is indeed less than what GE
13	hypothetically assumed chi over Q value.
14	CHAIRMAN CORRADINI: So this one is at
15	least I want to make sure I understand it so the
16	point is is that the applicant, relative to how I have
17	the fission product source diffuse and then create
18	dose, the applicant in any one particular site is
19	going to have to show it fits within this envelope.
20	MR. LEE: Yes.
21	CHAIRMAN CORRADINI: For the chi over Q.
22	MR. LEE: Right.
23	CHAIRMAN CORRADINI: Okay. Thank you.
24	MR. LEE: The next slide shows the values
25	of chi over Q, and the ESBWR proposed the chi over Q

1	values are
2	MR. WALLIS: Aren't these attributes of
3	the weather? Meteorological attributes?
4	MR. LEE: Yes. Right.
5	MR. WALLIS: How can the ESBWR control
6	meteorological attributes?
7	MR. LEE: They use hypothetical several
8	chi over Q values.
9	MR. WALLIS: It's trying to be a bounding
10	value or something, is that what it's trying to
11	MR. LEE: Well, they believe they can meet
12	the dose criteria with this set of chi over Q values.
13	MEMBER KRESS: They choose values that
14	most sites would be okay.
15	CHAIRMAN CORRADINI: The sort of 80th
16	percentile weather site.
17	MR. WALLIS: Right.
18	CHAIRMAN CORRADINI: But I think the key
19	point is that
20	MR. WALLIS: It's not a design feature,
21	it's a weather
22	CHAIRMAN CORRADINI: Right. But the key
23	point I think you are after is that if you pick if
24	an applicant is in on a site that doesn't fit this,
25	they will have to do a different an additional set

1	of calculations
2	MR. WALLIS: Yes, right.
3	CHAIRMAN CORRADINI: to show they are
4	okay.
5	MR. WALLIS: I can understand North Anna,
6	because it is a certain place.
7	CHAIRMAN CORRADINI: I think they may have
8	picked North Anna as one of their starting points.
9	MR. MARQUINO: This is Wayne Marquino.
10	This information is published in the plant FSARs. We
11	looked at a large number of sites which are potential
12	customers, and that was the basis for what we picked.
13	CHAIRMAN CORRADINI: Doesn't the utility
14	requirements document give you a site characteristic?
15	MR. MARQUINO: I don't think so. At least
16	that's not what we used.
17	MR. LEE: For example, in North Anna, in
18	the ESP, the chi over Q values are lower than the
19	current ESBWR proposed chi over Q values. But those
20	are the typical the numbers for the ABWR and AP1000
21	and USEPR.
22	MR. WALLIS: Any pictures here of I
23	don't see any pictures.
24	MEMBER BANERJEE: He has the last slide,
25	a color slide.

Ι,

1 CHAIRMAN CORRADINI: Thank you very much. 2 Thank you. MR. LEE: 3 CHAIRMAN CORRADINI: Appreciate it. 4 Do we have the next part of the team? 5 MR. LEE: I'd like to introduce Ben Parks 6 and Chris Boyd. They are going to be discussing the 7 ATWS and the boron mixing. 8 MR. PARKS: These are the topics that we 9 are covering in this presentation. Let's move to the 10 next slide, please. The staff's anticipated transient without 11 12 scram review, we observed that GE analyzed typically 13 limiting ATWS scenarios. The question comes up: how do you know that an MSIV closure is limiting? There 14 15 is an evaluation of I think nine different types of 16 scenarios that include a failure to scram, and GE's 17 evaluation shows that the MSIV closure remains the 18 limiting one. 1.9 looked at traditional acceptance 20 We're looking for a coolable geometry, criteria. 21 acceptable peak vessel pressure, containment 22 integrity. GE presented you with those values, those 23 parameters. And our open items right now are boron mixing, and we are seeking to confirm that with the 24

CFD analysis and the TRACG applicability. The TRACG

1	applicability is under review currently.
2	Can we go to the next slide, please?
3	I noted an open item when I presented on
4	the standby liquid control system. There was a
5	question about the injection shutoff valves, but I
6	heard that this was discussed yesterday. Do we need
7	to address this now?
8	CHAIRMAN CORRADINI: Is this about
9	potential failure of the shutoff valves and continued
10	nitrogen injection?
11	MR. PARKS: Yes.
12	CHAIRMAN CORRADINI: Is that what you're
13	asking?
14	MR. PARKS: That's correct. We I did
15	another review after the meeting, and I discovered
16	that well, in terms of the ATWS analysis, three out
17	of four isolation condensers are available, so they
18	assume a degraded performance. But the valves are
19	installed in series, and they have a diverse power
20	supply. And the initiation or the shutoff logic is
21	a two out of four redundant level sensor system.
22	So I think that a failure is quite
23	unlikely, and they are also subject to the in-service
24	inspection program. So, I mean, they are safety-
25	related. So that is where we stand on that,

	basically.
2	CHAIRMAN CORRADINI: I think that will
3	help us relative to the reliability. I feel some of
4	us are still thinking about, even if, what occurs. So
5	we can we can deal with that at a later time.
6	MR. PARKS: Sure. Then, finally, we
7	looked at boron mixing. Where we started with this
8	review was the fact that we have studies of scale
9	models from previous vintages of BWRs, and we think
10	because the injection geometry here is different, it
11	warrants a little bit further of course, a scale
12	model would be nice, but we don't have one, and that
13	is a very complicated and expensive task.
14	So our approach here is to first, we
15	asked GE to renodalize their TRACG model to provide a
16	more sort of limiting picture of boron transport.
17	And, second, for our own assurances, we pursued a CFD
18	calculation to get a better picture of how the boron
19	transports to compare it to the TRACG predictions.
20	MEMBER BANERJEE: Using a different code?
21	MR. PARKS: We used FLUENT .
22	MEMBER BANERJEE: Which is now owned by
23	the same company.
24	CHAIRMAN CORRADINI: They don't know that.
25	Don't burst their bubble.

1	MEMBER BANERJEE: Never mind.
2	MR. PARKS: Was that the case when we
3	started?
4	(Laughter.)
5	Our CFD analysis is a 45 million cell
6	model. It is of the bypass. We did not model the
7	fuel assemblies. We did model
8	MR. WALLIS: Does it have two-phase flow
9	in it, or is it dual or single phase?
10	MR. PARKS: We modeled the lower portion
11	of the
12	MR. WALLIS: All single phase.
13	MR. PARKS: course with all single
14	phase.
15	MEMBER BANERJEE: And you're only modeling
16	the bypass frequency.
17	MR. PARKS: That is correct.
18	MEMBER BANERJEE: And that is assumed not
19	to be boiling.
20	MR. PARKS: That is correct.
21	MEMBER BANERJEE: Right.
22	MR. WALLIS: Only in the core as well.
23	MEMBER BANERJEE: They are not analyzing
24	the core.
25	CHAIRMAN CORRADINI: They are looking at
ı	1

1	the bypass, similar to a
2	MR. PARKS: The interstitial is between
3	the assemblies we did model. But it bears mention
4	that most of the mixing behavior we observed were on
5	the bottom portions of the core, and our model only
6	covers a certain height of the core.
7	We got our geometry data to build this
8	model from audit activities. GE also provided us a
9	significant amount of data, and we also surveyed the
10	TRACG input data to get additional conditions,
11	boundary conditions.
12	We based it on the performance
13	requirements, things that we observed in the ITAAC
14	about the performance of the model.
15	MR. WALLIS: So how does your CFD model
16	the turbulent mixing, or whatever kind of mixing
17	process is going on here? Because it is mixing the
18	canvases isn't it?
19	MR. BOYD: It is just the standard they
20	used a standard turbulence model to model those jets.
21	MR. WALLIS: It applies to this kind of a
22	geometry, or
23	MR. BOYD: The jets are high-speed jets,
24	and they jet out into that outer opening. And we used
25	a model that was most applicable for jets, although it

1	has not been validated for these specific jets.
2	I don't think that is really the issue.
3	What we have is a lot of entrainment. There is a lot
4	of flow coming down. Those jets are almost like
5	pressure washers. They have about the same velocity
6	as a pressure washer you'd get at Home Depot. There
7	is 32 of them. They are basically stirring everything
8	up out in that outer region and putting basically a
9	borated solution, which is then drawn in.
10	The path of least resistance to get into
11	the core is low, because the fuel supports have less
12	blockage than the channel boxes themselves. And what
13	you the jets put in something equivalent to about
14	500 gpm all in together. The flow coming down from
15	the top is an order of magnitude higher, so
16	MEMBER BANERJEE: How is it coming?
17	MR. BOYD: The flow GE would have to
18	answer that. I used it as a boundary condition from
19	TRAC, but there is some flow in the channels
20	MR. WALLIS: Circulation
21	MR. BOYD: and it is going out in these
22	leakage paths, and it comes back down through.
23	So you've got an order of magnitude more
24	flow coming down. That flow has two choices. It can
25	come down through those little interstitional areas,

the lattice, and have to pass the blades, which are 1 2 inserted, or it can make its way out to the side, which is what we found that it does. And then, it's 3 4 going to go down, get close to the bottom, and then 5 sweep in. Each channel is pulling. So what you've got is this big flow б pattern that comes in and goes down, and then 10 7 8 percent of that are these jets that are 32 of them at 9 120-degree angles and 90-degree spread. They kind of flood that area and mix it up pretty well. 10 I don't think the turbulence model is too 11 critical there, because it is pretty well mixed before 12 it starts in. And what you see is it swept in. 13 MR. WALLIS: It's convected in, really. 14 15 MR. BOYD: It is convected in, so the TRACG model, not only when it puts that wall up and 16 holds flow out from going in, what it is really doing 17 18 is it is holding the flow that is coming down from 19 going out and sweeping it in. That's the real conservativism of that wall. 20 So the channels in the middle that are 21 pulling flow in, they can pull flow straight down, 22 23 because there is a wall, where in the CFD calculations they are really pulling more from the side, the flow 24 coming down goes out to the side and then sweeps in, 25

	carrying the boron in.
2	So that is basically what is going on.
3	And we did a bunch of sensitivity studies. The main
4	concern I had was what well, what if I could feed
5	those bundles in the middle with some flow from up
6	top? So what I did is I took all of the flow and I
7	concentrated it into ring 1, and tried to shove flow
8	down through the middle, just to see if I could break
9	GE's calculation. It's still
10	MR. WALLIS: And off to the side
11	MR. KALINICH: It's off to the side.
12	That's the path of least resistance.
13	MR. WALLIS: So the bottom line is that
14	you get about as much boron in the core as they did?
15	MR. BOYD: Yes. If you look at our boron
16	versus time, we get the same traces that they do. The
17	only thing that is going to change the we did a
18	bunch of sensitivity studies, just to see what would
19	change it. And the only thing that changed it were
20	the obvious things. If you inject less into the jets,
21	you get less boron. And if you pool more out through
22	each channel, then you'll have less built up in the
23	core.
24	MEMBER BANERJEE: So these are your
25	predictions?
I	

Those are -- I didn't put --1 MR. BOYD: 2 that Region A is the inner ring that they showed And what you'll see is the black curve are 3 4 the NRC predictions, the red curve are the 5 predictions. MR. WALLIS: It's the same. 6 7 I'm sorry. That's ring 3, MR. BOYD: 8 that's the outer peripheral region, and you'll see the TRAC -- what that's showing is that TRACG is storing 9 boron out at that outer region. It's not letting it 10 11 in. And then, you go into the inner region, 12 13 and you'll see the NRC predictions and the GE predictions showing boron making it to the inner core, 14 15 TRACG showing none. Ours are a little higher because 16 of the way we did the lower -- they took their blades and they made them as thick as the -- they blocked off 17 18 everything in there and cut out volume with their 19 blades, made a conservative approach that way. 20 I used an infinitely thin wall-thick I had upped the 21 I have a little more volume. 22 resistance to make it flow the same, but I had more 23 volume. They did a complete blockage. They had less And then, my fuel supports are a little bit 24 volume.

smaller than theirs, so I have a little bit more

1	volume. That's why you'll see a little bit more boron
2	building up.
3	MEMBER BANERJEE: It's just a volumetric
4	effect.
5	MR. BOYD: That's a volumetric effect.
6	MEMBER BANERJEE: Yes.
7	MR. BOYD: But the penetration times look
8	very similar. The height of the boron layer I
9	compared, and it looks very similar.
10	MR. WALLIS: It's really the convection
11	pattern that does that, and it sweeps it in.
12	MR. BOYD: That's a convection issue. I
13	don't think the turbulence model matters at all. I
14	think we could dump the boron in there in different
15	ways and get the same answer.
16	MR. WALLIS: This is very reassuring. I
17	mean, it seems to me that we shouldn't we shouldn't
18	have these extraordinarily conservative TRAC models
19	which really mislead us about how dangerous it might
20	be when it isn't.
21	MR. PARKS: Well, they still comply with
22	the acceptance criteria.
23	MR. WALLIS: It's better to have a
24	realistic model like this.
25	MEMBER BANERJEE: Well, this is basically

1	a density-driven flow event?
2	MEMBER BANERJEE: There is actual
3	convection.
4	MR. BOYD: It is like a chimney-driven
5	flow.
6	MEMBER BANERJEE: I see. With a buoyancy
7	effect.
8	MR. BOYD: But there's cooling flow.
9	MEMBER BANERJEE: Yes.
10	MR. BOYD: Now, our CFD models were
11	drastically different, too. There were different
12	approaches we focused on different things.
13	MR. WALLIS: But it's the heating and the
14	vents he changed that's causing this motion, this
15	MR. BOYD: In the channels, though, are
16	really driving it. And we're not modeling we're
17	modeling those boundary conditions, pulling in through
18	these little holes. So it
19	MR. WALLIS: So the chimney effect, you
20	mean, is due to the heating effects.
21	MR. BOYD: Right.
22	MEMBER KRESS: What happens to the sodium
23	pentaborate over the long term? Does it stay in
24	solution, or do you boil off and take it with the
25	steam, or does it concentrate? And is there a

1	possibility of recriticality in the long term? You
2	still can't put the rods in, I suppose.
3	MR. PARKS: I don't believe so. I'm going
4	to defer to Wayne. I think we asked for a 72-hour
5	analysis, but that might have been SVO. Wayne?
6	MR. MARQUINO: Yes. The boron stays in
7	the liquid phase.
8	MEMBER KRESS: When the steam goes out?
9	MR. MARQUINO: Yes. There is a free
10	surface in the upper plenum here, so you have steam
11	coming up. The liquid stays in the vessel.
12	MEMBER BANERJEE: Not in the chimney? It
13	doesn't go up into the chimney, the boron?
14	MR. MARQUINO: No. The other what was
15	your other question?
16	MEMBER KRESS: Well, I was concerned about
17	recriticality in the long term.
18	MR. MARQUINO: Right. Right. Another
19	thing that we looked at was if you depressurized the
20	reactor, that actually causes voiding and a better
21	response. And then, at low pressure, we didn't see
22	the reactor go critical at the end of the
23	depressurization. So we do not see a recriticality
24	during the ATWS, even if you hit the depressurization
25	curve in the EPG.

1	MEMBER SHACK: Wasn't there some
2	pentaborate carryover in the MELCOR calculations?
3	MR. MARQUINO: In the MELCOR calculation,
4	there is transport of the sodium pentaborate through
5	the liquid phase, out the break, and into the lower
6	drywell.
7	MEMBER SHACK: So you're losing it that
8	way, then.
9	MR. MARQUINO: Yes.
10	MEMBER KRESS: In the liquid.
11	CHAIRMAN CORRADINI: Do you want to go
12	back to your original slides?
13	MR. BAVOL: That was our final slide.
14	CHAIRMAN CORRADINI: Oh, okay.
15	MEMBER BANERJEE: Could we have copies of
16	your backup slides?
17	CHAIRMAN CORRADINI: You will be able to
18	get copies. I think as we have had in the past with
19	the subcommittees, Gary will assemble it and send us -
20	on a CD.
21	MEMBER BANERJEE: Including the backup
22	slides.
23	CHAIRMAN CORRADINI: Sure, yes, as part of
24	it.
25	MS. CUBBAGE: Those that were presented.

1	MEMBER BANERJEE: Sorry?
2	MR. WALLIS: I mean, Chris has presented
3	a nice picture. What is the conclusion of the
4	management?
5	MR. SHUAIBI: The reason that we asked the
6	Office of Research to do this was to confirm that
7	whatever TRACG was doing was something that was
8	conservative, and that we could accept. So I think
9	what you've what we've done is the Office of
10	Research has done some CFD analyses. They have
11	confirmed that the analyses that were performed using
12	TRACG were in fact conservative. That is
13	MEMBER BANERJEE: But there is still
14	some
15	MR. SHUAIBI: And I'm looking at I'm
16	looking at Chris I guess to nod for me.
17	MR. PARKS: Yes, this is our draft report
18	at this point.
19	MEMBER BANERJEE: But there are still some
20	further studies with TRACG nodalization or something
21	going on, or not? Am I misreading
22	MR. PARKS: The TRACG nodalization, that
23	would be a part of the Chapter 21 review.
24	MEMBER BANERJEE: Okay. But I had noted
25	maybe I just misread what you wrote there.

	MR. PARKS: We had that was the
2	separation, because we were concerned that there was
3	I guess a bit of smearing of the boron
4	MEMBER BANERJEE: Right.
5	MR. PARKS: that would non-
6	conservatively I guess overstate the boron mixing, and
7	so they separated the peripheral bypass, since
8	we're
9	MEMBER BANERJEE: Oh, that was the
10	blocking thing they did.
11	MR. PARKS: Right. And you saw that on
12	our slide, where their prediction in ring 3 or ring 4
13	was higher.
14	MEMBER BANERJEE: Yes. Okay.
15	MR. WALLIS: So you would if you
16	believe this, you would be able to accept the use of
17	much less boron.
18	CHAIRMAN CORRADINI: They don't believe it
19	that much.
20	MEMBER BANERJEE: Let's not go there.
21	(Laughter.)
22	CHAIRMAN CORRADINI: They don't believe it
23	that much.
Į.	chae mach.
24	MR. PARKS: That hasn't been proposed.
24 25	

1	comments?
2	(No response.)
3	Okay. We'll recess for lunch. Back at
4	1:20.
5	(Whereupon, at 12:21 p.m., the proceedings
6	in the foregoing matter recessed for lunch.)
7	CHAIRMAN CORRADINI: All right. Why don't
8	we get started.
9	Wayne, you wanted to Mr. Marquino
10	wanted to begin with a couple of comments to help us
11	from the morning session. And you're going to show us
12	a video.
L3	MR. MARQUINO: Okay. I just want to
L4	follow up on one of the open items that Jay Lee of the
L5	NRC staff mentioned, and then go over the Chapter 21
16	material, and then we'll have a LOCA movie that may
17	help explain our design better.
18	Going back to I think it was the previous
19	ACRS meeting, which included control room
20	habitability, one of the comments from the staff was
21	that we do not have a secondary containment in ESBWR.
22	That's an observation. What we have is a reactor
23	building that surrounds the primary containment. I
24	think that is related to the open item that Jay Lee

had, one of his five on reactor building mixing.

And before I talk to what we're doing to address that, I want to summarize some of the conservatisms that we have in analysis of doses. We have the fuel failures that are assumed, even though we don't actually fail the fuel in the LOCA. We don't take credit for fission product removal mechanisms after 12 hours.

We align the timing of the release to the worst meteorological conditions, so we apply a bad chi over Q at exactly the worst time in the event. We assume the containment leakage is at the maximum value at the containment design pressure throughout the event for 30 days. We assume a high wind velocity when determining the differential pressure for testing the reactor building, which is inconsistent with the worst chi over Q conditions, which correspond to stable atmospheric conditions and low wind velocity.

And then, finally, we assume bounding site characteristics. The actual at least first two sites' characteristics produce a dose of about half of the bounding chi over Q. So there's a number of conservatisms in our dose calculation.

One thing that we did very simply in analyzing the reactor building mixing is we simply determined where the penetrations are. Those are the

1	main leak sources, and we determined the building
2	volume around those sources. We're asked for some
3	additional justification of that, and we'll be using
4	the GOTHIC computer code to develop a fairly detailed
5	3-D model of the reactor building to look at the
6	transport of radioactivity from the primary
7	containment source through rooms and HVAC ducts, and
8	then finally out of the building.
9	That will probably combine with the
10	reactor building differential pressure evaluation, so
11	that we look at the tradeoffs between high wind,
12	favorable chi over Q, low wind, low differential
13	pressure, lower leakage, but worse chi over Q.
14	So that's our plan, and I'd like to hear
15	any comments that the ACRS has on that approach.
16	CHAIRMAN CORRADINI: Let me ask one thing
17	about GOTHIC. Are you going to use the distributed
18	parameter model, or are you going to use the lumped
19	model, such as in MELCOR?
20	MR. MARQUINO: I don't know. I don't know
21	much about GOTHIC, but I'll take that.
22	CHAIRMAN CORRADINI: I mean, GOTHIC is
23	basically COBRA NC gone wild. And so it there is
24	essentially a 3-D three-dimensional version, a CFD
25	approach, and there is the essentially what I'll call

1	a lumped parameter approach like MELCOR, where you
2	essentially have volumes and an orifice between
3	volumes. I'm curious which one you intend to use for
4	your analysis.
5	MR. MARQUINO: Well, we may we think
6	it's important in some of the initial volumes to have
7	more detail of possible stratification, that that
8	would produce unfavorable mixing. As you get
9	downstream, that's probably less critical, and we
LO	might use the lumped parameter option.
L1	CHAIRMAN CORRADINI: Okay.
L2	MR. WALLIS: All of these conservative
L3	analysis assumptions, you're going to end up with
L4	a prediction which meets the regulations.
L5	MR. MARQUINO: Yes.
L6	MR. WALLIS: So we don't need to worry.
L7	MR. MARQUINO: That's right. So that
L8	I think that should give you some assurance. We're
L9	asking when seeing the MELCOR evaluations by GE and
20	the staff and the uncertainties, those uncertainties
21	are covered by the overall conservatism of the
22	MR. WALLIS: So we don't know it until we
23	see the bottom line that the staff comes up with.
24	MR. MARQUINO: Right.
25	CHAIRMAN CORRADINI: But we have seen your

	I have to go back and theck on the bcb, but that
2	will be the comparison point at the end, yes. The
3	staff will do these separate calculations.
4	MR. MARQUINO: Yes. Another reason I
5	bring this up is because see you in the DCD that we're
6	at 4.9 rem on the control room dose, and the
7	acceptance criteria is 5, and the offsite we're 20
8	something, and 25 acceptance criteria. We've
9	artificially we used the most conservative chi over
10	Q to push that dose up, basically to the maximum, to
11	give us maximum flexibility for siting the ESBWR.
12	MR. WALLIS: So this is on the worst day
13	of the year sort of thing?
14	MR. MARQUINO: Yes. That's another
15	conservatism I forgot to mention.
16	CHAIRMAN CORRADINI: Okay.
17	MR. MARQUINO: Okay.
18	CHAIRMAN CORRADINI: Do you think it would
19	be more I mean, just you can do it however you
20	want. Do you think it might be more beneficial to
21	show the video first, or after you talk about the
22	TRACG?
23	MR. MARQUINO: I think you'll have more
24	questions about the video, so I'd like to go through
25	the

1	CHAIRMAN CORRADINI: Okay.
2	MR. MARQUINO: We have a very brief
3	Chapter 21 presentation, go through that, and then
4	show the video.
5	CHAIRMAN CORRADINI: Okay. That's fine.
6	MR. WALLIS: Is that because we'll
7	understand the video better than the we'll have
8	more questions?
9	(Laughter.)
10	CHAIRMAN CORRADINI: We'll go with your
11	decision. Go ahead.
12	MR. MARQUINO: Chapter 21 covers the
13	application methodology for various uses of TRACG, AOO
14	infrequent events, special events, and ATWS.
15	Next slide, please.
16	To give you some background, in the early
17	'90s, ESBWR project started with a test and analysis
18	program description to evaluate what testing would be
19	needed to license SBWR, and we knew we would be
20	applying the TRACG code. We were looking at what was
21	needed to qualify the TRACG code. We applied code
22	scaling applicability and uncertainty methodology to
23	developing that, including the phenomena importance
24	and ranking tables.

We then conducted the tests that were

1 identified as necessary, but in the mid '90s the SBWR 2 program ended and our licensing interactions with the NRC were pretty much suspended at that time. But GE 3 4 continued internally with a larger output version of 5 SBWR/ESBWR. And, internally, at GE the interest in 6 7 TRACG continued. We leveraged the work we had done 8 for SBWR, and in the late '90s we submitted for NRC 9 review and approval a TRACG for BWR 2 through 6 AOO 10 analysis. we submitted the 11 And then, in 2002, 12 TRACG 04 code for application to ESBWR, and a lot of 13 you were involved in that review. 14 Next slide, please. 15 here we are. We have submitted applications of TRACG that have been approved by the 16 They are AOO analysis for BWR 2 through 6, 17 ATWS pressure analysis for BWR 2 through 6, which is 18 19 very similar to AOOs, ESBWR LOCA analysis, and ESBWR 20 stability analysis. And then, we have two LTRs that are still 21 22 under review by the staff -- the ESBWR ATWS pressure, 23 clad temperature, and suppression pool temperature application. And we talked about the boron mixing 24 25 related to that, incidentally, this morning.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

And then, a recent submittal for ESBWR A00, infrequent event, special event -- this is kind of a funny situation, because we had submitted a lot of material to the staff in referencing different referencing analysis LTRs. the test program description and PIRTs. And there was a information that was disbursed, and this LTR basically brings it all together. And it also provides details on the results that are in the DCD and the uncertainty analysis we did to support the operating limit.

Next slide, please.

So we covered the boron mixing in ATWS this morning. Another significant RAI or set of RAIs that we have is related to stability during ATWS, and we are taking back some of your questions about stability related to the chimney that we'll work through.

CHAIRMAN CORRADINI: Let's just be clear. So I think the thing that I heard from the other members was that their concern was behavior within the chimney, and also the coupling between the chimney and how you had the bundle arrangement -- I think it's 16 -- 16 assemblies feeding one chimney and that interplay.

MR. MARQUINO: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

-	

CHAIRMAN CORRADINI: Okay.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MR. MARQUINO: And we have this recent LTR, which is very similar to the approved NED 32906 application of TRACG. In the transient analysis area, Chapter 21, some of the RAI questions had to do with hydraulic control unit failures during select control As I said, that's a local phenomena, rod insert. individual blades inserting.

The NRC asked us what would happen if a blade or two blades paired to an HCU failed, and we've provided a response to that, and we've made revisions in the DCD to address it.

Next slide.

So I'd like to show you Okav. animation of the LOCA response, and Dr. Chester Cheung is here to talk you through it. It's very short. think it's three minutes.

(Whereupon, the video began.)

MALE VOICE: The piping in any nuclear powerplant is rigorously designed to stringent codes and is routinely inspected for optimal safety and performance. In the unlikely event of a pipe leak or break, ESBWR passive safety features are designed to prevent the nuclear reactor's core from overheating. In fact, these safety features would keep the fuel at

or below its normal operating temperature for a period of time established by the regulatory authorities.

If a pipe leaks or breaks, control rod blades are automatically inserted into the reactor core, stopping the nuclear reaction. The feedwater system maintains a sufficient water level in the vessel to avoid activating the passive core cooling system. In the event that plant power is lost at the same time that a pipe leaks or breaks, the ESBWR passive safety systems activate to replace the power operated systems.

With no electricity to pump water into the reactor pressure vessel, the passive safety systems utilize natural forces to flood and cool the core. Triggered by the loss of power, heat exchanger tubes drain water into the reactor pressure vessel. As the tubes empty, steam from the reactor is drawn in and condensed. This removes heat from the reactor and transfers it to the IC pool in the upper part of the building.

If the water level drops to a level below that expected for common plant events, a time sequence of depressurization and passive cooling begins. Depressurization begins when the safety relief valves open and transfer steam from the reactor into the

suppression pool where it is condensed back into water.

This relieves pressure in the reactor pressure vessel. The depressurization valves open next, transferring steam from the reactor directly into the containment. At the same time, high pressure tank valves open, forcing liquid through piping directly into the core.

Near the end of depressurization, valves open and allow water to drain from the GDCS pool into the reactor pressure vessel, raising the water level and completing the process of cooling the nuclear core. A passive natural circulation cooling cycle then begins as steam bubbles from the core drift to the surface.

The steam then flows from the containment to low pressure heat exchangers in the PCC pool that condense the steam into water. The core's heat is transferred to the PCC pool through this steam. As the steam condenses in the low pressure heat exchanger, it drains first to the GDCS pool, then returns to the reactor pressure vessel, completing the closed loop cooling system.

Because the core has remained cooled through the sequence, the nuclear fuel does not heat

1	up, and the fuel tubes remain intact. If any
2	radioactivity is released from the core, the
3	containment building prevents the release into the
4	environment. The ESBWR passive safety systems
5	automatically keep the reactor core consistently
6	cooled for 72 hours, unlike any operating nuclear
7	plant. The pools are sized to remove heat from the
8	core for three days. After that time, the upper pool
9	will be refilled.
10	In summary, accident events like pipe
11	breaks can be accommodated by the ESBWR passive safety
12	systems without any reliance on the AC power grid or
13	even emergency generators for three days with no core
14	heat up, unlike any operating nuclear plant today.
15	(Whereupon, the video ended.)
16	MR. WALLIS: It doesn't say anything about
17	the suppression pool.
18	MR. MARQUINO: It does.
19	MR. WALLIS: It doesn't, really. It
20	doesn't show anything bubbling into it.
21	MR. MARQUINO: It showed like steam
22	MEMBER BANERJEE: From the SRV.
23	CHAIRMAN CORRADINI: But the equalization
24	line under current calculation isn't
25	MR. WALLIS: No. But the event clearing

T	would happen as you pressurize the drywell.
2	CHAIRMAN CORRADINI: Well, I saw that. I
3	saw those
4	MR. WALLIS: Did I miss that?
5	MEMBER ARMIJO: Well, it showed the level
6	in the downcomer.
7	MR. WALLIS: Oh, it did.
8	PARTICIPANT: It has these steam jets.
9	MR. WALLIS: That's an SRV line. That
10	doesn't show bubbling. There's bubbling around
11	MR. MARQUINO: It falls around
12	MR. WALLIS: There's a big bubbling, an
13	eruption
14	MR. MARQUINO: It doesn't show pool
15	swells. All right.
16	MR. WALLIS: It doesn't show pool swell.
17	It's a very gentle
18	MR. MARQUINO: These are very gentle,
19	little tiny bubbles.
20	MR. WALLIS: You show the non-condensables
21	coming in and
22	DR. CHEUNG: It's a sanitized version.
23	(Laughter.)
24	It's a sanitized version.
25	MR. MARQUINO: Let me try to at least
1	

1	the time sequence lines up with our TRAC results. We
2	informed it based on that. Yes, there's
3	simplifications, and we can't get into a lot of the
4	detail. We tried to put something together that shows
5	the systems functioning, so that people could have an
6	overall understanding.
7	MR. WALLIS: The SLC system operates as an
8	accumulator, even if you don't need the boron.
9	MR. MARQUINO: Yes.
10	MR. WALLIS: Always?
11	MR. MARQUINO: Yes. Triggers on low water
12	level.
13	MEMBER BANERJEE: I guess the last four
14	words "unlike any other reactors" or whatever, that's
15	sort of redundant.
16	MEMBER BLEY: It's a sales tool.
17	MR. MARQUINO: And this is available on
18	the GE website.
19	MEMBER BLEY: It's on the website.
20	MR. MARQUINO: Any other questions?
21	MEMBER KRESS: What makes the steam go up
22	that pipe?
23	MR. MARQUINO: What makes the steam go up
24	the pipe to the PCC?
25	MEMBER KRESS: Yes, instead of condensing

1	on the other surfaces.
2	DR. CHEUNG: The steam flow is much higher
3	than on the surface can condense. The surface
4	contains only a small amount.
5	CHAIRMAN CORRADINI: But the answer I
6	guess is it will condense everywhere, and that will be
7	your cold point to draw it there, right? I mean, Dr.
8	Kress' point I think is fair, is it?
9	MEMBER KRESS: I think
10	CHAIRMAN CORRADINI: It will condense
11	everywhere to begin with.
12	MEMBER KRESS: Eventually, you may end up
13	with all the water on the floor, instead of feeding it
14	back to the core.
15	DR. CHEUNG: It depends on the break.
16	CHAIRMAN CORRADINI: Can we ask the
17	question a little bit differently? Have you in
18	your containment analysis which we are going to have
19	you come back and tell us about in detail, you have
20	considered the cold wall heat sinks and the proportion
21	of how much water condenses there versus on the PCCS,
22	right?
23	MEMBER KRESS: Supposedly MELCOR will do
24	that.
25	MR. WALLIS: Event clearing there.

1	DR. CHEUNG: We have models, the heat sink			
2	structure in this, but we purposely ignore a lot of			
3	structural heat pipings to maximize the energy that			
4	will go into the containment system. But in the long			
5	term, we			
6	MR. MARQUINO: The presentation you gave			
7	yesterday included the results out to 30 days, which			
8	considered the condensation on the structures that we			
9	were asked about, right?			
10	DR. CHEUNG: Yes. We estimate that all			
11	the way up to 30 days. Does that answer your			
12	question?			
13	CHAIRMAN CORRADINI: But then, let's just			
14	push the point one further, what Dr. Kress is asking.			
15	So he might be asking, ideally, you'd like all the			
16	water to go up to the PCCS, condense, the non-			
17	condensables will be pushed back based on submergence			
18	into the suppression, into the wet well. The water			
19	will go into the GDCS, but there will be some losses			
20	to the cold walls, and you've calculated how much you			
21	lose that will be ending up in little dribbles and			
22	drabbles inside the drywell, right?			
23	DR. CHEUNG: Yes.			
24	CHAIRMAN CORRADINI: Okay. We can look at			
25	that in the detailed analysis. We'll want to look at			

1	that.			
2	MEMBER KRESS: May be a long-term cooling			
3	problem.			
4	CHAIRMAN CORRADINI: I think that's			
5	actually probably early in time as we're going to get			
6	the most condensation, because as soon as they build			
7	up the temperature on the wall, it will shut itself			
8	down just by			
9	MEMBER KRESS: Well, there's a lot of heat			
10	capacity on those walls.			
11	MR. MARQUINO: And another thing we should			
12	tell them is the equalizing valve is there for			
13	specifically that scenario. So if we lose too much			
14	from the system, and it's on the floor of the drywell,			
15	the water level in the core would drop, and then the			
16	equalizing valve opens, floods it from the suppression			
L7	pool			
18	MEMBER KRESS: Ah, that's the thing I was			
19	looking for.			
20	DR. CHEUNG: And, actually, for the			
21	current evaluation, all of the way up to 30 days, we			
22	don't need the equalization line to open.			
23	CHAIRMAN CORRADINI: Well, that's what			
24	I want to get back to. I mean, it could open, but in			
25	all your analysis you showed us yesterday under			

Chapter 6, no eventuality of your limiting condition, 1 2 the main steam line break accident, which was your 3 limiting accident, did you need 4 equalization line open. We didn't --5 DR. CHEUNG: No. 6 CHAIRMAN CORRADINI: You were continuing 7 to have inventory, so you never got to the magical 8 switchpoint, which would have wanted that valve to 9 Is that not correct? open. 10 DR. CHEUNG: That's correct. Up to 30 days, we don't need that. But if 11 elevation. we have N minus 2 problem, or N minus 2 failure, 12 13 that's like one of the pools, one of the three pools, the water stayed behind. Then, we will have a defense 14 15 in depth system. The equalization line will come in, 16 and in that situation that suppression pool is about 10 meters from the RPV bottom. The top altitude is 17 18 7.5, so we have a head of 2.5 meter. So there is 19 plenty of water to make sure that the coil is covered. 20 Can I ask you about the MR. WALLIS: vacuum breakers now? I mean, in order for the PCCS to 21 22 work, you have to have a positive pressure difference 23 from the drywell to the wet well, right? And I guess the idea of the vacuum breaker is that, you know, you 24

pressurize the wet well, you've driven all of the non-

1	condensables	in	there

So you want to relieve that pressure by letting it breath it back into the drywell. But that doesn't give you a positive pressure difference between the drywell and the wet well to drive the PCCS. So you must have a hydrostatic head somewhere or something that makes it work. I don't understand where that is.

DR. CHEUNG: Let me answer that. The vacuum breaker opens if, and only if, the wet well pressure is higher than the drywell pressure.

MR. WALLIS: Yes, it's higher than the drywell pressure. It's got to be significantly lower for the PCCS to work, though.

CHAIRMAN CORRADINI: Right. But it's a timing issue, as I understand it, Graham. Early in any of their accidents, all of the flow is down in through the vents, and then they have a positive pressure. The pop-it valve will open and --

MR. WALLIS: As long as the pressure is rising in the containment, everything is fine. But when you want to try to turn it around, that's when you get into trouble. That's why you put the fans in or someone put the fans in.

CHAIRMAN CORRADINI: The vacuum breaker is

NEAL R. GROSS

1	not is designed to be leak-tight at that point.
2	MR. WALLIS: But then, you can't get the
3	PCCS to work.
4	CHAIRMAN CORRADINI: Well, it slowly,
5	slowly builds pressure.
6	MR. WALLIS: Oh.
7	CHAIRMAN CORRADINI: Because, as they
8	said, everything is being driven by the non-
9	condensables and
10	MR. WALLIS: Well, then, it has to keep
11	building pressure in the drywell. But that's what you
12	want to turn around, though.
13	MR. MARQUINO: The PCC
14	MR. WALLIS: How does it ever turn around
15	the pressure in the drywell?
16	MR. MARQUINO: The PCC will work without
17	a differential pressure, if it's full of steam. But
18	when it doesn't
19	MR. WALLIS: But it soon gets filled
20	eventually, it gets non-condensables if it's not
21	breathing out the non-condensables.
22	MR. MARQUINO: Right, right. When it
23	needs a differential pressure is to purge itself of
24	non-condensables.
25	MR WALLIS Right

1	MR. MARQUINO: And we talked yesterday
2	about how it comes to equilibrium with the core steam
3	generation.
4	MR. WALLIS: But it doesn't if it can't
5	breathe out the non-condensables. It works as long as
6	the pressure keeps going up in the drywell, because
7	that breathes out the non-condensables. But it can't
8	turn it around and make it come down.
9	CHAIRMAN CORRADINI: Just one thing,
10	Graham. I think I mean, I agree with you from a
11	timing standpoint. If you look at one of their plots
12	in Chapter 6, even though the pressure is going up,
13	the drywell is still at a higher pressure than the wet
14	well.
15	MR. WALLIS: Because the pressure is going
16	up. But if the pressure if you want to get the
17	pressure down in the drywell, below the pressure in
18	the suppression pool, you have to do something.
19	CHAIRMAN CORRADINI: Right.
20	MR. WALLIS: And I don't know how you do
21	that without having a fan or something that to
22	MR. MARQUINO: That's why we put the fan
23	in.
24	MR. WALLIS: But it's desirable not to
25	have this.

	MR. MARQUINO: There's other ways.
2	DR. CHEUNG: Let me answer it the other
3	way. The PCC works not because of the the heat is
4	created by not enough steam condensed or the you
5	have
6	MR. WALLIS: As long as the pressure is
7	going up in the drywell, it's okay.
8	DR. CHEUNG: Yes. But once you turn on a
9	fan, then the PCC becomes an active heat exchanger.
10	It does not depend on what's going on in the wet well,
11	because you have a forced flow circulation.
12	MR. WALLIS: You have a forced flow, but
13	you have to have that forced flow. Otherwise, you'll
14	never turn the pressure around. Isn't that right?
15	DR. CHEUNG: That's the idea of using the
16	fan is to force it.
17	MR. WALLIS: But the fan wasn't there
18	until recently.
19	CHAIRMAN CORRADINI: They would come to an
20	equilibrium that was below design pressure, but would
21	not necessarily decrease.
22	MR. WALLIS: It would never come down.
23	CHAIRMAN CORRADINI: It would come down
24	very, very slowly.
25	MR. WALLIS: Very slowly, yes. Okay.

1	Just why can't you make some kind of passive
2	arrangement that makes it turn itself around? That
3	would be very desirable.
4	CHAIRMAN CORRADINI: They could vent the
5	wet well.
6	MR. WALLIS: Yes.
7	CHAIRMAN CORRADINI: I mean, that's what
8	ABWR has as their final
9	MR. WALLIS: You can vent the wet well.
10	CHAIRMAN CORRADINI: Yes.
11	MR. WALLIS: Yes.
12	CHAIRMAN CORRADINI: And get rid of the
13	non-condensable gas and bring down the overall level.
14	MR. WALLIS: Yes. But they won't do that.
15	CHAIRMAN CORRADINI: Well, they chose not
16	to.
17	MR. WALLIS: Okay. So I guess it's
18	clarified. Isn't it a bit artificial, because you're
19	trying to make it last for three days and then
20	something else has to happen.
21	DR. CHEUNG: After three days, we are
22	supposed to have simple systems bring it up.
23	MR. WALLIS: I was trying to tell my wife
24	that you have such a wonderful design that you could
25	just walk away from it. But you can't.
I	II

1	MS. CUBBAGE: For three days.
2	MR. WALLIS: You have to do something
3	after three days.
4	MR. MARQUINO: Well, we have to refill the
5	pool at three days. That has always been part of the
6	design, and now we've had
7	MR. WALLIS: That's understandable, but
8	you're actually introducing a new a fan or
9	something.
10	MR. MARQUINO: Yes.
11	MR. WALLIS: When did the fan get
12	introduced?
13	MR. MARQUINO: Well, the fan was
L4	investigated in the '90s during the PANDA testing. It
L5	wasn't part of our original submittal. We
L6	MR. WALLIS: Because I've never seen it
17	until this time.
18	MR. MARQUINO: It was put back in in
19	well, started telling the staff about it in the March
20	timeframe.
21	CHAIRMAN CORRADINI: So let me ask a
22	question about the venting. So did you consider this
23	in comparison to what ABWR has as a possibility?
24	Unless I misunderstand, does not ABWR have a venting
25	capability in the wet well as a final way to bring

1	down pressure?
2	MR. MARQUINO: Not in the design basis
3	accident analysis. In ABWR, like the BWR 6s, you get
4	a very significant drop in pressure from cold water
5	spilling out of the break and condensing the steam in
6	the drywell.
7	CHAIRMAN CORRADINI: Okay.
8	MR. MARQUINO: So that wet well, then, is
9	not needed in the design basis LOCA analysis.
10	CHAIRMAN CORRADINI: Beyond design basis.
11	Okay. That was my mistake. I'm sorry. Thank you.
L2	MR. MARQUINO: Well, thank you very much
L3	for your questions.
L4	CHAIRMAN CORRADINI: Are we turning to the
L5	staff?
L6	PARTICIPANT: Unless you want to take a
L7	long break.
L8	CHAIRMAN CORRADINI: No.
L9	(Laughter.)
20	MR. WILLIAMS: Good afternoon. My name is
21	Shawn Williams. I'm the Project Manager for
22	Chapter 21 of the safety evaluation report. As many
23	of you are aware, there is not a Chapter 21 of the
24	DCD. Chapter 21 covers testing and computer code
25	evaluation. The safety evaluation report speaks to

1	the information that was provided in topical reports
2	regarding the TRACG code and its qualification.
3	This is a list of the lead and supporting
4	reviewers. We wanted to have a special note for
5	Veronica Wilson, because she was the actual author for
6	nearly six of the SERs you saw, four of the topical
7	reports, Chapter 21.6, and Chapter 6.3. Of course,
8	she doesn't have the pleasure of presenting them,
9	but
10	CHAIRMAN CORRADINI: Is she in the
11	audience, so we can get her?
12	(Laughter.)
13	PARTICIPANT: She's hiding.
14	MR. WILLIAMS: RAI status, 111 original
15	RAIs, 77 are resolved. Currently it says 34, but I
16	wanted to note there are about 10 to 15 Chapter 4 and
17	Chapter 6 RAIs that will also need to be resolved to
18	close out all of the Chapter 21 issues. Even though
19	there are 34 open items, GE has responded to about 12
20	of them that are still on staff's plate.
21	I'm going to hand it over to Ralph Landry,
22	who is going to give you an introduction of
23	Chapter 21.
24	MR. LANDRY: Good afternoon. I'm Ralph
25	Landry from the staff of NRO. The introductory
1	1

remarks I'm going to make are pretty short, and I want to introduce the different staff members who are responsible for the individual sections of the review.

You've already heard about the stability, and you've heard about ATWS, and you've heard about the AOOs. This afternoon we're going to talk about the LOCA open items. We are going to talk about some of the transient open items, and then a discussion with the Committee.

So far, we have been to the Committee for the testing and scaling of the TRACG support. That was in 2004, as part of the acceptance review of TRACG for LOCA. In 2004, we want to the Thermal Hydraulics Subcommittee and the full Committee to approve use of TRACG for LOCA analysis on ESBWR.

In 2006, we came to the Thermal Hydraulics Subcommittee and the full Committee with a review of the acceptability of TRACG for stability analysis for ESBWR. We have been reviewing TRACG applicability for ATWS and for transients, and those reviews will be incorporated as part of the overall SER on the design certification review.

As Wayne Marquino mentioned in his presentation, we went to the Subcommittee and to the full Committee on the review of TRACG for

applicability to the AOOs for the operating fleet. 1 2 What we are looking at for the applicability to ESBWR is an extension of that applicability to incorporate 3 the ESBWR design features that are not part of the 4 5 operating fleet designs. So we have been reviewing TRACG, and we 6 7 have been back and forth to the Thermal Hydraulics 8 Subcommittee, and to the full Committee, on three occasions already for TRACG, for the AOOs for the 9 operating fleet, for applicability to LOCA for the 10 11 operating fleet, and for applicability -- or to the ESBWR, and applicability to the stability for ESBWR. 12 13 Are there any phenomena in MR. WALLIS: these transients which we haven't already reviewed on 14 15 the LOCA and stability that we have to worry about? I can see that ATWS has some new features, but are 16 there other transients that have new features? 17 18 This is looking at MR. LANDRY: 19 passive features of the design for the transients. wanted to do a separate review of the applicability to 20 make sure that the code was still applicable to the 21 22 features of this design. 23 MR. WALLIS: Did you look at the range of variables on the phenomena or something? 24 25 any new phenomena in these --

1	MR. LANDRY: No, I didn't. Jim Gilmer
2	will be
3	MR. WALLIS: He is going to say that.
4	MR. LANDRY: covering some of this.
5	MR. WALLIS: I would just be surprised if
6	there are many new phenomena that you have to worry
7	about in the transients that you haven't already
8	looked at for LOCA and stability.
9	MR. LANDRY: Well, that's why I said,
10	Graham, that this is really extending that approval
11	from the operating fleet. Now, you have to recall,
L2	when we reviewed it for the operating fleet, that was
L3	applicable to BWRs 2 through 6. It was not applied
14	for applicability to BWR 1 or ABWR. So we are
L5	reviewing it to make sure that it's applicable for the
16	ESBWR.
L7	MR. WALLIS: But I was thinking about the
18	you've already reviewed for LOCA and stability for
L9	the ESBWR. So you've looked at the kind of phenomena
30	that happen during transient.
21	MR. LANDRY: This is another check on
22	that.
23	MR. WALLIS: Okay. So it just seems to me
24	it shouldn't be that big a job, right?
25	MR. LANDRY: Right.

1	MEMBER BANERJEE: You don't want to put
2	words in his mouth.
3	MR. LANDRY: We always have additional
4	MR. WALLIS: Yes, I know. I know.
5	MR. LANDRY: things we want to look at.
6	MR. WALLIS: I was wondering about what we
7	have to worry about. We have to worry about much
8	MR. LANDRY: You just have to believe us.
9	MR. WALLIS: Okay.
10	(Laughter.)
11	CHAIRMAN CORRADINI: You look very
12	believable today.
13	MR. LANDRY: Thank you.
14	MEMBER BANERJEE: Especially since you
15	have moved to NRO, right?
16	MR. LANDRY: Moving right along, I'd like
17	to briefly summarize the regulations that apply to the
18	reviews that we have for presentation this afternoon.
19	Overriding for the LOCA, 10 CFRs 50.34 and
20	50.46, of course, and standard review plan Section
21	6.3, emergency core cooling, 15.65, and 15.02.
22	With that, I'd like to turn the discussion
23	over to Dr. Wang to discuss LOCA and LOCA
24	applicability with you.
25	DR. WANG: Good afternoon. My name is
i	1

1	Weidong Wang, and I am going to talk about the
2	applicability for LOCA, which Ralph has already
3	discussed I mean, mentioned that we had received a
4	topical report in the past, and we have approved in
5	the preapplication stage for LOCA application. And at
6	that time, we had an SER and we listed 20 confirmatory
7	items which basically these items should be addressed
8	during this DCD application.
9	And my presentation here is try to give a
10	few points of interest for these confirmatory items,
11	which later GE submitted to us.
12	Next slide, please.
13	The first item is phenomenon
14	identification ranking table for long-term cooling,
15	and GE has submitted through the II report report
16	letter basically for they divided this phenomena
17	into catalogs for the LOCA. One is
18	MR. WALLIS: I thought you were reviewing
19	TRACG, not PIRT.
20	DR. WANG: That's right.
21	MR. WALLIS: Is PIRT also part of the
22	review, then?
23	DR. WANG: Well, PIRT, basically for the
24	TRACG code, we needed to simulate for the
25	MR. WALLIS: That's what you put into

| TRACG?

DR. WANG: Okay. The purpose of PIRT here is we want to identify the phenomena. And that phenomena, the TRACG has the capability to model this phenomena. That's the purpose of being mentioned here.

And these confirmatory items was listed in the past ISE, and basically for this evaluation we tried to go through all of these confirmatory items, even though today I only selected a few to discuss here.

CHAIRMAN CORRADINI: May I ask -- I think
I see where you're going with this.

MR. LANDRY: Let me see if I can help Weidong out on that. This might help you, too, Mike. When we did the TRACG applicability for LOCA review, before the DCD was submitted, that material did not take TRACG for LOCA into the long term. The part that was submitted was only a short-term PIRT. It was not a PIRT into the long-term applicability or long-term phenomenon applicability.

That's why when we did the TRACG SER we listed as one of the confirmatory items that when you come in with a DCD you have to provide a PIRT for long-term. And that's what Weidong is talking about.

Right. 1 MEMBER BANERJEE: And a lot of your evaluation, then, related to the integral test 2 for the PCCS and how they agreed with that. 3 MR. LANDRY: Did that help you, Mike? 4 I had a 5 CHAIRMAN CORRADINI: Yes. 6 different question, though. In the long term, the ratio of the machine to what you put the machine in 7 the building matters. So what is the effect of the 8 9 12.5 percent uprate from 4,000 megawatts thermal to 4,500, when all of the other pieces of the building 10 stay the same size? Is that reflected in the concern 11 over -- because in the long term, time scales don't 12 It's a matter of energy balances of what I 13 have and what I heat up. Has that been considered, or 14 15 is that part of the --16 There is another open item DR. WANG: Basically, we would like to 17 later I will discuss. verify or check any new -- especially in the core for 18 19 this, say, void fraction generation, the TRACG code 20 capability. Basically, we have an II on that I think I will cover in the later slides. 21 22 For the long-term core cooling -- and we 23 basically checked GEH supplement for the phenomena for the high break locations, like a main steam line break 24 25 and feedwater line break. And the interesting

1	phenomena here is the capacity relative to RPV volume,
2	and also PCCS capacity relative to decay heat. The
3	PCCS is basically for heat removal for this whole
4	system in the long-term cooling.
5	And for low elevation breaks, the lower
б	drywell volume with this elevation, basically since
7	the break is low you needed to have something
8	volume to hold the water. And also, break flow
9	pressure drop break flows and the pressure drops
10	through the DPVs, because for the lower lower part
11	of this break, the break is more considered a small
12	break for the bottom drain line break. So
13	pressurization is slow, and this ADS system, like DPV,
14	is for break flow is important.
15	And the staff will evaluate this long-term
16	core cooling, and we found it acceptable.
17	MEMBER BANERJEE: You also reviewed the
18	scaling analysis and everything that
19	DR. WANG: We do and
20	MEMBER BANERJEE: top down?
21	DR. WANG: Do you have any specific
22	questions which Mohammed
23	MEMBER BANERJEE: No. I'm just asking the
24	scope of the review.
25	DR. WANG: Yes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MEMBER BANERJEE: What --

MR. LANDRY: Sanjoy, we did review the
scaling analysis and reviewed the testing program when
we reviewed TRACG for LOCA applicability before the
DCD. After the DCD came in, because, as Mike pointed
out, it was at a higher power level, we went back and
looked at what we had reviewed for the testing and for
the scaling to see that there was nothing in this
power uprate that or the changes that we saw that
would negate our calling to question any of the
positions that we had taken in acceptance of the
testing and scaling program.

So, yes, we did review it, and we went back and checked it and looked at it again after the DCD came in.

VICE CHAIRMAN ABDEL-KHALIK: Let me just ask a slightly different question. The implication, of course, when you're talking about long-term cooling is that you understand everything about short-term And we hear a great deal about noncooling. condensable gas accumulation in ECCS systems for current reactors. Is there any mechanism by which a non-condensable gas can accumulate in the gravitydriven system that would prevent them from operating in the short term?

1 MR. LANDRY: We did not see in the short 2 term anything that would -- any way that you would sufficient non-condensable accumulation 3 4 prevent this system from operating. But we --5 VICE CHAIRMAN ABDEL-KHALIK: Do vou have 6 any idea about the detailed piping arrangement of the 7 gravity-driven system? 8 MR. LANDRY: We reviewed --9 VICE CHAIRMAN ABDEL-KHALIK: Whereby pockets of gas may actually accumulate during startup? 10 We have to -- I guess we 11 MR. LANDRY: 12 would have to see the real details. If the piping arrangement was different than our understanding of it 13 when we did the LOCA TRACG report, or if it was 14 15 different than our understanding of the system today -- let me call on Andre Drozd from the staff, who did 16 part of the containment review. 17 18 This is Andre Drozd from MR. DROZD: 19 Containment Issue -- Containment Branch. There is a 20 chance of collecting non-condensables in the PCCS. 21 However, it helps to resolve the issue if you remember that PCCS can work in two modes. One mode is a 22 23 condensing mode, where you condense in the tube, you suck in -- suck in steam from the drywell. the second 24

mode is delta P mode. That is, if by any chance you

25

1	degrade your heat transfer in the PCCS, drywell
2	pressure goes up, and delta P between drywell and wet
3	well increases in such a way that it flushes through.
4	So it works kind of in a forced flow. The
5	delta P that potentially can be created forces flow
6	through PCCS, and, therefore, reestablishing the
7	condensing mode of operation.
8	CHAIRMAN CORRADINI: But that if I just
9	might make sure I understand. That leads to Graham's
10	point, which is after you get through the initial
11	transient, then you're back to whatever that delta P
12	set, and that will set that delta P will slowly
13	rise, rise, rise, as you
14	MEMBER BANERJEE: I don't think that was
15	Said's point.
16	VICE CHAIRMAN ABDEL-KHALIK: Perhaps GE
17	should answer my question.
18	MEMBER BANERJEE: Yes.
19	MR. UPTON: This is Hugh Upton with GEH.
20	We have a reference routing for the GDCS lines
21	injecting into the RPV. It's sloped back to the
22	pools, so if there's any accumulation of nitrogen in
23	the line it will bubble up to the pools and up to the
24	drywell air space.
25	VICE CHAIRMAN ABDEL-KHALIK: Has that been

1	verified?
2	MR. UPTON: In what way, the routing?
3	VICE CHAIRMAN ABDEL-KHALIK: Do we have a
4	detailed
5	MR. UPTON: Yes. We have isometrics.
6	Yes, we have isometrics on that routing. And I think
7	it has been provided has it been provided in this
8	one? We can provide the detailed isometrics on
9	request.
10	VICE CHAIRMAN ABDEL-KHALIK: Now, if there
11	is gas accumulation in the gravity-driven system
12	lines, would TRACG be able to model the effect, the
13	presence, of a fairly large non-condensable gas bubble
14	in a gravity-supplied line?
15	DR. WANG: TRACG should have this
16	capability, because that is basically the gas and the
17	liquid flow and which is and also up to the
18	regular pressure. So I don't see anything will
19	prevent the TRACG's capability to model this
20	phenomena.
21	You are talking about is you have a
22	large non-condensable bubble trapped in the GDCS line,
23	is that what you are trying to
24	VICE CHAIRMAN ABDEL-KHALIK: Correct.
25	DR. WANG: And I don't think TRACG has any

1	problem to simulate this phenomena.
2	VICE CHAIRMAN ABDEL-KHALIK: And you say
3	that based on what, your own personal experience?
4	You've done calculations of this type?
5	DR. WANG: Not really personally used the
6	TRACG. But I was developed it by FIRE code and
7	TRACE code, and I was involved in this kind of
8	calculation. In my personal experience, I don't think
9	TRACG should have this problem, even though I never
10	really learned TRACG myself.
11	VICE CHAIRMAN ABDEL-KHALIK: Okay. Now,
12	back to the isometrics that will be provided by GE,
13	will the staff review that to make sure that this
14	problem is indeed impossible?
15	MS. CUBBAGE: We have received PNIDs. You
16	know, I think if they set a design criteria that there
17	is going to be a certain sloping, then when they build
18	the plant they are required to build it the way they
19	said they would.
20	MR. UPTON: That's correct. We have a
21	requirement that we slope the lines away from the RPV
22	at I think one inch 1 to 100. I think that's the
23	average slope.
24	MR. WALLIS: I think the problem would
25	come about if you put the check valve in the wrong

1	place, so that there was air trapped below the check
2	valve. You wouldn't get enough delta P to open it.
3	You would put the check valve in the right place in
4	this line, so that you don't trap possibly trap
5	non-condensables below the check valve, and then they
6	won't open because there isn't enough delta P to open
7	it. So I assume that you put the check valve in the
8	right place.
9	MR. UPTON: Again, we have looked at that.
10	MR. WALLIS: The long pipe with the check
11	valve in it, and there's air underneath it. It won't
12	open if it doesn't have enough pressure to push it
13	open. But you're not going to put the check valve at
14	the top of the pipe, presumably.
15	MR. UPTON: That's correct.
16	MR. WALLIS: I hope not.
17	MEMBER BANERJEE: Well, these non-
18	condensables in EEC lines is an issue that we've had
19	to deal with in the past. So
20	PARTICIPANT: We still are.
21	MEMBER BANERJEE: We still are. So it has
22	to be make sure that we know something about it.
23	MR. WALLIS: Be sure that some architect-
24	engineer doesn't go and route the pipe up and over a
25	wall or something.

I just wanted to clarify what 1 DR. WANG: 2 my statement I said for this TRACG have the capability 3 to -- you know, this I assume, okay, because TRACG is too free to model, which is similar to the TRACE code, 4 5 and also RELAP 5 is too free to model. What I tried to say is for this you have 6 liquid and you have non-condensable gas for this flow 7 to be able to simulate. However, for condensation in 8 the PCCS, that's a different issue. I tried to make 9 a point -- you know, if you have some trapped in it, 10 11 if you have liquid, you should be able to simulate. That's my point. 12 13 CHAIRMAN CORRADINI: thank you. And next preliminary item I 14 DR. WANG: 15 would like to bring up is, since TRACG, up to that 16 the preapplication, that time for TRACG 02, and later for the DCD phase --17 Let me just go back to the 18 MR. SHUAIBI: question that was raised. Let us take that back as a 19 20 lookup and come back maybe between now and the Subcommittee, maybe at -- between now and the full 21 22 Committee, and maybe at the full Committee we'll have 23 an answer for you as to how we're considering that or what we need to do to consider it. 24

> **NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS** 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

I think I understand the question is your

25

was

version

	concern is like looped seals and things like that in
2	the system that could maybe prevent or cause some
3	problems. We understand the question, so let us take
4	that back and we'll get back to you.
5	VICE CHAIRMAN ABDEL-KHALIK: Thank you.
6	DR. WANG: So staff would like to GE
7	basically provided a confirmatory confirms the new
8	models, and if they are applicable to the ES design
9	ESBWR design, and I have listed a few model
10	improvements here, which will impact the ESBWR
11	calculation. But we think these models will include
12	ESBWR calculations.
13	First is entrainment model and
14	PARTICIPANT: What's that?
15	DR. WANG: Entrainment model.
16	Basically
17	PARTICIPANT: You're not going to add
18	another field.
19	DR. WANG: No, we didn't do that.
20	MR. WALLIS: Which kind of entrainment are
21	you talking about? Are you talking about entrainment
22	in something like annular flow, or are you talking
23	about entrainment from a pool when you're above
24	DR. WANG: Annular flow. That's what
25	MR. WALLIS: Annular flow. So it's a

1 CHAIRMAN CORRADINI: So you mean to 2 improve the model. DR. WANG: Right, you improve the model, 3 4 yes. 5 MR. WALLIS: There's not entrainment from a pool where you've got bubbles coming out of it. 6 7 It's not that kind of entrainment. 8 DR. WANG: Not for that one. And here is 9 basically -- we have increased the power, and we are 10 basically -- GEH made this improvement, and staff made the judgment evaluation what they have done. 11 12 entrainment model they use the ECM/ECC model, and the 13 improvement is basically they consider that as when it's dried out -- they consider a partial dryout and 14 15 partial -- but just kind of -- basically, they improved the prediction for the low pressure data. 16 At the time, in the preapplication, the 17 model is mainly for high pressure. 18 19 MR. WALLIS: Can I ask you something, 20 though, to follow up on Said's question? This GDCS pool draining into the reactor, is the opening that 21 goes into the vessel always below the water level? Or 22 23 is there a possibility that it's opening and then spilling out like an open drain? Does it pour out 24 25 like -- if it pours out like an open drain, you have

1	to ask: do the non-condensables go back up the pipe
2	or not? And does that change the hydrostatic head in
3	the pipe?
4	DR. WANG: Even if it vortexes
5	MR. WALLIS: Yes. But, I mean, the
6	simplest thing: does it run full or not? Because
7	that changes the hydrostatic head. It's like when you
8	empty the sink in your hotel room or something, you
9	know, if there's a bubble in the pipe, if often
10	doesn't drain very fast until that bubble is gone.
11	The bubble comes up the pipe into the sink. It
12	doesn't go the other way. So there's a bubble coming
13	back up the GDCS line, is that what you mean?
14	DR. WANG: Yes, I understand your
15	question, but I
16	MR. WALLIS: Does that ever happen or not?
17	CHAIRMAN CORRADINI: GE is going to have
18	to answer that one, yes?
19	MR. MARQUINO: Okay. I want to be clear.
20	Are you asking about the GDCS line going into the
21	vessel?
22	MR. WALLIS: Going into the vessel from
23	the GDCS line. Does the end of that pipe ever is
24	it ever not submerged? Because if it's not submerged,
25	then you have to ask: does the gas go back up the

	pipe countercurrent flow of not?
2	MR. MARQUINO: I think that's like nine
3	meters. Do you remember the
4	MS. CUBBAGE: Graham, just to make sure,
5	are you talking about if the GDCS has been actuated or
6	during normal operation?
7	MR. WALLIS: At any time.
8	MS. CUBBAGE: At any time.
9	MR. MARQUINO: When it's actuating.
10	DR. CHEUNG: This is Chester Cheung from
11	GEH.
12	MR. WALLIS: After it has been activated,
13	but, you know, after it has been activated there's
14	less flow in
15	MS. CUBBAGE: Yes. That's what I yes.
16	DR. CHEUNG: This is Chester Cheung from
17	GEH. The GDCS pool surface level is somewhere around
18	22 meters or 20-some meters. The elevation for the
19	connection to an RPV is 10.5 meters. So you are
20	talking about 13 meters of water head.
21	MR. WALLIS: I know. But that is not
22	always available if the pipe has got gas in it.
23	CHAIRMAN CORRADINI: I think what they are
24	asking you is: where is the inlet line compared to
25	where the level is where you initiate injection?

1	MR. WALLIS: And during injection, does
2	that level ever come down and expose the end of the
3	injection line, so that gas could go back up the pipe?
4	That's what I'm asking.
5	MR. MARQUINO: Dr. Wallis
6	MEMBER BANERJEE: Where it meets the RPV.
7	DR. CHEUNG: Meet the RPV at 10.5 meters.
8	MR. WALLIS: I think that the level in the
9	vessel sometimes is below, because your minimum
10	collapsed level is sometimes eight or nine meters.
11	DR. CHEUNG: The level may be dropped
12	below the connection point, but
13	MR. WALLIS: When that happens, does gas
14	go back up the GDCS line?
15	DR. CHEUNG: No. The
16	MR. WALLIS: Do you have a high enough
17	DR. CHEUNG: No, let me finish. There is
18	trouble in the line. If the pressure in RPV on the
19	other side of it is lower
20	MR. WALLIS: No, it's not a question of
21	pressure. It's a question of having enough flow to
22	prevent gas going back up.
23	DR. CHEUNG: It has something to do with
24	the pressure. If the pressure is lower
25	MR. WALLIS: That's not

1	DR. CHEUNG: The pressure is higher
2	MR. WALLIS: That's not the issue.
3	MEMBER SIEBER: It could be stagnant.
4	CHAIRMAN CORRADINI: Let's try it this
5	way. You said it's 10.5 meters to the pipe from the
6	core?
7	DR. CHEUNG: From the bottom of the RPV.
8	CHAIRMAN CORRADINI: From the bottom of
9	the RPV. Where is the setpoint where you initiate
10	GDCS injection? What is that setpoint in terms of
11	level?
12	DR. CHEUNG: In terms of level, it is
13	11.5.
14	PARTICIPANT: A little bit above
15	DR. CHEUNG: A little bit above
16	PARTICIPANT: the collapsed level.
17	DR. CHEUNG: the collapsed level.
18	PARTICIPANT: Okay.
19	VICE CHAIRMAN ABDEL-KHALIK: During
20	transient, it is possible that after you have actuated
21	this gravity-driven system, the water level in the
22	vessel would drop below the point
23	DR. CHEUNG: Yes.
24	VICE CHAIRMAN ABDEL-KHALIK: where the
25	line connects with the vessel.

1	DR. CHEUNG: Yes.
2	VICE CHAIRMAN ABDEL-KHALIK: So there may
3	be countercurrent flow of gas up that pipe.
4	CHAIRMAN CORRADINI: Where would the gas
5	come from, though? That would be
6	DR. CHEUNG: Well, that is what the
7	MEMBER BANERJEE: I think what he was
8	saying is that TRACG should be capable of modeling
9	that countercurrent flow if it occurs. Now, that's a
10	capability
11	MR. WALLIS: Does it model concurrent flow
12	in horizontal pipes?
13	DR. CHEUNG: Yes, we model let me try
14	again. The RPV pressure, if higher, it won't stop any
15	flow from it going back.
16	MR. WALLIS: No, it doesn't stop gas going
17	the other way. You can have liquid running one way
18	and gas going the other way.
19	DR. CHEUNG: It doesn't.
20	MEMBER BANERJEE: It really doesn't, so
21	don't argue that
22	DR. CHEUNG: No. The
23	CHAIRMAN CORRADINI: I think he's starting
24	higher up. He's just trying to talk you through that
25	initially pressure in the RPV is high, pressure on the

	Other side of the theth valve is low, the theth valve
2	is isolated.
3	MR. WALLIS: You've got water going
4	through the line. Is that water flow big enough to
5	prevent bubbles going back up the line?
6	CHAIRMAN CORRADINI: But where would the
7	bubbles come from? It's all steam.
8	MR. WALLIS: Well, the steam will go in
9	and condense, presumably, in that line and cause
10	CHAIRMAN CORRADINI: It would rather go up
11	the line than up the chimney?
12	MR. WALLIS: It could go up the line.
13	DR. CHEUNG: The steam with cold water
14	countercurrent flow.
15	MR. WALLIS: A pipe will only run forward,
16	stop gas going back up the pipe, if you have a high
17	enough velocity in it.
18	DR. CHEUNG: The RPV pressure at that
19	point in time is larger, higher than the drywell
20	pressure. non-condensable gas is almost impossible to
21	get in the RFP in the first place.
22	MR. WALLIS: High pressure is irrelevant.
23	It's the flow rate in the pipe that
24	MEMBER MAYNARD: Isn't the GDCS pool at
25	the top, isn't that open to the drywell environment?

1 So if you do have gas, it's going to go back up there 2 into the pool and bubble --MR. WALLIS: The thing is, if there is 3 that, it will change the hydrostatic head. It will 4 change the flow rate. That's the whole thing. 5 Ιt will affect the flow rate of GDCS flow. 6 7 I guess the issue here MEMBER BANERJEE: 8 is if TRACG is above the capture this type of 9 phenomena --10 MR. WALLIS: Then it's okay. 11 MEMBER BANERJEE: -- then it's okay, because it will be automatically captured. 12 13 other hand, the point that Graham is making is that one has to be sure that TRACG can count -- capture 14 15 countercurrent flow in a horizontal pipe. If it can 16 do that, then it should be part of -- automatically part of the calculation. 17 18 CHEUNG: Do you want to make a 19 comment? 20 CHAIRMAN CORRADINI: Can I just make sure 21 I understand your question? Where Said started was he was concerned about having non-condensables. 22 23 Now you are talking about steam flow going back up the pipe that rather -- going up all that area this way. 24 25 I don't think steam wants to go the hard way.

1	doesn't it want to just go straight back up?
2	MEMBER BANERJEE: That's the calculation
3	of
4	MR. WALLIS: That's the whole continuum.
5	It sees the gravitational head in the pipe, and it
6	sees a crude number, and it will go back up the pipe.
7	, MEMBER BANERJEE: Well, whichever, but
8	that should be calculatable. That should come out of
9	your
10	MR. WALLIS: I'm not sure that TRAC can
11	handle it. It's not that easy a problem to
12	MEMBER BANERJEE: Yes. The issue that has
13	been raised I think is whether you can handle
14	countercurrent horizontal flow, which is not all that
15	straightforward, because you get waves, you get
16	flooding. It's a different behavior horizontal
17	countercurrent flow. So maybe you could just answer
18	that question. Did you look at that specific issue?
19	MR. WALLIS: I don't think they did. I
20	think it's an open item for me. And even if you got
21	steam, the steam will run in to condense on the cold
22	water, and it will then pile up whatever non-
23	condensables are in the pipe.
24	And then, the question is: are they going
25	to go up the pipe, or are they going to come back out

1	into the vessel?
2	DR. CHEUNG: Let me answer the other way.
3	Okay. TRACG has the option to turn on the
4	countercurrent flow, since it's happening in any
5	MR. WALLIS: Well, I guess what I'd have
6	to do is look at the velocities you're calculating in
7	the pipe and figure out if I think that gas would go
8	up the pipe or not.
9	DR. CHEUNG: I think it's a hand
10	MR. WALLIS: Rather than asking what TRAC
11	does, I want to see the numbers and
12	MEMBER BANERJEE: If the pipe doesn't
13	fill, it you don't have the velocity to fill it
14	MR. WALLIS: Then it would change the
L5	draining rate.
16	MEMBER BANERJEE: Yes.
17	CHAIRMAN CORRADINI: So I'm still back at
18	the beginning. You initiated 11-1/2 meters, and the
19	pipe is coming into the downcomer at 10 meters. And
20	in one of your limiting sequences you uncover that
21	pipe?
22	DR. CHEUNG: Yes.
23	CHAIRMAN CORRADINI: Okay. And that's the
24	main steam line break?
25	MR. WALLIS: And gas could go up the pipe.

1	Now, if you think about your hotel room drain, you
2	know, if there's gas in the pipe, the drain pipe from
3	your sink, then the only head that is draining the
4	water in is the little head near the plug, the hole.
5	When that gas comes out, if you get enough water to
6	fill that pipe, you get, you know, six feet of water
7	sucking water out and it goes zipping down there. It
8	makes a big difference what's in that pipe. It takes
9	a certain amount of velocity to clear the pipe.
10	CHAIRMAN CORRADINI: Yes. But you're
11	talking a non-condensable versus steam in cold water.
12	So I'm not sure that's exactly the analogy.
13	MR. WALLIS: Yes. But if they're non-
14	condensable, if the steam
15	MEMBER BANERJEE: Over a period of time,
16	the steam will condense and
17	MR. WALLIS: So I think it is a viable
18	question, an issue. That's the kind of thing I think
19	we ought to be focusing on. And we go through all
20	this stuff here. We think, well, what could possibly
21	not be properly modeled by this kind of analysis?
22	That's what we should be focusing on.
23	MEMBER BANERJEE: TRACG has a non-
24	condensable field in the steam, right?
25	PARTICIPANT: Yes.

1	MEMBER BANERJEE: So if there was non-
2	condensables going in, they would accumulate in this
3	line and you
4	MR. WALLIS: How does it figure out which
5	way they go once they're in there? That's the
6	question.
7	MEMBER BANERJEE: That's the issue, yes.
8	Because probably if you don't get the interfacial drag
9	quite right, you might just sweep this out, whereas in
10	fact this might sort of migrate, as Graham says, up
11	against if the flow rate is not high enough. So
12	that has to be probably looked at.
13	VICE CHAIRMAN ABDEL-KHALIK: So as far as
14	we know, there is no calculation that the staff knows
15	of that shows that this issue is a non-issue. Is that
16	correct?
17	MEMBER BANERJEE: That's correct. But
18	basically
19	VICE CHAIRMAN ABDEL-KHALIK: So rather
20	than sort of relying on intuition, and so on, is it
21	reasonable to expect that the applicant would do a
22	mechanistic calculation to show that this is indeed a
23	non-issue, or it is calculable by the existing code?
24	And this question was directed at both GE and the NRC.
25	MR. DONOGHUE: I think the answer is, yes,

1	we should think about this first of all, the
2	phenomenon, and get some understanding of it somehow,
3	but then exercise the code, our confirmatory
4	calculations to see what happens.
5	MR. WALLIS: And if it doesn't predict
6	what looks physically reasonable, then you have to
7	question it.
8	MR. DONOGHUE: Yes.
9	CHAIRMAN CORRADINI: What is the current
10	calculation assuming in this regard? Do you guys
11	know?
12	MR. MARQUINO: The current calculation
13	number one, the vessel is not filled with non-
14	condensables during operation. It's full of steam.
15	CHAIRMAN CORRADINI: That's Graham's
16	point. Graham's point or concern is is that is
17	that you've got this competing effect. So I guess a
18	question to ask is: are you allowing this to occur,
19	or are you essentially assuming it's just water flow
20	in?
21	MR. MARQUINO: No. We're allowing it to
22	occur, and the code has the capability to model
23	countercurrent flow in the
24	CHAIRMAN CORRADINI: What NEDO do we look
25	at to make ourselves feel better?

1	VICE CHAIRMAN ABDEL-KHALIK: I'm sorry.
2	Does your calculation have enough resolution to answer
3	this question?
4	MEMBER BANERJEE: Yes. In the line
5	between the GDCS and the RPV, do you have enough
6	MR. WALLIS: I think it assumes single-
7	phase flow probably.
8	MR. MARQUINO: No. There is no switch in
9	the code that will cause it to say it's only single-
10	phase flow.
11	VICE CHAIRMAN ABDEL-KHALIK: But would it
12	have enough resolution to predict a free surface
13	inside that pipe?
14	MR. MARQUINO: The nodalization will have
15	some impact on where it tracks free surfaces.
16	MR. WALLIS: Does it have a criterion that
17	lets or does not let steam go back into the pipe? I
18	don't show that
19	MR. MARQUINO: So I think what would be
20	appropriate is you asked if isn't it reasonable
21	that the applicant we should get back to you and
22	describe the capabilities of the code, our
23	nodalization, the piping slopes, so that we can
24	justify to you that this countercurrent flow phenomena
25	is not significant in the LOCA.

1	MR. WALLIS: Does it show that there's a
2	big enough crude number that it will sweep out
3	anything that goes in there, and so
4	MR. MARQUINO: And agree that it might be
5	the hand calculation could validate the code in
6	this regard.
7	MEMBER BANERJEE: There are regimes, I
8	imagine, where the flow is fairly small, right,
9	through that line?
10	MR. WALLIS: We just don't know. I just
11	don't know how
12	MEMBER BANERJEE: So one way around this
13	would be if you have the capability in the code, and
14	if you nodalize that finely enough, and just make
15	yes, just show that you are capable of capturing that
16	phenomena, then it should be automatically
17	MR. WALLIS: Well, it depends how much
18	pressure there is from the vessel. It may be that the
19	flow into this GDCS line is simply driven by gravity,
20	and there is really essentially no pressure difference
21	from the outside world. You can go around through the
22	core and all the way back to the pool. There is still
23	very little pressure there.
24	CHAIRMAN CORRADINI: Dr. Wallis?
25	MR. WALLIS: There will be you've got

1	so much header water that the velocity is so big it
2	shoots everything out. But if there's a back pressure
3	from the core, then you could reduce the flow rate to
4	the point where you get steam going back up the line.
5	I just don't know.
6	CHAIRMAN CORRADINI: Dr. Wallis?
7	I guess the one thing I'd ask GEH, as you
8	thinking about all of this, at least point us to the
9	right topical, so we can look to see what you've done
10	to date.
11	MR. MARQUINO: Okay.
12	PARTICIPANT: That would be helpful, a
13	good starting point.
14	MR. WALLIS: Well, don't make me search in
15	somewhere to find it.
16	(Laughter.)
17	MR. MARQUINO: You want a page number and
18	like a three-digit section number.
19	MEMBER BANERJEE: Yes. Does it handle
20	condensation in horizontal
21	MR. WALLIS: I think you are all right,
22	but I think we ought to be asking if, from a safety
23	point of view, what kind of things could happen which
24	might somehow change the scenario in a way which isn't
25	predicted.

1 MEMBER BANERJEE: Right. MR. SHUAIBI: And I guess today we're not 2 3 going to be able to satisfy you, and, you know, we'll take this one back and we'll take a look at it, and 4 5 we'll come back. And if additional analyses need to 6 be done, that's -- that's part of the reason why we're 7 here is to get your input. MR. WALLIS: the staff didn't ask this 8 9 question before? 10 MR. SHUAIBI: If we had, I think we would 11 have been up answering your question. It appears to 12 me like this is something that you've identified that 13 we need to go back and look at. So we appreciate 14 that. 15 MR. WALLIS: And I think we ought to look 16 at the PCCS arrangement. We've got some sort of 17 sketches about how the condensate and the non-18 condensables get vented this way and that way, and 19 there's a fan. But until you see the piping, you 20 can't really tell what's happening there.

> So we can't tell, is the fan going to ingest water, or is the water going to get -- prevent the non-condensables? Until you see the details of the design you can't really tell whether some of these things will work, and that's what bothers me about

WASHINGTON, D.C. 20005-3701

21

22

23

24

25

1	this kind of rather superficial review
2	MS. CUBBAGE: Right. Well, I
3	MR. WALLIS: if TRACs predict something
4	and you accept it, you know.
5	MS. CUBBAGE: Well, I think we already
6	decided yesterday we'd be coming back with more
7	details on containment, and we have not yet seen the
8	details of this fan arrangement.
9	MR. WALLIS: Right. Okay.
10	MR. SHUAIBI: I just want to make sure
11	I don't think it's fair that we're doing a superficial
12	review. I think we've done a lot of work.
13	MR. WALLIS: I'm sorry. I mean, the TRAC,
14	when you just look at TRAC, without looking at the
15	details of the fittings, and so on, I mean, maybe
16	"superficial" is the wrong word, but, I mean, just a
17	code type analysis, where you don't look at the
18	details of what happens at some of those nodes. That
19	could be called "superficial." I'm not saying it in
20	the derogatory sense. I mean, it's at a high level,
21	surface.
22	MR. SHUAIBI: \Just let me add one comment
23	to that is that even if you have detailed design
24	drawings and you build everything, as you are well
25	aware, you will find that in operating plants there

could be still be a problem. So plants are going to 1 2 have to have programs to still make sure there is no gas buildup in there, in the GDCS system. 3 MEMBER BANERJEE: But it's very hard to 4 5 find that, as we know. 6 MR. SHUAIBI: Yes. MEMBER BANERJEE: Because we have faced 7 this, as you know, before. It is very hard to find 8 9 out if there is gas or not, and we are facing this with the operating reactors right now. 10 11 MR. SHUAIBI: Right. 12 DR. WANG: Okay. MEMBER BANERJEE: Before you jump from the 13 entrainment model, I wanted to ask you about the flow 14 15 regime. Basically, what -- GE have 16 DR. WANG: improved the flow regime to annular flow, and I only 17 can give you, you know, high-level summary on that for 18 19 here. 20 Basically, they look at that -mechanism for the change to annular, and they said 21 that was the philosophy for the change regime and 22 23 annular regime is equal, and then try to solve the void fraction and use that void fraction as the base 24 25 for flow regime transition.

	257
1	MEMBER BANERJEE: So now, because of this
2	somewhat increasing power, you are probably close to
3	the transition between turbulent and annular flows.
4	DR. WANG: Right.
5	MEMBER BANERJEE: And in these rather
6	large pipes, and like the chimneys, what sort of
7	database is there for that? I mean, I'm sure there is
8	some in the oil-gas industry, but there isn't a huge
9	amount that I know of in any other.
10	DR. WANG: I believe we went through an
11	audit, and they look at data like at Toshiba they have
12	done some low pressure data, and basically I believe
13	GE has validated this model against those data. So
14	the point here is improvement is in the past is
15	mainly focused on the high pressure, and here is
16	focusing on the low pressure system.
17	MR. WALLIS: The real question isn't, what
18	is isn't really, what is the flow regime, but does
19	the correlating scheme predict the data? Because you
20	can have the wrong flow regime in terms of looking at
21	it, but the fudge factors in the model will predict
22	the data very well. And that's okay.
23	MEMBER BANERJEE: That's not okay.
24	MR. WALLIS: So Dick Finlay doesn't
25	necessarily have to model the right flow regime in

1 order to get the right answer. 2 If you have enough MEMBER BANERJEE: correlating parameters, you can fit anything. 3 4 DR. WANG: First of all, I let you know I really haven't looked at these things very closely, 5 because in the past for this TRACG code review I think 6 we have a staff comment go --7 MEMBER BANERJEE: I'll tell you where our 8 where we are -- at least I am coming from. 9 Yesterday, Professor Abdel-Khalik raised a question 10 where what is happening is when the flows are issuing 11 from the channels into the chimneys, there is going to 12 be very strong, three-dimensional effects, obviously, 13 until things settle down. But this length can be 14 15 quite long, the development length. Okay. 16 could be quite important, And it particularly if you have, you know, a liquid level 17 somewhere like halfway up the chimney or a quarter way 18 19 up the chimney. So you really don't have a flow regime in the sense of a static flow regime. All you 20 have is a developing region there, which would have 21 very different characteristics. 22 23 And how does that get captured? You know, if you have static flow regime maps, sort of the 24 question was: shouldn't you be doing some analysis of 25

	this region to lind out important it could be?
2	MR. WALLIS: Did Ontario Hydro try
3	different distribution methods?
4	MEMBER BANERJEE: No, did not. As far as
5	I there is another issue which is even more
6	important, which is whether you really get static head
7	fluctuations which are large. And we asked this
8	question about the chimney about two years ago, and it
9	was answered by doing some fine nodalization runs with
10	TRACG.
11	But, again, there was the issue of: how
12	well does the fine nodalization runs capture the real
13	effects if you are using a static flow regime map
14	anyway, you know?
15	DR. WANG: That's why GE is proposing for
16	the interfacial
17	MEMBER BANERJEE: Right, right. So that's
18	not there yet.
19	DR. WANG: Right.
20	MEMBER BANERJEE: Okay.
21	DR. WANG: But I think for the question
22	you raised, as far as I think for it's too
23	difficult a question basically to address here.
24	MEMBER BANERJEE: But there are there
25	could be some experiments which would clarify the

1	issues. If you get large static head fluctuations in
2	these chimneys with a certain frequency, then we are
3	worried about how it couples, you know, to the core.
4	So we are looking at even though we are not
5	addressing stability with TRACG here, nonetheless,
6	that has been a concern.
7	MR. WALLIS: You're thinking of an
8	experiment where you take a chimney element and you
9	take your 16 different channels, and you put in
10	different regimes in the channels, and you see what
11	happens and measure with real conditions, that sort of
12	thing?
13	MEMBER BANERJEE: Well, if not real
14	conditions, perhaps with freon or something, you know.
15	I don't know.
16	MR. WALLIS: Well, ideally, with full
17	scale and full pressure.
18	DR. WANG: I don't have an answer for you
19	on this.
20	MR. WALLIS: GE traditionally has a very
21	good philosophy of doing, when they can, full scale,
22	full condition experiments. That's what they do with
23	the fuel. Very good job. Test the fuels, real
24	conditions. The chimney that doesn't seem to have
25	happened, so we're relying on TRAC or something else

1	to predict what happens in the chimney.
2	So these sorts of questions can always be
3	raised, and I just don't know how you answer them,
4	except by some kind of engineering judgment, unless
5	you've got some evidence.
6	MR. MARQUINO: We've heard your concern,
7	and we will work to address it.
8	MEMBER BANERJEE: Somebody mentioned that
9	the Dodewaard experience might be looked at in
10	relation to this problem. And that might be helpful
11	to bring it in and
12	MR. WALLIS: Did they have chimneys like
13	this?
14	MR. MARQUINO: They had chimneys. Yes,
15	they had four by four super channels.
L6	MEMBER BANERJEE: And
L7	MR. MARQUINO: Or, excuse me, two by two
18	super channels. It was somewhat shorter than ours.
L9	MEMBER BANERJEE: And you've used TRACG,
20	of course, against that.
21	MR. MARQUINO: Yes.
22	MEMBER BANERJEE: Okay.
23	CHAIRMAN CORRADINI: Did we miss that? Is
24	that analysis in another NEDO that I don't I can't
25	remember where it went?

	MR. MARQUINO: I think it's in the 321//
2	report, the TRACG qualification report.
3	CHAIRMAN CORRADINI: And then, just for
4	the sake of and then, you will also give us some
5	advice on that one as well as the one where you said
6	there is already a calculation for us to look at as
7	you consider the countercurrent in the piping. Thank
8	you.
9	MEMBER BANERJEE: Perhaps some scaling
10	analysis or something to indicate the applicability of
11	that data, has that already been done, or have I
12	missed that?
13	MR. MARQUINO: We did submit a scaling
14	analysis for
15	MEMBER BANERJEE: I know that. But the
16	applicability of this Dodewaard data, I mean, in terms
17	of the range of parameters and the other non-
18	dimensional groups, is it within the range of what we
19	are looking at TRACG here for?
20	MR. MARQUINO: Do you want to comment on
21	the Dodewaard scaling or
22	MEMBER BANERJEE: No. I mean, does it
23	actually have the same range of, let's say, these pie
24	groups or whatever we talk about?
25	DR. SAHA: Okay. This is Pradip Saha from

1	GEH. The scaling analysis that we did, and then it
2	was upgraded for 4,500 megawatts, I think was geared
3	towards the LOCA.
4	So basically we looked into GIST and
5	GIRAFFE SIET experiments. And then, we showed that
6	even though the power has been raised by 12.5 percent,
7	so decay heat goes up, but primarily dominant
8	phenomena during LOCA was that ADS or the enthalpy
9	mass and enthalpy going out predominantly in the most
LO	dominant term was ADS. And the decay heat portion was
11	much smaller. So that is why we concluded and I
12	think staff has agreed with that that the earlier
13	experiments are applicable to 4,500 megawatt also.
14	Now, for Dodewaard, I don't think there
15	was anything related to
16	MEMBER BANERJEE: No. That would be more
17	towards normal operation.
18	DR. SAHA: Right. No, it was not part of
19	that study.
20	MEMBER BANERJEE: I know it's a separate
21	issue
22	DR. SAHA: Yes.
23	MEMBER BANERJEE: but let me ask this
24	for information, then. For the applicability of TRACG
25	to other things, say even anticipated transients, and

1 so on, which are more at elevated pressures, and so 2 on, has there been some scaling analysis done? 3 DR. SAHA: Not that I know of. As you know, I kind of joined GE only two years ago, so that 4 5 maybe may have been done -- a lot of other things --6 before that. So I'm not aware of it. So maybe Mr. 7 Marquino can say or we can get back to you on that. 8 MEMBER BANERJEE: Well, let's say that we 9 are going to come to anticipated transients, and so 10 on, the applicability of TRACG to that. 11 DR. SAHA: Yes. 12 MEMBER BANERJEE: So it would be useful 13 for that to know something about how Dodewaard data 14 was compared, whether it was in the same range of pie 15 groups or whatever, and how it compared with that. I 16 don't know who is the right person to ask this 17 question, but --18 DR. SAHA: Yes. Let me say that when I 19 was given the assignment to respond to RAI 6.3-1, and 20 that was the RAI from the staff to justify or show 21 that the RES scaling analysis that was done for 4,000 22 megawatt, that's invalid. So that is what I took up, 23 and, as I said, that we responded to it and staff has 24 accepted that. And that was based on, as I again 25 said, LOCA. And Dodewaard test was not included in

1	that.
2	MEMBER BANERJEE: Obviously, because there
3	is no LOCA test done.
4	DR. SAHA: Right. I know that what Mr.
5	Marquino mentioned in the TRACG qualification report
6	and Rev 3, I think 32177 probably, the number, I think
7	there is a simulation of Dodewaard with TRACG. But I
8	do not recall whether there is any scaling analysis.
9	MEMBER BANERJEE: Yes, because that would
10	show whether the conditions which are important were
11	similar or not or within the range of interest. I
12	think that's the real issue.
13	DR. SAHA: We understand.
14	MEMBER BANERJEE: Okay.
15	DR. SAHA: And I'm sure Wayne is taking
16	notes of that.
17	MEMBER BANERJEE: Great. Thank you.
18	DR. WANG: Continue?
19	CHAIRMAN CORRADINI: Yes.
20	DR. WANG: Okay.
21	CHAIRMAN CORRADINI: Please.
22	DR. WANG: For the thermal conductivity,
23	actually yesterday we talked about it for the LOCA
24	part. And there is other models. TRACG has updated
25	the models, and these models are actually for the LOCA

1	it is not important. I just basically list it here
2	for to illustrate what kind of models TRACG has
3	went through from version 2 and through version 4.
4	MR. WALLIS: So you don't use the quench
5	run model for this
6	DR. WANG: Because no dryout for the LOCA.
7	MR. WALLIS: for this source term? You
8	just take some sort of source term, you don't try to
9	figure out core damage or anything like that?
10	DR. WANG: Because for the LOCA there is
11	no I mean
12	MR. WALLIS: But, I mean, when you're
13	doing the Chapter 15 analysis, you don't try to be
14	realistic in any way about if it does dry out and then
15	you construct this artificial scenario, how does it
16	rewet?
17	MR. LANDRY: Are you talking about for the
18	radiological assessment?
19	MR. WALLIS: Yes.
20	MR. LANDRY: We're talking about strictly
21	for the design basis.
22	MR. WALLIS: Yes, but you don't try to
23	make any bridge whatsoever between reality and the
24	regulations.
25	MR. LANDRY: For the design basis analysis

1	for LOCA, the core does not dry out. So none of these
2	models apply.
3	MEMBER KRESS: They just have to show that
4	the temperature in the hot leg
5	MR. WALLIS: When you get into Chapter 15,
6	you just make a leap into the source term without
7	asking how it got formed, right?
8	CHAIRMAN CORRADINI: For 15.4, that's what
9	they have to do.
10	MR. WALLIS: All right. So
11	MEMBER BANERJEE: But for some of the
12	anticipated transient, there is dryout. But then, you
13	don't worry about rewet I guess.
14	MR. MARQUINO: Not for anticipated
15	transients.
16	MEMBER BANERJEE: Sorry. Special what
17	did you call
18	MR. MARQUINO: For ATWS for ATWS, there
19	is a dryout-type phenomena.
20	DR. WANG: Okay. Go to the next one?
21	CHAIRMAN CORRADINI: Please.
22	DR. WANG: Okay. This confirmatory item
23	is about addresses the power and the results from
24	main steam isolation valve closure. Basically, at the
25	preapplication stage, staff asked GE to confirm about

1	11
1	
_	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

22

23

24

25

-- say if for the main steam isolation valve closed, what about the power transient, is it going to increase or not? And GE has the response that basically the rod -- I mean, the scrams way earlier occur before this main steam isolation valve closure during the LOCA. So this problem has been closed.

And the next one, basically GE is aware from the earlier submission to the later design change being made, and the staff asked GE to confirm the TRACG applicability, say, for the core power since it has changed from 4,000 megawatts to 4,500 megawatts.

And staff asked us to confirm the applicability of the TRACG interfacial shield model. This is an open item.

And for ICS was for the -- LOCA analysis was not a part of the ECCS, and the latest design is considered as a part of the ECCS, and the staff have a question basically -- ask GE to make a clarification about nodalization, and also justify that the modeling of the IC heat removal capacity in the LOCA is conservative.

And other changes -- other design changes, we believe TRACG has the capability to model, so these will not affect TRACG applicability. Many of them are listed here. For example, core shroud size and core

These are not really modeled for this --1 lattice. 2 well, the core lattice is not really modeled. 3 And another example is the number of bundles and the control rod drives. 4 These are also another model for this LOCA analysis. 5 If you have no questions, I'll go to the 6 7 next one. 8 Other confirmatory item is basically for 9 the containment analysis the TRACG assumed there's a loss of feedwater flow, and staff raised the question 10 is -- if you have additional feedwater goes to the 11 reactor vessel. If you don't, basically assume it's 12 13 lost, and the additional inventory and energy, and that can eventually go through the containment. 14 15 staff raised this question, basically wanted GE to 16 address for this containment system. And next confirmatory item, 11, is similar 17 to this item 10. Basically, staff asked GE to add a 18 19 detailed modeling of this feedwater system. And I believe GE has submitted this II back, and currently 20 21 staff is reviewing it. 22 MR. WALLIS: You are talking about some 23 sort of model for these heaters, the actual feedwater 24 heaters, this -- taking bleed steam from the turbine 25 and how they work?

DR. WANG: I believe --1 2 MR. WALLIS: Do you want to --3 DR. WANG: I believe it is not really what 4 you have just mentioned. I believe that in the 5 beginning when -- people at NRR at times raised this question, is it related to the item 10, and they 6 wanted to have more realistic modeling of 7 inventory amount goes to the reactor vessel and also 8 9 go through containment. 10 It's not anything, you know, for the current feedwater operation domain. But GE did answer 11 -- they have added some model for the feedwater, so we 12 are looking at it. 13 Any clarification here? 14 15 DR. CHEUNG: This is Chester Cheung. 16 Three years ago when we modeled the feedwater line, only modeled the -- half of it. And at that point in 17 18 time, the GDCS volume compared with the lower drywell 19 volume and then the feedwater line volume is kind of 20 And there was a concern that you have the mixed. whole line of feedwater volume was water inventory 21 22 going into the drywell, and then what happened. And now we model exactly all of this 23 volume into it, and in case of feedwater line break 24 25 all of the volume in the feedwater line, it did go

	into the lower drywell and pressurize the drywell that
2	way. So at that point in time, it was a volume
3	concern, the volume between the different locations.
4	DR. WANG: Does that answer your question,
5	Dr. Wallis?
6	MR. WALLIS: I'm not sure. Why do you say
7	feedwater heater modeling?
8	DR. WANG: Because the heater modeling
9	will affect the amount of their this whole system
10	in the for the feedwater drain, there is many
11	stages of the heaters.
12	MR. WALLIS: Right.
13	DR. WANG: And if you model the system
14	MR. WALLIS: Well, the vessel actually has
15	quite a bit of water in it before the heat water
16	heaters, doesn't it?
17	DR. WANG: Yes, there's quite a bit of
18	water.
19	MR. WALLIS: So you want to know where the
20	water goes, is that what you're modeling, then?
21	DR. WANG: We model it, and then the water
22	eventually will go in the lower drywell.
23	MR. WALLIS: I see.
24	DR. WANG: Until the isolation valve or
25	the feedwater line actually closes.

1	And there is an uncertainty analysis we
2	discussed yesterday about, you know, basically this is
3	not a technical issue but a laboratory issue, and you
4	needed to answer address how
5	MR. WALLIS: How uncertain they are about
6	2,200 degrees?
7	DR. WANG: Right. And they claim this
8	coil is always covered, so there is no issue. But we
9	needed to ask GE to address this.
10	CHAIRMAN CORRADINI: I'm not sure what
11	you're asking them. You're asking them to come up
12	with some sort of uncertainty analysis?
13	DR. WANG: Basically, have to address this
14	laboratory guide, but what
15	MEMBER BANERJEE: You are looking at what
16	the level above the core or something.
17	CHAIRMAN CORRADINI: No, that's what
18	they're suggesting. I'm trying to understand your
19	question. Are you saying that you haven't evaluated
20	their response based on level? Is that
21	MR. LANDRY: The regulation, 50.46, says
22	you can do either a realistic analysis with a
23	determination of uncertainty, or you can do an
24	Appendix K analysis. What General Electric-Hitachi
25	has submitted is a realistic analysis.

1	MR. WALLIS: Well, you can't do an
2	Appendix K analysis of this
3	MR. LANDRY: They have not done any form
4	of an uncertainty analysis, and what we are simply
5	saying is they don't uncover the core. This is not a
6	safety issue, it's not a technical issue, it is a
7	compliance issue. The regulation doesn't say a
8	realistic analysis, and if you don't uncover, okay.
9	It says you do this or you do this, and they have not
10	done
11	MR. WALLIS: I think they have. They have
12	essentially said it doesn't uncover, so their
13	uncertainty is zero.
14	MR. LANDRY: Yes. But they have to do
15	some sort of we discussed this over and over with
16	them.
17	MEMBER BANERJEE: I guess it's uncertainty
18	of uncovery that by the
19	MR. LANDRY: They have to do some sort of
20	uncertainty analysis.
21	MR. WALLIS: Of uncovery.
22	MS. CUBBAGE: And we have asked this to
23	GEH in an RAI. We're waiting for their response.
24	MR. WALLIS: Okay. Well, I'm sure they'll
25	respond.

	MR. LANDRY: This is not a safety issue.
2	It is a compliance issue with the exact statement of
3	the regulation.
4	CHAIRMAN CORRADINI: Got it. Thank you.
5	MR. WALLIS: But they asked for
6	uncertainty analysis of these 2,200 degrees and things
7	like that.
8	MR. LANDRY: No. No, it says with a
9	determination of uncertainty.
10	MR. WALLIS: So a blanket uncertainty.
11	MR. LANDRY: It just says a determination
12	of uncertainty.
13	MR. WALLIS: Okay.
14	MEMBER BANERJEE: So you can define that
15	uncertainty the way you like. It can be done
16	certainty involved in that core uncovery calculation.
17	MR. LANDRY: And that's what we've said.
18	Do some sort of uncertainty determination.
19	MEMBER BANERJEE: I think that's fair.
20	MR. LANDRY: Yes.
21	MR. WALLIS: And you might find there's a
22	certain probability of uncovery. You might. You
23	might. Okay.
24	MR. WILLIAMS: Jim Gilmer got turned over
25	from Veronica the transient portion of the 33083P, and

1	he is going to discuss his discuss the review of
2	that.
3	CHAIRMAN CORRADINI: Okay.
4	MR. GILMER: We made a decision early on
5	to take out ATWS to allow Ben Parks more time to
6	discuss the key issues of core injection, which he
7	talked about this morning.
8	MEMBER SIEBER: Take a break.
9	MR. GILMER: Some of the things that we
LO	are going to talk about in the AOO and infrequent
11	events also apply to the ATWS.
L2	CHAIRMAN CORRADINI: Would you be hurt if
L3	we took a break now? I'm starting to look at members
L4	that are looking at bit weary. So can we take a 15-
L5	minute break and come back to you? Would that be
L6	okay?
L7	MR. GILMER: Sure.
L8	(Whereupon, the proceedings in the
L9	foregoing matter went off the record at
20	3:02 p.m. and went back on the record at
21	3:17 p.m.)
22	CHAIRMAN CORRADINI: All right. Let's get
23	started. Let's go.
24	MR. GILMER: I wanted to say that the key
25	ATWS concern was the ability of TRACG to model the

1	boron injection which Ben Parks talked about this
2	morning. There are a few items that I'll mention here
3	also, if there's time.
4	CHAIRMAN CORRADINI: That's fine.
5	MR. GILMER: We do have a couple of key
6	open items that I want to summarize.
7	Next slide.
8	The SRP 1502, Shawn had an earlier slide,
9	so that's all I'll say there. But there are some
10	additional key references on transient and background
11	analysis methods. And NUREG/CR-5229, which is the
12	CSAU method for LOCA was also used for the
13	MEMBER BANERJEE: But in these anticipated
14	transients, TRACG presumably is coupled to some sort
15	of neutronic field, right?
16	MR. GILMER: That's correct.
17	MEMBER BANERJEE: And they were separately
18	approved I guess, right?
19	MR. GILMER: Well, that's still ongoing.
20	I'll let Dr. Yarsky
21	MEMBER BANERJEE: Okay.
22	MR. GILMER: address the neutronics.
23	He's our expert on that.
24	DR. YARSKY: This is Peter Yarsky
25	speaking. What is in TRACG is a kinetics model that
ļ	

1	is basically like a mirror image of the steady state
2	neutronics code. The steady state neutronics code is
3	still under review, but information is taken from that
4	and fed into basically a similar engine which is in
5	TRACG.
6	MEMBER BANERJEE: And what is this engine?
7	Is it multi-node or just one-dimensional? What sort
8	of
9	DR. YARSKY: It's a three-dimensional
10	MEMBER BANERJEE: It's a three-
11	dimensional
12	DR. YARSKY: nodal diffusion.
13	MEMBER BANERJEE: Okay. And that is fed
14	into TRACG here.
15	DR. YARSKY: Yes. So information comes
16	from the steady state model, but the same engine is
17	mirrored in TRACG.
18	MEMBER BANERJEE: But this is a transient
19	calculation which is done now, right?
20	DR. YARSKY: Yes.
21	MEMBER BANERJEE: And show how does that
22	get transient nature of this get transmitted back
23	and forth to TRACG, in terms of, let's say, your void
24	fraction is changing, or whatever, so you
25	PARTICIPANT: Moderated temperature

1	MEMBER BANERJEE: Yes, temperatures are
2	changing. Does that change various things in the
3	code, the cross-sections or how you collapse them and
4	feed back?
5	DR. YARSKY: I'm not sure if I
6	MEMBER BANERJEE: The interaction between
7	the two.
8	DR. YARSKY: Yes. I'm not sure if I can
9	answer that in sufficient detail in open session.
10	MEMBER BANERJEE: Oh, okay. But there is
11	an answer to that, right?
12	DR. YARSKY: Yes.
13	MEMBER BANERJEE: Okay.
14	CHAIRMAN CORRADINI: But just to be clear,
15	so you're in the midst of the review as of now. So
16	we'll probably hear back from staff when you guys are
17	at a point.
18	MR. SHUAIBI: Let me make sure what Peter
19	said I guess clear. He can't answer it in an open
20	session, because we're in open session. I guess if we
21	go to a closed session, he may be able to get into
22	more detail, a little bit more detail.
23	CHAIRMAN CORRADINI: But before we go to
24	that effort, I just want to make sure I understand.
25	You still are in the middle of the review? Because

1	you have not issued the SER yet on this part of this.
2	DR. YARSKY: This is being reviewed as
3	part of Chapter 4, but the actual review is for the
4	topical report, the nuclear design topical report,
5	which is the which in it contains the qualification
6	of the methods.
7	CHAIRMAN CORRADINI: Right.
8	DR. YARSKY: So that's going to be an SER
9	that is issued for the proprietary topical report.
10	CHAIRMAN CORRADINI: Which we eventually
11	will get to look at.
12	MS. CUBBAGE: Yes.
13	DR. YARSKY: Yes.
14	CHAIRMAN CORRADINI: Okay.
15	MEMBER BANERJEE: He wants to move on, so
16	he doesn't want to
17	(Laughter.)
18	CHAIRMAN CORRADINI: I don't want to go
19	into closed session right now for that one question.
20	MEMBER BANERJEE: So all we're saying is
21	we will address this issue in a later on.
22	CHAIRMAN CORRADINI: I guess there is one
23	thing and maybe I missed it we got some of the
24	topicals in a CD that we have. There's others that
25	people are mentioning that are still either in transit
	1

or have arrived and staff is looking at them. 1 Ιs 2 there like a master list that I've missed? MS. CUBBAGE: A master list. There is a 3 4 list of topical reports in DCD Chapter 1, I believe. 5 There is a list of all of the references, some of which are old and long since been approved, some of 6 7 which are supporting the DCD and the SER we're writing 8 for the certification. Some of them we're going to have separate SERs we're writing -- for example, in 9 10 the fuel, we've written a separate SER on TRACG for 11 stability. We have given you a number of those on the 12 CD. 13 CHAIRMAN CORRADINI: But the DCD Version 3 14 has at that time what that list is in Chapter 1. 15 there additions to that? 16 MS. CUBBAGE: Yes. There have been some 17 recently submitted topical reports, two of which I 18 gave to Gary at lunch time. That's the feedwater 19 topical, and I think he has already given you CDs. 20 Feedwater topical and initial core transients, you 21 have in your hand. And maybe I can get with Gary at 22 some point offline, and we can kind of do an inventory 23 of what you have and maybe what you need. CHAIRMAN CORRADINI: Okay. That would be 24 25 very helpful.

1	MEMBER BANERJEE: I think it would be
2	helpful if Gary circulated what you called a master
3	list, at least the current status of
4	CHAIRMAN CORRADINI: Yes. The current
5	status of what GE has as coming or has come and what
6	you guys have reviewed, and so that we can because
7	in some sense I'm becoming a bit lost.
8	MS. CUBBAGE: Right. We have received
9	with the exception of perhaps one topical, we have
10	received at least the Rev O version of every topical
11	we are expecting to get
12	CHAIRMAN CORRADINI: Okay.
13	MS. CUBBAGE: at this point. As the
14	review continues, there will be revs of various ones
15	that are that you have already received.
16	CHAIRMAN CORRADINI: Sure. Okay. Thank
17	you very much.
18	MR. GILMER: Okay?
19	CHAIRMAN CORRADINI: Sorry. Thank you.
20	MR. GILMER: The staff's recent review is
21	based on the preapplication the approval topical
22	33083. The transient revision was Section 4, which is
23	the subject of this transient safety evaluation.
24	Like the LOCA, GEH's method was the
25	CSAU 14 stuff, and our evaluation concludes that the

1	product appropriately is appropriate for this.
2	MEMBER BANERJEE: So are you going to tell
3	us sometime about these independent calculations done
4	with TRACE and PARCS to
5	MR. GILMER: Yes.
6	CHAIRMAN CORRADINI: But I don't have a
7	feeling you're going to do it today, though.
8	MR. GILMER: That's correct.
9	MEMBER BANERJEE: When is this time going
10	to be? I mean
11	MR. GILMER: Well, we have Tony Ulses
12	from our Office of Research has done TRACE/PARCS
13	calculations. They're ongoing, not yet completed.
14	MEMBER BANERJEE: Oh, I see. Okay.
15	MR. GILMER: Maybe Tony can at least
16	answer when he expects to
17	MR. DONOGHUE: Oh, I don't want to put
18	Research on the spot for their schedule here in the
19	ACRS meeting. What I will say is that they have to
20	they have to run their code, they have to evaluate it
21	before they even release it to us, and then we have to
22	evaluate the results and make sure
23	CHAIRMAN CORRADINI: Is there an RAI to do
24	for
25	(Laughter.)

1 Just out of curiosity. 2 MR. DONOGHUE: There is a formal process 3 to ask for work. We are bureaucrats, after all. 4 MEMBER BANERJEE: Work is underway right 5 Is that -- the work is underway? now. 6 MR. DONOGHUE: Yes. Yes. 7 The analyses are underway. MR. LANDRY: 8 Tony has run a number of cases. He has some cases to 9 run yet. But those calculations have not gone through 10 the full checkout procedure here, and sign-out, 11 concurrence, and transfer to the other office. 12 We do a lot of checking, the vendors do 13 checking and QAing before they send material in. do checking of our material before we send it to 14 15 others and before we present it in public, because we 16 want to make sure that what we're doing is -- that our 17 calculations are right also. 18 MEMBER BANERJEE: So how many months have 19 been spent up to now on this, Ralph? 20 MR. LANDRY: Bits and pieces of time. don't know if we could estimate the exact amount of 21 22 time, because Tony has had other work he has had to 23 do. He has been working on this since last spring in pieces, and then he had other work, and then he'd come 24

back and do some more. So I don't think I can put a

25

	nanate on exactly now mach time, if you put it in a
2	continuous stream of time.
3	We have work going on on AOO calculations.
4	We have work going on on LOCA calculations. We have
5	the ATWS work that we're doing, which you've heard
6	about. So we have a number of areas where we're doing
7	confirmatory calculations using TRACE and using FLUENT
8	and these all these tools that are available to us.
9	MEMBER BANERJEE: TRACE and PARCS have
10	been coupled now, right, to the ATWS, so
11	CHAIRMAN CORRADINI: What does that mean
12	in this regard? Are they communicating online
13	simultaneously? Are they feeding input decks to each
14	other?
15	MR. LANDRY: Let's let Tony explain it.
16	But TRACE has been coupled with PARCS and with TRITON.
17	CHAIRMAN CORRADINI: What is TRITON?
18	MR. LANDRY: It is a cross-section code.
19	CHAIRMAN CORRADINI: Oh. Thank you.
20	MR. ULSES: Hi. This is Tony Ulses, the
21	Office of Research. We basically have the PARCS code
22	is now actually compiled right in with TRACE directly,
23	so there is no you know, we're not actually handing
24	information between two separate codes. In other
25	words, you know, I use PARCS to calculate power, and

fuel

2 structures. 3 It calculates -- then, it calculates a fuel temperature and a moderator density. It hands it 4 5 back to PARCS. So that's all handled online, and then 6 we feed it a set of cross-sections, which is derived 7 to cover the entire expected space of the analysis in 8 terms of fuel temperature, void conditions within the 9 core, and that is essentially how the code works. 10 MEMBER BANERJEE: Is there a table you 11 fill in or what? MR. ULSES: Well, actually, it works with 12 13 -- it actually works based on partial derivatives 14 within the model itself. And we've actually used the 15 HELIOS code to generate the cross-sections, although 16 we do have our own internal TRITON code that we're --17 we actually have cross-sections. I just haven't had 18 time to actually plug them in and run them and see how they work yet so far. 19 20 CHAIRMAN CORRADINI: Because I was going to say I was under the impression that RELAP and PARCS 21 and HELIOS were coupled, and so when you used another 22 23 cross-section -- so HELIOS is not used here, it's this other tool that you mentioned. 24 25 MR. ULSES: We actually have HELIOS cross-

1

then

it's

inserted into

the

TRACE,

1	sections. And that's what we've used to date.
2	MR. LANDRY: That's what we've used in
3	this case. Another task that Tony wants to do is to
4	use TRITON to generate the cross-sections instead of
5	HELIOS, so that it would be a completely coupled
6	TRACE, PARCS, TRITON.
7	CHAIRMAN CORRADINI: Okay.
8	MR. ULSES: Exactly. Exactly.
9	CHAIRMAN CORRADINI: Thank you.
LO	MR. GILMER: Okay. One thing I did not
11	have on the slide is ISL has done their own
12	independent technical evaluation for both ATWS and
L3	A00, and those are attached to the safety evaluations
14	that the members should have, the SERs also.
L5	MEMBER BANERJEE: Attached to the
16	CHAIRMAN CORRADINI: It's attached to
L7	where is it attached? I'm sorry.
L8	MR. GILMER: It should be
L9	MEMBER BANERJEE: On 21? Is this an
20	addendum or
21	CHAIRMAN CORRADINI: No. They're attached
22	to the specific SERs that say SER for ATWS and SER for
23	transients. There was two addendums. They're not
24	attached to the addendums, and they're not attached to
25	Chapter 21.

	MR. OLSES: They're in the attachments to
2	the particular
3	MEMBER BANERJEE: Yes. SER for TRACG is
4	applied to ATWS clean, you call it.
5	CHAIRMAN CORRADINI: Okay. All right.
6	MR. GILMER: Okay. The significant open
7	items there are a couple on the isolation condenser
8	modeling. One we discussed earlier on the ability of
9	the TRACG to model condensers, so we'll have to
10	resolve that with the whatever we've done on the
11	benchmark, other ways, and get back with you on that.
12	The other one was just regarding the test
13	that was done, the range
14	CHAIRMAN CORRADINI: I think you need to
15	speak louder.
16	MR. GILMER: Okay. The range that GEH
17	looked at did not cover the high pressure that could
18	result from an SRV opening, so there is an open item
19	on that. And some slight disagreement between us and
20	staff and GEH on the ranking of the few PIRT
21	parameters and the high and medium ranked, and the way
22	they are combined to get the uncertainties.
23	CHAIRMAN CORRADINI: The isolation
24	condenser modeling, can you remind me what the
25	issue there is just how it's modeled? I don't

2 MR. GILMER: Veronica would like to chip 3 it on that one. 4 MS. WILSON: Just for a second. This is 5 We had several issues with the Veronica Wilson. isolation condenser modeling that GE had. Now, you've 6 7 got to remember that GE uses it for LOCA and AOOs. And for LOCA specifically, we had questions about the 8 9 non-condensable gas, because they don't have noncondensable gases in AOOs. So that was specifically 10 11 The treatment of that, the data, was a the LOCA. little non-representative, and so we just asked GE to 12 13 justify --14 MR. WALLIS: Where do those gases go in 15 the isolation condenser? 16 MS. WILSON: There is a vent line to the 17 suppression pool. MR. WALLIS: There's a vent line to the 18 19 suppression pool. 20 MS. WILSON: Yes. And so --21 CHAIRMAN CORRADINI: So the treatment there is different than in the PCCS? 22 It's the same 23 model as far as I thought, as far as I understood. And they're using the Berkeley and the MIT test as 24 25 their basis to at least show they -- so what's the

1

remember the --

1 || issue?

MS. WILSON: I think it was the PANTHERS data that actually did full-scale isolation condensers.

CHAIRMAN CORRADINI: Yes.

MS. WILSON: Now, these are not representative -- that was what we were told, that they're not representative of ESBWR. But when they had injected some non-condensable gases and then they modeled that with TRACG, they completely missed like a lot of the timing and some of the pressures.

I think it was a pressurization -- timing was missed, and so it kind of showed that in the presence of non-condensables the model that they were using with TRACG, not exactly working out. And so when we asked GE some questions. It's an open item. We're discussing it right now with GE. It just kind of is not clear that with the presence of non-condensables that the TRACG model is working out so well.

CHAIRMAN CORRADINI: Well, I mean, this concerns me more for the PCCS, since it really -- it really needs to work well there. So is it -- so let me just ask one more time. Is it at high steam mass fracture that there seems to be a problem, or at any

steam mass fracture?

Because there tends to be an ability to err on condensation and heat transfer coefficient very easily at small amounts of non-condensable gas. At high amounts of non-condensable gas, everything tends to be relatively insensitive once I'm out there. So is it a function of the proportion, or is it they missed it over a wide range of regimes? That's what -- I'm looking back.

MS. WILSON: I can't answer your question completely. We were told by GE was that the tests that they showed us that showed this mistiming was not actually representative of any way -- in the way that the ECCP valve would be operated. And so I'm not really sure that there was ever a range done.

The description says that they merely did the test to show that the vents would work. When they were testing the PANTHERS, they were testing the IC, and that the isolation -- I mean, the non-condensables would certainly go to the suppression pool. And that, they said, was the purpose of the test. They weren't really trying to set up realistic conditions to model that, and so --

CHAIRMAN CORRADINI: Can I ask GE to kind of illuminate us?

1	MR. MARQUINO: Yes, thank you. The test
2	didn't simulate a transient, a specific transient
3	event, or a LOCA event. It was the heat exchanger
4	is the same headers as ESBWR, so in that sense it's
5	completely representative of ESBWR. But in that
6	PANTHERS test of non-condensable gas, they fed the
7	heat exchanger non-condensable gas. We watched its
8	performance degrade, and then they opened the vent
9	valve and they saw it purge itself and pick up heat
10	capacity again. So
11	CHAIRMAN CORRADINI: So it's a LOCA TRAC
12	analysis of the test.
13	MR. MARQUINO: I think we did do a TRAC
14	analysis of the test, and I think the statement that
15	it wasn't representative of ESBWR must be it's not
16	exactly ATWS boundary conditions applied during the
17	test. Does that Veronica, do you want to clarify?
18	MS. WILSON: We weren't really concerned
19	about ATWS to begin with, because like the time
20	scales, as you had pointed out which we agree with
21	were not really long enough to create the
22	radiolytic gas decomposition. So it was more for the
23	LOCA, because we knew that you guys actually modeled
24	that.
25	And I think some of the details might be

1	proprietary, but we know that the non-condensables are
2	modeled in the LOCA due to the long-term nature of the
3	vent, and so
4	CHAIRMAN CORRADINI: Can I ask GEH to give
5	me a you don't any one of your numbers?
6	MR. UPTON: Yes, I found the open item.
7	I was trying to get back to what the staff said in the
8	SER, but I guess I don't remember the test. I'm
9	sorry.
10	CHAIRMAN CORRADINI: The PANTHERS, is that
11	32177, or is that one in the ESBWR?
12	DR. CHEUNG: I cannot get it off my head.
13	CHAIRMAN CORRADINI: We have that one. Or
14	no
15	MS. WILSON: 32725?
16	CHAIRMAN CORRADINI: Is there a 76
17	PARTICIPANT: 377.
18	MR. MARQUINO: 32177 is the TRACG
19	qualification
20	CHAIRMAN CORRADINI: Okay, thank you.
21	MR. MARQUINO: LTR.
22	CHAIRMAN CORRADINI: Thank you.
	1
23	MR. WALLIS: Now, this isolation
23	MR. WALLIS: Now, this isolation condenser, is it the vessel pressure, isn't it? So

1	and the suppression pool.
2	MR. MARQUINO: Yes.
3	MR. WALLIS: So what controls the flow
4	rate to the suppression pool?
5	MR. MARQUINO: The vent. It's got a
6	little vent line, and if it
7	MR. WALLIS: Is the race to be condense
8	the steam enough so that it doesn't all get sucked to
9	to the suppression pool down the vent line?
10	MR. MARQUINO: No, it's if there is
11	radiolytic acid, the vent line would be
12	MR. WALLIS: But even if there's no non-
13	condensables, there's going to be tremendous suction
14	in that vent line, isn't there?
15	MR. MARQUINO: No, but the vent line is
16	closed.
17	MR. WALLIS: It's closed.
18	MR. MARQUINO: So if there's no non-
19	condensables in it, the vent line is closed.
20	MR. WALLIS: When does it open?
21	MR. MARQUINO: It opens automatically on
22	high pressure.
23	MR. WALLIS: On pressure. On pressure.
24	CHAIRMAN CORRADINI: And how would the
25	pressure be any different than the RCS? What do you

1	mean by high pressure? A differential pressure from
2	the vessel?
3	MR. WALLIS: In the RCS, or what?
4	MR. MARQUINO: No. Absolute gauge
5	pressure. So if the it's an orifice vent line. If
6	the pressure is higher than the setpoint for some
7	duration, the vent line opens, it purges itself,
8	pressure comes back down again.
9	MR. WALLIS: But that setpoint must depend
LO	on the pressure in the vessel, or it is determined by
L1	the pressure in the vessel.
L2	MR. MARQUINO: It's
L3	CHAIRMAN CORRADINI: So let me just make
L4	sure and then, we'll have to go look and do our
L5	homework. But what you're saying, if I understand it
16	correctly, is is that with the isolation condenser as
L7	the ultimate heat sink in this mode, pressure would
L8	rise within the system to some setpoint, you would
L9	have a vent clearing orifice, and that would
20	supposedly clear it and then bring the pressure back
21	down? Am I understanding correctly?
22	MR. MARQUINO: Yes. The symptom is the
23	pressure the pressure is too high. If the IC is
24	functioning, it will depressurize the reactor. So if
25	the pressure is high for a long duration, the ICs

1	become radiolytic gas built up and
2	MR. WALLIS: The microscopic thing, it
3	says the thing isn't working, because the pressure is
4	staying up. So we'd better open a vent film.
5	MR. MARQUINO: Yes. Vent line, yes.
6	CHAIRMAN CORRADINI: With a small amount
7	of leakage, which that supposedly vents
8	MR. WALLIS: With a small amount of
9	leakage.
10	CHAIRMAN CORRADINI: It will vent both
11	steam and gas and should clear it and start the
12	process.
13	MR. WALLIS: And then it closes again, is
14	that right?
15	MR. MARQUINO: Yes.
16	DR. CHEUNG: This is Chester Cheung from
17	GEH. I want to add one more comment. In the LOCA
18	analysis, the IC heat transfer credit was not taken
19	into consideration. So the only criteria is the IC
20	drain line water volume.
21	CHAIRMAN CORRADINI: Well, we should go to
22	332 or 32177 to check this out further.
23	DR. CHEUNG: That is describing the DCD
24	revision.
25	CHAIRMAN CORRADINI: Okay. Thank you for

1	the reference.
2	Go ahead.
3	MR. GILMER: Okay. One final item we
4	MS. WILSON: Wait. I'm sorry, I was going
5	to clarify. We have the reference for you for the IC
6	if you want the exact like accession number, and
7	what information would be useful? The NEDC number?
8	CHAIRMAN CORRADINI: Ye.
9	MS. WILSON: Okay. It's NEDC well,
10	it's okay. Here's the title of the document.
11	Update of ESBWR TRACG Qualification for NEDC 32725P
12	and NEDC 33083P.
13	CHAIRMAN CORRADINI: Can you go slower,
14	please?
15	(Laughter.)
16	You're way too fast for
17	MS. CUBBAGE: We are going to get it to
18	Gary, because
19	CHAIRMAN CORRADINI: Good. Thank you.
20	MS. CUBBAGE: it's not really an LTR,
21	right?
22	CHAIRMAN CORRADINI: Oh, it is not.
23	MS. CUBBAGE: It's a submittal.
24	CHAIRMAN CORRADINI: Okay. Thank you.
25	MS. WILSON: Yes. And so
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1	CHAIRMAN CORRADINI: If you get it to
2	Gary, then we can do our homework.
3	MS. CUBBAGE: It's reference 27 in the
4	Chapter 21 SER.
5	MS. WILSON: Yes. And we had separate
6	issues with the IC for the AOO modeling, and that had
7	to do with nodalization and heat transfer
8	correlations, without going into any proprietary
9	detail. They were just kind of inconsistent with what
10	GE chose to demonstrate in the qualification, so we
11	asked them to justify what they used in the actual
12	TRACG model.
13	CHAIRMAN CORRADINI: Thank you. Thank you
14	very much.
15	MEMBER BANERJEE: Yo you mean they didn't
16	measure any heat transfer coefficients and couldn't in
17	the IC test, right? Or am I getting confused about
18	something?
19	MS. WILSON: I'm sorry. Will you repeat
20	that?
21	MEMBER BANERJEE: They could not measure
22	any heat transfer coefficients, could they?
23	CHAIRMAN CORRADINI: They just measured
24	total heat removed, I thought, essentially heat
25	exchanger performance.
	1

1	MS. WILSON: Right. But they used a heat
2	transfer correlation in TRACG
3	MEMBER BANERJEE: Based on single
4	MS. WILSON: Yes. From what he was saying
5	from the Berkeley and the I think the name of it is
6	actually proprietary that other model that they
7	had, and that is what they used
8	CHAIRMAN CORRADINI: It's published in the
9	open literature. I think we can say it.
10	MS. WILSON: Okay. Yes, the Kuhn-Schrock-
11	Peterson one, and that was what they had used to try
12	to match the data. They didn't actually measure like
13	a heat transfer correlation, but then they didn't
14	proceed to use some of the same but it wasn't for
15	the internal condensation. I think it was the
16	external not insights, because that is what they
17	use inside the tubes. It was the heat transfer
18	correlation on the outside of the tubes.
19	MR. WALLIS: Governed by the outside. I
20	mean, the condensation coefficient is so high it's
21	governed by the convection coefficient on the outside?
22	No?
23	MS. WILSON: The point is they use
24	something different than what they used to validate
25	the TRACG in ESBWR, and so we just asked to justify

1	that.
2	MEMBER BANERJEE: I haven't looked in
3	this.
4	CHAIRMAN CORRADINI: Okay. Thank you very
5	much.
6	MR. GILMER: Okay. The last item is the
7	capability to model lower plenum cold water mixing.
8	There's an open item on that.
9	CHAIRMAN CORRADINI: Can you since this
10	is one of the three final ones, can you remind me
11	about that one again? I'm sorry. In terms of just
12	the plenum mixing.
13	MR. GILMER: Yes.
14	CHAIRMAN CORRADINI: Distribution of
15	temperatures?
16	MR. GILMER: Well, the main concern was,
17	what is the effect on the minimum CPR? They presented
18	a three-region model, and the RAI response only gave
19	the inner and central rings. We don't have the
20	periphery.
21	CHAIRMAN CORRADINI: Oh, okay. Okay.
22	MR. GILMER: So that's the issue.
23	CHAIRMAN CORRADINI: Informational.
24	MR. WILLIAMS: That's it for our
25	presentation for Chapter 21.6, unless there are any

1	further questions.
2	MR. WALLIS: Does the cold water mixing
3	you don't know how they're going to resolve that. So
4	we don't know either.
5	CHAIRMAN CORRADINI: I guess I took it the
6	way you explained it is informational. You had some
7	of the information, but not all of the information.
8	MR. GILMER: That's correct.
9	MR. WALLIS: The concern is that different
10	temperatures go into different regions of the core,
11	and this changes the CPR?
12	MS. WILSON: Well, we didn't have enough
13	information from what GE gave to since it's a very
14	coarse, nodalized you know, TRACG is these big,
15	large cells that there would if there was actual
16	stratification in the lower plenum, that that would be
17	adequately represented by TRACG.
18	So we asked GE to kind of investigate this
19	and show us, because we're worried that you could get
20	maybe some concentration of cold water and, like you
21	said, might have more significant MCPR.
22	MR. WALLIS: Even the nodalization for
23	TRACG?
24	MS. WILSON: We have, but it's very coarse
25	in comparison to like a real live plant.

1 MR. WALLIS: It doesn't really represent 2 stratification, does it? 3 MS. WILSON: Exactly. And so that's why 4 we wanted to make sure that if there was, that that 5 would either be adequately representative or maybe 6 that there just is not. 7 CHAIRMAN CORRADINI: So let's go around 8 this way this time and get the members' comments. 9 I was going to take the MR. WALLIS: 10 overview and say I think the staff is doing the right 11 They've asked a lot of questions. thing. They've 12 asked the kind of questions that we would ask in many 13 ways. And we really need to see how they're answered. I think our role is to make this list of 14 15 things that we're concerned about, which may not have 16 been raised enough by the staff, or, if they have, we 17 don't know that. And to try to sort of supplement in 18 some intelligent way these questions, which I say are 19 very comprehensive already, but there may be some 20 which haven't been asked. 21 I think that's our job, and I'll give this 22 to the Chairman, which he can then present to the 23 And, otherwise, I think we're doing the right staff. 24 thing here. I think both the staff and the applicant 25 have been responsive to any questions we have raised.

1	I really want to go into the details of
2	what these technical questions are, but I'll send you
3	a list.
4	CHAIRMAN CORRADINI: That's fine.
5	MEMBER BANERJEE: Yes. I think in many
6	ways I have the same sense of things as Graham that
7	there are many technical issues which we'd like to see
8	a lot more of. And I'll send you a list of these as
9	well. I've been compiling them, and they are
10	actually
11	MR. WALLIS: How many pages are there?
L2	MEMBER BANERJEE: Several pages. But I am
13	going to actually boil it down to one page
L4	CHAIRMAN CORRADINI: That would be
L5	wonderful. Thank you.
16	MEMBER BANERJEE: for you. But
L7	otherwise, I think it's going all right.
18	MEMBER BLEY: It seems like it's going
19	right. The questioning seems good. One issue came up
20	today that isn't strictly a thermal hydraulic one that
21	I thought I'd mention. You were talking about the
22	control rod withdrawal, and I know you're pursuing
23	that during based on the events that happened
24	during refueling in Japan.

I just looked at -- sneaked ahead and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1	peeked at the PRA, because some of these kinds of
2	issues I thought would be fine if they are dealt with
3	in the PRA. That one specifically blocked out of the
4	PRA, and that the whole shutdown PRA assumes the rods
5	are in place the whole time. So there are no
6	reactivity issues. So that will come up with the PRA
7	as well as here.
8	MEMBER ARMIJO: I don't have anything to
9	add. I agree with Graham's and Sanjoy's comments.
10	CHAIRMAN CORRADINI: Dr. Shack?
11	MEMBER SHACK: I just had a question for
12	GE. I'm very interested in this Dodewaard data,
13	because it seems to me that it's the only thing around
14	that is going to address Said's question. I don't
15	think you are going to go off and run a full-scale
16	test at this point.
17	And it's not 32177, as far as I can find.
18	Can you tell me where it really is?
19	MR. MARQUINO: I will have to get the
20	there is these two qualification reports, one for
21	TRACG in general and one for ESBWR. If it's in 32177,
22	it must be in the other one. We'll research and get
23	back to you.
24	CHAIRMAN CORRADINI: If you could pass it
25	to Amy, they can just bundle it and send it to us.

1 That would be good. I'd appreciate it. 2 MR. MARQUINO: Okay. 3 VICE CHAIRMAN ABDEL-KHALIK: I mean, like 4 everyone else, I mean, we have a list of issues that 5 have been raised. We'll provide that list to you, so 6 that the staff and GE can come back and provide 7 answers to those. I must say I was somewhat dismayed when I saw the statement about the -- that the 8 Chapter 15 review was significantly affected by that, 9 the new proposed reactor power controlled by varying 10 11 the feedwater temperature. But we appreciate getting the topical. 12 We'll review it, and we'll do our homework, and 13 14 hopefully we'll see more details on that. 15 Thank you. 16 CHAIRMAN CORRADINI: Thank you. MEMBER MAYNARD: Well, I think that -- I 17 agree the staff is asking a lot of good questions, and 18 19 I think that we're getting in a lot -- overall, I 20 think this seems to be a good design. I think these 21 issues are going to get resolved. I do think that the 22 questions are good and need to be dug into thoroughly. 23 A couple of things we forget sometimes. We're dealing primarily with what they're taking 24 25 credit for. There are still other mechanisms.

2
 3

is still a lot of defense in depth of active systems and other things that are available to get water moved around and stuff. So there is some defense in depth, although we're not allowed to take credit for that for the design basis stuff and for 72 hours.

I think that probably the biggest -- the key thing to me in the questions is the treatment of the non-condensable gases and, you know, what are the real flows through these systems. I think there is probably plenty of conservativism in the analyses, as long as the non-condensable gases do what is assumed in the analysis. And that's where I think probably the key effort needs to be is in really taking a hard look at that, because that is so important to the success of the passive cooling systems and stuff there.

So I think we're on the right track, but there are still a lot of unanswered questions to deal with there.

One other thing -- I think we do need to be careful that -- you know, our job is to review the adequacy of their design rather than us try to tell them how to design things. And we may all have different ways that we would like to see things handled, and our job is really to take a look at what

1 they are proposing as to the adequacy of that. 2 That's all I've got. Designed by 3 Committee doesn't always end up with a better design, 4 so --5 CHAIRMAN CORRADINI: Tom? MEMBER KRESS: I guess I'm going to be the 6 7 outlier here. I think the design is very good. a good reactor, and the staff is doing a good job. 8 9 I'm very, very concerned about the iodine It looks to me like it's closer to be a 10 issue. 11 showstopper than anything. I don't know how they're going to deal with it. There may be ways to deal 12 13 with. 14 CHAIRMAN CORRADINI: In terms of a change 15 in the pH, or in terms of just that there will 16 continually be the recycle and transport? 17 MEMBER KRESS: You've got to -- I've got 18 to see this analysis by the Sandia people, but it's an 19 extremely difficult thing to determine pH. In most of 20 the cases I've seen where the pH has been determined, not for this reactor but for other reactors, it tends 21 22 -- unless you've got a highly buffered system, it 23 tends to go negative. I mean, it tends to go acid. 24 CHAIRMAN CORRADINI: It goes acidic. 25 MEMBER KRESS: Yes. And I don't know what

1	it will do in this reactor, but, if it does, you have
2	an iodine pump there that is pumping iodine
3	continuously into the containment. And over the long
4	term it's just going to leak out. It's going to go
5	into it's going to establish a steady state. I
6	don't know what that level will be, but it's one that
7	has to be dealt with.
8	If you did you know, you're not going
9	to get that iodine. It's one of these things where
LO	you have to specify a source term, and a design basis
11	accident. So it's a compliance issue. It's not going
L2	to happen. You won't I don't think you'll see it
L3	in the PRA, but it has to be dealt with because it
L4	MR. WALLIS: That concerned me right from
L5	the start. I mean, they've got this wonderful design
L6	which cools the core, it's designed to do that. And
L7	then, when you look at it from the point of view of
L8	MEMBER KRESS: If you close this off
L9	MR. WALLIS: this other thing, it's the
20	iodine pump. So the very fact that it cools the core
21	so well makes it do this other job so badly.
22	MEMBER KRESS: So I'm anxious to see how
23	that one gets resolved, frankly.
24	MEMBER BANERJEE: But with the sodium
25	pentaborate, do you still think it will become acidic?

1	MEMBER KRESS: There's a lot of water in
2	this thing. And, you know, and if you impose this
3	source term, and you've got all of these nitric acid
4	producers and they've got the hydrochloric acid from
5	other things, the cases I've seen in other reactors
6	not like not this reactor, it tends to go acidic.
7	I don't know what will happen. I'm
8	anxious to see what Sandia comes up with.
9	MEMBER SHACK: I mean, that's one of the
10	things that's bad about pure water is it doesn't take
11	much to move a pH around.
12	MEMBER SIEBER: To make it unpure.
13	MEMBER KRESS: That's right. So, you
14	know, I don't know how GE will deal with this. I
15	don't I guess we'll wait until we see the results
16	of the calculations and see if it's bad or not.
17	MEMBER BANERJEE: There's a buffer in
18	the
19	CHAIRMAN CORRADINI: I want to make sure
20	I understand relative to the bad. So the bad is the
21	dose or the how it's changing the water chemistry
22	for long-term corrosion?
23	MEMBER KRESS: You have to change the
24	water chemistry to get the dose.
25	CHAIRMAN CORRADINI: right.

1 MEMBER KRESS: But the dose is what's 2 going to be bad, because it's -- an iodine pump pumps 3 it right out of the containment. 4 CHAIRMAN CORRADINI: Jack? Well, I agree with Dr. 5 MEMBER SIEBER: Wallis that we've covered a lot of material. 6 are some open items. I think the staff is on track, 7 and it seems to me there is more open items today than 8 9 there was yesterday. And maybe it's because I've struggled with the reassignment in advance of coming 10 11 here. I don't know if there is a showstopper or 12 I think Dr. Kress' point is well made, and I 13 not. also believe there are solutions to it. But they may 14 15 not be pretty solutions. We've had this issue before 16 in other plants, and I think it's something that needs to be addressed. 17 I am also particularly impressed with Dr. 18 19 Abdel-Khalik's comments about non-condensables, which 20 several others have followed up on. And I suspect you can analyze your way out of it, but I think you'd be 21 22 better off getting isometric drawings and looking at 23 them and having an experienced engineer or two look for the traps to see where they would occur, then 24

that's the time to apply the codes and the mathematics

to determine what it takes to overcome those or what 1 2 impact it has on the ability of gravity-driven cooling 3 systems to operate. 4 So, to me, I think the issues that come 5 out of here is the issue of non-condensables and the 6 iodine, which I think require followup by all of us --7 General Electric, the staff, and the ACRS. That would 8 be it for me. 9 CHAIRMAN CORRADINI: Well, I've written down -- I think I've written down most of what I've 10 heard. I'm going to get from the members a list, and 11 12 I'll compile it and send to everybody. I've developed 13 already a summary, but I'll keep on adding to it and just circulating it. 14 MEMBER BANERJEE: How detailed a list do 15 16 Just some topics, or do you want a -you want? 17 CHAIRMAN CORRADINI: I think major -- I 18 quess I'd break it down into two categories. 19 category would be major things -- and I'll term it the 20 way Graham said it, which is major things that are 21 gnawing at you about something relative to the design 22 that appears to have been overlooked that could be And take an accident, take how the 23 significant. design may go somewhere that staff may have seen, may 24

have not seen, GEH is kind of addressing,

basically taking it somewhere -- that's your concern.

And then, a lot of other things which may be issues, may not be issues. And what I will plan to do is take all of it, hopefully organize it properly send it to Amy, and then the next time we get together, since -- and I guess I'll leave it with you, Amy, on this regard -- my interpretation is we have another batch of chapters which we will look at. That probably won't be for a couple months at least.

So in those couple months or more, let her look with her colleagues at the list and say what things fit together. One natural to me is containment response. We could address some of the questions that Tom has relative to DBA calculations that are both source term related as well as containment systems related, and accumulate some of these things and go through a detailed analysis, pick a few accidents and walk through them, so we can understand.

MEMBER BANERJEE: So the containment response is going to be very coupled through the --

CHAIRMAN CORRADINI: It will be a very coupled -- for example, I mean, if there is information that finally comes out, depending when it comes out, in terms of the STERN lab test data for the GE 14E, get a subcommittee -- or get the Subcommittee

1	together, and then again look at that relative to the	
2	CPR. So arrange it so that we can address these	
3	issues as the staff is ready to address them with GEH	
4	in support.	
5	MS. CUBBAGE: Yes, I think that's a good	
6	plan.	
7	CHAIRMAN CORRADINI: And then, I will just	
8	bring it up as it comes out.	
9	MR. WALLIS: Don't have too many issues.	
LO	If we are really going to delve into an issue, it	
11	takes time. We've got to look at, you know, proper	
12	evidence and reach conclusions. You can't have 50	
L3	issues on the table when we meet as a Subcommittee.	
L4	CHAIRMAN CORRADINI: No. My thought is we	
L5	are going to come down to a handful.	
L6	MR. WALLIS: Handful of good ones.	
L7	CHAIRMAN CORRADINI: Yes.	
18	MR. WALLIS: Okay.	
L9	MS. CUBBAGE: Right.	
30	CHAIRMAN CORRADINI: So on that note, I	
21	wanted to thank GEH and all of the folks that were	
22	here, and are still here, that are not rushing to the	
23	snow-covered airport.	
24	(Laughter.)	
25	All right. Thank you for all your help.	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1	Thanks to the staff. Amy?
2	MS. CUBBAGE: We did have one we wanted
3	to offer just to go to closed just for a couple
4	minutes, because I think Dr. Yarsky would like to
. 5	maybe try to address one of the remaining issues.
6	CHAIRMAN CORRADINI: Was this the issue
7	relative to the neutronics that Sanjoy asked?
8	MS. CUBBAGE: Yes.
9	CHAIRMAN CORRADINI: Okay.
10	MEMBER BANERJEE: We can get that off the
11	table.
12	MS. CUBBAGE: Yes, we'd like to do that.
13	CHAIRMAN CORRADINI: So I'm supposed to
14	ask anybody that is not supposed to be here to please
15	leave.
16	MS. CUBBAGE: Right.
17	CHAIRMAN CORRADINI: And how will we know
18	that?
19	(Whereupon, at 4:00 p.m., the proceedings
20	in the foregoing matter went into closed
21	session and then subsequently returned to
22	open session.)
23	CHAIRMAN CORRADINI: Okay. Thanks to the
24	staff, and then we'll take a bit minute afterwards.
25	Gary reminded me, but I'll remind the members, we have
	NEW D 0000

1	to have not have to we are expected to provide
2	another interim letter to the staff, but given that
3	we've gone through four chapters in November, and
4	we've gone through these four chapters, there are a
5	number of open items, I think we have to decide what
6	I wasn't planning to ask for do a letter in
7	February, but to do it in March. But we have to
8	decide what chapters we want to write about.
9	If there's a lot of open items with a very
LO	long list, we might want to wait and simply only deal
L1	with the information we saw back in November, which
L2	was a bit more straightforward and very few open
L3	items. Right?
L4	MS. CUBBAGE: Right. There are eight
L5	chapters on the table.
L6	CHAIRMAN CORRADINI: Eight chapters on the
L7	table, some of which are a bit unwieldy.
L8	DR. YARSKY: Yes.
L9	CHAIRMAN CORRADINI: All right? So that
20	is something we have to come to decide. In February,
21	we'll go through a progress report to the full
22	Committee and probably make a decision on what sort of
23	letter we'd write in March.
24	Everybody understand what I just said?
25	MS. CUBBAGE: I didn't. We're coming back

1	in March, right?
2	CHAIRMAN CORRADINI: Right.
3	MS. CUBBAGE: Okay. I just wanted to make
4	sure.
5	CHAIRMAN CORRADINI: For a letter. For a
6	letter. Everything else is internal discussions with
7	us.
8	MEMBER BANERJEE: You may want to be there
9	in February as well.
10	CHAIRMAN CORRADINI: You're welcome to
11	come in February.
12	MS. CUBBAGE: Well, I absolutely can.
13	It's whether we have, you know
14	CHAIRMAN CORRADINI: No. The answer is we
15	plan to do it in March.
16	MS. CUBBAGE: Thank you.
17	MR. KINSEY: A point of clarification.
18	CHAIRMAN CORRADINI: All right. Thank you
19	so much.
20	MR. KINSEY: So what you are saying is
21	that we will decide between now and
22	CHAIRMAN CORRADINI: The Committee is
23	going to have to decide what the letter is what the
24,	scope will be.
25	MR. KINSEY: What the scope of the March

1	meeting will be.	
2	CHAIRMAN CORRADINI: What the scope of the	
3	March meeting will be and the letter.	
4	MR. KINSEY: Eight chapters or something	
5	less than that.	
6	CHAIRMAN CORRADINI: That's right. And	
7	I'll communicate that earlier, much earlier, to	
.8	everyone. Okay?	
9	(Whereupon, at 4:14 p.m., the proceedings	
10	in the foregoing matter went off the	
11	record.)	
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

CERTIFICATE

This is to certify that the attached proceedings before the United States Nuclear Regulatory Commission in the matter of:

Name of Proceeding: Advisory Committee on

Reactor Safeguards

Docket Number:

n/a

Location:

Rockville, MD

were held as herein appears, and that this is the original transcript thereof for the file of the United States Nuclear Regulatory Commission taken by me and, thereafter reduced to typewriting by me or under the direction of the court reporting company, and that the transcript is a true and accurate record of the foregoing proceedings.

Eric Hendrixson Official Reporter

Neal R. Gross & Co., Inc.

Presentation to the ACRS Subcommittee

ESBWR Design Certification Review Chapter 15

January 17, 2008

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15

Outline of Presentation

- Brief the Subcommittee on the staff's <u>ongoing</u> review of the ESBWR DCD application:
 - 15.1 "Introduction"
 - 15A "Event Frequency Determination"
 - 15.2 "Anticipated Operational Occurrences"
 - 15.3 "Infrequent Events"
 - 15.4 "Accident Analyses
 - ATWS/ESBWR Boron Mixing
- Answer the Committee's questions

1/16/2008

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15

Review Team for Chapter 15

- Lead PM
 - Bruce Bavol
 - Amy Cubbage
- · Lead Technical Reviewers
 - George Thomas
 - Dr. John Lai
 - Dr. Lambros Lois
 - Jay Lee
 - Benjamin Parks
 - Christopher Boyd (RES)

1/16/2008

3

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15

Summary of Regulations and other Review Guidance

- GDC's-10, 13, 14, 15, 16, 17, 19, 20, 25, 26, 28, 35, 38, 50, 55, 60
- 10 CFR 50 Appendix A

Guidance From:

• SRP Section 15

1/16/2008

ļ

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15

RAI Status Summary

- Original number of RAI's 119
- Number of RAI's resolved 94
- Number of Open Items 25

1/16/2008

5

Presentation to the ACRS Subcommittee

ESBWR Design Certification Review Chapter 15.1

Presented by George Thomas NRO/DSRA/SRSB

January 17, 2007

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15

SER Technical Topics of Interest

- Design Features
- Events Categorization
- Acceptance Criteria
- Analysis Method and Requirements

1/16/2008

7

Unique Design Features

- Elimination of active ESF Systems
- 4 redundant I&C channels for safety systems
- Triple redundant processors for control systems
- Event frequency is expected to be less compared with current operating BWRs

1/16/2008

DEFINITIONS

- Anticipated Operational Occurrences (AOOs) mean those conditions of normal operation which are expected to occur one or more times during the life of the nuclear power unit (Appendix A of 10 CFR Part 50)
- Infrequent Events are Events that may occur during the life time of the nuclear power unit (SRP 15.0)
- Postulated Accidents- Unanticipated conditions of operation i.e not expected to occur (SRP 15.0)
- DBA-Postulated accidents that are used to set design criteria and limits for the design and sizing of safety-related systems and components (SRP 15.0)

1/16/2008

9

ESBWR EVENTS CATEGORIZATION

Event	Frequency	Acceptance Criteria
AOOs	>0.01 Events/Year	RPV Level above TAF, SLMCPR, RPV Pressure≤
		1375 psig
<u>Accidents</u>		
Infrequent Events	< 0.01 Events/Year	RPV Level above TAF 10% of 10 CFR50.34 (a) (ii)
		(D) (1)-2.5 rem TEDE, RPV Pressure ≤1500 psig
DBA	10E-4-10E-5	25 rem TEDE, N/A
Special Events (ATWS,SBO etc)	Varies	Case by case

1/16/2008

Probability Vs Risk Concept

 High Frequency Events shall have a small consequence (i.e., SLMCPR criteria) and Lower Frequency Events could have more severe consequence (i.e., Radiological release may occur)

1/16/2008

11

Analyses Requirements

- TRACG used for analyses (except for reactivity transients)
- TRACG will be addressed in Chapter 21
- Analyses of all categories of AOOs and Infrequent Events identified in the SRP are required for design certification
- Only Limiting Events need to be reanalyzed for subsequent reloads using GE14E fuel

1/16/2008

Review Issues

- Staff had concerns in accepting the ASME Level C Criteria (RPV Pressure 1500 psig) for all accidents
- RPV inspection/analysis (to justify continued operation) will be performed according to ASME Section XI if the RPV pressure exceeds 1375 psig
- Initially GEH included only the acceptance criteria of "Greater than 99.9% of the fuel rods in the core would be expected to avoid boiling transition" instead of the SLMCPR in the TS. The staff found that to be unacceptable. 10CFR50.36c (1) (i) (A) require the SLMCPR to be in the TS. GEH agreed

1/16/2008

13

Review Issues (Cont)

Operation in the FW Temp Operating Domain

- Chapter 15 review significantly affected by GEH's new proposed reactor power control by varying the FW temperature
- LTR NEDO-33338, "ESBWR FW Temp Operating Domain Transient & Accident Analysis, October 2007" is under staff review

1/16/2008

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15.1

Discussion/Committee Questions

1/16/2008

15

Presentation to the ACRS Subcommittee

ESBWR Design Certification Review Chapter 15A

Presented by Dr. John Lai NRO/DSRA/SPLB

January 17, 2007

Infrequent Event Frequency Determination

- Methodology
 - If an initiating event is modeled in the ESBWR PRA, the frequency is taken directly from the PRA, e.g., Turbine Trip. Additional analyses not given in the PRA are conducted, e.g., total turbine bypass valve failures.
 - The event frequency is determined from the actual BWR operating experience, modified to reflect the ESBWR improved design, e.g., Stuck Open Safety Relief Valve (SORV).

1/16/2008

17

Infrequent Event Frequency Categorization (Cont)

- For events involving multiple hardware failures or human errors, the event frequency is based on conservative estimates of the hardware failures (Including CCF) and human errors, e.g., Loss of feedwater heating of selected control rod run-in, inadvertent shutdown cooling function operation.
- Staff Review
 - Staff reviewed 16 infrequent event frequency analyses.
 - Staff issued two RAIs (SORV Frequency and Unavailability of ICS).
 - Staff found that the results are acceptable.

1/16/2008

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15

Discussion/Committee Questions

1/16/2008

19

Presentation to the ACRS Subcommittee

ESBWR Design Certification Review Chapter 15.2 & 15.3

Presented by Dr. Lambros Lois NRR/ADES/DSS/SRSB

January 17, 2007

Analysis of Anticipated Operational Occurrences (AOOs).

Section 15.2: Analyses of AOOs

- No major issues
- ESBWR is generally more forgiving than existing plants. For example, due to large vessel volume overpressurization transients do not reach the pressure setting of the pressure relief valves,
- ESBWR has demonstrated larger margin to the safety limits compared to existing plants.

1/16/2008

21

Infrequent Events (IEs)

Section 15.3: Infrequent Events

- IEs are reviewed per SRP Chapter 15
- LOCA is reviewed separately
- OLMCPR = 1.30, (assumed)
- Two transients: Generator load rejection, and pressure regulator failure, develop high and narrow power peaks. The DCD did not calculate energy deposition to assure that fuel melt and cladding strain criteria are met.

1/16/2008

Reactivity Transients

 Reactivity transients: for example, control rod withdrawal error during refueling. The DCD finds that this event is incredible. However, the SRP requires that it be analyzed and in addition, such an event did take place (Japan 1999 BWR4) the staff requested that GEH submit an analysis.

1/16/2008

23

Overall Observations

 The ESBWR is more resilient than conventional plants

1/16/2008

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15

Discussion/Committee Questions

1/16/2008

25

Presentation to the ACRS Subcommittee

ESBWR Design Certification Review
Chapter 15.4 "Accident Analysis"
Chapter 6.5 "Fission Product Removal & Control
Systems"

Presented by Jay Lee NRO/DSER/RSAC January 17, 2008

Key Regulations and Review Guidance

- Part 52.47 (a)(2)(iv)(A)
- Part 100.21, "Non-Seismic Siting Criteria"
- · Part 50, Appendix A, GDC 19, "Control Room"
- Primary SRP: SRP 15.0.3, "Design Basis Accident Radiological Consequence Analyses for Advanced Light Water Reactors" (2007)
- Regulatory Guide 1.183, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors" (2000)
- NUREG-1465, "Accident Source Terms for Light-Water Nuclear Power Plants" (1995)

1/16/2008

27

27

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15, "Accident Analysis"

10 CFR 52.47 (a)(2)(iv)(A)

"The fission product release assumed for this evaluation should be based upon a major accident, hypothesized for purposes of site analysis or postulated from considerations of possible accidental events. Such accidents have generally been assumed to result in substantial meltdown of the core with subsequent release into the containment of appreciable quantities of fission products"

1/16/2008

"Major Accident" and "Possible Accidental Events"

• listed in SRP 15.0.3 and RG 1.183 for light water reactors such as the ESBWR

1/16/2008

29

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15, "Accident Analysis"

- "Appreciable Quantities" of Fission Products
 Released for "Substantial Meltdown of the Core"
- given in NUREG-1465, "Accident Source Terms for Light-Water Nuclear Power Plants"

1/16/2008

Regulatory Issue for Review

- Does the ESBWR design provide adequate mitigation of radiological consequences in the event of a major reactor accident to protect public health and safety, as demonstrated by meeting the siting dose acceptance criteria specified in 10 CFR 100 and 10 CFR Part 52.47 (a)(2)(iv)(A)?
- · Prevention vs. Mitigation

1/16/2008

31

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15, "Accident Analysis"

Fission Product Release Points to the Environment Following Design Basis Accident

- Containment Leak at 0.4 weight percent per day
- · MSIV Leak (containment bypass) at 200 scfh
- These values are specified in the ESBWR Technical Specifications as surveillance requirements

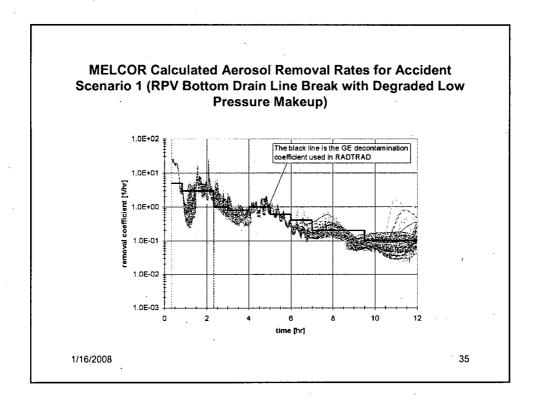
1/16/2008

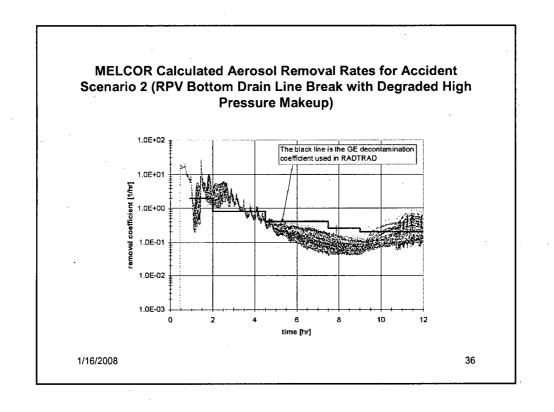
SER Technical Topics of Interest

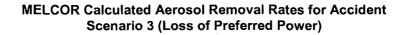
The ESBWR design does not provide active fission product mitigation systems (i.e., safety-related containment spray, filters). Instead, the design provides following passive fission product mitigation:

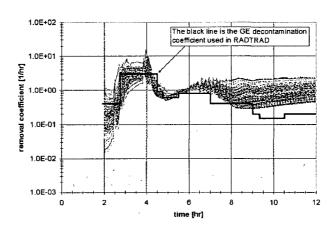
- · Fission product natural deposition in containment
- Fission product removal by passive containment cooling system (Open Item)
- · Low containment leakage
- · Fission product holdup in reactor building (Open Item)
- Control of pH of water in containment pools to prevent iodine re-evolution (Open Item)
- Fission product natural deposition in main steam lines and main condensers (Open Item)

1/16/2008


33


ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15, "Accident Analysis"

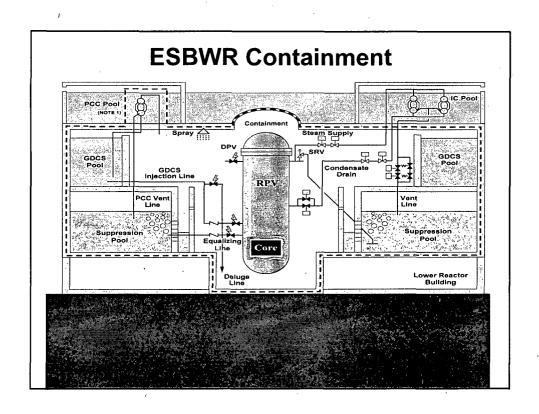

Fission Product Natural Deposition Processes in Containment


- Performed independent confirmatory calculation to verify fission product removal rates proposed by GEH
- Deposition processes involve gravitational settling, diffusiophoresis, and thermophoresis
- Used MELCOR code to establish thermal-hydraulic boundary conditions to estimate fission product removal rates
- Performed quantitative analyses of uncertainties in predicting removal rates using a Monte Carlo sampling method (150 realizations)

1/16/2008

1/16/2008

37


ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15, "Accident Analysis"

Fission Product Removal by Passive Containment Cooling System (Open Item)

- The staff is proceeding with a rate analysis of steady-state iodine transport within containment between RPV, drywell atmosphere, PCCS, and GDCS to confirm GEH analyses.
- lodine re-evolution (source) and removal by PCCS (sink) will be evaluated.

1/16/2008

38

Low Containment Leakage

• ESBWR (proposed): 0.4% per day

ABWR (certified): 0.5% per day
AP1000 (certified): 0.1% per day

• EPR (proposed): 0.25% per day

Fission Product Holdup in Reactor Building (Open Item)

- 40% mixing efficiency (dilution) in reactor building
- 50% per day leak rate from reactor building

1/16/2008

41

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15, "Accident Analysis"

Control of pH of Water in Containment Pools to Prevent Iodine Re-evolution (Open Item)

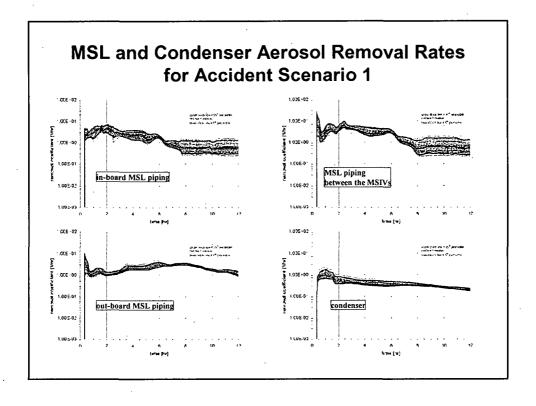
Acid formation

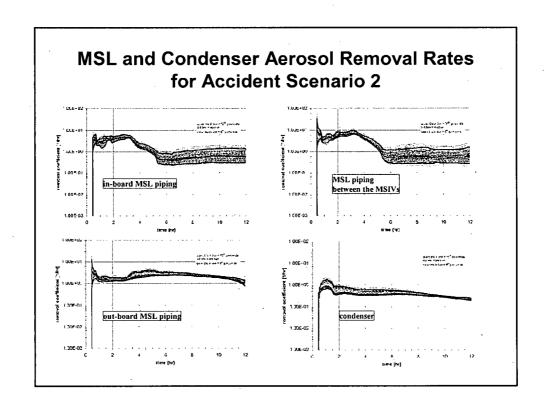
Hydrochloric acid Nitric acid

Base formation

Cesium hydroxide

Buffer Injection


Sodium Pentaborate


1/16/2008

Aerosol Deposition in Main Steam Lines and Main Condenser (Open Item)

- Main steam lines, main steam line drain lines, and main condensers are designed to meet SSE criteria
- Main steam isolation valve leak rate assumed (200 scfh) is specified in ESBWR technical specification
- 200 scfh leak rate is assumed for the entire duration of accident (30 days)
- Performed an independent confirmatory calculation to verify aerosol deposition rates proposed by GEH

1/16/2008 43

Significant Open Items

- Fission product removal by passive containment cooling system
- · Fission product holdup in reactor building
- Control of pH of Water in Containment Pools to Prevent Iodine Re-evolution
- Aerosol Deposition in Main Steam Lines and Main Condenser

1/16/2008

47

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15, "Accident Analysis"

Significant SER Chapter 15 COL Action Item

 Demonstration by COL applicants who reference the ESBWR design that its site-specific X/Q values fall within those values certified in ESBWR standard reactor design

1/16/2008

Example: Short-term (Accident) Atmospheric Dispersion Factors (χ/Q values) at Site Boundary (EAB) (sec/m³)

• ESBWR (proposed): 2.00E-3

ABWR (certified): 1.37E-3
 AP1000 (certified): 5.10E-4
 US-EPR (proposed): 1.00E-3
 North Anna (ESP): 2.26E-4

1/16/2008

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15, "Accident Analysis"

Discussion/Committee Questions

1/16/2008

Presentation to the ACRS Subcommittee

 ESBWR Design Certification Review Anticipated Transients Without Scram ESBWR Boron Mixing

> Presented by Benjamin T. Parks NRR/ADES/DSS/SRSB

> > Christopher Boyd RES/DSA/RSAB

January 17, 2007

Topics Covered

- Chapter 15: ATWS Review
- SLCS Injection Shutoff Valve Performance
- Boron Mixing

1/16/2008

ATWS Review

- GEH analyzed typically limiting ATWS scenarios
- Additional scenarios analyzed for sensitivity study
- Traditional acceptance criteria were used
 - PCT, Vessel Pressure
- OPEN ITEMS
 - Boron Mixing Staff performing confirmatory analysis
 - TRACG Applicability Currently under review

1/16/2008

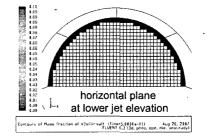
53

SLCS Injection Shutoff Valve Performance

- Shutoff valves are safety related.
- ATWS analysis assumes degraded IC performance (only 3/4 ICs available).
- Shutoff valves are ASME code components subject to inservice inspection program.

1/16/2008

Boron Mixing


- Differences in ESBWR design and analysis approach warranted further evaluation of ATWS Boron Mixing.
- GEH has renodalized their TRACG analysis model to provide a more limiting evaluation of boron transport.
- Staff CFD analysis is underway.

1/16/2008

55

Staff CFD Analysis

- 45 million cell model of ESBWR bypass
- · Geometry data obtained from:
 - Audit activities
 - GEH-provided data
 - Surveys of TRACG input

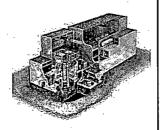
- Input assumptions based on performance requirements and TRACG data.
- Staff analyzed sensitivities in steady-state mode, and general phenomena in transient mode.

1/16/2008

ACRS Subcommittee Presentation ESBWR Design Certification Review Chapter 15

Discussion/Committee Questions

1/16/2008


ESBWR DCD Chapter 15 Safety Analyses

Advisory Committee on Reactor Safeguards

Wayne Marquino Craig Goodson Pradip Saha, PhD MD Alamgir, PhD Erik Kirstein

January 17, 2008

15.0 Classification of Events.

- Anticipated Operational Occurrences (AOO) expected during life of the plant, includes normal operations/evolutions, and unplanned occurrences/failures
- Design Basis Accidents Primarily limiting events for dose consequences show mitigation capability
- Special Events evaluated to regulatory acceptance criteria
- · Infrequent Events subset of accidents
- Approximately 45 events identified and analyzed
- Appendix 15A event frequency calculation supports event classification

15.0 Improved Reliability of Fault Tolerant Digital Controls

Added Redundant Sensors, Actuators & Controllers Several Events moved to lower probability category Specific event frequency determination justifies:

- · Fewer initiating events
- · Higher plant capacity factor
- · Improved fuel economics

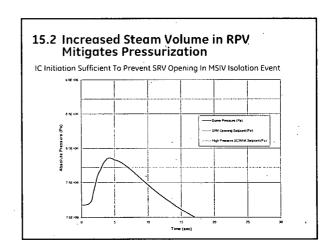
15.1 Nuclear Safety Operational Analysis

- Similar to Failure Mode & Effects Analysis (FMEA, Pre-dates PRA, not very detailed)
- Documents primary success path credited in safety analysis
- Relates to Technical Specifications (TS)

15.2 Anticipated Operational Occurrences <braces indicate Limiting Event>

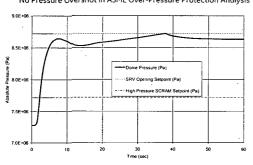
Demonstrates ESBWR meets all AOO acceptance criteria

Critical Power Ratio (CPR heat transfer condition ensures clad integrity)


- Operating Limit CPR such that 99.9% of fuel rods do not enter transition boiling
- · Steady State Safety Limit CPR retained in TS

Reactor Pressure

· SRV actuation avoided


Core Water Level

• Core remains covered with no ADS required

15.5 Increased Steam Volume in RPV Mitigates Pressurization

No Pressure Overshot in ASME Over-Pressure Protection Analysis

15.3 Infrequent Events (IE)

- Radiological consequence is less than 2.5 rem total effective dose equivalent (TEDE)
 - Dose evaluated for 1000 fuel rods (bounding for IE)
 - - Bounding CPR change < Cold Water Injection>
- The plant maintains the reactor water level above the top of active fuel (TAF) <All Events>
- The RCPB pressure is less than 1500 pounds per square inch gauge (psig) <Load Reject, fail all Bypass>

15.4 Analysis of Accident Dose

Section 15.4 provides description of:

- Radiological consequences of Design Basis Accidents
 - -FHA, LOCA, MSLB, CRDA, Feedwater Line Break, Failure of Small Coolant Line Outside Containment, RWCU/SDC System Line Failure Outside Containment, Spent Fuel Cask Drop
- Dose calculations performed in accordance with Regulatory Guide 1.183 (Alternate Source Term, AST)
- Resulting doses meet 10 CFR 50.34(a) and GDC 19 dose criteria
- All accidents (with exception of LOCA) conservatively assume no credit of Control Room emergency charcoal filtration

15.4 Containment System Fission Product Removal

Some Fission Products would be removed on containment structures and in PCC heat exchanger

MELCOR applied to calculate a removal coefficient

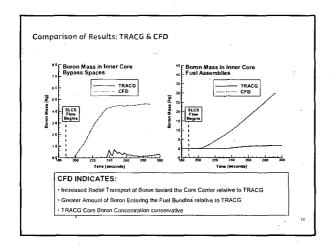
Range of scenarios analyzed to determine limiting thermodynamic conditions:

- 1) Low pressure core failure LOCA
- Bottom drain line LOCA, IC, SLCS, GDCS failures, ADS works
- 2) High pressure core failure LOCA Bottom drain line LOCA, IC, SLCS, ADS failures
- 3) Non-LOCA high pressure core failure Loss of AC & FW, IC, SLCS, ADS failures

Significant core damage in all scenarios; ECCS recovered just before lower head failure (consistent w/ AST)

15.4 pH in Containment Pools

SLCS injection credited for buffering


Cable degradation and Nitric Acid production considered

Evaluation of pH in containment pools is being revised for DCD R5 (GEH will consider radioactivity in suppression pool)

15.5 ATWS MSIV Closure - SLCS Bounding

Parameter	Acceptance Criteria	Calculated Value
RPV Integrity: Maximum Vessel Bottom Pressure, MPaG (psig)	10.34 (1500)	9.41 (1364)
Containment Integrity: Maximum Bulk Suppression Pool Temperature, °C (°F)	121 (250)	73.1 (163)
Fuel Integrity: Peak Cladding Temperature, °C (°F)	< 1204.4 (2200)	850.3 (1562.5)
Ratio of Oxide-to-Clad Thickness	< 17%	< 0.3 %

Analyses meet the Acceptance Criteria with large margin.

- The plant maintains the reactor water level above the top of active fuel (TAF). <Station Blackout (SBO)>
- The plant design maintains pressure in the reactor coolant and main steam systems below 110 percent of the design value. MSIV Isolation, position scram failed>
- RCPB pressure is less than 1500 psig (ASME Service Level C, 120% of Design). <ATWS>
- The plant maintains containment and suppression pool pressures and temperatures below their design values.
 All Events>

Appendices

15A Event frequency calculations for Infrequent Events

15B Radiation Source Term

Summary

- •ESBWR meets all regulatory requirements for AOO's, & Special Events and DBA's
- •Considering ESBWR design for lower event frequency, Infrequent Event category included in licensing basis
- •ESBWR passive safety features and large vessel produce a slower dynamic relative to previous designs

ESBWR APPLICATION Chapter 21.6 METHODOLOGY for TRACG AOO/IE/SE/ATWS

Wayne Marquino John Sorensen

January 17, 2008

HITACHI

TRACG ESBWR Background

Early 1990s - SBWR Test & Analysis Program Description (inc. CSAU/PIRT)

Early 1990s - SBWR Test Program

Mid 1990s - SBWR DOE program ends, ESBWR (larger output) continued internally at GE

Late 1990s - NRC approves TRACG for BWR2-6 AOO analysis

2002 GE submits TRACG04 application for ESBWR

HITACHI

Submitted Applications of TRACG

BWR2-6 AOO *

BWR2-6 ATWS Pressure *

ESBWR LOCA *

ESBWR Stability *

ESBWR ATWS Pres/PCT/Supp.Pool Temp. NEDE-33083

ESBWR AOO/IE/SE (SBO) NEDE-33083 Supplement 3

*NRC Issued SER

В нітасні

ESBWR TRACG ATWS Methodology-NEDE-33083P, SUPPLEMENT 2

Extends Application of TRACG to boron shutdown during ATWS and Peak Clad Temperature

RAI's:

Boron Mixing- GE is finalizing a CFD analysis to demonstrate that the blockage of boron flow applied in TRACG is conservative

Stability - GE is executing a more bounding event from stability standpoint

ESBWR TRACG AOO/IE/SE Methodology-NEDE-33083P, SUPPLEMENT 3

Uses the Approved NEDE-32906 AOO CSAU process with ESBWR specific PIRTs.

RAI responses to address HCU failures during SRI in limiting event