"Niigata-Chuetsu-Oki Earthquake of 16 July 2007 and Kashiwazaki-Kariwa NPP -FINDINGS AND LESSONS LEARNED"

IAEA EXPERT TEAM Presented by: James J. Johnson, JJJ and Associates

IAEA REVIEW TEAM:

- JAMET, Philippe
- GODOY, Antonio R.
- GUNSELL, Lars
- GÜRPINAR, Aybars
- JOHNSON, James J.
- KOSTOV, Marin

IAEA/NSNI/Director, **Team Leader** IAEA/NSNI/ESS, **Deputy Team Leader.** SKI, Sweden Consultant, Turkey James J. Johnson & Associates, USA Risk Engineering Ltd, Bulgaria

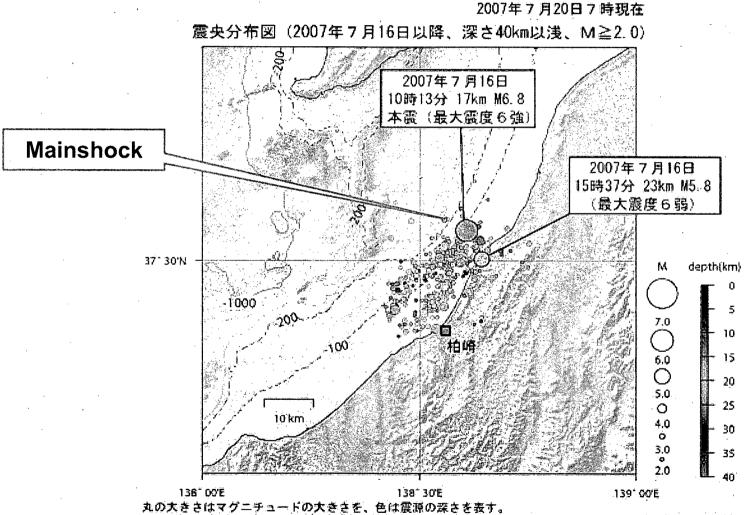
OBJECTIVES

- Conduct a fact finding mission
- Identify lessons learned for such event
- Discuss the performance of the nuclear power plant units under the earthquake, and fulfilment of the fundamental safety functions:
 - control of reactivity;
 - removal of heat from the core; and
 - confinement of radioactive materials

SCOPE OF THE MISSION

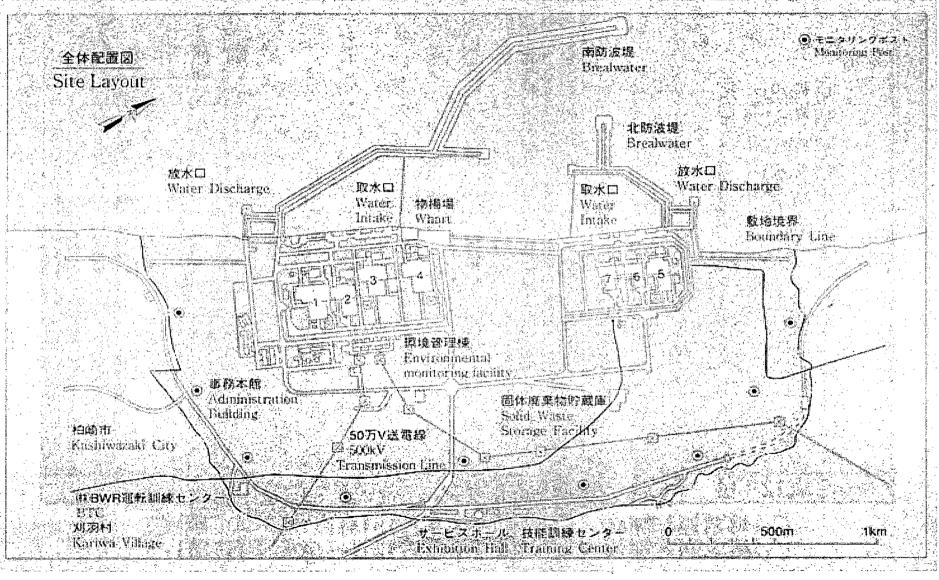
- Comparison of the seismic design basis of the plant with the observed ground motion.
- Observation of the damages as consequence of the earthquake of 16 July 2007.
- Operation management during and after the earthquake.

THE EARTHQUAKE


17 km

Main shock:

- •Moment Magnitude: 6.6
- •Epicentre:
- •Time:
- •Depth:
- •Distance to KK NPP:
 - Epicentre: 16 km
 - Hypocentre: 23 km

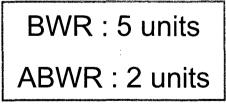

N37.5 , E138.6 16 July 2007, 10:13(JST)

DISTRIBUTION OF MAIN AND AFTERSHOCKS

- 地形データには国土地理院の数値地図50mメッシュ(標高)がよび日本海洋データセンターのJ-E00500を使用。

MAP OF KK NPP

.

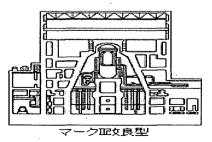

· ·

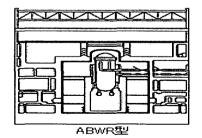
OUTLINE OF of KK NPP

アクセス

			柏崎刘羽原子力発電所設			受備の概要				
		George and South	1号機	2号機	3号機	· 4号機	5号偶称	6号機	7号機	
->	電気出力(万kW)		110.0	110.0	110.0	110.0	110.0	135.6	135.6	
	建設着工		1978/12	1983/10	1987/7	1988/2	1983/10	1991/9	. 1992/2	
5	宮業運転開始		1985/9	1990/9	1993/8	1994/8	1990/4	1996/11	1997/7	
ント主要諸元	原子炉形式		沸騰水型軽水炉(BWR)							
	格納容器形式		マークロマークロ文良					鉄筋コンクリート製 (ABWR)		
	国産化率%		99					89		
	主契約者			東芝 日立		立,	東芝 日立 GE	日立 東芝 GE		
• • • • • • • • • • • • • • • • • • •	熱出力(万kW)		329.3					392.6		
	燃料集合体数(体)		764					872		
	燃料集合体全長(m)								······	
	制御棒本数(本)		185					205		
原	圧力容器	内径(m)	6.4					7.1		
		全高(m)						21		
炉		全重量(t)	750				910			
	格納容器	全高(m)	約48				<u></u> 希勺36			
		直径(m)	26 29							
		圧力抑制室 プール水量(t)	3,300 4,000				3,600 .			
タ	回車支装灯(アロアの)		1,500							
 ビ	入口蒸気温度(°C)		282					284		
	蒸気圧力(kg/cm2g)			68.2						
燃	₹重業頁		二酸化ウラン							
料	ウラン装荷量(1)		132					150		
	燃料集合体(本)		764 872						'2	

資料画像


Total output


8,212 MW

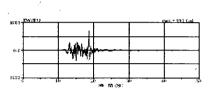
設備の概要

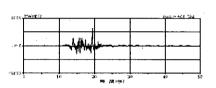
治:

肇

※各型のイラストの大きさの比率は一致していません。

PLANT PERFORMANCE Approximate number of incidents itemized by TEPCO Total 1275 Identified, translated addressed 68 Reportable 10


- Design basis ground motion largely exceeded
- Satisfactory behaviour during and after the earthquake
- Safety functions preserved
 - very small releases observed
- Conservatism in the design compensate the uncertainties in the data/methods at the time of design


FREE-FIELD SURFACE ACCELERATIONS approx. 1 g PGA

Kashiwazaki-Kariwa Nuclear Power Plant (7 Units)

Unit	Observe	Design Values (S2)		
	Top of RB			
	NS	EW	UD	NS/EW
1	311	680	408	274
2	304	606	282	167
3	308	384	311	192
4	310	492	337	193
5	277	442	205	249
6	271	322	488	263
7	267	356	355	263

SEISMIC WAVE AND RESPONSE SPECTRUM (ACCELERATION)

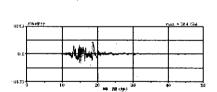
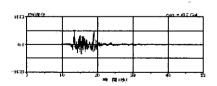
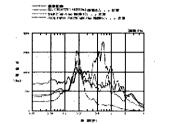
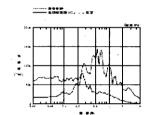
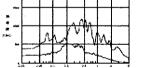
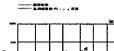
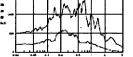


図2-3 6 希報線子博楽最高速は上の加速度特別歴紀形(東西方向)


図 2-4 4号種原干炉建築業製造しの加速度時刻豊臣形(実営汚染)


祭 3-2 1 号瑞券子が建築基礎改正の定意素以答え 50 らん(東京大学)



第2位 主要推算予想機動感躍激出の定義原原管系ペクトル(調賞法術

第3-3 3 登場期干燥機関基礎隊上の設護反応客スペケトル(東西方向)

※ 3-4 4 等機算子標準是素確認との知道常に言えべきとん(官員の3)

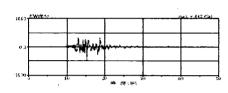
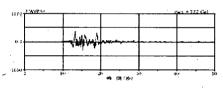
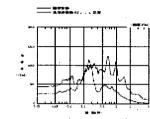
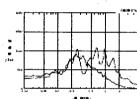
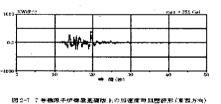




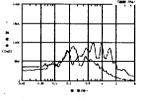
図2-5 0 号機線子炉構築基礎物上の加速度体別開設や(東西方向)



(第2-6-6-4-44限子型業業業資格。上の以速電等與整結节(東西方向)



第3号 5号機務予定連續基礎要素の浸着運行等、パクシル(調賞を相)



第5日 る脊椎原子部離局基礎設定の証確実に言さべきとふ(質数大雨)

Observation

深かり 2号機算子師舞器高蔵体上の深濃度応事スペントル(東西光向)

Design (S₂)

On the Foundation of R/B

- In-structure responses compared for a very limited sample
 - -Forces
 - -ISRS at one location in RB #3

- No LOSP (2 of 4 transmission lines always available)
- Soil failures
 - -Generally, non-safety consequences
 - -Fire protection piping failure led to water and soil intrusion in RB 1
- Fire fighting capability -
 - -Lost water sources
 - -Delayed off-site fire brigade

- Seismic systems interaction
 - -Falling
 - Control room ceilings Units 6,7 and 3
 - "Temporary" platform in spent fuel pools
 - -Flooding
 - Sloshing spent fuel pools (Video Unit 6)
 - Fire suppression piping (RB 1)
 - Condenser (rubber connection failure)

- Anchorage failures (non-safety water tanks)
- Very small releases
 - -Air due to operator air
 - Sloshed water leaked into noncontrol area - pumped into the sea

- Correlated failure modes/common cause
 - -Control room ceiling light fixtures
 - -Ducts to stack
 - Spent fuel pool maintenance platforms

OPERATIONAL MANAGEMENT

- Defense in depth (normal operating plant without actuation of safety systems)
- Readiness for operation (testing of safety systems under way)
- Reporting to authority (could have been quicker?)

RESTART of PLANT

- Seismic hazard re-evaluation (including identification and characterization of capable/active faults)
- Detailed check of integrity and operability of all safety systems (under way)
- Re-evaluation of seismic safety in relation with the new hazard
- Potential interaction between large ground motions and accelerated ageing

RELATION WITH THE JAPANESE COUNTERPART

- Japanese Counterpart open and cooperative.
- All questions addressed promptly and documented
- Transparency to the international community

INTERNATIONAL ATOMIC ENERGY AGENCY

Thank you for your attention