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Rationale
Through work on Wolf Creek issue 
(MRP-216 and NRC confirmatory 
effort), PWSCC surface crack 
growth is arbitrary in nature. 

PFM codes use pre-defined, semi-
elliptical surface crack influence 
functions for making crack growth 
predictions.

In some cases this assumption 
can be very conservative – for 
both crack growth and stability.

Can this behavior be modeled for 
use in PFM codes?
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Objective

Conduct sensitivity analyses using PipeFracCAE code to 
determine the conditions where a surface crack will not grow 
with a semi-elliptical profile.

Compare the crack size/time behavior of the arbitrary and 
idealized (semi-elliptical) surface crack at the deepest and 
surface locations along the crack front.

Determine if correction factors to published influence functions
can be used to make more accurate leakage time predictions in 
PFM codes
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Sensitivity Matrix

Three pipe diameters

Four weld residual stresses ( including no WRS)

Two levels of bending stresses ( 6.31 ksi and 14.26 ksi)

Two initial crack lengths ( 12.5% and 40% of pipe circum.)

Initial crack depth ( 26% of wall thickness) – Fixed

Axial tension ( 4 ksi ), Internal pressure ( 2.235 ksi ) – Fixed

Total of 48 cases ( 24 cases completed so far )
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Sensitivity Matrix (cont’d)
Three pipe diameters

Four weld residual stresses ( including no WRS)

6.162.3733.94Large (Hot leg)
3.751.5815.00Medium (Surge line)
2.001.297.75Small (Relief line)
Ri / tt (in)Do (in)Pipe geometry
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Shape Factor 
Shape factor is defined as the 
area under the normalized crack 
shape  
Shape factor indicates how the 
crack shape is changing 
relative to a semi-elliptical 
shape
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Results – Effect of pipe diameter

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0% 20% 40% 60% 80% 100%

Normalized time to through-wall penetration

Sh
ap

e 
Fa

ct
or

R-R-L-S

S-R-L-S

H-R-L-S

a/t=0.26, θ/π=0.125a/t=0.26, θ/π=0.125a/t=0.26, θ/π=0.125

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0% 20% 40% 60% 80% 100%

Normalized time to through-wall penetration

Sh
ap

e 
Fa

ct
or

R-S-L-S

S-S-L-S

H-S-L-S

a/t=0.26, θ/π=0.125

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0% 20% 40% 60% 80% 100%

Normalized time to through-wall penetration

Sh
ap

e 
Fa

ct
or

R-H-L-S

S-H-L-S

H-H-L-S

a/t=0.26, θ/π=0.125

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0% 20% 40% 60% 80% 100%

Normalized time to through-wall penetration

Sh
ap

e 
Fa

ct
or

R-N-L-S

S-N-L-S

H-N-L-S

a/t=0.26, θ/π=0.125

Surge WRS / Low bendingRelief WRS / Low bending

Hot leg WRS / Low bending No WRS / Low bending



Innovative Structural Integrity Solutions
8

Results – Effect of WRS
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Results – Effect of bending stress
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Results – Effect of initial crack length

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0% 20% 40% 60% 80% 100%

Normalized time to through-wall penetration

Sh
ap

e 
Fa

ct
or

R-R-L-S R-R-L-L

θ/π=0.4

a/t=0.26

θ/π=0.125
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0% 20% 40% 60% 80% 100%

Normalized time to through-wall penetration

Sh
ap

e 
Fa

ct
or

R-N-L-S R-N-L-L

θ/π=0.4

a/t=0.26

θ/π=0.125

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0% 20% 40% 60% 80% 100%

Normalized time to through-wall penetration

Sh
ap

e 
Fa

ct
or

H-S-L-S H-S-L-L

θ/π=0.4

a/t=0.26

θ/π=0.125

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0% 20% 40% 60% 80% 100%

Normalized time to through-wall penetration

Sh
ap

e 
Fa

ct
or

H-N-L-S H-N-L-M H-N-L-L

a/t=0.26

θ/π=0.25θ/π=0.125 θ/π=0.4

Relief / No WRS / Low bendingRelief / Relief WRS/ Low bending

Hot leg / Surge WRS / Low bending Hot leg / No WRS / Low bending



Innovative Structural Integrity Solutions
11

Comparison with Idealized Solution
Idealized (semi-elliptical) crack growth using Anderson solution
- K values at deepest and surface points
Compare crack growth at deepest and surface points
Comparison for all ‘no WRS’ case results
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Comparison with Idealized Solution (cont’d)
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Cases Showing Difference in Time to Leakage

Cases with low bending (6.31 ksi) with Relief or Hot leg WRS 
Relatively small K values near the compressive WRS
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Effect of Influence Functions
Curve-fitted influence functions used in the present work
Slight difference shown between actual and curve-fitted results
Range of Ri /t in Anderson solution : from 3 to 100 
Results from Wolf Creek demonstrated the effect of influence 
function on time to leakage ( Ri /t = 2 )
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Effect of Influence Functions (cont’d)

Need to compare the crack growth results using the actual 
influence functions versus the curve-fitted values.

Also need to investigate the applicability of the influence 
functions for high-order stress distribution.
- Anderson solution uses FE based G0 and G1 values along with 
weight functions to calculate G2-G4 which are used for K 
calculation for high-order stress distribution
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Transition from surface crack to TWC 

Generally, when a surface crack penetrates 
the wall-thickness, the resulting ID TWC 
length is assumed to be same as the final 
ID length of the surface crack.

In some cases, this assumption may be 
overly conservative, since it ignores the 
time from leaking surface crack to idealized 
TWC.

Idealized
TWC
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Transition from surface crack to TWC (cont’d) 
Different shape factor at leakage 
(even for cases on 1:1 line)
Equivalent idealized TWC may 
be defined using the shape 
factor (crack area) at leakage
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Summary
From the sensitivity analyses performed using PipeFracCAE, 
the effects of each parameter on crack growth behavior were 
investigated.
The results demonstrate that for the cases with relatively low 
bending stress and WRSs with small values of Xc, the 
PipeFracCAE and Anderson solution showed difference in time 
to leakage.
However, the crack lengths at leakage showed relatively good 
agreement.
The inaccuracy (curve-fit, weight function) of the influence 
function may be causing the difference.  
Need to further investigate the applicability of the influence 
functions.
Transition from surface crack to TWC may be made by using 
the shape factor.


