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Development of NSC Equations

n Original development in EPRI NP-192

o Thin-shell equation, used as technical basis for ASME
Section Xl pipe flaw evaluation criterion

¢ Simple method that says failure occurs when the net-
section of the pipe becomes fully plastic

o Stresses above and below the neutral axis of the pipe reach an
empirical value of “flow stress” that is somewhere between
yield and ultimate.

o Pipe toughness has to be very high for this to occur.
o One of many limit-load analyses for circumferentially cracked

pipes.
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Other Consideration in Limit-Load Analyses

s Limitation on the Net-Section-Collapse Analysis for Deep

Cracks

o ASME Code limits surface flaw evaluations to a/t < 0.75

o JAERI/Kurihara experiments show original NSC solutions over
predict failure stresses for deeper cracks — good reason for ASME

limit!

srinaralM[Qrig. NS5

M (e

1.4T

sgte Hurhara Modification based on &, = 7

e af=0s

Extreme care nee

surface flaw failure predictions!

025 Lo
B/n

by =02

c-ied for deep

.3

2

mcC

1 cctural Integrity Solutions
4



Screening Criterion for Limit-Load Conditions

s FAD curve (in ASME Code)

s Dimensionless Plastic Zone Parameter (DPZP)
empirical approach

+ Based on the size of the plastic zone

relative to pipe size
+ For TWC, fully plastic conditions
satisfied if DPZP > 1.0 - Using C(T) 3
specimen J values. ul
+ Apparent toughness of surface- g
cracked pipe is about 4 times greater o
than through-wall cracked pipe.

+ For SC, limit-load conditions -
reached if DPZP > 0.25 4 I

+ DPZP approach inherently includes T T e
constraint effects o
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Definition of Flow Stress for Limit-Load Analysis
of Cracks in Girth Welds

m Comparison of TWC pipe tests with cracks in welds

¢ Flow stress defined as average of actual yield and ultimate
strength of either base metal or weld metal (same base
metal on both sides of weld)

o Used only data that satisfied DPZP screening criterion
where limit-load should be applicable.
¢ Used only tests with significant difference in weld and base

metal strength

= Using weld metal strength
over predicted experimental
maximum loads by 17% on the
average

= Using base metal strength,
- Exp/Predicted = 1.02
- Coefficient of Variance = 13%
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EPFM Analysis — When is it needed?

m There can be many combinations of material
toughness, pipe diameter, and crack type or size
that will produce a maximum load-carrying
capacity that is less than that predicted by limit-
load analyses.

m To predict that fracture behavior, elastic-plastic
fracture mechanics (EPFM) analyses are needed.
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Idealized Through-Wall-Cracked Pipe EPFM
Analyses — J-Estimation Schemes

s J-estimation schemes are simplified EPFM
analyses

o GE/EPRI - influence functions from FE solutions

o LBB.ENG2 - analytical basis — predict load-
displacement (or moment-rotation) behavior and
integrate area to calculate J

o Both based on homogeneous material, i.e., no welds

s Experimental comparisons with TWC in base metal
showed GE/EPRI was most conservative and
LBB.ENG2 was the most accurate
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Idealized Through-Wall-Cracked Pipe EPFM
Analyses — Crack in Weld

b

3

Total Applied Load, 18

s Comparisons made with TWC pipe tests and 5 different J-
estimation schemes using either base metal or weld metal
stress-strain curves with weld J-R curve [from C(T) specimens]

¢ 28-inch diameter TP304 with TWC in center of weld
¢ Weld metal strength drastically over predicted experimental

maximum loads, where as base metal strength showed
reasonable predictions — similar to limit-load weld tests
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Idealized Through-Wall-Cracked Pipe EPFM
Analyses — Z-Factor Approach

m Z-factor approach is simple ASME Code approach to
account for EPFM

¢ Based on past GE/EPRI TWC analyses — f(D, toughness)

¢ Z = NSC/(GE-EPRI predicted maximum loads with base
metal stress-strain curve and weld metal J-R curve)

o For a particular pipe diameter Z-factor was calculated

o Applied for SC pipe even though developed from TWC
analyses
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Idealized TWC in DMW

DWM case has base metals with
significantly different strengths on
opposite sides — different than all but
one past pipe fracture test

o Which base metal strength to be used in
LBB.ENG2 (and limit-load analyses)?

¢ Conducted FE analyses in Emc? Wolf
Creek scoping analysis - 2007 PVP

paper ,

o [f crack in center of weld, then
effective strength was 7 of way
closer to TP304 than A508

o [If crack closer to safe end, use
TP304

o [f crack close to nozzle, then use
average of two base metals

¢ If crack location not known use
TP304 strength
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Z-factor for TWC in Alloy 182 DMW

Z-factor

1.25
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1.00

Used stainless steel strength (assumed crack location not
known) and Alloy 182 J-R curve

Used LBB.ENG2 - More accurate than GE/EPRI method

Alloy182 Z-factor much smaller than ASME Z-factors (due to
high toughness of Alloy 182)
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Pipe Test with Through-Wall-Cracked in a DMW

s From NUREG/CR-6297 NRC’s “Short Cracks in Piping
and Piping Welds Program

o Alloy 182 weld made by CE, between TP304 safe end and A516
Gr70 ferritic pipe (much lower strength than A508 nozzle
material)

o TWC in fusion line of 36” OD by 3” thick cold leg from cancelled




Comparisons of Z-factors — Fusion line versus
closer to stainless steel safe end

n Z-factor for ferritic fusion-line case was 1.18
(highest effective stress-strain curve).

¢ Fusion line test Z-factor slightly lower (98%) than case with
crack closer to stainless steel base metal)

¢ Hence Z-factor not as sensitive to crack location as stress-
strain curve
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Surface-Cracked Pipe EPFM Analyses

s Toughness from C(T) specimen underpredicts apparent
toughness from surface cracked pipe — SENT may predict
reasonable toughness

m SC.TNP1 J-estimation scheme made best predictions with
experimental result when using C(T) specimen J-R curve —
Error in driving force compensates for apparent toughness

m SC.TNP1 predictions for surface cracks in DMW showed that
limit-load analysis is appropriate (Wolf Creek Scoping Analysis)

n  As with TWC, difficulty in applying SC.TNP1 analysis to DMW is
determining what stress-strain curve to use.
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Surface-Cracked Pipe EPFM Analyses (cont’d)

Failure mode may be closer to limit-load. Possible
procedure to assess this:

o For DMW with surface cracks, also need to know the effective
stress-strain curve that should be used.

o Check past surface-cracked pipe tests with cracks in center of
weld for accuracy of FE and J-estimation schemes to predict
maximum load with SENT specimen J-R curves.

¢ Conduct analyses for DMW using SENT specimen J-R curve
and proper effective stress-strain curve to determine if limit-
load met, and what stress-strain curve should be used in limit-
load analysis.
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Complex-Cracked Pipe EPFM Analyses

Apparent full-scale toughness for complex-cracked pipe
is much lower than TWC.

o Could calculate Z-factor for CC’ed pipe using experimental
constraint factor and LBB.ENG2 analysis option (reduced
thickness for SC in ligament) — Much higher than TWC Z-factor
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Complex-Cracked Pipe EPFM Analyses (cont’d)

¢ Tearing resistance so low, that displacement-controlled
(secondary stress) instability can occur with relatively short
pipe length

o When long surface cracks starts to fail, the initial growth
through the thickness results with formation of complex
crack, so DEGB can occur in pipe with long SC’s

Complex-cracked pipe test Long surface-cracked pipe test 2

Innovative Structural Integrity Solutions
18



Secondary Stresses and Critical Crack
Assessment

m IPIRG and BINP projects conducted pipe system
tests on 16-inch diameter pipe loop (~100 feet
length), with circumferential surface crack in center

of stainless submerged arc weld.

600

¢ The tests were conducted
with subcooled water in the
pipe at 550F and 2,250 psig.

¢ Thermal expansion stresses
artificially changed.

¢ Maximum loads with all
stress the same — thermal | | |
expansion stresses acted like
primary stress

Cracked-Section Moment, kn-m
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Secondary Stresses and Critical Crack
Assessment (cont’d)

s Why did these pipe system tests have secondary
stresses act like primary stresses?

o Surface flaw (a/t = 0.65 and 6/t = 0.5) was large enough that
failure caused stresses in unflawed pipe to be below yield

o Plasticity at crack section (rotation) was much smaller than
displacements/rotation due to thermal expansion

m For large cracks, secondary stresses should be treated as
primary stresses — consistent with “Local Overstrain” warning
in NC-3672.6, ND-3672.6, and B31.1 of Section Ill of the ASME
Code

= More experiments employing secondary stress are needed!
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Summary

Extensive analyses conducted for idealized circumferential
through-wall cracks in DMW — Appropriate stress-strain curve
needed

For circumferential surface-crack in DMW, additional
evaluations are needed to demonstrate if limit-load analyses is
appropriate, and determine appropriate stress-strain curve.

The complex-crack geometry case is the most severe from a
constraint viewpoint in reducing the material toughness (based
on past full-scale pipe tests).

Secondary stresses can be as important if the flaw is large
enough that failure would be below yield of the unflawed piping
material

There is a lack of full-scale validation test data for DMW flaws. -
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