Problem Statement 2

January 14, 2008

- Modeling digital I&C with current techniques
- Example applications for which existing PRAs could be used in designing and operating digital I&C systems
- Consistency with current regulatory policy
- Simplified/screening techniques for generating risk-insights

- Modeling digital I&C with current techniques
 - Rely heavily on white paper for problem statement 1
 - Assure digital CCF is modeled between
 - Redundant mitigating systems
 - Control systems and mitigating systems
 - Perform sensitivity studies to show whether results are sensitive to digital I&C modeling
 - Capture the risk insights
 - Provide a comparison of the white paper from problem statement 1 with the criteria of the draft NUREG on traditional methods

- Provide a listing of example applications for which existing PRAs could be used in designing and operating digital I&C systems.
 - Risk evaluations of the ISGs
 - Credit for operator action
 - Others (see next slide)
 - Risk evaluations of digital I&C designs
 - Optimizing the digital I&C system architecture in context with the overall plant design
 - Performance of D3 evaluations
 - Staff review of digital I&C submittals

Generation of Risk Insights from PRA to Address Digital I&C Issues

Risk-Informed Application Candidates Task Work Group Problem Statements

Problem Statement	PRA	Affects PRA	Affects PRA
	Applicable	Methods	Implementation
<u>D3 TWG</u>			
Adequate diversity		X	
BTP-19 Point 4	X1		X
Effects of CCF		X	
CCF applicability	X1	X	
Echelons of defense	X1		
HFE TWG			
Minimum Inventory			X
Graded Approach	X		
Credit for Op Act	X		X

¹Depends on final outcome of the ISG $\mathbf{N} \in \mathbf{I}$

- Provide a discussion on how generation of risk-insights from existing PRAs is consistent with current regulatory policy, e.g.
 - Regulatory Guide 1.174 and 1.177
 - Regulatory Guide 1.200 and 1.206
 - PRA Policy Statement
 - National Academy of Sciences Report on digital I&C
 - Various sections of the SRP
 - SRM for SECY 93-087

- Provide a white paper on simplified techniques for deriving risk-insights from PRA.
 - Screening approach to identify what accident sequences and functions are most affected by digital CCF
 - Identification of key plant design features keep the risk from digital failures low
 - Identification of what digital system diversity attributes and defensive measures are most important in the maintenance of acceptable risk profile from digital I&C.

