

January 9, 2008 E-25988

U. S. Nuclear Regulatory Commission Director of the Office of Nuclear Material Safety and Safeguards Attn: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852

Subject: ASME Code Alternative Request, Temporary Welded Attachment Records Docket 72-1030 – Non-proprietary Version of a Transnuclear, Inc. Calculation

Reference: Letter from Tara Neider (TN) to Document Control Desk, "ASME Code Alternative Request, Temporary Welded Attachment Records Docket 72-1030," dated December 27, 2007

To Whom It May Concern:

The referenced letter provided a proprietary version of a Transnuclear, Inc. (TN) calculation and indicated our intentions to submit a non-proprietary version to the Document Control Desk within 30 days.

This submittal provides that non-proprietary version, as Enclosure 1.

Should the NRC staff require additional information regarding this submittal, please do not hesitate to contact Mr. Don Shaw at 410-910-6878 or me at 410-910-6860.

Sincerely,

Jare Neell

Tara Neider President – Transnuclear, Inc.

cc: Ms. Jennifer Davis (without attachment)

Enclosures:

1. Non-Proprietary Version of TN Calculation 10494-162, Rev. 0, Effect of Reduced Shell Thickness on the Stresses for the NUHOMS[®] 32PTH DSC

7135 Minstrel Way, Suite 300 Columbia, Maryland 21045 Phone: 410-910-6900 Fax: 410-910-6902

1115501

Enclosure 1

Non-Proprietary Version of TN Calculation 10494-162, Rev. 0, Effect of Reduced Shell Thickness on the Stresses for the NUHOMS[®] 32PTH DSC

\$

A	Form 3.2-1	Calculation No.:	10494-162
AREVA	Calculation Cover Sheet	Revision No.:	0
TRANSNUCLEAR INC.	TIP 3.2 (Revision 2)	Page: 1 of 11	
DCR NO (if applicable) : N/A	PROJECT NAME: NUH32PTH		
PROJECT NO: 10494	CLIENT: Dominion	· · ·	•
CALCULATION TITLE:			•
Effect of Reduced Shell Thickness of	on the Stresses for the NUHOMS [®] 32PTH D	SC	
· · · · · · · · · · · · · · · · · · ·			
			·····
SUMMARY DESCRIPTION:			
1) Calculation Summary			
Coloulation and star the affect of	DOC ASME Code deserve an abusis factor of		and the second second
wall thinning or assumed defects o	DSC ASME Code stress analysis for a redunt the shell OD.	iced wall thickness d	ue to local
2) Storage Medla Description	· ·		·
1 CD			
		· · · · · · · · · · · · · · · · · · ·	
If original issue, is licensing review p			
Yes 🛛 No 🗋 (explain k	below) Licensing Review No.: <u>LR 72103</u>	<u>0-167</u>	
Software Utilized:		Vers	ion:
ANSYS		6.0	
	· · ·		
Calculation is complete:			· · ·
	2. 25	\frown	
Q.	the kind Al		
Originator Name and Signature: Peter J. Qu	inlan / Veeresh & Sayagavi	Date:	12/26/07
Calculation has been checked for cor	nsistency, completeness and correctness:		· · · · · · · · · · · · · · · · · · ·
Kyhent	to Alonao		in lastas
	<i>,</i> , ,	Date:	12/2/10/
Checker Name and Signature: Steven Streu Calculation is approved for use:			
, SA	E.	12	127/07
Project Engineer Name and Signature: Raho	eel Haroon	Date:	
		L	· · · ·
	PROPRIETARY NOTICE		

This document, including the information contained herein and all associated attachments and enclosures, is the property of Transnuclear, Inc., It contains proprietary information and may not be furnished to others without the express written permission of Transnuclear, Inc. This document and any drawings and any copies that may have been made must be returned to Transnuclear, Inc. upon request.

A AREVA TRANSNUGLEAR INC.	Calculation	Calculation No.: Revision No.: Page:	
	REVISION SUM	MARY	 · · ·

REV.	DAŢE	DESCRIPTION	AFFECTED PAGES	AFFECTED DISKS
0	12/27/07	Initial Issue	All	All
	-			

AREVA TRANSNUCLEAR INC.	Calculation	Calculation No.: 10494-162 Revision No.: 0 Page: 3 of 11
		NTENTS <u>Page</u>
1.0 PURPOSE		4
		4
3.0 METHODOLOGY	•	4
		4
5.0 COMPUTATIONS 5.1 Shell Section Prop 5.2 Stress Calculation 5.3 Finite Element Ana	erty Reduction	5
6.0 CONCLUSIONS		7
7.0 LISTING OF COMPUTE	R FILES	8

LIST OF TABLES

Page

Page

Table 1 – Transfer Load Cases – Governing Normal, Off-Normal & Accident Conditions9 Table 2 – Storage Load Cases – Governing Normal, Off-Normal & Accident Conditions9

LIST OF FIGURES

A AREVA	Calculation	Calculation No.: Revision No.:		· .
TRANSNUCLEAR INC.		Page:	4 of 11.	

1.0 PURPOSE

The purpose of this calculation is to determine the effect on stresses in the canister from reduced wall thickness on the OD of the DSC shell caused by local thinning due to fabrication or assumed defects (e.g., at temporary welded attachment removal areas). The results of this calculation are intended to be utilized as a basis for dispositioning nonconforming conditions regarding local reductions in shell wall thickness below the minimum design value of

2.0 REFERENCES

- 2.1 TN Calculation 10494-24, Rev. 1, "NUHOMS[®] 32PTH Canister Transfer Load Stress Analysis."
- 2.2 TN Calculation 10494-35, Rev. 2, "NUHOMS[®] 32PTH Canister Storage Load Stress Analysis."
- 2.3 TN Calculation 10494-4, Rev. 1," NUHOMS[®] 32PTH Basket Stress Analysis for Storage Load."
- 2.4 TN Drawing 10494-30-6, Rev. 2, "NUHOMS[®] 32PTH Shell Assembly
- 2.5 Matco Associates Inc. Report, "Dry Fuel Storage Canister Weld Evaluation" for Project No. 907-50759, dated 10/31/07.
- 2.6 ANSYS Computer Code and Users Manual, Release 6.0.
- 2.7 ANSYS Output Files
- 3.0 METHODOLOGY

4.0 ASSUMPTIONS

- The wall thinning and/or assumed defect is applied on the OD of the canister.

- The nominal wall thickness of .500" is utilized for this calculation, consistent with the practice utilized for the balance of structural calculations. This is conservative since the typical wall thickness measured during fabrication is on the order of .500 to .520".

A AREVA TRANSNUCLEAR INC.	Calculation	Calculation No.: Revision No.: Page:	10494-162 0 5 of 11
 For the purpose of address examinations in areas of equivalent to the depth or installation of the tempor 5.0 COMPUTATIONS 	f temporary welded atta of the weld pool plus he	achments, a flaw of a	depth is assumed
5.1 Shell Section Property	v Reduction		
Stresses in the shell wall are		he following relation	onships.
R/t, where R is average		-	
S, where S is the section			
t ² , where t is the shell t			
Therefore, the stresses from the governing ratio of the dif due to local wall thinning/as	n the structural design fference between the n	iominal parameter	and reduced parameter
Nominal parameters from R	eference [2.4],		
OD _{nom} = 69.75 in			
Wall thickness t _{nom} = .500 in			
ID _{nom} = 68.75 in			
Determine ratio between no	minal and reduced cor	figuration for R/t,	
Calculate R/t for the no	minal configuration		
$R_{nom} = \frac{1}{2}[OD_{nom} + ID_{nor}]$	n]1/2 = 1/2[(69.75 + 68	.75)1/2] = 34.625	in
t _{nom} = .500 in			
R _{nom} /t _{nom} = 34.625/.500) = 69.25		·

Calculate R/t for the reduced/thinned configuration

AREVA TRANSNUCLEAR INC.	Calculation	Calculation No.: 10494-1 Revision No.: 0 Page: 6 of 11	52
	•		

AREVA	Calculation	Calculation No.: 10494-162 Revision No.: 0
TRANSNUCLEAR INC.		Page: 7 of 11

5.2 Stress Calculation

The structural design calculations of record References [2.1 thru 2.3] were reviewed to identify the most limiting margins to ASME Code stress allowables. Table 1 provides a summary of the primary stresses – general membrane (P_m) and local membrane plus bending ($P_L + P_b$) and secondary stresses ($P_L + P_b + Q$) for the worst case normal, offnormal and accident loading for DSC transfer conditions. Similarly, Table 2 provides a summary for the DSC storage conditions.

The results indicate the shell stresses remain within Code allowable values conservatively considering a gross reduction in shell wall thickness.

Tables 1 and 2 summarize the bounding load cases for transfer and storage conditions. Load Case 2, which includes the secondary thermal stresses, is rerun with reduced shell thickness. For storage load case (2+3+4) it could be concluded that using a factor of 1.291 is conservative since the rerun LS2 results in lower thermal stresses when the canister shell thickness is reduced.

5.3 Finite Element Analysis

The contour plot of stress intensities is shown

in Figure 2.

6.0 CONCLUSIONS

The reduction in shell wall thickness may cause increases in primary and secondary stresses, however the maximum stress in the canister shell remains below the ASME Code allowable stress limits for the governing load cases.

The governing stresses are summarized in Tables 1 and 2.

A		Calculation No.:	10494-162	· .
AREVA	Calculation	Revision No.:	0	
TRANSNUCLEAR INC.		Page:	8 of 11	•

.

7.0 LISTING OF COMPUTER FILES

Files used in analyses.

File Name	Date	Time	Size
Dsc_tr_30ip_hot.db	2/26/2004	2:47 PM	6,208
32pth_tr_hot_30ip_can_thin.db	12/26/2007	13:36 PM	4,480
32pth_tr_hot_30ip_can_thin.rst	12/26/2007	13:36 PM	4,352

ANSYS was run on a Windows XP machine with Service Pack 1.

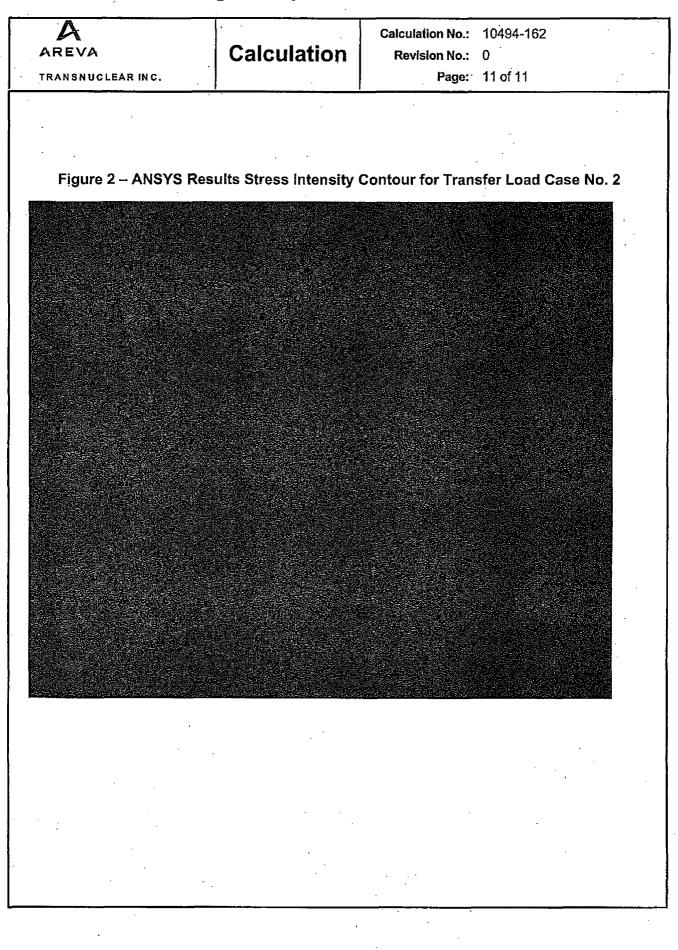
	AREVA	Calculation	Calculation No.: Revision No.: Page:	
--	-------	-------------	--	--

Table 1 – Transfer Load Cases – Governing Normal, Off-Normal & Accident Conditions

Load Cas e	Description	Stress Intensity from Analysis	Revised Stress Intensity w/ Reduced Wall Thickness (.440")	Allowable Stress Intensity
2 (1)	Handling 2g's + 30 psig int. pressure + thermal (115°F)	P _L + P _b + Q = 45,959 psi	(2)	P _L + P _b + Q < 3S _m (3S _m = 52,500 psi)
12 ⁽¹⁾	Side drop 75g at 180° + 15 psig ext. pressure (top end)	P _m = 29,354 psi		$P_m < 0.7S_u$ (0.7S _u = 41,400 psi)
20 ⁽¹⁾	30 psig int. pressure + 60 kip pull	P _m = 11,484 psi		P _m < S _m (S _m = 17,500 psi)
22 ⁽¹⁾	30 psig int. pressure + 80 kip pull	P _L + P _b = 13,790 psi		$P_L + P_b < 1.5S_m$ (1.5S _m = 26,250 psi)
24 ⁽¹⁾	30 psig int. pressure + 110 kip pull	P _m = 21,025 psl		P _m < 0.7S _u (0.7S _u = 41,400 psi)

Notes:

(1) Load Case, Maximum Stress Intensity and Allowable Stress Intensity taken from Reference [2.1].
 (2)


Table 2 – Storage Load Cases – Governing Normal, Off-Normal & Accident Conditions

Load Case	Description	Stress Intensity from Analysis	Revised Stress Intensity w/ Reduced Wall Thickness (.440")	Allowable Stress Intensity	
1+6+7 ⁽³⁾	Deadweight + 70 psig int. pressure + thermal (blocked vent)			P _m < S _m (S _m = 18,100 psi)	
1+6+7 ⁽³⁾	Deadweight + 70 psig int. pressure + thermal (blocked vent)			$P_L + P_b < 1.5S_m$ (1.5S _m = 27,150 psi)	
2+3+4 ⁽³⁾	30 psig int. pressure + seismic + thermal (-20°F)			$P_L + P_b + Q < 3S_m$ (3S _m = 54,300 psi)	

Notes:

(3) Load Case, Maximum Stress Intensity and Allowable Stress Intensity taken from Reference [2.2]. Revised Stress Intensity includes a factor of 1.291 for reduced wall thickness.

AREVA TRANSNUCLEAR INC.	Calculation			
Figure 1 - ANG	SYS Boundary Conditi	ons for Transfor I	oad Case No	2
				-
•				
•				
	- ·	•		
			·	

