
@0

ENCLOSURE 1

WATTS BAR NUCLEAR PLANT
VERIFICATION AND VALIDATION PLAN

FOR
EAGLE-21 DIGITAL INSTRUMENTATION

8701050197 861229
PDR ADOCK 05000390
A PDR

*0

@0

WATTS BAR NUCLEAR PLANT

VERIFICATION AND VALIDATION PLAN

FOR

EAGLE-21 DIGITAL INSTRUMENTATION

0 *

TABLE OF CONTENTS

Title Paq(

1.0 Introduction 4

1.1 Purpose 4

1.2 System Functions 4

1.3 System Architecture 4

2.0 References 6

3.0 'Definitions 8

4.0 System Development 10

5.0 system verification 11

5.1 Introduction 11

5.2 Verification Philosophy 11

5.3 verification Techniques 12

5.3.1 Reviews 13

5.3.1.1 Design Documentation Review 13

5.3.1.2 Source Code Review 13

5.3.1.3 Functional Test Review 13

5.3.2 Software Testing 13

5.3.2.1 Structural Testing 13

5.3.2.2 Functional Testing 14

5.4 Verification Matrix 15

5.4.1 Safety Classification 15

5.4.2 Hierarchical Level of Software Components 15

5.4.3 Justification of Matrix Elements 15

5.4.3.1 Class IE Associated Software 16

5.4.3.2 Non-Class 1E Associated Software 16

Page 2

*0 @0
TABLE OF CONTENTS

Title Page

5.4.4 Application of the Verification Matrix and 16
Criteria Utilized for Software Testing for
the Eagle-21 Replacement Hardware

5.4.4.1 Application of the Verification Matrix 16

5.4.4.2 Criteria Utilized for Software Testing 17

6.0 System Validation 18

6.1 Validation Philosophy 18

6.2 Validation Testing Overview 18

6.2.1 General Description 19

6.2.2 Functional Requirements Testing 20

6.2.3 Abnormal-Mode Testing 20

6.2.4 System Prudency Review Testing 21

7.0 Development, Verification and Validation Team Organization 22

7.1 Development Team 22

7.1.1 Chief Programmer 22

7.1.2 Programmers 23

7.2 Verification Team 23

7.2.1 Chief Verifier 23

7.2.2 Verifiers 23

7.2.3 Librarian 24

7.3 Validation Team 24

7.3.1 Chief Verifier 24

7.3.2 Functional Requirements Decomposer 24

7.3.3 Lead Validator 24

7.3.4 Test Engineer 25

7.3.5 Librarian 25'

7.3.6 Test Technician 25

Page 3

o0 oO0

1.0 ThRU•rON

1.1 Purpose

The purpose of this plan is to provide a description of the design,verification, and validation process and the general organizationof activities that are being used in these areas on the Eagle-21Process Protection System replacement hardware. The materialcontained herein is modeled after the guidance provided in (a) the414 Integrated Protection System Prototype Verification Program,which was presented to the NRC in 1977 as part of the WestinghouseRESAR 414 system, (b) ANSI/I -ANS-7-4.3.2-1982 and (c) RegulatoryGuide 1.152, and (d) the Design, Verification, and Validation Planimplemented for the South Texas Qualified Display Processing System
(QDPS).

1.2 System Functions

The Eagle-21 Process Protection System replacement hardware
performs the following major functions:
1. Reactor Trip Protection (Channel Trip to Voting Logic)

2. Engineered Safeguard Features (ESF) Actuations.

3. Isolated Outputs to Control Systems, Control Panels, and Plant
computers.

4. Isolated Outputs to information displays for Post Accident
Monitoring (PAM) indication.

5. Automatic Surveillance Testing to verify channel performance.

1.3 System Architecture

The Eagle-21 System Architecture is shown in Figure 1. The basic
subsystems are:

1. Loop Processor Subsystem

The Loop Processor Subsystem receives a subset of the processsignals, performs one or more of the protection algorithms, anddrives the appropriate channel trip (or partial engineeredsafeguards actuation) signais. It also drives the required
isolated outputs.

2. Tester Subsystem

The Tester Subsystem serves as the focal point of the humaninteraction with the channel set. It provides a user-friendlyinterface that permits test pers-onnel to configure (adjustsetpoints and tuning constants), test, and maintain the system.

Page 4

@0 Q

3. Input/Output (I/O)

The microprocessor based system interfaces with the fieldsignals through various input/output (I/O) modules. These
modules acconmmodate the plant signals and test inputs from theTester Subsystem, which periodically monitors the integrity of
the Loop Processor Subsystem.

Page 5

2.0 REFERENCES

The following is a list of relevant industrial standards which were
considered in the development of this plan:

1. ANSI/IEEE-ANS-7-4.3.2.-1982, "Application Criteria for Programmable
Digital Computer Systems in Safety Systems of Nuclear Power
Generating Stations"

2. IE Std. 279-1971, "Criteria for Protection Systems for Nuclear
Power Generating Stations"

3. IE Std. 603-1980, "Criteria for Safety Systems for Nuclear Power
Generating Stations"

4. WCAP 9153, "414 Integrated Protection System Prototype Verification
Program," Westinghouse Electric Corp., August 1977.

5. WCAP 9740, "Summary of the Westinghouse Integrated Protection
System Verification and Validation Program," Westinghouse Electric
Corp., September 1984.

6. Regulatory Guide 1.97, Rev. 2, "Instrumentation for
Light-Water-Cooled Nuclear Power Plants to Assess Plant and
Environs Conditions During and Following an Accident," December
1980

7. ANSI/ASME NQA-1-1983, "Quality Assurance Program Requirements for
Nuclear Power Plants"

8. Std 729-1983, "Standard Glossary of Software Engineering
Terminology"

9. IE Std 730-1981, "Standard for Software Quality Assurance Plans"
;\

10. IEE Std 828-1983, "Standard for Software Configuration Management
Plans"

11. Std 829-1983, "Standard for Software Test Documentation,,

12. IE Std 830-1984, "Guide to Software Requirements Specifications",

13. NBS Special Publication 500-75 (February 1981), "Validation,
Verification and Testing of Computer Software,,

14. NBS Special Publication 500-93 (September 1982), "Software
Validation, Verification, Testing Technique and Tool Reference
Guide"

15. NBS Special Publication 500-98 (November 1982), "Planning for
Software Validation, Verification and Testing"

16. IEC SC 45A/WG-A3 (January 1984), "Draft: Software for computer in
the Safety System of Nuclear Power Stations"

Page 6

17. Regulatory Guide 1.152, "Criteria for Programmable Digital computer
System Software in Safety-Related Systems of Nuclear Power Plants"

18. Regulatory Guide 1.153, "Criteria for Power, Instrumentation, and
Control Portions of Safety Systems"

19. Design, Verification and Validation Plan for the South Texas
Project - Qualified Display Processing System. Design
Specification Number 955842, Revision 3, July 1985.

Page 7

o0 *O

3.0 DEFINITIONS

The definitions in this section establish the meaning of words in the
context of their use in this plan.

C SOFIVARE BASELINE - The computer program, computer data and
computer program documentation which comprises the complete
representation of the computer software system at a specific stage of its
development.

DESIGN REVIEW - A meeting or similar communication process in which the
requirements, design, code, or other products of a development project
are presented to a selected individual or group of personnel for
critique.

FUNCTIONAL TESTING (FT) - Exercise of the functional properties of the
program to the design requirements.

FUNCTIONAL TEST REVIEW (FIR) - A review which is performed on the
documented functional tests that were run by the programmer on his code.

INSPECTION - An evaluation technique in which software requirements,
design, code, or other products are examined by a person or group other
than the designer to detect faults, differences between development
standards, and other problems.

INTEGRATION TESTS - Tests performed during the hardware-software
integration process prior to microprocessor system validation to verify
compatibility of the software and the microprocessor system hardware.

MODULE (M) - Refers to a significant partial functional capability of a
subprogram and consists of more than one unit. Modules are usually
stand-alone procedures or routines which may call other lower level
modules or units.

PEER REVIEW - An evaluation technique in which software requirements,
design, code, or other products are examined by persons whose rank,
responsibility, experience, and skill are comparable to that of the
designer.

PROGRAM - Totality of software in a system or one independent part of
software of a distributed system implemented by a particular Cpuj.

SOFTIW= DESIGN SPECIFICATION (SDS) - A document which represents the
designer's definition of the way the software is designed and implemented
to accomplish the functional requirements, specifying the expected
performance. An SDS can be for a system, subsystem, module, or unit.

SOFIWARE DEVELOIMENT PERSONNEL - A team of individuals or an individual
assigned to design, develop and document software.

Page 8

0 *00

SOFI-JPE TEST SPECIFICATION (STIS) - A document detailing the tests to be
performed, test environment, acceptance criteria and the test
methodology. An Approved SDS document forms the basis for the STS~.

SOUJRCE CODE REVIEW (SCR) - A review which is performed on the source
code.

StJBP1RA1'I (SP) -Refers to a major functional subset of a program and is
made up of one or more modules. A subprogram is typically represented by
the software executed by a single processor.

STRUCIURAL TESTING (ST) - Comprehensive exercise of the software program
code and its czmponent logic structures.

UNIT (U) - The smallest component in the system software architecture,
consisting of a sequence of program statements that in aggregate perform
an identifiable service.

VALIDATION'- The test and evaluation of the integrated computer system to
ensure compliance with the functional, performance and interface
requirements

VERIFICATION - The process of determining whether or not the product of
each phase of the digital comuter system development process fulfills
all the requirements in-posed by the previous phase.

VERIFIER(S) - An individual or group of individuals assigned to review
source code, generate test plans, perform tests, and document the test
results for a microprocessor system. If the activity is extensive, achief verifier will be appointed to guide and lead the Verification and.
Validation personnel.

VERIFICATION TEST REPORT (VIR) - A document containing the test results.
In conjunction with the Software Test Specification it contains enough
information to enable an independent party to repeat the test and
understand it.

Page 9

4.0 SYSTEM DEVEIOPMN

The development of the Eagle 21 System, as shown in Figure 2, involves
three stages:

1. Definition
2. Design
3. Implementation and Test

A brief description of each stage is given below:

1) The definition stage is characterized by the statement of the
objective to be achieved, the construction of an initial project plan,
and a high-level definition of the system. During this stage, the
overall functional requirements of the system are identified. Within
Westinghouse, these requirements are brought together in a System
Design Requirements document.

2) The design stage is characterized by the decomposition of these System
Design Requirements into System Design Specifications and Hardware and
Software Design Specifications of sufficient detail to enable the
implementation of the system. The Software Design Specifications for
the system-are then further decomposed into subsystem, module and unit
specifications.

3) The implementation and test stage is characterized by the actual
construction of the hardware, coding of the various software entities,
and testing. The software development team is responsible for the
writing, assembling, testing, and documenting the computer code. As
the software entities are completed, beginning at the unit level, they
are formally turned over to the verifiers for final independent review
and/or testing as specified in Section 5.0.

Software development can be viewed as a sequence of well-defined steps
similar to system development. The System Design Specification is
used to generate Software Design Specifications which in turn are used
to develop high level language prcgrams. These programs are converted
by a compiler into assembly language, then by the assembler into
machine code. The linker combines groups of assembled code with the
library to produce relocatable object code for input to the loader.
The loader generates the absolute code which is then burned into read
only memory (ROM)).

The use of a high level language allows the designer to express his
ideas in a form that is more natural to him. The computer adjusts to
his language and not he to the language of the computer. Soft.are
written in a high level language is more readily reviewed by an
independent party who may not be familiar with the computer assembly
language instruction set. Some features of the high level !irguage
aid the development of reliable software. For example, block
structuring helps identify and reduce the number of possible execution
paths.
As part of testing, the various hardware components and softý.Are

entities are assembled in a stepwise manner. Additional testing at
each step ensures that each component performs its reur--ez function
when integrated with its associated components.

Page 10

00

'The final activity associated with the system irplaemntation and testing
stage is the testing of the system. A system test plan is derived frcmthe system functional requirements and system design specifications to
confirm that the system exhibits a level of functionality and performance
which meets or exceeds the stated requirements. This final system test
is referred to as the Factory Acceptance Test.

Several design assurance techniques are utilized throughout all stages of
the development process to ensure that the hardware and software
components meet the required specifications.

Formal design reviews are held within Westinghouse to ensure that the
System Design Specifications meet the System Functional Requirements.
The design review team consists of a group of knowledgeable
multidisciplineary engineers to ensure that all aspects of the design are
reviewed.

During the implementation and test stage, acceptance testing and review
are conducted by the designers on the hardware components, circuit
boards, and subsystems to ensure they exhibit a level of functionality
consistent with the Hardware Design Specifications and Software Design
Specifications.

The final design assurance technique utilized is the execution of the
system Factory Acceptance Test to ensure the system performance meets thesystem functional requirements and system design specifications.

5.0 SYSTEM VERIFICATION

5.1 Introduction

With the application of programmable digital computer systems in
safety systems of nuclear power generating stations, designers areobligated to conduct independent reviews of the software associated
with the computer system to ensure the functionality of software to
a level consistent with that described in the system requirements.

Section 5.2 provides an overview of the verification philosophy.
Section 5.3 describes the verification techniques utilized in
performing the verification process. Section 5.4 describes the
matrix that the verification personnel use for determining the
level of verification that should be applied to each software
entity. Section 5 concludes by defining the application of the
verification matrix to the Eagle-21 Replacement Hardware.

5.2 Verification Philosophy

Figure 2 illustrates the integration of the system verification and
validation process with the system design process. The
verification process may be divided into two distinct phases:
verification of design documentation, and verification of software.

Page 11

As shown on figure 2, independent verification is performed at each
step of the definition and design stages. For example, independent
verification will occur to ensure that the decomposition from the
functional requirements and the software requirements to the system
design requirements has been performed properly and thoroughly.
Similarly, an independent review will be conducted in the
decomposition from the system design requirements to the system
design specification. Figure 2 illustrates where an independent
review and signoff will be conducted during the design process.
Verification of the design documentation will be completed prior to
the implementation and test phase.

During the implementation and test stage, when the writing,
testing, assembling, and documenting associated with each software
entity (beginning at the unit level) is completed by the design
team, the software entity is formally turned over to the verifier.
At this point, an independent review and/or testing of the software
entities is performed to verify that the functionality of the
software entities meet the applicable Software Design
Specifications. After the verifier is satisfied that all
requirements are met, the software is configured for use in the
final system and subsequent system validation process.

Figure 3 illustrates the philosophy utilized in conducting the
software verification process. The verification process begins at
the unit software level, i.e., the simplest building block in the
software. After all software units that are utilized in a software
module are verified, the verifier proceeds to verify that module.
Not only is the software module verified to meet the module
Software Design Specification, but the verifier ensures that the
appropriate units are utilized in generating the software module.

After all software modules necessary to accomplish a software
subprogram are verified to meet the applicable Software Design
Specifications, the verifier proceeds to verify that subprogram.
As in the case of the software module, the verifier not only
verifies that the subprogram meets the applicable software Design
Specifications, but also verifies that the appropriate software
modules were utilized in generating the subprogram entity. This
verification philosophy ensures that the verifier tests and/or
reviews the interface between the software unit, rcdule and
subprogram entities.

Depending upon the hardware implementation, the verification
process ray utilize system hardware in the verification of the
software modules and subsystems.

5.3 Verification Techniques

Verification techniques used in microprocessor based systems
development fall into two basic categories: review and testing.

Page 12

5.3.1 Reviews

There are three types of reviews used in the independent
verification process: Design documentation reviews, code
reviews and-functional test reviews.

5.3.1.1 Design Documentation Review

This activity involves an independent review of
the System Design Requirements and Specifications
to ensure that all of the appropriate Functional
Requirements have been satisified.

5.3.1.2 Source Code Review

Source code review, as opposed to code testing,
is a verification method in which the software
program is examined visually. The operation of
the software is deduced and compared with the
expected operation. In effect, the operation of
the software is simulated mentally to conf inn
that it agrees with the specification.

Source code reviews will be used to verify the
transformation from a Design Specification into
high level code. High level code is easy to
read and understand, and therefore full
inspection at that level is feasible.

5.3.1.3 Functional- Test Review

A functional test review is a review by the
verifier of the doctumentation associated with the
functional tests which were performed by the
designer. This review will provide a high degree
of assurance that the software performs the
functions specified in the design requirezrets.

5.3.2 Software Testing

Software tests can be divided into two categories:
structural and functional.

5.3.2.1 Structural Testing

Structural testing, which attempts to
comprehensively exercise the software program
code and its component logic structures, is
usually applied at the unit level. The
functionality of the program is verified aliong
with the internal structure utilized within the
Progra~m to implement the requiredfucin

Page 13

o0 oo

Structural testing requires that the verifier
inspect the code and understand how it functions
before selecting the test inputs. The test
inputs should be chosen to exercise all the
possible control paths within the software
component. If this is not possible, the test
inputs should be chosen to exercise every
statement within the component. For example, if
a trigonometric function is calculated in several
different ways, depending on the range of the
input argument, then the test inputs include
tests for the argument in each of these ranges,
as well as on the boundaries between ranges. In
particular, they exercise the upper limit, the
lower limit, and at least one intermediate value
within each range.

5.3.2.2 Functional Testing

In the functional approach to program testing,
the internal structure of the program is ignored
during the test data selection. Tests are
constructed from the functional properties of the
program which are specified in the Design
Specification. Functional testing is the method
most frequently used at the module or subsystem
level. Examples of functional testing include-
random testing and special cases by function.

Random testing is the method of applying a test
input sequence chosen at random. The method can
be used in the following circumstances: to
simulate real time events that are indeed random;
to increase the confidence level in the
correctness of a very complex module; to test a
subsystem or a system where it is not necessary
to test all the possible paths; to get a
quantitative measure on the accuracy of a numeric
calculation; or to get a measure of the average
time required by some calculation.

Special cases by function can be deduced from the
Design Specification of the module and will
determine some test cases. For example, a
subroutine for matrix inversion should be tested
using almost-singular and ill-conditioned
matrices. Subroutines which accept arguments
from a specified range should be tested with
these arguments at the extreme points of the
range. An arithmetic package should be tested
with variables which have the largest and
smallest mantissa, largest and smallest exconent,
all zeroes, and all ones and negative variables.

Page 14

5.4 Verification Matrix

The choice of particular verification techniques to be utilized ona system component is a function of the following parameters:

A. The safety classification of the system

B. The hierarchical level of the software component (unit,
module or subprogram)

5.4.1 Safety Classification

The safety classification Of an item is defined according
to IE-279-1971 and I=. Std 603-1980. In general, the
safety classification of the system establishes the
verification requirements for the system. However, since
all the components contained in the system do not
necessarily perform equal safety functions, a higher or
lower level of verification may be assigned to specific
system components depending on the exact functions
Performed. If a different level of verification is
assigned to a component, the interactions between that
component and the other comtponents in the system imist be
carefully considered and reviewed.

5.4.2 Hierarchical Level of Software Components

For software that is organized in a hierarchical structure,
the intricacies of the actual code can not be easily
grasped at the upper levels. For all but simple systems it
is Prudent to approach verification in a progressive
manner, beginning at the unit level. It is at the unit
level that the code can be most easily inspected or
comprehensively tested as necessary.

As the software is built up into higher level components
during the integration stage, it becomes possible todemonstrate comp~lete processing functions. Thils process
allows the validation of functional performance
requirements. Thus, validation testing assumes a
functional theme, with the main emphasis on the interaction
between subsystems and their interfaces.

5.4.3 Justification of Matrix Elements

Considering the parameters detailed above, different
verification methods are required for different subsystems
and software comnponents.]Figure 4 illustrates, in tabular
form, the levels of verification. The software cc=-onent
columns identify the levels of software. Each eleme-nt of
the matrix specifies the type of testing or review that
will be Performed on the software component within that
classification. The justification Of each matrix element
follows.

Page 15

5.4.3.1 Class lE Associated Software

The software associated with actuation anid/or
implementation of reactor trip, engineered safety
features, and information displays for manually
controlled actions (as defined by I~std.
279-1971 and IEEStd. 603-1980) must receive the
highest level (level 1) of verification
identified. As such, all software must be
structurally tested to ensure that all lines
indeed meet the intended design specification'.
Since the plant operators rely upon the automatic
actuation of the reactor trips and/or engineered
safeguards actuations, as well as information
displays for manually controlled actions, the
highest level of confidence must be afforded.

5.4.3.2 Non-Class 1E Associated Software

Any associated software that is not directly
related to Class 1E variables will receive level
2 verification. This software has the following
criteria:

1. Does not generate any Class 1E information.

2. Has no impact on the Class 1E function.

3. Has no direct electrical path to erroneously
alter a Class 1E function or its data.

5.4.4. Application of the Verification Matrix and Criteria
Utilized for Software Testing for the Eagle-21 Replacement
Hardware

5.4.4.1 The Eagle-2 1 Replacement system can be divided
into -two groups: 1) that which performs class lB
protection functions, has impact on class 1E
functions, and which tests Class 1E functions and
2) that which monitors the system and provides
non-class lE information to the user.

The first group consists of the f ollowing
(Reference Figure 1):

1. All of the Loop Processor Subsystem

2. The portion of the Tester Subsystem that runs
surveillance tests and therefore, has an
impact on the 1/0 modules

3. That portion of the Tester- Subsystem which
controls cormmunication to the Loop Processor
for parameter update.

Page 16

4. That portion of the NMI cart which allows the
operator to input new parameters and which
does the limit checking on those inputs.

This group, which meets the criteria for Section
5.4.3.1, will be verified at level 1 to give the
highest degree of confidence to this code.

The second group consists of the following
(Reference Figure 1):

1. That portion of the Tester Subsystem which
has no direct link to the Loop Processor
other than a read-only datalink. This
includes the software which updates the test
panel lights and outputs analog trend points.

2. All of the MMI software except that listed in
4) above.

This group will be verified at level 2 since it
meets the criteria of section 5.4.3.2.

5.4.4.2 Criteria Utilized for Software Testing

Past experience has demonstrated that emulation
testing of very simple procedures is not
necessary and that the resources spent testing
these procedures could be better applied to the
larger, more error-prone code. The following are
the criteria used to determine if a procedure can
be classified as "simple" and subject to a strict
source code review as opposed to testing. If any
one of the following statements is true, testing
will be performed as defined in Section 5.3.2.1.

1. The verifier determines that this particular
procedure is a unique case and, while all
other conditions are satisfied, a code and
documentation review is not adequate and that
testing should still be performed.

2. Math operations (+, -, /) are done by this
procedure and involve at least one variable
that is not ROM based and is not a data
constant.

3. Iogical operations are done by this =rccecnare
and the result is used in a manner oter than
as an ordinary TRUE/FALSE or where -,e
resulting logical byte is NOT accessed
according to the definitions:
TRUE equates to (0=0)
FALSE equates to (0=1)

Page 17

4. Logical operations are done by this procedure
for the purpose of setting or clearing
(masking) status or control bits.

5. There is more than one path to the procedure
due to the use of one or more of the
following PIM control statements:
DOl-CASE
DO-WHILE
ITERTV k= D BLOCIZ (DO) counter = start TOD
end)
IF-=hE
GO 'IO

6. The procedure consists of more than twenty
executable statements. The term "executable
statement" is defined as any statement other
than the procedure declare, procedure end, or
commuents.

7. The procedure includes one or more internal
procedures.

6.0 SYSTMi VALIDATION

6.1 Validation Philosophy

Whereas the system verification process verifies the decomposition
of the system requirement documents in the definition and design
stage and also verifies the functionality of the software entities
(unit, mo~dule, and subprogram) beginning from the smallest software
entity and progressing to the program level, the system validation
process is performed to demonstrate the system functionality. By
conducting the system validation test, the results demonstrate that
the system design meets the system functional requirments. Hence,
any inconsistencies that occurred during the system development, in
this area, that were not discovered during~ the various design
verification activities discussed in Section 5.0, would indeed be
reviewed, identified, and tracked by the verifiers through
resolution by the design team.
Following completion of the system validation test, the user can
indeed have a high degree of confidence that the system functional
requirements are met.

6.2 Validation Testing Overview

Duiring verification, a bottom-up microscopic approach is utilized
to thoroughly and individually review and/or test each piece of
software within the total system. This requires a significant
effort and verifies that each software element operates properly as
a stand-alone entity.

validation complements the verification process and not only
ensures that the final imp~lemented system satisfies the top-level

Page 18

functional requirements but also that good engineering practice wasutilized during the design and implementation of the system.
Following are the major phases of validation:

" Top-down functional requirements testing
" Prudency review of the design and its implementation
" Specific Man-Machine Interface (NMI) testing

The macroscopic top-down functional requirements phase ofvalidation testing treats the system as a black box while theprudency review phase requires that the internal structure of theintegrated software/hardware system be analyzed in great detail.Due to this dual approach, validation testing provides a level ofthoroughness and testing accuracy which is at least equivalent tothat which occurs during verification and insures detection of anydeficiencies that occurred during the design process but notdiscovered during verification. Validation testing is performed onthe verified software residing within the final target hardware.

6.2.1 General Description

The Validation plan defines a methodology that must befollowed to perform a series of top-down functional
requirement based reviews and tests which compliment thebottom-up approach utilized during the Verification testing
phase.

Four independent types of reviews and/or tests are to be
conducted to insure over-all system integrity:

1. Functional Requirements Testing - this insures that the
design meets the functional requirements.

2. Abnormal-mode Testing - this insures that the design
operates properly under abnormal-mode conditions.

3. System Prudency Review/Testing - this ensures that good
design practice was utilized in the design and
implementation of critical areas of the system. Theitems covered within this section require the internals
of the system design and implementation to be analyzed in
detail.

4. Specific Man-Machine Interface testing - this ensures
that the operator interface utilized to modify the
system's data-base performs properly under normal-jrc-e
and abnormal-mode data-entry sequences. This is a
critical area requiring special attention due to the
impact on the software of the system-level infor•tion
which can be modified via this interface.

The functional requirements and abnormal-mode testina phases
of Validation utilize a black-box systems approach Q,,e theSystem Prudency Review/Testing phase emphasizes the need to
understand the internal operations and interactions within
the system.

Page 19

6.2.2 Functional Requirements Testing

The Validation functional requirements testing phase
consists of the following steps:

1. Functional requirements decomposition

The top-level functional requirements must be
decomposed into detailed sub-requirements. For each
sub-requirement, a test or a series of tests must beidentified and performed to insure that the specific
sub-requirement is satisified.

Some sub-requirements are fairly general so it is
important that the same individual that performs thedecomposition also provides the interpretation as tothe type of test which must be executed to insure that
the sub-requirement is met.

2. Validation test procedure generation

Once the decomposition has occurred, the specifics ofthe test(s) must be defined in test procedural formsuch that it (they) can be conducted during validation
testing.

3. Validation test execution (Refer to Section 7.3)

The detailed tests per the Validation test proceduresmust be conducted by a Validation Test Technician and
the results must be reviewed by the Validation Test
Engineer.

Each functional sub-requirment must be uniquely
identified. The test procedure generated to test eachsub-requirement must be coorespondingly identified for ease
of cross-referencing.

6.2.3 Abnormal-Mode Testing

During this phase of Validation the functional requrements
are reviewed to define a series of abnormal conditions
underwhich the system must operate properly, without
resulting in, or causing, any inadvertent or detrimental
actions.

The Validation abnormal-mode testing phase consists of the
following steps:

Page 20

0 00

1. Functional requirements decomposition

The top-level functional requirements must be reviewedto identify detailed abnormal-mode conditions. Thetype of test that must be conducted to exercise thesystem under each abnormal-mode condition must also be
defined.

2. Validation test procedure generation

Once the decmposition has occurred, the specifics ofthe test(s) must be defined in test procedural formsuch that it (they) can be conducted during Validation
testing.

3. Validation test execution (Refer to Section 7.3)

The detailed tests per the test procedures must be
conducted by a Validation Test Technician and theresults must be reviewed by the Validation Test
Engineer.

Each abonormal-mode condition must be uniquely identified.
The test procedure generated to test each sub-requirement
must be correspondingly identified for ease of
cross-referencing.

6.2.4 System Prudency Review/Testing

During this phase of Validation, the system design andimplementation is analyzed and reviewed against the "SystemPrudency Checklist". The system must be evaluated againstthis checklist to insure that good engineering practice has
been followed.

The System Prudency Checklist addresses the following critical

design areas:

" Firmware program storage

" Data-base information storage

" Multiple-processor shared memory architectures

" Data-link oriented system architectures

" Diagnostics

" System time synchronization

Most of these items do not relate directly to a functicnal
requirement or to a series of functional requirements tur
address the issue of integrated system integrity.

Page 21

-7.0 DEVEILOPMEm2, VERIFICATION AND VALIDATION OIRGANIZATION

Du~ring the system design process, two independent functions will beutilized: one for development, and one for verification. The softwaredevelopment personnel receive the System Design Specification, generatethe Software Design Specifications, and then designs, develops, tests,and documents the code. The verification personnel receive the releasedcode and its documnentation, performns the required reviews and tests asdictated by the Software Verification Level within the VerificationMatrix and produces a Verification Test Report (yIn).

This type of organization has several advantages. The use of twoindependent entities introduces diversity to the process of softwaregeneration and reduces the probability of undetected errors. Anotherbenefit is that such a scheme forces the designer to produce sufficientand unam~biguous documentation before verification can take place.
Functional independence is essential to achieve these goals. Inparticular, the two functions will have separate lead engineers. Notethat the development personnel submits the code for verification onlyafter the development team has confirmed the code to its satisfaction.Errors discovered (debugging) during the development phase testing arenot required to be documented by the verification engineers.

The use of the above procedures does not preclude the possibility thatthe developer of one moxdue may be the verifier of a different module, aslong as that person did not participate in the design or coding of themodule being verified.

7.1 Development Activity

The composition of the development team is dependent upon the.functions that are required to be performed by the team. Typicalteam functions include the following:

7.1.1 Chief Progranmmer

This is the team software leader who is responsible for thesoftware technical matters. The duties of the Chiief
Programmer include:

a. Software Design Specification

The chief prograrmmer has the responsibility for thedevelopment of the Software Design Specifications, whichare based on the System Design Specification.

b. Architecture

Global decisions on the structure of the software,
decomposition and data base are made by the chief
programmer-

Page 22

c. Coding

Some critical sections of the programs (both in terms of
importance and ccmplexity) can be coded by the chief
programmTer.

d. General

The chief programmer supervises the rest of the team in
software technical matters.

7.1.2 Programmers

It is anticipated that there will be more than one programmer,
and that at least one programmer will function as a back-up to
the chief programmer. The programmers' tasks are to develop
the code for modules and/or sub-systems as directed by the
Software Design Specifications.

7.2 Verification Activity

The functions of the verification team are as follows:

7.2.1 Chief Verifier

Team leader who is responsible for all technical matters. The
duties of the Chief Verifier include:

a. Review System Design Requirements and Specifications
received from the development engineer for completeness and
unambiguity. (This review may be performed by another
qualified individual who is independent of the design area
being reviewed.)

b. Review the Software Design Specifications received from the
development engineer for completeness and unambiguity.

c. Review verifier's Software Test Specificatins for
completeness.

d. Oversee verification of critical sections in the software.

e. Supervise and consult with the verification team.

f. Review Test Reports

7.2.2 Verifiers

a. Perform source code inspections and review Software Design
Specifications.

b. Write Software Test Specifications.

c. Run tests on subprograms, modules and units.

d. Write test reports.

Page 23

7.2.3 Librarian Function

The Librarian performs the following duties in the maintenance
of the Verification Software Library:

a. Responsible for the storage and configuration control of
the computer software being verified as follows:

(1) Establishes identification of each software element
(i.e. unit, module, subprogram) within the Computer
Software Baseline (CSB)

(2) Enforces procedures for software and documentation
changes during reverification effort

(3) Maintains configuration control of the current CSB

b. Controls the transmittal of computer software to authorized
personnel only

c. Ensures no unauthorized changes occur to the CSB

7.3 Validation Function

The functions of the Validators are as follows:

7.3.1 Chief Verifier

a. Coordinate total Validation program

b. Review Validation testing results and write final report

c. Supervise and consult with the validators

7.3.2 Functional Requirements Decomposer (optional/Chief Verifier)

a. Coordinate Validation of a specific area

b. Review functional decomposition for completeness and accuracy
(this review may be performed by another qualified individual

who is independent of the design area being reviewed)

7.3.3 Lead Validator (optional/chief Verifier)

a. Coordinate Valdation of a specific area

b. Review functional decomposition for completeness and accuracy
(this review may be performed by another qualified individual

who is independent of the design area being reviewed)

c. Review and approve test procedure vs functional requirement
test specification to insure test procedure is adequate

Page 24

d. Along with the Librarian, insure that proper verified code is
being validated

7.3.4 Validation Test Engineer

a. Write Validation test procedures

b. Oversee Validation testing and review test results

c. Generate Validation Trouble Reports

7.3.5 Librarian

a. Coordinate with the Chief Verifier/Lead Validator (s) and/orValidation test Engineers to insure that proper verified codeis being validated.

b. Coordinate dissemination of Validation trouble reports to the
appropriate design engineer.

7.3.6 Validation Test Technician

a. Perform Validation tests under direction of the Validation
Test Engineer

b. Document test results

Page 25

Sensor &-

To
Trip
Logic

To
Control,
MCB, I -
Computers,
etc.

To Terminal t t To Prin
MAN-MACHINE-INTERFACE

CART

EAGLE - 21

PROCESS PROTECTION SYSTEM

ARCHITECTURE

FIGURE 1

PAGE 2r;

00 *0

FIGULE 2
DESIGN, VERIFICATION AND VALIDATION PROCESS

DEFINITION

I "

TR~IJ8LF
SYSTEM DESIGN REPORT VEIFICATION

IFEDWIREMENTS PROCES
VF

SYSTEM DESIGN TS/N
DESIGN SPECIFICATIONI COFIGW.ATION

V ~V I
SYSTEM H/ W ESIGN SYSTEM S/ W DESIGN I VALIDATIONSPECIFICATION SPECIFICATION TEST SYSTEM

F H/N DESIGN S /W DDESIGN-

H/N TSTINGS/N CODJING - I VALIDATIONH/ ESIGAND DEBUGGING PROCESS

I TRaaE'T

IMPLEMENTATION~
ANDJ SYSTEM

TEST INTEGRATION]

SYSTEM TES

SYSTEM Cmr

DENTES INDJUEPENDENT VERIFiICATION REVIEW

PAGE 27

DESIGN
O0CuMENT

0*

VERIFICATION

l- .J Wc

Z Q n--- f D Q_=3 C
___ __ __ _ m m

SOT"WARE DESIGN SUBPO6RAM
SPEC ----

MODL ' E

UNIT I No- - - - - - - - - -

SOFTWARE VERIFICATION PROCESS

FIGURE 3

PAGE 28

SLOFWAFE

LEVEL

I r - I

SOFMMAFE C4mNEN

UNIT SUEPR~OGAM

aST ST ST TESTI%

2 FT FTRFTRSEPARATE
FE VIEW

ST= STRJCThPAL TESTING
FTM= FI.-TIONAL TEST FEVIEW

NE .1": EFEFtFENý SFRLEMENTAL CRITEIA IN SE-TIN 5.4.4.2

SOFTWARE VERIFICATION MATRIX
FIGURE 4

PAGE 29

.,,

*0 *0

ENCLOSURE 2

V&V PLAN CLARIFICATION

EAGLE 21 DESIGN, VERIFICATION AND VALIDATION PLAN

OVERVIEW

This document is intended to clarify the EAGLE 21, Design Verification and
Validation Plan; reference Design specification # 408A47. Specifically, the
objective of this document is to expand and clarify section 5.4.4.2 "Criteria
Utilized for Software Testing," within the draft document. Upon review, the NRC
has taken exception to this section of the document. Specific reference has been
made that section 5.4.4.2 of the V&V Plan is not in compliance with ANSI Standard
7-4.3.2., Application Criteria for Programmable Digital Computer Systems in Safety
Systems of Nuclear Power Generating Stations.

The testing criteria, submitted within the document, are valid and fully meet the
intent of ANSI Standard 7-4.3.2. Successful resolution of this item can be
achieved through a more complete discussion relating to the original section. For
the purpose of minimizing document cross-reference, section 5.4.4.2 of the draft
has been reproduced in its entirety as Appendix A in this clarification.

BACKGROUND

Clarification of terms: Appendix A of this clarification reproduces the entire
Section 5.4.4.2 from the draft document. This section begins with the text: "Past
experience has demonstrated that actual testing of very simple procedures is not
nece ' ssary.... Review of this text, based on subsequent comments, leads us to
believe that the primary intent of this statement has not been effectively
communicated. The phrase "actual testing" refers only to emulation of the program
code on a VAX computer. With this in mind, the original statement can more clearly
be stated as: "Past experience has demonstrated that emulation testing for very
simple procedures is not necessary. clarification of this phrase must also convey
two very important points:

0 Simple procedures are not being excluded from software verification
testing. They will still receive both a strict documentation and
source-code review.

0 Verification testing will be performed on all software units, but some
simple procedures [meeting a stated criteria] do not require emulation on
a computer.

Previous verification experience: over 2,000 software verification tests have been
performed by Westinghouse in other activities similar to the EAGLE 21 V&V Plan.
During this process it has become readily apparent that several types of "simple"
procedures need not be emulated on a computer as part of their soEtware
verification testing. Several specific examples of these uncomplicated software
procedures have been included for review as Appendix B to this clarification. In
general, these procedures include those which initialize 1/0 ports, set variable(s)
to a.logical [i.e. TRUE or FALSE], or initialize variables to a fixed value.

After emulating many procedures on a VAX computer, it has become obvious that
emulating code-function for procedures of these types is a meaningless exercise.
Today's compilers certainly have the ability to set (initialize) a given variable
to any value. Having to compile, link, locate, and emulate codes for procedures
that only perform this function, adds no additional quality to the software
verification process. Further, computer emulation of software units which
initialize 1/0 ports has no meaning. The actual hardware port must be used.
Proper functioning of all 1/0 ports is already thoroughly encompassed, within the
existing validation testing requirements.

Establishment of testin-g criteria: In order not to subjectively decide which
software procedures may be considered "simple", a Software Testing criteria was
developed. This criteria is presented in section 5.4.4.2 of the V&V Plan
submittal. Establishment of this testing criteria firmly provides strict
guidelines which must be followed by every software verifier. In this way, a clear
audit-trail is maintained within the entire software verification process. The
criteria clearly indicates that any software procedure which performs math
operations, uses logical operations in other than a pre-deffined manner, performs
any PLM control statement, has 20 or more lines of code, uses an internal
procedure, or is judged as a unique case by the software verifier, must be emulated
on a computer.

SUMMARY

Levels of verification testing: Verification will be performed on all software
procedures. Some procedures which meet the previously stated software testing
criteria will not require emulation on a computer due to their simplicity.
however, these units must still undergo a strict review of their documentation and
source code.

Compliance with existing standards: The EAGLE 21 Design, Verification and
Validation Plan meets the intent off ANSI Standard 7-4.3.2. Section 7.3.1 of that
document indicates that criteria for establishing test cases must be specified.
This is done in section 5.4.4.2 of the submittal. In addition, the first paragraph
from Section 7 (ANSI Standard 7-4.3.2) allows one to ". ..draw from previous
experience and supplementary information.". The approach is consistent with these
guidelines.

RPPENDIX A

Text reproduced from:

EAGLE 21 DESIGN, VERIFICATION AND VALIDATION PLAN

5.4.4.2 Criteria Utilized for Software Testing

Past experience has demonstrated that actual testing of very simple
procedures is not necessary and that the resources spent testing these
procedures could better be applied to the larger, more error-prone code.
The following are the criteria used to determine if a procedure can be
classified as "simple" and subject to a strict source code review as
apposed to testing. If any one of the following statements is true,
testing will be performed as defined in Section 5.3.2.1.

1. The verifier determines that this particular procedure is a unique
case and, while all other conditions are sati!sfied, a code and
documentation review is not adequate and that testing should still
be performed.

2. Math operations (+,-,/) are done by this procedure and involve at
least one variable that is not ROM based and is not a constant.

3. Logical operations are done by this procedure and the r~esult is
used in a manner other than as an ordinary TRUE/FALSE or where the
resulting logical byte is NOT accessed according to the definitions:

TRUE equates to (0=0)
FALSE equates to (0=1)

4. Logical operations are done by this procedure for the purpose of
setting or clearing (masking) status or control bits.

5. There is more than one path to the procedure due to the use of one
or more of the following PLM control statements: DO-CASE,
DO-WHILE, INTERATIVE DO BLOCKS (DO counter = start To end),
IF-THEN, GO TO.

6. The procedure consists of more than 20 executable statements. The
term "executable statement" is defined as any statement other than
the procedure declare, procedure end, or comments.

7. The procedure includes one or more internal procedures.

,APPENDIX B

Examples of uncomplicated software procedures;

EUTYPE_14:PROCEDURE(I) public;
DECLARE I byte;

I = 0;
END EUTYPE_14;

copyaiapp:PROCEDURE (lo,hi) PUBLIC;
DECLARE (lo,hi) byte;

return;

END copyai app;

BEFORETHEDECIMAL:PROCEDURE(DIGIT$PLAC);

DECLARE Digits$Plac byte;
Digit$Plac = 0;

END BEFORETHEDECIMAL;

DEADMAN:PROCEDURE PUBLIC;
/* FOR DEADMAN TIMER ON WESTINGHOUSE SELF HEALTH
BOARD */
DEADMANPORT = (111111lIB);

END DEADMAN;

EXP$CHECK:PROCEDURE(POINTR);
DECLARE POINTR BYTE;
Pointr = 0;

END EXP$CHECK;

