

10.4.9 Emergency Feedwater System

The emergency feedwater system (EFWS) supplies water to the steam generators (SG) to restore and maintain water level and to remove decay heat following the loss of normal feedwater during design basis transient and accident conditions. This removes heat from the reactor coolant system (RCS), which is first transferred to the secondary side via the SGs, then discharged as steam to the condenser or via the SG main steam relief valves (MSRV).

10.4.9.1 Design Bases

The EFWS provides the following safety-related functions:

- Provide sufficient flow to the SGs to recover and maintain SG water inventory and remove residual heat from the RCS via the SGs and MSRVs to assist in the cooldown and depressurization of the RCS to residual heat removal (RHR) conditions under design basis transient and accident conditions.
- Isolate EFWS flow to the affected SG following a main steam line break (MSLB) to prevent overcooling the RCS with associated positive reactivity.
- Isolate emergency feedwater (EFW) pump flow to the SG with a tube rupture (SGTR) upon SG high water level to prevent SG over-fill and mitigate the potential radiological consequences of a SGTR event.
- Provide sufficient water inventory in the storage pools to support cooldown requirements.

The EFWS has the following design basis requirements and criteria:

- Safety-related portions of the EFWS are designed to withstand the effects of natural phenomena such as earthquakes, tornadoes, hurricanes, floods, and external missiles, and are designed to function following such events, (GDC 2).
- Safety-related portions of the EFWS are designed to withstand the effects of the postulated hazards of internal missiles, pipe whipping, and discharging fluids, (GDC 4).
- Safety-related portions of the EFWS are not shared among nuclear power units, (GDC 5).
- Safety-related portions of the EFWS are capable of bringing the primary plant temperature to the RHR cut-in point following four hours at hot standby from the control room using only safety grade equipment and assuming a single active failure per BTP 5-4 (Reference 1) and GDC 19.
- Safety-related portions of the EFWS have sufficient flow capacity so that the system can remove residual heat over the entire range of reactor operation and cool the plant to the RHR system cut-in temperature assuming a single active

failure with the loss of offsite power, (GDC 34 and GDC 44).

- Safety-related portions of the EFWS are designed to permit appropriate periodic inspection of components important to the integrity and capability of the system, (GDC 45).
- Safety-related portions of the EFWS are designed to include the capability for testing through the full operational sequence that brings the system into operation for reactor shutdown and for loss-of-coolant accidents, including operation of applicable portions of the protection system and the transfer between normal and emergency buses, (GDC 46).
- Safety-related portions of the EFWS are capable of automatic initiation under conditions indicative of an anticipated transient without scram (ATWS), (10 CFR 50.62).
- The EFWS is capable of providing sufficient decay heat removal during a station blackout (SBO), (10 CFR 50.63). This is a non-safety-related function.

The EFWS is a safety-related system and is not required to operate during normal plant operation. As described in Section 10.4.7, during normal power operation the heat removal function is performed by the main feedwater system (MFWS) or the startup and shutdown system (SSS).

10.4.9.2 System Description

10.4.9.2.1 General System Description

A flow diagram of the EFWS is shown in Figure 10.4.9–1— EFWS Flow Diagram. The EFWS has four separate trains, each consisting of a water storage pool, pump, control valves, isolation valves, piping and instrumentation. A supply header is provided that allows a cross-connection of the storage pools to the pump suctions and another header that allows cross-connection of the discharge of the pumps to the SGs. The supply headers have manual isolation valves that are normally maintained in the open position, while the discharge header is isolated by motor-operated valves (MOV), which allow changing pump discharge alignment from the main control room (MCR).

One EFWS train is located in the lower levels of each of the Safeguard Buildings that provide separation and physical protection from external and internal hazards. The storage pools are stainless steel-lined concrete which are part of each Safeguard Building structure.

The demineralized water distribution system is used to initially fill the EFWS storage pools and can be aligned from the MCR to provide makeup to the storage pools. Makeup to the storage pools can also be provided by hose from the fire water system or other available water sources.

The EFWS has the capability to perform its required safety-related functions following design basis transients or accidents assuming a single active failure in one EFW train and with a pump out of service for preventive maintenance in a second train. The

system capacity is sufficient to remove decay heat and provide feedwater for cooldown of the RCS following a reactor trip from full power.

The EFWS design flow requirement provides 400 gpm (at 122°F) to a minimum of two SGs following a main feedwater line break when pumping against the MSRV setpoint pressure. This requirement is met assuming a single active failure and an EFW pump out for maintenance.

All four EFWS trains are powered from separate emergency buses, each backed by an emergency diesel generator (EDG), with trains 1 and 4 also capable of being powered from the diverse station blackout diesel generators (SBODG).

10.4.9.2.2 Component Description

The EFWS safety-related piping and components are designed and constructed in accordance with Quality Group C and Seismic Class I requirements, except for the containment isolation boundary piping and valves that are Quality Group B. The classification of components is described in Section 3.2. The EFWS piping and component pressure retaining parts are constructed of austenitic stainless steel. EFWS component data information is provided in Table 10.4.9–1—Emergency Feedwater System Component Data.

10.4.9.2.2.1 EFW Pumps

The four EFW pumps are centrifugal multistage barrel-type design. The pump casings have top-mounted suction and discharge flanges. The pump and motor are horizontally mounted on a common base plate. The pump and motor bearings are oil lubricated and the thrust bearings are air cooled. The pumps utilize a single cartridge-type mechanical seal that does not require external seal water.

The pump bearing temperatures are monitored by sensors located on the outer ring of the rolling elements. Pump vibration is monitored by vibration sensors located on the pump bearing housings.

The EFW pumps are driven directly by ac motors utilizing flexible couplings. The motor bearings and winding temperatures are monitored, as is motor bearing vibration.

Pump minimum flow requirements are controlled by the minimum flow check valve on the pump discharge.

Two check valves are located in the piping from each pump to prevent steam from reaching the pump suction. Temperature instrumentation is provided upstream of the in-containment check valve to detect any heat-up resulting from leakage past the check valve. Alarms are provided in the MCR to alert the operators that back leakage has occurred.

10.4.9.2.2.2 EFW Storage Pools

The EFW storage pools are located in the Safeguard Buildings. The storage pools are made of concrete with a stainless steel liner. The usable volume of the pools is approximately 110,000 gal for trains 1 and 4 and 95,600 gal for trains 2 and 3.

Each storage pool includes a top-mounted manway, an overflow pipe, and a vent line. If required for maintenance, an EFW pool can be drained to the Plant Drainage System. The pool will be recirculated and sampled prior to draining. Draining is accomplished by manual valve alignment and starting of the drain pump.

Wide range and narrow range storage pool level indication is provided in the MCR and a local manometer is provided in the EFW pump rooms. Storage pool temperature is also indicated in the MCR.

10.4.9.2.2.3 EFW Active Valves

EFW Flow Control Valves

The EFW flow control valves are motor-operated control valves that limit EFW pump flow to a depressurized SG and prevent pump runout. The valves include an adjustable mechanical stop that is set to limit the maximum flow. The valve is positioned on its mechanical stop (standby) during normal plant operation. During EFW pump operation, the valve is automatically positioned to provide the design flow of 400 gpm.

EFW Steam Generator Level Control Valves

The SG level control valves are motor operated control valves that are in the open position (standby) during normal plant operation and receive an open signal upon an EFW actuation on low SG level or a loss of offsite power (LOOP) with safety injection (SI). The valves will close automatically on high SG level to prevent SG overfill following a SGTR. These valves maintain the SGs at the set level by adjusting the EFW pump flow rate. The valves also can be manually closed from the MCR to isolate EFW flow to an affected SG.

EFW Steam Generator Isolation Valves

The EFW SG isolation valves are motor operated gate valves that are in the open position during normal plant operation and receive a closure signal upon SG high level following a SGTR to prevent SG overfill and provide the outside containment isolation boundary. The valves also can be manually closed from the MCR to isolate EFW flow to an affected SG.

EFW Minimum Flow Check Valves

The EFW minimum flow check valves prevent backflow and also open when the EFW pump is running. If flow to the SG is below the minimum required pump flow, the bypass flow path is opened to provide the minimum EFW pump flow back to the storage pool. This minimum recirculation path automatically closes when the SG injection flow increases above the minimum required pump flow. The design

temperature of the minimum recirculation valve and piping conservatively reflects the increased temperature of the recirculation flow.

The check valve minimum flow path capability is sized to provide the required minimum pump flow of approximately 88 gpm.

EFW Isolation Check Valves

The EFW containment isolation check valves provide the inside containment isolation boundary and prevent the backflow of contaminated liquid outside the containment following an SGTR.

EFW Supply Header and Discharge Header Isolation Valves

The supply header isolation valves are maintained open and the discharge header isolation valves are closed during normal plant operation and can be opened, as necessary, to change component alignments. The discharge header isolation valves are motor operated and also have manual hand wheels so that they can be operated from the MCR or locally.

10.4.9.2.2.4 EFWS Piping

The EFWS piping is routed to minimize the potential for destructive water hammer during startup. The EFWS piping connects directly to the SGs so it is not directly impacted by pressure transients in the main feedwater (MFW) piping. The EFWS piping continuously rises from the containment penetration to the connection with the SG. Each EFWS injection path also includes a check valve within the containment. Within the SGs, the EFW flow is routed through a split ring header. EFWS flow exits the ring header via vertical tubes so that the ring header is maintained full of water.

10.4.9.2.2.5 Electrical Power Supply

Each EFWS train receives power from a separate Class 1E emergency power system. In the event of loss of normal onsite and offsite power, power is supplied by the EDGs. The level control valves, SG isolation valves, and discharge header cross-connect valves are also provided uninterruptible battery power.

In addition, EFWS trains 1 and 4 can be powered from the SBODGs.

A more detailed description of the onsite power systems is provided in Section 8.3.

10.4.9.2.3 System Operation

10.4.9.2.3.1 Normal Plant Operation

During normal plant operation, the heat removal function is performed by the MFWS or the SSS. The EFWS is maintained in standby condition ready for actuation. The EFWS is aligned as follows:

• The EFWS pumps are available on standby, ready to start.

- The SG level control valves are open.
- The flow control valves are closed at their mechanical stop.
- The SG isolation valves are open.
- The discharge header isolation valves are closed.
- The pool supply header isolation valves are open.
- The storage pools are full of water.
- The pump room chilled water-air heat exchanger fans are switched off.

10.4.9.2.3.2 Abnormal Operating Conditions

Loss of Normal Feedwater

The loss of normal feedwater flow (MFWS and SSS) results in the automatic actuation of the EFWS when any SG reaches low level. A minimum of two EFWS trains are available to restore and maintain SG water inventory during RCS cooldown to RHR system entry conditions.

Short-Term Loss of Offsite Power

The loss of the non-emergency AC power supply results in the loss of the MFWS and SSS. As the main steam system pressure increases following reactor trip, the main steam relief isolation valves upstream of the main steam relief control valves (MSRCV) are automatically opened to the atmosphere. The EDGs start upon the loss of normal power and supply power to the EFWS pumps, which actuate upon a SG low level.

Check Valve Leakage

Steam leakage from the SG to the EFWS pumps during standby conditions is prevented by two check valves. Should leakage occur, temperature instrumentation detects the resulting high-temperature condition and provides an alarm in the MCR to alert the operators to close the EFWS isolation valve and to promptly perform any other required actions to return the affected pump train to service.

10.4.9.2.3.3 Accident Conditions

Small Break Loss of Coolant Accident (SBLOCA)

A small break loss of coolant accident (SBLOCA) results in a loss of reactor coolant inventory which cannot be compensated for by the chemical and volume control system (CVCS). The loss of primary coolant results in a decrease in reactor coolant pressure and pressurizer level. The EFWS is automatically started if SG low level is reached. On safety injection signal, partial cool down is initiated to enable medium head safety injection (MHSI) flow.

A minimum of two EFWS trains are available to restore and maintain SG water inventory during RCS cooldown to RHR system entry conditions.

Steam Generator Tube Rupture (SGTR)

An SGTR results in a leak of primary coolant into the affected SG. The EFWS is utilized to assist in RCS cooldown, as necessary. In addition, EFWS flow to the affected SG can be isolated manually after 30 minutes or by the automatic closure of the SG isolation valve and the level control valve upon SG high level. The associated EFWS pump is shut down manually. A minimum of two EFWS trains are normally available to restore and maintain SG water inventory during RCS cool down to RHR system entry conditions.

In the unlikely event of an SGTR in one SG coincident with a single failure of another EFWS train and a third EFWS pump out for maintenance, only one intact SG is fed initially by the EFWS. Within 30 minutes, the operator opens the required discharge header isolation MOVs to align the EFWS pump feeding the affected SG to feed an intact SG.

The EFWS maintains SG water inventory during RCS cooldown to RHR system entry conditions.

Main Steam Line Break (MSLB)

A MSLB results in a significant reduction of RCS pressure and temperature and associated positive reactivity. At break initiation the secondary side pressure falls, a reactor trip occurs and the main steam isolation valves (MSIV) close. The EFWS pump aligned to the affected SG automatically starts upon SG low level. The EFWS pump flow to the depressurized SG is limited by the flow control valve to protect the pump against run-out flow and to prevent RCS overcooling. The flow to the affected SG is isolated manually from the MCR within 30 minutes. A minimum of two EFWS trains are normally available to restore and maintain SG water inventory.

In the unlikely event of an MSLB on one loop coincident with a single failure of another EFWS train and a third EFW pump out for maintenance, only one intact SG is fed initially by the EFWS. Within 30 minutes, the operator will open the required discharge header isolation MOVs to align the EFWS pump feeding the affected SG to feed an intact SG.

The EFWS maintains SG water inventory during RCS cooldown to RHR system entry conditions.

Main Feedwater Line Break (MFWLB)

A main feedwater line break (MFWLB) results in a significant loss of SG water mass leading to a RCS heat-up. The MFWLB accident is the most limiting accident for EFWS flow. The break results in a reactor trip and closure of the MSIVs. The main steam relief train opens and low level in all the SGs is reached. The EFWS is automatically actuated and the EFWS pump flow to the depressurized SG is limited by the flow control valve to protect the pump against runout flow. The flow to the

affected SG is isolated manually from the MCR within 30 minutes. A minimum of two EFWS trains are normally available to restore and maintain SG water inventory.

In the unlikely event of an MFWLB on one loop coincident with a single failure of another EFWS train and a third EFWS pump out for maintenance, only one intact SG is fed initially by the EFWS. Within 30 minutes, the operator opens the required discharge header isolation MOVs to align the EFWS pump feeding the affected SG to feed an intact SG.

The EFWS maintains SG water inventory during RCS cooldown to RHR system entry conditions.

10.4.9.3 Safety Evaluation

The design of the EFWS satisfies GDC 2 regarding protection from the effects of natural phenomena such as earthquakes, tornadoes, hurricanes, floods, and external missiles.

- The Reactor Building and Safeguard Buildings that house the EFWS are Seismic Category I designed structures that are also located and designed to provide protection from flood, hurricane/tornado winds and missiles. Section 3.3, Section 3.4, Section 3.5, Section 3.7 and Section 3.8 provide the bases for the adequacy of the structural design of these buildings with respect to natural phenomena.
- The safety-related EFWS components are designed to Seismic Category I requirements in accordance with RG 1.29. Position C.1, to perform their safety functions during and following a safe shutdown earthquake (SSE). The non-safety-related portions of the EFWS are designed in conformance with RG 1.29, Position C.2.

The design of the safety-related portions of the EFWS satisfies GDC 4 regarding potential dynamic effects, such as pipe whip, jet impingement, and missile impacts caused by equipment failure or events outside the plant. The analysis of a postulated high-energy line failure is provided in Section 3.6.1 and Section 3.6.2. The analysis for missiles is provided in Section 3.5.

- An occurrence of an internal hazard does not prevent the ability of the EFWS to perform its safety functions or result in a common mode failure of redundant trains. Each of the four EFWS trains outside of the containment is located in a separate Safeguard Building; therefore, only one train can be physically affected by an internal hazard (fire, flood, or pipe break). The physical location (separate buildings) of the EFWS containment isolation valves prevents both valves from being affected by any single internal hazard.
- Each EFWS train, including the storage pools, is located within a Safeguard Building which is Seismic Category I and provides protection from external missiles. External missiles are addressed in Section 3.5.
- EFWS components located within the Reactor Building are qualified for accident environmental conditions (radiation, temperature, pressure, and humidity).

EFWS components located in the Safeguard Buildings are qualified for accident environmental radiation conditions. The Safeguard Building heating, ventilation and air conditioning (HVAC) system maintains acceptable environmental conditions for operation of the active EFWS equipment. Refer to Section 3.11 for equipment qualification.

The design of the safety-related portions of the EFWS satisfies GDC 5 regarding sharing of systems. The EFWS is not shared among nuclear power units.

The design of the safety-related portions of the EFWS satisfies GDC 19 and Reference 1 regarding the capability to support RCS cooldown from the MCR using only safety grade equipment and assuming any single active failure.

- The water inventory of all four storage pools is available to any available EFWS pump train. The required EFWS water inventory was determined in conformance with Reference 1. Cooldown analyses were performed that included cases with and without offsite power available. Only safety related and Seismic Category I equipment is used to perform the cooldown and required operator actions are performed from the MCR. The exception is that all four RCPs were conservatively assumed (i.e., additional heat load) to be running for the cases with offsite power available. Hot standby conditions were maintained for four hours before initiating the cooldown for all cases. A cooldown rate of 50°F/hr was used for the bounding loss of offsite power case, rather than the normal 90°F/hr rate.
 - The 50°F/hr rate increases the EFWS water usage and is considered a rate that plant operators can readily manage for this natural cooldown case with the restrictions applied by Reference 1.
 - A hot leg subcooling margin of 50 to 25°F is maintained during the cooldown.
 - The total EFWS water used for the bounding cases, with or without offsite power, is less than 300,000 gallons.
 - The combined available water inventory of three storage pools is sufficient to support the bounding cooldown cases.

The design of the safety-related portions of the EFWS satisfies GDC 34 and 44 regarding having sufficient flow capacity so that the system can remove residual heat over the entire range of reactor operation and cool the plant to the decay heat removal system cut-in temperature coincident with a single active failure and loss of offsite power.

- The EFWS has the capability to remove the full range of decay heat from the RCS during design basis transient and accident conditions. The system has suitable redundancy, as demonstrated by a failure modes and effects analysis (FMEA) to withstand a high-energy pipe break, a single active failure, and LOOP and still perform its safety functions. Refer to Table 10.4.9-2—Emergency Feedwater System Failure Analysis.
- The EFWS automatically initiates upon a system actuation signal. The EFWS also

satisfies the recommendations of RG 1.62 regarding the capability of manual initiation of protective actions.

 The EFWS meets the recommendations of NUREG-0611 (Reference 2) and NUREG-0635 (Reference 3). TMI Action Plan item II.E.1.1 of NUREG 0737 (Reference 4) and 10 CFR 50.34(f)(1)(ii) for applicants subject to 10 CFR 50.34(f) require an AFWS reliability analysis. An acceptable AFWS should have unreliability in the range of 10⁻⁴ to 10⁻⁵ per demand exclusive of station blackout scenarios. The results of the EFWS reliability analysis is provided in Table 10.4.9-4—EFWS Unreliability Results.

The design of the EFWS is consistent with BTP 10-1, except that the power sources are redundant but not diverse. Incorporating a non-electric EFWS pump into the U.S. EPR plant design for diversity is not expected to significantly improve the EFWS reliability or the plant core damage frequency (CDF). The following EFWS design features provide a highly reliable means of cooling the RCS:

- There are four complete trains, each normally aligned to a separate SG. The supply and discharge headers can be configured to allow the pumps to feed any combination of SG.
- Each EFWS train receives power from a separate Class 1E emergency power system. In the event of loss of normal onsite and offsite power, power is supplied by the EDGs. The level control valves, SG isolation valves, and discharge header cross-connect valves are also provided uninterruptible vital battery power.
- The system has suitable redundancy, as demonstrated by a single active failure analysis to withstand a single active failure and still perform its safety functions. Refer to Table 10.4.9-2 for a summary of the evaluation.
- The EFWS is not required to operate following a normal loss of the MFWS, as the SSS pump is actuated automatically. The SSS actuation reduces the frequency of EFWS actuation and increases the reliability of the plant overall decay heat removal capability.
- EFWS trains 1 and 4, including pump room cooling, are powered from the two non-Class 1E SBODGs. Station blackout is addressed in Section 8.4.
- Critical EFWS valves and instrumentation are provided with uninterruptible emergency power.

The design of the EFWS satisfies GDC 45 as is relates to provisions for periodic inservice inspection of system components and equipment as described in Section 10.4.9.4.

The design of the EFWS satisfies GDC 46 regarding provisions made to permit appropriate functional testing of the system and components, as described in Section 10.4.9.4.

The design satisfies 10 CFR 50.62 regarding provisions for automatic initiation in an ATWS. A diverse low SG level EFWS actuation signal is provided for ATWS mitigation.

The design of the EFWS satisfies 10 CFR 50.63 regarding the capability for responding to a SBO.

- Trains 1 and 4 of the EFWS are powered from the SBODGs, including the air recirculation fans of the room coolers for these EFWS pumps. The cooling medium for these coolers is supplied by the safety chilled water system (SCWS), which is also powered by the SBODGs.
- These two trains have sufficient capability and capacity to remove decay heat for SBO duration of eight hours. Section 8.4 describes the SBO event.

10.4.9.4 Inspection and Testing Requirements

During fabrication of the EFWS components, tests and inspections are performed and documented in accordance with code requirements to verify quality construction. As necessary, performance tests of components are performed in the vendor facility. The EFWS is designed and installed to permit in-service inspections and tests in accordance with ASME operation and maintenance (OM) code requirements (Reference 5).

The EFWS components are inspected and tested as part of the initial plant startup. Refer to Section 14.2 (test abstract #020, #021, #153, #154 and #195) for initial plant startup test program. Consistent with the recommendations of Reference 2, a 48-hour endurance test is performed on the EFWS pumps to demonstrate the pumps have the capability for continuous operation over an extended time period without failure. The layout of the system pumps, valves, and piping facilitate periodic inspection. Adequate room and accessibility is provided to conduct the required examinations.

The EFWS is a standby system that is not routinely operated, except for testing. After the plant is brought into operation, tests to verify proper operation of the EFWS components are conducted. These tests supplement the system level tests by verifying acceptable performance of each active component in the EFWS. Pumps and valves are tested in accordance with Reference 5. The capability to perform quarterly full-flow testing is provided. The inservice testing program is described in Section 3.9.6 and the complete schedule of tests and inspections of the EFWS is detailed in Chapter 16.

10.4.9.5 Instrumentation Requirements

10.4.9.5.1 Automatic Safety Functions

EFWS indications, alarms, and control devices are provided in Table 10.4.9–3— Emergency Feedwater System Indicating, Alarm, and Actuation Control Devices. The following sections provide a description of EFWS automatic control functions.

10.4.9.5.1.1 EFW Pump Flow Control and Run-out Protection

This function protects the EFWS pumps against run-out flow due to low backpressure associated with pumping to a depressurized SG. The pump overflow protection limits the pump discharge flow as follows:

- The pump discharge flow is compared to a setpoint of approximately 400 gpm plus design margin.
- A proportional integral controller adjusts the position of the flow control valve according to the deviation between the measured flow and the setpoint.
- If the flow in the line falls below 25 percent of the setpoint (approximately 100 gpm), the valve is closed to its mechanical stop position.

10.4.9.5.1.2 EFWS Actuation on Low Steam Generator Level

The EFWS is actuated to remove residual heat upon a loss of normal feedwater (MFWS and SSS), as indicated by SG low level. EFWS actuation consists of:

- Opening the SG isolation valves (already open at standby).
- Opening the SG level control valves (already open at standby).
- Starting the EFWS pumps.

10.4.9.5.1.3 EFWS Isolation on High Steam Generator Level

This safety-related function limits the release of radioactive water via the MSRVs due to overfilling a SG that has experienced an SGTR as indicated by high SG level. The EFWS isolation of the affected SG consists of:

- Closing the SG isolation valve.
- Closing the SG level control valve.

In addition, the operators manually trip the corresponding EFW pump.

These actions are also initiated at the start of partial cooldown to a SG pressure of 870 psia following an SGTR upon a high-high SG level or high steam line radiation signal.

10.4.9.5.1.4 EFW Pump Trip during Diesel Loading Sequence (following LOOP)

Each EFW pump is tripped during the emergency diesel loading sequence following a LOOP and then sequenced on to the diesel, as needed.

10.4.9.5.1.5 Steam Generator Level Control

The SG level is controlled as follows:

• The SG level measurement is compared to the SG level setpoint.

• A level controller adjusts the position of the level control valve according to the deviation between measured level and the setpoint.

10.4.9.5.2 EFWS Manual Control Safety-Related Functions

In addition to the automatic functions, the EFWS has the capability to manually perform the following safety-related functions:

- EFWS actuation and control.
- EFW isolation following an MSLB.
- EFW pump injection to another unaffected SG following an MFWLB.

10.4.9.6 References

- 1. NUREG-0800, BTP 5-4, "Design Requirements of the Residual Heat Removal System," Nuclear Regulatory Commission, Revision 3, March 2007.
- NUREG-0611, Technical Report: "Review of the Vogtle Units 1 and 2 Auxiliary Feedwater System Reliability Analysis," Nuclear Regulatory Commission, October 1985.
- 3. NUREG-0635, Technical Report: "Generic Evaluation of Feedwater Transients and Small Break Loss-of-Coolant Accidents in Combustion Engineering Designed Operating Plants," Nuclear Regulatory Commission, January 1980.
- 4. NUREG 0737, "Clarification of TMI Action Plan Requirements," TMI Action Plan item II.E.1.1, Nuclear Regulatory Commission, November 1980.
- 5. ASME OM-2004, "Code for Operation and Maintenance of Nuclear Power Plants," The American Society of Mechanical Engineers, 2004.

Emergency Feedwater Storage Pools		
Quantity		4
Туре		Protected reinforced concrete structure
Liner		Austenitic stainless steel
≈ Available Volume		110,000 gal – Pools 1 and 4
		95,600 gal – Pools 2 and 3
Design Code		ACI 349
Seismic Design		Seismic Category I
Emergency Feedwater Pumps		
Quantity		4
Pump	Туре	Horizontal centrifugal, multistage
	Design Flow (@ 122°F)	400 gpm
	TDH	3570 ft
	NPSH Required	14 ft
	NPSH Available	39 ft
	Material	Austenitic stainless steel
	Design Code	ASME Section III, Class 3
	Seismic Design	Seismic Category I
Motor	Horsepower	650 HP
	Power Supply	6.9 kV, 60 Hz, 3 phase, Class 1E
	Design Code	NEMA
	Seismic Design	Seismic Category I
	Classification	1E

Table 10.4.9-1—Emergency Feedwater System Component Data