ATTACHMENT 5

CALCULATION EPM-PJA-063092

9608020113 960726 PDR ADOCK 05000390 P PDR PDR

DNE CALCULATIONS

• •

QA Record SHEET 1A OF 39

	CULATION	ION OF DESIGN BASIS R S, AND VALVE AND ACT V-68-332					PLANT/UNIT WATTS BAR NUCLEAR PLANT/#1
PREPARING C DNE, ABB IM		ION CO, MECHANICAL				DESCRIPTORS ACTUATORS	
BRANCH/PROJECT IDENTIFIERS MEB-WBN-68 WBN-68-D053		origi	Each time these calculations are issued, prep original (RO) RIMS accession number is filled Rev. (for RIMS' use)			•	
EPM-PJA-063	092		RO	R0 B18 921113 285			
APPLICABLE N/A		CUMENT(S)	RY			(64) B 2	6 '950831
SAR SECT 3.9.3.		UNID SYSTEM(S) 68	R		<u></u>		
REVISION O				R4	R	R	Safety-related? YES [X] NO [
ECN No <u>. (</u> or Ir N/A	ndicate Not	Applicable)	5-379	37,A			Statement of Problem: NRC Generic Letter 89-10
Prepared: P. J. Antonvich			Reguires that each develop, impleme		requires that each licensee develop, implement, and document a program which		
Checked/Verified: (T. S. Snead		TVL	EASE			ensures that specified safety- related motor-operated valves (MOVs) will perform their	
Reviewed: T. J. Miller		8604	Coll			safety function for the life of the plant.	
Approved: T. J. Miller			13ACr	enti	·		Part of this program involves the documentation of MOV design basis review,
Date:	11/1	2/92		-97			determination of required thrust/torque, and assessment of valve and actuator
USE FORM TVA 10534	List all pa revision	ages added by this		E REV. OG			capability.
IF MORE SPACE REQUIRED	List all pa revision	ages deleted by this	2	КЕУ. 6G			ORIGINAL
	List all pa revision	ages changed by this	1	E Rev. G			
revie Mech speci actua	that m calculation w has been nanical Desi fied in NRC ator are cap	performed and the requir gn Standards DS-M18.2. Generic Letter 89-10. As	Ye sis review ed thrust, 21 and DS s summari thrust/tord	s[] and requir (torque has S-M18.2.22 ized in Sect que requirer	No [X] ed thrust/tord been determ 2. This metho ion 8.0 this d ments. There	ined per the m dology addres alculation sho	For $-48-332$. 1-164-62-133. The design basis nethodology specified in seed the new requirements ows that the value and value in the results of this calculation
		ntains special requirement	-		[X]		·
		culations in RIMS Service alculations to: Calculation					Microfilm and destroy. [] Address: IOB-1E

THIS PAGE ADDED BY REVISION 4 තැහ රෝන්ත්ර

REVISION LOG

MEB-WBN-68, WBN-68-D053, EPM-PJA-063092

SHEET 2 OF 39

×.

TITLE: DOCUMENTATION OF MOV DESIGN BASIS REVIEW FOR 1-FCV-68-332		
REVISION NUMBER	DESCRIPTION OF REVISION	DATE APPROVED
0	ORIGINAL ISSUE Prepared by: P. J. Antonvich PPA 11/11/92 Checked by: T. Snead 252 11/12/92	11/12/92
1	This revision incorporates Design Change Notice W-12962-A for the spring pack replacement (0301-112) for 1-FCV-68-332 Pages Added: 3A	5/25/93
	Pages Revised: 4, 9, 20, 21, 37, 1, 2 Pages deleted: 0 Prepared: M. R. Johnson Total Pages: 41 Checked: AMMA	
2	This revision incorporates Design Change Notice <u>F-22416-A</u> for increased Actuator thrust rating of 140% above the nominal thrust rating of 14,000 lbs. (SB-00). Pages Added: 3B, 3C, 3D Pages Revised: 1, 2, 4, 12, 35, 37, 38 Pages Deleted: 0 Total Pages: 44 Prepared BY: M. R. Johnson My 1/4/94 Checked BY:	REAL for FAK 1/4/94

REVISION LOG

MEB-WBN-68, WBN-68-D053, EPM-PJA-063092

SHEET 2A OF 39

4

TITLE: DOCUMENTATION OF MOV DESIGN BASIS REVIEW FOR 1-FCV-68-332				
REVISION NUMBER	DESCRIPTION OF REVISION	DATE APPROVED		
3	This revision incorporates the following MOV issues: elevated temperature effects, seismic evaluation, EOI evaluation, reconciled DP test data	12/21/94		
	Pages Revised: 1, 4, 5, 7, 9-18, 22-28, 30, 32-34, 37, 38, 36, 21 Pages Added: 2A, 3E, 3F, 3G, 24A, Art. 2(4pss), A++ 3 (11pss)			
	Pages Deleted: μ_{ade} $T_{afel} = \rho_{ades} = G_{ade} = G_{ade} = \frac{12/14/94}{12/14/94}$ DCCM and CCRIS search was performed on $\frac{11/10/94}{11/10/94}$ and no changes were found which affect this calculation. μ_{ad}			
	Prepared: 12/14/94 Checked: MM 12/16/94			
Ч	This revision incorporates the following MOV issues: revised reconciled DP test data and mispositioning evaluation, 14× 1/12/95 Pages Revised: 1,2A, 4,5,7,9-11,17,21,24,27,30,12,14,20,22	8-31-95		
	Pages Added: 1A, 3F, ATT. 2 (4PGS)			
	Pages Deleted: ATT. 2 (4 PGS)			
	DCCM and CCR15 search was performed on 6/29/95 and no changes were found which affect this calculation.			
	Prepared: D.C. Busche 6/30/95 Checked: Bomas V. R. 7/12/95-			

LIENT: TENNESSEE VALLEY AUTHORITY PROJECT: WATTS BAR NUCLEAR PLANT UNIT 1

SUBJECT: DOCUMENTATION OF MOV DESIGN BASIS REVIEW FOR 1-FCV-68-332

CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM

MEB-WBN-68, WBN-68-D053, EPM-PJA-063092 Calculation No.

0 Revision

Method of design verification (independent review) used (Check method used):

- 1. Design Review X
- 2. Alternate Calculation NR

3. Qualification Test NR

Justification (explain below):

<u>Method 1</u>: In the design review method, jusiify the technical adequacy of the calculation and explain how the adequacy was verified. (Calculation is similar to another, based on accepted handbook methods, appropriate sensitivity studies included for confidence, etc.)

- <u>tethod 2</u>: In the alternate calculation method, identify the pages where the alternate calculation has been included in the calculation package and explain why this method is adequate.
- <u>Method 3</u>: In the qualification test method, identify the QA documented source(s) where testing adequately demonstrates the adequacy of this calculation and explain.

This design review was conducted in accordance with TVA Design Standards DS-M18.2.21 and DS-M18.2.22. Calculation methodology and results were compared to these standards and were found to meet the technical requirements contained therein. The design input and assumptions were verified and found to be reasonable. The calculation results are adequately conservative. The computations were checked, and the evaluation of the differential and line pressure scenarios was confirmed using the references in Section 5.0.

Amend

11/12/92 Date

Design Verifier (Independent Reviewer)

SHEET 3A OF 39

CLIENT: TENNESSEE VALLEY AUTHORITY PROJECT: WATTS BAR NUCLEAR PLANT UNIT 1

SUBJECT: DOCUMENTATION OF MOV DESIGN BASIS REVIEW FOR 1-FCV-68-332

CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM

MEB-WBN-68, WBN-68-D053, EPM-PJA-063092 Calculation No.

Revision

Method of design verification (independent review) used (Check method used):

 1. Design Review
 X

 2. Alternate Calculation
 NR

3. Qualification Test <u>NR</u>

Justification (explain below):

<u>Method</u> 1: In the design review method, justify the technical adequacy of the calculation and explain how the adequacy was verified. (Calculation is similar to another, based on accepted handbook methods, appropriate sensitivity studies included for confidence, etc.)

- Method 2: In the alternate calculation method, identify the pages where the alternate calculation has been included in the calculation package and explain why this method is adequate.
- <u>Method</u> 3: In the qualification test method, identify the QA documented source(s) where testing adequately demonstrates the adequacy of this calculation and explain.

This design review was conducted in accordance with TVA Design Standards DS-M18.2.21 and DS-M18.2.22. Calculation methodology and results were compared to these standards and were found to meet the technical requirements contained therein. The design input and assumptions were verified and found to be reasonable. The calculation results are adequately conservative. The computations were checked, and the evaluation of the differential and line pressure scenarios was confirmed using the references in Section 5.0.

5/25/03

Design Verifier (Independent Reviewer) Date

SHEET 3B OF 39

CLIENT: TENNESSEE VALLEY AUTHORITY PROJECT: WATTS BAR NUCLEAR PLANT UNIT - 1

SUBJECT: DOCUMENTATION OF MOV DESIGN BASIS REVIEW AND THRUST/TORQUE CALCULATIONS FOR 1-FCV-68-332

CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM

MEB-WBN-68, WBN-68-D053, EPM-PLA-063092

Revision

Method of design verification (independent review) used (Check method used):

1. Design Review X

2. Alternate Calculation _____NR

3. Qualification Test _____NR

Justification (explain below):

Calculation No.

Method 1: In the design review method, justify the technical adequacy of the calculation and explain how the adequacy was verified. (Calculation is similar to another, based on accepted handbook methods, appropriate sensitivity studies included for confidence, etc.)

Method 2: In the alternate calculation method, identify the pages where the alternate calculation has been included in the calculation package and explain why this method is adequate.

Method 3: In the qualification test method, identify the QA documented source(s) where testing adequately demonstrates the adequacy of this calculation and explain.

This design review was conducted in accordance with TVA Design Standards DS-M18.2.21 and DS-M18.2.22. Calculation Methodology and results were compared to these standards and were found to meet the technical requirements contained therein. The design input and assumptions were verified and found to be reasonable. The calculation results are adequately conservative. The computations were checked, and the evaluation of the differential and line pressure scenarios was confirmed using the references in Section 5.0

Design Verifier

(Independent Reviewer)

THIS PAGE ADDED BY REVISION 2

CLASSIFICATION, CATEGORIZATION AND MAINTENANCE OF DESIGN CALCULATIONS

SHEET 3C OF 39

R

1/12

CALCULATION CLASSIFICATION & CATEGORIZATION

PLANT/UNIT <u>WBN</u> RIMS NO. <u>NR</u>	MEB-WBN-68 WBN-68-D053 IDENTIFIER_EPM-PJA-063092 REV ISSUE DATE MOV DESIGN BASIS REVIEW AND THRUST/TORQUE VALVE AND ACTUATOR CAPABILITY FCV-68-332	ר דיר (בין קחן
SYSTEM(S), COMPONENT, FEATURE	OR SUBJECT OF CALCULATION SYSTEM/DESCRIPTION	
(X) SAFETY SYSTEM	SYSTEM NO. 68	<u>^</u> 2
(X) SAFETY RELATED FEATURE	RCS Relief Flow Control Value	RS Ludak
() NON-SAFETY SYSTEM	SYSTEM NO.	mg 12/19/93
() NON-SAFETY RELATED FEATUR	E	
() PLANT ENVIRONMENT (EQ, ETC.)		
() APPENDIX R		
() CIVIL STRUCTURES		
() INSTRUMENTATION (PAM, ETC.)		
() LICENSING		
() OTHER		
CALCULATION CATEGORY _ E06		
FINAL CLASSIFICATION		
(X) ESSENTIAL () DESIRABLE SUBMITTED Wahl for REVIEWED APPROVED	() FILE ONLY () SUPERSEDED DATE $1/4/94$ DATE $05.74N.94$ DATE $1/6/94$	Rev. 3 mol 12/14/94 Appme, 2/10/44 Me 12/21/94
THIS	PAGE ADDED BY REVISION 2	REV. 4 2B/ 7/12/95

R

250 7/12/15

Tol 7/12/95 Ne 8/31/95 ¢3

EBASCO	SERVICES	INCORPORATED

CLASSIFICATION, CATEGORIZATION AND MAINTENANCE OF DESIGN CALCULATIONS

SHEET 3D OF 39

Attachment 1 CALCULATION CLASSIFICATION & CATEGORIZATION

IDENTIFIER: MEB-WBN-68, WBN-68-D053, EPM-PJA-063092 PRELIMINARY CLASSIFICATION

(X) ESSENTIAL() FILE ONLY() DESIRABLE() SUPERSEDED

CALCULATION CLASSIFICATION JUSTIFICATION:

SUBMITTERThis calculation documents the design basis review and required thrust/torque for MOV 1-FCV-68-332. The calculation addresses the requirements specified in NRC Generic Letter 89-10.

REVIEWER	() AGREE WITH CLASSIFICATION	() DISAGREE - COMMENTS REQUIRED
·		
APPROVER	() AGREE WITH CLASSIFICATION	() DISAGREE - COMMENTS REQUIRED
·		

THIS PAGE ADDED BY REVISION 2

SHEET 3E OF 39

٦

WATTS BAR NUCLEAR PLANT UNIT 1

SUBJECT: DOCUMENTATION OF MOV DESIGN BASIS REVIEW FOR 1-FCV-68-332

CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM

MEB-WBN-68, WBN-68-D053, EPM-PJA-063092 Revision Calculation No.

Method of design verification (independent review) used (Check method used):

1.	Design Review	X
	Alternate Calculation	NR
3.	Qualification Test	NR

Justification (explain below):

In the design review method, justify the technical adequacy of the Method 1: calculation and explain how the adequacy was verified. (Calculation is similar to another, based on accepted handbook methods, appropriate sensitivity studies included for confidence, etc.)

Method 2: In the alternate calculation method, identify the pages where the alternate calculation has been included in the calculation package and explain why this method is adequate.

ethod 3: In the qualification test method, identify the QA documented source(s) where testing adequately demonstrates the adequacy of this calculation and explain.

This design review was conducted in accordance with TVA Design Standards DS-M18.2.21 and DS-M18.2.22. Calculation methodology and results were compared to these standards and were found to meet the technical requirements contained therein. The design input and assumptions The calculation results are adequately were verified and found to be reasonable. conservative. The computations were checked, and the evaluation of the differential and line This revision pressure scenarios was confirmed using the references in Section 5.0. evaluation, incorporates elevated temperature effects, EOI evaluation, seismic and reconciliation of DP test data.

THIS PAGE ADDED BY REV 3

Design Verifier

(Indépendent Reviewer)

11/11/91

1

Revision

CLIENT: TENNESSEE VALLEY AUTHORITY PROJECT: WATTS BAR NUCLEAR PLANT UNIT - 1

SUBJECT: DOCUMENTATION OF MOV DESIGN BASIS REVIEW AND THRUST/TORQUE CALCULATIONS FOR 1-FCV-68-332

CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM

MEB-WBN-68, WBN-68-D053, EPM-PLA-063092 Calculation No.

Method of design verification (independent review) used (Check method used):

1. Design Review ____X

2. Alternate Calculation ____ NR ____

3. Qualification Test _____NR____

Justification (explain below):

- <u>Method 1</u>: In the design review method, justify the technical adequacy of the calculation and explain how the adequacy was verified. (Calculation is similar to another, based on accepted handbook methods, appropriate sensitivity studies included for confidence, etc.)
- <u>Method 2</u>: In the alternate calculation method, identify the pages where the alternate calculation has been included in the calculation package and explain why this method is adequate.
- Method 3: In the qualification test method, identify the QA documented source(s) where testing adequately demonstrates the adequacy of this calculation and explain.

This design review was conducted in accordance with TVA Design Standards DS-M18.2.21 and DS-M18.2.22. Calculation Methodology and results were compared to these standards and were found to meet the technical requirements contained therein. The design input and assumptions were verified and found to be reasonable. The calculation results are adequately conservative. The computations were checked, and the evaluation of the differential and line pressure scenarios was confirmed using the references in Section 5.0. This revision incorporates revised test data reconciliation and mispositioning evaluation.

DoniasV. (

Design Verifier (Independent Reviewer)

THIS PAGE ADDED BY REVISION 4 アの 6/30/95

CLIENT: ROJECT: UBJECT:

TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT UNIT - 1 DOCUMENTATION OF MOV DESIGN BASIS REVIEW AND THRUST/TORQUE REQUIREMENTS FOR 1-FCV-68-332

BRANCH/PROJECT IDENTIFIERS: MEB-WBN-68, WBN-68-D053, EPM-PJA-063092

PREPARER: P. J. Antonvich	1º 1 A	DATE: 11/11/92
CHECKER: T. Snead)H	DATE: 11/12/92

TABLE OF CONTENTS

TITLE	SHEET NOS.
Calculation Cover Sheet	1
Revision Log	
Calculation Design Verification (Independent Review) Form	
Table of Contents	
SUMMARY OF ANALYSIS	
1.0 Purpose and Scope	£5
z.0 Criteria	
3.0 Applicable Codes and Standards	
4.0 Assumptions	
5.0 References	
6.0 Design Input Data	
7.0 Calculations	
8.0 Summary of Calculation Results	
9.0 Conclusions	
ATTACHMENTS	~ I
1. Simplified Sketch (page 1 of 1)	
THIS CALCULATION PACKAGE CONTAINS 40 TOTA	AL SHEETS 6734 95 R2 m
Attachment 2 : Reconciliation Process (4 p35) Arrachment 3 : Test bata (11 pgs)	R1 0.774 m4 4/6/93 with 44 J15 5/25/97
	AQ 1

SHEET 4 OF 39

ilular

OF 39

R3 RY

SHEET 5

REVISION 0 SUBJECT: DESIGN BASIS REVIEW AND THRUST/TORQUE CALCULATION FOR 1-FCV-68-332

BRANCH/PROJECT IDENTIFIERS: MEB-WBN-68, WBN-68-D053, EPM-PJA-063092

PREPARER: P.	J. Antonvich	P7A	DATE: 11/11/92
CHECKER : T.	Snead	df-	DATE: 1/12/92

1.0 PURPOSE AND SCOPE

1.1 <u>Purpose</u>

1.2

This calculation documents the design basis review, performs the required thrust/torque calculation, and assesses the valve and actuator capabilities. The results of this calculation are the total valve package which contains the comprehensive Generic Letter 89-10 engineering analysis for the Reactor Coolant System Relief Flow Control Valve (Train B), 1-FCV-68-332, including elevated temperature effects mismic wolliation, and scaled text data, mispositioning evaluation and evaluation Scope of Emergency Operating Instructions (FOIs).

The design basis review will be performed in accordance with TVA Mechanical Design Standard DS-M18.2.22 (Sect. 3.2). Its purpose is to identify the functional, seismic, and electrical considerations which will influence the valve's, 1-FCV-68-332, ability to perform its design function and also to document specific design information on both the valve and operator (Sections 7.1 through 7.5). The calculated maximum thrust/torque capability will be compared to the thrust/torque requirements, also calculated herein using TVA Mechanical Design Standard DS-M18.2.21 (Sect 3.1), in order to ensure sufficient thrust/torque is available to operate the valve.

The valve and operator thrust/torque capabilities and requirements are based on the worst case line/differential pressures and electrical conditions, as identified in the design basis review.

SHEET 6 OF 39
REVISION 0
DRQUE CALCULATION FOR
N-68-D053, EPM-PJA-063092
1-00-D055, EPM-PJA-063092
11.102
DATE: ///////
DATE: 11/12/92

1.3 CORRELATION

This calculation is presented in Ebasco Project Procedure E-30-TVA format. To identify the location of data required by TVA Design Standard DS-M18.2.22 the following correlation is provided.

<u>DS-M18.2.22</u> DATA Se	ction	E-30-TVA FORMAT
Purpose	1.0	1.0
Assumptions	2.0	4.0
References	3.0	5.0
Design Basis Review	4.0 - 4.4	7.0 - 7.44
Calculations	4.5	7.5
Walkdown	5.0	7.6
Conclusion	6.0	8.0 & 9.0

2.0 CRITERIA

The motor-operated valve, 1-FCV-68-332, shall be evaluated using TVA Nuclear Design Standards DS-M18.2.21 and DS-M18.2.22.

SHEET 7

OF 30

REVISION	0 7
SUBJECT: DESIGN BASIS REVIEW AND THRUST/TORQUE CALCULATION	FOR
1-FCV-68-332	
BRANCH/PROJECT IDENTIFIERS: MEB-WBN-68, WBN-68-D053, EPM-PJA	A-063092
DEPARED: R J Antonvich P7A DATE:	11/11/92
	11/1/9 -
CHECKER : T. Snead DATE:	11/12/92
· ·	

3.0 APPLICABLE CODES AND STANDARDS

- 3.1 TVA Nuclear Power Mechanical Design Standard DS-M18.2.21, R3 "Motor-Operated Valve Thrust and Torque Calculations", Rev. X, dated 07/29/91
- 3.2 TVA Nuclear Power Mechanical Design Standard DS-M18.2.22, "MOV Design Basis Review Methodology", Rev. 1, dated 07/29/91.
- 3.3 NRC Generic Letter 89-10, "Safety-Related Motor-Operated Valve Testing and Surveillance", dated June 28, 1989, and Supplements.
- Not Used. 3.4 Supplement 1-to NRC Generic Letter 89-10, "Results of Public-Workshops", dated June 13, 1990
- 3.5 "Application Guide for Motor-Operated Valves in Nuclear Power Plants", EPRI Report NP-6660-D, Final Report dated March 1990.

6/30/95

SUBJECT: DESIGN BASIS REVIEW AND THRUST/TORQUE CALCULATION FOR 1-FCV-68-332 BRANCH/PROJECT IDENTIFIERS: MEB-WBN-68,WBN-68-D053, EPM-PJA-063092

PREPARER:	P.	J. Antonvich	P 274	DATE: 11/11/92
CHECKER :	Τ.	Snead	dit.	DATE: ///2/92

4.0 ASSUMPTIONS

- 4.1 Valves are assumed to be in and remain in their normal position during normal operation or accident condition such that the effects of mispositioning can be determined. The technical justification for this assumption is to assure that the valves are evaluated at the maximum line and differential pressures.
- 4.2 The pressure drop for piping losses is neglected in the calculation. The technical justification for this assumption is that it allows for a conservative determination of line and differential pressure.

SHEET<u>9</u>OF<u>39</u> REVISION 0

DESIGN BASIS REVIEW AND THRUST/TORQUE CALCULATION FOR SUBJECT: 1-FCV-68-332 MEB-WBN-68,WBN-68-D053, EPM-PJA-063092 BRANCH/PROJECT IDENTIFIERS: DATE PREPARER: P. J. Antonvich DATE: 1//72 CHECKER : T. Snead pm REFERENCES 5.0 (6) TVA WBN Calculation EPM-TSS-110791, Rev. X, "Generic Letter 5.1 89-10 MOV Population at Watts Bar (Unit 1)" TVA Design Basis Document, System Description N3-68-4001, 5.2 Revision 2 thru DCN $\frac{S-17564}{S-31944}$, "Reactor Coolant System" 36005 TVA Mechanical Piping Drawing 48W465-7, Rev. 7, "Reactor 5.3 Coolant Auxiliary and Miscellaneous Piping" 28 35 130/95 "Cable Ampacity - NV4 & NV5 TVA WBN WBPEVAR8909010, Rev. 26, 5.4 Cables in Class 1E Raceways" TVA WBN DCN M-12962-A, "MOV Uniqueness and Thrust 5.5 Requirements", (RIMS # <u>B26 901004 827</u>) (T56 930323 840 z33)20) "Reactor Coolant TVA WBN Flow Diagram 1-47W813-1, Rev 5.6 mp12/14/14 (120195 System" TVA Mechanical Piping Drawing 47W465-2, Rev. 2, "Reactor 5.7 Coolant Auxiliary & Miscellaneous Piping" Ŗ ע-ט-ש TVA Site Instruction SI-4.0.5.68.A, Rev. 7, "Valve Full Stroke Exercising During Plant Operation - Reactor Coolant,", Watts Bar Nuclear Plant 5.8 Watts Bar Nuclear Plant TVA WBN Schematic Diagram, 1-45W760-68-5, CCD, Rev. 5.9 "Reactor Coolant System Schematic Diagram" -Nov. ++-5.10 TVA WBN-Letter, dated June 26, 1992, "Evaluation -Sizing-for-the Generic-Letter 89-10 Motor Operated Valve -(MOV) Program" (RIMS # T41 920626 868) T44 921111 033 Not Used. 6/30/95 5.11 Westinghouse Electric Corporation Letter WAT-D-8939, dated July 30, 1992, "Seismic Qualification of Westinghouse Gate Valves for Watts Bar" (RIMS # T33 920730 983)

SUBJECT:		ET <u>10</u> 0F <u>39</u> VISION 0 ATION FOR
	1-FCV-68-332 OJECT IDENTIFIERS: MEB-WBN-68,WBN-68-D053, EP	
PREPARER:	P. J. Antonvich MA T. Snead DAT	DATE: $\frac{11/1/92}{11/12/92}$
5.0	REFERENCES (Continued)	
5.12	2 Westinghouse Letter WAT-D-6874, dated 02/24/8 Ennis (TVA), "Data Base for Motor Operated Va	36, to E. R. alves"
5.13	Westinghouse Drawing 115E010, Rev. 902, "Moto Valve - Mod. 03000GM88FNH008, 3-1500 ASME Cla Contract No. 71C62-54114-2	or Op. Gate ass 1 GPO ASSY",
5.14	A Marks Standard Handbook for Mechanical Engine Edition	eers, Eighth
5.15	5 Westinghouse Electric Corporation Letter WAT 6/25/91, Contract # 71C62-54114-1 "Maximum A Thrusts" (RIMS #B26 91 0805 300)	-D-8584, dated Llowable
5.16	5 TVA QIR MNMWBN 92022, Rev. 0, Limitorque Acti Switch Setting Chart for New Replacement Spr (RIMS # T81 920804 937) TVA w Br Vendor Technical Rev. 15, Section 0240, Technical Details for Contrargue SmB	ing Dadie !!
5.17		
5.18	B Limitorque Selection Guides:	AR ulular
	5.18.1 Application Factors, SEL-4, Revised	
	5.18.2 Gate & Globe Valve Efficiency Chart,	SEL-7, 11/89.
	5.18.3 Stem Factors, SEL-10, dated 05/21/79	
	5.18.4 Rating Sheets, SEL-9, Rev. 2, Dated	6/2/75.
5.19	9 TVA WBN SOER 84-07, dated 6/7/91, "Identific Valves Subject to Thermal Binding and Bonnet Overpressurization"	ation of Gate

5.20 Westinghouse Letter WAT-D-8830, "EMD Gate Valve Wedge Angle Information", dated 4/23/92 (Rims #T33 920423 954)

.

:	EBASC	CO SERVICES INCORE	SHEET	11_OF_ <u>39_</u>	
			REVISI	ON 0	
UBJECT:	DESIGN BASIS REVIE 1-FCV-68-332				
RANCH/PRO	JECT IDENTIFIERS:	MEB-WBN-68, WBN-6	8-D053, EPM-P.	JA-063092	7
	P. J. Antonvich		DAT	E: //////	-
HECKER :_	T. Snead	All	DATE :	11972	
					رين
	REFERENCES (Contin		39-47		K RH
5.21	TVA WBN Calculatio Power System Analy Auto Load Tap Chan	n AEEB-MS-TI06-001 sis on 1E Buses V	0, Rev. Ø, "A ia CSST C and	uxiliary CSST D with	ઝેટક ઇંગ્રેગ
5.22	Westinghouse Equip "Motor Operated Ga Code Section III C 1.	te Valves ASME Bo	oiler and Pres	sure vessel	
5.23	TVA EQ Binder WBNE Qualification Docu	Q-MOV-001, Rev. A mentation Package	, "Environmen	tal	12/95 R4 12/95 PCB
.5.24	TVA WBN Calculation Coordination/Prote	on WBN-EEB-MS-TI08 ection"	-0008, Rev. 2	8, "480V 1E	
5.25	Westinghouse Field NEB 830223 358)	l Change Notice FC	CN NO. WATM-10	640 (RIMS #	
5.26	TVA WBN Valve Inde Contract No. 71C62	ex by ID, WAT-ID, 2-54114-1 (RIMS #	Rev. 10, date B26 861230 90	d 9/30/86 0)	
5.27	TVA WBN Site Instr S troke Exercising	ruction 4.0.5.68.E During Cold Shute	, Rev. 1, "Va lown Reactor	lve Full Coolant"	ጽዛ
	Not Used. TVA WBN-Letter, da -(WBN) - Evaluation -89-10 Motor Operat	n of Cable Sizing	-for the Gener	ic Letter	
5.29	TVA Electrical Des EX-DS-12.6.3, "Cat Control Power Cabl			ا مراجع المراجع	R4
5.30	TVA WBN-OSG4-095, Requiring Thermal	Rev. 7, "Selection	on Criteria fo	r MOVS	B [12]95
5.31	TVA Procedure Meth Impedance to be Us 890822 908) Westingha Analyses" (Rims # 733	sed in Electrical	Calculations"	- (RIMS # B43	Alter

.

SHEET 12 OF 39

		REVISION 0
SUBJECT: DESIGN BASIS REVIE	W AND THRUST/	TORQUE CALCULATION FOR
1-FCV-68-332		
BRANCH/PROJECT IDENTIFIERS:	MEB-WBN-68,W	NBN-68-D053, EPM-PJA-063092
PREPARER: P. J. Antonvich	PIA	DATE: /1/11/92
CHECKER T Spead	241	DATE: 1/12/162

5.0 **REFERENCES** (Continued)

- 5.32 Operability Test Report of Westinghouse Nuclear Gate Valves, Dated 1/28/77, Engineering Memorandum No. 4995
- 5.33 TVA QIR MNN WBN 89006, Rev. 0, "Motor Operator Valves-Stroke Times" TVA WBN VenderTechnical Manual WBN-VTM-L200-0010, Rev. to Section 0380, "Limitorque Technical Update 93-03, (B) Elevated Temperature Effects"

A review of DCCM was performed and no outstanding changes affect this calculation.

6.0 DESIGN INPUT DATA

- 6.1 The design input for determining the Motor Operated Valve Design Basis and the motor operated valve thrust/ torque requirements, operation and capability was obtained from References listed in Section 5.0.
- 5.34 TVA WBN Letter between Limitorque (Pat McQuillian) and TVA WBN Engineering Manager (Bob Johnson), dated 1/4/94, T28 940104-800, Subject: Increased Actuator Thrust Rating. P/3//94, T24 940922 433

TVA WON Vendor Technical manual WON-VTM-W120-0800 Rev. & Section 2958, "Westinghouse Emb Values" 5,35 73 AS 1 191 Hizlas 0 00

SUB3 BRAN	VECT: DESIGN BASIS REVIEW AND THRUST/TORQUE 1-FCV-68-332 ICH/PROJECT IDENTIFIERS: MEB-WBN-68,WBN-68-D(
PREP	ARER: P. J. Antonvich	. / /
CHEC	KER : T. Snead	$\underline{\qquad DATE: \frac{11/11/92}{11/12/97}}$
		DATE:////42_
7.	0 CALCULATIONS	
7.3	1 SYSTEM DESIGN BASIS DATA	DATA SOURCE
1.	VALVE NO: <u>1-FCV-68-332</u>	
2.	MARK NO : 8000B	Ref. 5.1 p ³
2		<u>Ref. 5.25;</u> <u>Ref. 5.12, p-2</u> <u>Ref. 5.23, p-F116</u>
3.	DESCRIPTION: RCS Pressure Religf Flow 9	<u>Ref.</u> 5.9
4.	RCS Pressure Relief Flow Control Valve SAFETY FUNCTION:	e (Train B)
		Ref. 5.2, pp 54
	<u>Remains open and must be able to be ope</u> providing a depressurization path	ed to align the popula
	providing a depressurization path. isolate the PORV in the event it fails	The valve is closed to
5.	SEISMIC CLASS: <u>Category I (Active)</u>	LO CIOSE.
	<u></u>	<u>See Comment 7.1.5</u> <u>Ref. 5.2, pg 164</u>
6.	SYS DESIGN PRESS: 2510 psig	
	SYS DESIGN TEMP : <u>680°</u> F	<u>Ref. 5.2, pg 166-</u>
7.	NORMAL DOCTOR	Ref. 5.2, pg-166
		See Comment 7.1.7
8.	SAFETY POSITION: <u>Close</u>	See Comment 7.1.7
	FLOW RATE: 210,000 lb/hr @ 2265 psia	Ref. 5.2, pg-166
9.	MAX LINE/DIFFERENTIAL PRESS:	Comment 7.1.9
· .	Normal Plant Operation:Line P/Diff. PTesting:OPEN2235/2235Accident:OPEN2235/0Misposition:OPENNR2510/2510	Line P/Diff. P CLOSE <u>2235/0</u> CLOSE <u>2235/0</u> CLOSE <u>2335/2335</u>
10.	FLUID TYPE: Liquid & Saturated Steam - Reactor Coolant	CLOSE2335/2335 Ref. 5.2, pg 54 & 55
	FLUID TEMP: <u>680 ° F</u>	<u>Ref. 5.2, pg 159</u>

145

	EBASCO SERVICES INC		
		SHEET <u>14</u> OF <u>39</u> REVISION 0	
	T: DESIGN BASIS REVIEW AND THRUST/TO 1-FCV-68-332	DRQUE CALCULATION FOR	
BRANCH	/PROJECT IDENTIFIERS: MEB-WBN-68, WBN	N-68-D053, EPM-PJA-063092	
PREPAR	ER: P. J. Antonvich P7A	DATE: /////92	
CHECKE	R : T. Snead	DATE://///92_	
7.0	CALCULATIONS (Continued)		
7.1	SYSTEM DESIGN BASIS DATA (Continued)) DATA SOURCE	1
1 1		$\frac{5.2}{(\text{design})}$ Ref. $\frac{5.33}{\text{pg}-5}$	ļ
11.	REQUIRED STROKE TIME: <u>10.0 seconds</u> I-SI-68-901-B	raesigny rel	
	APPLICABLE SI: <u>SI-4.0.5.68.B</u> .	set	
12.	LEAK TIGHTNESS REQUIREMENT: <u>9 cc/hr</u>	See Comment 7.1.12	9
13.	MOV CAN BE FULL FLOW TESTED? <u>N</u> (YES,	/NO) <u>See Comment 7.1.13</u>	
14.	BONNET OVERPRESSURIZATION/THERMAL B PRESSURE LOCKING <u>N</u> (Y/N)	INDING/ See Comment 7.1.14	
15.	ORIENTATION OF VALVE:	Ref. 5.3 Ref. 5.7	
		Ref. 5.23, pg F117	
	Line: Horiz <u>X</u> VertDegrees from ve Stem: HorizVert <u>X</u> Degrees from ve	ertical ?jjulas	
16.	BUTTERFLY VALVE CHARACTERISTICS: 1	Not Required For a Gate Valve	
	Flow velocities:	Not Required For a Gate Valve	
•	Piping arrangements:	Not Required For a Gate Valve	
17.	AMBIENT TEMPERATURE: 60° to 120°F (No	rmal) <u>Ref. 5.17</u>	
	<u>327°F Maximum Ac</u>	ccident	

•

.

		EBASCO SERVICE:	S INCORPORATED	
		1. 1. S.		SHEET 15 OF 39
				REVISION 0
SUBJECT:	DESIGN BASIS F	REVIEW AND THRU	ST/TORQUE CALC	ULATION FOR
	1-FCV-68-332	¢	•	
BRANCH/PRO	JECT IDENTIFIE	ERS: MEB-WBN-6	8,WBN-68-D053,	EPM-PJA-063092
	.	· D10		11/102
	P. J. Antonvic	<u>ch ///</u>	·	DATE: $////////////////////////////////////$
CHECKER :_	<u>T. Snead</u>	H		DATE: 11/12/92
		-		

7.0 CALCULATIONS (Continued)

7.1 SYSTEM DESIGN BASIS DATA (Continued)

Comments:

7.1.5 Seismic Class - Reference 5.32 provides test data for seismiequalification of Westinghouse Gate Valve of size 4" and 12". Reference 5.11 categorizes various sizes of Westinghouse gate valves into two different groups using the 4" valve as the representative for one group and the 12" valve as the representative for the other group. 1-FCV-68-332 (a 3" gate valve) is represented by the 4" valve.

> Based on Ref. 5.11 and the test results of the 4" gate valves in Ref. 5.32, pg 22, an operating thrust range of 5,500 lbs to 7,500 lbs in the opening direction, and a thrust range of 11,500 lbs to 13,600 lbs in the closing direction were noted during stroking at 2500 psid.

e?

R³

Although Section 7.5.1 of this design basis review calculates a required opening thrust of 11,898 lbs (which, is greater then the Bef. 5.32 value). Since Reference 5.32 demonstrated operability of the valve under differential pressure conditions similar to Section 7.5.1 it may be concluded that this value is seismically qualified for its application.

Valve Position - The PORV Block valve is required to be open 7.1.7 (and is normally open) to allow venting of the pressurizer for plant depressurization following an accident or abnormal ulular event, in the event the PORV does not close the PORV Block valve may be required to close to stop RCS depressurizaiton (Ref. 5.2, pp. 54-&-55).

Reference 5.31 provides seismic qualification for these pith Valves for accelerations of 3.0 g's horizontal and 2.1 g's vertical and an operating thrust / torque of 20,000 16f /250 fe-16.

CUEET

		SHEET 10 OF 39
		REVISION 0
SUBJECT: DESIGN BASIS REVIEW 1-FCV-68-332	N AND THRUST/TORQUE (
	MEB-WBN-68, WBN-68-DO	053 EDM-DIA-062002
BRANCH/PROJECT IDENTIFIERS.	MED-WEN-00, WEN-00-DV	000, EPM-P0A-000092
PREPARER: P. J. Antonvich	PTA	DATE: 1//1/92
CHECKER : T. Snead	det -	DATE: 11/12/92

7.0 <u>CALCULATIONS</u> (Continued)

7.1 <u>SYSTEM DESIGN BASIS DATA</u> (Continued)

7.1.9 <u>Analysis of flow rate and maximum line/differential pressure</u> for normal, testing, accident, and mispositioning scenarios:

Computation of maximum expected line pressures, differential pressures and flow velocity for RCS Pressure Relief Flow Control Valve (Train B), 1-FCV-68-332. Refer to Attachment 1, Simplified Sketch.

<u>Opening (Accident/Abnormal Conditions)</u> - The PORV Block value is required to be open (and is normally open) to allow venting of the pressurizer for plant depressurization following an accident or abnormal event (Ref. 5.2, p. 54). Therefore, it is not required to open under accident conditions.

Closing (Accident/Abnormal Conditions) - The PORV Block valve may be required to close to stop RCS depressurization in the event the PORV does not close. (Ref. 5.2 - pp. 4, -55, 164). In this scenario, the PORV would be isolated when it was determined it would not close. This would be at some pressure below the PORV setpoint. The maximum differential pressure for this operation occurs at an upstream pressure of 2335 psig based on the PORV setpoint (Ref. 5.2, pg. 179) and downstream pressure of 0 psig which results in a differential pressure of 2335 psid at a line pressure of 2335 psig. The downstream pressure in the pressurizer relief tank (PRT) is normally 3 psig (Ref. 5.2, pg. 163) but is taken as zero for conservatism and simplicity. Accumulation and setpoint drift are not applicable as the value would not be shut until pressure dropped below the PRV setpoint regardless of lift pressure. Opening and Closing (Normal/Test Operations) - The valve may be required to be closed for maintenance or PORV testing and would subsequently be opened to restore the PORV flow path. During normal power operation, the differential pressure is 2235 psid at a line pressure of 2235 psig for opening operations. This is based on an upstream pressure at maximum normal system pressure (Ref. 5.2, pg. 130) and negligible pressure in the PRT (see: Closing Accident/Abnormal conditions). The valve is stroked for surveillance testing (Ref\$.5.8-6-5.27). The opening and closing operation would occur at 0 psid differential pressure, as the PORV is closed, at a line pressure of 2235 psig. Conditions at cold shutdown are bounded by the power operations scenario. 11/11/94

	LBAS	SCO SERVICES	INCORPORATED		
				SHEET 17 OF 39 REVISION 0	
SUBJECT:	DESIGN BASIS REVI 1-FCV-68-332	EW AND THRUS	ST/TORQUE CALC	CULATION FOR	
BRANCH/PR	ROJECT IDENTIFIERS:	MEB-WBN-68	8,WBN-68-D053,	EPM-PJA-063092	
PREPARER:	P. J. Antonvich	P7A		DATE: 1/1/92	
CHECKER :	T. Snead	d#		DATE: ////2/92	
					- R4
7.0 <u>CA</u>	LCULATIONS (Continu	ued)	, including b opening an	both closing following inadverten nd inadvertent closure,	+
7.1 <u>SY</u>	STEM DESIGN BASIS I	<u>DATA</u> (Contin	ued)		
bo (2 op dej Wo Sa plu dou The rec ope va pre	advertent Misposit: rmal or accident/al unded by the closin 335 psig/ 2335 psic ening of the valve pressurization path rst case upstream p fety Valve setpoint us 1% setpoint error wnstream pressure e consideration of opening the valve i en, provide complet lve operation at a essure of 2510 psig	normal cond operation d). The ope following in following pressure is (RCS desig) (see Closing safety valv n not credi e overpress differentia	at accident/ ning scenario nadvertent cl an accident of based on the n pressure) o , pp. 55) and (Accident/Ab e accumulation ble as the same ure protection l pressure of	closing scenario'i abnormal condition would require osure to restore t r abnormal event. Pressurizer Code <u>f 2510 (2485 psig</u> alnegligible normal Conditions) n pressure for fety valves, once n. This results in <u>2510</u> psid and a li	s r
COMMENTS	5 pressure to 11	0% of desig	n or 2734 ps	ed to limit system	
7.1.12		rate = 3 co sign leak ra	c/hr * nominal ate. (Ref. 5.	l valve size = 3 * .22, p. 25 & Ref.	3 AL /11/41
7.1.13	pressure of 2510	psig which	is since it wo	full flow tested in ould require an RCS PORV setpoint of ent 7.1.9 above).	5
7.1.14	pressurization a attachment 1, p.	re evaluated 12) and val	le to thermal l in SOER 84-0 .ve 1-FCV-68-3	elated active gate binding or bonnet 7 (Ref. 5.19, 332 is not pressurization.	
		•			24
7,1,9	For EOI evaluation	n, the me	ax NP reflect	had .	
	section is here	1 an suite	dans		
	documented in er	igineering d	esign one	it and	
	documented in er such as the syst	an descrip	it on and the	a diana	
				- igrans.	·
					so l

Tulat .

		· · ·	
	EP	ASCO SERVICES INCORPORATE	D SHEET <u>18</u> OF <u>39</u> REVISION 0
SUBJEC BRANCH	T: DESIGN BASIS RE 1-FCV-68-332 I/PROJECT IDENTIFIER	S: MEB-WBN-68,WBN-68-D05	3, EPM-PJA-063092
	ER: <u>P. J. Antonvich</u> IR : <u>T. Snead</u>	4)17 32	DATE: ////////////////////////////////////
7.0	CALCULATIONS (Cont	inued)	
7.2	<u>Valve Design Data</u>		
VALV	VE DESIGN DATA	· · · ·	DATA SOURCE
	2	<u>CV-68-332</u>	5,13 Dof 5,2-2 55.
Valv	ve Contract No. 71C	62-54114-1	<u>Ref 5.2, p. 55;</u> <u>Ref 5.22, p. 175</u>
Valv	ve Drawing. <u>115</u>	E010	<u>Ref 5.26, p. 13</u>
1.	Valve Serial No.	03000GM88FNH00B- 00S710002	Ref 5.25, p. 2, Ref 5.23, p. F116
2.	Valve Model No.	03000GM88FNH00B	Ref 5.13 AB-
3.	Valve Mfg.	Westinghouse	Ref 5.13
4.	Valve Pressure Cla	ss. <u>1500</u>	Ref 5.13
5.	Valve Size/Type	3" Gate	<u>Ref 5.13</u> Comment 7.2.6
6.	Seat Diameter Mid	point of seat) <u>2.87"</u>	Ref 5.13
7.	Seat Angle	<u>7°</u>	Ref 5.20
8.	. Stem Diameter	1.25"	Ref 5.13
9.	Stem Pitch	0.333"	<u>Ref 5.13</u>
10.	Stem Lead	0.333"	<u>Ref 5.13</u>
11.	Stem Travel	4.31"	<u>Ref 5.13</u>
12.	Disc type <u>Fle</u>	exible Wedge Gate Valve	<u>Ref 5.13</u>

.

	· · · · · · · · · · · · · · · · · · ·	SHEET 19 OF 39
		REVISION 0
SUBJECT: DESIGN BASIS REVIE	W AND THRUST/TORQUE	E CALCULATION FOR
1-FCV-68-332	_	
BRANCH/PROJECT IDENTIFIERS:	MEB-WBN-68, WBN-68-	-D053, EPM-PJA-063092
	P74	
PREPARER: P. J. Antonvich	P/A	DATE: 1////92
CHECKER : T. Snead	211	DATE: 11/12/92
	ويستجمع والمتعادية والمتعادية والمتعالية والمتعادية والمتعاد والمتعاد والمتعادية والمتعارية والمتعاد والمتعاد والمتعا	

7.0 <u>CALCULATIONS</u> (Continued)

7.2 Valve Design Data (Continued)

Comments:

7.2.6 <u>Seat Diameter</u> - The seat diameter (2.87) was determined by the measurement shown of the valve drawing plus 0.25" (0.25" + 2.62") (Ref. 5.13). 0.25" was derived using 4 times (for conservatism) the .0625" seat width used in DS-M18.2.21, pg 4.

	1-FCV-68-332	AND THRUST/TORQUE C.	
	I/PROJECT IDENTIFIERS: M	1EB-WBN-68, WBN-68-DO 0714	53, EPM-PJA-063092 DATE: /////92-
	R : T. Snead		
7 0			
7.0	CALCULATIONS (Continued	() :	
7.3	OPERATOR DESIGN DATA		DATA SOURCE
	Valve Tag Number	1-FCV-68-332	
1.	Operator Mfg.	Limitorque	<u>Ref 5.23, pg F116</u>
2.	Operator Type/Size	SB/00	<u>Ref 5.23, pa-F116.</u>
3.	Order No.	378447в	<u>Ref 5.23, pg F116-</u>
4.	Serial No.	205839	Ref 5.23, pg F116
5.	Spring Pack No.	0301-112 	See Comment 7.3.5
6.	Overall Gear Ratio (OAR)38.6	<u>Ref 5.25, p. 2</u> Ref 5.5, p. 4
7.	Pullout/Run Efficiency	0.45 / 0:60	<u>Ref 5.18.2</u>
8.	Stem Factor (FS 0.15)	0.0116	<u>Ref 5.18.3</u> , p. 6
9.	HBC Size	Not Applicable	NO HBC UNIT INSTALL
10.	HBC Serial No.	Not Applicable	NO HBC UNIT INSTALL
11.	HBC Order No.	Not Applicable	NO HBC UNIT INSTALL
12.	HBC Gear Ratio	Not Applicable	NO HBC UNIT INSTALL
			THATCHIT THOTALD

	SHEET <u>21</u> OF <u>39</u>
	REVISION 0
SUBJECT: DESIGN BASIS REVIEW AND THRUST/TOR	RQUE CALCULATION FOR
1-FCV-68-332	
BRANCH/PROJECT IDENTIFIERS: MEB-WBN-68, WBN-	-68-D053, EPM-PJA-063092
PREPARER: P. J. Antonvich P1A	DATE: 1/11/92
CHECKER : T. Snead H	DATE: 11/12/92

7.0 CALCULATIONS (Continued)

7.3 OPERATOR DESIGN DATA (Continued)

is 154 ft-166)_

Comments:

115

7.3.5 Determination of Spring Pack Capability

185 TVA DCN X-12962-A (Ref. 5.5, p. 4) lists the installed spring 0301-112 pack as 301 113. The torque switch setting/chart shows torque switch setting 1 as 170 ft-lbs and 2 as 240 ft-lbs (Ref. 5.16, p. 5). The minimum thrust required to close the valve Section 7.5.1% is 11,798 lbf (equivalent torque is 137 ft-lbs), to open the value is 13,316 lbf (equivalent torque is 154 ft-lbs) /2,29/

R 1

6130/95

A. 4/

155b

The spring pack is satisfactory for this application. and to open the value is in

	I/PRO	JECT IDENTIFIERS	- /		
REPAF HECKE	VER: LR :	P. J. Antonvich T. Snead	¥ 77-	DATE: $\frac{1}{1/2/92}$	
7.0	CAL	CULATIONS (Conti	nued)		
7.4	ELE	CTRICAL DATA		DATA_SOURCE	
	Valve Tag Number		1-FCV-68-332		
	1.	Motor Mfg.	Reliance	<u>Ref 5.23, pq F116-</u>	
	2.	ID No.	713114-J2	<u>Ref 5.23, pg F116</u>	
	З.	Start Torque	15 ft-1bs (Nomeplate Date)	<u>Ref 5.23, pg F116</u>	
	4.	Running Torque	<u>3 ft-lbs</u>	Ref 5.23, pg F116	
	5.	RPM	3400	<u>Ref 5.23, pg F116</u>	
	6.	Horsepower	1.9 HP	<u>Ref 5.23, pg F116</u>	
	7.	Volts	460 V	<u>Ref 5.21, pg 182</u>	
	8.	Running Current	<u>3.5 A</u>	<u>Ref 5.23, pg F116</u>	
	9.	L. R. Current	26.0 A	<u>Ref 5.21, pg 182</u>	
	10.	Duty Cycle	15 Min	<u>Ref 5.23, pg F116</u>	
	11.	Motor Code	Not Listed	Not Listed	
	12.	Insulation Clas	ss <u>RH</u>	Ref 5.23, pg-F116	
· · ·	13.	Frame Designati	on <u>P56</u>	<u>Ref 5.23, pg F116_</u>	
14. Electrica		Electrical Cabl	e Sizing <u>Satisfactory</u>	Comment 7.4.14 Ref 5.10, pgs 7 & 30	
	15.	Control Circuit	Logic <u>Satisfactory</u>	Comment 7.4.15 Ref 5.9	
	16.	Degraded Voltag	e Cond. <u>Satisfactory</u>	Comment 7.4.16 Ref 5.21, pg 183	
	17.	Overload Sizing	T29 Satisfactory	Comment 7.4.17 Ref 5.21, pg 182	

11/11/94

			SHEET <u>23</u> OF <u>39</u>	
			REVISION 0	
SUBJECT:	DESIGN BASIS REVIE	W AND THRUST/TO	RQUE CALCULATION FOR	
	1-FCV-68-332			
BRANCH/PRO	JECT IDENTIFIERS:	MEB-WBN-68,WBN-	-68-D053, EPM-PJA-063092	
		0711	1.192	
	P. J. Antonvich	1/4	DATE: //////9 -	
CHECKER :_	T. Snead	H.	DATE: 11/12/92	

7.0 **CALCULATIONS** (Continued)

7.4 ELECTRICAL DATA (Continued)

Comments:

7.4.14 Electrical cable sizing - For MOV 1-FCV 68-332, reference 5.21, pg 182 shows the cable numbers as 1V2445B & 1V2446B, the cable size as # 12 wire, the full load (run) amperage as 3.5 amperes and the locked rotor current as 26 amperes. The cable ampacity calculation (Ref. 5.4; Use of this calculation approved by Ref. 5.10) shows the derated 71% (acceptable per Ref. 5.28) full load ampacity as 5.9 and the allowed cable ampacity as 9.4 amperes for 1V2445B (Ref. 5.4, Appendix H, p. 30); for 1V2446B the derated 200% full load ampacity as 7.7 amperes and the allowed cable ampacity as 26.6 amperes (Ref. 5.4, p. 527).

> The cable sizing for this application including its ability to withstand locked rotor condition (Ref. 5.29) was evaluated is considered satisfactory based on the following: (Ref. 5.4).

RA

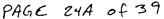
o-----The 71% full load current was evaluated in Ref. 5.28, and found acceptable for this application.

	EBAS	CO SERVICES	INCORPORATED
		<u> </u>	SHEET 24 OF 39
			REVISION 0
	DESIGN BASIS REVIE 1-FCV-68-332		T/TORQUE CALCULATION FOR
BRANCH/PRO	JECT IDENTIFIERS:	MEB-WBN-68	,WBN-68-D053, EPM-PJA-063092
	P. J. Antonvich	PZA	DATE: 11/11/92
CHECKER :		- Al	DATE: <u>"///2/92</u>
-			

CALCULATIONS (Continued) 7.0

ELECTRICAL DATA Comments (Continued) 7.4

Control circuit logic - The valve is required to operate to 7.4.15 isolate the RCPB anytime that a PORV may fail open; Ref. 5.30, Attach. 1, p. 14a requires the Thermal Overload (TO) Protection Device to be bypassed and the Torque Switch (TS) to be bypassed in the closing direction during a DBE.


> The electrical schematic (Ref. 5.9) shows that the TO is bypassed by a safety signal; the valve travel is limited by a Ruf? limit switch in the opening direction.-and-by-torque-switchwith limit switch bypass in the closing direction. Valve trovel is limited by the limit switch in the closing direction (Ref. 5.35). 6130/95 The control circuit for this valve meets its design application.

11/11/9

1/11/24

Degraded voltage condition - Reference 5.17 shows that the 7.4.16 valve is located in a harsh environment and a reduced voltage evaluation caused by elevated cable and motor temperature is applicable. The maximum accident environmental temperature is 327° F (Ref. 5.17) which equates to 164° C [C=(T-32)/1.8]. The minimum voltage indicated on page 182 of reference 5.21 is corrected to 90° C for cable and 40° C for motor. Minimummotor terminal voltage (Vmin) is determined using the following provided data and formulae: See pg 24A for an evaluation of elevated temperature effects.

EPM-PJA-063092

ELEVATED TEMPERATURE EVALUATION FOR: per (Ref. 5,33) 1-PCV-68-332-B 15.0 START TORQUE, Nameplate NOX ENVIRONMENTAL TEMPERATURE HOTOR INFORMATION UALUE INFORMATION ACTUATOR INFORMATION 327 temperature (deg 164.0 dogrees C 3100 rpm 0.333 1 cad 38,6 DAR NOTOR TOTAL TEMPERATURE 1.31 travel 29.33 high speed sten 168.5 total motor temperature 8.82 stroke time secs 0.15 stroke time mins EVALUATION OF LRA AND LRT EVALUATION OF MISPOSITIONING 19.22 max × LRA loss (Limitorque 93-03) 1.45 temp rise due to misposition (3 strokes) 15.91% actual % LRA loss based on temp 21.9 adjusted LBA EVALUATION OF UT (BLOCK us. INDIVIDUAL) PER STROKE 21.4% max × TQ loss (Limitorgue 93-63) block start (u/n): n 17.73% actual % TQ loss based on temp 12.34 adjusted TQ block start (open/close): H.A individual start (open/close both TERMINAL VOLTAGE EVALUATION Ind (odual) Block Botor Motor load FLI LIM LRPF 2. AS FOUND 1-FCV-68-332-B 8. ŧX-Rtot Rc iXc Start Start 1.90 3.50 26.0 0.90 10.2147 9.1932 4.4525 0.23700 1.3545 0.018Z 376.8 0.2580 0.0092 REVISED 1-FCV-68-332-8 1.90 3.50 21.9 0.90 12.1270 10.9143 5.2860 0.23700 1.3545 0.0482 365.6 0.2580 0.0092 CORRECTION OF RC, RM, AND XM FOR TEMPERATURE > 90 DEGREES CELSIUS FOR: per (Ref. 5,29) 1-FCV-68-332-B Voltage Divider (Utin) = = Umcc x Zmc / Ztotal Vilin = 395.05 formulae: REV I SED **ORIGINAL** 0.003082 = Temperature Coefficient of Resiste = Temperature corrected MTR Impedanc 15 9943 13.4637 Temperature corrected MTR Resistar = 15.0849 12.7062 1.6634 = Temperature corrected Cable Resistance (Rcc) = Total corrected Impedance (2tc) = 17,8032 15.2842 where $a1 = 1 \times (234.5 + T1)$ $2mc = [(Hmc)^2 + (Xm)^2]^0.5$ Rmc = Rm (1+ (a1) (Tc - Tm)) Roc = Rc (1+ (a1) (Tc - T1)) Ztc = [°(Hwc + R12cc + Roh)^2 + (Xm + X12cc)^2]^0.5 Provided Data: 440 = Motor Control Center Volt REVISED DRICINAL = Motor Resistance (RM) : 10.9143 9.1932 = Motor Reactance (XM) = 5.2860 1.4525 1.3545 Cable Resistance 0.0482 Cable reactance 0.23700 Overload Heater Resistance 164 = Accident Environment Temperature (degree celsius) 90 # Initial Temperature (degree celsius) 40 Initial Motor Temperature (degree celsius) DETERMINATION OF NOTOR CAPABILITY FOR : 1-FCV-68-332-B 38.6 DAR 0.6 run efficiency 9.45 pull out efficiency 376.8 individual motor start as found in WBM-EEB-MS-T106-0010 (Ref. 5,21 385.6 new individual motor start based on reduced LBA 395.0 new individual motor start voltage corrected for > 90 degree celsius (*) Open direction Close direction + 0.8589 0.8588 terminal voltage ratio determination of voltage factor (VF) 0.7375 0.7375 UF = 1, if voltage ratio >.9 otherwise = (voltage ratio)^Z determination of application factor (AF) 1 AF=1, if terminal voltage ratio (.9 otherwise = .9 (Ref. 5:33) OPENING HOTOR CAPABILITY CLOSING MOTOR CAPABILITY . 1-FCV-68-332-B 150 ft-lbs. 211 ft-lbs. (see section 7.5.2 for formulac) 0.0116 sten factor based on stem pitch, lead, diameter 13621 lbs. 18190 lbs. This page added by Rev. 3 MA

EPARE	1-FCV-68-332 (PROJECT IDENTIFIERS: MEB-WBN-68, WBN-68-D053, EPM-PJA-063092 ER: <u>P. J. Antonvich</u> R: <u>T. Snead</u> DATE: <u>11/1/2/92</u>
7.0	CALCULATIONS (Continued)
7.4	ELECTRICAL DATA Comments (Continued)
7.4.3	16 <u>Degraded Voltage Condition</u> (Continued)
	Provided data
	$V_{mcc} = 440$ volts = Motor control center voltage (Ref. 5.21, pg 182)
	$R_m = 6.1288$ ohms = Motor resistance (Ref. 5.21, pg 182)
	$X_{m} = 8.1717$ Ohms = Motor reactance (Ref. 5.21, pg 182)
	$R_{0c} = 1.3545$ ohms = Cable resistance outside containment wire (Ref. 5.21, pg 182)
	$X_{oc} = 0.0482$ ohms = Cable reactance outside containment wire (Ref. 5.21, pg 182)
	$R_{ic} = 0.2580$ ohms = Cable resistance inside containment wire (Ref. 5.21, pg 182)
	$X_{ic} = 0.0092$ ohms = Cable reactance inside containment wire (Ref. 5.21, pg 182)
	R _{oh} = 0.237 ohms = Overload heater resistance (Ref. 5.21, pg 182)
	T _c = 164°C = Accident environment temperature inside containment (Ref. 5.17)
	$T_{1c} = 90^{\circ}C = Initial cable temperature (Ref. 5.31, pg 2)$

1/11/94

	•	EBASCO S	SERVICES INCORP	ORATED	
			· · · ·	SHEET 26 OF 39 REVISION 0	
BJECI			ND THRUST/TORQU	E CALCULATION FOR	
RANCH	1-FCV-68-33 /project identi	2 FIERS: ME	B-WBN-68,WBN-68	3-D053, EPM-PJA-063092	
	ER: P. J. Anton		777	DATE: 11/11/92	
	R : T. Snead		H.	DATE: 11/12/92	
ادة ميراجيدين بي مالك بي ا	<u></u>			an ng mana ng hipi na manang panang panang panang ng panang ng panang ng panang ting na mang pang na mang katap	Non-
7.0	CALCULATIONS (Continued)			
7.4	ELECTRICAL DAT	A Comments	(Continued)		
7.4.2	16 <u>Degraded</u>	<u>Voltage Co</u>	ondition (Contin	nued)	
Korm	ulae				
) (Vol	ltage Divider)		
Vmin	(Z _{total-co}	rrected)	ltage Divider)		
	$a_1 = 1/(234)$.	$5 + T_1) =$	Temperature c (Ref. 5.14, p	pefficient of resistance g 15-5)	3
	$Z_{mc} = [(R_{mc}^2) +$	(X _m ²)] ^{1/2} =	= Temperature c	orrected motor impedance	9
	$R_{mc} = R_{m}^{*} (1 + ($	$a_{\rm N} * (T_{\rm c} - T_{\rm c})$	$(\Gamma_{lm})) = Tem resistan$	perature corrected moto: ce	C
	$R_{cc} = R_{c} * (1 + ($	a_1) * ($T_c - T_c$	T _{lc})) = Tem resistan	perature corrected cable	Э
	$Z_{total-corrected} = $	$(R_{mc} + R_{Icc})$	$+ R_{Qcc} + R_{ohc})^2 +$	$(X_{m} + X_{Ic} + X_{oc})^{2}]^{1/2}$	
	<u>Calculations</u>				
	$a_1 = 1/(234.5)$	+ 90°C) =	0.003082/°C		
	$R_{mc} = 6.1288$ of	hms (1 + (0.003082/°C)*(1	€4°C - 40°C)) = 8.471 o	hms
	$Z_{mc} = (8.471^2)$	ohms + 8.3	$1717^2 \text{ ohms})^{1/2} =$	11. 77 ohms	
	$R_{Icc} = 0.258$ of	ums (1 + ((D.003082/°C)*(1	$64^{\circ}C - 98^{\circ}C)) = 0.3168$	ohms
	$R_{oc} = 1.3545$ of	hms			
	$R_{oh} = 0.237$ oh:	ms			
	(Z _{total-corrected})	0.2		168 ohms + 1.3545 ohms 1717 ohms + 0.0482 ohms	
)		= 13.	246 ohms		
	,				

1/11/94

SUBJECT: DESIGN BASIS REVIEW AND THRUST/TORQUE CALCULATION FOR 1-FCV-68-332 BRANCH/PROJECT IDENTIFIERS: MEB-WBN-68 WBN-68-D052 FDM DEF 61044	·
BRANCH/PROJECT IDENTIFIERS: MEB-WBN-68, WBN-68-D053, EPM-PJA-063092 PREPARER: P. J. Antonvich DATE: CHECKER: T. Snead DATE: DATE: 11/11/92	
7.0 CALCULATIONS (Continued)	
7.4 ELECTRICAL DATA Comments (Continued)	pM
7.4.16 Degraded Voltage Condition (Continued)	
$V_{min} = (440 \text{ volts}) (11.77 \text{ ohms})$ 13.246 ohms = 391.0 volts	
The value operator will deliver sufficient thrust and torque to the value during degraded voltage conditions to perform its safety function (see Section 7.5)	

7.4.17 <u>Overload sizing</u> - References 5.22, p. 182 and 5.24 Attachment M12212Ax p. 48 determined that an overload size of T29 is required and is installed. The correct heater is installed if installed for this application.

...

	DATE: 11/1/42 R : T. Snead DATE: 11/1/42	,
		i.
7.0	CALCULATIONS (Continued)	
7.5	Thrust/Torque Calculations	
7.5.	1 Valve Requirements	
	<u>Calculation of Piston Effect Load</u> - F _p	
	$F_p = P * \pi/4 * d^2$ (Sect. 3.1, pg 2)	
	Where:	
	P = 2335 psig = Closing maximum line pressure (Sect. 7.1.9)	
	2734 P = 2510 psig = Opening maximum line pressure (Sect. 7.1.9)	
	<pre>d = 1.25" = stem diameter at packing (Ref. 5.13)</pre>	
	$\pi/4 = 0.7854$	
	F_{p} Closing = 2335 * 0.7854 * 1.25 ² = <u>2865</u> lbf	
	F_p Opening = $\frac{2510}{2734}$ * 0.7854 * 1.25 ² = $\frac{3080}{3080}$ lbf	
	Calculation of Packing Friction Load - Fpack	A,
	F _{pack} = 1000 lbf * d (Sect. 3.1, pg 4)	11
	Where:	
	d = 1.25" = stem diameter at packing (Ref. 5.13)	
	$F_{pack} = 1000 * 1.25 = 1250$ lbf	

PREPA	1-FCV-68-332 H/PROJECT IDENTIFIERS: MEB-WBN-68, WBN-68-D053, EPM-PJA-063092 RER: P. J. Antonvich 17/4 DATE: il////92 ER: T. Snead 24 DATE: ////2/92
7.0	CALCULATIONS (Continued)
7.5	Thrust/Torque_Calculations (Continued)
7.5.	1 Valve Requirements (Continued)
	Calculation Closing Differential Pressure Load - F _{dp}
	$F_{dp} = dp * \pi/4 * D^{2} * FV * [cos \phi - (\mu * sin \phi)]$ (Sect. 3.1, pg 3)
	Where: $\pi/4 = 0.7854$
L	dp = 2335 psid = Closing differential pressure (Sect. 7.1.9)
1	D = 2.87" = Seat diameter at midpoint. (Sect 7.2.6)
	FV = 1.2 = Valve safety factor (Sect. 3.1, pg 3)
	μ = 0.4 = Valve friction factor (Sect. 3.1, pg 3)
	$\phi = 7^{\circ} = Wedge angle (Ref. 5.20)$
	$F_{dp} = 2335 * 0.7854 * (2.87)^2 * 1.2 * [\cos 7 - (.4 \sin 7)]$
	$F_{dp} = 7,683$ lbf

,

•

17 0

	EBASCO SERVICES I	NCORPORATED
		SHEET <u>30</u> OF <u>39</u> REVISION 0
SUBJEC	T: DESIGN BASIS REVIEW AND THRUST 1-FCV-68-332	
BRANCH	/PROJECT IDENTIFIERS: MEB-WBN-68,1	WBN-68-D053, EPM-PJA-063092
	ER: P. J. Antonvich /7A R : T. Snead	DATE: 11/1/97 DATE: -1/12/92
7.0	CALCULATIONS (Continued)	
7.5	Thrust/Torque Calculations (Conti	nued)
7.5.	1 Valve Requirements (Continue	d)
	Calculation of Opening Differenti (Sect. 3.1, pg 3)	al Pressure Load - F _{dp}
	$F_{dp} = dp * \pi/4 * D^2 * FV * [\overline{\cos \phi} + \frac{1}{2}]$	μ + (μ * sin φ)]
	Where:	n برا
	$\pi/4 = 0.7854$	۴
	$dp = \frac{2734}{2510}$ psid = Opening differen	tial pressure (Sect. 7.1.9)
	D = 2.87" = Contact seat diameter	(Sect. 7.2.6)
	FV = 1.2 = Valve safety factor (S)	ect. 3.1, pg 3)
	μ = 0.4 = Valve friction factor (Sect. 3.1, pg 3)
	ϕ = 7° = Wedge angle (Ref. 5.20)	
	$F_{dp} = \frac{2734}{2510} * 0.7854 * 2.87^{2} * 1.2 * $ 8153 $F_{dp} = \frac{77485}{77485} \text{ lbf}$	* $\left[\frac{.4}{\cos 7 + (.4 \sin 7)}\right]$
	Calculation of Required Closing T	<u>hrust</u> - F _r
	$F_{r} = F_{p} + F_{pack} + F_{dp}$ (Sect. 3.1, pg	2) Altr
	Where:	
	$F_{dp} = 7,683$ lbf = Differential Pre	ssure Load
	$F_p = 2,865$ lbf = Piston Effect Loa	ad
	$F_{pack} = 1,250$ lbf= Packing Friction	Load
	$F_r = 7,683 + 2,865 + 1,250 = 11,79$	<u>98</u> lbf

	CT: DESIGN BASIS REVIEW AND THRUST/TORQUE CA 1-FCV-68-332	SHEET <u>31</u> OF <u>39</u> REVISION 0 LCULATION FOR
PREPAR	H/PROJECT IDENTIFIERS: MEB-WBN-68,WBN-68-D05 RER: <u>P. J. Antonvich</u> ER : <u>T. Snead</u>	3, EPM-PJA-063092 DATE: //////92 DATE: ////2/92
7.0	CALCULATIONS (Continued)	
7.5	Thrust/Torque Calculations (Continued)	
7.5.	1 Valve Requirements (Continued)	
	<u>Calculation of Wedging Load</u> - F _w (Sect. 3.1,	pg 5)
	$F_{w} = F_{k} * f_{w} * F_{v} * [Sin \phi + (\mu * Cos \phi)] *$ Where:	$[\cos \phi + (\mu * \sin \phi)]$
	$f_w = 0.6 = Wedge factor (Sect. 3.1, pg 5 & Rection 1)$	ef. 5.13)
	$F_v = 1.2 = Valve safety factor (Sect. 3.1, perturbed)$	
	μ = 0.4 = Valve friction factor (Sect. 3.1,	pg 3)
	ϕ = 7° = Wedge angle (Ref. 5.20)	
	$F_{pack} = 1250$ lbf = Packing friction load	
	$F_p = 0$ lbf = Piston effect load (In order to seated" valve closed with no line pressure a	account for a "hard- zero value is used.)
	$F_{dp} = 0$ lbf = Differential pressure force (In a "hard-seated" value closed with no differentiate value is used.)	
	$F_{rmax} = 1.15 * F_r = 13,568$ lbf = Maximum closir = 11,798 lbf * 1.15 (Sect. 3.1, pg 5)	ng stem thrust
	F_k = Effective unseating force = $F_{rmax} - F_{pack} - (only closing values)$ [Sect 3.1, pg 5] = - 0 = 12,318 lbf	F _p - F _{dp} = 13,568 - 1250 - 0
]	$F_w = 12,318 \times 0.6 \times 1.2 \times [Sin 7 + (0.4 \times Cos)]$	7)] *
)	$\frac{0.4}{[\cos 7 + (0.4 * \sin 7)]} = \frac{6,243}{1000}$ lbf	

$\begin{array}{llllllllllllllllllllllllllllllllllll$		4	EBASCO SERVICES INCO	SHEET <u>32</u> OF 39
$\frac{1 - FCV - 68 - 332}{PRANCH/PROJECT IDENTIFIERS: MEB-WEN-68, WBN-68-D053, EPM-PJA-063092}$ $VEPARER: P. J. Antonvich fill fill fill fill fill fill fill fil$	JBJECT:	DESIGN BASIS R	EVIEW AND THRUST/TOP	REVISION 0
EPARER:P. J. AntonvichMAECKER:T. SneadDATE:M/427.0CALCULATIONS (Continued)7.5Thrust/Torque Calculations (Continued)7.5.1Valve Requirements (Continued)Calculation of Required Opening Thrust - Fr $F_r = F_{dp} + F_{pack} + F_v - F_p$ (Sect. 3.1, pg 1)Where: $g(S^2)$ $F_{qp} = \frac{2}{7,405}$ lbf = Differential Pressure Load (see page 30) $F_{pack} = 1,250$ lbf = Packing Friction Load (see page 28) $F_v = 6,243$ lbf = Wedging load (see page 31) 33.55 $F_p = \frac{2}{7,405}$ th 1,250 + 6,243 - $\frac{2355}{37,000} = \frac{11,695}{11,695}$ lbfCalculation of Required Operator Torque - AtorAtor = F_r * SF(Sect. 3.1, pg 5)Where: $F_r = 11,798$ lbf = Closing Required Thrust $F_r = 0.0116$ = Stem Factor (Ref. 5.18.3). Where: Coef. of fricti: $= 0.15$ (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead $= 1/3$ (Ref. 5.13) A_{tor} (Closing) = 11,798 * 0.0116 = 137 ft-lbs		1-FCV-68-332	· · · · ·	
HECKER : T. Snead DATE: $///2/92$ 7.0 <u>CALCULATIONS</u> (Continued) 7.5 <u>Thrust/Torque Calculations</u> (Continued) 7.5.1 Valve Requirements (Continued) <u>Calculation of Required Opening Thrust</u> - F _r F _r = F _{dp} + F _{pack} + F _w - F _p (Sect. 3.1, pg 1) Where: $\frac{9/5'3}{F_{dp}} = \frac{2}{7,405}$ lbf = Differential Pressure Load (see page 30) F _{pack} = 1,250 lbf = Packing Friction Load (see page 28) F _w = 6,243 lbf = Wedging load (see page 31) $\frac{3355}{F_p} = \frac{2}{7,000}$ lbf = Piston Effect Load (see page 28) F _z = $\frac{3}{7,000}$ lbf = Piston Effect Load (see page 28) F _z = $\frac{1}{27,000}$ lbf = Viston Effect Load (see page 28) $F_r = \frac{1}{27,000}$ lbf = No effect Load (see page 28) $F_r = \frac{1}{27,000}$ lbf = Closing Required Thrust $\frac{12}{2,291}$ F _r = 11,798 lbf = Closing Required Thrust $F_r = \frac{11,798}{15,590}$ lbf = Opening Required Thrust SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of friction = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) A _{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-1bs			ρ_{-10}	-68-D053, $EPM-PJA-063092$
7.0 <u>CALCULATIONS</u> (Continued) 7.5 <u>Thrust/Torque Calculations</u> (Continued) 7.5.1 Valve Requirements (Continued) <u>Calculation of Required Opening Thrust</u> - F _r F _r = F _{ep} + F _{pack} + F _w - F _p (Sect. 3.1, pg 1) Where: $\frac{8/5^3}{F_{ep}} = \frac{2}{7,605}$ lbf = Differential Pressure Load (see page 30) F _{pack} = 1,250 lbf = Packing Friction Load (see page 28) F _w = 6,243 lbf = Wedging load (see page 31) $\frac{33.65}{F_p} = \frac{2}{-7,605}$ lbf = Piston Effect Load (see page 28) F _x = $\frac{2}{-7,605}$ lbf = $\frac{23.55^{-1}}{22,2.91}$ F _z = $\frac{2}{-7,605}$ t 1,250 + 6,243 - $\frac{33.55^{-1}}{27,000} = \frac{11,990}{11,990}$ lbf <u>Calculation of Required Operator Torque</u> - A _{tor} A _{tor} = F _z * SF (Sect. 3.1, pg 5) Where: F _z = 11,798 lbf = Closing Required Thrust $\frac{12,2.94}{F_z}$ F _z = $\frac{11,798}{10}$ lbf = Opening Required Thrust SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of frictin = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) A _{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-1bs			h r/11	DATE: /////9
7.5 <u>Thrust/Torque Calculations</u> (Continued) 7.5.1 Valve Requirements (Continued) <u>Calculation of Required Opening Thrust</u> - F _r F _r = F _{dp} + F _{pack} + F _w - F _p (Sect. 3.1, pg 1) Where: $f_{dp} = \frac{27.405}{7.405}$ lbf = Differential Pressure Load (see page 30) F _{pack} = 1,250 lbf = Packing Friction Load (see page 28) F _w = 6,243 lbf = Wedging load (see page 31) F _p = $\frac{3.555}{7.000}$ lbf = Piston Effect Load (see page 28) $f_{v} = \frac{27.405}{7.000}$ lbf = Piston Effect Load (see page 28) $f_{v} = \frac{27.405}{7.000}$ lbf = Value $\frac{2355^{-7}}{12.291}$ lbf <u>Calculation of Required Operator Torque</u> - A _{tor} A _{tor} = F _r * SF (Sect. 3.1, pg 5) Where: F _r = 11,798 lbf = Closing Required Thrust 12.291 F _r = $\frac{117.996}{12.291}$ lbf = Opening Required Thrust SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of fricting = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) A _{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-lbs				DATE:
7.5 <u>Thrust/Torque Calculations</u> (Continued) 7.5.1 Valve Requirements (Continued) <u>Calculation of Required Opening Thrust</u> - F _r F _r = F _{dp} + F _{pack} + F _w - F _p (Sect. 3.1, pg 1) Where: $F_{qp} = \frac{3/5^3}{7,405}$ lbf = Differential Pressure Load (see page 30) F _{pack} = 1,250 lbf = Packing Friction Load (see page 28) F _w = 6,243 lbf = Wedging load (see page 31) F _p = $\frac{3,555}{2,000}$ lbf = Piston Effect Load (see page 28) $F_r = \frac{3,555}{7,405} + 1,250 + 6,243 - \frac{3355^{-1}}{2,000} = \frac{11,292}{11,292}$ lbf <u>Calculation of Required Operator Torque</u> - A _{tor} A _{tor} = F _r * SF (Sect. 3.1, pg 5) Where: F _r = 11,798 lbf = Closing Required Thrust $\frac{12,291}{F_r} = \frac{11,799}{11,798}$ lbf = Opening Required Thrust SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of fricting = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) A _{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-lbs				
7.5.1 Valve Requirements (Continued) Calculation of Required Opening Thrust - Fr $F_r = F_{dp} + F_{pack} + F_v - F_p$ (Sect. 3.1, pg 1) Where: $F_{dp} = \frac{3}{7r}405$ lbf = Differential Pressure Load (see page 30) $F_{pack} = 1,250$ lbf = Packing Friction Load (see page 28) $F_v = 6,243$ lbf = Wedging load (see page 31) $F_p = \frac{3,000}{3755}$ lbf = Piston Effect Load (see page 28) $F_r = \frac{3}{7r}405 + 1,250 + 6,243 - \frac{3355}{37} (2,29)$ $F_r = \frac{7}{7r}465 + 1,250 + 6,243 - \frac{37080}{37080} = \frac{117890}{117890}$ lbf Calculation of Required Operator Torque - A_{tor} $A_{tor} = F_r * SF$ (Sect. 3.1, pg 5) Where: $F_r = 11,798$ lbf = Closing Required Thrust $F_r = \frac{117898}{117898}$ lbf = Opening Required Thrust SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of fricting = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) A_{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-lbs	7.0 <u>C</u>	ALCULATIONS (Con	tinued)	
$\begin{array}{l} \hline Calculation of Required Opening Thrust - F_r\\ F_r = F_{dp} + F_{pack} + F_v - F_p \end{tabular} (see 1, 25) $	7.5 <u>T</u>	hrust/Torque Cal	<u>culations</u> (Continued	1)
$\begin{split} F_r &= F_{dp} + F_{pack} + F_v - F_p \text{ (Sect. 3.1, pg 1)} \\ \text{Where:} \\ F_{dp} &= \frac{3/5^{-3}}{7,405} \text{ lbf} = \text{Differential Pressure Load (see page 30)} \\ F_{pack} &= 1,250 \text{ lbf} = \text{Packing Friction Load (see page 28)} \\ F_v &= 6,243 \text{ lbf} = \text{Wedging load (see page 31)} \\ F_p &= \frac{3,000}{2,000} \text{ lbf} = \text{Piston Effect Load (see page 28)} \\ F_r &= \frac{3}{7,000} \text{ lbf} = \text{Piston Effect Load (see page 28)} \\ F_r &= \frac{3}{7,000} \text{ lbf} = \text{Piston Effect Load (see page 28)} \\ \frac{3355}{7_r} = \frac{3}{7,000} \text{ lbf} = \text{Piston Effect Load (see page 28)} \\ \frac{3155}{7_r} = \frac{3}{7,000} \text{ lbf} = \text{Piston Effect Load (see page 28)} \\ \frac{3155}{7_r} = \frac{11,250}{7,000} \text{ lbf} = \frac{3155}{7,000} \text{ lbf} \\ \frac{\text{Calculation of Required Operator Torque}{2,291} = A_{tor} \\ A_{tor} = F_r & \text{SF} (\text{Sect. 3.1, pg 5)} \\ \text{Where:} \\ F_r &= 11,798 \text{ lbf} = \text{Closing Required Thrust} \\ \frac{12,291}{7_r} = \frac{11,798}{11,798} \text{ lbf} = \text{Opening Required Thrust} \\ \text{SF} &= 0.0116 = \text{Stem Factor (Ref. 5.18.3). Where: Coef. of friction is and Stem Lead is 1/3 (Ref. 5.13) \\ A_{tor} (\text{Closing}) &= 11,798 & 0.0116 = \frac{137}{11-110} \text{ ft-1105} \\ \end{cases}$	7.5.1	Valve Requir	ements (Continued)	
Where: $\begin{array}{l} & 6/5^{-3} \\ F_{dp} = \frac{7}{7405} \ \mbox{lbf} = \ \mbox{Differential Pressure Load (see page 30)} \\ F_{pack} = 1,250 \ \mbox{lbf} = \ \mbox{Packing Friction Load (see page 28)} \\ F_{v} = 6,243 \ \mbox{lbf} = \ \mbox{Wedging load (see page 31)} \\ & \frac{3355}{7} \\ F_{p} = \frac{3,605}{3,605} \ \mbox{lbf} = \ \mbox{Piston Effect Load (see page 28)} \\ & \frac{9153}{7} \\ F_{r} = \frac{7}{7,405} + 1,250 + 6,243 - \frac{3355^{-1}}{2,291} \ \mbox{lbf} \\ \hline & \frac{212,291}{11,299} \ \mbox{lbf} \\ \hline & \frac{Calculation of Required Operator Torque}{2} - \mbox{A}_{tor} \\ A_{tor} = F_{r} & SF \qquad (Sect. 3.1, pg 5) \\ \hline & Where: \\ F_{r} = 11,798 \ \mbox{lbf} = \ \mbox{Opening Required Thrust} \\ & \frac{12,291}{F_{r}} = \frac{11,799}{21,809} \ \mbox{lbf} = \ \mbox{Opening Required Thrust} \\ SF = 0.0116 = \ \mbox{Stem Factor (Ref. 5.18.3). Where: Coef. of friction is and Stem Lead is a 1/3 (Ref. 5.13) \\ A_{tor} & (Closing) = 11,798 & 0.0116 = \frac{137}{2} \ \mbox{ft-lbs} \end{array}$	<u>C</u>	alculation of Re	quired Opening Thrus	<u>st</u> - F _r
$F_{dp} = \frac{3/5^{-3}}{7,465} \text{ lbf} = \text{Differential Pressure Load (see page 30)}$ $F_{pack} = 1,250 \text{ lbf} = \text{Packing Friction Load (see page 28)}$ $F_{w} = 6,243 \text{ lbf} = \text{Wedging load (see page 31)}$ $F_{p} = \frac{3,000}{3,000} \text{ lbf} = \text{Piston Effect Load (see page 28)}$ $\frac{3/53}{8/53} = \frac{3355^{-1}}{12,291} \text{ Ibf}$ $\frac{23455}{7,465} + 1,250 + 6,243 - \frac{3355^{-1}}{3,080} = \frac{11,890}{11,890} \text{ lbf}$ $\frac{Calculation of Required Operator Torque}{2} - A_{tor}$ $A_{tor} = F_{r} * \text{SF} (\text{Sect. 3.1, pg 5)}$ Where: $F_{r} = \frac{11,798}{11,898} \text{ lbf} = \text{Opening Required Thrust}$ $SF = 0.0116 = \text{Stem Factor (Ref. 5.18.3). Where: Coef. of friction = 1/3 (Ref. 5.13)$ $A_{tor} (\text{Closing}) = 11,798 * 0.0116 = \frac{137}{2} \text{ ft-lbs}$	F,	$_{r} = F_{dp} + F_{pack} + F_{r}$	"- F _p (Sect. 3.1, po	g 1)
$F_{dp} = \frac{7.405}{7.405} \text{ lbf} = \text{Differential Pressure Load (see page 30)}$ $F_{pack} = 1,250 \text{ lbf} = \text{Packing Friction Load (see page 28)}$ $F_{w} = 6,243 \text{ lbf} = \text{Wedging load (see page 31)}$ $F_{p} = \frac{3.405}{7.405} \text{ lbf} = \text{Piston Effect Load (see page 28)}$ $\frac{3153}{7_{r}} = \frac{7.405}{7.405} + 1,250 + 6,243 - \frac{3155}{7.000} = \frac{12.7291}{12.7290} \text{ lbf}$ $\frac{\text{Calculation of Required Operator Torque}{12.7405} = A_{tor}$ $A_{tor} = F_{r} * \text{SF} (\text{Sect. 3.1, pg 5)}$ Where: $F_{r} = \frac{11,798}{12.7291} \text{ lbf} = \text{Opening Required Thrust}$ $SF = 0.0116 = \text{Stem Factor (Ref. 5.18.3). Where: Coef. of friction = 1/3 (Ref. 5.13)$ $A_{tor} (\text{Closing}) = 11,798 * 0.0116 = \frac{137}{15} \text{ ft-lbs}$	WJ	here:	·	
$F_{v} = 6,243 \text{ lbf} = \text{Wedging load (see page 31)}$ $F_{p} = \frac{3,555}{2,000} \text{ lbf} = \text{Piston Effect Load (see page 28)}$ $\frac{8/53}{8/53} + 1,250 + 6,243 - \frac{33555}{2,000} = \frac{11,890}{11,890} \text{ lbf}$ $\frac{\text{Calculation of Required Operator Torque}{11,890} = A_{tor}$ $A_{tor} = F_{r} * \text{SF} \qquad (\text{Sect. 3.1, pg 5})$ Where: $F_{r} = 11,798 \text{ lbf} = \text{Closing Required Thrust}$ $F_{r} = \frac{11,798}{11,890} \text{ lbf} = \text{Opening Required Thrust}$ $SF = 0.0116 = \text{Stem Factor (Ref. 5.18.3). Where: Coef. of frictian is and Stem Lead is 1/3 (Ref. 5.13)$ $A_{tor} (\text{Closing}) = 11,798 * 0.0116 = \frac{137}{11-105}$	F,		Differential Pressur	re Load (see page 30)
$F_{p} = \frac{3355}{3,000} \text{ lbf} = \text{Piston Effect Load (see page 28)}$ $\frac{8153}{8153} + 1,250 + 6,243 - \frac{3355}{7,000} = \frac{12,291}{11,7000} \text{ lbf}$ $\frac{\text{Calculation of Required Operator Torque}{1} - A_{tor}$ $A_{tor} = F_{r} * \text{SF} \qquad (\text{Sect. } 3.1, \text{ pg 5})$ Where: $F_{r} = 11,798 \text{ lbf} = \text{Closing Required Thrust}$ $F_{r} = \frac{11,798}{11,800} \text{ lbf} = \text{Opening Required Thrust}$ SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of friction = 0.15 (Sect. 3.1, \text{ pg 5}); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) $A_{tor} (\text{Closing}) = 11,798 * 0.0116 = \frac{137}{15} \text{ ft-lbs}$	E,	_{pack} = 1,250 lbf =	Packing Friction Lo	bad (see page 28)
$F_{p} = \frac{3,000}{8153} \text{ lbf} = \text{Piston Effect Load (see page 28)}$ $\frac{8153}{7,405} + 1,250 + 6,243 - \frac{3355}{7,080} = \frac{11,290}{11,2900} \text{ lbf}$ $\frac{\text{Calculation of Required Operator Torque}{4} - A_{tor}$ $A_{tor} = F_{r} * \text{SF} \qquad (\text{Sect. 3.1, pg 5})$ Where: $F_{r} = 11,798 \text{ lbf} = \text{Closing Required Thrust}$ $\frac{12,297}{F_{r}} = \frac{11,798}{11,798} \text{ lbf} = \text{Opening Required Thrust}$ SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of friction = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) $A_{tor} (\text{Closing}) = 11,798 * 0.0116 = \frac{137}{15} \text{ ft-lbs}$	F,		ledging load (see pag	ge 31)
g_{15} $F_r = -7,485 + 1,250 + 6,243 - \frac{3355}{3,086} = \frac{11,2898}{11,7898}$ lbf <u>Calculation of Required Operator Torque</u> - A _{tor} $A_{tor} = F_r * SF$ (Sect. 3.1, pg 5) Where: $F_r = 11,798$ lbf = Closing Required Thrust $\frac{12,29!}{F_r} = \frac{11,7898}{11,7898}$ lbf = Opening Required Thrust SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of friction = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) A_{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-lbs	F _r	33.55 _p = 3,080 lbf = P	iston Effect Load (:	see page 28)
$\begin{array}{l} \underline{Calculation \ of \ Required \ Operator \ Torque \ - \ A_{tor}} \\ A_{tor} = F_r \ \ \ SF \ \ \ (Sect. \ 3.1, \ pg \ 5) \\ Where: \\ F_r = 11,798 \ lbf = Closing \ Required \ Thrust \\ 12,297 \\ F_r = \frac{11,898}{11,898} \ lbf = Opening \ Required \ Thrust \\ SF = 0.0116 = Stem \ Factor \ (Ref. \ 5.18.3). \ Where: \ Coef. \ of \ friction \\ = 0.15 \ (Sect. \ 3.1, \ pg \ 5); \ Stem \ Pitch = 1/3 \ and \ Stem \ Lead \\ = 1/3 \ (Ref. \ 5.13) \\ A_{tor} \ (Closing) = \ 11,798 \ \ 0.0116 = \frac{137}{15-lbs} \end{array}$		8153		10 201
$\begin{array}{llllllllllllllllllllllllllllllllllll$	~ r	r		<u>117896</u> IDI
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<u>C</u> ē	<u>alculation of Rec</u>	uired Operator Torg	ue – A
Where: $F_r = 11,798 \text{ lbf} = \text{Closing Required Thrust}$ $I_{2,29/}$ $F_r = \frac{11,898}{11,898} \text{ lbf} = \text{Opening Required Thrust}$ $SF = 0.0116 = \text{Stem Factor (Ref. 5.18.3). Where: Coef. of frictions}$ $= 0.15 \text{ (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead}$ $= 1/3 \text{ (Ref. 5.13)}$ $A_{tor} \text{ (Closing)} = 11,798 * 0.0116 = \underline{137} \text{ ft-lbs}$				
$F_r = \frac{12,29}{11,898}$ lbf = Opening Required Thrust SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of friction = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) A_{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-lbs			, <u>,</u> , , , , , , , , , , , , , , , , ,	•
$F_r = \frac{12,29}{11,898}$ lbf = Opening Required Thrust SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of friction = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) A_{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-lbs	F,	. = 11,798 lbf =	Closing Required Thr	nist .
<pre>SF = 0.0116 = Stem Factor (Ref. 5.18.3). Where: Coef. of friction = 0.15 (Sect. 3.1, pg 5); Stem Pitch = 1/3 and Stem Lead = 1/3 (Ref. 5.13) A_{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-lbs</pre>		12,291		
A_{tor} (Closing) = 11,798 * 0.0116 = <u>137</u> ft-lbs				
		- 0.15 (Sect	. 3.1, pg 5); Stem I	3). Where: Coef. of friction Pitch = 1/3 and Stem Lead
	A _t ,	_{or} (Closing) = 1	1,798 * 0.0116 = <u>137</u>	<u>7</u> ft-lbs
A_{tor} (Opening) = $\frac{11,898}{12,291}$ * 0.0116 = $\frac{138}{143}$ ft-lbs	Atc	_{or} (Opening) = 11 12	$\frac{1}{143}$ * 0.0116 = $\frac{138}{143}$	ft-lbs

alls-11/1/94

•	
SUBJEC	CT: DESIGN BASIS REVIEW AND THRUST/TORQUE CALCULATION FOR
	1-FUV-68-332
BRANCH	H/PROJECT IDENTIFIERS: MEB-WBN-68,WBN-68-D053, EPM-PJA-063092
	RER: <u>P. J. Antonvich</u> 17/4 DATE: 11/1/92
CHECKE	DATE: ///// DATE: /////92
<u>1</u>	
7.0	CALCULATIONS (Continued)
7.5	Thrust/Torque Calculations (Continued)
7.5.	2 Operator Capabilities
	<u>Closing Operator Torque Capability</u> - A _{tor} & A _{thr}
	Closing A _{tor} = MT * OAR * AF * RE * VF (Sect. 3.1, pg 6)
	Closing $A_{thr} = A_{tor} / SF$ (Sect. 3.1, pg 6)
	Where;
	MT = 15 ft-lbs = Motor Starting Torque (Ref. 5.23, pg F129D)
	OAR = 36.2 = Overall Gear Ratio (Ref. 5.25, p. 2)
	AF = 0.9 = Application Factor (Ref. 5.18.1)
	RE = 0.60 = Running Efficiency (Ref. 5.18.2)
	<pre>VF = 0.7561 = Voltage Factor (87.0% {400.0/460} available voltage squared, see Comment 7.4.16)</pre>
	SF = 0.0116 = Stem Factor (Sect. 7.5.1)
	Closing $A_{tor} = 15 \times 36.2 \times 0.9 \times 0.60 \times 0.7561 = 222$ ft-lbs
	Closing $A_{thr} = 222 / 0.0116 = 19,138$ lbf
· .	(see pg 24A)

913-11/11/94

Μ

/ ***** *

BRANCH/P PREPARER	DESIGN BASIS REVIEW AND THRUST/TORQUE CALCULATION FOR 1-FCV-68-332 PROJECT IDENTIFIERS: MEB-WBN-68, WBN-68-D053, EPM-PJA-063092 : <u>P. J. Antonvich</u> : <u>T. Snead</u> DATE: <u>1/12/92</u>
7.0 <u>c</u>	ALCULATIONS (Continued)
7.5 <u>T</u>	hrust/Torque Calculations (Continued)
7.5.2	Operator Capabilities (Continued)
Or	pening Operator Torque Capability - A _{tor} & A _{thr}
	pening $A_{tor} = MT * OAR * AF * PE * VF (Sect. 3.1, pg 6)$
	pening $A_{thr} = A_{tor} / SF$ (Sect. 3.1, pg 6)
	nere;
MT	= 15 ft-lbs = Motor Starting Torque (Ref. 5.23, page F129D)
OA	R = 36.2 = Overall Gear Ratio (Ref. 5.25, p. 2)
	= 0.9 = Application Factor (Ref. 5.18.1)
	= 0.45 = Pullout Efficiency (Ref. 5.18.2)
	= 0.7561 = Voltage Factor (87.0% {400.0/460} available voltage squared, see Comment 7.4.16}
SF	= 0.0116 = Stem Factor (Sect. 7.5.1)
Ope	ening A _{tor} = 15 * 36.2 * 0.9 * 8.45 * 0.7561 = <u>166</u> ft-1bs
Ope	ening $A_{thr} = 166 / 0.0116 = 14,310$ Tef
	(see pg 24A)

AD-1/11/74

			SHEET <u>35</u> OF <u>39</u>
			REVISION
SUBJECT:	DESIGN BASIS REVIE	W AND THRUST/	TORQUE CALCULATION FOR
	1-FCV-68-332	,	
RANCH/PRO	DJECT IDENTIFIERS:	MEB-WBN-68,W	BN-68-D053, EPM-PJA-063092
		(271)	1 1.0
	P. J. Antonvich	P/M	DATE: 1/1/1/9 L
CHECKER :_	T. Snead	20	DATE: 11/12/92

7.0 **<u>CALCULATIONS</u>** (Continued)

7.5 <u>Thrust/Torque Calculations</u> (Continued)

7.5.3 Weak Link Calculations

Valve Weak-Link

The valve manufacturer (Westinghouse) analyzed the weak link component in both the open and close directions, and calculated their maximum allowable thrusts (Ref 5.15). Although no detailed sub-component evaluation was provided, the conclusion is that the most limiting components are:

	WEAK LINK COMPONENT	MAXIMUM ALLOWABLE LOAD
OPEN DIRECTION	Disc	23995 lbf
CLOSE DIRECTION	Disc	36733 lbf

Operator Weak-Link (see Ref 5.18.4, p. 3)

Maximum Allowable Operator Output Torque (ft-lbs) - - - - 250

Maximum Allowable Operator Output Thrust (lbf) $- - - - - - \frac{14000}{19,600}$ (Ref. 5.34)

ask

CV 00 JJZ		SHEET <u>36</u> OF <u>39</u> REVISION 0 QUE CALCULATION FOR
BRANCH/PROJECT IDENTIFIERS:	MEB-WBN-68,WBN-	68-D053, EPM-PJA-063092
PREPARER: P. J. Antonvich CHECKER : T. Snead	P. 7A-	DATE: <u>11/11/07</u> DATE: <u>11/12/07</u>

7.6 WALKDOWN DATA

Walkdown data has been previously performed and is documented in TVA EQ Binder WBNEQ-MOV-001 (Ref. 5.23), "Environmental Qualification Documentation Package."

<pre>HECKER : T. Snead DATE: /////91 8.0 SUMMARY OF CALCULATION RESULTS MOV Tag Number 1-FCV-68-332 Required Thrust/torque (Section 7.5.1 and DS-M18.2.21 Section 2.1) {</pre>	8.0	SUMMARY OF CALCULATION MOV Tag Number <u>1-F</u>		DATE	.:	
MOV Tag Number <u>1-FCV-68-332</u> Required Thrust/torque (Section 7.5.1 and DS-M18.2.21 Section 2.1) { 12,251 / 1/3 Open: <u>11,798 lbf/138 ft-lbs</u> . Close: <u>11,798 lbf/137 ft-lbs</u> <i>open & Shuf = 2900 lbf/250 ft-lbs</i> Seismic document which addresses maximum thrust/torque; (<i>2ef, 5.31</i>) <u>WAT-D 5939 Sciencic Qualification of Westinghouse Cate-Valves</u> for Watte Der (RIMS # 733-920730-903) Motor Actuator Capability (Section 7.5.2 and DS-M18.2.21 Section 2.2) Open Thrust/torque <u>14,310 lbf/166 ft-lbs</u> Close Thrust/torque <u>14,310 lbf/266 ft-lbs</u> Thrust/torque <u>14,320 lbf/227 ft-lbs</u> If/17 Valve Allowable (Section 7.5.3 and DS-M18.2.21 Section 2.3) Limiting Component Open <u>Disc</u> Thrust/Torque 23,995 lbf/278 ft-lbs Limiting Component Close <u>Disc</u> Thrust/Torque 36,733 lbf/426 ft-lbs Actuator Allowable (Sect. 7.5.3) Thrust/torque <u>14,000 lbf/250 ft-lbs</u> Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) Min. <u>-170-</u> 115 Max. <u>-240-</u> 185		MOV Tag Number <u>1-F</u>				
MOV Tag Number <u>1-FCV-68-332</u> Required Thrust/torque (Section 7.5.1 and DS-M18.2.21 Section 2.1) { 12,251 / 1/3 Open: <u>11,798 lbf/138 ft-lbs</u> . Close: <u>11,798 lbf/137 ft-lbs</u> <i>open & Shuf = 2900 lbf/250 ft-lbs</i> Seismic document which addresses maximum thrust/torque; (<i>2ef, 5.31</i>) <u>WAT-D 5939 Sciencic Qualification of Westinghouse Cate-Valves</u> for Watte Der (RIMS # 733-920730-903) Motor Actuator Capability (Section 7.5.2 and DS-M18.2.21 Section 2.2) Open Thrust/torque <u>14,310 lbf/166 ft-lbs</u> Close Thrust/torque <u>14,310 lbf/266 ft-lbs</u> Thrust/torque <u>14,320 lbf/227 ft-lbs</u> If/17 Valve Allowable (Section 7.5.3 and DS-M18.2.21 Section 2.3) Limiting Component Open <u>Disc</u> Thrust/Torque 23,995 lbf/278 ft-lbs Limiting Component Close <u>Disc</u> Thrust/Torque 36,733 lbf/426 ft-lbs Actuator Allowable (Sect. 7.5.3) Thrust/torque <u>14,000 lbf/250 ft-lbs</u> Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) Min. <u>-170-</u> 115 Max. <u>-240-</u> 185		MOV Tag Number <u>1-F</u>				
<pre>/2,29/ //3 Open: 11,798 lbf/137 ft-lbs Seismic document which addrosces maximum thrust/torque, (ref. 5.31) <u>WAT D 8939 Seismic Qualification of Westinghouse Cate Valves</u> for Watts Dar (RIMS # 733 920730 903). Motor Actuator Capability (Section 7.5.2 and DS-M18.2.21 Section 2.2) Open Thrust/torque 14,7340 lbf/1466 ft-lbs Close Thrust/torque 14,7340 lbf/222 ft-lbs (8) yo 2// Valve Allowable (Section 7.5.3 and DS-M18.2.21 Section 2.3) Limiting Component Open <u>Disc</u> Thrust/Torque 23,995 lbf/278 ft-lbs Limiting Component Close <u>Disc</u> Thrust/Torque 36,733 lbf/426 ft-lbs Actuator Allowable (Sect. 7.5.3) Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) Min. <u>170</u> 115 Max. <u>246</u> 185</pre>			<u>CV-00-332</u>			
<pre>Open: <u>11,798 lbf/137 ft-lbs</u></pre>				and DS-M18.	2.21 Section	n 2.1) (2
SelSMIC document which addresses maximum thrust/torque; (ef. 5.31) <u>WAT-D 0399 Ceiomic Qualification of Westinghouse Cate Valves</u> <u>for Watts Dar (RIMS # T33 920730 903)</u> Motor Actuator Capability (Section 7.5.2 and DS-M18.2.21 Section 2.2) (362/ /58 Open Thrust/torque <u>147.310 lbf/466 ft-1bs</u> Close Thrust/torque <u>147.310 lbf/222 ft-1bs</u> (8/70 Z/ Valve Allowable (Section 7.5.3 and DS-M18.2.21 Section 2.3) Limiting Component Open <u>Disc</u> Thrust/Torque <u>23,995 lbf/278 ft-1bs</u> Limiting Component Close <u>Disc</u> Thrust/Torque <u>36,733 lbf/426 ft-1bs</u> Actuator Allowable (Sect. 7.5.3) <u>19,600</u> Thrust/torque <u>145,000 lbf/250 ft-1bs</u> Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) <u>Min. <u>-170</u> 115 Max. <u>-246</u> 185</u>		Open: <u>11,898</u> lbf/1	30 ft-lbs · Clo	se: <u>11,798</u>	lbf/137 ft-	lbs
for Watts Dar (RIMS # T33 920730 903)- Motor Actuator Capability (Section 7.5.2 and DS-M18.2.21 Section 2.2) /362/ /58 Open Thrust/torque 14,310 lbf/266 ft-lbs Close Thrust/torque 19,130 lbf/222 ft-lbs /362/ /58 Valve Allowable (Section 7.5.3 and DS-M18.2.21 Section 2.3) ////////////////////////////////////		Seismic document which	addresses maxim	um thrust/t	orque: (Ref	250 fe-lbs (5,31)
Motor Actuator Capability (Section 7.5.2 and DS-M18.2.21 Section 2.2) /362/ /58 Open Thrust/torque 14,310 lbf/166 ft-lbs Close Thrust/torque 19,130 lbf/222 ft-lbs /8/90 Z// Valve Allowable (Section 7.5.3 and DS-M18.2.21 Section 2.3) Limiting Component Open Disc Thrust/Torque 23,995 lbf/278 ft-lbs Limiting Component Close Disc Thrust/Torque 36,733 lbf/426 ft-lbs Actuator Allowable (Sect. 7.5.3) 19,600 Thrust/torque 14,000-lbf/250 ft-lbs Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) Min. 170 115 Max. 240 185	•	WAT D-8939 Seismie for Watts Bar (RIM		of Westingh 983)-	ouse Gate Va	lves
Open Thrust/torque $\frac{14,310}{19,138}$ lbf/222 ft-lbs Close Thrust/torque $\frac{19,138}{19,138}$ lbf/222 ft-lbs (8/90 Z') Valve Allowable (Section 7.5.3 and DS-M18.2.21 Section 2.3) Limiting Component Open <u>Disc</u> Thrust/Torque 23,995 lbf/278 ft-lbs Limiting Component Close <u>Disc</u> Thrust/Torque 36,733 lbf/426 ft-lbs Actuator Allowable (Sect. 7.5.3) 19,600 Thrust/torque $\frac{14,000}{14,000}$ lbf/250 ft-lbs Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) Min. $\frac{-170}{240}$ 115 Max. $\frac{-240}{240}$ 185		Motor Actuator Capabili		.2 and DS-M	18.2.21 Sect	ion
Limiting Component Open <u>Disc</u> Thrust/Torque <u>23,995 lbf/278 ft-lbs</u> Limiting Component Close <u>Disc</u> Thrust/Torque <u>36,733 lbf/426 ft-lbs</u> Actuator Allowable (Sect. 7.5.3) <u>19,600</u> Thrust/torque <u>14,000 lbf/250 ft-lbs</u> Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) <u>Min. <u>-170</u> 115 Max. <u>-240-</u> 185</u>	Ì	Open Thrust/torque Close Thrust/torqu	$\begin{array}{r} \frac{14,310 \text{ lbf}/16}{19,138 \text{ lbf}/22} \\ \end{array}$	ft-lbs ft-lbs		,
Thrust/Torque 23,995 lbf/278 ft-lbs Limiting Component Close <u>Disc</u> Thrust/Torque <u>36,733 lbf/426 ft-lbs</u> Actuator Allowable (Sect. 7.5.3) <u>19,600</u> Thrust/torque <u>14,000-lbf/250 ft-lbs</u> Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) <u>Min. <u>-170</u> 115 Max. <u>-240</u> 185</u>		Valve Allowable (Sectio	n 7.5.3 and DS-1	418.2.21 Se	ction 2.3)	d.B
Thrust/Torque <u>36,733 lbf/426 ft-lbs</u> Actuator Allowable (Sect. 7.5.3) 19,600 Thrust/torque <u>14,000-lbf/250 ft-lbs</u> Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) Min. <u>-170</u> 115 Max. <u>-240-</u> 185				lbf/278 ft-	lbs	11/14
19,600 Thrust/torque <u>14,000-1bf/250 ft-1bs</u> Spring Pack Torque Band Capability - Close Direction Only (Section 7.3.5) Min. <u>-170</u> 115 Max. <u>-240-</u> 185				bf/426_ft-	lbs	
Thrust/torque <u>14,000</u> lbf/250 ft-lbs Spring Pack Torque Band Capability – Close Direction Only (Section 7.3.5) Min. <u>-170</u> 115 Max. <u>-240</u> 185	7					
Max. $\frac{-170}{-240}$ 185		19,6 Thrust/torque (<u>14,</u>	00 000- 1bf/250 ft-1	.bs		
R1		Spring Pack Torque Band Close Direction On	ly (Section 7.3. Min. <u>-170-</u> 115	5		S GT MAY MAY!
RI Autota						
						R1 Malula ?

BJEC	EBASCO SERVICES INCORPORATED T: DESIGN BASIS REVIEW AND THRUST/TORQUE CALC	SHEET <u>38</u> REVISION ()
ANCH	1-FCV-68-332 /PROJECT IDENTIFIERS: MEB-WBN-68,WBN-68-D053, גר און	, ЕРМ-РЈА-(
	ER: P. J. Antonvich P//1 R: T. Snead Jac	DATE: DATE: ////	2/92
<u> </u>			
3.0	SUMMARY OF CALCULATION RESULTS (CONTINUED)		07
	Thrust/torque Band Open Min. <u>11,898 lbf/138</u> (1362) Max. <u>14,000 lbf/166</u> (11,798) <u>14,000 lbf/166</u> (14,310 Max.)		
	Thrust/torque Band Close Min. <u>11,798 lbf/137</u> Max. <u>14,000 lbf/222</u>		
	IS MOV ACCEPTABLE FOR THE APPLICATION? Y (Y/N	V)	gill
	If "no", enter reference to design change doo	cument: <u>NR</u>	ga maning
	Comments:		141/19 05.0
	The torque values were obtained by multiplyin factor i.e. $23,995 * 0.0116 = 278$ ft-lbs.	ng the thru	st and ste
	The minimum torques and thrusts in the oper based upon the calculated valve minimums.	and close	e bands ar
	The maximum thrusts in the open and close actuator weak link thrust, the calculated operat		
	The maximum torques in the open and close bar calculated operator capabilities.	nds are bas	ed upon th
	The torque switch band envelopes the minimutorque in the close direction, and is, therefore the installed spring pack.	um require pre, satisf	d operatin actory wit
	The minimum required torques are for information operating torques may be less, depending upon factors.	ation only lubricatic	and actua

	EB	ASCO SERVICES	INCORPORATED		
				SHEET <u>39</u>	
				REVISION	
SUBJECT:	DESIGN BASIS REV 1-FCV-68-332	IEW AND THRUST	T/TORQUE CALCU	JLATION F	OR
BRANCH/PRO	JECT IDENTIFIERS	: MEB-WBN-68,	WBN-68-D053,	ЕРМ-РЈА-	063092
PREPARER:_	P. J. Antonvich			DATE:	11/11/92
CHECKER :	T. Snead	attin	I	DATE:	11/12/81-

9.0 CONCLUSIONS

A design basis review has been performed and the required thrust/torque has been determined per the methodology specified in Mechanical Design Standards DS-M18.2.21 & DS-M18.2.22. This methodology determined that the motor operated valve 1-FCV-68-332 is acceptable from a design standpoint for its application as the Reactor Coolant System Pressure Relief Flow control Valve (Train B).

	р. J.	IDENTIFIERS: Antonvich ead	P71 994	7		_ Date: //	11/1/9
		ς	<u>Attachr</u>	nent 1			
PRZ	70	₩	FCV-68-333	S PCV-68-340A			•
	-' '		FCV-68-332	S PCV-68-334A			•
				•	F	RESSURIZI RELIEF TAN	IK

.

ATTACHMENT 2

. . . .

DOD-shaded is estated		WALLS B/	AH NUCLEAF	PLANT UNIT 1		
non-shaded is calc input - ot	her is tro	cking data		30-Jun-9	95	Page
1.0 INPUT: General Information	··	·		Valve UNII): Closing contro	
				1-FCV-68-332-B	- TIMIT	
Valvo Informa			Closing T.S.	wired in parallel to closing L.S. TSS = 1	.0	********
Manufacturer		IGHOUSE		Stem Diame		0 incho
Size) inches		Mean Seat Diamet		7 inches
Pressure Class	1500) pai		Sent Angle (the		0 degree
Disc Style	FWG			cos(the		
Stem Orientation	t			ain(thet		
Valvo Stem Lond		lond		Valve Stem Pite		3 pitch, i
Actustor Inform				References (DP Test Data) (Rims Number	•)	-11-12-14
Manufacturer Type		7		T76 940614 847	eka (n. 1997). Na	(edopp)
Type	30	Si	ze: 00	T76 940623 851		
10V Design Basis Review Calcu	d. 41					
Calculation Number Seat/Wdg Friction Factor (VF)	0.4000			REVISION 4		
	Closing Dir			Stem/Stem Nut Friction Factor (unt) (SI	0.0116	5
Motor Capability	18190				Opening Direct	ion
Motor Capability	211.00			Motor Capability	the second	
Actuator Limit	19600			Motor Capability		
Actuator Limit	250.00			Actuntor Capability		
Valve Weak Link	36733			Actuator Capability		
Valve Weak Link				Valve Capability		
	426.00			Valve Capability	278.00	
Seismie Limit	20000			Soismie Limit		
Seismic Limit	250.00	fi-165		Seismic Limit		
Differential Berry (D.B.	0005				1	1
Differential Pressure (DP)		psid		Differential Pressure (DP)	2734	Daid
Required Thurst	11798			Required Thrust	12291	
	137.00			Required Torque	143.00	·
Piston Effect	2865			Piston Effect	3335	
Packing Load	1250			Packing Load		
DPLond	7683	lbs		Unseating Load	6243	
				DP Load	8153	
Static Test Information			1			
			·····			
Static Test. Line Pressure	0		(ASSUMED)	Stem Factor @ CST	0.0084	
	osing Direc		1		Oponing Directio	
Ave Running Load. [D]	1261 1		l	Ave Running Load. [L]	1226	
	14008 1			Unseating Lond. [J]	5638	
	118.17			Unseating Load. [J]	23.72	
	Direct				Closing Direction	11-118
	14988 1			Total Peak. [11]	135.05	о _ 11
Total Final [1]	14813 n	×		Total Final.[1]	128.66	
DP Test Information			L		120.00	1-105
	001	· · ·		Flow, Full Open	N/A	
Maximum DP test condition	2211 p			Line Pres . Full Open	2244	pm
	sing Direct				Dening Direction	
	12712 IL			Measured DP Thrust, Opening [K]	4412 1	
	91.25 n			Measured Unseating Thrust, Opening [1]	4412	
Thrust @ CST Closing [G] Torque @ CST Closing [G] 1	14393 њ 06.76 ја	·		Measured DP Torque, Opening [K]	40.15	
	00.70 /ft	- JUs		Mensured Unsenting Torque, Opening[J]	23.72 6	-10s
	15549116	. <u> </u>	<u>-</u>	C	losing Direction	
				Total Penk. [11]	120.45 n	
Total Peak. [11]	15234 lb			Total Funal [1]	109.5 n	-lbs
Total Peak. [11] Total Final. [1]						
Total Penk. [11] Total Fund. [1] nostic Equipment Error Determ						
Total Penk, [11] Total Fund. [1] nostic Equipment Error Detern Trc N				MOVATS Dia Sys / Equip Error	3000	
Total Penk. [11] Total Fund. [1] nostic Equipment Error Determ	nination			MOVATS Dia Sys / Equip Error If SMART STEM. Capacity = If SMART STEM. Capacity =	3000 N/A Ib N/A n	

PREPARED BY: 203 7/12/95

THIS PAGE ADDED BY REVISION 4

ATTACHMENT 2

MOV RECONCILIATION WATTS BAR NUCLEAR PLANT UNIT 1

· · · · · · · · · · · · · · · · · · ·		1	29-Aug-95	Valve UNID:	Page
2.0 Closing Stroke Reconciliation	ļ	1		1-PCV-68-	- 332
DIK Paramotors	DBR Calculati	ion	Roconcilod Parameters	Reconciled T	
Minimum Required Thrust :	11796	lbs -	Reconciled Thruz:	13355	
Minimum Required Torque :	137.00	fi-lbs	Reconciled Torque ;		fi-lh
Ksion Pfect :	2865	lbs	Piston Effect (from DBR Calculation) :	2865	lbs
Packing Lond :	1250	lbs	Average Packing Load (Section 8.0, step 3A) :	1244	lins
DP Lond :	7683	lbs	DP Lord :	9247	1bs
Seat Wedge Friction Factor (VF) :	0.4000	<u> </u>	Seat Contact, Seat Wedge Priction Factor (VP) :	0.5654	
	Calculated Para	meter:	Lond Sensitive Behavior (ROL) :	N/A	
	Comparison of	Stom F	ACTORS		
Stem Factor (SF) DBR Calculation :	0.0116	l	SI ⁷ @ Static CST [G] :	0.0084	
			SF @ DP CST [G] :	0.0074	
			SF @ Required Closing Th. DP Test [F]:	0.0072	
ARGIN EVALUATIONS OF DE TEST DATA AND DI	IR CALCULAT	ם אסד	ATA		
CST Thrust Margin :	1038	lbs	CST Torque Margin :	11	fi-lbs
CST Thrust Margin :	7.8	%	CST Torque Margin :	11.4	9%
Methodology Margin :		lbs	Thrust Capability Margin :	3499	lbs
Methodology Margin :	-19.7	%	Thrust Capability Margin :	23.8	9%
·					
			Torque Capability Margin :		ft-lbs
•			Torque Capability Margin :	100.1	%
Opening Stroke Reconciliation		<u></u>	• BASED ON POINT : S	TATICUL	
DBR Paramotors	DBR Calculatio	DR .	Reconciled Parameters	Reconciled Te	nat Dat
Minimum Required Thrust :	12291	Ibs	Reconciled Thrust :	6677	
Minimum Required Torque :	143.00	ft-lbs	Reconciled Torque :		ft-lbs
Piston Effect Lord :	3335	lbs	Piston Effect (from DBR Culculation) ;	3335	
Packing Load :	1250	lbs	Average Packing Load (Section 8.0, step 3A) :	1244	
Unscaling Load :	6243	ibs	Unscating (based on DP [J]) :	4412	
DP Lord :	8153	lbs	DP Load (based on DP [K] - Ave Pk Load + PE) :	7253	lbs
Seat Wedge Friction Factor (VF) :	0.4000		Sent Wedge Friction Factor (VF) :	0.4284	
· · · ·	Comparison of S	Stem Pa	clors		
Stem Factor (SF) :	0.0116		SF @ Max Req'd Opening Th :	0.0042	
ARGIN EVALUATIONS OF DE TIST DATA AND DB	R CALCULATI	ION D	NTA		
Methodology Margin :	4946	1	Thrus Capabilüy Margin :	6276	ibs
Methodology Margin :	67.3		Thrust Capability Margin :	85.4	
			Torque Capability Margin :	127	ft-lbs
			Torque Capability Margin :	411.3	
	l]	
FLAG INDICATION OF UNSATISPACTORY	MARGINS (PROI	BLEM" or "OK")		
osing Stroke	· · · · · · · · · · · · · · · · · · ·				514
Methodology Margin :	PROBL	ЕМ	CSTThrus Margin :	PROBL	-EM
Thrus Capability Margin :	ОК		CST Torque Margin :	ОК	
			Torque Capability Margin :	ОК	
ening Stroke	<u></u>				
Methodology Margin :	OK				
Thrus Capability Margin :	ОК		Torque Capability Margin :	ОК	
EPARED BY: 111-8/31/81			AGE ADDED BY REVISION \mathcal{H}		عت خد زاره

For DP test pressure < DBR pressure; Reconciled Thrust = MAX of
 {STATIC [J] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [J] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design DP/Actual DP) + Ave Static Run Load
 { DP [K] - Ave Static Run Load } * (Design D

* - indicates METHOD used to determine the opening reconciled thrust.

ATTACHMENT 2

MOV RECONCILIATION		
WATTS BAR NUCLEAR PLANT UNIT 1		
30 - J un - 95	Page 3	
	Valve UNID:	
	1-FCV-68-332-1	<u>B</u>

5.0 Remarks:

- A. Differential Pressure (DP) testing was performed at 95% of the closing DP and at 82% of the opening DP used in the WBN Design Basis Review (DBR) Calculation.
- B. The closing Load Sensitive Behavior (ROL) term of "N/A" indicates that the valve is "limit" switch controlled and ROL does not apply.
- C. The stem factors are shown to be conservative when test results are compared to the calculated values.
- D. The packing loads are shown to be conservative and correspond to those in the DBR calculation.
- E. The unscating force during the static test bounds the unscating force of the DP test.
- F. The calculated seat wedge friction factor (VF) for opening is higher than that used in the DBR calculation, but adequate margins exist between reconciled thrust/torque and the opening motor capability.
- G. The calculated seat wedge friction factor (VF) for closing is higher than that used in the DBR calculation, but adequate margins exist between reconciled thrust/torque and the closing motor capability.
- II. The PROBLEM flag in the closing direction between the reconciled thrust to the CST trip thrust indicates a narrow margin, but this valve is position seated with the position of the valve stem monitored to ensure the valve is hard seated each time the the valve is stroked closed when the "limit" switch trips the valve. Adequate margins exist above the CST to the motor capability and to the maximum limits.
- I. The PROBLEM flag in the closing direction for Methodology Margin indicates that the reconciled thrust is greater than the calculated minimum required thrust in the DBR calculation. This is influenced by the high DP effect force experienced during the DP test, which results in a high closing VF and reconciled DP Load component. The reconciled DP Load component is much larger than the value calculated in the DBR. However, adequate margin exists between the reconciled thrust and the closing motor capability.
- J. To take into account the "Aging Issue", adequate margins exists to allow for degradation of packing coefficients, partial loss of lubrication, wear of valve/actuator's internal parts, and an increase in valve's surface friction coefficients.

6.0 Conclusions:

- A. The valve's final setup is acceptable. DBR Calculation friction factor methodology are proven to be conservative with adequate margins.
- B. By successful stroking of the valve (including indication of flow isolation) during the DP test, and by adequate margins in the reconciled test data, the valve's operability has been demonstrated.

7.0 Recommended follow up actions: None.

PREPARED BY: 2 7/12/95

CHECKED BY: TVA 7/12/95-

THIS PAGE ADDED BY REVISION 4

EPM-PJA-063092

ATTACHMENT 2

MOV RECONCILIATION WATTS BAR NUCLEAR PLANT UNIT 1

				······································			30-Jun-9		Page 4	
8.0 Determination of Pac	king Load	······································					Valve UNID			
1		d, Static Te	st Open & Clos	se, Ibs (Line Press = 0)			1-PCV-68-	- 332 - B		
				We Running Load Static Close,	lby "D"			····	-r	
				Ave Running Load Static Open.						
2A	Piston Load	Static Test (1	PNLST), lbs (L	ine Pressure, STLP is know	vn and not =	0) (11)	od in Pachina La			
	PNLST	on Load Static Test (PNLST), lbs (Line Pressure, STLP is known and not = 0) (Used in Packing Load) PNLST = 0 = Piston Load Static Test = STLP x PI x SD x SD / 4								
2B	Packing Loa	d Static Tes	t, Ibs (Line Pre	ssure, STLP, known & no	t = 0)	_				
				tatic Test Close = ARLSC - P					- <u>r</u>	
				tatic Test Open = ARLSO - P		· · · · · · · · · · · · · · · · · · ·				
3A	Estimated Pr	acking Load	Static Test, Ib:	s (Line Pressure, STLP is	not known)			_l	1	
		124	4 = (ARLSC +)	$ARLSO / 2 = (D^{*} + L^{*}) / 2$					1	
3B	Estimated Pi	ston Effect L	oad Static Tes	t. Ibs (Line Pressure is no	t known)			_L	1	
	PNLSF -	- 1	8 = (ARI.SC - /	$(120)/2 = (D^{*} - L^{*})/2$				T	T	
3C	Estimated St	atic Line Pre	ssure from Pis	ton Effect Load, Ibs (STL			····	1		
	517.1" •	1	$4 = (4 \times 1^{\circ} N L S \Gamma)$)/(P1 x E2 x E2)		9.0A	OPENING REC	ONCILED F		
	1		1				נון אדאזצ		lbs .	
0.0 Miscellaneous Interme							ןנן יונד		lbs .	
Unso	eating load duri						DP [K]		lbs .	
(1)) lbs	= [J] - [K] = N	leasured Unseating Th - Meas	ured DP TH		*tt	1		
Unsacting Load < 0, then assign a	value of "0" to Rec	conclied Unsea	ling Load on Page	2				1	<u> </u>	
(az Pacid Operia 77				Point J DP :	Point F	CDP:	Point J ST	ATTC:	·	
Inx Req'd Opening Thrust to overco	ome DP, POINTS	[]&K]:		4	112	4412	5638	· · · · · · · · · · · · · · · · · · ·	T	
Inx Req'd Opening Torque to overo	ome DP, POINTS	[J&K]:		23	.72	40.15	23.72	ft-lbs		
faximum Stem Factor (SF), POINT	\$ [J] or [K]:	·········		0.0)54	0.0091		= SF		
fax Req'd Opening Thrust to overco	ome DP, GREATI	ER OF POINT	SIJ&K}	4.	112 lbs					
iston Effect based on DP Test Line	Pressure (Full Ope	:n):		2:	54 lbs					
0.0 Equipment Error data										
0.0 Equipment Error dete DSS – Thrust Sensor / Equip Error		T	·							
TC - Thrust Sensor / Equip Error	165		% Reading		170 0.54	of full i	cale evaluation			
	<u> </u>		% Reading		SMB S		0			
TC - Torque Sensor / Equip Error		0.0				000	67	lbs.		
TC - Thrust Sensor / Equip Error TC - Torque Sensor / Equip Error			lbs>			00	117			
			ft-lbs>			0	200	lbs.		
SS - Thrust Sensor / Equip Error			% Capacity			1	375	lbs.		
SS - Thrust Sensor / Equip Error			lbs.			2	500	lbs.		
S S - Thrust Sensor / Equip Error			ft-lbs.			3	1000			
MOVATS Dia Sys / Equip Error	3000	2.0	% Reading			000		ft-lbs	··	
T C Damas Litter and a	10	·				00		ft-lbs		
T. S. Repeatability Applied	NO	0	% Reading			0		ft-lbs		
			(Table below)			1		ft-lbs		
						2	12.5		· · · ·	
						3	30.0			
immediate of Viewige and Pierre										
mmation of Equipment Error (El juipment Error =			·	T. S. Repeatability evaluation						
ulpment Erfor =	10.0	Percent	·	As Left TSS =	DP TST T	OR =				
				N/A	N/A					
				CASE EVALUATION, As L	.eft			%		
				> 1.00	CASE	1	> 50 '#	5		
				> 1.00	CASE	2	< 50 '#	10		
				1.00	CASE		> 50 '#	10		
				1.00	CASE	4	<50'#	20		
FERENCES: 7	107930114889, MC	VATSERSO								
······································	107930114890. TE		1	WBN-VTM-L200-0010, sec	100 D3 40					

PREPARED BY: 20 7/13/95

CHECK BY: TV2 7/12/95

THIS PAGE ADDED BY REVISION _____

	EPM-PSA - A++. 3 Pa 1/11	063092			PAGI	E (1-1-9 T76 940623	0 F 47			
	WBN 1	IYD VA	LVES - PRO	ST OF MOTOR OF VIDING PORV A ETURN ISOLATI	ND RCP	TI-85.0 Revision Page 34	n 0			
Da	ata Package:	Page	of			Date _	5-13-94			
				-FCV-68-333 (Continued)					
					•					
•	30705	= 1 - FCV - 0	68-332 us	ferential pres sing informat: der as follows	LOU LIOM C.	races	• •			
	Col l	Col 2	Col 3	Col 4	· Col 5	Col 6	Col 7			
1	-FCV-68-332 STROKE	UPSTRM PRESS (PT1,	DOWNSTRM PRESS (PT2,	DP (psid) (Col 2 - Col 3)	90% DESIGN DP (psid)	75% DESIGN DP (psid)	INITIALS VERIF BY			
		psig)	psig)		(F)		IRB			
A	OPENING	2244	0	2244	2260	1880	BAN			
B	CLOSING	2211	0	2211	2100	1750	IRB REM			
	 [46] TF Col 4A or 4B < 75% DESIGN DP, THEN <p>INDICATE in Chronological Test Log that data for this valve may be outside of range for extrapolation to 100% DP condition. </p> [47] ENSURE PRT level is minimized to the extent practicable. [48] ENSURE PRT spray is capable of operation. [48] ENSURE PRT spray is capable of operation. [49] ENSURE PRT temperature is below 112°F as indicated on 1-TI-68-309, RCS PRT TEMP [1-M-4]. [50] ENSURE MOVATS equipment and multichannel recorder for pressure and motor current are ready to monitor									
	closi	ng of 1-	FCV-68-3	دد.			3			
-			1							

TI85012.FNL -

.

MI-0.6 Revision 6 Page//O or 22 MOVATS TESTING OF - HEN MOTOR-OPERATED VALVES EPM-PSA-063092 Page 15 of 34 APPENDIX A 148814 847 NF Att. 3 ·61 Pa 2/11= TEST DATA SHEET PAGE Valve ID _ 1 MVOP 68 332 B WID No _ 91-01135-01 SECTION I: SYSTEM INFORMATION For Static Test, use sections 2, 3, 4, & 5. NOTE 1 For Differential Pressure Test, use sections 2, 3, 6, 7, & 8. NOTE 2 NOTE 3 Circle Test Performed below: A.) Static GO TO Section II if Static is circled. B. Differential Pressure Test . . COMPLETE Section I DP data below. __GPM or LB/HR Flow Rate:_____ Pressure Upstream Closed:_____PSIG Pressure Downstream Closed:_____PSIG Pressure Downstream Closed:_____PSIG Average Fluid Temperature:_____ Deg F Flow Instrument Accuracies: _____ % FI Number____ _ PI Number Elevation:_____Ft above sea level. R 1/e 1/23/94 KI. SECTION II: PERFORMANCE SECTIONS P Motor Current Signature Acquisition. P Switch Monitor Signature Acquisition. 0-Spring Pack Monitor Signature Acquisition. Spring Pack Calibration. 0 Torque-Thrust Setpoints Adjustments. Torque Thrust Cell Signature Acquisition. Quick Stem Sensor Signature Acquisition. other: \square . . RECORD the vendor Calculations used in section 6.1. MOLATS ER 5.0 REV 6 TELEDINE TR ATIG-A-1 22416·A 5 E1396-B 28848-A ENGINEER This Pole Educe By Rey... .050lj___

WEN EPM-P3A-063092 Att. 3 Pa 3/11

MOVAIS TESTING OF MOTOE-OPERATED VALVES MI-0.6 Revision 6 Page /// of 22/ Page 16 of 34 APPENDIX A Page 2 of 5 T76 9406/4 847 910113501

TEST DATA SHEET

SECTION III: TARGET THRUST

PAGE 033 OF 61

	Opening stroke	Closing strol	<u>ke</u>
Target Thrust Determination	. 1189B	11798	LBS
Required Minimum Thrust at Torque Switch Trip:	10	10	%
Test Equipment Accuracy # 1:		12978	LBS
Adjusted Minimum Thrust at Torque Switch Trip:	14310	19138	LBS
Guaranteed Maximum Thrust at T.S.Trip:	10	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Test Equipment Accuracy # 2:	12879	17224	LBS
Adjusted Guaranteed Max. Thrust at T.S.Trip:	19600	19600	LBS
Maximum Total Thrust:		io	 %
Test Equipment Accuracy # 3:	<u>io</u>	17640	LES
Maximum Adjusted Total Thrust:	17640	1010	
Target Thrust Window	2.00	12978	TDC
Minimum Target Thrust at Torque Switch Trip:	13088		LES
Maximum Target Thrust at Torque Switch Trip:	12879	17224	LES
Maximum Allowable Total Thrust:	17640	17640	LBS
	,		
Rapid Impact Overload Criteria:	NI		
Rapid impact overload officeria.	- RA	1/23/94	
		g i li i	1
LIMIT OPE	EN AND CLOS	E le 1/2	394
SECTION IV: STATIC TEST			
	Opening stroke	Closing Stro	ŀē
Static Test As-Left Thrust Verification	Upening scroke	IZGO	LES
Average Running Load:	/_	14:008	LBS
Thrust at Torque Switch Trip:	/		
Total Dalivered Thrust:	/	14988	LBS
10000 20000 · · · · · · · · · · · · · · ·	1 1/23/24	1	
A stand to to fr Torque Verification	KIN /		

<u>Static Test As-Left Torque Verification</u> Torque at Torque Switch Trip: Total Output Torque:

<u>Static Test As-Left Spring Pack Displacement</u> Available Displacement: Displacement at Torque Switch Trip: Total Displacement:

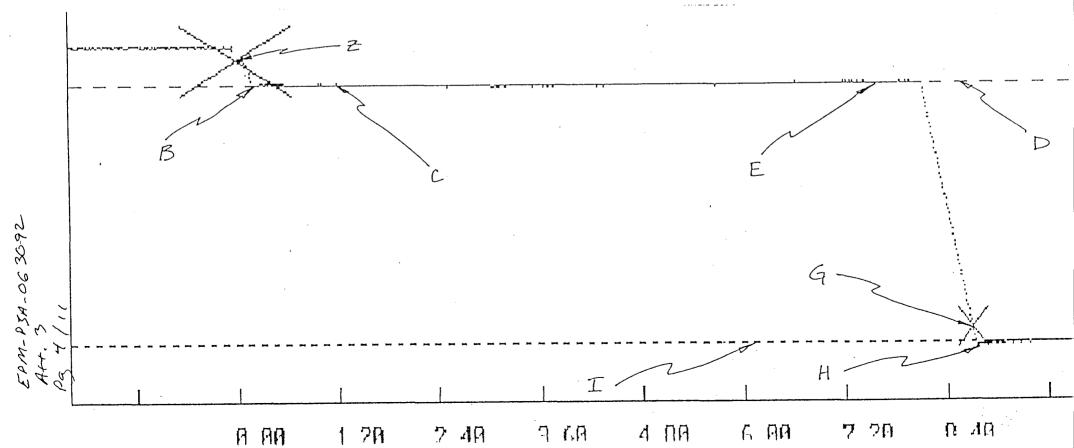
Stem Factor: Torque Switch Setting AS LEFT Rapid Impact Overloading Test

A 1916 in. .2028 in. 1252 in. ,008 N/A 1,0 110 \mathcal{N} UNSAT SAT

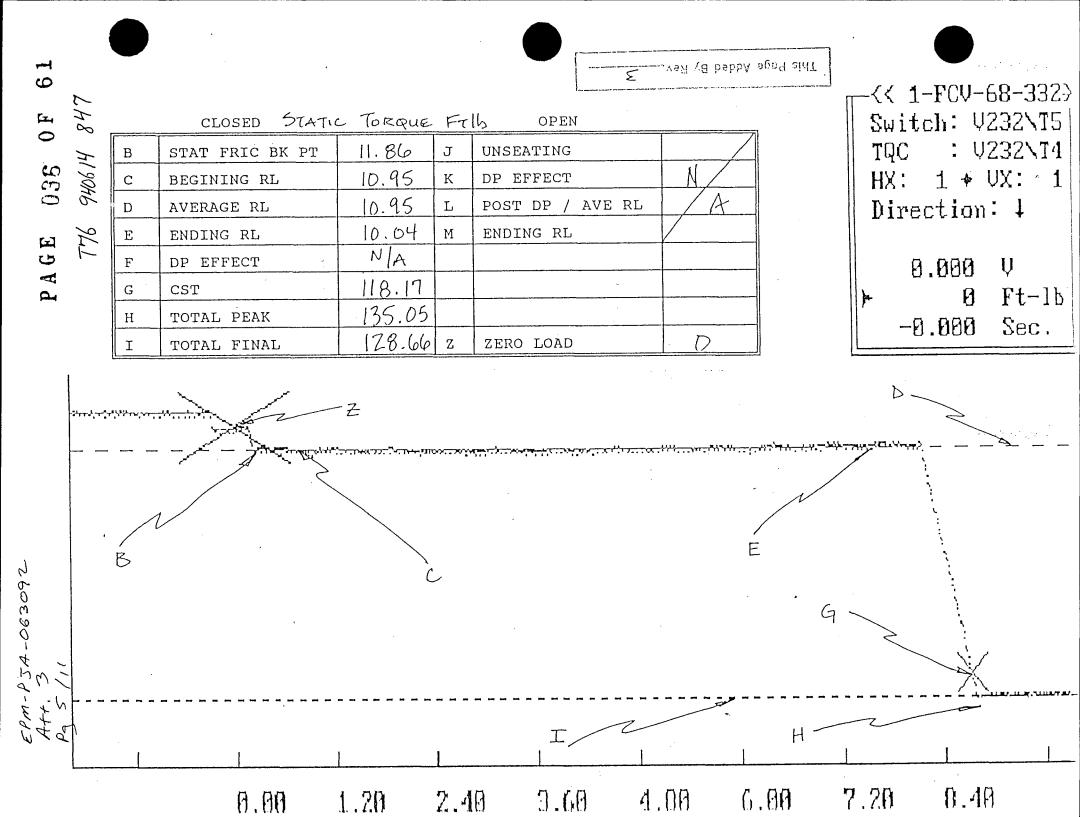
18,17

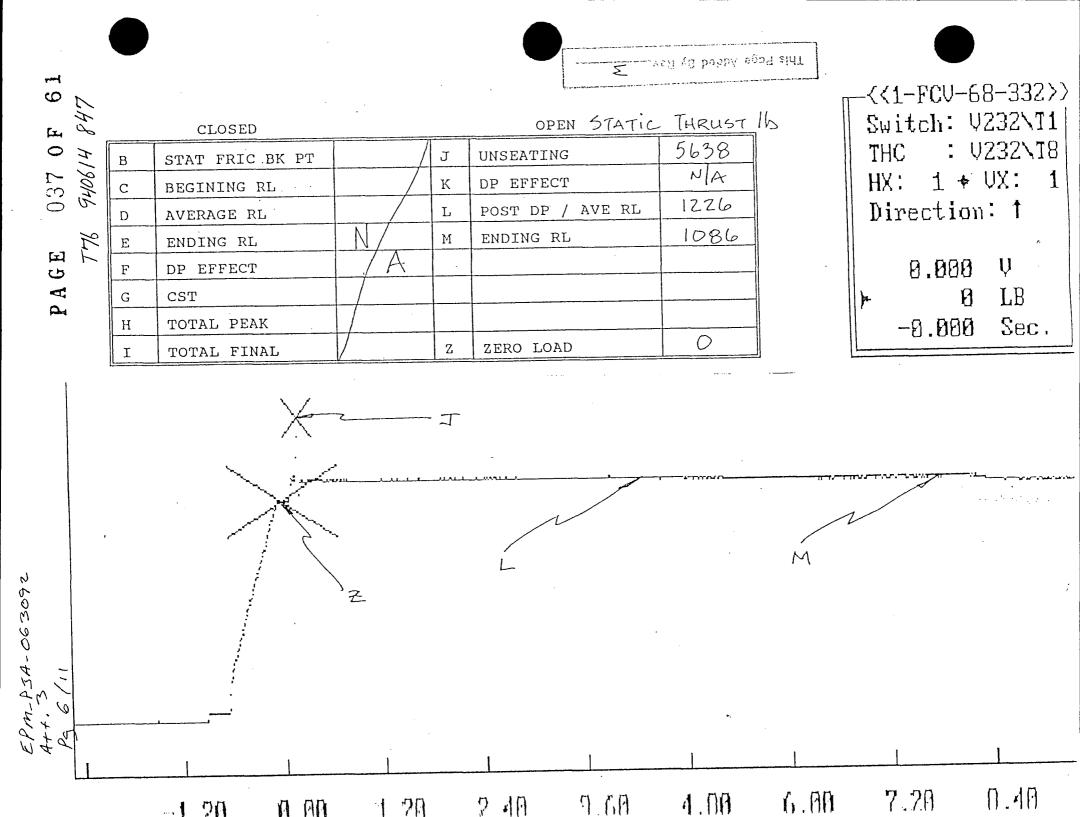
FT-LBS

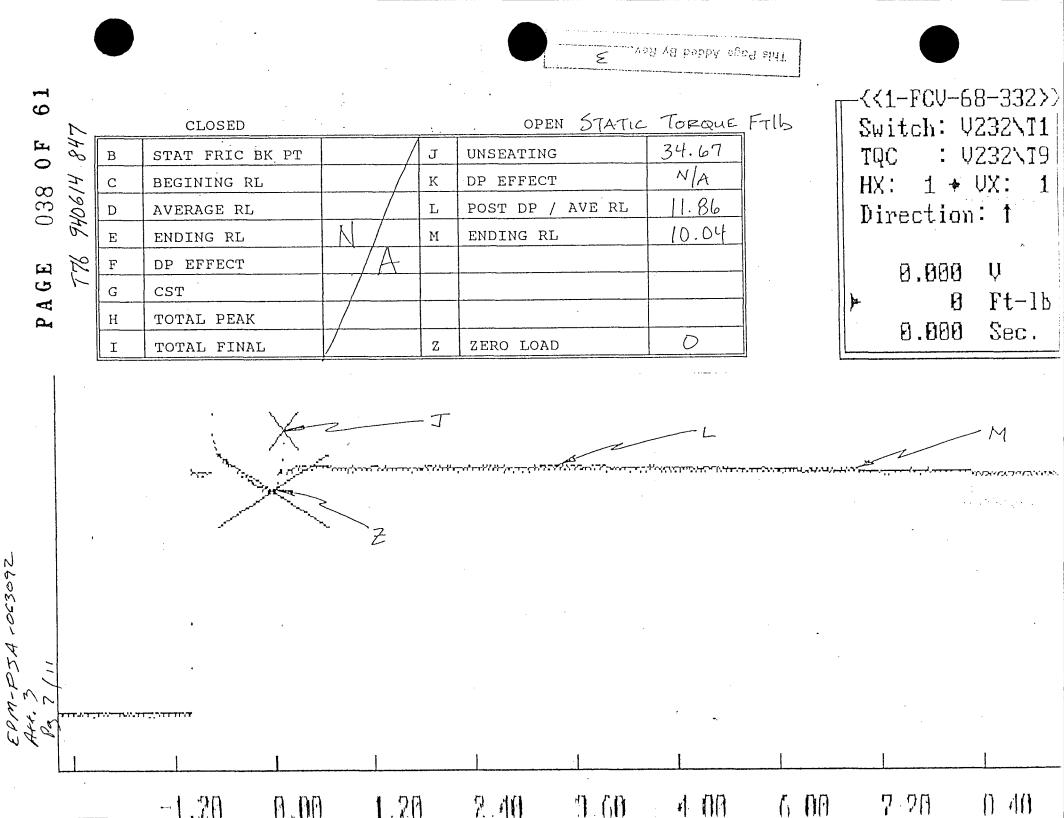
FT-LBS


ENGINEER Ъa

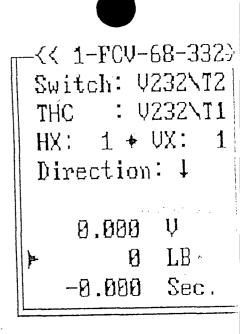
This Peor Added By Rev. 3

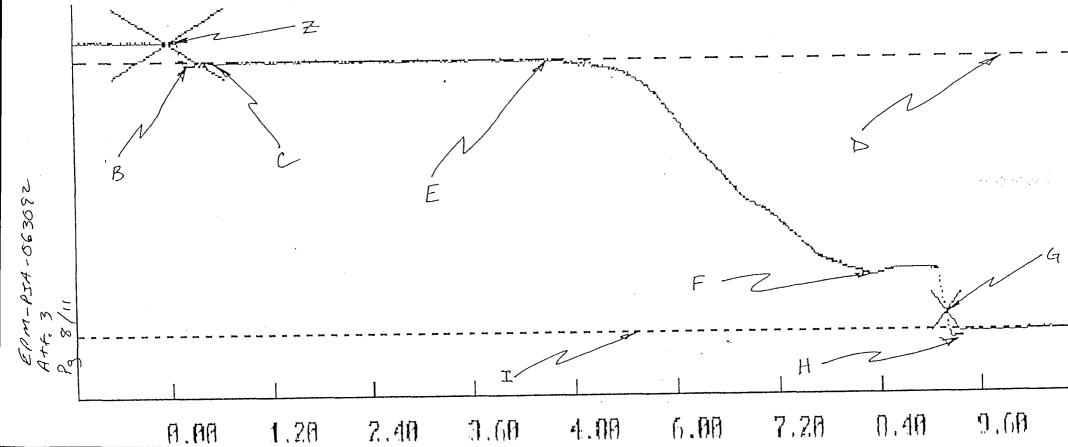

Ne Lode vaged By Rev.

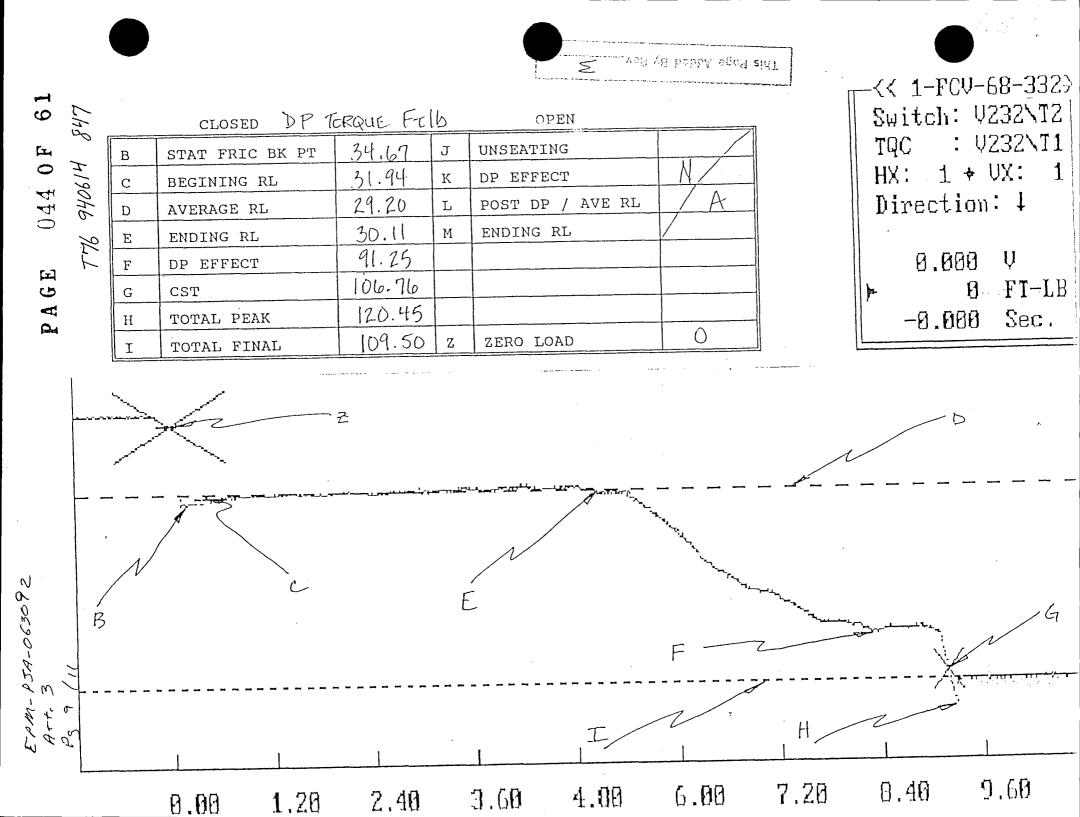

9	~		CLOSED STATIC	THOMAT	la la	OPEN	
استرا	it.					l little	
0	50	В	STAT FRIC BK PT	1436	J	UNSEATING	
LO LO	HI	С	BEGINING RL	1191	к	DP EFFECT	N
0.3	940614	D.	AVERAGE RL	1261	L	POST DP / AVE RL	A
•		Е	ENDING RL	1226	М	ENDING RL	
मि	14	F	DP EFFECT	. NA			
PAGE	1	G	CST	14008			
d		H	TOTAL PEAK	14988			
		I	TOTAL FINAL	14813	Z	ZERO LOAD	0

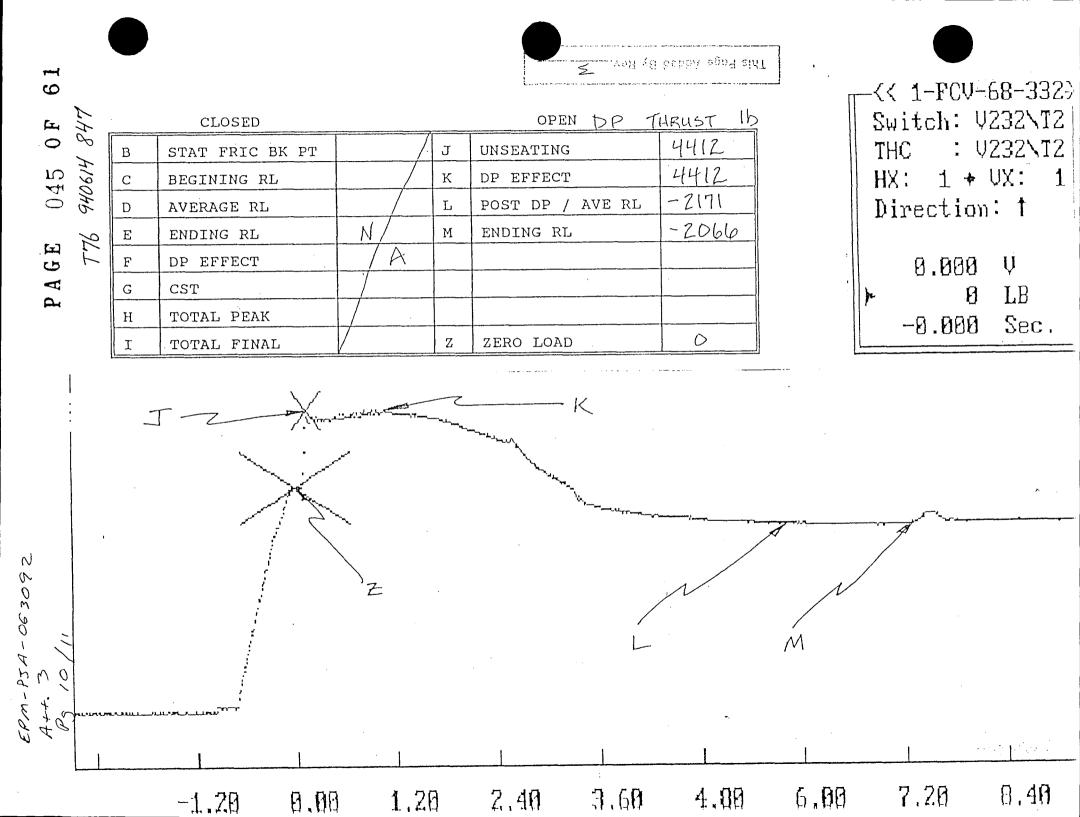

<< 1-FCV-68-3320 Switch: V232NT5 : V232NT3 THC HX: 1 + UX: 1 Direction: 4 0.000 Ų $\boldsymbol{\theta} = \boldsymbol{\Gamma}\boldsymbol{B}$ Sec. 0.000

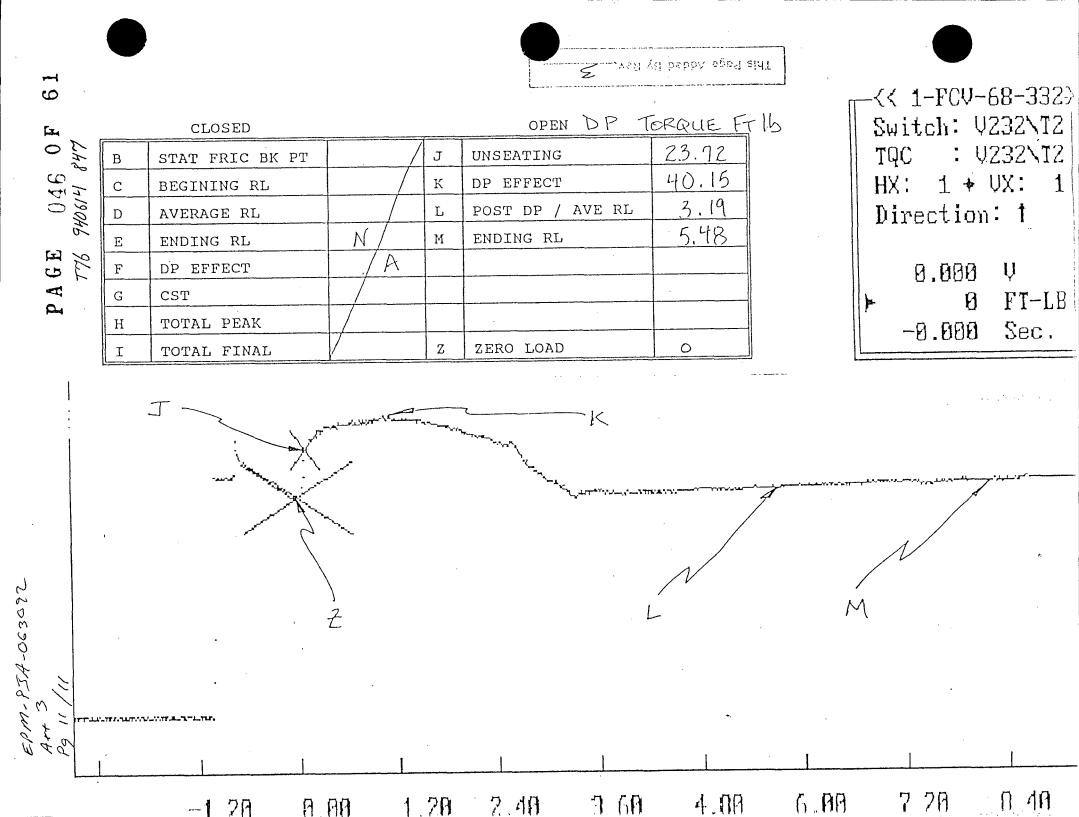
9


a-11


7.26


٤ PODDY official sates


0 F	1.48		CLOSED DP TH	RUST 15		OPEN	- -
	14	B .	STAT FRIC BK PT	3257	J	UNSEATING	
043	940614	С	BEGINING RL	3047	к	DP EFFECT	N
\bigcirc	6	D	AVERAGE RL	3047	L	POST DP / AVE RL	A
ഥ	92	E	ENDING RL	3047	М	ENDING RL	
A G		F	DP EFFECT	1.2712		· · · · · · · · · · · · · · · · · · ·	
đ		G	CST	14393		·	
		Н	TOTAL PEAK	15549		· · · · · · · · · · · · · · · · · · ·	
		·I	TOTAL FINAL	15234	Z	ZERO LOAD OFFSET	2171


61

-1 28

6.09 4.119

7 21