TENNESSEE VALLEY AUTHORITY

ANNUAL RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT
WATTS BAR NUCLEAR PLANT
1986

RADIOLOGICAL CONTROL

1695

TENNESSEE VALLEY AUTHORITY

CHATTANOOGA, TENNESSEE 37401

5N 157B Lookout Place

JUN 12 1987

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Gentlemen:

In the Matter of the Application of)
Tennessee Valley Authority)

Docket Nos. 50-390 50-391

WATTS BAR NUCLEAR PLANT (WBN) - ANNUAL RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT - 1986

Enclosed is the 1986 Annual Radiological Environmental Monitoring Report for the Watts Bar Nuclear Plant.

If there are any questions, please get in touch with R. J. McMahon at (615) 365-8761.

Very truly yours,

TENNESSEE VALLEY AUTHORITY

R. L. Gridley, Director Nuclear Safety and Licensing

Enclosure

cc: see page 2

ZE25

U.S. Nuclear Regulatory Commission

cc (Enclosure):

Mr. G. G. Zech, Assistant Director Regional Inspections Division of TVA Projects Office of Special Projects U.S. Nuclear Regulatory Commission TVA Projects 101 Marietta Street, NW, Suite 2900 Atlanta, Georgia 30323

Mr. J. A. Zwolinski, Assistant Director for Projects Division of TVA Projects Office of Special Projects U.S. Nuclear Regulatory Commission 4350 East West Highway EWW 322 Bethesda, Maryland 20814

Watts Bar Resident Inspector Watts Bar Nuclear Plant P.O. Box 700 Spring City, Tennessee 37381

ANNUAL RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT WATTS BAR NUCLEAR PLANT 1986

TENNESSEE VALLEY AUTHORITY
DIVISION OF NUCLEAR SERVICES
RADIOLOGICAL CONTROL

CONTENTS

														•					Page
List of Tables					•		•		•		•	•	•			•	•		iii
List of Figures	•				•	•				•				•					iv
Introduction						•					•		•				•	•	1
Atmospheric Monitoring	•	٠	•	•			•					•				•	•		11
Terrestrial Monitoring	•		•	•	•	•	•					•	•	•	•	•	•	•	23
Reservoir Monitoring .						•	•	•	•	•	•	•	•	•	•	•		•	43
Quality Control		•		•	•		•		•		•		•		•	•			57
Conclusions															•				57

LIST OF TABLES

	Pag	е
		3
	rironmental Monitoring Station Locations - Watts	
		4
Table 3 - Det	ection Capabilities for Environmental Sample	
	······································	5
Table 4 - Res	sults Obtained in Interlaboratory Comparison	
P		7
Table 5 - Max	cimum Permissible Concentrations for Nonoccupational	
E		4
Table 6 - Rad		5
Table 7 - Rad	dioactivity in Rainwater	6
Table 8 - Rad	dioactivity in Heavy Particle Fallout	7
Table 9 - Rad	dioactivity in Charcoal Filters	8
Table 10 - Rad	dioactivity in Atmospheric Moisture	9
Table 11 - Rad	dioactivity in Milk	6
Table 12 - Rad	dioactivity in Vegetation	7
Table 13 - Rad	dioactivity in Soil	8
Table 14 - Rad	dioactivity in Soil	9
Table 15 - Rad	dioactivity in Public Water Supply	0
Table 16 - Env	vironmental Gamma Radiation Levels	1
Table 17 - Rac	dioactivity in Cabbage	2
Table 18 - Rac		3
Table 19 - Rac	dioactivity in Pears	4
Table 20 - Rac	dioactivity in Pears	5
Table 21 - Rac	dioactivity in Tomatoes	6
		17
		5
Table 24 - Rac		6
Table 25 - Rac		7
	▼	8
		9
		ó
		1
Table 30 - Rac	dioactivity in Shoreline Sediment 5	2
		. 3

LIST OF FIGURES

			Page
Figure	1 -	Tennessee Valley Region	9
Figure	2 -	Atmospheric and Terrestrial Monitoring Network	20
Figure	3 -	Watts Bar Nuclear Plant Site Monitoring Stations	21
Figure	4 -	Annual Average Gross Beta Activity in Air (Particulate Filters) - Watts Bar Nuclear Plant	22
Figure	5 -	Annual Average Gross Beta Activity in Drinking Water - Watts Bar Nuclear Plant	38
Figure	6 -	Annual Average Gross Beta Activity in Surface Water - Watts Bar Nuclear Plant	39
Figure	7 -	TLD Locations - Watts Bar Nuclear Plant	40
Figure	8 -	Direct Radiation Levels - Watts Bar Nuclear Plant	41
Figure	9 –	Direct Radiation Levels - Watts Bar Nuclear Plant, 4-Quarter Moving Average	41
Figure	10 -	Reservoir Monitoring Network	54
Figure	11 -	Annual Average Cesium-137 in Sediment - Watts Bar Nuclear Plant	55
Figure	12 -	Annual Average Cobalt-60 in Sediment - Watts Bar Nuclear Plant	56

ANNUAL RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT

WATTS BAR NUCLEAR PLANT

1986

Introduction

The Watts Bar Nuclear Plant (WBN), being constructed by the Tennessee Valley Authority, is located on a site owned by TVA containing 1770 acres of land in Rhea County, Tennessee, bounded on the east by Chickamauga Reservoir (see figure 1). The site is approximately 50 miles (80 kilometers) northeast of Chattanooga, Tennessee, and 8 miles (13 kilometers) southeast of Spring City, Tennessee. The plant will consist of two pressurized water reactors; each unit is rated at 3,411 MWt and 1,160 MWe.

A preoperational environmental radiological monitoring program was implemented in December 1976. This program has the objective of establishing a baseline of data on the distribution of natural and manmade radioactivity in the environment near the plant site. This report presents the results obtained from that program during 1986.

Radiological Control (Office of Nuclear Power) and the Office of Natural Resources and Economic Development carried out the sampling program outlined in tables 1 and 23. Sampling locations are shown in figures 2, 3, 7, and 10, and table 2 describes the locations of the atmospheric and terrestrial monitoring stations. All the radiochemical and instrumental analyses were conducted in TVA's Western Area Radiological Laboratory (WARL) located at Muscle Shoals, Alabama. and beta analyses were performed on Beckman Low Beta II and Tennelec LB5100 low-background proportional counters. Gamma spectral analyses were performed with a Nuclear Data (ND) Model 6700 multichannel analyzer system utilizing germanium detectors. Specific analysis for I-131 in charcoal filters is routinely counted with NaI(T1) detection systems. TVA-fabricated beta-gamma coincidence counting systems are utilized for the determination of I-131 concentrations in milk. Tritium determinations are made with Packard Tri-carb 3255 or 4000 series liquid scintillation counting systems.

Data were entered into computer storage for processing specific to the analysis conducted. The data obtained by germanium detectors were resolved by the appropriate analyzer software and the software program routine HYPERMET.

The detection capabilities for environmental sample analysis given as the nominal lower limits of detection (LLD) are listed in table 3. All photopeaks found in germanium spectra were identified and quantified. Many of the isotopes identified by germanium spectral analysis are naturally occurring or naturally produced radioisotopes, such as Be-7, K-40, Bi-212, Bi-214, Pb-212, Pb-214, Ra-226, etc. LLDs for additional radionuclides identified by germanium analysis were calculated for each analysis, and nominal values are listed in table 3. In the instance where an LLD has not been established, an LLD value of zero is An isotope may be identified and a valid result obtained and yet a mean and a range of 0 can be shown if the activity is between 0 and 0.01 since the output program displays results to two decimal places. A notation in a table of " values <LLD" for an isotope with no established LLD does not imply a value less than 0; rather, it indicates that the isotope was not identified in that specific group of samples. For each sample type, only the radionuclides for which values greater than the LLD were reported are listed in the data tables.

TVA's WARL participates in the Environmental Radioactivity Laboratory Intercomparison Studies Program conducted by the Environmental Protection Agency (EPA)-Las Vegas. This program provides periodic cross-checks on samples of the type and radionucide composition normally analyzed in an environmental radiological monitoring program. Routine sample handling and analysis procedures were employed in the evaluation of these samples. The results received during calendar year 1986 are shown in table 4. The $\pm 3\sigma$ limits based on one measurement were divided by the square root of 3 to correct for triplicate determinations.

Table 1

ENVIRONMENTAL RADIOACTIVITY SAMPLING SCHEDULE

Station Location	Air <u>Filter</u>	Charcoal Filter	Rain- water	Heavy Particle <u>Fallout</u>	Atmospheric Moisture	<u>Soil</u>	Vegetation	Milk	Well <u>Water</u>	Public Water	Aquatic Life and Sediment
Site SSW	W	W	. M	M	BW	A	Ħ				
Site SE	W	W	M	M		A	H				
Site N	W	W	M	H	BW	A	H .				
Site NNE	W	W	M	M		A	H				•
Spring City	W	W	M	M		A	H				
Cedine	W	พ	M	H		A	M ·				
Ten Mile	W	W	M	M		A	H				
Decatur	W	W	M	M		A					
Dayton ^a	W	W	M	M	BW	A	M			H	٠١٠.
Alloway	W	W	M	M		A	. H				**
Farm Bn						••	M				
Farm R							M.				
Farm H							M M	BM			
Farm L							M M	BM	H		4
Farm Mo							н	BM	1.1		
Farm Mu		,					M M	BM			
Control							M	BM			
Farms (3)a							11	БП			
Onsite Wells (1)									н		
C. F. Industries									.FI	Ħ	
Nickajack/Chickama	ıga/									П	
Watts Bar Reserve											s

W - Weekly	BW - Biweekly (every other week)	BM - Bimonthly (every 2 weeks) M - Monthly (every 4 weeks)	
Q - Quarterly	S - Semiannually A - Annual	, , , , , , , , , , , , , , , , , , , ,	

a. Part of Sequoyah Nuclear Plant sampling program.

Table 2

ENVIRONMENTAL MONITORING STATION LOCATIONS

WATTS BAR NUCLEAR PLANT

Sample Station	Approximate Distance and Direction from Plant							
Indicator Stations								
LM-1 WB LM-2 WB LM-3 WB LM-4 WB PM-2 WB, Spring City, TN PM-3 WB, Cedine Camp PM-4 WB, Ten Mile, TN PM-5 WB, Decatur, TN Farm H Farm L ^a Farm Mo Farm Mu Farm Bn Farm R		(0.8 kilometers) (0.8 kilometers) (3.2 kilometers) (1.4 kilometers) (11.3 kilometers) (18.5 kilometers) (12.5 kilometers) (10.1 kilometers) (7.6 kilometers) (2.4 kilometers) (7.2 kilometers) (6.1 kilometers) (3.4 kilometers) (2.4 kilometers)	SSW N NNE SE NW NNE S W SSW ESE NE WSW					
Control Stations Rm-2 WB, Dayton, TN (Identical with RM-2 SQ, Sequoyah Nuclear Plant)	15 miles	(24.1 kilometers)	SW					
RM-3 WB, Alloway, TN Farm S Farm B Farm C	14.9 miles 19.5 miles 15 miles 16 miles	(23.8 kilometers) (31.4 kilometers) (24.1 kilometers) (25.7 kilometers)	NNW SW E SSW					

a. Considered as a control for well water.

Table 3

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS

A. Specific Analyses

NOMINAL LOWER LIMIT OF DETECTION (LLD)*

	Alr Particulates <u>pCi/m³.</u>	Charcoal pCi/m³	Fallout mCi/Km²	Water pCi/L	Vegetation and Grain pCi/g, Dry	Soll and Sediment pCi/g, Dry	Fish, Clam Flesh, Plankton, pCI/g, Dry	Clam Shells pCi/g, Dry	Foods, Meat, Poultry, pCi/Kg, Wet	HIIk pCi/L
Gross a Gross B H-3 I-131	0.005 0.01	0.01	0.05	2 2 330	0.05 0.20	0.35 0.70	0.1 0.1	0.7 0.7	25	
Sr-89 Sr-90	0.005 0.001	0.01		10	0.25 0.05	1.5 0.15	0.5	5.0 1.0	40 8	0.5 10 2

^{*} All LLD values for isotopic separations are calculated by the method developed by Pasternack and Harley as described in HASL-300. Factors such as sample size, decay time, chemical yield, and counting efficiency may vary for a given sample; these variations may change the LLD value for the given sample. The assumption is made that all samples are analyzed within one week of the collection date. Conversion factors: I pCi = 3.7×10^{-2} Bq; 1 mCi = 3.7×10^{7} Bq.

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS

B. Gamma Analyses

NOMINAL LOWER LIMIT OF DETECTION (LLD)

	Air particulates pCi/m Ge(Li)*	Water and milk pCi/L Ge(Li)	Vegetation and grain pCi/g, dry Ge(Li)	Soll and sediment pCi/g, dry Ge(Li)	Flsh pCl/g, dry Ge(Li)	Clam flesh and plankton pCi/g, dry Ge(Li)	Clam shells pCi/g, dry Ge(Li)	Foods, (tomatoes potatoes, etc.) <u>pCi/Kg, wet</u> <u>Ge(Li)</u>	Meat and poultry pCI/Kg, wet Ge(Li)
Ce-144	0.02	33	0.22	0.06	0.06	0.35	0.06	33	40
Cr-51	0.03	44	0.47	0.10	0.10	0.56	0.10	. 44	90
1-131	0.01	8	0.09	0.02	0.02	0.07	0.02	8	20
Ru-106	0.03	30	0.51	0.11	0.11	0.74	0.11	40	90
Cs-134	0.01	5	0.33	0.08	0.07	0.48	0.08	26	40
Cs-137	0.01	5	0.06	0.02	0.02	0.08	0.02	5	15
Zr-95	.0.01	10	0.11	0.03	0.03	0.15	0.03	10	20
Nb-95	0.01	5	0.05	0.01	0.01	0.07	0.01	5	15
Co-58	0.01	5	0.05	0.01	0.01	0.07	0.01	5	15
Mn-54	0.01	5	0.05	0.01	0.01	0.08	0.01	5	15
Zn-65	0.01	9	0.11	0.02	0.02	0.17	0.02	9	20
Co-60	0.01	5	0.06	0.01	0.01	0.08	0.01	5	15
Fe-59		5			0.10	•	•		
Ba-140	0.02	25	0.34	0.07	0.07	0.30	0.07	25	50
La-140	0.01	7	0.08	0.02	0.02	0.10	0.02	7	15

^{*} The Ge(Li) LLD values are calculated by the method developed by Pasternack and Harley as described in HASL-300. These LLD values are expected to vary depending on the activities of the components in the samples. These figures do not represent the LLD values achievable on given samples. Water is counted in either a 0.5-L or 3.5-L Harinelli beaker. Solid samples, such as soil, sediment, and clam shells, are counted in a 0.5-L Marinelli beaker as dry weight. The average dry weight is 400-500 grams. Air filters and very small volume samples are counted in petri dishes centered on the detector endcap. The counting system consists of a ND-6700 multichannel analyzer and germanium detector having an efficiency of 20 percent. The counting time is normally 4-15 hours. All spectral analyses are performed using the software program HYPERMET. The assumption is made that all samples are analyzed within one week of the collection date.

Conversion factor: 1 pCl = 3.7 x 10⁻² Bq.

RESULTS OBTAINED IN INTERLABORATORY COMPARISON PROGRAM

A. Air Filter (pCi/filter)

TABLE 4

	Gross_Alpha		Gross Be	eta	Strontium	n-90	Cesium-137		
	EPA value	TVA	EPA value	TVA	EPA value	TVA	EPA value	TVA	
Date	(±30)	Avg.	<u>(±3°)</u>	Avg.	<u>(±3 a)</u>	Ayg.	<u>(±3 o)</u>	Avg.	
4/86	.15.0	14	47.0	6 3	10.2	128	10.0		
	15±9	14	, 47 <u>±</u> 9	51	18±3	13ª	10 <u>+</u> 9	11	
9/86	22±9	21	66±9	68	22±3	20	22±9	20	

B. Radiochemical Analysis of Water (pCi/L)

^
9
8
40
48

C. Gamma-Spectral Analysis of Water (pCi/L)

<u>Chromium</u>	-51	Cobalt-6	50	Zinc-6	5	Ruthenium-	-106	Cesium-	134	Cesium-	137
EPA value (±30)	TVA <u>Avg.</u>	EPA value (±30)	TVA Avg.	EPA value <u>(±3σ)</u>	Avg.	EPA value (±30)	TVA Avg.	EPA value (±3σ)	AVT.	EPA value 	AVT QVA
38±9	<44°	18±9 10+9	19 10	40±9	37	0±9	40°	30 <u>+</u> 9 5+9	28 6	22±9 5±9	21 5
0+9	<44°			86+9	83	50+9	48		46	10±9	11
	58	_			78		73		26	44 <u>+</u> 9	43
- · · <u>-</u> ·	•	24±9	25		:	-		12 <u>+</u> 9	11	8±9	8
	EPA value (±30)	(±3σ) Ayg. 38±9 <44 ^c 0±9 <44 ^c	EPA value TVA EPA value (±30) Avg. (±30) 38±9 <44 ^c 18±9 10±9 0±9 <44 ^c 66±9 59±9 58 31±9	EPA value TVA (±3σ) Avg. (±3σ) Avg. 38±9 <44 ^c 18±9 19 10±9 10 0±9 <44 ^c 66±9 66 59±9 58 31±9 31	EPA value TVA EPA value TVA EPA value (±3σ) Avg. (±3σ) Avg. (±3σ) 38±9 <44 ^c 18±9 19 40±9 10 0±9 <44 ^c 66±9 66 86±9 59±9 58 31±9 31 85±9	EPA value TVA ($\pm 3\sigma$) Avg. (EPA value TVA EPA value TVA EPA value ($\pm 3\sigma$) Avg. ($\pm 3\sigma$) $ 38\pm 9 < 44^{c} & 18\pm 9 & 19 & 40\pm 9 & 37 & 0\pm 9 \\ 10\pm 9 & 10 & & & & & & & & & & & & & & & & & $	EPA value TVA ($\pm 3\sigma$) Avg. (EPA value ($\pm 3\sigma$) IVA ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) IVA ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) IVA ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) IVA ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) IVA ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) IVA ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) IVA ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) Avg. ($\pm 3\sigma$) EPA value ($\pm 3\sigma$) <td>EPA value TVA EPA value TVA<!--</td--><td>EPA value TVA EPA value TVA $(\pm 3\sigma)$ Avg. $(\pm 3\sigma)$ Avg.</td></td>	EPA value TVA EPA value TVA </td <td>EPA value TVA EPA value TVA $(\pm 3\sigma)$ Avg. $(\pm 3\sigma)$ Avg.</td>	EPA value TVA $(\pm 3\sigma)$ Avg.

D. Food (pCi/Kg, Wet Weight)

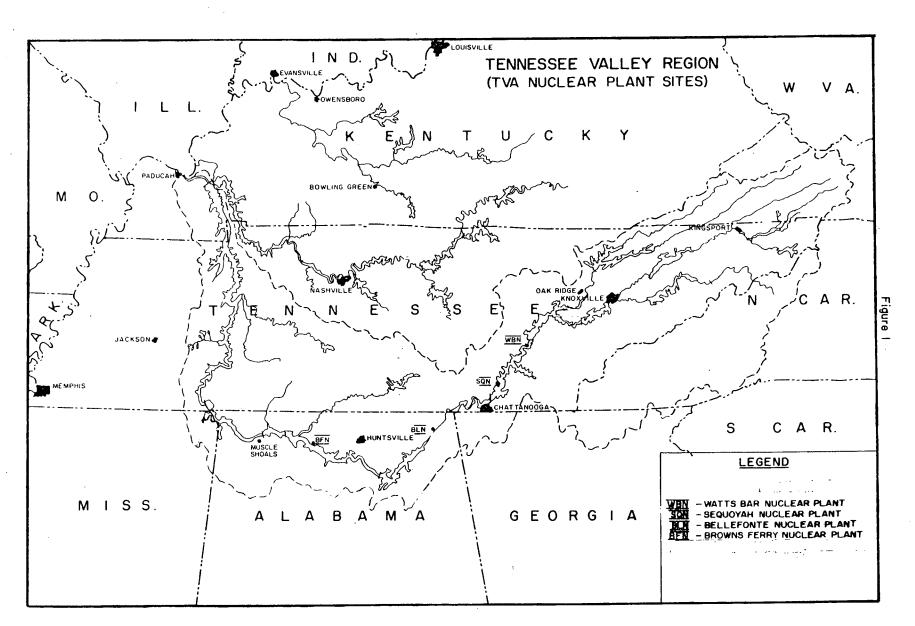
	Strontium	n-89	Strontium-	Strontium-90		131	Cesium	-137	<u>Potassium-40</u> e		
<u>Date</u>	EPA value (±30)	TVA Avg.	EPA value (±30)	TVA Ayg.	EPA value (±30)	AVQ.	EPA value <u>(± 30)</u>	TVA <u>Avg.</u>	EPA value (±30)	Avg.	
1/86 7/86	25±9 30±9	16 31	10±3 19±3	12 21	20±10 30±10	17 27	15±9 20±9	17 22	950±248 1150±100	1073 1257	

E. Milk (pCi/L)

<u>Date</u>	Strontium EPA value (±30)	n-89 TVA Avg.	Strontium- EPA value (±30)	-90 TVA Ayg.	<u>Iodine-</u> EPA value (±30)	TVA Avg.	Cesium- EPA value (± 3°)	-137 TVA Avg.	Potassium EPA value (±30)	<u>m-40</u> ° TVA Ayg.
10/85 6/86 -11/86	48±9 0±9 9 <u>+</u> 9	63 ^h <10 ^c	26±3 16±3 0±3	26 16 < 2°	42±10 41±10 49±10	41 42 48	56±9 31±9 39±9	55 34 43	1540±133 1600±139 1565±135	1533 1677 1633

- a. The low results for Sr-90 were associated with a poor chemical yield due to chemical separation problems.
- b. Laboratory performance evaluation study.

c. Below LLD.


d. The cruse of the low gross beta results could not be clearly identified. However, problems appear to exist with a large percentage of the other participating laboratories not being able to obtain agreement with the EPA method of calculating the known gross beta activity for LPES cross-checks.

e. Values reported as mg K/Kg.

f. Temperature variations can produce minor gain shifts in the detection systems. The low abundance and low counting efficiency for the 1460 KeV line used for identification of K-40 combined with a minor gain shift will produce results with a large bias.

g. Values reported as mg K/liter.

h. Results were investigated, but the source of the high result for Sr-89 could not be clearly identified.

Atmospheric Monitoring

The atmospheric monitoring network is divided into three subgroups; local monitors, perimeter monitors, and remote monitors. Four local monitoring stations are located within or near the plant boundary. Four perimeter monitoring stations are located at distances out to 11 miles (18 kilometers) from the plant in the towns of Spring City and Decatur and two other populated areas. One remote monitoring station is in Alloway, 14.9 miles (23.8 kilometers) NNW of the plant. The other remote monitoring station is located in Dayton, 15 miles (24 kilometers) SW of the plant. For location information see table 2 and figures 2 and 3.

Each monitoring station has air sampling filters, a collection tray and storage container to continuously collect rainwater, a horizontal platform covered with gummed acetate to catch and hold heavy particle fallout, and at selected stations (until December 22, 1986) a GM tube with a recorder to continuously monitor and record gamma radiation levels. Additionally, at two local and one remote monitoring station moisture is collected from the atmosphere and analyzed for H³.

The air particulate and charcoal filter system uses a 1-7/8-inch diameter glass fiber particulate filter. The charcoal filter used to sample airborne radioiodine is a 2-1/4-inch diameter, 1-inch thick filter filled with TEDA-impregnated charcoal. The particulate and charcoal filter is contained in a round cone-shaped filter holder located on the outside of the monitoring station and protected from rain by a metal overhang housing the gum paper filter. Air is continuously drawn in through the particulate and charcoal filter by an air pump at a flow rate of approximately 2 CFM. The total flow through the system is measured with a domestic type gas meter.

Each of the local and perimeter air monitors was fitted with a GM tube that continuously monitored the gamma activity levels at the stations. The disintegration rate of the atmospheric radioactivity was continuously recorded at each station. The data from the four local monitors and from three perimeter monitors (PM-2, PM-4, and PM-5) were radiotelemetered into the plant control room. This system was deleted from the program December 22, 1986.

Table 5 presents the maximum permissible concentrations (MPC) specified in 10 CFR 20 for nonoccupational exposure.

Air Filters

Air filters were collected weekly and analyzed for gross beta activity. The samples were composited monthly and analyzed for specific gamma-emitting radionuclides and quarterly for Sr-89 and Sr-90 content. Adequate time is allowed for decay of radon daughters between collection and analysis. This time is typically 3 days. Due to potential fallout

from the Chernobyl nuclear reactor accident, one set of weekly air filters (one filter was not collected because of equipment problems) received a gamma scan for specific gamma-emitting radionuclides. I-131, Ru-103, and Cs-137 were identified in these samples. Analytical results are presented in table 6. During this reporting period, 15 weekly air filters were not collected because of equipment malfunction and one filter was destroyed during processing. Three other samples were destroyed before strontium analysis could be completed.

The annual averages of the gross beta activity in the air particulate filters at the indicator stations (local and perimeter monitors) and at the control stations (remote monitors) for the years 1977 through 1986 are presented in figure 4. Increased levels due to fallout from atmospheric nuclear weapons testing are evident, especially in 1977, 1978, and 1981. Increased levels from the accident at the Chernobyl nuclear power station are also in evidence. These fluctuations are consistent with data from monitoring programs conducted by TVA at other nuclear power plant sites.

Rainwater

Rainwater was collected monthly from each of the atmospheric monitoring stations and analyzed for specific gamma-emitting isotopes, Sr-89, and Sr-90. A gamma scan was performed on a 3.5-liter monthly sample. The strontium isotopes were separated chemically and counted in a low background system. In addition, extra samples collected during the Chernobyl accident fallout period were analyzed for gamma-emitting nuclides. I-131 was identified in samples from two locations. The highest level reported was 10.4 pCi/L. Analytical results are shown in table 7. During this report period, two samples were not available for analysis because of equipment malfunction.

Heavy Particle Fallout

The gummed acetate that was used to collect heavy particle fallout was changed monthly. The samples were ashed and counted for gross beta activity. The results are given in table 8. During this report period, one sample was destroyed before analysis could be completed.

Charcoal Filters

Charcoal filters were collected weekly and analyzed for radioiodine. The filter was counted in a single channel analyzer system. Samples collected following the accident at the Chernobyl nuclear power station exhibited increased levels of I-131. The highest level reported was 0.17 pCi/m³. Analytical data are shown in table 9. During this reporting period, 15 samples were not collected because of equipment malfunction and one sample was destroyed inadvertently during processing.

Atmospheric Moisture

An atmospheric moisture collection device containing molecular sieve was located at two local monitors and at one remote monitor. Samples were taken every other week, the moisture driven off the molecular sieve, collected in a cold trap, distilled, and counted for H³ content. The results are shown in table 10. During this reporting period, eight samples were not obtained because of equipment malfunction, two samples were destroyed during analysis, and nineteen samples contained insufficient volume for analysis.

Table 5

MAXIMUM PERMISSIBLE CONCENTRATIONS

FOR NONOCCUPATIONAL EXPOSURE

		MPC
	In Water _pCi/l*	In Air <u>pCi/m</u> ³*
Alpha	, 30	
Gross beta	3,000	100
H-3	3,000,000	200,000
Cs-137	20,000	500
Ru-103,-106	10,000	200
Ce-144	10,000	200
Zr-95 - NB-95	60,000	1,000
Ba-140 - La-140	20,000	1,000
I-131	300	100
Zn-65	100,000	2,000
Mn-54	100,000	1,000
Co-60	30,000	300
Sr-89	3,000	300
Sr-90	300	30
Cr-51	2,000,000	80,000
Cs-134	9,000	400
Co-58	90,000	2,000

^{*1} pC1 = 3.7×10^{-2} Bq.

Source: 10 CFR, Part 20, Appendix B, Table II.

TABLE 6 RADIOACTIVITY IN AIR FILTER PCI/M(3) = 0.037 BQ/M(3)

LOCAT	TION OF FACIL	ITY_BHEA	IENNESSEE	REPORTIN	IG PERIOD_1236	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD)		LOCATION WITH HIGH	HEST ANNUAL MEAN (F) CTION RANGE	CONTROL LOCATIONS MEAN (F)	NCNROUTINE
	SEE NOTE 1	SEE NOTE 2	DISTANCE AND DIREC	SEE NOTE 2	SEE NOTE 2	HEASUREMENTS
GROSS BETA				2.79E-02(51/ 51) 1.24E-02 - 1.37E-01		
GAMMA (GELI)		7.012 32 7.112 37	·	1.242 02 1.372 01		
RU-103	NOT ESTAB			1.75E-02(1/ 13) 1.75E-02 - 1.75E-02	8.67E-03(6/ 23) 1.20E-03 - 1.70E-02	
CS-137	1.00E-02	1.47E-02(9/ 111) 1.13E-02 - 1.66E-02	LM2 N. WBSP GATE		1.44E-02(2/ 28) 1.34E-02 - 1.54E-02	
K-40	NOT ESTAB	8.09E-03(20/ 111)	LM-4 WB	1.87E-02(5/ 14) 1.43E-02 - 2.27E-02		
I-131	1.006-02	1.44E-02(6/ 111) 1.18E-02 - 1.64E-02	PM5 DECATUR	1.64E-02(1/ 14) 1.64E-02 - 1.64E-02	1.39E-02(2/ 28)	
PB-212	NOT ESTAB	1.44E-03(18/ 111) 1.00E-04 - 1.96E-02	PM2 SPRING CITY	1.96E-02(1/ 14) 1.96E-02 - 1.96E-02	1.33E-02 - 1.44E-02 3.20E-03(5/ 23) 3.00E-04 - 1.00E-02	
BE-7	5.00E-02	1.03E-01(111/ 111)	LM2 N. WBSP GATE	1.12E-01(14/ 14) 7.56E-02 - 1.93E-01	1.04E-01(28/ 28) 6.59E-02 - 1.53E-01	
TL-208	NOT ESTAB	1.21E-03(10/ 111) 1.00E-04 - 8.10E-03	PM2 SPRING CITY	8.10E-03(1/ 14) 8.10E-03 - 8.10E-03	2.10E-03(3/ 28) 2.00E-04 - 3.30E-03	
AC-228	NOT ESTAB	2.27E-03(4/ 111) 1.40E-03 - 3.30E-03	PM3 CEDINE BIBLE	2.90E-03(2/ 13) 2.50E-03 - 3.30E-03	5.54E-03(5/ 28) 8.00E-04 - 1.76E-02	
PA-234M	NOT [*] ESTAB	1.42E-01(2/ 111) 1.22E-01 - 1.61E-01	LM-3 WB	1.61E-01(1/ 14) 1.61E-01 - 1.61E-01		
SR 89		29 VALUES <lld analysis="" performed<="" td=""><td>EST FILES MAC</td><td>1.012 01 1.012 01</td><td>8 VALUES <lld< td=""><td></td></lld<></td></lld>	EST FILES MAC	1.012 01 1.012 01	8 VALUES <lld< td=""><td></td></lld<>	
SR 90	1.00E-03	29 VALUES <lld analysis="" performed<="" td=""><td></td><td></td><td>8 VALUES <lld< td=""><td></td></lld<></td></lld>			8 VALUES <lld< td=""><td></td></lld<>	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN RAINWATER

PCI/L - 0.037 BQ/L

LOCAT	NAME OF FACI	LITY_WAIIS_BARTY_RUEA	IENNESSEE		0-50-3902391 3 PERIOD_1286	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GAMMA (GELI)	LOWER LIMIT OF DETECTION (LLD) _SEE_NQIE_1	Al i	_LQCAIIQN_WITH_HIGH NAME DISTANCE AND DIREC	EST_ANNUAL_MEAN MEAN (F) TION RANGE	CONTROL LOCATIONS MEAN (F) RANGE SEE NOIE 2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
139 K-40	NOT ESTAB	1.38E+01(8/ 111) 4.23E+00 - 2.93E+01	LM-4 WB G.9 MILES SE	2.59E+01(2/ 13) 2.25E+01 - 2.93E+01	3.13E+01(3/ 28) 1.86E-01 - 8.21E+01	
1-131	8.00E+00	8.87E+00(1/ 111) 8.87E+00 - 8.87E+00	PM5 DECATUR	8.87E+00(1/ 14) 8.87E+00 - 8.87E+00	1.04E+01(1/ 28) 1.04E+01 - 1.04E+01	•
BI-214	NOT ESTAB	5.58E+00(52/ 111) 6.29E-01 - 3.20E+01	LM-3 WB	8.53E+00(7/ 14) 1.35E+00 - 3.20E+01	5.37E+00(12/ 28) 7.73E-01 - 1.14E+01	;
PB-214	NOT ESTAB	6.38E+00(24/ 111) 6.80E-02 - 2.12E+01	LM1 ENV DATA STA	1.15E+01(2/ 14) 5.43E+00 - 1.75E+01	4.49E+00(9/ 28) 9.55E-01 - 1.62E+01	
PB-212	NOT ESTAB	3.36E+00(22/ 111) 3.39E-01 - 1.12E+01	LM-3 WB 2.1 MILES NNE	6.21E+00(2/ 14) 1.19E+00 - 1.12E+01	2.95E+00(11/ 28) 1.74E-01 - 7.44E+00	:
8E-7	NOT ESTAB	4.76E+01(35/ 111) 2.80E+01 - 7.96E+01	PM3 CEDINE BIBLE	5.63E+01(7/ 15) 4.06E+01 - 6.93E+01	5.51E+01(14/ 28) 3.72E+01 - 9.11E+01	
AC-228	1.50E+01	111 VALUES <lld< td=""><td></td><td></td><td>2.16E+01(2/ 28) 2.16E+01 - 2.16E+01</td><td></td></lld<>			2.16E+01(2/ 28) 2.16E+01 - 2.16E+01	
SR 89	1.00E+01	102 VALUES <lld analysis="" performed<="" td=""><td></td><td></td><td>26 VALUES <lld< td=""><td></td></lld<></td></lld>			26 VALUES <lld< td=""><td></td></lld<>	
SR 90 128	2.00E+00	102 VALUES <lld ANALYSIS PERFORMED</lld 			SO ANTOES CEL	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS
IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN HEAVY PARTICLE FALLOUT

MCI/KM(2) - 37000000.00 BQ/KM(2)

	NAME OF FACI	LITY_WAIIS_BAR		DOCKET NO	020=320<321	
LOCAT	TION OF FACILI	TY_RHEA	IENNESSEE	REPORTING	G PERIOD_1986	
TYPE AND	LOWER LIMIT	ALL			CONTROL	NUMBER OF
TOTAL NUMBER	OF	INDICATOR LOCATIONS	_LOCATION_WITH_HIGHEST_AND	UAL_MEAN	LOCATIONS	NONROUTINE
OF ANALYSIS	DETECTION	MEAN (F)	NAME	MEAN (F)	MEAN (F)	REPORTED
PERFORMED	(LLD)	RANGE	DISTANCE AND DIRECTION	RANGE	RANGE	MEASUREMENTS
	_SEE_NOIE_1	SEE NOIE 2		EE_NOIE_2	SEE_NQIE_2	
GROSS BETA	5.00E-02	1.125-01(91/ 103)	LM-3 WB 1.23E-	01(10/ 13)	1.11E-01(25/ 26)	
129		5.12E-02 - 3.34E-01	2.1 MILES NNE 6.736	-02 - 3.03E-01	550E-02 - 3.14E-01	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

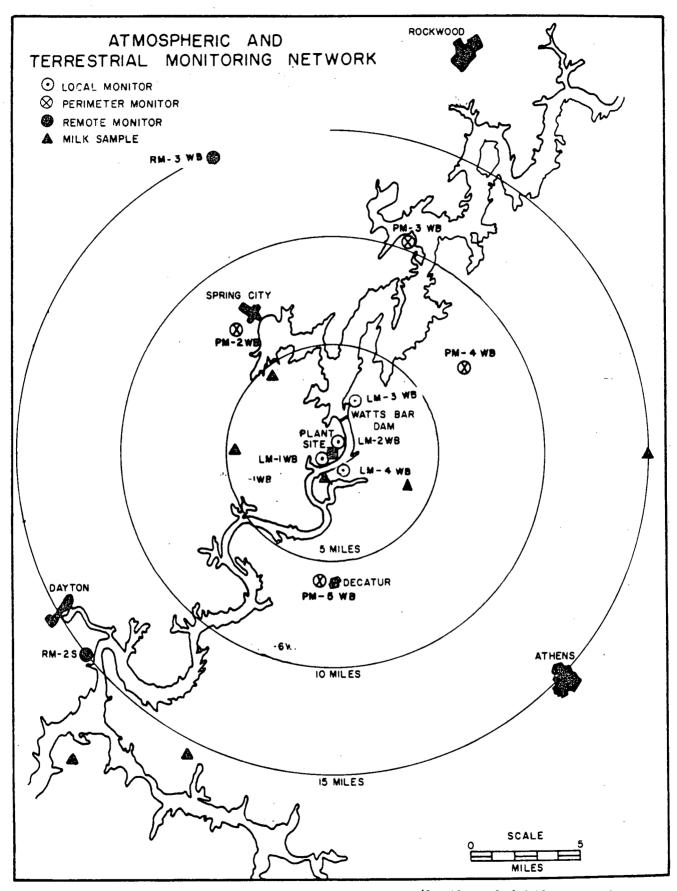
RADIOACTIVITY IN CHARCOAL FILTERS

PCI/M(3) - 0.037 89/M(3)

LOCAT		LITY_WATIS_BARTY_RHEA	IENNESSEE	~	050=390<391 S PERIOD_1286	:
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD) SEE NOIE 1	MEAN (F)	NAME DISTANCE AND DIREC	SEE NOIL Z	CONTROL LOCATIONS MEAN (F) RANGE SEE NOTE 2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
IODINE-131 465 GAMMA (GELI)	1.00E-02	1.46E-02(78/ 374) 1.00E-02 - 2.94E-02	PM4 TEN MILE	1.56E-02(12/ 47) 1.03E-02 - 2.70E-02	1.39E-02(12/ 91) 1.01E-02 - 2.09E-02	
39 K-40	NOT ESTAB	5.14E-01(15/ 31)		6.61E-01(3/ 3) 6.32E-01 - 7.06E-01	4.50E-01(4/ 8) 3.97E-01 - 5.40E-01	
I-131	NOT ESTAB	2.60E-01 - 7.06E-01 1.07E-01(23/ 31) 5.67E-02 - 1.70E-01	PM3 CEDINE BIBLE	1.32E-01(2/ 3) 1.04E-01 - 1.60E-01	1.02E-01(6/ 8) 6.13E-02 - 1.44E-01	
BI-214	NOT ESTAB	1.48E+02(12/ 31) 3.90E-03 - 3.18E-02	CAMP 11.5 M. NNE	2.80E-02(2/ 3) 2.42E-02 - 3.18E-02	1.11E-02(4/ 8) 1.00E-03 - 1.57E-02 1.69E-02(2/ 8)	•
PB-214	NOT ESTAB	1.56E-02(12/ 31) 2.70E-03 - 3.27E-02	CAMP 11.5 M. NNE	2.60E-02(2/ 3) 1.92E-02 - 3.27E-02 3.65E-03(2/ 3)	9.30E-03 - 2.44E-02 8 VALUES <lld< td=""><td></td></lld<>	
PB-212	NOT ESTAB	2.53E-03(9/ 31) 1.00E-04 - 7.20E-03	CAMP 11.5 M. NNE	1.00E-04 - 7.20E-03 1.92E-02(2/ 3)	8 VALUES <lld< td=""><td></td></lld<>	
AC-228	NOT ESTAB	1.72E-02(3/ 31) 6.80E-03 - 3.16E-02		6.80E-03 - 3.16E-02		

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.
NOTE: 2. MEAN AN: RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN ATMOSPHERIC MOISTURE


PCI/M(3) - 0.037 BQ/M(3)

NAI	AF OL LUCITIES	M9T17-B9R		DOCKE! NO	3 <u>7</u> 232773277	
LOCATION	OF FACILITY_B	34E8	IENNESSEE	REPORTING	S PERIOD_1286	
TOTAL NUMBER OF ANALYSIS DE PERFORMED	JER LIMIT OF IND ETECTION (LLD) EE_NQIE_1	MEAN (F) RANGE	_LQCATION_WITH_HIGHE NAME DISTANCE AND DIRECT		CONTROL LOCATIONS MEAN (F) RANGE SEE_NOTE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	T ESTAB 9.	56E-01(23/ 35)	LM2 N. WBSP GATE	1.16E+00(13/ 21)	4.19E-01(9/ 14)	
49	6.	.11E-03 - 6.04E+00	C.5 MILES N	6.11E-03 - 6.04E+00	1:13E-02 - 9:17E-01	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS
IS INDICATED IN PARENTHESES (F).

Figure 2

(1 mile - 1.6 kilometers)

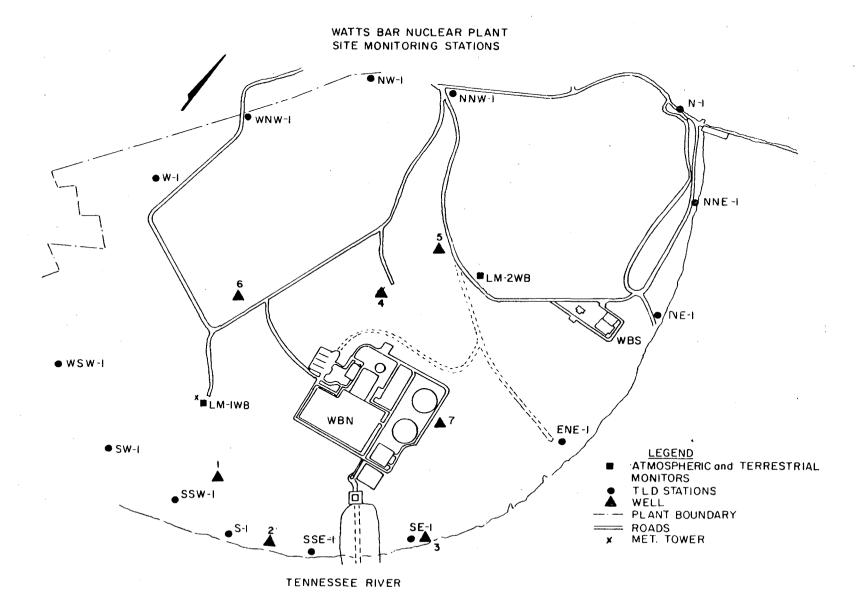
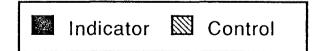
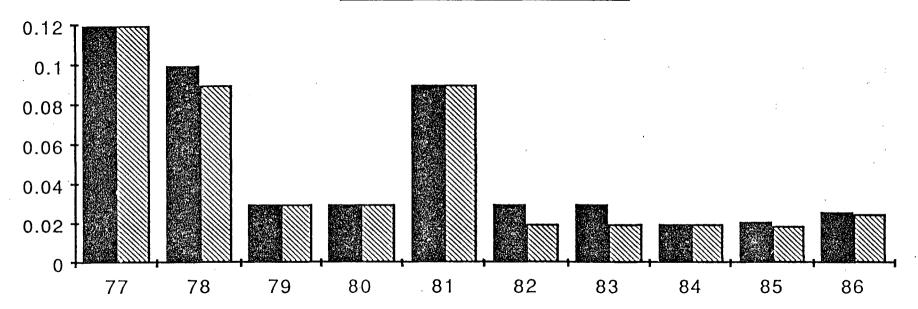




Figure 4

Annual Average Gross Beta Activity
Air Filters (pCi/cubic meter)
Watts Bar Nuclear Plant

Terrestrial Monitoring

Terrestrial monitoring was accomplished by collecting samples of environmental media that provide a pathway to humans. Samples of milk, vegetation, soil, groundwater, public water, gamma radiation levels, and food products were taken on routine schedules at indicator stations (at or near the plant) and control stations (remote to the plant). Once each year, a land use survey is performed to determine census and location of milk-producing animals within a 5-mile radius of the plant. Significant changes identified by the survey may be reflected by modifying milk/vegetation sampling locations.

Land Use Survey

The annual land use survey was conducted during the summer of 1986. No new locations with milk-producing animals were identified. At one location from which vegetation was routinely collected, the milk-producing animal was disposed of, and sampling was discontinued at the end of the year.

Milk

Milk samples were collected routinely from four indicator dairies and from three control dairies. Raw milk was analyzed semimonthly for I-131 and gamma-emitting radioisotopes and monthly for Sr-89 and Sr-90 content. Increased levels of I-131 were identified in samples collected following the Chernobyl accident. The highest I-131 concentration measured was 32.2 pCi/L. Table 11 summarizes the results of laboratory analyses. During this report period, six samples were not available for collection and two samples spoiled before analysis for I-131 could be performed.

As has been noted in previous radiological monitoring reports, the levels of Sr-90 in milk samples from farms producing milk for private consumption only were up to six times the levels found in milk from commercial dairy farms. Samples of feed and water supplied to the animals were analyzed in 1979 in an effort to determine the source of the strontium. Analysis of dried hay samples indicated levels of Sr-90 slightly higher than those encountered in routine vegetation samples. Analysis of pond water indicated no significant strontium activity.

This phenomenon was observed during preoperational radiological monitoring near Sequoyah and Bellefonte Nuclear Plants at farms where only one or two cows were being milked for private consumption of the milk. A similar phenomenon has been observed at two small dairy farms near WBN. It is postulated that the feeding practices of these small farmers differ from those of the larger dairy farmers to the extent that fallout from atmospheric nuclear weapons testing may be more concentrated in these instances. Similarly, Hansen, et al., reported an inverse

relationship between the levels of Sr-90 in milk and the quality of fertilization and land management.

Vegetation

Vegetation samples were collected monthly from ten air monitoring stations (semimonthly at one control location) and from nine dairies and farms (semimonthly from three control dairies). Approximately 1 to 2 kilograms of grass was broken or cut at ground level and returned for analysis. For samples taken at dairies and farms, efforts were made to collect vegetation that was representative of the pasturage where animals graze. Samples were analyzed monthly for I-131 and gamma-emitting nuclides and quarterly for Sr-89 and Sr-90 content. The results of laboratory analyses are summarized in table 12. During this report period, one sample spoiled before analysis could be performed, one sample was destroyed during analysis, and on one occasion sufficient quantities of sample were not obtained.

Soi1

Soil samples were collected annually near each air monitoring station. An additional sample was collected from one control station which is also used in the Sequoyah monitoring program. Soil samples are taken to provide an indication of any long-term buildup of radioactivity in the environment. An auger or "cookie cutter" type of sampler was used to obtain samples of the top 2 inches (5 cm) of soil. All samples were analyzed for gamma-emitting radionuclides and for Sr-89 and Sr-90 content. The analytical results are given in table 13.

Groundwater

Well water samples were obtained monthly from one onsite well and from one offsite location. All samples were analyzed for gamma-emitting radionuclides and a quarterly composite was analyzed for ${\rm H}^3$. The analytical results are summarized in table 14.

Public Water

Potable water supplies taken from the Tennessee River in the vicinity of WBN were sampled and analyzed monthly for gross beta and gamma-emitting radionuclides. Tritium, Sr-89, and Sr-90 concentrations were determined in quarterly composite samples. Two potable water sampling locations downstream from the plant are equipped with automatic samplers with composite samples analyzed monthly. In addition, the surface water sample collected by an automatic sampler upstream from the plant is included as a control for drinking water. Results of laboratory analysis are shown in table 15. During this reporting period, two samples contained insufficient volume for gross beta analysis.

^aHansen, W. G., et al., <u>Farming Practices and Concentrations of Emission Products in Milk</u>, U.S. Department of Health, Education, and Welfare; Public Health Service Publication No. 999R6, May 1964.

Figure 5 shows the trends in gross beta activity in drinking water from 1977 through 1986. The annual averages for the indicator stations reported herein are slightly higher than the levels reported in surface water samples (figure 6).

Environmental Gamma Radiation Levels

Bulb-type, Victoreen, manganese-activated, calcium fluoride (CaF2: Mn), thermoluminescent dosimeters (TLDs) are placed at 16 stations around the plant near the site boundary, at the perimeter and remote air monitors, and at 22 additional stations approximately 5 miles from the site to determine the gamma exposure rates at these locations. The dosimeters, in energy compensating shields to correct energy dependence, are placed at approximately 1 meter above the ground, with three TLDs at each station. They are annealed and read with a Victoreen Model 2810 TLD reader. The values are corrected for gamma response, self-irradiation, and fading, with individual gamma response calibrations and self-irradiation factors determined for each TLD. The system meets or exceeds the performance specifications outlined in Regulatory Guide 4.13 for environmental applications of TLDs.

The TLDs are exchanged every 3 months. The quarterly gamma radiation levels determined from these TLDs are given in table 16, which indicates that average levels at onsite stations are approximately 2-4 mR/quarter higher than levels at offsite stations. This is consistent with levels reported in other preoperational radiological monitoring programs conducted by TVA where the average radiation levels onsite are generally 2-6 mR/quarter higher than levels offsite. The causes of these differences have not been completely isolated; however, it is postulated that the differences are probably attributable to combinations of influences, such as natural variations in environmental radiation levels, earth moving activities onsite, the mass of concrete employed in the construction of the plant, or other undetermined influences.

Figure 8 compares plots of the data from the onsite or site boundary stations with those from the offsite stations over the period from 1977 through 1986. To reduce the variations present in the data sets, a 4-quarter moving average was constructed for each set. Figure 9 presents a trend plot of the direct radiation levels as defined by the moving averages. The data follow the same general trend as the raw data, but the curves are smoothed considerably.

Food Products

Food products raised in the vicinity of WBN were sampled annually as they became available during the growing season. During this sampling period, samples of cabbage, corn, pears, potatoes, tomatoes, turnip greens were collected and analyzed for gross beta and specific gamma-emitting radionuclides. The results of laboratory analyses are summarized in tables 17 through 22.

RADIOACTIVITY IN MILK

PCI/L - 0.037 BQ/L

LOCAT	NAME OF FACI	LITY_WAIIS_BABTY_RHEA	IENNESSEE	DOCKET NO REPORTING	50-3902391 PERIOD_1286	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD)	ALL INDICATOR LOCATIONS MEAN (F) RANGE	_LQCATIQN_WITH_HIG NAME DISTANCE AND DIRE	HESI_ANNUAL_MEAN Mean (f) Ction range	CONTROL LOCATIONS MEAN (F) RANGE SEE NOTE 2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
IODINE-131 174	_SEE_NOIE_1 5.00E-01	8.20E+00(13/ 102) 5.71E-01 - 2.85E+01	MULLINS FARM	1.11E+01(3/ 26) 2.02E+00 - 2.32E+01	4.45E+00(7/ 72) 6.41E-01 - 1.00E+01	
GAMMA (GELI)						
176 CS-134	5.00E+00	8.36E+00(3/ 103) 7.01E+00 - 1.06E+01	MOFFETT FARM 4.5 MILES NW	9.04E+00(2/ 25) 7.49E+00 - 1.06E+01	73 VALUES <lld< td=""><td></td></lld<>	
cs-137	5.00E+00	9.19E+00(7/ 103) 5.08E+00 - 1.81E+01	MOFFETT FARM 4.5 MILES NW	1.29E+01(3/ 25) 9.13E+00 - 1.81E+01	7.11E+00(3/ 73) 5.15E+00 - 1.00E+01	
K-40	NOT ESTAB	1.30E+03(103/ 103) 6.22E+02 - 1.77E+03	MULLINS FARM 3.75 MILES ESE	1.42E+03(26/ 26) 1.20E+03 - 1.77E+03	1.35E+03(73/ 73) 7.21E+02 - 1.69E+03	*:
I-131	8.00E+00	1.90E+01(4/ 103) 1.10E+01 - 3.22E+01	MOFFETT FARM 4.5 MILES NW	3.22E+01(1/ 25) 3.22E+01 - 3.22E+01	1.15E+01(1/ 73) 1.15E+01 - 1.15E+01 1.17E+01(36/ 73)	*
B1-214	NOT ESTAB	3.40E+01(41/ 103) 3.76E-01 - 2.74E+02	LAYMAN FARM 1.5 MILES SSW	6.50E+01(17/ 26) 5.26E-01 - 2.74E+02	4.12E-01 - 1.39E+02 1.39E+01(24/ 73)	
PB-214	NOT ESTAB	4.53E+01(27/ 103) 1.05E+00 - 2.70E+02	LAYMAN FARM 1.5 MILES SSW	8.64E+01(12/ 26) 7.58E+00 - 2.70E+02 2.51E+00(4/ 26)	4.10E-01 - 1.56E+02 1.66E+00(23/ 73)	4
PB-212	NOT ESTAB	2.12E+00(29/ 103) 1.03E-01 - 5.17E+00	LAYMAN FARM 1.5 MILES SSW	5.03E-01 - 3.67E+00	1.34E-01 - 3.79E+00 1.78E+00(5/ 73)	
TL-208	NOT ESTAB	1.43E+00(11/ 103) 1.87E-01 - 3.84E+00		4.34E-01 - 3.84E+00	1.22E-01 - 5.23E+00 6.95E+00(9/ 73)	
AC-228	NOT ESTAB	1.09E+01(4/ 103) 4.14E+00 - 1.67E+01	MULLINS FARM 3.75 MILES ESE	1.15E+01(1/ 26) 1.15E+01 - 1.15E+01	2.88E+00 - 1.37E+01 37 VALUES <lld< td=""><td></td></lld<>	
SR 89	1.00E+01	51 VALUES <lld analysis="" performed<="" td=""><td></td><td></td><td></td><td></td></lld>				
SR 90 88	2.00E+00	4.31E+00(35/ 51) 2.02E+00 - 8.33E+00		6.17E+00(12/ 12) 2.23E+00 - 8.83E+00	2.52E+00(8/ 37) 2.17E+00 - 2.96E+00	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN VEGETATION

PCI/G - 0.037 B0/G (DRY WEIGHT)

LOCAI	NAME OF FACI	LITY_WAIIS_BAR	IENNESSEE	DOCKET NO REPORTING	050-3902391 G PERIOD_1986	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	_LOCATION_WITH_HIGH NAME DISTANCE AND DIREC	ESI_ANNUAL_MEAN MEAN (F) TION RANGE	CONTROL LOCATIONS MEAN (F) RANGE	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
IODINE-131 (SEE NOTE 3) 296 GAMMA (GELI)	_SEE_NOIE_1 NOT ESTAB	5.30E-03(67/ 182) 1.10E-05 - 4.91E-02		1.00E-02(5/ 13) 1.02E-04 - 4.91E-02	1.34E-02(39/ 114) 6.00E-06 - 1.11E-01	
299				(70= 04(4(47)	7 575-01/ // 117)	
RU-103	2.00E-01	2.86E-01(10/ 182) 2.20E-01 - 6.30E-01		6.30E-01(1/ 13) 6.30E-01 - 6.30E-01	3.53E-01(4/ 117) 2.42E-01 - 4.90E-01	
CS-137	6.00E-02	1.91E-01(47/ 182) 6.34E-02 - 5.67E-01	SHIRLEY REED FAR	2.96E-01(2/ 13) 1.96E-01 - 3.96E-01	1.88E-01(22/ 117) 6.73E-02 - 6.49E-01	
K-40	NOT ESTAB	1.66E+01(182/ 182)	MULLINS FARM	2.14E+01(13/ 13) 3.96E+00 - 3.84E+01	1.81E+01(117/ 117) 2.04E+00 - 4.08E+01	
I-131	9.00E-02	1.91E+00 - 3.84E+01 3.55E-01(3/182) 2.28E-01 - 5.66E-01	3.75 MILES ESE PM2 SPRING CITY 7.0 MILES NW	5.66E-01 (1/ 13) 5.66E-01 - 5.66E-01	4.71E-01(7/ 117) 2.06E-01 - 8.49E-01	•
BI-214	1.00E-01	2.12E-01(61/ 182)	MOFFETT FARM	3.67E-01(2/ 13)	1.90E-01(41/ 117) 1.01E-01 - 4.01E-01	
BI-212	NOT ESTAB	1.07E-01 - 5.47E-01 2.89E-01(1/ 182) 2.89E-01 - 2.89E-01	4.5 MILES NW MULLINS FARM 3.75 MILES ESE	2.14E-01 - 5.20E-01 2.89E-01(1/ 13) 2.89E-01 - 2.89E-01	117 VALUES <lld< td=""><td>,</td></lld<>	,
PB-214	NOT ESTAB	1.24E-01(135/ 182) 2.80E-03 - 5.65E-01	HOUSLEY FARM	1.90E-01(11/ 13) 4.65E-02 - 3.61E-01	1.10E-01(73/ 117) 1.00E-04 - 4.28E-01	•
PB-212	NOT ESTAB	4.92E-02(107/ 182) 1.00E-04 - 2.28E-01	HOUSLEY FARM	7.78E-02(8/ 13) 8.60E-03 - 1.37E-01	4.25E-02(69/ 117) 7.00E-04 - 3.59E-01	
9E-7	NOT ESTAB	6.19E+00(181/ 182) 1.15E+00 - 2.03E+01	PM2 SPRING CITY 7.0 MILES NW	7.94E+00(13/ 13) 1.41E+00 - 1.35E+01	6.06E+00(117/ 117) 7.56E-01 - 1.65E+01	
TL-208	NOT ESTAB	3.06E-02(52/ 182) 9.00E-04 - 8.37E-02	PM3 CEDINE BIBLE CAMP 11.5 M. NNE	4.14E-02(5/ 13) 1.22E-02 - 8.37E-02	3.35E-02(25/ 117) 7.00E-04 - 1.75E-01	
AC-228	NOT ESTAB	1.68E-01(47/ 182)	LM2 N. WBSP GATE	2.14E-01(4/ 13) 1.12E-01 - 3.04E-01	1.18E-01(25/ 117) 1.46E-02 - 2.78E-01	
PA-234M	NOT ESTAB	1.22E-02 - 3.07E-01 5.37E+00(2/ 182) 4.25E+00 - 6.49E+00	O.5 MILES N Layman Farm 1.5 Miles SSW	6.49E+00(1/ 13) 6.49E+00 - 6.49E+00	117 VALUES <lld< td=""><td></td></lld<>	
SR 89	2.50E-01	56 VALUES <lld< td=""><td>115 HILLS SSW</td><td>01472-00 01472-00</td><td>36 VALUES <lld< td=""><td>•</td></lld<></td></lld<>	115 HILLS SSW	01472-00 01472-00	36 VALUES <lld< td=""><td>•</td></lld<>	•
92	r 00r 03	ANALYSIS PERFORMED	1 M_7 110	4.30E-01(4/ 4)	1.51E-01(30/ 36)	•
SR 90 92	5.00E-02	1.88E-01(45/ 56) 5.64E-02 - 7.99E-01		1.87E-01 - 7.99E-01	5.50E-02 - 5.89E-01	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS

IS INDICATED IN PARENTHESES (F).

NOTE: 3. 1-131 VALUES REPORTED AS PCI/G WET WEIGHT,

RADIOACTIVITY IN SOIL

PCI/G - 0.037 BQ/G (DRY WEIGHT)

DOCKET NO. 50-390/391_____ NAME OF FACILITY_WATTS_BAB_____ REPORTING PERIOD 1986 LOCATION OF FACILITY_RHEA______IENNESSEE_____ NUMBER OF CONTROL ALL TYPE AND LOWER LIMIT INDICATOR LOCATIONS _LQCAILQN_WITH_HIGHESI_ANNUAL_MEAN_____ LOCATIONS NONROUTINE 0 F TOTAL NUMBER REPORTED MEAN (F) MEAN (F) NAME MEAN (F) DETECTION OF ANALYSIS MEASUREMENTS RANGE RANGE DISTANCE AND DIRECTION (LLD) RANGE PERFORMED ___SEE_NQIE_2_ SEE_NOIE_2_____SEE_NOIE_2____ _SEE_NOIE_1 GAMMA (GELI) 11 3.61E-01(3/ 3) 8-44E-01(1/ 1) 3.94E-01(8/ PM2 SPRING CITY 2.00E-02 CS-137 2.83E-01 - 4.42E-01 8.44E-01 - 8.44E-01 3.85E-02 - 8.44E-01 7.0 MILES NW 2.48E+01(1/ 1) 3.70E+00(3/ 3) LM-4 WB 1.09E+01(8/ 8) 2.50E-01 K-40 2.50E+00 - 5.33E+00 2.48E+01 - 2.48E+01 0.9 MILES SE 2.89E+00 - 2.48E+01 1.09E+00(1/ 1) 7.42E-01(3/ 3) 9.17E-01(8/ 8) LM-4 WB 5.00E-02 BI-214 6.84E-01 - 7.75E-01 1.09E+00 - 1.09E+00 7.87E-01 - 1.09E+00 0.9 MILES SE 6.23E-01(3/ 3) 1.78E+00(1/ 1) 1.15E+00(8/ 8) LM-4 WB 1-00E-01 BI-212 5.23E-01 - 7.65E-01 1.78E+00 - 1.78E+00 6.87E-01 - 1.78E+00 0.9 MILES SE 8.17E-01(3/ 3) 1.15E+00(1/ 1) 9.88E-01(8/ 8) LM-4 WB 5.00E-02 PB-214 7.28E-01 - 8.87E-01 1.15E+00 - 1.15E+00 8.02E-01 - 1.15E+00 0.9 MILES SE 1.36E+00(1/ 1) 6.09E-01(3/ 3) LM-4 WB 1.04E+00(8/ 8) NOT ESTAB PB-212 4.99E-01 - 7.64E-01 1.36E+00 - 1.36E+00 0.9 MILES SE 7.77E-01 - 1.36E+00 7.42E-01(3/ 3) 1.09E+00(1/ 1) LM-4 WB 9-17E-01(8/ 8) 5.00E-02 RA-226 6.84E-01 - 7.75E-01 1.09E+00 - 1.09E+00 0.9 MILES SE 7.87E-01 - 1.09E+00 6.50E-01(2/ 3) 1.58E+00(1/ 1) 1.28E+00(4/ 8) LM-4 WB NOT ESTAB RA-224 4.83E-01 - 8.17E-01 1.58E+00 - 1.58E+00 C.9 MILES SE 9.96E-01 - 1.58E+00 5.12E-01(1/ 1) 2.14E-01(3/ 3) LM-4 WB 3.63E-01(8/ 8) TL -208 2.00E-02 1.85E-01 - 2.56E-01 5.12E-01 - 5.12E-01 2.85E-01 - 5.12E-01 0.9 MILES SE 6.03E-01(3/ 3) 1.43E+00(1/ 1) 1.06E+00(8/ 8) LM-4 WB 6.00E-02 AC-228 4.86E-01 - 7.73E-01 1.43E+00 - 1.43E+00 7.77E-01 - 1.43E+00 0.9 MILES SE 2.83E+00(1/ 1) 2.60E+00(2/ 3) 2.54E+00(2/ 8) LM2 N. WBSP GATE NOT ESTAB PA-234M 2.06E+00 - 3.14E+00 2.83E+00 - 2.83E+00 2.24E+00 - 2.83E+00 0.5 MILES N 1.99E+00(1/ 3) 8 VALUES <LLD 1.50E+00 SR 89 1.99E+00 - 1.99E+00 11 3 VALUES <LLD 2.52E-01(3/ 8) PM2 SPRING CITY 3.53E-01(1/ 1) 1.50E-01

1.83E-01 - 3.53E-01 7.0 MILES NW

3.53E-01 - 3.53E-01

SR 90

11

NOTE: 1. NCMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 14

RADIOACTIVITY IN WELL WATER

PCI/L - 0.037 BQ/L

NAME OF FACILITY WATTS BAR DOCKET NO. 50-3202321

LOCAT	ION OF FACILI	TY_8HEA	IENNESSEE	REPORTING	G PERIOD_1286	
TOTAL NUMBER	OF DETECTION (LLD)	MEAN (F) RANGE	NAME DISTANCE AND DI	IGHESI_ANNUAL_MEAN MEAN (F) RECTION RANGE SEE_NQIE_2	MEAN (F) RANGE	NONPOUTINE REPORTED MEASUREMENTS
26				·	•	
K-40	NOT ESTAB	9.32E+00(2/ 13)	WBN WELL #1	9.32E+00(2/ 13)	13 VALUES <lld< td=""><td></td></lld<>	
		5.46E+00 - 1.32E+01	ONSITE S	5.46E+00 - 1.32E+01		
BI-214	NOT ESTAB	2.17E+01(12/ 13)	WBN WELL #1	2.17E+01(12/ 13)	3.72E+02(13/ 13)	
		4.36E+00 - 4.86E+01	ONSITE S	4.36E+00 - 4.86E+01	1.02E+02 - 5.90E+02	
PB-214	NOT ESTAB	1.96E+01(12/ 13)			3.71E+02(13/ 13)	
				1.10E+00 - 4.73E+01	8.28E+01 - 5.96E+02	
PB-212	NOT ESTAB	1.33E+00(3/ 13)		1.33E+00(3/ 13)	5.91E+00(3/ 13)	
				8.51E-01 - 1.76E+00	1.99E+00 - 1.18E+01	
TL-208	NOT ESTAB	8.80E-01(2/ 13)			1.91E+00(1/ 13)	
		3.36E-01 - 1.42E+00		3.36E-01 - 1.42E+00	1.91E+00 - 1.91E+00	
AC-228	NOT ESTAB	1.17E+01(2/ 13)		1.17E+01(2/ 13)	1.58E+01(3/ 13)	
		9.99E+00 - 1.34E+01	ONSITE S	9.99E+00 - 1.34E+01	4.80E+00 - 2.48E+01	
TRITIUM	3.30E+02	4 VALUES <lld< td=""><td></td><td></td><td>4 VALUES <lld< td=""><td></td></lld<></td></lld<>			4 VALUES <lld< td=""><td></td></lld<>	
8		ANALYSIS PERFORMED				

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 15

RADIOACTIVITY IN PUBLIC WATER SUPPLY

PCI/L - 0.037 BQ/L

LOCAT	NAME OF FACILI	LITY_WAIIS_BAR	IENNESSEE		050-390.391 G PERIOD_1286	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GROSS BETA 37 IODINE-131 39	LOWER LIMIT OF DETECTION (LLD) -SEE_NOTE_1 2.00E+00	ALL INDICATOR LOCATIONS MEAN (F) RANGE	CF INDUSTRIES TRM 473.0 DAYTON, TN	MEAN (F)	CONTRUL LOCATIONS MEAN (F) RANGE SEE_NQIE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GAMMA (GELI) 39 K-40	NOT ESTAB	2.49E+01(1/ 26)		2.49E+01(1/ 13)	.13 VALUES <lld< td=""><td>·</td></lld<>	·
91-214	NOT ESTAB	2.49E+01 - 2.49E+01 5.49E+00(13/ 26) 1.36E+00 - 1.61E+01	DAYTON, TN 17.75 MILES NNE	2.49E+01 - 2.49E+01 6.95E+00(6/ 13) 1.65E+00 - 1.61E+01 9.25E+00(2/ 13)	3.54E+00(5/ 13) 2.62E+00 - 4.79E+00 5.95E+00(4/ 13)	·
PB-214	NOT ESTAB	3.32E+00(7/ 26) 4.14E-02 - 1.67E+01 2.23E+00(10/ 26)	17.75 MILES NNE (F INDUSTRIES	1.85E+00 - 1.67E+01 3.58E+00(4/ 13)	7.94E-01 - 1.70E+01 2.15E+00(3/ 13) 1.56E+00 - 2.93E+00	
TL-208	NOT ESTAB	4.77E-01 - 6.57E+0C 1.66E+00(5/ 26) 2.66E-01 - 4.08E+0G	DAYTON, TN	9.15E-01 - 6.57E+00 1.71E+00(2/ 13) 1.11E+00 - 2.30E+00	13 VALUES <lld 1="" 13)<="" 4.76e+00(="" td=""><td>· ·</td></lld>	· ·
AC-228	NOT ESTAB	26 VALUES <lld< td=""><td></td><td></td><td>4.76E+00 - 4.76E+00 4 VALUES <lld< td=""><td></td></lld<></td></lld<>			4.76E+00 - 4.76E+00 4 VALUES <lld< td=""><td></td></lld<>	
SR 89	1.00E+01	8 VALUES <lld ANALYSIS PERFORMED</lld 			4 VALUES <lld< td=""><td></td></lld<>	
SR 90 12 TRITIUM 12	2.00E+00 3.30E+02	8 VALUES <lld 8="" <lld="" analysis="" performed="" performed<="" td="" values=""><td></td><td></td><td>4 VALUES <lld< td=""><td></td></lld<></td></lld>			4 VALUES <lld< td=""><td></td></lld<>	
12		7,11,12,020				

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.
NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

Table 16

ENVIRONMENTAL GAMMA RADIATION LEVELS

Average External Gamma Radiation Levels at Various Distances from Watts Bar Nuclear Plant for Each Quarter - 1986 mR/Quarter

Distance _Miles	Averag <u>1st Quarter</u> (Dec 85-Feb 86)	e External Gamma 2nd Quarter (Mar-May 86)	Radiation Level 3rd Quarter (Jun-Aug 86)	4th Quarter (Sep-Nov 86)
0-1	20.6 <u>+</u> 2.1	18.9 <u>+</u> 3.7	19.9 <u>+</u> 3.7	20.3 <u>+</u> 1.9
1-2	20.8 <u>+</u> 2.1	19.0 <u>+</u> 2.8	22.5 <u>+</u> 3.1	23.8 ± 6.3
2-4	18.1 <u>+</u> 1.9	14.5 <u>+</u> 0.0	14.3 <u>+</u> 0.9	16.1 <u>+</u> 1.1
4–6	18.6 <u>+</u> 2.3	16.4 <u>+</u> 3.1	18.3 <u>+</u> 4.1	17.8 <u>+</u> 1.6
>6	16.6 <u>+</u> 3.1	15.1 <u>+</u> 4.1	16.0 <u>+</u> 4.7	21.7 ± 3.6
Average, O-2 miles (Onsite)	20.7 <u>+</u> 2.0	18.9 <u>+</u> 3.3	20.9 <u>+</u> 3.6	20.9 <u>+</u> 3.1
Average >2 miles (Offsite)	17.8 <u>+</u> 2.7	15.8 <u>+</u> 3.4	17.2 <u>+</u> 4.3	18.3 <u>+</u> 6.5

a. Data normalized to one quarter (2190 hours).

b. Averages of the individual measurements in the set ± 1 standard deviation of the set.

RADIOACTIVITY IN CABBAGE

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

LOCAT	NAME OF FACI	LITY_WAIIS_BAB	IENNESSEE		050-390.391 G PERIOD_1286	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD)	ALL INDICATOR LOCATIONS MEAN (F) RANGE SEE NOIE 2	_LQCAIIQN_WIIH_HI NAME DISTANCE AND DIRE	MEAN (F)	CONTROL LOCATIONS MEAN (F) RANGE SEE NOIE 2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROSS BETA	_SEE_NOIE_1 2.50E+01	4.26E+03(1/ 1) 4.26E+03 - 4.26E+03	2.0 MILES S	4.26E+03(1/ 1) 4.26E+03 - 4.26E+03	3.32E+03(1/ 1) 3.32E+03 - 3.32E+03	
GAMMA (GELI)						•
K-40	NOT ESTAB	1.94E+03(1/ 1) 1.94E+03 - 1.94E+03		1.94E+03(1/ 1) 1.94E+03 - 1.94E+03	1.51E+03(1/ 1) 1.51E+03 - 1.51E+03	
BI-214	NOT ESTAB	5.29E+00(1/ 1) 5.29E+00 - 5.29E+00	2.0 MILES S	5.29E+00(1/ 1) 5.29E+00 - 5.29E+00	6.34E+00(1/ 1) 6.34E+00 - 6.34E+00	
P6-214	NOT ESTAB	4.10E+00(1/ 1) 4.10E+00 - 4.10E+00	2.0 MILES S	4.10E+00(1/ 1) 4.10E+00 - 4.10E+00	4.34E+00(1/ 1) 4.34E+00 - 4.34E+00	•
P6-212	NOT ESTAB	1 VALUES <lld< td=""><td></td><td></td><td>1.84E+00(1/ 1) 1.84E+00 - 1.84E+00</td><td></td></lld<>			1.84E+00(1/ 1) 1.84E+00 - 1.84E+00	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN CCRN

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

Loca	NAME OF FACI	LITY_WAIIS_BAR	IENNESSEE		050-3202321 G PERIOD_1286	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GROSS BETA	LOWER LIMIT	ALL INDICATOR LOCATIONS MEAN (F) RANGE	LOCATION WITH HI NAME DISTANCE AND DIR	MEAN (F) ECTION RANGESEE_NQIE_2 3.06E+03(1/ 1)	CONTROL LOCATIONS MEAN (F) RANGE	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GAMMA (GELI)		3.06E+03 - 3.06E+03		3.06E+03 - 3.06E+03	4:27E+03 - 4.27E+03	
K-40	NCT ESTAB	1.82E+03(1/ 1) 1.82E+03 - 1.82E+03		1.82E+03(1/ 1) 1.82E+03 - 1.82E+03	2.22E+03(1/ 1) 2.22E+03 - 2.22E+03	••• •
BI-214	NOT ESTAB	2.20E+00(1/ 1) 2.20E+00 - 2.20E+00	2.0 MILES S	2.20E+00(1/ 1) 2.20E+00 - 2.20E+00	1 VALUES <lld< td=""><td></td></lld<>	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

DOCKET NO._50=3202321_____

TABLE 19

RADIOACTIVITY IN PEARS

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

1.00.47	NAME OF FACILI	TY_BHEA	IENNESSEE	REPORTING	PERIOD_1986	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GROSS BETA	LOWER LIMIT OF DETECTION (LLD) -SEE_NQIE_1 2.50E+01	ALL INDICATOR LOCATIONS MEAN (F) RANGE	LOCATION WITH HIGH NAME DISTANCE AND DIREC ORIS BENNETT FAR	ESI_ANNUAL_MEAN MEAN (F) TION RANGESEE_NQIE_2 2.70E+03(1/ 1)	CONTROL LOCATIONS MEAN (F) RANGE	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GAMMA (GELI)	:					
K-40	NOT ESTAB	9.49E+02(1/ 1) 9.49E+02 - 9.49E+02		9.49E+02(1/ 1) 9.49E+02 - 9.49E+02	6.60E+02(1/ 1) 6.60E+02 - 6.60E+02	
BI-214	NOT ESTAB	5.92E+00(1/ 1) 5.92E+00 - 5.92E+00	ORIS BENNETT FAR	5.92E+00(1/ 1) 5.92E+00 - 5.92E+00	1 VALUES <lld< td=""><td></td></lld<>	
PB-214	NOT ESTAB	2.11E+00(1/ 1) 2.11E+00 - 2.11E+00	ORIS BENNETT FAR	2.11E+00(1/ 1) 2.11E+00 - 2.11E+00	1 VALUES <lld< td=""><td></td></lld<>	
PB-212	NOT ESTAB	6.28E+00(1/ 1) 6.28E+00 - 6.28E+00	ORIS BENNETT FAR	6.28E+00(1/ 1) 6.28E+00 - 6.28E+00	1 VALUES <lld< td=""><td></td></lld<>	

NOTE: 1. NOMIN'L LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN /ND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 20

RADIOACTIVITY IN POTATOES

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

		LITY_WATIS_BAR			050=390/391	,
LOCAT	TION OF FACILI	TY_REA	IENNESSEE	REPORTIN	G PERIOD_1986	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD)	ALL INDICATOR LOCATIONS MEAN (F) RANGE	_LQCAIIQN_WIIH_HIG NAME DISTANCE AND DIRE	MEAN (F) CTION RANGE	CONTROL LOCATIONS MEAN (F) RANGE	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROSS BETA	_SEE_NQIE_1 2.50E+01	8.73E+03(1/ 1) 8.73E+03 - 8.73E+03		8.73E+03(1/ 1) 8.73E+03 - 8.73E+03	6.25E+03(1/ 1) 6.25E+03 - 6.25E+03	
GAMMA (GELI) 2						
K-40	NOT ESTAB	3.91E+03(1/ 1) 3.91E+03 - 3.91E+03		3.91E+03(1/ 1) 3.91E+03 - 3.91E+03	3.31E+03(1/ 1) 3.31E+03 - 3.31E+03	
BI-214	NOT ESTAB.	1.61E+01(1/ 1) 1.61E+01 - 1.61E+01		1.61E+01(1/ 1) 1.61E+01 - 1.61E+01	1 VALUES <lld< td=""><td></td></lld<>	
PB-214	NOT ESTAB	1.69E+00(1/ 1) 1.69E+00 - 1.69E+00	LAYMAN FARM	1.69E+00(1/ 1) 1.69E+00 - 1.69E+00	1 VALUES <lld< td=""><td>•</td></lld<>	•
PE-212	NOT ESTAB	4.91E+00(1/ 1) 4.91E+00 = 4.91E+00	LAYMAN FARM	4.91E+00(1/ 1) 4.91E+00 = 4.91E+00	1 VALUES <lld< td=""><td></td></lld<>	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

DOCKET NO. 50-3202321_____

TABLE 21

RADIOACTIVITY IN TOMATOES

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

1.00 AT		TA-8REQ	TENNESSEE	REPORTING	G PERIOD_1286	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GROSS BETA	LOWER LIMIT OF DETECTION (LLD) -SEE_NQIE_1 2.50E+01	A 1.1		MEAN (F)	CONTROL LOCATIONS MEAN (F) RANGE SEE_NQIE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GAMMA (GELI)						
K-40	NOT ESTAB	2.44E+03(1/ 1) 2.44E+03 - 2.44E+03	2.0 MILES S	2.44E+03(1/ 1) 2.44E+03 - 2.44E+03	1.94E+03(1/ 1) 1.94E+03 - 1.94E+03 7.16E-01(1/ 1)	
B1-214.	NOT ESTAB	1 VALUES <lld< td=""><td></td><td></td><td>7.16E-01(1/ 1) 7.16E-01 - 7.16E-01 4.32E+00(1/ 1)</td><td></td></lld<>			7.16E-01(1/ 1) 7.16E-01 - 7.16E-01 4.32E+00(1/ 1)	
P8-212	NOT ESTAB	1 VALUES <lld< td=""><td></td><td>,</td><td>4.32E+00 - 4.32E+00</td><td></td></lld<>		,	4.32E+00 - 4.32E+00	

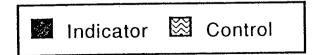
NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

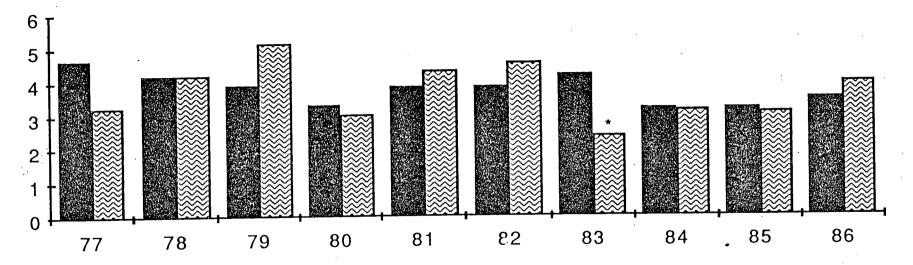
NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS
IS INDICATED IN PARENTHESES (F).

TABLE 22

RADIOACTIVITY IN TURNIP GREENS

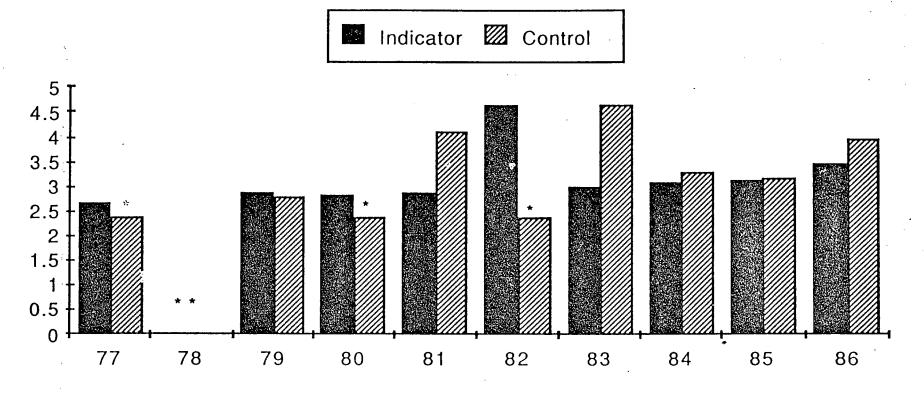
PCI/KG - 0.037 BQ/KG (WET WEIGHT)


LOCAT		LITY_WAIIS_BAB			050-3902391 G PERIOD_1986	:
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD)	ALL INDICATOR LOCATIONS MEAN (F) RANGE	NAME	HESI_ANNUAL_MEAN MEAN (F) CTION RANGE SEE NOIE 2	CONTROL LOCATIONS MEAN (F) RANGE SEE NOIE 2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROSS BETA 2 GAMMA (GELI)	_SEE_NQIE_1 2.50E+01	3.24E+03 - 3.24E+03		3.24E+03(1/ 1) 3.24E+03 - 3.24E+03	3.63E+03(1/ 1) 3.63E+03 - 3.63E+03	
K-40	NOT ESTAB	1.30E+03(1/ 1) 1.30E+03 - 1.30E+03	2.1 MILES NE	1.30E+03(1/ 1) 1.30E+03 - 1.30E+03	1.30E+03(1/ 1) 1.30E+03 - 1.30E+03	
BI-214 PB-212	NOT ESTAB	3.73E+00(1/ 1) 3.78E+00 - 3.78E+00 4.20E+00(1/ 1)	2.1 MILES NE	3.78E+00(1/ 1) 3.78E+00 - 3.78E+00 4.20E+00(1/ 1)	1 VALUES <lld 1="" 1)<="" 6.39e+00(="" td=""><td></td></lld>	
BE-7	NOT ESTAB	4.20E+00 - 4.20E+00 8.74E+01(1/ 1) 8.74E+01 - 8.74E+01	ORIS BENNETT FAR	4.20E+00 - 4.20E+00 8.74E+01(1/ 1) 8.74E+01 - 8.74E+01	6.39E+00 - 6.39E+00 1 VALUES <lld< td=""><td>· .</td></lld<>	· .
TL-208	NOT ESTAB	1.66E+00(1/ 1) 1.66E+00 - 1.66E+00	ORIS BENNETT FAR	1.66E+00(1/ 1) 1.66E+00 - 1.66E+00	1 VALUES <lld< td=""><td></td></lld<>	
AC-228	NOT ESTAB	1.11E+01(1/ 1) 1.11E+01 - 1.11E+01		1.11E+01(1/ 1) 1.11E+01 - 1.11E+01	1.56E+01(1/ 1) 1.56E+01 - 1.56E+01	


NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS
IS INDICATED IN PARENTHESES (F).

Figure 5


Annual Average Gross Beta Activity Drinking Water (pCi/liter) Watts Bar Nuclear Plant

* Less than LLD (2.4 pCi/L)

Annual Average Gross Beta Activity
Surface Water (pCi/liter)
Watts Bar Nuclear Plant

* Less than LLD (2.4 pCi/L)

^{**} No gross beta measurements were made in 1978.

Figure

41

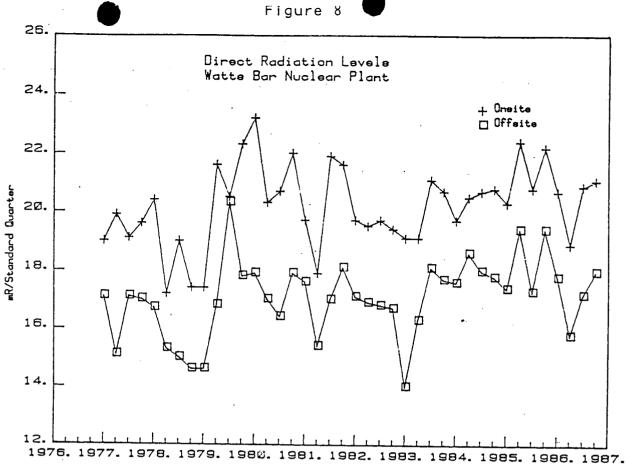


Figure 9

Reservoir Monitoring

Samples of water and aquatic media were collected along the Tennessee River in Chickamauga and Watts Bar Reservoirs. One station is also a part of the Sequoyah Nuclear Plant monitoring program. In conjunction with that program, additional analyses are conducted on some samples. Samples collected for radiological analyses include sediment, and Asiatic clams from three stations; water from three stations; and fish from Watts Bar, Chickamauga and Nickajak Reservoirs (see table 23). The locations of these stations are shown on the accompanying map (figure 10) and conform to sediment ranges established and surveyed by TVA.

Water

Water samples were collected automatically by sequential type sampling devices at three locations on the Tennessee River (one upstream from the plant discharge area, one immediately downstream from the plant discharge, and one approximately 9 miles downstream). The samples are collected monthly and analyzed for gross beta and for gamma-emitting radionuclides. These monthly samples are composited quarterly for Sr-89, Sr-90, and tritium determination. Analytical results are summarized in table 24. During this report period, two samples were not analyzed because of insufficient volume.

Figure 6 presents a plot of the gross beta activity in surface water from 1977 through 1986. Indicator stations were those located downstream from the plant and controls were located upstream. The levels reported were consistent with gross beta levels measured in surface water samples taken from the Tennessee River in preoperational radiological monitoring programs conducted by TVA at other sites.

<u>Fish</u>

Radiological monitoring for fish was accomplished by analyses of composite samples of adult fish taken semiannually from each of three contiguous reservoirs—Watts Bar, Chickamauga, and Nickajack. No permanent sampling stations have been established within each reservoir; this reflects the movement of fish species within reservoirs as determined by TVA data from the Browns Ferry Nuclear Plant preoperational monitoring program. Three species, white crappie, channel catfish, and smallmouth buffalo, were collected representing both commercial and game species. Sufficient fish are collected in each reservoir to yield 250 or 300 grams oven-dry weight for analytical purposes. The composite samples contained approximately the same quantity of flesh from each fish. For each composite, a subsample of material was drawn for counting. Samples were analyzed for gamma-emitting radionuclides. Analytical results are given in tables 25 through 28.

Sediment

Sediment samples were collected semiannually at three locations on the Tennessee River by dredge hauls made for bottom fauna. Each sample was a composite obtained by combining equal volumes of sediment from each of three dredge hauls. Samples were analyzed for gamma-emitting radionuclides and Sr-89 and Sr-90 content. Analytical results are summarized in table 30. During this report period, Sr-89 and Sr-90 content was not determined in samples taken at Tennessee River Mile 496.5. One sample was not collected because of personnel error.

Shoreline sediment samples were collected semiannually at two recreation-use areas (one downstream from the plant and one upstream) in the vicinity of WBN. Samples collected were analyzed for gamma-emitting radionuclides, Sr-89, and Sr-90. Results are summarized in table 31.

Figures 11 and 12 respectively present the trends in cesium-137 and cobalt-60 levels in sediment during the operation of the monitoring program. The upstream (control) station is located above Watts Bar Dam.

Asiatic Clams

Samples of Asiatic clams were collected with a Ponar dredge semiannually from three stations. Clam flesh was analyzed only for gamma-emitting radionuclides. During this report period, on three occasions, clams were not available. Results of samples analyzed are summarized in tables 32 and 33.

Table 23

<u>SAMPLING SCHEDULE - RESERVOIR MONITORING</u>

	Biological			
Clams	Sediment	Shoreline <u>Sediment</u>	<u>Fish</u> ^a	Surface <u>Water</u>
X	X			
		X		
				X
				X
Χ	X			
				X
		X		
X	Χ .			
	X	Asiatic Clams Sediment X X X	X X X X X X X	Asiatic Shoreline Clams Sediment Fish ^a X X X X X X

a. Fish samples taken from Watts Bar, Chickamauga, and Nickajack Reservoirs.

RADIOACTIVITY IN SURFACE WATER TOTAL

PCI/L - 0.037 BQ/L

LOCAT	NAME OF FACI	LITY_WAIIS_BARTY_RHEA	IENNESSEE		050-3902391 G PERIOD_1286	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD)	ALL INDICATOR LOCATIONS MEAN (F) RANGE SEE NOIE 2	_LOCATION_WITH_HIGH NAME DISTANCE AND DIREC	MEAN (F) TION RANGE SEE NOTE 2	CONTROL LOCATIONS MEAN (F) RANGE SEE NOIE 2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROSS BETA 37 IODINE-131 13	SEE NOTE 1 2.00E+00 NOT ESTAB	3.47E+00(24/ 26) 2.07E+00 - 7.58E+00	TRM 517.9 10.3 MILE DOWNST	3.79E+00(11/ 13) 2.21E+00 - 7.58E+00	3.96E+00(9/ 11) 2.21E+00 - 1.16E+01 1.10E-01(7/ 13) 9.55E-03 - 2.52E-01	
GAMMA (GELĮ)			54 7 0	2.25E+01(2/ 13)	13 VALUES <lld< td=""><td></td></lld<>	
K-40	NOT ESTAB	1.99E+01(3/ 26) 1.46E+01 - 2.77E+01	TRM 517.9 10.3 MILE DOWNST TRM 523.1	1.74E+01 - 2.77E+01 1.15E+01(4/ 13)	3.546+00(5/ 13)	
aI-214	NOT ESTAB	8.14E+00(12/ 26) 1.17E+00 - 2.35E+01 6.36E+00(6/ 26)	5.2 MILE DOWNSTR TRM 523.1	3.28E+00 - 2.28E+01 7.82E+00(3/ 13)	2.62E+00 - 4.79E+00 5.95E+00(4/ 13)	
PB-214	NOT ESTAB	6.36E+00(6/ 26) 2.70E+00 - 1.06E+01 2.25E+00(6/ 26)		4.38E+00 - 1.06E+01 2.87E+00(2/ 13)	7.94E-01 - 1.70E+01 2.15E+00(3/ 13)	
PB-212 SR 89	1.00E+01	6.67E-01 - 4.25E+00 8 VALUES <lld< td=""><td></td><td>1.72E+00 - 4.03E+00</td><td>1.56E+00 - 2.93E+00 4 VALUES <lld< td=""><td>, · · ·</td></lld<></td></lld<>		1.72E+00 - 4.03E+00	1.56E+00 - 2.93E+00 4 VALUES <lld< td=""><td>, · · ·</td></lld<>	, · · ·
SR 90	2.00E+00	ANALYSIS PERFORMED 8 VALUES <lld< td=""><td></td><td></td><td>4 VALUES <lld< td=""><td></td></lld<></td></lld<>			4 VALUES <lld< td=""><td></td></lld<>	
TRITIUM 12	3.30E+02	ANALYSIS PERFORMED 8 values <lld Analysis performed</lld 			4 VALUES <lld< td=""><td></td></lld<>	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.
NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 25

RADIOACTIVITY IN CHANNEL CATFISH (FLESH)

PCI/G - 0.037 BQ/G (DRY WEIGHT)

	NAME OF FAUL	FILA MUTIZ BUZ		DOCKET N	057-5475341	
LOCAT	TION OF FACILI	TY_RHEA	IENNESSEE	REPORTIN	G PERIOD_1986	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	LOCATION WITH HIS NAME DISTANCE AND DIRE	ECTION RANGE	MEAN (F) RANGE	NUMBER OF NONRCUTINE REPORTED MEASUREMENTS
GAMMA (GELI)	_SEE_NOIE_1	SEE_NQIE_2		SEE_NQIE_2	SEE_NQIE_Z	
6	2 00- 22					
CS-137	2.00E-02	6.00E-02(3/ 4) 4.25E-02 - 7.59E-02		7.59E-02(1/ 2) 7.59E-02 - 7.59E-02	4.10E-02(2/ 2) 3.86E-02 - 4.34E-02	
K-40	NOT ESTAB	1.16E+01(4/ 4) 1.03E+01 - 1.46E+01		1.28E+01(2/ 2) 1.09E+01 - 1.46E+01	1.06E+01(2/ 2) 9.27E+00 - 1.20E+01	
BI-214	2.00E-02	1.53E-01(1/ 4) 1.53E-01 - 1.53E-01		1.53E-01(1/ 2) 1.53E-01 - 1.53E-01	2 VALUES <lld< td=""><td></td></lld<>	
PB-214	NOT ESTAB	6.70E-03(1/ 4) 6.70E-03 - 6.70E-03	NICKAJACK RES	6.70E-03(1/ 2)	2 VALUES <lld< td=""><td></td></lld<>	
PB-212	NOT ESTAB	4 VALUES <lld< td=""><td></td><td>J. J. J</td><td>1.00E-04(1/ 2) 1.00E-04 - 1.00E-04</td><td>•</td></lld<>		J. J	1.00E-04(1/ 2) 1.00E-04 - 1.00E-04	•

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN WHITE CRAPPIE (FLESH)

PCI/G - 0.037 BQ/G (DRY WEIGHT)

LOCAT		LITY_WAIIS_BARTY_BHEA			050-3202321 G PERIOD_1286	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD) _SEE_NQIE_1	ALL INDICATOR LOCATIONS MEAN (F) RANGESEE_NQIE_2	NAME DISTANCE AND DIRE	MEAN (F) CTION RANGE	CONTROL LOCATIONS MEAN (F) RANGE LOCATIONS	NUTBER OF NONROUTINE REPORTED MEASUREMENTS
6 CS-137	2.00E-02	9.90E-02(4/ 4) 4.12E-02 - 1.39E-01		1.08E-01(2/ 2) 8.29E-02 - 1.34E-01	1.08E-01(2/ 2) 1.08E-01 - 1.09E-01	
K-40	NOT ESTAB	1.71E+01(4/ 4) 1.61E+01 - 1.84E+01	CHICKAMAUGA RES	1.74E+01(2/ 2) 1.65E+01 - 1.84E+01	1.79E+01(2/ 2) 1.70E+01 - 1.88E+01	
BI-214	2.00E-02	3.69E-02(1/ 4) 3.69E-02 - 3.69E-02	CHICKAMAUGA RES	3.69E-02(1/ 2) 3.69E-02 - 3.69E-02	1.01E-01(1/ 2) 1.01E-01 - 1.01E-01	
PB-214	NOT ESTAB	2.83E-02(2/ 4) 1.50E-02 - 4.16E-02	CHICKAMAUGA RES	4.16E-02(1/ 2) 4.16E-02 - 4.16E-02	4.83E-02(1/ 2) 4.83E-02 - 4.83E-02	
PB-212	NOT ESTAB	4 VALUES <lld< td=""><td></td><td></td><td>7.50E-03(1/ 2)</td><td></td></lld<>			7.50E-03(1/ 2)	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS
IS INDICATED IN PARENTHESES (F).

TABLE 27

NAME OF FACILITY_WAITS_BAR_____

PB-214

PB-212

NOT ESTAB

NOT ESTAB

RADIOACTIVITY IN SMALLMOUTH BUFFALO (FLESH)

PCI/G - 0.037 BQ/G (DRY WEIGHT)

DOCKET NO. 50-3902391

1.63E-02(1/ 2)

2.80E-03(1/ 2)

LOCAT				NG PERIOD 1986	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GAMMA (GELI)	LOWER LIMIT OF DETECTION (LLD) _SEE_NQIE_1	MEAN (F) Range	LOCATION WITH HIGHEST ANNUAL MEAN (F) NAME MEAN (F) DISTANCE AND DIRECTION RANGE SEE NOIE 2	CONTROL LOCATIONS MEAN (F) RANGESEE_NOIE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
cs-137	2.008-02	3.83E-02(3/ 4) 3.32E-02 - 4.44E-02	CHICKAMAUGA RES 4.44E-02(1/ 2) TRM 471-530 4.44E-02 - 4.44E-02		
K-40	NOT ESTAB	1.07E+01(4/ 4) 9.30E+00 - 1.46E+01	NICKAJACK RES 1.20E+01(2/ 2) TRM 425-471 9.42E+00 - 1.46E+01	1.30E+01(2/ 2) 1.24E+01 - 1.36E+01	

3.73E-02(1/2)

3.80E-03(1/ 2)

3.73E-02 - 3.73E-02 1.63E-02 - 1.63E-02

3.80E-03 - 3.80E-03 2.80E-03 - 2.80E-03

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

3.73E-02(1/ 4) NICKAJACK RES

3.73E-02 - 3.73E-02 TRM 425-471

3.80E-03 - 3.80E-03 TRM 425-471

3.80E-03(1/ 4) NICKAJACK RES

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN SMALLMOUTH BUFFALO (WHOLE)

PCI/G - 0.037 BQ/G (DRY WEIGHT)

LOCAT	NAME OF FACILI	LITY_WAIIS_BAB	IENNESSEE		050-390,391 G PERIOD_1286	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GAMMA (GELI)	LOWER LIMIT OF DETECTION (LLD) _SEE_NQIE_1	ALL INDICATOR LOCATIONS MEAN (F) RANGE SEE NOIE 2	NAME DISTANCE AND DIRE	MEAN (F) ECTION RANGE	CONTROL LOCATIONS MEAN (F) RANGESEE_NQIE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
6		•				,
cs-137	2.00E-02	2.45E-02(3/ 4) 2.10E-02 - 2.93E-02	CHICKAMAUGA RES TRM 471-530	2.52E-02(2/ 2) 2.10E-02 - 2.93E-02		
K-40	NOT ESTAB	6.22E+00(4/ 4) 5.27E+00 - 6.82E+00	NICKAJACK RES	6.59E+00(2/ 2) 6.36E+00 - 6.82E+00	5.82E+00(2/ 2) 5.02E+00 - 6.62E+00	•
81-214	2.00E-02	3.74E-02(2/ 4) 2.06E-02 - 5.41E-02	NICKAJACK RES	3.74E-02(2/ 2) 2.06E-02 - 5.41E-02	2 VALUES <lld< td=""><td></td></lld<>	
P8-214	NOT ESTAB	2.34E-02(1/ 4) 2.34E-02 - 2.34E-02	NICKAJACK RES	2.34E-02(1/ 2) 2.34E-02 - 2.34E-02	6.40E-03(1/ 2) 6.40E-03 - 6.40E-03	
PB-212	NOT ESTAB	6.40E-03(1/ 4) 6.40E-03 - 6.40E-03	NICKAJACK RES	6.40E-03(1/ 2) 6.40E-03 - 6.40E-03	3.80E-03(1/ 2) 3.80E-03 - 3.80E-03	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 29

RADIOACTIVITY IN SEDIMENT

DOCKET NO._50-3902391.

PCI/G - 0.037 6Q/G (DRY WEIGHT)

LOCAT	ION OF FACILI	TY_RHEA	IENNESSEE.	REPORTING	PERIOD_1984	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD) _SEE_NQIE_1	ALL INDICATOR LOCATIONS MEAN (F) RANGESEE_NQIE_2	LOCATION WITH !! NAME DISTANCE AND D	HIGHEST ANNUAL MEAN MEAN (F) IRECTION RANGE SEE NOIE 2	CONTROL LOCATIONS MEAN (F) RANGE SEE_NQIE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GAMMA (GELI)					•	
		1.22E-01(2/ 4) 1.21E-01 - 1.22E-01	TRM 496.50		2.33E-01(1/ 1) 2.33E-01 - 2.33E-01	
CS-137		1.50E+00(2/ 4) 1.28E+00 - 1.72E+00		1.50E+00(2/ 2) 1.28E+00 - 1.72E+00	3.18E+00(1/ 1) 3.18E+00 - 3.18E+00	
K-40		1.31F+01 - 1.62E+01		1.59E+01(2/ 2) 1.56E+01 - 1.62E+01	1.79E+01(1/ 1) 1.79E+01 - 1.79E+01	
BI-214		7.92E-01 - 1.26E+00		1.25E+00(2/ 2) 1.25E+00 - 1.26E+00	1.60E+00(1/ 1) 1.60E+00 - 1.60E+00	
BI-212		1.40E+00(4/ 4) 1.21E+00 - 1.60E+00		1.54E+00(2/ 2) 1.48E+00 - 1.60E+00	2.19E+00(1/ 1) 2.19E+00 - 2.19E+00	
PB-214		1.10E+00(4/ 4) 8.31E-01 - 1.34E+00		1.31E+00(2/ 2) 1.29E+00 - 1.34E+00	1.76E+00(1/ 1) 1.76E+00 - 1.76E+00 1.94E+00(1/ 1)	
PB-212 RA-226	NOT ESTAB	1.29E+00(4/ 4) 1.05E+00 - 1.51E+00 1.03E+00(4/ 4)		1.50E+00(2/ 2) 1.50E+00 - 1.51E+00 1.25E+00(2/ 2)	1.94E+00 - 1.94E+00 1.60E+00(1/ 1)	,
RA-226	NOT ESTAB	7.92E-01 - 1.26E+00 1.44E+00(3/ 4)		1.25E+00 - 1.26E+00	1.60E+00 - 1.60E+00 1 VALUES <lld< td=""><td></td></lld<>	
KR EE4		1.26E+00 - 1.57E+00	· · · · · · · · · · · · · · · · · · ·	1.49E+00 - 1.57E+00		
	2.00E-02	4.32E-01(4/ 4) 3.51E-01 - 5.18E-01		5.06E-01(2/ 2) 4.93E-01 - 5.18E-01	6.99E-01(1/ 1) 6.99E-01 - 6.99E-01	
AC-228		1.34E+00(4/ 4) 1.11E+00 - 1.57E+00	TRM 496.50	1.54E+00(2/ 2) 1.51E+00 - 1.57E+00 3.36E+00(1/ 2)	1.93E+00(1/ 1) 1.93E+00 - 1.93E+00	
PA-234M	NOT ESTAB	3.36E+00(1/ 4) 3.36E+00 - 3.36E+00	TRM 527.4	3.36E+00(1/ 2) 3.36E+00 - 3.36E+00 1.70E+00(1/ 2) 1.70E+00 - 1.70E+00	1 VALUES <lld< td=""><td></td></lld<>	
SR 89		12102.00	TRM 527.4	1.70E+00(1/ 2) 1.70E+00 - 1.70E+00		
SR 90		2 VALUES <lld ANALYSIS PERFORMED</lld 			1 VALUES <lld< td=""><td></td></lld<>	

NAME OF FACILITY_WAITS_BAR_____

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.
NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN SHORE LINE SEDIMENT

PCI/G - 0.037 BQ/G (DRY WEIGHT)

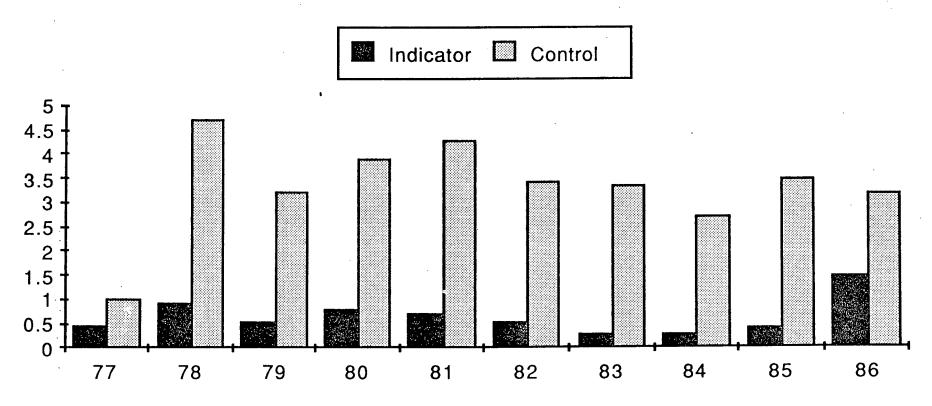
LOCA	NAME OF FACI TION OF FACILI	LITY_WAIIS_BAR	DOCKET NO. SQ-39Q2391 TENNESSEE REPORTING PERIOD 1986			
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD) _SEE_NQIE_1	ALL INDICATOR LOCATIONS MEAN (F) RANGESEE_NΩIE_2	_LQCAIIQN_WIIH_HIG NAME DISTANCE AND DIRE	MEAN (F)	CONTROL LOCATIONS MEAN (F) RANGE SEE NOIE 2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GAMMA (GELI)						
cs-137	2.00E-02	7.73E-02(2/ 2) 2.18E-02 - 1.33E-01	COTTON PORT MARI TRM 513	7.73E-02(2/ 2) 2.18E-02 - 1.33E-01	2.07E-02(1/ 2) 2.07E-02 - 2.07E-02	
K-40	NOT ESTAB	2.42E+01(2/ 2) 2.14E+01 - 2.70E+01	CCTTON PORT MARI TRM 513	2.42E+01(2/ 2) 2.14E+01 - 2.70E+01	8.25E-01(2/ 2) 7.32E-01 - 9.18E-01	
BI-214	2.00E-02	7.78E-01(2/ 2) 7.08E-01 - 8.47E-01	COTTON PORT MARI	7.78E-01(2/ 2) 7.08E-01 - 8.47E-01	1.74E-01(2/ 2) 1.51E-01 - 1.98E-01	
BI-212	1.00E-01	1.73E+00(2/ 2) 1.52E+00 = 1.95E+00	COTTON PORT MARI	1.73E+00(2/ 2) 1.52E+00 - 1.95E+00	2.49E-01(2/ 2) 2.43E-01 - 2.56E-01	
PB-214	NOT ESTAB	8.37E-01(2/ 2) 7.17E-01 - 9.57E-01	COTTON PORT MARI	8.37E-01(2/ 2) 7.17E-01 - 9.57E-01	1.98E-01(2/ 2) 1.66E-01 - 2.30E-01	
PB-212	2.00E-02	1.54E+00(2/ 2) 1.35E+00 - 1.74E+00	COTTON PORT MARI	1.54E+00(2/ 2) 1.35E+00 - 1.74E+00	2.02E-01(2/ 2) 1.72E-01 - 2.33E-01	
RA-226	NOT ESTAB	8.47E-01(1/ 2) 8.47E-01 - 8.47E-01	COTTON PORT MARI	8.47E-01(1/ 2) 8.47E-01 - 8.47E-01	1.74E-01(2/ 2) 1.51E-01 - 1.93E-01	₹.
RA-224	NOT ESTAB	1.86E+00(1/ 2) 1.86E+00 - 1.86E+00	COTTON PORT MARI	1.86E+00(1/ 2) 1.86E+00 - 1.86E+00	2 VALUES <lld< td=""><td>••</td></lld<>	••
BE-7	2.00E-02	2 VALUES <lld< td=""><td></td><td></td><td>1.50E-01(1/ 2) 1.50E-01 - 1.50E-01</td><td></td></lld<>			1.50E-01(1/ 2) 1.50E-01 - 1.50E-01	
TL-208	2.00E-02	5.34E-01(2/ 2) 4.63E-01 - 6.04E-01	COTTON PORT MARI TRM 513	5.34E-01(2/ 2) 4.63E-01 - 6.04E-01	6.48E-02(2/ 2) 5.92E-02 - 7.04E-02	
AC-228	6.00E-02	1.56E+00(2/ 2) 1.42E+00 - 1.70E+00	COTTON PORT MARI	1.56E+00(2/ 2) 1.42E+00 - 1.70E+00	2.05E-01(2/ 2) 1.87E-01 - 2.22E-01	•
SR 89	1.50E+00	2 VALUES <lld analysis="" performed<="" td=""><td> 2.2</td><td></td><td>2 VALUES <lld< td=""><td></td></lld<></td></lld>	2.2		2 VALUES <lld< td=""><td></td></lld<>	
SR 90	1.50E-01	2 VALUES <lld< td=""><td></td><td>•</td><td>1.61E-01(1/ 2) 1.61E-01 - 1.61E-01</td><td></td></lld<>		•	1.61E-01(1/ 2) 1.61E-01 - 1.61E-01	

NOTE: 1. NCMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

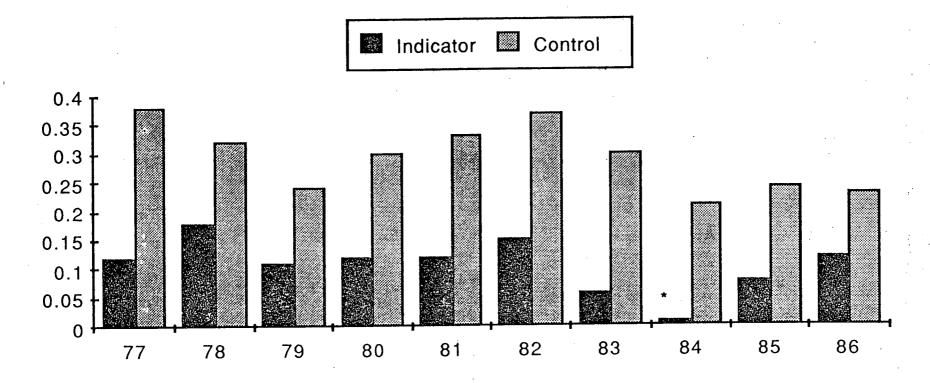
NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN CLAM FLESH

PCI/G - 0.037 BQ/G (DRY WEIGHT)


NAME OF FACILITY_WAIIS_BAB LOCATION OF FACILITY_RHEA			IENNESSEE		DOCKET NO. 50-3902391 REPORTING PERICO 1986		
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GAMMA (GELI)	LOWER LIMIT OF DETECTION (LLD) _SEE_NQIE_1	ALL INDICATOR LOCATIONS MEAN (F) RANGESEE_NQIE_2	NAME DISTANCE AND D		CONTROL LOCATIONS MEAN (F) RANGE SEE_NOIE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
8I-214	NOT ESTAB	1.90E-01(3/ 4)	TRM 496.50	2.56E-01(2/			
PB-214	NOT ESTAB	5.78E-02 - 3.20E-01 1.97E-01(2/ 4)	TRM 527.4	1.92E-01 - 3.20E 2.02E-01(1/	2)		
PB-212	NOT ESTAB	1.92E-01 - 2.02E-01 2.08E-01(1/ 4) 2.08E-01 - 2.08E-01	TRM 496.50	2.02E-01 - 2.02E 2.08E-01(1/ 2.08E-01 - 2.08E	2) .		
TL-208	NOT ESTAB	1.60E-01(1/ 4) 1.60E-01 - 1.60E-01	TRM 496.50	1.60E-01(1/ 1.60E-01 - 1.60E	2)		

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3-


NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

*54 RESERVOIR MONITORING NETWORK ROCKWOOD SPRING CITY N Watts Bar Reservoir WATTS BAR 523.1 Chickamauga Reservoi.r 513.0 496.5 494.0 Nickajack

Annual Average Cs-137 Activity
Sediment (pCi/g dry weight)
Watts Bar Nuclear Plant

Annual Average Co-60 Activity
Sediment (pCi/g dry weight)
Watts Bar Nuclear Plant

* Less than LLD (0.01 pCi/g)

Quality Control

A quality control program has been established with the Tennessee Department of Public Health Radiological Laboratory and the Eastern Environmental Radiation Facility, Environmental Protection Agency, Montgomery, Alabama. Samples of air, water, milk, fish, and soil collected around nuclear plants are forwarded to these laboratories for analysis, and results are exchanged for comparison.

Conclusions

Since WBN has not achieved criticality, there has been no contribution of radioactivity from the plant to the environment. The levels of radioactivity being reported in this document are due to natural background radiation, fallout from nuclear weapons testing, fallout from the Chernobyl nuclear power station accident, or other nuclear operations in the area.

TENNESSEE VALLEY AUTHORITY

CHATTANOOGA, TENNESSEE 37401

5N 157B Lookout Place

JUN 20 1986

Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Dear Mr. Denton:

In the Matter of the Application of) Docket Nos. 50-390 Tennessee Valley Authority) 50-391

Enclosed are 20 copies of the following report prepared by the Tennessee Valley Authority pertaining to environmental monitoring at the Watts Bar Nuclear Plant.

Annual Radiological Environmental Monitoring Report - 1985 Watts Bar Nuclear Plant

If there are any questions, please get in touch with K. P. Parr at FTS 858-2681.

Very truly yours,

TENNESSEE VALLEY AUTHORITY

R. L. Gridley, Director

Nuclear Safety and Licensing

Enclosure

cc: U.S. Nuclear Regulatory Commission

Region II

Attention: Dr. J. Nelson Grace, Regional Administrator

101 Marietta Street, NW, Suite 2900

Atlanta, Georgia 30323

1E25