

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

November 2, 1993

Docket No. 50-390

9311120064 931102 PDR ADOCK 05000390

PDR

APPLICANT: Tennessee Valley Authority (TVA)

FACILITY: Watts Bar Nuclear Plant, Units 1 and 2

SUBJECT: MEETING SUMMARY - OCTOBER 13, 1993 MANAGEMENT MEETING ON USE OF U-BOLTS AS PIPE CLAMPS (TAC M79718)

REFERENCE: Meeting Notice by P. S. Tam, September 21, 1993

TVA requested this meeting to discuss with NRR senior managers the use of U-bolts as pipe clamps at Watts Bar Unit 1. Based on the review of pertinent TVA submittals, the staff, on September 13, 1993, issued a safety evaluation which states that "... the staff finds that TVA has not provided sufficient justification to demonstrate that the U-bolt pipe clamps as used at Watts Bar are acceptable. Further, the staff considers the U-bolt pipe clamp a poor design that is not recommended by the industry standard on pipe support design, WRC Bulletin 353."

Enclosure 1 lists the meeting participants and observers. Enclosures 2 and 3 are handout materials used by TVA.

TVA participants stated that their survey finds that a number of nuclear plants have employed U-bolts as pipe clamps (e.g., Clinton, Diablo Canyon, Fermi, Limerick, Vogtle, Shearon Harris, Susquehanna), and that they could not find any specific safety evaluation written by the staff on such. In this context, TVA did not state whether or not these utilities employ the U-bolt supports in configurations or applications in the same manner as TVA. They further stated that while WRC Bulletin 353 says that U-bolts are not recommended, it nevertheless described ways to use them acceptably. Pages 6 through 12 of Enclosure 2 summarize TVA's rebuttal of the staff's September 13, 1993 safety evaluation. In addition, TVA participants claimed that the chairman of the industry group that wrote WRC Bulletin 353 agreed with their interpretation.

The staff asked what the estimated cost would be if all U-bolts were replaced with standard pipe clamps. TVA stated that about 380 U-bolts would have to be replaced at an estimated cost of five million dollars, and would not likely result in a significant impact on Watts Bar's completion schedule.

Memo 4 NASC FILE CENTER COPY

The staff requested TVA to submit detailed information on the matters discussed in the meeting, including specific details on the methods and calculations used to support its position. The staff would then review t

calculations used to support its position. The staff would then review this information to determine if its decision on this issue needs to be revisited.

Original signed by

Peter S. Tam, Sr. Project Manager Project Directorate II-4 Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Enclosures:

- 1. Participant List
- 2. TVA Handout Material
- 3. TVA Slides (not originally intended as handout)

cc w/enclosures: See next page

OFFICE	PDII-4/LA	PDII-4/PM	EMEBYBE In	DE/D	PDII-34/D
NAME	BCayton	PTam	JNorberg	JWiggins	FHeisdon
DATE	10/28/93	10/28/93	10/1/93	10///93	20/2/93

DOCUMENT NAME: UBOLTMTG

Mr. Craven Crowell, Chairman Tennessee Valley Authority ET 12A 400 West Summit Hill Drive Knoxville, TN 37902

Mr. W. H. Kennoy, Director Tennessee Valley Authority ET 12A 400 West Summit Hill Drive Knoxville, TN 37902

Mr. Johnny H. Hayes, Director Tennessee Valley Authority ET 12A 400 West Summit Hill Drive Knoxville, TN 37902

Mr. D. E. Nunn, Vice President Tennessee Valley Authority 3B Lookout Place 1101 Market Street Chattanooga 37402-2801

Mr. W. J. Museler, Vice President Watts Bar Nuclear Plant Tennessee Valley Authority Route 2, P.O. Box 800 Spring City, TN 37381

Mr. B. S. Schofield, Manager Nuclear Licensing and Regulatory Affairs Tennessee Valley Authority 4G Blue Ridge 1101 Market Street Chattanooga, TN 37402-2801

Mr. G. L. Pannell Site Licensing Manager Watts Bar Nuclear Plant Tennnessee Valley Authority Route 2, P.O. Box 800 Spring City, TN 37381

TVA Representative Tennessee Valley Authority 11921 Rockville Pike Suite 402 Rockville, MD 20852 General Counsel Tennessee Valley Authority ET 11H 400 West Summit Hill Drive Knoxville, TN 37902

The Honorable Robert Aikman County Executive Rhea County Courthouse Dayton, TN 37321

The Honorable Garland Lanksford County Executive Meigs County Courthouse Decatur, TN 37322

Mr. Michael H. Mobley, Director Division of Radiological Health 3rd Floor, L and C Annex 401 Church Street Nashville, TN 37243-1532

Regional Administrator U.S. Nuclear Regulatory Commission Region II 101 Marietta Street, NW., Suite 2900 Atlanta, GA 30323

-

1.1.1.1.1

Senior Resident Inspector Watts Bar Nuclear Plant U.S. Nuclear Regulatory Commission Route 2, Box 700 Spring City, TN 37381

Ms. Danielle Droitsch Energy Project The Foundation for Global Sustainability P.O. Box 1101 Knoxville, TN 37901

Mr. Bill Harris Route 1, Box 26 Ten Mile, TN 37880

cc:

Distribution Enclosure 1 T. Murley/ F. Miraglia 3. Callan	12-G-18 12-G-18
W. Russell	
J. Wiggins	
S. Varga	
G. Lainas	
F. Hebdon	
P. Tam	
B. Clayton	
OGC	15-B-18
E. Jordan	MNBB-3701
L. Callan	12-G-18
T. Chan	7-E-23
J. Norberg	7-E-23
ACRS (10)	
L. Plisco	17-G-21
E. Merschoff	RII
Enclosures 1, 2 and 3	

Docket File NRC & Local PDRs WBN Rdg. File P. Tam/C. Jackson E. Merschoff

e

ENCLOSURE 1

LIST OF PARTICIPANTS AND OBSERVERS MANAGEMENT MEETING ON USE OF U-BOLTS AT WATTS BAR October 13, 1993

<u>Name</u>

<u>Affiliation</u>

L. Joseph Callan	NRC/NRR/Acting Asso. Dir. for Projects
Terence L. Chan	NRC/NRR/Mechanical Engineering Branch
R. L. Cloud	TVA contractor, RLC Associates
Walt Elliot	TVA/Watts Bar Engineering
Frederick Hebdon	NRC/NRR/Project Directorate II-4
Gus Lainas	NRC/NRR/Div. of Reactor Projects
Mark Medford	TVA/VP for Technical Support
William Museler	TVA/Watts Bar Site VP
Jim Norberg	NRC/NRR/Mechanical Engineering Branch
George Pannell	TVA/Watts Bar Site Licensing
James G. Partlow	NRC/NRR/Associate Director for Projects
William T. Russell	NRC/NRR/Associate Director for Inspection and Technical Assessment
Peter Tam	NRC/NRR/Project Directorate II-4
S. A. Varga	NRC/NRR/Div. of Reactor Projects
Jim Wiggins	NRC/NRR/Director, Division of Engineering
H. Lee Williams	TVA/Chief Civil Engineer
Richard Zuercher	Reporter, Inside NRC

WATTS BAR NUCLEAR PLANT

Enclosa

NRC/TVA MEETING

U-BOLTS

ROCKVILLE, MD

OCTOBER 13, 1993

NRC MEETING U-BOLTS WATTS BAR NUCLEAR PLANT

OPENING REMARKS

ISSUE DEFINITION

BACKGROUND

DISCUSSION OF KEY TECHNICAL ISSUES

SUMMARY AND CONCLUSIONS

WILLIAMS

ELLIOTT

MEDFORD

MUSELER

WILLIAMS

1

ISSUE DEFINITION

<u>U-Bolt Issue</u>

NRC believes that WBN U-bolt pipe supports in combination with struts and snubbers are not acceptable.

NRC position based on:

• Precedent - U-Bolts not used at Comanche Peak

2

- Compliance with WRC Bulletin 353
- Applicability of U-Bolt Testing
- Pipe and Pipe Support Deflections
- Local Pipe Stresses

Precedent Issue

U-Bolts not approved at Comanche Peak.

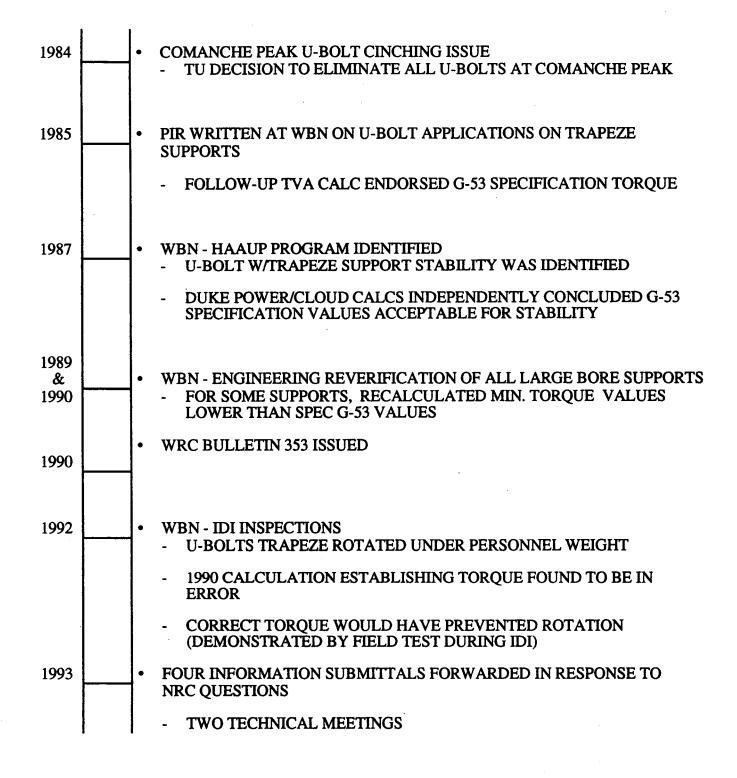
TVA Response

- U-Bolt designs changed by Texas Utilities as a Mgmt./Schedule decision.
- U-Bolt designs similar or identical to WBN designs exist at eight plants (11 units) licensed since issue raised at Comanche Peak.
- WBN U-Bolt designs meet Regulatory and Code requirements.
- Based on the above, TVA considers the NRC position to be a ratchet under 10CFR50.109

WRC Bulletin 353 Issue

WBN U-Bolt designs do not comply with WRC Bulletin 353.

TVA Response


- WRC Bulletin is not a Regulatory requirement.
- Bulletin discusses and provides guidance for U-Bolt use specific to two design types involving trapeze hangers.

WBN complies with the use of the two specific types.

- WBN U-Bolt designs address the criteria of WRC 353, including specified "do's and don'ts".
- NRC has not identified any non-compliance with the ASME Code or WRC 353.

BACKGROUND/TECHNICAL DISCUSSION

ISSUE BACKGROUND

5

KEY TECHNICAL ISSUES

NRC SAFETY EVALUATION ON USE OF U-BOLTS

- WATTS BAR U-BOLT DESIGNS DO NOT PROVIDE REASONABLE ASSURANCE THAT THE SUPPORTS WILL FUNCTION UNDER ALL ANTICIPATED LOADING CONDITIONS BASED ON THE FOLLOWING:
 - COMANCHE PEAK PRECEDENCE
 - WRC BULLETIN 353
 - APPLICABILITY OF TESTING
 - PIPING/SUPPORT DEFLECTION
 - LOCAL PIPE STRESS

WBN RESPONSE

• PROPERLY ENGINEERED U-BOLT CONFIGURATIONS MEET APPLICABLE ASME CODES AND CRITERIA, ARE STABLE AND WILL PERFORM THEIR INTENDED FUNCTION.

COMANCHE PEAK PRECEDENCE

SER CONCERN

BECAUSE OF TECHNICAL CONCERNS . . . THE APPLICANT (TU) DECIDED TO REPLACE ALL OF THESE DESIGNS AT COMANCHE PEAK.

WBN RESPONSE

TOTAL TU PROGRAM NOT COMPLETED NOR SUBMITTED FOR REVIEW BY STAFF.

WESTINGHOUSE PROGRAM CONCLUDED THAT PROPERLY ENGINEERED U-BOLTS CAN PERFORM DESIGN FUNCTIONS.

TVA HAS REVIEWED <u>W</u> PROGRAM AND FOUND IT TO BE TECHNICALLY DEFENSIBLE AND APPLICABLE TO WBN.

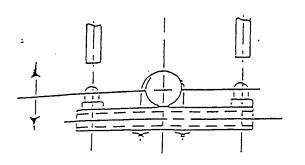
WATTS BAR HAS SUPPLEMENTED AND ENHANCED PROGRAM BEGUN BY TU/WESTINGHOUSE/RLCA.

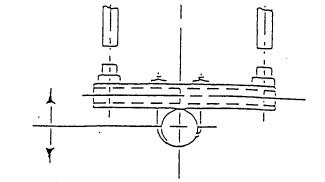
EIGHT PLANTS (11 UNITS) WITH SIMILAR CONFIGURATIONS HAVE BEEN LICENSED SINCE COMANCHE PEAK ISSUE RAISED.

WRC BULLETIN 353

SER CONCERN

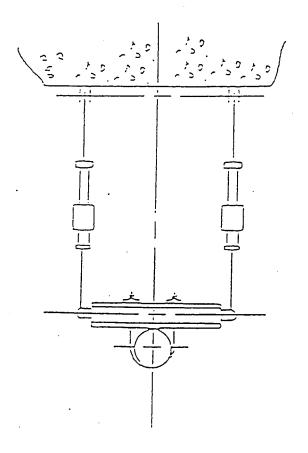
SECTION 2.4.5.3 TRAPEZE ASSEMBLIES "TIGHT-FIT U-BOLTS ARE OFTEN USED IN SUPPORT ASSEMBLIES TO PROVIDE SUPPORT IN <u>ONE</u> <u>DIRECTION</u> FOR ROD HANGERS AND <u>TWO DIRECTIONS</u> FOR <u>STRUTS</u> AND <u>SNUBBERS</u>. THE LATTER DESIGN IS NOT RECOMMENDED (REFER TO SECTION 2.4.1) FOR STABILITY REASONS."

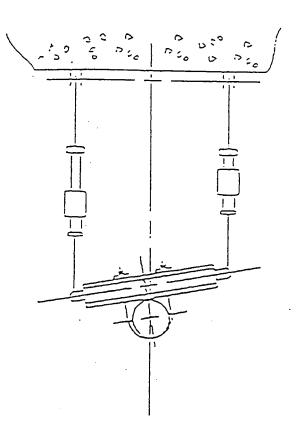

WBN RESPONSE


- CLARIFICATION OF WBN SUPPORTS
 - ROD HANGERS ON SAFETY PIPING USED IN ONE DIRECTION ONLY.
 - U-BOLTS WITH STRUTS OR SNUBBERS USED IN VERTICAL OR LATERAL DIRECTION ONLY.
 - WRC 353, SECTION 2.4.5.3 CONTINUES WITH:

"IN THESE TYPE OF APPLICATIONS, THE U-BOLT IS PRIMARILY IN TENSION. THIS TYPE OF SUPPORT CAN BE USED FOR ALL SIZES OF PIPE. SEE FIGURES 6 AND 9."

- WBN PERFORMED INSITU TESTING TO VERIFY STABILITY
- WRC 353 PROVIDES SPECIFIC GUIDANCE FOR USE OF U-BOLTS
 - WBN COMPLIES WITH DO'S AND DON'TS





USE OF U-BOLT IN A RESTRAINT-TYPE ALTERNATE USE OF U-BOLT IN A RESTRAINT-TYPE TRAPEZE HANGER TRAPEZE HANGER

FIG. 6 - TIGHT FIT

U-BOLT PROPERLY TORQUED STABLE

U-BOLT NOT PROPERLY TORQUED UNSTABLE

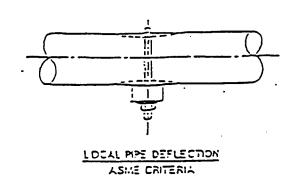
9

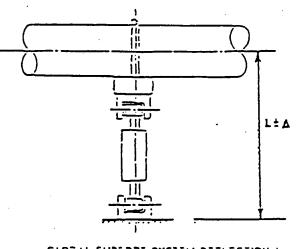
APPLICABILITY OF TESTING

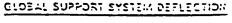
SER CONCERN	WBN RESPONSE
ONE SEISMIC TEST PERFORMED BY WESTINGHOUSE	•TEST WAS WORST CASE BASED ON 10" SS PIPE HAVING HIGHEST STRESSES BY EVALUATION
	•SEISMIC ONLY ONE ASPECT OF SIGNIFICANT TESTING PROGRAM
U-BOLT SLID AXIALLY DURING <u>W</u> SEISMIC TEST	• U-BOLT MOVED AXIALLY BY 1/2" MOVEMENT. INSIGNIFICANT COMPARED TO OFFSET ALLOWABLES
	•10 TIMES DURATION AND TWO TIMES LOAD
	• RESTRAINT REMAINED STABLE
GLOBAL PIPE BENDING STRESS LEVEL IN <u>W</u> TEST NOT DISCUSSED	EFFECT ON BENDING STRESSES ARE ADDRESSED IN QUALIFICATION METHODS TO ASME CODE
W TEST NOT DIRECTLY APPLICABLE TO WBN DESIGNS	TESTING CONDUCTED ON POINT CONTACT BETWEEN PIPE/CROSS- MEMBER. SPECIFIC SUPPORT CONFIGURATIONS EVALUATED CASE BY CASE
DIFFERENCES BETWEEN <u>W</u> TEST RESULTS AND FINITE ELEMENT ANALYSIS CAUSES THE TESTS TO BE OF LIMITED USE	W REPORT RESULTS ARE CONSISTENT WITH TYPICAL COMPARISON BETWEEN TESTING AND ANALYSIS
W TEST PERFORMED WITHOUT BELLEVILLE WASHER ASSEMBLIES	NO EFFECT - LOADS CARRIED BY COLLARS IN AXIAL COMPRESSION

• IN CONJUNCTION WITH THE WBN U-BOLT PROGRAM ELEMENTS, WESTINGHOUSE TESTING PROVIDES REASONABLE ASSURANCE THAT THE WBN DESIGNS WILL FUNCTION UNDER ALL ANTICIPATED LOADING CONDITIONS

PIPING/SUPPORT DEFLECTION


SER CONCERN


STAFF QUESTIONED WHETHER DEFLECTION EXPERIENCED DURING THE LOCAL PIPE STRESS EVALUATION AND/OR FLEXIBILITY OF WBN DESIGN EXCEEDED THE ALLOWABLE GLOBAL DEFLECTION LIMITS SPECIFIED IN THE FSAR.


WBN RESPONSE

4

- WBN FSAR CRITERIA LIMITS TO 1/8" GLOBAL SUPPORT DEFLECTION
- LOCAL PIPE DEFLECTION INDEPENDENT OF GLOBAL DEFLECTION
 - INDUSTRY PRACTICE
 - MEETS ASME CODE

FSAR RECUREMENTS

LOCAL PIPE STRESSES

SER CONCERN

• TECHNICAL BASIS NOT PROVIDED TO DETERMINE ACCEPTABLE LOCAL BEARING LOAD ON PIPE.

WBN RESPONSE

- MEETS REQUIREMENTS OF ASME CODE
 - NC-1100 PROVIDES FOR USE OF ALTERNATE METHODS WHERE COMPLETE DETAILS ARE NOT PROVIDED
 - LOCAL U-BOLT BEARING LOAD EVALUATED UNDER NB-3228.1
- TO PROVIDE ASSURANCE OF LOCAL PIPE ACCEPTABILITY, THE FOLLOWING WERE PERFORMED:
 - DETERMINE ALLOWABLE BEARING LOAD ON PIPE
 - DEMONSTRATE APPLIED LOADING < ALLOWABLE LOCAL BEARING LOAD
 - SUPPORTS WHICH EXCEEDED ALLOWABLE LOCAL BEARING LOAD WERE MODIFIED

CONCLUSION: LOCAL PIPE BEARING LOAD EVALUATION MEETS ASME CODE REQUIREMENTS, INCLUDES APPLICATIONS TO ALL CONFIGURATIONS AND IS CONSERVATIVE. SUMMARY AND CONCLUSION

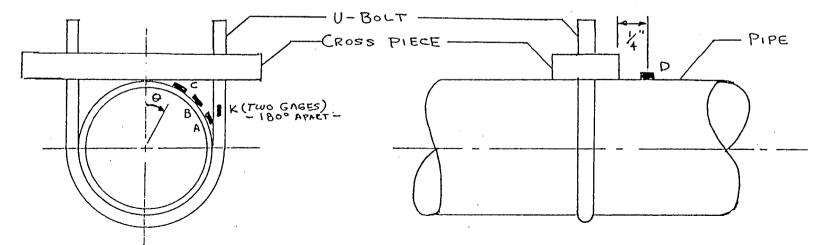
SUMMARY OF WBN APPROACH FOR U-BOLT UTILIZATION

AS A RESULT OF NRC ISSUES RAISED, WBN HAS INITIATED:

COMPLETE ENGINEERING PROGRAM

- CONSISTING OF TESTING, ANALYSIS, APPROPRIATE ACCEPTANCE CRITERIA, DETAILED INSTALLATION PROCEDURE, INDIVIDUALLY ANALYZED SUPPORTS
- TWELVE STATIC EQUIVALENT TESTS CONFIRMED TORQUE REQUIREMENTS AND INSTALLATION PROCEDURE

SUPPORT DESIGN IMPROVEMENTS


- ENGINEERED BELLEVILLE SPRING STACKS
- MODIFICATION OF SUPPORTS THAT DID NOT MEET DESIGN REQUIREMENTS

OVERALL CONCLUSIONS

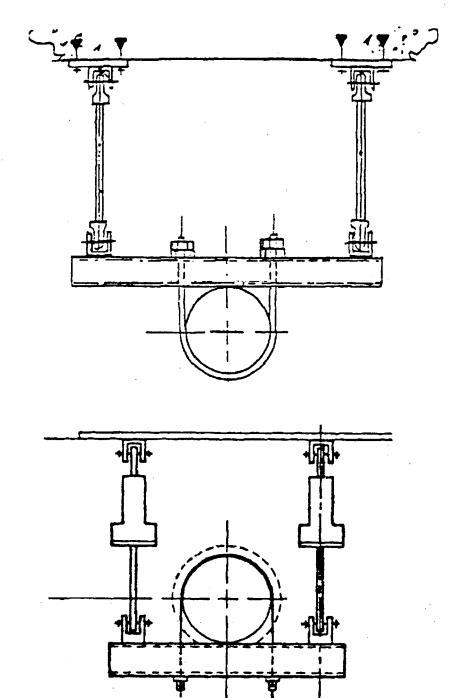
- U-BOLT PIPE SUPPORTS HAVE BEEN PROPERLY ENGINEERED AND ARE CONSISTENT WITH INDUSTRY PRACTICE.
- WBN DESIGN METHODOLOGY FOR USE OF U-BOLTS MEETS CODE AND ENGINEERING REQUIREMENTS.
- WBN PROGRAM FOR U-BOLTS ENSURES PIPING INTEGRITY.

TABLE 1COMPARISONS OF W ANALYSIS/TEST RESULTS
(WCAP-1067 AND WCAP-10620)

	G LOCATION A DESCRIPTION/		STRESSES AT MAXIMUM PRELOAD (MAX)										
A		SCRIPTION/			_			10" SCH 80 PIPE P			32" (t=1.45") PIPE		
G E	G ORIENTATION E				$\frac{MAX = 100 \text{ FT-LBS}}{ }$		$\frac{MAX = 100 \text{ FT-LBS}}{ }$			$\frac{MAX = 240 \text{ FT} - \text{LBS}}{ }$			
		θ	<u> Test </u>	<u>Analysis</u>	<u> </u>	Test	<u>_Analysis_</u>	Θ	<u>Test</u>	<u>Analysis</u>	θ	<u>Test</u>	<u>Analysis</u>
С	PIPE/HOOP	20	-7140	-12137*	15	-15708	-20040	15	-8092	-14170	7	-1568	-4859
В	PIPE/HOOP	45	2408	3413	45	13608	11536	45	5660	6261	45	420	789
A	PIPE/HOOP	70	4424	*9520	75	11900	13568	75	5964	8910	83	0	1113
D	PIPE/LONGIT.	_	-2996	-3787	-	-7560	-20561	-	-672	-8291	_	-308	-493
ĸ	U-BOLT/AXIAL	-	26628	27544	-	12838	12726	-	17164	17008	_	644	1018

Enclosure

W


TABLE 1: BOUNDING EQN 9 AND 10 INTENSIFIED MOMENTS

	· · · · · · · · · · · ·				ASME	ASME	i * (Eq. 10 M) +	[]	
Support	Support	Pipe	Fitting			Eq. 9 Mom	0.75 i * (Eq. 9 M)	Mom @ Pc (1)	Ratio
No.	Туре	Dia.	Туре	(SIF)	(ft-kips)	(ft-kips)		(ft-kips)	
631SISR161	STRUT	14	TEE	2.32	17.393	18.466	72.5	87	0.83
631SISR109	SNUB	24		1.0	8.578		149.5	188	0.80
103A453	SNUB	6		1.0	5.653		20.1	27	0.75
631SISR137	STRUT	-14	TEE	2.32	3.877	28.853	59.2		0.68
671ERCWR365	SNUB	- 8	ELB	1.84	12.733		26.5		0.68
631SISR138	STRUT	14	ELB	2.94	2.137		58.4		0.67
103A482	SNUB	6		1.0	4.726		17.3		0.64
47A42705023	STRUT	6		1.0	2.581	14.691	17.3	27	0.64
03B1AFWR209	SNUB	4		1.0	8.578		9.7	17	0.57
103A280	SNUB	16		1.0	14.812	41.756	56.6		0.53
03B1AFWR175	STRUT	4	ELB	1.5	4.083		8.6		0.51
103A487	SNUB	6		1.0	2.809		13.5	27	0.50
47A46501066	SNUB	4	ELB	1.95	1.927	1.454	5.9		0.35
03B1AFWR147	STRUT	4	ELB	1.5	3.173	0.413	5.2	17	0.31
47A40006118	SNUB	4	ELB	1.0	4.842	0.218	5.1	17	0.30
47A49606009	SNUB	4		1.0	3.730		4.9		0.29
47A46503048	SNUB	3	ELB	1.8	1.495	0.606	3.5	12	0.29
103A320	SNUB	16		1.0	10.755		29.0		0.27
47A40108001	SNUB	6		1.0	3.396		6.1	27	0.23
103A582	SNUB	2		1.0	0.017	1.050	1.1	7.5	0.14
162A466	SNUB	3/4		2.1	0.054	0.080	0.2		0.08
47A46508092	STRUT	1		2.1	0.038	0.103	0.2		0.06
162A406	SNUB	3/4		2.1	0.060	0.030	0.2	3	0.06
162A431	SNUB	1		2.1	0.008		0.1	4	0.03
47A40610018	SNUB	1_1_		1.0	0.009	0.054	0.1	4	0.02

NOTES:

1. If the quantity 0.75 * i is less than 1.0, use 1.0; otherwise use 0.75 * i.

WBN TYPICAL TRAPEZE ARRANGEMENT

1	2	3	4	5	6	7	7A	8	9
					(1)	(2)	(3)	1	Ratio
Support	Support	Pipe	Fitting	i	Critical	Fр	Fp (amp)	Pc	Fp(amp) / Pc
No.	Туре	Dia.	Туре	(SIF)	Comp.	(kips)	(kips)	(kips)	col.7A / col.8
631SISR138	STRUT	14	ELB	2.94	Р	14.78	22.81	24.15	0.94
631SISR161	STRUT	14	TEE	2.32	Р	15.29	21.62	24.15	0.90
631SISR137	STRUT	14	TEE	2.32	Р	15.53	20.00	24.15	0.83
47A46501066	SNUB	4	ELB	1.95	Р	3.88	4.52	6.79	0.66
47A40610018	SNUB	1		1.0	Р	3.72	3.72	6.51	0.57
162A466	SNUB	3/4		2.1	Р	4.67	4.71	8.46	0.56
103A482	SNUB	6		1.0	X	17.40	17.40	31.32	0.56
103A280	SNUB	16		1.0	Р	53.41	53.41	96.49	0.55
03B1AFWR147	STRUT	4	ELB	1.5	P	8.28	8.46	15.30	0.55
631SISR109	SNUB	24		1.0	Р	18.56	18.56	34.37	0.55
103A487	SNUB	6		1.0	U	13.15	13.15	24.88	0.54
103A320	SNUB	16		1.0	U	53.01	53.01	105.19	0.50
103A582	SNUB	2		1.0	P	3.10	3.10	6.63	0.47
47A42705023	STRUT	6		1.0	U	14.90	14.90	32.75	0.45
47A46503048	SNUB	3	ELB	1.8	P	2.03	2.30	5.06	0.45
47A40108001	SNUB	6		1.0	Р	9.62	9.62	23.22	0.41
162A406	SNUB	3/4		2.1	Р	1.01	1.03	3.06	0.34
47A49606009	SNUB	4		1.0	Р	3.92	3.92	12.17	0.32
47A40006118	SNUB	4	ELB	1.0	x	2.99	2.99	10.09	0.30
03B1AFWR175	STRUT	4	ELB	1.5	υ	3.17	3.34	14.27	0.23
162A431	SNUB	1		2.1	υ	1.77	1.83	8.46	0.22
47A46508092	STRUT	1		2.1	U	0.78	0.88	5.39	0.16
03B1AFWR209	SNUB	4		1.0	Ū	2.69	2.69	17.15	0.16
103A453	SNUB	6		1.0	Ū	14.64	14.64	102.58	0.14
671ERCWR365	SNUB	8	ELB	1.84	x	3.58	3.88	35.04	0.14

TABLE 2: BOUNDING AMPLIFIED FORCES

NOTES:

1. P = Pipe; U = U-Bolt; X = Cross Piece

2. Value of Fp obtained from TVA Calculations TEACEBEMG72, Rev. 2, TEACEBEMG74, Rev. 2, and

3. Fp(amp) = 2 (Ui + Ut + Up + 0.75i * P/2 * [1/(alpha * (Kp / Kcl + 1)])