4.0 DESIGN FEATURES

- 4.3 Fuel Storage (continued)
 - a. Fuel assemblies having a maximum U 235-enrichment of 4.3 weight percent

5.0

U-235 and shall be maintained with the arrangement of 120 storage locations shown in Figure 4.3-2:

- b. $k_{eff} \leq 0.95$ if fully flooded with unborated water, which includes an allowance for uncertainties as described in Section 9.1 of the FSAR;
- c. $k_{eff} \leq 0.98$ if moderated by aqueous foam, which includes an allowance for uncertainties as described in Section 9.1 of the FSAR; and
- d. A nominal 21 inch center to center distance between fuel assemblies placed in the storage racks.

4.3.2 Drainage

The spent fuel storage pool is designed and shall be maintained to prevent inadvertent draining of the pool below Elevation 747 feet - 1 1/2 inches.

4.3.3 <u>Capacity</u>

The total spent fuel storage capacity is 1610 fuel assemblies.

- 4.3.3.1 The primary portion of the spent fuel storage pool is designed and shall be maintained with a storage capacity limited to no more than 1386 fuel assemblies in 24 flux trap rack modules.
- 4.3.3.2 No more than 224 fuel assemblies will be stored in ten smaller burnup credit rack modules peripherally located adjacent to the south and west walls of the pool.

۶ ^۲	Design Features 4.0	
	Uesign Features 4.0	
	Basic Cell 21 inch X 21 inch Empty Cell 5 - 2X13 Cell Racks 120/130 Loading Pattern Figure 4.3-2 New Fuel Storage Rack Loading Pattern	

Watts Bar-Unit 1

:

r

Amendment ____

.

ENCLOSURE 3

TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT (WBN) UNIT 1

PROPOSED TECHNICAL SPECIFICATION (TS) CHANGE TS- 98-002 REVISED PAGES

.

•

I. AFFECTED PAGE LIST

TS pages 4.0-4 4.0-8

II. REVISED PAGES

•

•

See attached.

•

.

4.0 DESIGN FEATURES

4.3 Fuel Storage (continued)

- a. Fuel assemblies having a maximum enrichment of 5.0 weight percent U-235 and shall be maintained with the arrangement of 120 storage locations shown in Figure 4.3-2;
- b. $k_{eff} \leq 0.95$ if fully flooded with unborated water, which includes an allowance for uncertainties as described in Section 9.1 of the FSAR;
- c. $k_{eff} \leq 0.98$ if moderated by aqueous foam, which includes an allowance for uncertainties as described in Section 9.1 of the FSAR; and
- d. A nominal 21 inch center to center distance between fuel assemblies placed in the storage racks.

4.3.2 Drainage

The spent fuel storage pool is designed and shall be maintained to prevent inadvertent draining of the pool below Elevation 747 feet - $1 \ 1/2$ inches.

4.3.3 <u>Capacity</u>

The total spent fuel storage capacity is 1610 fuel assemblies.

- 4.3.3.1 The primary portion of the spent fuel storage pool is designed and shall be maintained with a storage capacity limited to no more than 1386 fuel assemblies in 24 flux trap rack modules.
- 4.3.3.2 No more than 224 fuel assemblies will be stored in ten smaller burnup credit rack modules peripherally located adjacent to the south and west walls of the pool.

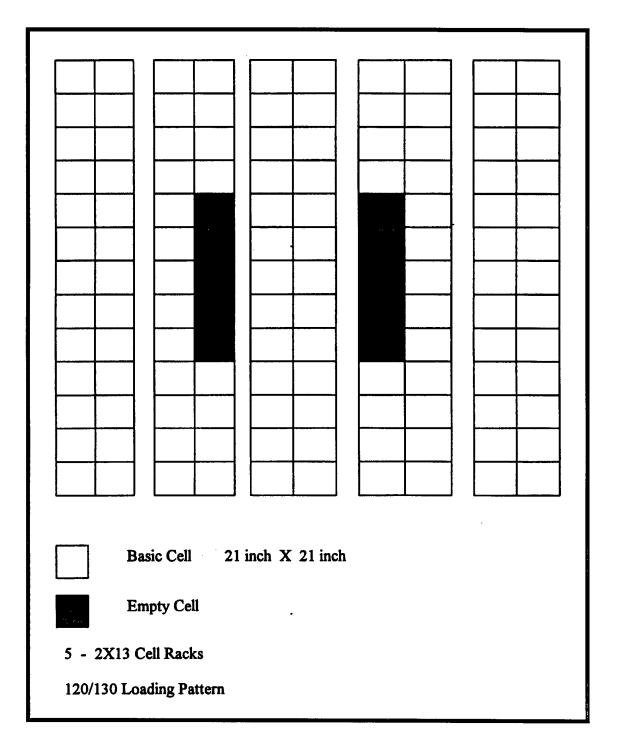


Figure 4.3-2 New Fuel Storage Rack Loading Pattern

•

· · · |

ENCLOSURE 4

÷

+

TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT (WBN) UNIT 1

CRITICALITY ANALYSIS OF THE WATTS BAR UNITS 1 & 2 FUEL RACKS