

Tennessee Valley Authority, Post Office Box 2000, Spring City, Tennessee 37381

FEB 0 3 1995

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Gentlemen:

In the Matter of the Application of
Tennessee Valley AuthorityDocket Nos. 50-390
50-391

WATTS BAR NUCLEAR PLANT (WBN) UNITS 1 AND 2 - REQUEST FOR ADDITIONAL INFORMATION ON FSAR CHAPTER 3 AS REVISED BY AMENDMENT 79 (TAC NOS. M88488 AND M88489)

This letter provides TVA's response to the NRC's request for additional information (RAI) dated October 11, 1994, concerning the subject FSAR chapter for WBN.

Enclosure 1 provides TVA's response to the NRC's Question 4 concerning the seismic analysis of coupled interior concrete structure and the Nuclear Steam Supply System model. This enclosure also includes TVA's response to the concerns in NRC Question 5.c on increasing allowable stresses.

Enclosure 2 provides proposed FSAR changes as a result of the response to Question 5.c. This enclosure also provides proposed FSAR changes concerning buckling stress as discussed in the NRC's evaluation of Question 5.d of the October 11, 1994 letter, in addition to those incorporated into Amendment 88. These proposed FSAR changes will be incorporated in Amendment 89.

160016

9502170185 950203

PDR

Ά

ADDCK 05000390

Unge: BNL Pratt, T NOAC NRC PDR

U.S. Nuclear Regulatory Commission Page 2

FEB 0 3 1995

Enclosure 3 list the commitments being tracked by this submittal. If you should have any questions, please telephone John Vorees at (615) 365-8819.

Sincerely,

Dwight E. Nunn Vice President New Plant Completion Watts Bar Nuclear Plant

Enclosures cc (Enclosures): NRC Resident Inspector Watts Bar Nuclear Plant Rt. 2, Box 700 Spring City, Tennessee 37381

> Mr. P. S. Tam, Senior Project Manager U.S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Rockville, Maryland 20852

U.S. Nuclear Regulatory Commission Region II 101 Marietta Street, NW, Suite 2900 Atlanta, Georgia 30323

		ana Manana ang kangkang ta	
ſ	50-390	TVA	WATTS BAR 1
	REQUEST F CHAPTER	OR ADDITIONAL INFORMA 3 AS REVISED BY AMEND	ATION ON FSAR DMENT 79.
	REC'D W,	LTR DTD 02/03/95	9502170185

- NOTICE -

THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE INFORMATION & RECORDS MANAGEMENT BRANCH. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS & ARCHIVES SERVICES SECTION, T5 C3. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.

- NOTICE -

ENCLOSURE

WATTS BAR NUCLEAR PLANT UNITS 1 AND 2 FINAL SAFETY ANALYSIS REPORT (FSAR), CHAPTER 3 REQUEST FOR ADDITIONAL INFORMATION (RAI) RESPONSE

The following provides the response to NRC's concerns in Question 4 on seismic analysis of coupled interior concrete structure (ICS) and Nuclear Steam Supply System (NSSS) model and to NRC's concerns in Question 5.c on allowable stresses.

QUESTION 4 CONCERNS

"The staff concludes that the applicant's response is not sufficient. To be acceptable, the applicant should include more detailed discussion of the combined ICS and NSSS models as an appendix to the WBN FSAR. As a minimum, the additional information should include:

- 1. Geometry and sketches of the model,
- 2. Engineering data, such as, mass, spring, damping, size and location of the gaps, location of one-way hangers,
- 3. Description of modelling of gap and one-way hanger and validation of such model,
- 4. Detailed description of four linearized NSSS support stiffness and a discussion of how such supports adequately represent the nonlinear system being evaluated,
- Discussion of governing equation of motion and the validation of numerical integration algorism including stability and error estimate as discussed in "Analysis of Numerical Methods," E. Isaacson and H. B. Keller, 1966.
- 6. Validation of overall model and
- 7. Summary of the calculated stresses of the critical members both in concrete structure and piping and supports, corresponding allowable stresses and references from which the allowable stresses are quoted."

RESPONSE

INTRODUCTION

A combined model of the ICS and the NSSS was developed to generate seismic responses and acceleration response spectra (ARS) under Set B and Set C seismic conditions for piping attached to the NSSS. Westinghouse supplied the model of the NSSS components which was included to account for the interaction between the NSSS and the ICS. The coupled model was used only to develop ARS for use in the seismic analyses of piping connected to the NSSS. The actual design basis of the NSSS continues to be based on analyses previously performed by Westinghouse. Westinghouse also confirmed that the existing NSSS design was adequate for the Set B evaluation basis loads.

The NSSS components included in the coupled model for the ICS consists of the Reactor Pressure Vessel (RPV), four loops of primary reactor coolant loop (RCL) piping (hot legs, cold legs, and cross-over legs), the steam generator (SG), and the reactor coolant pump (RCP) associated with each loop. The NSSS models for four loops consist of masses and mass moments of inertia lumped at the nodal points of RPV, RCL piping, SG, and RCP, and interconnected with elastic elements. The stiffness properties of the elastic elements are represented by various 12 x 12 generalized stiffness matrices. The NSSS components are supported on the ICS at the RCL attachment points shown in FSAR Figures 5.5-6 thru 5.5-13 in Attachment 1 of this enclosure. The following supports for each loop are included in the NSSS models as elastic elements represented by a set of 6 x 6 generalized support stiffness matrices.

- a. SG lower support (SGLS)
- b. SG upper support (SGUS)
- c. Cross-over leg restraint SG side (XL SG Side)
- d. Cross-over leg restraint RCP side (XL RCP Side)
- e. RCP lower support (RCPLS)

- f. RCP tie rods #1, #2, and #3
- g. Feed water line (FWL)
- h. Main steam line (MSL)

The dynamic model data for the NSSS components consists of the nodal geometry, lumped masses, 12 x 12 RCL element stiffness matrices, and 6 x 6 RCL support stiffness matrices and is obtained from Westinghouse Electric Corporation. In coupling the Unit 1 NSSS model to the Unit 1 ICS stick model, the RCL attachment points are connected to the ICS model at the appropriate elevations of the attachment points through rigid links. The details of the seismic analysis model for the ICS are shown on FSAR Figures 3.7-8, 3.7-8A and 3.7-8B (For convenience, see Attachment 1 of this enclosure). The dynamic model for the RPV is shown in the FSAR Figure 3.7-8C (See Attachment 1). The development of the coupled model is documented in WBN Calculations WCG-1-343 and WCG-1-344 (References 2 and 3). These calculations were previously reviewed by the NRC and the conclusion was documented in Reference 4.

1. GEOMETRY AND SKETCHES OF THE MODEL

Figures 1 thru 4 in Attachment 2 of this enclosure, show the analytical models used to represent the NSSS components in the coupled model. Due to the presence of gaps and tension-only tie rods at the NSSS supports, these supports exhibit nonlinear behavior under dynamic loading conditions. However, the use of a complex nonlinear model is impractical for the production of responses and ARS for design usage. Therefore, a conservative linear model was used to develop ARS for the coupled model.

For the purpose of linear response analyses, four linearized NSSS analysis cases, each with a unique set of linearized NSSS support stiffness, are used to bound the nonlinear support behavior under various dynamic loading conditions. These four cases are designated as NSSS Analysis Cases 1, 3, 5, and 6 (Reference 1). Specifically, for each NSSS analysis case, a specific set of NSSS supports with their specified orientations are activated for a particular loading condition and a set of linear support stiffness is developed and provided to represent the active supports. The active NSSS supports for each of the four loops for the Analysis Cases 1, 3, 5, and 6 are shown respectively in Attachment 2 of this enclosure, Figures 1 through 4 and in Tables A-1, A-2, A-3, and A-4. The geometry of the NSSS components is tabulated in Attachment 2 Table A-5. Table A-6 in Attachment 2 tabulates RCL support attachment points. Figure 5 shows SG and RCP support arrangement and Figure 6 shows the crossover leg bumper support arrangement. Figures 7 thru 10 show RCP tie rod and RPV support arrangement under each different NSSS Analysis cases. FSAR Figures 5.2-9 and 5.2-11 in Attachment 1 of this enclosure, show respectively, the lower and upper SG support finite element models used by Westinghouse in generating the support stiffness matrices. The SG lower support model is also shown in FSAR Figure 5.2-9. The RCL support stiffness matrices are developed by Westinghouse and included in Reference 1.

2. ENGINEERING DATA

a. Mass and Mass Moments of Inertia

The mass and mass moment of inertia for the NSSS components are listed in this enclosure Attachment 2, Table A-7.

b. <u>Damping Values</u>

The damping values in terms of percent of critical damping for Set B analyses are in accordance with the values specified in the NRC Regulatory Guide 1.61, Revision 0, "Damping Values for Seismic Design of Nuclear Power Plants," and WBN Design Criteria, WB-DC-20-24, "Dynamic Earthquake Analysis of Category I Structures and Earth Embankments." The values for the operating FSAR CHAPTER 3 RAI RESPONSE PAGE 5

basis earthquake (OBE) and safe shutdown earthquake (SSE) for the structures, equipment, components, and piping systems of the WBN Reactor Building used for Set B analyses are listed as follows:

	Damping (Percent of Critical Condition)	
Item	<u>OBE</u>	<u>SSE</u>
Interior Concrete Structure	4	7
Concrete Shield Building	4	7
Containment Basemat Concrete	4	7
Steel Containment Vessel	2	4
Reactor Pressure Vessel	2	3
Steam Generator	2	3
Reactor Coolant Pump	2	3
Reactor Coolant Loop Piping	2	3
Reactor Coolant Loop Support	2	4

c. <u>Spring</u>

Each elastic support element which is shown as a spring element in the model is actually a complex structure assemblage which can be represented by a 6×6 generalized support stiffness matrix obtained through substructure analysis. The 6×6 generalized support stiffness matrices are provided by Westinghouse via Reference 1.

FSAR CHAPTER 3 RAI RESPONSE PAGE 6

d. <u>Size and Location of the Gap</u>

Gaps are provided in NSSS component support arrangements to enable the virtually unrestrained thermal movement of the loops and the components during plant operation. However, the support structures are of welded steel construction and fabricated in such a way that while the supports permit unrestrained thermal growth of the supported systems, the supports would provide restraints to the vertical, lateral and rotational movement resulting from seismic and/or accident conditions. This is accomplished by using (1) pin ended columns for vertical support and (2) girders, bumper pedestals, hydraulic snubbers, and tie rods for lateral support. The detailed description for the NSSS component supports is provided in FSAR Figures 5.5-6 through 5.5-13 (See Attachment 1).

Under the OBE or SSE loading conditions (NSSS Analysis Cases 1, 3, 5 and 6), due to the rapid motion of the earthquake excitation, the restraint function (via the presence of the snubbers) of the support assemblage overrides the gap function and, therefore, the support stiffness matrices provided by Westinghouse can directly be applied in the seismic analysis.

e. <u>Element Property for NSSS Components</u>

Elastic elements are provided to interconnect the nodal points of RPV, RCL piping, SG, and RCP for which masses and mass moments of inertia are lumped at the nodal points. The stiffness properties of the elastic elements are represented by 12 x 12 generalized stiffness matrices. These matrices are generated by Westinghouse and are provided in Reference 1 for direct application in seismic structural analysis.

f. <u>RCP Tie Rod</u>

Three tie rods are provided for each RCP (See Attachment 1 for FSAR Figure 5.5-8). These tie rods are assumed to function in tension only. Therefore, for postulated earthquake motion in each direction, the tie rods are assumed to be ineffective in compression. Eventually, the lateral resistance of the tie-rod assemblage is provided by that portion of the assemblage that experiences tensile loads. Figures 7 thru 10 in Attachment 2 of this enclosure show the active tie rods for Cases 1, 3, 5, and 6. The stiffness of the tie rod is provided by Westinghouse by a set of 6 x 6 generalized support stiffness matrix.

3. MODELLING OF GAP AND ONE-WAY HANGERS

See response to Question 2.d. above.

4. LINEARIZATION OF NSSS SUPPORT STIFFNESS

A study has been performed by Westinghouse to investigate different NSSS analysis cases and determine which one of the supports or tie rods will be active under a specific loading condition. Based on the study results, an active support list table was developed by Westinghouse and used by TVA in performing the seismic analysis. Examination of the active support conditions specified in Attachment 2, Tables A-1 through A-4, show that the active support conditions for the NSSS Analysis Cases 1 and 3 are complementary to each other and are primarily for resisting horizontal seismic loads in the plant north-south (NS) directions; similarly, the active support conditions for the NSSS Analysis Cases 5 and 6 are mutually complementary and are primarily for resisting loads in the plant east-west (EW) direction. For the vertical response analyses, the NSSS Analysis Cases 5 and 6 are also used. Since only a specific set of NSSS supports with their specified orientations are activated for each different loading condition, a linear support stiffness can be developed. Westinghouse provided these linear support stiffness via Reference 1 for the four NSSS analysis cases which were eventually used in the seismic analysis.

5. EQUATIONS OF MOTION AND NUMERICAL ALGORITHM EMPLOYED

The request to discuss governing equations of motion and the validation of the numerical algorithm used to solve those equations appears to be predicated on the assumption that nonlinear methods of analyses were performed. The use of linearized stiffness properties to represent the NSSS support conditions permits the coupled building/NSSS model to be analyzed as a linear, elastic system using the same methodology as employed for the seismic analyses of the other Category I structures for Watts Bar. The methods employed to perform the seismic analyses of civil structures were reviewed and accepted by the NRC during the audits documented in Reference 4. This acceptance is also noted on page 2 of the RAI of October 11, 1994, which notes that "the object of the inspection was earthquake design of civil structures." Since nonlinear methods were not employed in the analysis of the NSSS, TVA does not consider it necessary to repeat the theoretical background of the linear analysis methodology previously accepted by the NRC.

6. VALIDATION OF OVERALL MODEL

The development of linearized stiffness to represent the NSSS support conditions and the use of linear analyses (explained further under Item 7) are commonly accepted techniques routinely employed in the analysis of the Westinghouse NSSS.

7. SUMMARY OF RESULTS

Both Set B and Set C seismic response analyses using the coupled model have been performed for both the OBE and SSE conditions, and for the horizontal NS and EW, and vertical ground motion inputs. Since, as described above in Section 4, different NSSS analysis cases are required in order to simulate the actual NSSS support behavior, the seismic response analyses for any individual case of Set B or Set C, OBE or SSE, and NS, EW, or vertical input, are required to consider different NSSS analysis cases 1, 3, 5 and 6) as applicable.

By limiting the analyses to considering only the primary NSSS analysis cases as described above, the total number of analyses performed for Set B analyses is 12 (2 earthquake input levels, OBE and SSE, x 3 directions of input x 2 primary NSSS analysis cases for each direction); and the total number of analysis cases performed for Set C analyses is 48 (same 12 cases for Set B x 4 time history inputs per case).

A. SEISMIC ANALYSIS RESULTS FOR NSSS COMPONENTS

In the seismic analyses of the Reactor Building, the maximum response parameters obtained for the NSSS components (RCL) from Set B and Set C analyses for the cases consist of the following:

- a. Maximum absolute accelerations;
- b. Maximum displacements relative to the free-field ground.

To obtain the above maximum response parameters for the NSSS components, the following steps are applied:

1. For each location and response direction on the NSSS, the maximum values of the response parameters are obtained by taking the maximum

value of the time history response for each analysis case.

- 2. For Set C analyses for which four time histories are used as the input, the maximum values resulting from the four time history inputs are averaged.For Set B analyses, this step does not apply.
- 3. Maximum values of the response parameters resulting from different NSSS analysis cases are enveloped.
- 4. Maximum values of the co-directional response resulting from three directions of ground motion input are combined using the square root of the sum of the squares (SRSS) combination rule.
- 5. Maximum values of the same response parameters for four primary loops are enveloped to obtain the final enveloped maximum value applicable for the four loops.

The development of the final NSSS response ARS curves for each selected location and spectrum damping value considered follows the following steps:

- 1. For each location and response direction in the NSSS, the ARS values are computed from the absolute acceleration response time history obtained from each analysis case.
- For Set C analyses for which four time history inputs are used, the ARS values resulting from the four time history inputs are averaged. For Set B analyses, this step does not apply.
- 3. The ARS values resulting from different NSSS analysis cases are enveloped.

FSAR CHAPTER 3 RAI RESPONSE PAGE 11

- 4. The co-directional response ARS values resulting from three directions of ground motion input are combined using the SRSS combination rule applied to each spectral frequency.
- 5. The ARS at the corresponding locations of the four loops are enveloped to obtain the enveloped ARS applicable for the four loops.
- The enveloped ARS for each common location for four loops are broadened by ± 15% for Set B analyses, and ± 10% for Set C analyses, to obtain the final Set B and Set C ARS curves, respectively.
- The final Set B and Set C ARS curves are enveloped to give the final Set B-plus-C ARS curves.

Since the RCL attachment points (RCLA) are rigidly linked to the ICS at the elevations of the attachments points, the maximum response parameters and the response ARS at RCLA are the same as those obtained for the ICS at the attachment point elevations.

B. APPLICATION OF SEISMIC ANALYSIS RESULTS FOR NSSS COMPONENTS AND ICS QUALIFICATION

The evaluation basis Set B spectra at the ICS/NSSS interface locations obtained using the coupled ICS and NSSS model have been evaluated by Westinghouse to determine the potential impact on the qualification of the NSSS components. Westinghouse's review indicates that the new spectra would have no adverse impact on the design basis analysis (Set A) of the NSSS. Therefore, the critical components stresses shown in FSAR Tables 5.2-15 through 5.2-21 (For your convenience, see Attachment 1 of this enclosure) for Set A seismic input are not exceeded and continue to be the basis for the design of the NSSS system. The Set B and Set C spectra at various elevations in ICS were also generated for ICS evaluation. The result of the evaluation for critical members in the concrete structure are covered in FSAR Section 3.8.3.

8. REFERENCES

- Westinghouse Electric Corporation Proprietary Class 2, Contract No. 71C62-54114-1, Document No. 13285, Titled "Lumped Mass + Stiffness Matrix Mathematical Model for the RCL-Unit 2" for TVA-WBN.
- (2) WCG-1-343, Rev. 0, Seismic SSI Analysis of ICS + NSSS System
- (3) WCG-1-344, Rev. 0, Design Basis Seismic Analysis of ICS + NSSS/SCV/SB
- (4) NRC's Inspection Report 50-390, 50-391/89-21 and Civil Calculation Program audit report dated October 10, 1990.

FSAR CHAPTER 3 RAI RESPONSE PAGE 13

QUESTION 5.c CONCERNS

"The applicant stated that since the personnel locks and hatches were initially designed with a large margin for normal nonseismic loads (0.5 F_y) and normal loads are usually limited to self dead weight, load combinations involving OBE were considered to be upset load. This is the reason why E and E' are considered to be the same. Another reason for the proposed increase provided by the applicant is that assessment of load for the door is more accurate than usual because of the nature of dead loads where no added loads from other sources, such as live loads and pipe attachment loads, are applied, implying, that a lesser safety factor may be used. The staff found that the applicant's reasoning is not acceptable, since any conservative design should accommodate OBE with increasing allowable stresses, thus, effectively reducing the design margin. Moreover, the applicant's regument does not apply to the crane design (Tables 3.8.6-1 and 3.8.6-2). It is the staff's position that the allowable stress limit for the Category I structures be equal to 0.67 F_y when the load combination includes OBE, live and dead loads."

RESPONSE

The subject, Note (2), which provides the definition Of Earthquake Loading "E" as the larger of OBE or SSE loads, appears in the following tables of FSAR Section 3. In these tables, the allowable stresses for load combinations that include Earthquake Loads "E", are based on increased basic code allowable (i.e., 0.9 F_y for bending of structural components and 0.6 F_y for shear).

<u>TABLE #</u>	<u>COMPONENT(S)</u>
3.8.3-3	Personnel Access Doors in Crane Wall
3.8.3-6	Equipment Access Hatch
3.8.3-7	Escape Hatch - Divide Barrier Floor
3.8.4-3	Control Room Shield Doors
3.8.4-4	Auxiliary Building Railroad Access Hatch Covers

3.8.4-5	Railroad Access Door
3.8.4-6	Manways in RHR Sump Value Room
3.8.4-7	Pressure Confining Personnel Doors
3.8.4-13	Diesel Generator Building Doors and Bulkheads
3.8.4-21	Spent Fuel Pool Gates
3.8.4-23	Watertight Equipment Hatch Covers
3.8.6-1	Polar Crane
3.8.6-2	Auxiliary Building Crane
3.8.1-2	Shield Building Equipment Hatch Doors and Sleeves
3.8E-1	Limiting Values of Allowable Stress

Except for FSAR Tables 3.8.6-1 and 3.8.6-2 discussed later, TVA will revise the tables to add the load combinations with the OBE loading and limit the stress to the basic code allowables, (i.e., 0.6 F_y for Tension/Compression of structural components, or Ultimate/5 for mechanical components, as may be applicable). The notes will be revised to individually define the earthquake loads for OBE and SSE. Proposed FSAR changes of the above tables are provided in Enclosure 2 of this letter.

The loads, their combinations and corresponding allowables in FSAR Tables 3.8.6-1 and 3.8.6-2 are for Seismic Category I(L) Polar Cranes and Auxiliary Building bridge cranes, respectively. NUREG-0554 "Single Failure Proof Cranes for Nuclear Power Plants" requires evaluation of the crane components under the SSE loading only, in accordance with Regulatory Guide 1.29, "Seismic Design Classification," Regulatory Position 2.

ASME NOG-1-1989 "Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, Multiple Girder)," combines both OBE and SSE loads in the same load combinations of "Extreme Environmental Loads" and assigns the same increased allowables (i.e., 0.9 F_y for bending, etc.) for this combination. Therefore, the data presented in Tables 3.8.6-1 and 3.8.6-2 is correct and the tables will be revised to indicate only SSE loads.

ENCLOSURE 1 ATTACHMENT 1

WATTS BAR NUCLEAR PLANT UNITS 1 AND 2 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION FSAR CHAPTER 3, AMENDMENT 79

CURRENT FSAR TABLES AND FIGURES

TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT REACTOR BUILDING - INTERIOR CONCRETE STRUCTURE

SECTIONAL ELEVATIONAL LOOKING NORTH LUMPED MASS MODEL FOR DYNAMIC ANALYSIS

Figure 3.7-8

Interior Concrete Structure Equivalent Beam Stick Model In X-Z Plane for TVA/WBNP Unit 1

Figure 3.7-8A Seismic Analysis Model for Interior Concrete Structure (Set B and Set C) Amendment 64

(

(

Interior Concrete Structure Equivalent Beam Stick Model in Y-Z Plane for TVA/WBNP Unit 1

Figure 3.7-8B Seismic Analysis Model for Interior Concrete Structure (Set B and Set C)

STEAM GENERATOR LOWER SUPPORT MEMBER STRESSES

	Member Stresse	s, Percent of Allow	vable Loading Condition
Member	Norma 1	Upset	Faulted
17		67.7	60.3
18		60.2	53.4
19		39.6	42.5
20		35.1	58.3
22		15.2	31.6
23		3.2	5.7
24	· · ·	5.5	13.9
26		45.1	66,9
27		31.2	41.3
28		55.7	57.2
29		61.7	62.5
38	41.2	68.2	71.5
39	43.3	75.4	68.8
40	55.9	85.5	61.2
. 41	33.9	74.1	67.0

STEAM GENERATOR UPPER SUPPORT MEMBER STRESSES

		Memb	er Stresse	s, Percent of Allow	able Loading Condition
Member		+ N	Normal Upset		Faulted
71, 72, 73,	74,7	5	-	43.3	33.5
	76,7	7	`	22.6	52.5
	78, 7	9		31.7	33.6
	.81, 8	2	• •		

.

.

	Member Stresses,	Percent of Allow	able Loading Condition
Member	Normal	Upset	Faulted
10	- 1 	16.2	56.9
וו		33.4	91.1
12		61.7	98.7
		73.3	98.2
8	61.5	51.3	79.9
9	29.0	98.3	82.5

RC PUMP SUPPORT MEMBER STRESSES

WBNP-78

TABLE 5.2-18

PRIMARY PIPE RESTRAINT LOADS AND STRESSES

Restraint	Loading Condition	<u>Maximum Load (kips)</u>	Stress % of <u>Allowable</u>
Crossover Leg	Upset	194	5.8
Bumper, SG side	Faulted	1985 ^(c)	83.2
Crossover Leg	Upset	147	5.2
Bumper, RCP side	Faulted	1179 ^(c)	70.2
Crossover Leg	Upset	0	0.0
Vert. Run. Restraint	Faulted	1480	41.2
SG Inlet	Upset	0	0.0
Restraint	Faulted	1958	44.8
Primary Shield Wall	Upset	0	0.0
Restraint Hot Leg	Faulted	537 ^(a)	22.0
Primary Shield Wall	Upset	0	0.0
Restraint Cold Leg	Faulted	127 ^(b)	52.1

NOTES:

This load can act in any direction. (a.)

(b.) This load acts horizontally away from hot leg.

(c.) This load is not the maximum, but when applied with the opposite bumper load, the restraint reaches its maximum stress.

WBNP-78

٠

1

1

TABLE 5.2-19

REACTOR VESSEL SUPPORT LOADS

	Vertical (kips)	Tangential (kips)
Loading Condition		0
Dead Weight	530.	0.
Thermal	290.	0.
Pressure	10.	0.
OBF	1696.	756.
SSE	1696.	756.
	2900.	3000.
LUCA	830.	0.
Normal	2526	756.
Upset	2320.	275/
Faulted	4606.	3/30.

NOTES:

(a). Includes dead weight

REACTOR VESSEL SUPPORT STRESSES

	Loading Condition	Actual Stress (ks1)	Allowable Stress (ksi)	Actual Stress, % of Allowable
	Normal	P _M = 3.78	S _m = 21.7	17.4
		$P_{M} + P_{B} = 3.98$	1.5 $S_{m} = 32.6$	12.2
	Upset	P _M = 5.22	S _m = 21.7	24.1
<i></i> .		$P_{M} + P_{B} = 6.67$	1.5 $S_m = 32.6$	20.5
	Faulted	P _M = 22.60	0.7 S _u = 41.5	54.5
	· · · · ·	$P_{M} + P_{B} = 44.51$	$1.05 S_u = 62.3$	71.4

7.

CRDM Head Adaptor Bending Moments

	LOCA* (in-kip)	Combination of SSE and LOCA (in-kip)	% of <u>Allowable</u>
Longest CRDM	29.3	120.	69.
Shortest CRDM	52.0	120.	80.

*Maximum moments are from reactor vessel inlet nozzle break.

Figure 5.2-9 Steam Generator Lower Support Model

Figure 5.2-11 Steam Generator Upper Model Added by Amendment 31

7/7/ 42

Figure 5.5-6 Reactor Vessel Supports

Figure 5.5-8. Reactor Coolant Pump Supports.

CROSSOVER LEG RESTRAINTS

Revised by Amendment 52

Figure 5.5-11. Crossover Leg Vertical Run Restraint.

Figure 5.5-12. Steam Generator Inlet Restraints

A devide

Added by Amendment 43

ENCLOSURE 1 ATTACHMENT 2

WATTS BAR NUCLEAR PLANT UNITS 1 AND 2 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION FSAR CHAPTER 3, AMENDMENT 79

ADDITIONAL TABLES AND FIGURES

SHEET 1 of 4 Table 6-12 WENP NSSS ACTIVE SUPPORT SPECIFICATIONS ANALYSIS CASE 1 - LOOP 1

TABLE A-1

Support Case	Support	Attach	nent Node	Point	Active	Inactive
RPV Support	104	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	120	220	320	420	X	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433		X X X
XL SG Side	153	253	353	453		X
XL RCP Side	<u>163</u>	263	363	463	X	
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	 171 	271	371	471		X
RCP Tie Rod #2	<u>172</u>	272	372	472	X	
RCP Tie Rod #3	170	270	370	470		X
FWL Dyn.	<u>132</u>	232	332	432	X	
MSL Dyn.	<u>139</u>	239	339	439	X	

Note: The node point number underlined identifies the active support point.

SG45(c)

. **.**.

6-31

TABLE A-1 SHEET 2 of 4 Table 6-12 (Continued) P. 35

WENP NSSS ACTIVE SUPPORT SPECIFICATIONS

ANALYSIS CASE 1 - LOOP 2

Support Case	Support	Attachm	ent Node	Point	Active	Inactive
RPV Support	 104	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	 120 	220	320	420	X	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433	x	X X X
XL SG Side	153	253	353	453	X	
XL RCP Side	163	263	363	463		X
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	171	271	371	471	Х	
RCP Tie Rod #2	172	272	372	472		X
RCP Tie Rod #3	170	270	370	470 	X	
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	139	239	339	439	X	

SG45(c) 🖼

TABLE A-1 SHEET 30F4 Table 6-12 (Continued)

WENP NSSS ACTIVE SUPPORT SPECIFICATIONS

ANALYSIS CASE 1 - LOOP 3

Support Case	Support	Attach	nent Node	Point	 Active 	Inactive
RPV Support	104	297	304	497 .	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	120	220	320	420	X	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433	x	X X X
XL SG Side	153	253	353	453	X	
XL RCP Side	163	263	363	463		X
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	171	271	371	471	X	
RCP Tie Rod #2	172	272	372	472		X
RCP Tie Rod #3	170	270	370	470	X	
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	139	239	339	439	X	

SG45(c) ...

÷

Pine

6-33

· 5

TABLE A -1 SHEET 4.54 Table 6-12 (Continued) WENP NSSS ACTIVE SUPPORT SPECIFICATIONS

1----

-12

4.7

ANALYSIS CASE 1 - LOOP 4

· Support Case	Support	Attachmo	ent Node	Point	 Active 	Inactive
RPV Support	 104 	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	 120 	220	320	420	X	x x
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	<u>433</u>	X	X X X
XL SG Side	153	253	353	453		X
XL RCP Side	163	263	363	463	X	
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	171	271	371	471		X
RCP Tie Rod #2	172	272	372	472	x	
RCP Tie Rod #3	170	270	370	470		X
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	139	239	339	439	X	

TABLE A-2 SHEET 1 of 4 Table 6-13

WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS

ANALYSIS CASE 3 - LOOP 1

Support Case	Support	: Attach	ment Nod	e Point	Active	Inactive
RPV Support	104	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	<u>120</u>	220	320	420	x	X X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	<u>133</u>	233	333	433	X	X X X
XL SG Side	153	253	353	453	X	
XL RCP Side	163	263	363	463		X
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	<u>171</u>	271	371	471.	X	
RCP Tie Rod #2	172	272	372	472		X
RCP Tie Rod #3	170	270	370	470	X	
FWL Dyn.	<u>132</u>	232	332	432	X	
MSL Dyn.	<u>139</u>	239	339	439	X	

Note: The node point number underlined identifies the active support point.

SG45(c)

P 36

TABLE A-2

1-21

SHEET 2 of 4

Table 6-13 (Continued) WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS ANALYSIS CASE 3 - LOOP 2

Support Case 	 Support 	Attachm	ent Node	Point	 Active 	Inactive
RPV Support	 104 	297	304	497	 X 	
SGLS Case 2 SGLS Case 4 SGLS Case 6	120	220	320	420	x	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433	X	X X X
XL SG Side	153	253	353	453		X
XL RCP Side	163	263	363	463	Х	
RCPLS	168	268	368	468	Х	
RCP Tie Rod #1	171	271	371	471		X
RCP Tie Rod #2	172	272	372	472 	X	
RCP Tie Rod #3	170	270	370	470 		X
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	139	239	339	439	X	

SG45(c)

7.38

TABLE A-2 SHEET 3.44 Table 6-13 (Continued)

WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS

ANALYSIS CASE 3 - LOOP 3

Support Case	 Support 	Attachm	ent Node	Point	Active	Inactive
RPV Support	 104 	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	 120 	220	320	420	X	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433	X	X X X
XL SG Side	 153 	253	353	453		X
XL RCP Side	 163 	263	<u>363</u>	463	X	
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	171	271	371	471		X
RCP Tie Rod #2	172	272	372	472	X	
RCP Tie Rod #3	170	270	370	470		X
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	139	239	339	439	X	

SG45(c)

. J

SHEET 4 of 4 Table 6-13 (Continued)

TABLE A-2

p.39

WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS

ANALYSIS CASE 3 - LOOP 4

Support Case	Support	Attachm	ent Node	Point	Active	Inactive
RPV Support	 104 	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	 120 	220	320	420	x	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433	X	X X X
XL SG Side	153	253	353	453	X	
XL RCP Side	163	263	363	463		X
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	171	271	371	471	X	
RCP Tie Rod #2	172	272	372	472		Х
RCP Tie Rod #3	170	270	370	470	X .	
FWL Dyn.	132	232	332	432	Х	
MSL Dyn.	139	239	339	439	Х	

TABLE A-3 SHEET 1 of 4 Table 6-14

2.20

WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS

ANALYSIS CASE 5 - LOOP 1

Support Case	 Support	Attachm	ent Node	Point	Active	Inactive
RPV Support	104	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	120	220	320	420	X	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433	X	X X X
XL SG Side	153	253	353	453		X
XL RCP Side	<u>163</u>	263	363	463	X	· · · ·
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	171	271	371	471	X	
RCP Tie Rod #2	<u>172</u>	272	372	472	X	
RCP Tie Rod #3	170	270	370	470	X	
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	<u>139</u>	239	339	439	X	

Note: The node point number underlined identifies the active support point.

SG45(c)

6-39

· 3'

TABLE A-3

16 كر

SHEET 2 of 4 Table 6-14 (Continued)

WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS

١

ANALYSIS CASE 5 - LOOP 2

Support Case	Support	Attachm	ent Node	Point	Active	Inactive
RPV Support	 104	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	 120 	220	320	420	X	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433	X	X X X
XL SG Side	153	253	353	453		X
XL RCP Side	163	263	363	463	Х	
RCPLS	168	268	368	468	Х	
RCP Tie Rod #1	171	271	371	471	X	
RCP Tie Rod #2	172	272	372	472	X	
RCP Tie Rod #3	170	270	370	470 	X	
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	139	239	339	439	Х	

.

WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS

TABLE A-3

SHEET 3 of 4 Table 6-14 (Continued) ت پر

ANALYSIS CASE 5 - LOOP 3

Support Case	Support	Attachm	ent Node	Point	Active	Inactive
RPV Support	 104 	297	<u>304</u>	497	x	
SGLS Case 2 SGLS Case 4 SGLS Case 6	120	220	320	420	X	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	<u>333</u>	433	X	X X X
XL SG Side	153	253	353	453	X	
XL RCP Side	163	263	363	463	.*	X
RCPLS	168	268	<u>368</u>	468	X	
RCP Tie Rod #1	171	271	371	47 <u>1</u>		X
RCP Tie Rod #2	172	272	372	472		X
RCP Tie Rod ∦3	170	270	370	470		X
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	139	239	339	439	X	

SG45(c)

· 2

TABLE A-3

43

SHEET 4 of 4

Table 6-14 (Continued) WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS

ANALYSIS CASE 5 - LOOP 4

Support Case	 Support	Attachm	ent Node	Point	 Active 	Inactive
RPV Support	 104 	297	304	497	X 	
SGLS Case 2 SGLS Case 4 SGLS Case 6	120	220	320	420	X	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	<u>433</u>	X	X X X
XL SG Side	153	253	353	453	X	
XL RCP Side	163	263	363	463		X
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	171	271	371	471 		X
RCP Tie Rod #2	172	272	372	472		X
RCP Tie Rod #3	170	270	370	470 		X
FWL Dyn.	132	232	332	432	Х	
MSL Dyn.	139	239	339	439	X	

SG45(c)

• Y

TABLE A-4

Support Case	Support	Attach	nent Node	Point	Active	Inactive
RPV Support	104	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	<u>120</u>	220	320	420	X 	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	<u>133</u>	233	333	433	X 	X X X
XL SG Side	<u>153</u>	253	353	453	X	
XL RCP Side	163	263	363	463		X
RCPLS	<u>168</u>	268	368	468	Х	
RCP Tie Rod #1	171	271	371	471		X
RCP Tie Rod #2	172	272	372	472		X
RCP Tie Rod #3	170	270	370	470		X
FWL Dyn.	132	232	332	432	x	
MSL Dyn.	139	239	339	439	X	

Note: The node point number underlined identifies the active support point.

SG45(c)

. **. .**

1

6-43

TABLE A-4 SHEET 2.44 Table 6-15 (Continued) WENF NSSS ACTIVE SUPPORT SPECIFICATIONS ANALYSIS CASE 6 - LOOP 2 p.d5

Support Case	Support	Attachme	ent Node	Point	Active	Inactive
RPV Support	104	297	304	497 	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	120	220	320	420	х	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433	Х	X X X
XL SG Side	153	253	353	453	X	
XL RCP Side	163	263	363	463		X
RCPLS	168	268	368	468	Х	
RCP Tie Rod #1	171	271	371	471	1	x
RCP Tie Rod #2	172	272	372	472		X
RCP Tie Rod #3	170 l	270	370	470		X
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	139	239	339	439	X	

SG45(c)

TABLE A-4

P.46

SHEET 3,f4 Table 6-15 (Continued)

WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS

ANALYSIS CASE 6 - LOOP 3

Support Case	Support	Attachm	ent Node	Point	Active	Inactive
RPV Support	104	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	120	220	320	420	x	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	 133 	233	333	433	x	X X X
XL SG Side	153	253	353	453		X
XL RCP Side	163	263	363	463	X	
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	171	271	371	471	X	
RCP Tie Rod #2	172	272	372	472	X	
RCP Tie Rod #3	170	270	370	470	Х	
FWL Dyn.	132	232	332	432	X	
MSL Dyn.	139	239	339	439	X	

SG45(c)

· 31

TABLEA-4 SHEET 40f4 Table 6-15 (Continued) p.17

WBNP NSSS ACTIVE SUPPORT SPECIFICATIONS

ANALYSIS CASE 6 - LOOP 4

Support Case	Support	Attachm	ent Node	Point	 Active 	Inactive
RPV Support	 104 	297	304	497	X	
SGLS Case 2 SGLS Case 4 SGLS Case 6	120	220	320	420	 X	X X
SGUS Case 5 SGUS Case 6 SGUS Case 7 SGUS Case 8	133	233	333	433	x	X X X
XL SG Side	153	253	353	453		X
XL RCP Side	163	263	363	463	X	
RCPLS	168	268	368	468	X	
RCP Tie Rod #1	171	271	371	471	X	
RCP Tie Rod #2	172	272	372	472	Х	
RCP Tie Rod #3	170	270	370	470	Х	
FWL Dyn.	132	232	332	432	Х	
MSL Dyn.	139	239	339	439	X	

TABLE A-5 WESTINGHOUSE PLANT ENGINEERING DIVISION SHEET 10F5

7.28

TITLE			PAGE	27
APPENDIX A.I -	- MODEL DEFINITION		OF	41
PROJECT	AUTHOR DATE	CHK'D. BY DATE	CHK'D. BY	DATE
WATTS BAR #2	111/10/11/11/11/11	Ruber an 1/24/85	NR.	
S.O.	CALC. NO.	FILE NO.	GROUP	
WJIJ/134		WAT/145/12	. SSA	· · · ·

TABLE A.1(b) MASS POINT COORDINATES; TVA GLOBAL COORDINATE SYSTEM

Node Point	Loop	Coor	dinates - Glob	al System
Number	Number	X _G	Y _G	Z _G
101	RPV	0.0	0.0	0.0
l	RPV	0.0	0.0	6.46
1000	RPV	0.0	0.0	12.5325
. 3	RPV	0.0	0.0	-7.10
4	RPV	0.0	0.0	-20.66
8	RPV	0.0	0.0	-4.12
9	RPV	0.0	0.0	-10.87
10	RPV	0.0	0.0	-17.62
14	RPV	0.0	0.0	-4.12
15	RPV	0.0	0.0	-7.495
16	RPV	0.0	0.0	-10.87
17	RPV	0.0	0.0	-14.245

				,	
REV. NO.	REV. DATE	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DATE

WESTINGHOUSE FORM 58041

TABLE A-6 WESTINGHOUSE PLANT ENGINEERING DIVISION

APPENDIX A.1	- MODEL DE	FINITION	ATE CHK'D. BY	J DAT	
WATTS BAR #2	7.M.L	alif 1/18/2	5 QUNigo	m 1/24/85	-NR-
WJIJ/134	CALC. NO		WA	1/145/12	SSA
TABL	.E A.4 - RC	L Support /	Attachment F	Points	ي د م
Support		Attachmer	nt Points		Rigid Transformat
Designator	Loop I	L00p 2	LOOP 3	LOOP 4	Required
RPVS	104	297	304	497	No
SGLS	120	220	320	420	Yes
SGUS	133	233	333	433	No
KL SG Side	153	253	353	453	No
KL RCP Side	163	263	363	463	No
RCPLS	168	268	368	468	No
RCP Tie Rod #1	171	271	371	471	Yes
RCP Tie Rod #2	172	272	372	472	Yes
RCP Tie Rod #3	170	270	370	470	Yes
WL Dyn.	132	232	332	432	No
ISL Dyn.	139	239	339	439	No
					:
					· .
				•	

WESTINGHOUSE FORM 58041

p.53

p.5K

TABLE A-7 WESTINGHOUSE PLANT ENGINEERING DIVISION

SHEET 1 of 2

PROJEC	WATTS	BAR #2	· C	AU	C.I	NO.	14		12-	DA 	TE 'Ç	CH Ø	K'D.	вү <u>۱</u> ү	9 - -/1	ترين 45	ł /12	/27	DAT 4 18	G	RO	'D. 1	<u>∎ γ</u> S	- N SA	e e		Di
	N 10	1_{ZZ} (1b _f -1n ²)	0.001	1.128E10	100.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	100.0	29.066E8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ſ	rage	$(1b_{f}^{1\gamma})$	100 0	0.0	100.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	100.0	0.0	0.0	6.528E8	100.0	148.04E8	3.716E8	0.0	0.0	0.0	0.0	0.0	0.0	
		$(1b_{f}^{1}x_{1}x_{2})$	100.0	0.0	100.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	100.0	0.0	0.0	6.528E8	100.0	148.04E8	3.716E8	0.0	0.0	0.0	0.0	0.0	0.0	
	E SYSTEM	μ _Z (1b _f)	50.0	1556076.	50.0	0.0	0.0	424924. 0.0	0.0	50.0	0.0	0.0	0.0	50.0	13.17E3	5.301E3	0.0	50.0	817.E3	0.0	0.0	19822.	0.0	4.139E3	12.955E3	114.4E3	
TABLE A	MPED MASS VAL	۳ ⁴ ر (1b _f)	50.0	656069.	50.0	286438.	234429.	165959. 61283.	212095.	50.0	70943.	70943.	70543.	50.0	13.17E3	5.301E3	237.8E3	50.0	501.7E3	77.5E3	4337.	5314.	10171.	4.139E3.	12.955E3	114.4E3	
	101	M _X (1b _f)	50.0	656069.	50.0	286438.	234429.	165959. 61283.	212095.	50.0	70943.	70943.	70943.	50.0	13.17E3	5.301E3	237.8E3	50.0	501.7E3	77.5E3	4337.	5314.	10171.	4.139E3	12.955E3	114.4E3	
																										-	
		Mass Point Node Number(s)	101		1000	• ر	5 5	α 6	10	14	15	16	17	104, 304	109, 209, 309, 409	113, 213, 313, 413	119, 219, 319, 419	132, 232, 332, 432	133, 233, 333, 433	139, 239, 339, 439	143, 243, 343, 443	149, 249, 249, 449	153, 253, 353, 453	159, 259, 359, 459	163, 263, 363, 463	169, 269, 369, 469	
		I	1	<u> </u>	тно	R				<u> </u>		<u></u>					•										

WESTINGHOUSE FORM 58041

•

đ

۳

- - -

TABLE A-7 WESTINGHOUSE PLANT ENGINEERING DIVISION

SHEET 2 of 2

p.55 - 15

BEV	REV		AUTH	OR			DAT	FICHK'D		·	FLOWE'D F			DA
	, ,, ,,	Mass Point Node Number(s)	168, 268, 368, 468	179, 279, 379, 479	183, 283, 383, 483	189, 289, 389, 489	767,497			·				
	1019 101	^M χ (1b _f)	50.0	· 87-8E3	17.162E3	1.806E3	0.06							
	TABLE A .2 MPED MASS VAL	۹ _۲ (۱ _{bf})	50.0	87.8E3	17.162E3	1.806E3	0.06							
	2(b) UES SYSTEM	M _Z (1b _f)	50.0	87.8E3	17.162E3	1.806E3	0.03							÷.
		$(1b_{f}-1n^2)$	100.0	0.0	0.0	0.0	100.0							
	Page 2 c	1γγ (1b _f -in ²)	100.0	0.0	0.0	0.0	100.0	·						
	of 2	$(1b_{f^2}^{1} tn^2)$	100.0	0.0	0.0	0.0	100.0							
	WJIJ/134				• 				WAT/14	5/12	<u> </u>	<u>SSA</u>		
IS O	WATTS BAR	#2		NO	[]].[/ 	p=1.5	FILE P	trigan	- 1/24/85	GROUP	NR	<u> </u>	
0.0.0	C 0 7		LALIT LL	0.0	11.			FICHY'R			FICHY'D (2		-

WESTINGHOUSE FORM 58041

FIGUR [1]

N

WESTINGHOUSE PLANT ENGINEERING DIVISION

FIGURE 9

א דיק

WESTINGHOUSE PLANT ENGINEERING DIVISION

CALC. NO. 18968-812 WCG-1-344 MEET NO. ۵ 29 ORGINATOR DATE 2/9/89 CHECKED DATE 2/14/84 2-9-89 4.0. ۰D. . N WMA ~ 2-14-89 TVA - WBN - UNIT - I DESLEN BASIS SEISMIC ANALYSIS SUBJECT : 1 OF ICS +NSSS /SCV 2 /SB CASE 3 4 5 UNIT 1 - RCP Tie Rod and RPY Support Arrangement 6 7 8 9 10 11 .119 12 419 472 13 14 15 68 18 L.P. 4 L.P. 1 17 18 **1**04 497 19 20 101 1.5 21 22 297 304 23 my 24 L.P. 3 LP.2 371 25 271 368 25 268 370 270 27 28 319 219 20 Ζs Ya 30 · Z_A YG 31 22 Xc XA 33 Fig. 4.2.6 34 UNIT-1 RCP TIE ROD AND SOY Х 35 SUPPORT ARRANGEMENT - CASE 1 36 ¥۲ FIGURE 7

NOMEEI JOB NO. CALC. NO. NEY NO 19969-812 WCG-1-344 SHEET NO ٥ 37 OPENATOR DATE 2/9/89 CHECKED DATE 2.14 -59 2-14-87 7.0. WMA -0. 2-9-89 WINA TVA - WBN - UNIT - I DESLEN BASIS SEISMIC ANALYSIS SUBJECT : 1 OF ICS +NSSS /SCV 'SB 2 CASE 3 42 3 4 5 LINIT 1 - RCP Tie Rod and RPY Support Arrangement 6 7 8 9 . 10 11 119 12 419 13 470 170 463 14 15 171 471 L.P. 4 L.P. 1 16 Kine -1 -1 17 104 18 497 1\$ * Nor 20 MNY 101 21. 297 22 304 23 m L.P. 3 LP.2 24 25 268 28 368 27 272 372 28 319 219 29 Ζs YA ZA 30 Ye 31 [♥]X_A `ئ× 32 Fig. 4.2.14. 33 UNIT-J RCP TIE ROD AND 34 RPV SUFFICT ARRANGENEET Х \$ - CAE3 ¥Υ 8

0100 1.8968-812 NEV NO WCG-1-344 ۵ OPERMATOR DATE 2/9/89 DATE 2.14.89 4.0. INMA 2-9-89 T. W.MA -0 2-14-89 TVA - WBN - UNIT - I DESLEN BASIS SEISMIC ANALYSIS SUBJECT : 1 OF ICS +NSSS , SCV /SB 2 4.2 (CONT.) 3 CASE 5 4 5 LINIT 1 - RCP Tie Rod and RPY Support Arrangement 7 2 9 10 11 119 12 419 13 170/ 14 463 9-168 15 18 L.P. 4 171 ÷ L.P. 1 17 18 104 497 19 * Non 20 101 21 22 297 304 🔬 23 24 L.P. 3 LP.2 \checkmark 25 271 28 268 368 270 27 272 28 319 219 29 ٦٢ Ya 30 - Z_A YG 31 32 Xa XA 33 Fg. 4, 2, 21 UNIT.1 ROF TIE ROD AND ROV 34 ₽Z BUPPORT ARRANGEN : BIT - CHISE 5 35 Х 36 ΫY,

FIGURE 10'

• •

ENCLOSURE 2

WATTS BAR NUCLEAR PLANT UNITS 1 AND 2 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION FSAR CHAPTER 3, AMENDMENT 79

PROPOSED FSAR REVISIONS

The uplift on the equipment from the LOCA combined with the SSE controlled the design of the base slab.

Minimum steel requirements of 0.65 square inches per foot (minimum steel ratio of 0.0015 in each face and in both vertical and horizontal directions) controlled the inside face vertical steel requirements throughout the shell and the inside face horizontal steel requirements above grade.

The SSE in load combination 8 controlled the design of the outside face vertical reinforcement at the base of the cylinder wall. Due to earth and hydrostatic pressure, outside face horizontal reinforcement requirements were greatest 16 feet above the base of the cylinder wall at elevation 713.0.

The construction loading controlled the reinforcement design in the dome and the upper portion of the cylinder wall.

The SSE produced a maximum tangential shear stress at the base of the wall of 189.7 psi which was 76.8% of the allowable.

The effects of repeated reactor shutdowns and startups during the plant's life will not degrade the above margins of safety because the Shield Building is minimally affected by these operations. The only effects from normal operations are from interior temperature changes which are insignificant compared to normal exterior temperature variations.

Equipment Hatch Doors and Sleeves

Allowable stresses for all load combinations used for the various parts are given in Table 3.8.1-2. For normal load conditions, the allowable stresses provide safety factors of 1.67 $(F_y/0.6 F_y)$ to 1 on yield for structural parts and 5 to 1 on ultimate for mechanical parts. For limiting conditions such as an Operating Basis Earthquatke (OBE) or a Safe Shutdown Earthquake (SSE), stresses do not exceed 0.9 yield.

3.8.1.6 Materials, Quality Control and Special Construction Techniques

General

The principal materials used in the construction of the Shield Building base slab, wall, and dome were concrete and reinforcing steel. Concrete was placed, inspected, and tested based upon the requirements in TVA General Construction Specification No. G-2 for Plain and Reinforced Concrete and to TVA QCP-2.2 Concrete Placement and Documentation (until 1975) and TVA WBN-QCP-2.02 (1975 and after). Steel is used for the structural parts of the equipment hatch doors and sleeves with rubber used for the seals.

3.8.1.6.1 Materials

Concrete

Cement conformed to ASTM Specification C150-72 Type I. The guaranteed 28-day mortar strength was 5025 psi with a guaranteed standard deviation of 395 psi and a guaranteed maximum tricalcium aluminate content of 9.5%.

Aggregates conformed to ASTM Specification C-33-71a and were manufactured of crushed limestone.
TABLE 3.8.1-2

(Sheet 1 of 2)

SHIELD BUILDING EQUIPMENT HATCH DOORS AND SLEEVES LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

Structural				
<u>No.</u>	Load Combinations	Allowa	<u>ble Stresses (psi)</u>	
		Tension	Compression****	<u>Shear</u>
I	Dead load plus 2-psi pressure	0.50 Fy	0.47 Fy	0.33 Fy
II	Dead load plus 3-psi pressure inside	0.90 Fy	0.90 Fy	0.60 Fy
III	Dead load plus 2-psi pressure outside plus *OBE	0.60 	0,60 0.90 Fy	0.40 0.60 Fy
IV	Dead load plus 2-psi pressure	0.90 Fy	0.90 Fy	0.60 Fy
**V	Dead load plus *OBE	<i>0.60</i> 0.90 -Fy	0.60 0.90 Fy	D , 40 0.60- Fy
**VI	Dead load plus *SSE	0.90 Fy	0.90 Fy	0.60 Fy

Mechanical

<u>No.</u>	Load Combinations	<u>Allowable Stresses (psi)</u>		
		Tension & Compression	Shear	
**I	Dead load	Ult 5	<u>2 x Ult</u> 15	
**Ia	Dead load plus [*] OBE	0.60 0.90 Fy	0.40 0.60 Fy	
***II	Dead load plus *SSE	0.90 Fy	0.60 Fy	

| |

TABLE 3.8.1-2

(Sheet 2 of 2)

SHIELD BUILDING EQUIPMENT HATCH DOORS AND SLEEVES LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES (Cont'd)

III	Dead load plus	2-psi pressure	outside	<u>Ult</u> 5	<u>2 x Ult</u> 15
IV	Dead load plus	3-psi pressure	inside	0.90 Fy	0.6 Fy
V	Dead load plus plus *OBE	2-psi pressure	outside	0.60 0.90 Fy	0. 40 0.60 Fy
VI	Dead load plus plus *SSE	2-psi pressure	outside	0.90 Fy	0.6 Fy

* Acts in one horizontal direction only at any given time and acts in the vertical and horizontal directions simultaneously.

** Door open.

*** For hinges only with doors open.

**** The value given for allowable compression stress is the maximum value permitted, assuming that buckling does not control. The critical buckling stress shall be used in place of Fy when buckling controls.

**** The value indicated for the allowable compression stresses is the maximum value permitted when buckling does not control. The crititcal buckling stress, Fcr, shall be used in place of Fy when buckling controls.

$$F_{cr} = F_{y} \left[\frac{I - \left(\frac{KI}{r}\right)^{2}}{2C_{c}^{2}} \right] \quad \text{when } \frac{KI}{r} \leq C_{c}$$

$$F_{cr} = \frac{T^2 E}{\left(\frac{KI}{r}\right)^2} \quad \text{when} \quad \frac{KI}{r} > C_c$$

3.8.3.5.9 Penetrations Through the Divider Barrier

Canal Gate and Control Rod Drive (CRD) Missile Shield

Loading combinations 1 through 7 in Table 3.8.3-1 were examined. During the original design (construction permit) phase with calculated values of LOCA pressure load increased by 40%, the controlling load combination is "Abnormal/Severe Environmental." See Table 3.8.3-2.

Reactor Coolant Pump and Lower Compartment Access Hatches

Loading combinations 1 through 7 in Table 3.8.3-1 were examined. During the original design (construction permit) phase with calculated values of LOCA pressure load increased by 40%, the controlling load combination is "Abnormal/Severe Environmental."

Escape Hatch

Loading combinations 1 through 7 in Table 3.8.3-1 were examined. During the original design (construction permit) phase with calculated values of LOCA pressure load increased by 40%, the controlling load combination is "Abnormal/Severe Environmental."

3.8.3.5.10 Personnel Access Doors in Crane Wall

Allowable stresses for noncollapsible members for load combinations used for the various parts are given in Table 3.8.3-3. Normal load conditions are shown for mechanical members only. Loads on structural members during normal conditions are negligible and therefore are not shown on Table 3.8.3-3. For normal load conditions, factors of safety for mechanical parts are 5 to 1 on ultimate. For limiting conditions such as an OBE or SSE for mechanical and structural members and a pipe rupture accident, for structural members only, stresses do not exceed 0.9 yield. Pipe rupture accidents apply to structural members only, since forces from jets and missiles are taken by the structural frame.

For collapsible members during a pipe rupture accident, stresses exceed yield and members are plastically deformed. Plastic deformation of energy absorbing members does not affect the sealing integrity of the doors.

3.8.3.5.11 Seals Between Upper and Lower Compartments

Under normal and earthquake conditions, there are no loads on the seals. However, the seals are subject to radiation, as outlined previously, during normal operating conditions. The seal has been tested under accident pressures and temperatures after undergoing heat aging to 40 years equivalent age, and irradiation to 40 years normal operation plus accident integrated doses in order to qualify it for the life of the plant.

TABLE 3.8.3-3

(Sheet 3 of 4)

PERSONNEL ACCESS DOORS IN CRANE WALL

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES (Cont'd)

Structural Door and Frame Assembly

		<u>Allowable st</u>	resses (psi) ⁽¹⁾	
<u>No.</u> I.	Load Combinations With door closed or open; Dead load plus; OBE	<u>Tension</u> 0.6 Fy	Compression ⁽³⁾ 0.6Fy	<u>Shear</u> 0.4 Fy
ш, у.	With door closed or open: Dead load plus <u>E⁽²⁾</u> SSE	0.9 F _y	0.9 F _y	0.6 F _y
Ш. у.	With door closed (SSE) Dead load plus (ETT plus 12 psig from inside of crane wall	0.9 F _y	0.9 F _y	0.6F _v
V. M.	With door closed: (SSE) Dead load plus (E) plus Load from maximum jet hitting doors at 615 psi	0.9F.	0.9 F.	0.6 F.
V. 17.	With door closed: SSE Dead load plus (2) plus Load from missile with (6900 maximum energy hitting door	21642)	y	у
	source at 295 psi	0.9 F _y	0.9 F _y	0.6 F _y

Mechanical Parts

		<u>Allowable Stresses (psi)⁽¹⁾</u>			
<u>No.</u>	Load Combination	Tension	Compression ⁽³⁾	Shear	
I.	With door closed or open: Dead load plus Operator force of 75 pounds	<u>Ult</u> 5	<u>Ult</u> 5	<u>2 x Ult</u> 15	
Π, μ.	With door closed or open: Dead load plus E^{(2),} SSE	0.9F _y	0.9F _y	0.6F _y	
П,	With door closed or open; Dead load plus OBE	0.6Fy	0.6Fy	0.4F,	

TABLE 3.8.3-3

(Sheet 4 of 4)

PERSONNEL ACCESS DOORS IN CRANE WALL

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES (Cont'd)

Structural Door and Frame Assembly

Mechanical Parts

			<u>Allowable Stress</u>	es (psi) ⁽¹⁾
<u>No.</u>	Load Combinations	Tension	Compression ⁽³⁾	<u>Shear</u>
IV. 117. V. 14	With door closed: (SSE) Dead load plus (E ⁽²⁾ plus Load from maximum jet hitting doors at 615 psi With door closed: (SSE) Dead load plus (E ⁽²⁾ plus	0.9Fy	0.9F _y .	0.6F _y
	Load from missile with maximum energy hitting doo plus jet from that missile source at 295 ps 2	0.9F	0.9F,	0.6F,

NOTES:

- Listed allowable stresses are for non-collapsible members only. Collapsible members are plastically deformed.
- (2) E The greater of OBE or SSE loads. Acts in one horizontal direction only at any given time and acts in vertical and horizontal directions simultaneously.
- (3) The value indicated for the allowable compression stresses is the maximum value permitted when buckling does not control. The critical buckling stress shall be used in place of Fy when buckling controls.

$$F_{cr} = F_{y} \left[\frac{-\left(\frac{KI}{r}\right)^{2}}{2C_{c}^{2}} \right] \quad \text{when} \quad \frac{KI}{r} \leq C_{c}$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{\kappa_I}{\tau}\right)^2} \quad \text{when } \frac{\kappa_I}{\tau} > C_c$$

TABLE 3.8.3-6

EQUIPMENT ACCESS HATCH

SUMMARY OF ALLOWABLE STRESSES FOR DESIGN CONDITION

	$I^{(2)} \mathbb{I}^{(2)}$ <u>Allowable</u>	III. HI(2). Allowable
Bending stress in structural shapes and plates (F _y = 36,000 psi)	21,600 psi (0.60 F _y)	32,400 psi (0.90 F _y)
Shear stress in structural shapes and plates (F _y = 36,000 psi)	14,400 psi (0.40 F _y)	21,600 psi (0.60 F _y)
Tensile stress in anchor bolts (F _y = 36,000 psi)	19,800 psi (0.55F _y)	31,700 psi (1.6(0.55)F _y)
Bearing stress under anchor bolt end plate (Fc' = 5,000 psi)	1,250 psi (0.25 Fc' ⁽¹⁾)	

Notes:

(1) See Table 1002(a), ACI 318-63 Code

(2) I = DL + L1 or DL + L2

OBEOBEII = DL + L1 + For DL + L2 + FIII = DL + L1 + SSE or DL + L2 + SSEL1 = Live load of 14,000 lb (loaded weight of forklift)

L2 = Live load of 15 psi pressure from below (LOCA)

-E -- The greater of OBE and SSE loads

TABLE 3.8.3-7

ESCAPE HATCH - DIVIDER BARRIER FLOOR

LOAD COMBINATIONS - ALLOWABLE STRESSES

Structural Parts - (Fy - 36,000 psi)

			<u>Allowable Stress (psi)</u>			
N	0.	Load Combinations	<u>Tension</u>	<u>Compression(2)</u>	Shear	
		Hatch Closed				
	I.	Dead load Live load at 100 lb/ft ² Load from latching device	18,000 (0.5 F _y)	18,000 (0.5 F _y)	12,000 (0.33F _y)	
μ.	11	Dead load Live load of 15 psi from below Load from latching	25,900 (0.72 F _y)	25,900 (0.72 F _y)	17,300 (0.48 F _y)	
W	HI.	device EIL SSE() Dead load $E^{(1)}$ SSE	25,900 (0.72 F _y)	25,900 (0.72 F _y)	17,300 (0.48 F _y)	
-{	Ħ	Dead load OBE (1) Mechanical Pa	2.2,000 (0.6 Fy) arts (Excludi	22,000 (0.6 Fy) ng Springs)	14, 400 (0.4 Fy)	

		Allowable St	ress (psi)	
<u>No.</u>	Load Combinations	Compression ⁽²⁾	Shear 1	ension
	Hatch Closed			
I.	Dead load Live load at 100 lb/ft ² Load from latching device	<u>Ultimate</u> 5	$\frac{2}{3} \times \frac{\text{Ultimate}}{5}$	<u>u Itl mate</u> 5
II.	Dead load Live load of 15 psi from below Load from latching device <u>E⁽¹⁾</u>	0.72 yield	<u>2</u> x 0.72 yield 3	0.72 yield
Nome	CC F			

NOTES: 55 E

- (1) Acts in one horizontal direction only at any given time and acts in vertical and horizontal directions simultaneously. E - The greater of OBE ---or SSE loads.
- (2) The value given for allowable compression stress is the maximum value permitted, when buckling does not control. The critical buckling stress, F_{cr} , shall be used in place of F_y when buckling controls.

$$F_{cr} = F_{y} \begin{bmatrix} 1 - \frac{K_{1}}{F} \end{bmatrix}^{2} \quad \text{when } \frac{K_{1}}{T} \leq C_{c}$$

$$F_{z} = \pi^{2}E \quad \text{when } \frac{K_{1}}{T} > C_{c}$$

$$F_{cr} = \frac{\pi^{2}E}{\left(\frac{K}{r}\right)^{2}} \qquad \text{when} \quad \frac{K}{r}$$

Earthquake loads used in design of the hoist supports and enclosure were the loads due to accelerations at the hoist platform, elevation 773.0, produced by a SSE. These accelerations were determined by dynamic analysis of the Auxiliary Building structure. These accelerations were used as static loads for determining component and member sizes. After establishing the component and member sizes, a dynamic analysis, using appropriate response spectra, was made of the door, embedded frame, door track, and hoisting unit enclosure to determine that allowable stresses had not been exceeded.

Manways in the (RHR) Sump Valve Room

In the closed position, each door was considered as a structure supported around the periphery. In the open position, each door was considered as a cantilevered structure with the hinges and hinge anchorages being designed for their loading from the door in the open position. Each embedded frame was considered as being rigidly supported by concrete. Loads from the embedded frame *are transferred to the concrete by embedded anchors.

Earthquake loads used in designing the manways were the forces due to accelerations determined for the sump valve room walls at the center of the manways by dynamic analysis of the Auxiliary Buildings for an OBE or SSE. These forces were used as static loads since the manways are rigid and firmly secured to the walls when closed.

Pressure Confining Personnel Doors

Structural members for the doors, in the closed position, were designed as simple beams with end reactions carried by the outside members to the frames which were considered as being rigidly supported by concrete. Loads are transferred to the concrete through embedded anchors or bolt anchors.

In the open position, the doors were designed as cantilever structures with resultant concentrated loads being used for design of the hinge members. For design, the earthquake loads for the various doors consisted of the loads produced by a SSE.

produced by a SSE.

Earthquake forces due to building accelerations at the elevation of the center of gravity of the various doors were used as static loads for determining door component and member sizes. The building accelerations were determined by dynamic analysis including amplification through the supporting structures. After establishing the component and member sizes, a dynamic analysis, using appropriate response spectra, was made of the doors to determine that allowable stresses had not been exceeded.

Fuel Pool Gates

The gates are designed for a waterhead load of 25.0 feet imposed from the fuel pool side as measured from the centerline of the horizontal bottom seal to the normal pool level at elevation 749.13. The gates are constructed of welded corrosion resistant steel. When dewatering the fuel transfer canal or handling the fuel cask over the fuel cask pit, inflatable elastomer seals provide a watertight seal between the skin plate and the pool wall liner face.

TVA has generally installed, and will continue to install fillet welds to meet the minimum weld size specifications of Table 1.17.5 of AISC Manual of Steel Construction. Where TVA drawings have specified fillet welds below the minimum sizes specified by AISC, these welds do meet the allowable stress requirements identified above. Weld qualification testing has demonstrated the adequacy of all fillet welds that were installed below minimum AISC specifications.

The Additional Diesel Generator Building structural steel was proportioned to meet the applicable codes discussed in Appendix 3.8E and load combinations in Section 3.8.4.3.

Structural steel and miscellaneous steel, which is highly restrained and is located in a high temperature environment, is evaluated for effects of thermal loads.

3.8.4.5.3 Miscellaneous Components of the Auxiliary Building

Control Room Shield Doors

Allowable stresses for all load combinations used for the various parts of the door and dogs are given in Table 3.8.4-3. For normal load conditions the allowable stresses provide a safety factor of 2 to 1 on yield for structural parts and 5 to 1 on ultimate for mechanical parts. For the limiting condition of an OBE or SSE, stresses do not exceed 0.9 yield.

Watertight Equipment Hatch Covers

Allowable stresses for normal loading combinations are based on the AISC specification (see Section 3.8.4.2). For limiting conditions, such as OBE, SSE, tornado, and flood, stresses do not exceed 0.9 yield.

Railway Access Hatch Covers 2

Allowable stresses for all load combinations used for the various parts are given in Table 3.8.4-4. For normal load conditions, the allowable stresses provide safety factors of 1.67 ($F_y/0.6$ F_y) to 1 on yield for structural parts and 5 to 1 on ultimate for mechanical parts. For limiting conditions, such as an SSE, stresses do not exceed 0.9 yield.

LOBE or) Railroad Access Door

Allowable stresses for all load combinations used for the various parts of the door, embedded frame, and hoist enclosure are given in Table 3.8.4-5. For normal load conditions the allowable stresses provide a safety factor of $\sqrt{1.67}$ ($F_y/0.6$ F_y) to 1 on yield for structural parts and 5 to 1 on ultimate for mechanical parts. For limiting conditions such as an SSE and hoist stall, stresses do not exceed 0.9 yield.

3.8.4-33

Allowable stresses for load combinations used for the

various parts are given in Table 3.8.4-23.

Manways in RHR Sump Valve Room

Allowable stresses for all load combinations used for the various parts are given in Table 3.8.4-6. For limiting conditions, such as on OBE-or a SSE, stresses do not exceed 0.9 yield.

Pressure Confining Personnel Doors

Allowable stresses for all load combinations used for the various parts are given in Table 3.8.4-7. For normal load conditions, the allowable stresses provide safety factors of 2 to 1 on yield on structural parts and 5 to 1 on ultimate for mechanical parts. For limiting conditions, such as an SSE, flood, and tornado loadings, stresses do not exceed 0.9 yield.

Fuel Pool Gates

Allowable stresses for all load combinations used for the gates are given in Table 3.8.4-21. For normal load conditions the allowable stresses do not exceed 0.6 of yield. For limiting conditions, such as the OBE or SSE, the stresses do not exceed 0.90 of yield, since load case 4 is the governing condition.

3.8.4.5.4 Intake Pumping Station Traveling Water Screens

Allowable stresses for all load combinations used for the various parts are given in Table 3.8.4-11. For normal load conditions, the allowable stresses provide safety factors of 2 to 1 on yield for structural parts and 5 to 1 on ultimate for mechanical parts. For limiting conditions, such as a safe shutdown earthquake, stresses do not exceed 0.9 yield.

3.8.4.5.5 Diesel Generator Building Doors and Bulkheads

Load combinations and allowable stresses for all combinations are given in Table 3.8.4-13. For missile impact, yield point of material will be exceeded and the member practically deform. For normal load condition, the allowable stresses provide safety factors of 2-to 1 on yield for structural parts and 5 to 1 on ultimate for mechanical parts. For limiting conditions, except for missile impact, stresses do not exceed 0.9 yield.

3.8.4.5.6 Additional Diesel Generator Building Missile Barriers

Design of missile barriers for the Additional Diesel Generator Building is discussed in Section 3.5.3.1.

3.8.4.6 Materials, Quality Control, and Special Construction Techniques

General

See Section 3.8.1.6.

TABLE 3.8.4-3

CONTROL ROOM SHIELD DOORS

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

Door and Jamb Shield Assemblies Structural Parts

		<u> </u>	<u>llowable Stresses (</u>	(psi)	
No.	Load Combinations	Tension	Compression ⁽²⁾	Shear	
	Doors Open or Closed				
I	Dead	0.50F _Y	0.47F _Y	0.33F _Y	
П	Dead + OBE ()	0.60Fy	0.60 F,	0.40 Fy	
1 11,	$\frac{\text{Dead} + SSE^{(\prime)}}{E^{(1)}}$	0.9F _Y	0.9F _Y	$0.6F_{Y}$	
٠	<u>Mechanical Parts</u>				

		A11	Allowable Stresses (psi)		
<u>No.</u>	Load Combinations	Tension	Compression ⁽²⁾	<u>Shear</u>	
	Doors Open or Closed				
I II III	Dead + $OBE^{(i)}$ Dead + $SSE^{(i)}$ $E^{(1)}$	<u>Ultimate</u> 0.6Fy 0.9Fy	<u>Ultimate</u> 0.6Fy 0.9Fy	<u>Ultimate</u> 7.5 0.4 Fy 0.6Fy	

Notes:

- E the greater of OBE or SSE loads. Acts in any one horizontal direction only at any given time and acts in vertical and horizontal directions simultaneously.
- (2) The value given for allowable compression stress is the maximum value permitted when buckling does not control. The critical buckling stress, F_{cr} , shall be used in place of F_y when buckling controls.

$$F_{cr} = F_{Y} \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2 C_{c}^{2}} \right] when \frac{kl}{r} \leq C_{c}$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2} \text{ when } \frac{Kl}{r} > c_c$$

TABLE 3.8.4-4

(Sheet 1 of 2)

- - - ---

2

AUXILIARY BUILDING RAILROAD ACCESS HATCH COVERS

Cover Structure and Embedded Frame

	<u>No.</u>	Load Combinations	<u>Allow</u> Tension	able Stresses (psi Compression ⁽²⁾ St) lear
		Covers Closed	•	·	
I	I I I I I	Dead load plus live load at 100 lb/ft ² Dead load plus live load at 100 lb/ft ² plus Dead load plus live load at 100 lb/ft ² plus E ⁽¹⁾ SSE	0.50F _y 0BE0,60Fy 0.90Fy	0.47F _Y <i>0.60F_y</i> 0.90F _Y	0.33F _Y D,40Fy 0.60F _Y
ב	☑ 111- ☑ ☑ 1 7-	Covers Open Dead load plus hoist Dead load plus hoist pull Dead load plus hoist pull plus <u>E(1)</u> 55E	0.50F _Y <i>0.60Fy</i> 0.90F _Y	0.47F _Y 0.60F_y 0.90F _Y	0.33F _Y 0.40F_y 0.60F _Y
	<u>No.</u>	<u>Mechanical Parts</u> Load Combinations	on Covers a <u>Allowable</u> Tension and	and Frame Stresses (psi) d Compression ⁶²⁾ (۱)	Shear
	I H	Covers Closed Dead load plus live load at load lb/ft ² Dead load plus live load of 100 lb/ft ² plus OB Dead load plus live load at 100 lb/ft ² plus E(1) SSE	<u>Ult</u> 5 0.6Fy 0.9Fy		<u>2 x Ult</u> 15 D. 4 Fy 0.6F _Y
		Covers Open Dead load plus hoist pull Dead load plus live load of 100 lb/12 plus Of Dead load plus hoist pull plus E(1) SSE	<u>Ult</u> 5 BE 0.6F 0.9F _Y		<u>2 x Ult</u> 15 0.4Fy 0.6Fy
(1)	-(1) -(2)-	E — The greater of OBE or SSE The value given for allowable of permitted when buckling does no be used in place of F_y when buck	loads compression ot control. ckling cont	stress is the max The critical buc rols.	imum value, F _{cr} , kling stress shall
		$F_{cr} = F_{Y} \left[1 - \frac{\left(\frac{r}{2} \right)}{2 C_{c}^{2}} \right] \text{ when } \frac{kl}{r} \leq C_{c}$ or $F_{cr} = \frac{\pi^{2} E}{\left(\frac{Kl}{r}\right)^{2}} \text{ when } \frac{Kl}{r} > C_{c}$		Move t on bott	o "Insert" om of Sheet 2.f

TABLE 3.8.4-4 (Continued) (Sheet 2,572) AUXILIARY BUILDING RAILFOAD ACCESS HATCH COVERS

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

Hoist Unit Supports

Ma	I a a d' Cambinations	<u>Allowab</u>	<u>le Stresses (ps</u>	<u>i)</u>
<u>NO .</u>	Load Complications	Tension	Compression	<u>Shear</u>
	Hatch Opening			
I	Dead load Hoist pull	18,000	17,000	12,000
II	Dead load Stall	32,400	32,400	21,600

Other Mechanical Parts

<u>No.</u>	Load Combinations	Allowable Stres Tension and Comp	sses (psi) ression Shear
	Covers Open		
I	Dead load Hoist pull	Ult 5	<u>2 x Ult</u> 15
II	Dead load Stall	0.9F _Y	2/3 x 0.9F _y

INSert Note

Stor £ 7,

TABLE 3.8.4-5

(Sheet 1 of 2)

RAILROAD ACCESS_DOOR

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

Door, Embedded Frame and Door Track

		Allow	<u>able Stresses (p</u>	si)
<u>No.</u>	Load Combinations	_Tension_	<u>Compression²</u>	Shear
	Door Closed			
I	Dead load plus windload at 10 lb/ft ²	$0.50F_{Y}$	0.47F _Y	0.33F _Y
II	Dead load plus windload at	0.90F _Y	0.90F _Y	0.60F _Y
	30 lb/ft ² Dead load plus windbad at 10 lb/ft ² Dead load plus windload at 10 lb/ft ² plus E⁽¹⁾ SSE	o hs OBE ~0.60 F y 0.90FY	0.60 Fy 0.90Fy	0.40Fy 0.60Fy
	Door Open			
V HV VI VI	Dead load plus hoist pull Dead lad plus hoist pull plus OBE Dead load plus hoist pull plus E ⁽¹⁾ SSE	0.50Fy 0.60Fy 0.90Fy	0.47Fy 0.60Fy 0.90Fy	0.33Fy D.40Fy 0.60F¥

Hoist Unit & Enclosure

		<u>Allowable Stresses (psi)</u>		
No.	Load Combinations	<u>Tension</u>	Compression ²	Shear
I	Dead load plus hoist pull	0.50F _Y	0.47F _Y	0.33F _Y
	Dead load plus stall Dead load plus hoist stall plus OBE Dead load plus hoist pull plus E(1) SSE	0.90F _Y 0.40F y 0.90F _Y	0.90F _Y Ø.60F _Y 0.90F _Y	0.60F _Y 0.40Fy 0.60Fy

TABLE 3.8.4-5

(Sheet 2 of 2)

RAILROAD ACCESS DOOR

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES (Cont'd)

Mechanical Parts on Door

		Allowable Stresses (psi)
No.	Load Combinations	Tension and Compression ⁽²⁾	Shear
	Door Open		•
цн	Dead load plus windload at 10 lb/ft ² Dead load plus windload at 10 lb/ft ² Dead load plus windload at	<u>Ult</u> 5 0.6Fy 0.9Fy	<u>2x Ult</u> 15 0.4F, 0.6F¥

Other Mechanical Parts

		<u>Allowable Stresses (psi)</u>		
<u>No.</u>	Load Combinations	Tension and Compression ⁽²⁾	Shear	
	Door Open		·	
I	Dead load Hoist pull	Ult 5	<u>2 x Ult</u> 15	
II	Dead load Stall	0.9F _Y	0.6F _Y	

NOTE:

- (1) Acts in one horizontal direction only at any given time and acts in the horizontal and vertical directions simultaneously. <u>"E" is the larger of</u> <u>SSE or OBE.</u>
- (2) The value given for allowable compression stress is the maximum value permitted when buckling does not control. The critical buckling stress, $F_{\rm cr}$, shall be used in place of Fy when buckling controls.

$$F_{cr} = F_{y} \left[\frac{\left[-\frac{\left(\frac{K}{T} \right)^{2}}{2C_{c}^{2}} \right]}{2C_{c}^{2}} \right] \quad \text{when} \quad \frac{KI}{T} \leq C_{c}$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2} \quad \text{when } \frac{Kl}{r} > C_c$$

TABLE 3.8.4-6

MANWAYS IN RHR SUMP VALVE ROOM

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

Structural Parts

		Allowable Stresses	(psi)
<u>No.</u>	Load Combinations 1	ension and Compression ??	Snear
НН	Manway Closed Dead load plus OBE (') Dead load plus E(1) SSE(0.6Fy 0.9Fy	0.4 Fy 0.6Fy
Ш	Dead load plus 19 psi from outside (design basis flood water to Elev. 738.1)	0.9F _Y	0.6F _Y
¥ Ⅲ. ₩	Manway Open Dead load plus OBE () Dead load plus E(1) SSE (Mechan	$\begin{array}{c} 0.6F_{y} \\ 0.9F_{y} \\ \hline \\ $	0.4Fy 0.6Fy
:		Allowable Streamer (per	<
<u>No.</u>	Load Combinations	Tension and Compression ⁽²⁾	<u>Shear</u>
нн	Manway Closed Dead load plus OBE (1) Dead load plus E(1) SSE (1)	0.6Fy 0.9Fy	0.4F y 0.6F _Y
III	Dead load plus 19 psi from outside (design basis flood water to Elev. 738.1)	0.9F _Y	0.6F _Y
V H	Manway Open Dead load plus OBE() Dead load plus E(1) ssE()	0.6Fy 0.9Fy	0,4F 0.6F _y

NOTES:

- (1) <u>*E The greater of OBE or SSE loads.</u> Acts in one horizontal direction only at any given time and acts in vertical and horizontal directions simultaneously.
- (2) The values given for allowable compression stress is the maximum value permitted when buckling does not control. The critical buckling stress, F_{cr} , shall be used in place of F_Y when buckling controls.

$$F_{cr} = F_{Y} \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2 C_{c}^{2}} \right] when \frac{kl}{r} \leq C_{c}$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2} \text{ when } \frac{Kl}{r} > c_c$$

TABLE 3.8.4-7

(Sheet 1 of 5)

PRESSURE CONFINING PERSONNEL DOORS LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES¹

(All Doors except A55, A57, C20, C26, A101, A105, A216, and A217)

Structural Parts

	· · · · ·		<u>Allowable Stress</u>	es (psi)
<u>No.</u>	Load Combinations	Tension	<u>Compression</u> ²	Shear
	Doors Open or Closed			
I	DL + Load from Door Closers	0.50 F _y	0.47 F _y	0.33 F _y
II	DL + E + Load from Door Closers DL + OBE + Load from Door Closers Doors Closed	0.90 Fy <i>0.60</i> Fy	0.90 Fy <i>0.60 Fy</i>	0.60 Fy <i>0.40 Fy</i>
III ³	DL + 3-psi pressure (bidirectional where applicable)	0.90 F _y	0.90 F _y	0.60 F _y
IV ⁴ V ⁵	SSE DL + E+ 2-psi toward annulus DL + OBE + 2-psi toward annulus DL + 3 inches of water pressure on either side of door	0.90 F _y 0.60 F _y 0.50 F _y	0.90 Fy 0.60 Fy 0.47 Fy	0.60 Fy 0.40 Fy 0.33 Fy
VI ⁵	DL + Flood to elevation 738.6	0.90 F _y	0.90 F _y	0.60 F _y
F	The greater of OBE or SSE loads			

1. Thermal load effects are insignificant and hence need not be considered in the design of doors.

2. The values indicated for the allowable compression stresses are the maximum values permitted, when buckling does not control. The critical buckling stress, $F_{\rm cr}$, shall be used in place of $F_{\rm y}$ when buckling controls.

$$F_{cr} = F_{Y} \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2 C_{c}^{2}} \right] when \frac{kl}{r} \leq C_{c}$$

or

$$\mathbf{F}_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2} \text{ when } \frac{Kl}{r} > c_c$$

3. Applies to all doors except A64, A65, A77, A78, A56, A60, A111, A113, A114, A117, A118, A122, A125, A130, A133, A151, A160, A162, A183, A192, A206, A207, A208, A209, A212, A213, C37, C49, C50, C53, C60, DE1, DE4 and DE5.

- 4. Applies to doors A64, A65, A77, and A78 only.
- 5. For doors A56, A60, A65, A78, A94, A99, A111, A122, A123, A125, A130, A132, A133, A151, A152, A159, A160, A161, A162, A183, A192, A206, A207, A208, A209, A212, A213, A214, A215, DE1, DE4, and DE5, the load combination is:

DL + 1/2" water pressure on either side of door. For doors C36, C37, C49, C50, C53, C54 and C60, the load combination is:

- DL + 1/8" water pressure on either side of door.
- 6. Applies to doors A65 and A78 only.

TABLE 3:8.4-7

(Sheet 2 of 5)

PRESSURE CONFINING PERSONNEL DOORS LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES¹ (Cont'd)

(All Doors except A55, A57, C20, C26, A101, A105, A216, and A217)

Mechanical Parts

		Allowable Stress	<u>es (psi)</u>
<u>No.</u>	Load Combinations	Tension and Compression ²	Shear
	Doors Open or Closed		
I	DL + Load from door closers	F _u /5	2 F _u /15
II	DL + B + load from door closers DL + OBE + load from door closers Doors Closed	0.90 Fy 0.60 Fy	0.60 Fy 0.40 Fy
III ³	DL + 3-psi pressure (bidirectional where applicable)	0.90 F _y	0.60 F _y
IV ⁴ V ⁵	DL + E+ 2-psi toward annulus DL + OBE + 2-psi toward annulus DL + 3 inches of water pressure on either side of door	0.90 F, 0.60 Fy F _u /5 Fy	0.60 F. <i>0.40</i> F. 2 F _u /15
VI ⁶	DL + Flood to elevation 738.6	0.90 F _y	0.60 F _y
<u> </u>	The greater of OBE or SSE loads:		

1. Thermal load effects are insignificant and hence need not be considered in the design of doors.

2. The values indicated for the allowable compression stresses are the maximum values permitted, when buckling does not control. The critical buckling stress, $F_{\rm cr}$, shall be used in place of $F_{\rm y}$ when buckling controls.

$$F_{cr} = F_{Y} \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2 C_{c}^{2}} \right] when \frac{kl}{r} \leq C_{c}$$

or

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2}$$
 when $\frac{Kl}{r} > c_c$

- 3. Applies to all doors except A64, A65, A77, A78, A56, A60, A111, A113, A114, A117, A118, A122, A125, A130, A133, A151, A160, A162, A183, A192, A206, A207, A208, A209, A212, A213, C37, C49, C50, C53, C60, DE1, DE4 and DE5.
- 4. Applies to doors A64, A65, A77, and A78 only.
 5. For doors A56, A60, A65, A78, A94, A99, A111, A113, A114, A122, A123, A125, A130, A132, A133, A151, A152, A159, A160, A161, A162, A183, A125, A130, A132, A133, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A160, A161, A162, A183, A155, A150, A151, A152, A159, A150, A151, A152, A151, A151, A152, A151, A151 A192, A206, A207, A208, A209, A212, A213, A214, A215, DE1, DE4, and DE5, the load combination is: DL + 1/2" water pressure on either side of door. For doors C36, C37, C49, C50, C53, C54, and C60, the load combination is:

DL + 1/8" water pressure on either side of door.

6. Applies to doors A65 and A78 only.

TABLE 3.8.4-7

(Sheet 3 of 5)

PRESSURE CONFINING PERSONNEL DOORS AND ALLOWABLE STRESSES¹ (Cont'd) LOADING COMBINATIONS, LOADS

(Doors A55, A57, C20, C26, A101, and A105)

Structural Parts

		A1	lowable Stresse	<u>s (ps1)</u>
<u>No.</u>	Load Combinations	Tension	Compression ²	Shear
	Doors Open			
I	DL + Load from Door Closers	0.50 F _y	0.47 F _y	0.33 F _y
ΪΪ	DL + E + Load from Door Closers DL + OBE Load from Door Closers Doors Closed	0.90 Fy 0.60 Fy	0.90 F _y 0.60 F _y	0.60 Fy 0.40 Fy
III ³	DL + CCWS flood + E + 3-psi pressure (bidirectional where applicable)	0.90 F _y	0.90 F _y	0,60 F _y
IV ⁴	DL + E+ Pressure (from valve rooms) DL + OBE + Pressure from valve rooms	0.90 F _y 0.60 F _y	0.90 F _y <i>D.60 F_y</i>	0.60 F _y <i>0.40</i> Fy
- <u>F</u>	The greater of OBE or SSE loads.	ŕ		/

- 1. Thermal load effects are insignificant and hence need not be considered in the design of doors.
- 2. The values indicated for the allowable compression stresses are the maximum values permitted, when buckling does not control. The critical buckling stress, $F_{\rm cr}$, shall be used in place of $F_{\rm y}$ when buckling controls.

$$F_{cr} = F_{Y} \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2 C_{c}^{2}} \right] when \frac{kl}{r} \leq C_{c}$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2} \text{ when } \frac{Kl}{r} > c_c$$

- 3. The CCWS flood condition does not apply to doors A101 and A105, and differential pressure load due to tornado need not be considered simultaneously with seismic load.
- 4. Applies to doors A101 and A105 only.

TABLE 3.8.4-7

(Sheet 4 of 5)

PRESSURE CONFINING PERSONNEL DOORS LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES¹ (Cont'd)

(Doors A55, A57, C20, C26, A101, and A105)

Mechanical Parts

		Allowable Stress	<u>es (psi)</u>
<u>No.</u>	Load Combinations	Tension and Compression ²	Shear
	Doors Open		
Ι.	DL + Load from door closers	F _u /5	2 F _u /15
II	DL + E + load from door <u>Closers</u> DL + OBE + load from door closers <u>Doors Closed</u>	0.90 Fy D.60 Fy	0.60 Fy <i>D.</i> 40 Fy
III ³	DL + CCWS flood + 3-psi pressure (bidirectional where applicable)	0.90 F _y .	0.60 F _y
IV ⁴	DL + E + Pressure from Valve room) DL + OBE + Pressure from Valve room - The greater of OBE or SSE loads.	0.90 Fy D.60 Fy	0.60 Fy . D.40 F y

- 1. Thermal Load effects are insignificant and hence need not be considered in the design of doors.
- 2. The values indicated for the allowable compression stresses is the maximum value permitted, when buckling does not control. The critical buckling stress, $F_{\rm cr}$, shall be used in place of $F_{\rm y}$ when buckling controls.

$$F_{cr} = F_{Y} \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2 C_{c}^{2}} \right] when \frac{kl}{r} \leq C_{c}$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2}$$
 when $\frac{Kl}{r} > c_c$

- 3. The CCWS flood condition does not apply to doors A101 and A105, and differential pressure load due to tornado need not be considered simultaneously with seismic load.
- 4. Applies to doors AlOl and AlO5 only.

TABLE 3.8.4-7

(Sheet 5 of 5)

PRESSURE CONFINING PERSONNEL DOORS LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES¹ (Cont'd)

(Doors A216 and A217)

Structural Parts

		Allowable Stresses (psi)		
<u>No.</u>	Load Combinations	Tension	<u>Compression²</u>	Shear
I	DL + P	0.50 F _y	0.47 F _y	0.33 F _y
11 11	DL + P + E SSE DL + P + OBE	0.90 Fy 0.60 Fy	0.90 Fy 0.60 Fy	0.60 Fy <i>0.40 Fy</i>

		mechani	cal raits	
•	1			• • •

		Allowable Stresse	<u>es (psi)</u>
<u>No.</u>	Load Combinations	Tension and Compression ²	Shear
I	DL + P	$F_u/5$.	2 F _u /15
II III E	DL + P + E- SSE DL + P + OBE - The greater of OBE or SSE loads.	0.90 Fy 0.60 Fy	0.60 Fy 0.40 Fy

DL - Stresses generated by dead loads and door closer loads.

- P Stresses generated by a pressure differential of 1/2 inch of water acting to open doors.
- 1. Thermal Load effects are insignificant and hence need not be considered in the design of doors.
- 2. The values indicated for the allowable compression stresses is the maximum value permitted, when buckling does not control. The critical buckling stress, F_{cr} , shall be used in place of F_y when buckling controls.

$$F_{cr} = F_{Y} \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2 C_{c}^{2}} \right] when \frac{kl}{r} \leq C_{c}$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2} \text{ when } \frac{Kl}{r} > c_c$$

TABLE 3.8.4-13

DIESEL GENERATOR BUILDING DOORS AND BULKHEADS

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

Structural Parts

.. ...

		<u>Allowable</u>	<u>Stresses (psi)</u>
<u>No.</u>	Load Combinations	Tension and Compression ⁽⁴⁾	Shear
	Door Open or Closed		
I	Dead load	0.6 F _y	$0.4 F_y$
II	Dead load plus <u>ECC</u> SSE	0.9 F _y	0.6 Fy
<u>I</u> kh-	Dead load plus OBE	0.6 Fy	0.4 14
		Allouphlo Str	
		Tongion and	<u>esses (psi)</u>
<u>No.</u>	Load Combinations	Compression ⁽⁴⁾	Shear
	Door Open or Closed		
I	Dead load	Ult 5	<u>2 x Últ</u> 15
	Door Closed		
	Dead load plus <u>E(1)</u> SSE Dead load plus OBE	0.9 Fy 0.6 Fy Bulkboads	0.6 Fy D.4 Fy
		Alloweble	()
		Allowable	<u>Stresses</u>
<u>No.</u>	Load Combinations	Concrete	Steel
I	Dead Load	1.0 ACI 318	1.0 ACI 318
II	Dead Load plus Wind ⁽²⁾ or OBE	1.0 ACI 318	0.5 F _y
III	Dead Load plus <u>E(1)</u> SSE	1.67 ACI 318	0.9 F _y
IV	Dead Load plus Tornado ⁽²⁾	(3)	(3)
Notes	:		
(1)	Acts in one horizontal direction vertical and horizontal direction	only at any given t s simultaneously.	ime and acts in
(2)	The steel doors and steel bulkhea rain, tornado, and wind and torna	ds are protected fro do missiles by preca	om wind, snow, ice, ast concrete
(3)	The structure may be allowed to y considering impactive loads from	ield for load combin missiles.	nation IV when
(4)	The value given for allowable com	pression stress is	the maximum value
	buckling controls.	control. The critical	buckling stress, F.
	$F_{cr} = F_y \begin{bmatrix} -\frac{(K_1)^2}{2C_{c2}} \end{bmatrix}$ when $\frac{K_1}{F}$	≤ C _c	
	$F_{cr} = \frac{\pi^2 E}{\left(\frac{K_1}{r}\right)^2} \text{when } \frac{K_1}{r}$	> C _c	

i,

TABLE 3.8.4-21

SPENT FUEL POOL GATES

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

		<u>Allowable</u> Loadir	Stresses lb/in ² ng Conditions
<u>No.</u>	Load Combinations ⁽¹⁾	Bending	Shear
1	D+L	.6 F _y	.4 F _v
2	D+L+E ⁽²⁾ 0BE	.% F _y	4 F.
3	D+L+W	.6 F _y	.4 F _y
4	D+L+T _o +R _o + E⁽²⁾ SSE	.9 F _y	.6 F _y
5	$D+L+T_o+R_o+W_t$.9 F _y	.6 F _y
6	$D+L+T_a+R_a+P_a$.9 F _y	.6 F _y

Notes:

(1) $T_o, R_o, T_a, R_a, P_a = 0$

· (2) E - The greater of OBE or SSE loads.

TABLE 3.8.4-23

(Page 1 of 2)

WATERTIGHT EQUIPMENT HATCH COVERS

LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

			Allowabl	e Stresses (ps	;i)
No.	Load Combination	Tension	Compress	ion*	Shear
Hatch Closed					
I	D + 200 psf live load	0.6Fy	0.6	Fy	0.4Fy
II	$D + L_1$	0.9Fy	0.9	Fy	0.6Fy
¥ X	$D + L_2$ $D + L_2 + OBE$ $D + L_2 + E SSE$	0.9Fy 0.6Fy 0.9Fy	0.9 0.6 0.9	Fy • Fy Fy	0.6Fy 0.4F, 0.6Fy

Where:

D - Dead Loads or their related internal moments and forces including permanent equipment

			F
	L_1	-	Live Load due to flood to El 711.0
	L_2	-	Live Load due to pressure of 3 psi from below
5	OBE	-	Loads due to the operating basis earthquake
	SSE	-	Loads due to the safe shutdown earthquake
-	E		-Maximum of OBE or SSE

.

The value indicated for the allowable compression stresses is the maximum value permitted when buckling does not control. The critical buckling stress, F_{cr} shall be used in place of Fy when buckling controls.

 $F_{cr} = F_{r} \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2 C_{c}^{2}} \right]$ when $\frac{kl}{r} \leq C_{c}$

or

 $F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2}$ when $\frac{Kl}{r} > c_c$

TABLE 3.8.6-1

(Sheet 1 of 3)

POLAR CRANES LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

<u>No.</u>	Load Combinations	Allowable Stress	ses (psi)
		Tension	<u>Compres</u> <u>Shear</u> <u>sion</u> ⁽²⁾
	Ī	Bridge Structure	
I	Dead Live Impact Trolley tractive	0.50 F _y	0.48 F _y 0.33 F _y
II	Dead Live Impact Bridge tractive	0.50 F _y	0.48 F _y 0.33 F _y
III	Dead Live Trolley collision	0.62 F _y	0.59 F _y 0.41 F _y
IV	Dead Trolley weight Stall at 275% capacity	0.90 F _y	0.90 F _y 0.50 F _y
v	Dead Live at 100% capacity <u>-E⁽¹⁾</u> SSE	0.90 Fy	0.90 F _y 0.50 F _y

TABLE 3.8.6-1

(Sheet 3 of 3)

POLAR CRANES (Cont'd) LOADING COMBINATIONS AND ALLOWABLE STRESSES LOADS

<u>No.</u>	Load Combinations	Allowable Str	<u>cesses (psi)</u>
		<u>Tension and Compression (2)</u>	Shear
	<u>Wheel Axles and Co</u>	nnecting Pins (Continued)	
III	Dead Stall at 275% capacity	0.40 F _Y	0.50 F _Y
IV	Dead Live at 100% capacity ـدرنان SSE	0.90 F _Y	0.50 F _Y

Notes:

- (1)Acts in one horizontal direction at any given time and acts in the vertical and horizontal directions simultaneously. - E - The greater of -OBE or SSE loads.
- (2) The value given for allowable compression stress is the maximum value permitted, when buckling does not control. The critical buckling stress, F_{cr} , shall be used in place of $F_{\rm Y}$ when buckling controls.

$$F_{cr} = F_{Y} \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2 C_{c}^{2}} \right] when \frac{kl}{r} \leq C_{c}$$

or $F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2}$ when $\frac{Kl}{r} > c_c$

(3)

For sheave frames, cross girts, and their respective connections

For all other members (4)

TABLE 3.8.6-2

(Sheet 1 of 3)

AUXILIARY BUILDING CRANE LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES

<u>No.</u>	Load Combinations		<u>Allowable Stres</u>	sses (psi)
		<u>Tension</u>	Compression ⁽²⁾	Shear
		<u>Bridge Structure</u>		
I	Dead Live Impact Trolley tractive	0.50 F _y	0.48 Fy	0.33 F _y
II 	Dead Live Impact Bridge tractive	0.50 Fy	0.48 Fy	0.33 F _y
III	Dead Live Trolley collision	0.62 F _y	0.59 F _y	0.41 F _y
IV	Dead Live Bridge collision	0.62 F _y	0.59 F _y	0.41 F _y
v	Dead Trolley weight Stall at 275% capad	0.90 F _y	0.90 F _y	0.50 F _y
VI	Dead Live at 100% capaci <u>-p(1)</u> SSE	0.90 F _y ity	0.90 F _y	0.50 F _y

TABLE 3.8.6-2

(Sheet 3 of 3)

AUXILIARY BUILDING CRANE LOADS, LOADING COMBINATIONS, AND ALLOWABLE STRESSES (Cont'd)

No.	Load Combinations	Allowable S	<u>tresses (psi)</u>
	Ī	ension and Compression ⁽²⁾	Shear
	Wheel Axles and Connec	ting Pins (Continued)	•
IV	Dead Live at 100% capacity - <u>E⁽¹⁾. SSE</u>	0.9 ^F Y	0.50 F _Y

Notes:

- (1) Acts in one horizontal direction at any given time and acts in the vertical and horizontal directions simultaneously. <u>-E - The greater of</u><u>OBE or SSE loads</u>.
- (2) The value given for allowable compression stress is the maximum value permitted, when buckling does not control. The critical buckling stress, F_{cr} , shall be used in place of FY. Then buckling controls,

$$\mathbf{F}_{cr} = \mathbf{F}_{\mathbf{Y}} \left[\mathbf{1} - \frac{\left(\frac{\mathbf{K}\mathbf{l}}{\mathbf{r}}\right)^2}{2 \mathbf{C}_c^2} \right] \text{ when } \frac{k\mathbf{l}}{\mathbf{r}} \leq \mathbf{C}_c$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{Kl}{r}\right)^2} \text{ when } \frac{Kl}{r} > c_c$$

(3) For sheave frames, cross girts, and their respective connections

(4) For all other members

TABLE 3.8E-1

(Sheet 1 of 2)

LIMITING VALUES OF ALLOWABLE STRESS

Loading <u>Combinations</u>	Tension on <u>Net Section</u>	Shear on Gross <u>Section</u>	Compression on <u>Section</u>	Bending
(1), (2), (3)	0.60Fy	0.40F _y	See Note 1	See Note 2
(la), (2a), (3a) (4) through (9)	0.90Fy	<u>0.90F</u> y √3	See Note 3	0.90Fy

Note 1 - Varies with slenderness ratio, see AISC "Manual of Steel Construction," 7th Edition, Table 1-36, Page 5-84.

Note 2 - Varies, see Section 1.5.1.4, "Bending", of Item 3.8E.1.b

ليستنجى والمردا المحاد فتصبينهم الرماطية بالالجور ساجو مراجعتهم والالمأج مصاطر المتمار والسيار والم

Note 3 - Varies with slenderness ratio. The allowable stress was obtained from AISC Specification Section 1.5, using formula 1.5-1 or 1.5-2 and 1.5-3 with modifications, as shown below:

Main and secondary members where $Kl/r \leq C_c$: $F_a = 0.9 F_y \left[1 - \frac{(Kl/r)^2}{2C_c^2} \right]$ (Formula)

الي. 1. موجد وياريند الدمينية بيمور عنه دران الماضي والارد

Main members where
$$C_c < K\ell/r < 200$$
: $F_a = \frac{0.9\pi^2 E}{\left(\frac{K\ell}{r}\right)^2}$ (Formula (B))

Secondary members where $120 < K\ell/r \le 200$: $F_{as} = \frac{F_a[by \text{ Formula (A) or (B)}]}{1.6 - \frac{\ell}{200r}}$

Where:

 $C_{\rm C} = \sqrt{\frac{2\pi^2 E}{F_{\rm v}}}$

E - Modulus of elasticity of steel (29,000 kips per square inch)

ENCLOSURE 3

WATTS BAR NUCLEAR PLANT UNITS 1 AND 2 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION FSAR CHAPTER 3, AMENDMENT 79

LIST OF COMMITMENTS

ENCLOSURE 3

WATTS BAR NUCLEAR PLANT UNITS 1 AND 2 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION FSAR CHAPTER 3, AMENDMENT 79

COMMITMENT LIST

Proposed FSAR revisions as a result of the response to NRC Concern 5.c and additional proposed FSAR changes concerning buckling stress (NRC Concern 5.d), will be incorporated in Amendment 89.

DRP-013

PROPRIETARY INFORMATION

NOTICE

THE ATTACHED DOCUMENT CONTAINS OR IS CLAIMED TO CONTAIN PROPRIETARY INFORMATION AND SHOULD BE HANDLED AS NRC SENSITIVE UNCLASSIFIED INFORMATION. IT SHOULD NOT BE DISCUSSED OR MADE AVAILABLE TO ANY PERSON NOT REQUIRING SUCH INFORMATION IN THE CONDUCT OF OFFICIAL BUSINESS AND SHOULD BE STORED, TRANSFERRED, AND DISPOSED OF BY EACH RECIPIENT IN A MANNER WHICH WILL ASSURE THAT ITS CONTENTS ARE NOT MADE AVAILABLE TO UNAUTHORIZED PERSONS.

COPY NO.	
DOCKET NO.	
CONTROL NO.	
REPORT NO.	
REC'D W/LTR DTD.	

NRC FORM 190 (1-94) NRCMD 3.12

PROPRIETARY INFORMATION