Westinghouse Non-Proprietary Class 3 LTR-NRC-07-61-NP-Attachment

Westinghouse FULL SPECTRUM LOCA STATUS UPDATE Considered Statistical Approach for Treatment of Uncertainties in FSLOCA Methodology

December 3, 2007

Westinghouse Electric Company LEC P.O. Box 355 Pittsburgh: PA=15230-0355 © 2007 Westinghouse Electric Company LLC All Rights Reserved

Rev. 0

Meeting Objectives

- Update NRC Staff on Full Spectrum LOCA Development Status
- Focus on Uncertainty Methodology →
 Statistical Treatment of Uncertainties
- Obtain NRC Staff Feedback

Meeting Agenda – 12/03/2007

1:00 - 1:30

– Introductions (W and NRC)

- Recap from prior meetings and status (Nissley)

1:30 - 3:30

Overview of Considered Statistical Approach (Frepoli)

- Review of ASTRUM approach and FSLOCA considerations
- Objectives/Functional Requirements for FSLOCA
- Overview of the new methodology
- Preliminary testing of the method

3:30 – 4:00 Discussion (All)

Update NRC Staff on Full Spectrum LOCA Development Status

Mitch Nissley

FSLOCA – Scenario Description

FSLOCA Scenario

a,c

Focus of Prior Meetings

- December 13, 2005
 - Drivers
 - Integrated PIRT approach
 - Code selection
 - Assessment matrix

Focus of Prior Meetings

- October 18, 2006
 - Code development update
 - Assessment matrix update
 - Mapping of tests to PIRT
 - Intent to focus on ROSA for integral effects
 - Outline of submittal

Focus of Prior Meetings

- June 11-12, 2007
 - PIRT review of selected highly ranked phenomena
 - Code development update
 - Code assessment status

Focus of This Meeting

- Statistical Methods for Estimating Figures of Merit at 95/95
 - Dramatic improvement over order statistics

inghouse

- New to US reactor licensing

Status of Overall Program

- Code Development
 - Near completion
 - Current version features
 - Expect one more frozen version prior to submittal (Jan-Feb 2008)
 - Additional features

Status of Overall Program

- Code Assessment
 - Formal Engineering Reviews to be completed in December 2007
 - Review teams of 10-12 peers
 - Final assessments will be performed with final frozen code version

Status of Overall Program

- Uncertainty Methodology
 - Physical model ranging based on PIRT, code assessment results
 - Plant operating conditions based on parameters known to influence LOCA results (ICs, BCs)

Approach & theory follow

a,c

Projected Submittal Schedule

- Volumes 1 & 2 April 2008
 - Models and correlations
 - Code assessment results
- Volumes 3 & 4 July 2008
 - Uncertainty methodology
 - Demonstration plant analyses
- Schedule to be finalized at the pre-submittal meeting

Overview of Considered Statistical Approach

Cesare Frepoli

Outline

- Review the lessons learned from licensing and use of the ASTRUM methodology
- Review of Regulatory Guides
- FSLOCA Uncertainty Method Functional Requirements
- Description of the method:
 - Generation of the Full Spectrum LOCA sample
 - Statistical method for the analysis
 - Compliance with 10 CFR 50.46 criteria
- Testing of the approach and discussion of results
- Conclusions

Lesson Learned from ASTRUM Implementation

- Use of direct Monte Carlo methods for the treatment of uncertainties has proven several advantages when compared to response surface methods:
- ASTRUM approach addressed disadvantages of responses surface methods identified in Appendix A of RG 1.203:
 - "dependency of the number of computer simulations on the number of phenomena or processes determined in the PIRT that may be needed to estimate the total uncertainty"
 - "cross-product runs must be made when several of the phenomena or processes have significant covariance"

Lesson Learned From ASTRUM Implementation (cont'd)

- ASTRUM is considered a rather conservative approach in addressing compliance with the three 10 CFR 50.46 criteria:
 - A singular uncertainty statement was required to address three independent variables: PCT, MLO, and CWO
 - The maximum value of PCT, MLO, and CWO within a sample of 124 runs have been selected as bounding "estimators" of the 95th percentile for each of the variables with 95% probability.
 - According to Guba-Makai (2003), the sample size requires up to 124 runs in the sample.
 - No statements with regard to the correlation between the MLO/CWO and PCT are required/needed.

Lesson Learned From ASTRUM Implementation (cont'd)

-.

a,c

Lesson Learned From ASTRUM and ASTRUM-FS Objective

FSLOCA Statistical Treatment of Uncertainty Method - Objectives/Functional Requirements

Statistical Treatment of Uncertainty Method in Full Spectrum LOCA (ASTRUM-FS)

Westinghouse

21

Overview of FSLOCA Statistical Treatment of Uncertainty Method (ASTRUM-FS)

Overview of FSLOCA Statistical Treatment of Uncertainty Method (ASTRUM-FS) – cont'd

23

PART I – Sample Generation Overview

- Sample Generation
 - Main Objective: Generate a sufficient sample to allow a stable and robust estimate of the 95/95 PCT and MLO
- Fundamental Considerations
 - Treatment of Break Size
 - Treatment of LOOP/NO-LOOP

Treatment of Break Size General Considerations

Westinghouse

25

Treatment of Break Size General Considerations (cont'd)

Treatment of Break Size FSLOCA Approach

Treatment of Break Size FSLOCA Approach - Benefits

Westinghouse

28

Treatment of Break Size FSLOCA Practical Implementation

Treatment of Break Size FSLOCA Practical Implementation

Westinghouse Westinghouse

Treatment of Offsite Power Availability General Considerations

Treatment of Offsite Power Availability Treatment for LB region

a,c

Treatment of Offsite Power Availability Treatment for LB region (cont'd)

Part I - Sample Generation Conclusions

34

Part II - Statistical Analysis and 95/95 Statements

a,c

Part II - Statistical Analysis and 95/95 Statements (cont'd)

a.c
Part II - Statistical Analysis

Part II - Statistical Analysis

a,c ·

a,c

Westinghouse

Part II - Statistical Analysis

_____a,c

]a,c

Part II - Statistical Analysis

Part II - Statistical Analysis

a,c

Part II - Statistical Analysis

] a,c

Part II - Statistical Analysis

Westinghouse

Part II - Statistical Analysis and 95/95 Statements

Part II - Statistical Analysis 95/95 Statements

45

Westinghouse

Part II - Statistical Analysis Q95 of the original sample

Westinghouse

Part II - Statistical Analysis Confidence Level

Part II - Statistical Analysis 95/95 Statements

Part II - Statistical Analysis and 95/95 Statements - Conclusions

PART III – Feasibility Studies and Preliminary Demonstration

a.c

estinghouse

Test Model Definition Surrogate PCT Generator Model

Test Model Definition Nominal PCT Model + Noise

Test Model Definition Surrogate PCT Models

Westinghouse

Simulation Analysis on Test Model General Considerations

Simulation Analysis on Test Model Main Results – TM#1

Simulation Analysis on TM#1

a,c

a,c

56

Simulation Analysis on TM#1

ja,c

Simulation Analysis on TM#1

_____a,c

ASTRUM-FS

Simulation Analysis on TM#1

a,c

Simulation Analysis on TM#1

a,c

a,c

60

Results From Test Model #1.1

a,c

a,c

61

Simulation Analysis on Test Model Main Results – TM#1.1

Westinghouse

Simulation Analysis on TM#1.1 _____ a,c

Simulation Analysis on TM#1.1

a,c

la,c

Simulation Analysis on TM#1.1

a.c

Simulation Analysis on TM#1.1

a,c

a,c

66

PART III – Feasibility Study on TM#1 & #1.1 Conclusions

PART III – Feasibility Study on TM#1 & #1.1 Conclusions

PART IV – Planned Studies and Models

69

Other Planned Test Models Objectives

PART V - Other Considerations/Positions Break Type Position

Westinghouse

ASTRUM-FS

71

PART V - Other Considerations/Positions Core Wide Oxidation Position

Westinghouse Non-Proprietary Class 3

Conclusions

a,c