	Survey	Unit Release R	ecord	
Design #	EP-Rx 151D	Revision #	Original	Page 1 of 3
Survey Unit #(s)		J	Rx 151D	
Description	2) EP RX 151D is Survey Plan (FSS) 3) Surveys in EP optimized to measure sample #EP 2-1 decision. 4) Survey Instruction accordance with Work Execution document constitution of surveys in SI/LVS-002, W	or Plum Brook Reads a Class 1, Group SP) and Technical BRX 151D were pensure gamma energy from Survey Requestions for this survey th (IAW) the Babo Package (WEP) 05 tute "Special Method revey measurements iciency determination."	2 survey unit as Basis Document formed using a ies representative est (SR)-13 was by unit are incorpock Services Incorpock Services Incorpock Survey in ods" and the survey in ods are developdeterminations are developdeterminations are developded.	s per the PBRF Final State t (TBD)-06-004. scintillation detector we of Co-60. referenced for this porated into and performe corporated (BSI)/LVS-00 astructions described in the every design used in the
	Approval Sign	atures		Date:
FSS/Characterizatio	n Engineer	Duago	(10-31-07
Technical Rev (FSS/Characterizatio		John	7	10/31/07
FSS/Characterizatio		Fl. Case	2	10/3/100

Form CS-09/1 Rev 0

FSS Design # EP Rx 151D	Revision # Original	Page 2 of 3
Survey Unit: Rx 151D		1

1.0 History/Description

- 1.1 The subject pipe system is a 0.75" spare drain line for Quad "B".
- 1.2 EP RX 151D is 15 feet in length.
- 2.0 Survey Design Information
 - 2.1 EP RX 151D was surveyed IAW Procedure #BSI/LVS-002.
 - 2.2 100% of the 0.75" pipe was accessible for survey. This accessible 0.75" pipe was surveyed by static measurement in one foot increments, for a total of 15 survey measurements.
 - 2.3 Surface area for the 0.75" piping is 182 cm² for each foot of piping, corresponding to 2,73 cm² for the 15' of 0.75" piping.
 - 2.4 Total surface area for EP RX 151D is 0.27 m².
- 3.0 Survey Unit Measurement Locations/Data
 - 3.1 Pipe interior radiological survey forms are provided in Attachment 2 of this release record.
- 4.0 Survey Unit Investigations/Results
 - 4.1 None
- 5.0 Data Assessment Results
 - 5.1 Data assessment results are provided in the EP/Buried Pipe (BP) Survey Report provided in Attachment 1.
 - 5.2 All measurement results are less than the Derived Concentration Guideline Level (DCGL) for radionuclide specific EP that corresponds to the 1 mrem/yr dose goal established in Table 3-3 of the FSSP.
 - 5.3 When implementing the Unity Rule, provided in Section 3.6.3 of the FSSP, and applying the Nuclide Fraction (NF), provided in TBD-06-004, the survey unit that is constituted by EP RX 151D passes FSS.
 - 5.4 Background was not subtracted from the survey measurements and the Elevated Measurement Comparison (EMC) was not employed for this survey unit.

FSS Design # EP Rx 151D	Revision # Original	Page 3 of 3
Survey Unit: Rx 151D		

5.5 Statistical Summary Table

Statistical Parameter	0.75" Pipe
Total Number of Survey Measurements	15
Number of Measurements >MDC	12
Number of Measurements Above 50% of DCGL	0
Number of Measurements Above DCGL	0
Mean	0.042
Median	0.040
Standard Deviation	0.009
Maximum	0.058
Minimum	0.025
the state of the s	

- 6.0 Documentation of evaluations pertaining to compliance with the unrestricted use limit of 25 mrem/yr and dose contributions from Embedded Pipe and radionuclides contributing 10% in aggregate of the total dose for both structural scenarios and soils.
 - A review of the survey results has shown that the dose contribution for EP Rx 151D to be less than 1 mrem/yr. The dose contribution is estimated to be 0.042 mrem/yr based on the average of the actual gross counts.

7.0 Attachments

Attachment 1 – BSI EP/BP Survey Report

Attachment 2 - Pipe Interior Radiological Survey Form

Attachment 3 - DQA Worksheet

Attachment 4 - Disc containing RR for EP Rx 1.51D & Spreadsheet

SECTION 7 ATTACHMENT 1 2 PAGES

Pipe ID	RX 151D	Survey Location	-27' Trench Spare Dra
Survey Date	29-Oct-07	2350-1 #	203468
Survey Time	1558	Detector-Sled #	0047-no sled
Pipe Size	0.75"	Detector Efficiency	0.00066
DCGL (dpm/100cm2)	2.41E+05	Pipe Area Incorporated by Detector Efficiency (in cm2)	182
Pipe Area Incorporated by Survey Data (m²)	0.3	Field BKG (cpm)	8.8
Routine Survey	х	Field MDCR (cpm)	13.2
QA Survey		Nominal MDC (dpm/100cm2)	8,442
	Easy III Milk associate	Survey Measurement Results	10.47
		Survey Measurements	15
		asurements >MDC	12
	0		
	0		
	N	Mean	0.042
	- M	edian	0.040
	Standar	d Deviation	0.009
	Ma	ximum	0.058
	Mir	nimum	0.025
Survey Te	chnician(s)	FOWLER	
		t Classification	1
		4 Piping Group	2
		le Distribution Sample	EP 2-1
	Model	red Nuclide	Co-60
	WWW. 1922 C. T. 975.04	or/EMC Used	No
		Fail FSS Contribution	Pass <1
OMMENTS:	NOT BACKGROUNE		

EP RX 151D 0.75" Pipe TBD 06-004 Group 2

Measurement #	gcpm	ncpm	Co-60 activity (total dpm)	Co-60 activity (dpm/100cm2)	Cs-137 activity (dpm/100cm2)	Eu-152 activity (dpm/100cm2)	Eu-154 activity (dpm/100cm2)	Nb-94 activity (dpm/100cm2)	Ag-108m activity (dpm/100cm2)	Unity
1	10	10	15,152	8,306	4,307	69	49	4	239	0.036
2	7	7	10,606	5,814	3,015	48	34	3	167	0.025
3	14	14	21,212	11,629	6,030	96	68	6	335	0.050
4	16	16	24,242	13,290	6,891	110	78	6	382	0.058
5	14	14	21,212	11,629	6,030	96	68	6	335	0.050
6	13	13	19,697	10,798	5,599	90	63	5	311	0.047
7	13	13	19,697	10,798	5,599	90	63	5	311	0.047
8	15	15	22,727	12,459	6,461	103	73	6	359	0.054
9	11	11	16,667	9,137	4,738	76	53	4	263	0.040
10	10	10	15,152	8,306	4,307	69	49	4	239	0.036
11	14	14	21,212	11,629	6,030	96	68	6	335	0.050
12	11	11	16,667	9,137	4,738	76	53	4	263	0.040
13	9	9	13,636	7,476	3,876	62	44	4	215	0.032
14	10	10	15,152	8,306	4,307	69	49	4	239	0.036
15	9	9	13,636	7,476	3,876	62	44	4	215	0.032
									MEAN	0.042
									MEDIAN	0.040
									STD DEV	0.009
									MAX	0.058
									MIN	0.025

SECTION 7 ATTACHMENT 2 3 PAGES

Pipe Interior Radiological Survey Form

Date: 10-29-07 Time: 15	58
Pipe ID#: R 1510 Pipe Diameter: 5	Access Point Area: Pamp Rm Trunch System: Puntrution
Type of Survey Investigation Characterizat	ion Final Survey Other \
Gross Co60 <u>\</u>	Cs
Detector ID# / Sled ID# F0/1.5 LX / OOH	7 / No Styd
	tector Cal Due Date: 9-14-08
Instrument: 2350-1	Instrument ID #: 203468
	rument Cal Due Date: 9 -14-08
From the Daily Pipe Survey Detector Control Form fo	r the Selected Detector
Background Value 8.8 cpm	n e
MDCR _{static} 13, 2 cpm	
Efficiency Factor for Pipe Diameter	(from detector efficiency determination)
MDC _{static} 8442 dpm/ 100	cm ²
Is the MDC _{static} acceptable? Yes No	if no, adjust sample count time and recalculate MDCR _{static})
Comments: Post Ducen	
EP 2-1	
Technician S	ignature R7mh

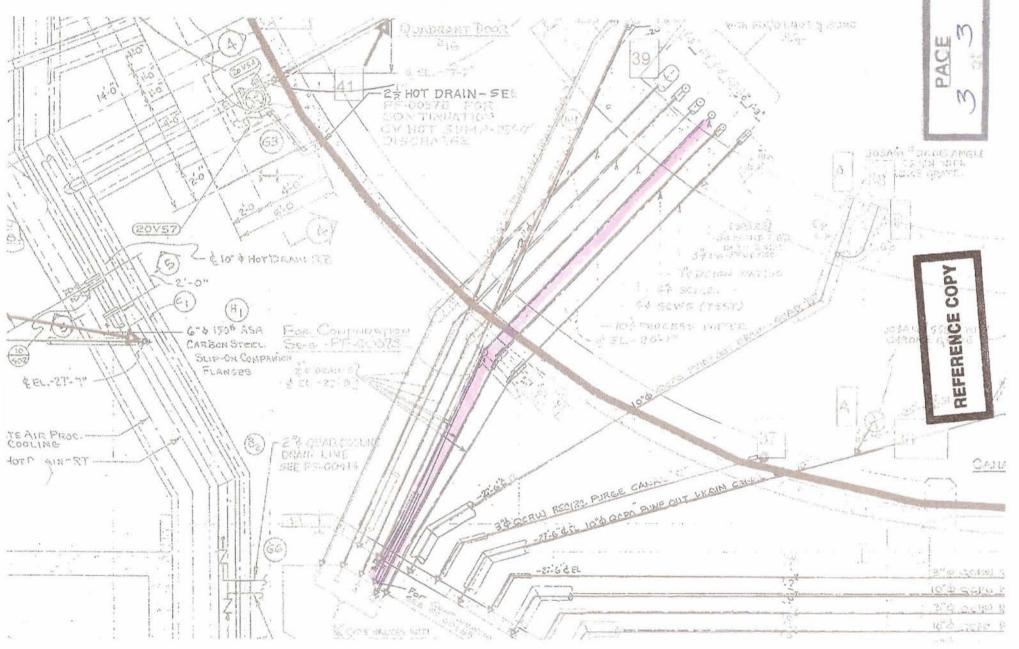
Pipe Interior Radiological Survey

Position #	Feet into Pipe from Opening	Count Time (min)	Gross Counts	Gross cpm	Net cpm	dpm/100cm ²
1	1	1	10	10	nia	nla
2	2		7	7		
3	3		19	14		
4	ч		16	16		4
5	5		14	14		
6	C.		13	13		
7	7		13	1.3		
8	8		12	15		
9	Š			11		
10	10	V	10	16		1

Package Page 1 of 3

Pipe Interior Radiological Survey Form (Continuation Form)

10-29-07 Pipe Diameter: ,75"
Elevation: -27' Pipe ID#: Building:


Access Point Area: Pump Rm Truch
System: Renotration

Position #	Feet into Pipe from Opening	Count Time (min)	Gross Counts	Gross cpm	Net cpm	dpm/100cm
11	1)	1	14	14	na	nla
12	12	1	1)	11		
13	13		7	9		
14	13) 0	σl		
15	12		9	0/	1	1
\		N	•	'	7	
1						
	1.			14		
		-				
				3676 - S- 177W		
1.		/				
				YE		
	-		 			-
			A			
			1			
			/ V			
			1			W
			(4)			
						_
	3110-11-					1

Package Page Z of 3

R 1510

SECTION 7 ATTACHMENT 3 1 PAGE

	14.7			DQA Check	Sheet	041		
	Design #	EP RX 151D	Revision #	Original				
S	urvey Unit #			EI	P RX 151D			
			Pre	liminary Data	Review`			
	Answers to	the following que	estions should Release		cumented in the Survey Unit	Yes	No	N/A
1.	Have surveys	been performed in a	accordance with	survey instructi	ons in the Survey Design?	Х		
2.		entation MDC for stro or below 0.5 DCGL _W			ow the DCGL _W for Class 1 and 2			х
3.	Is the instrume	entation MDC for em	bedded/buried p	piping static me	asurements below the DCGL _W ?	Х		
4.	embedded/bui		asurements below	w the DCGLw, o	soil scan measurements, and or, if not, was the need for additional ign?			х
5.	Was the instru	mentation MDC for	volumetric meas	urements and	smear analysis < 10% DCGL _W ?			Х
6.	Were the MDC used to perform	s and assumptions m the survey?	used to develop	them appropria	ate for the instruments and techniques	х		
7.	Were the surv media being s	х						
8.	Were "Special	Х						
9.	Is the data set design, which	x						
		Cample of the Colon Inc.	Gr	aphical Data	Review			
1.	Has a posting	plot been created?						Х
2.	Has a histogra	m (or other frequen	cy plot) been cre	ated?				Х
3.	Have other gra	aphical data tools be	en created to as	sist in analyzin	g the data?			Х
	or here was a			Data Analy	sis			4.114
1.	Are all sample	measurements belo	ow the DCGL _W (0	Class 1 & 2), or	0.5 DCGLw (Class 3)?	Х		
2.	Is the mean of	the sample data < [OCGL _W ?			Х		
3.					s the average activity in each 5 DCGL _w (Class 3)?			х
4.	Is the result of	the Elevated Measu	rements Test <	1.0?				Х
5.	Is the result of	the statistical test (\$	S+ for Sign Test	or W _r for WRS	Test) ≥ the critical value?			Х
Cor	nments:							
F	SS/Characteriza	ation Engineer (print	/sign)	WOODL	Madod	Date	10.3	1.07
F	SS/ Characteriz	ation Manager (print	/sign)	R. Case	7/148m	Date	10/	31/07

Form CS-09/2 Rev 0

SECTION 7 ATTACHMENT 4 1 DISC