RAS 14599

| U.S. N           | UCLEAR REEL     | LATORY COM       |            |
|------------------|-----------------|------------------|------------|
| in the Maller of | US Anny         | Jettisa          | Rain (200. |
| Dochet No. 40    | -8838MLA        | Official Exhibit | 10. 32     |
| OFFERED by       | Applicant/Licer | isee Intervenor  |            |
|                  | NRC Statt       | Other            |            |
| DENTIFIED or     |                 | Vitness/Panel_   |            |
| Action Taken:    | ADMITTED        | REJECTED         | WITHDRAW   |
| Reporter/Clerk   |                 |                  | _          |

# CONTROLLED BURN AIR SAMPLING TECHNICAL REPORT

FINAL August 2001

# **Prepared** for

Directorate of Safety, Health and Environment U.S. Army Garrison Aberdeen Proving Ground, Maryland

Prepared by

General Physics Corporation 500 Edgewood Road, Suite 110 Edgewood; Maryland 21040

GP-R-711E00060



DOCKETED USNRC

October 25, 2007 (2:00pm)

OFFICE OF SECRETARY RULEMAKINGS AND ADJUDICATIONS STAFF

Docket No. 40-8838-ML

TEMPLATE = SECY-027

SELY-02

# TABLE OF CONTENTS

| ACRO | IYMS AND ABBREVIATIONS                                                                                                                                                                    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0  | INTRODUCTION1                                                                                                                                                                             |
| 2.0  | BACKGROUND1                                                                                                                                                                               |
| 3.0  | OTHER STUDIES                                                                                                                                                                             |
|      | <ul> <li>3.1 Argonne National Laboratory 1998 Report</li></ul>                                                                                                                            |
| 4.0  | CONTROLLED BURN STUDY PARAMETERS4                                                                                                                                                         |
|      | 4.1Meteorological Conditions                                                                                                                                                              |
| 5.0  | CONTROLLED BURN EVENTS AND RESULTS                                                                                                                                                        |
|      | 5.1Main Front Range Controlled Burn – April 199985.2New O-Field Controlled Burn – December 1999105.3J-Field Controlled Burn – April 2000135.4Main Front Range Burn Attempt – April 200115 |
| 6.0  | RISK ANALYSIS                                                                                                                                                                             |
|      | 6.1 Risk Analysis                                                                                                                                                                         |
|      | <ul> <li>6.1.1 Maryland Toxic Air Pollutant Screening Levels</li></ul>                                                                                                                    |
|      | 6.2 Results of Risk-Based Screening                                                                                                                                                       |
|      | 6.3 Risk Calculations                                                                                                                                                                     |
| 7.0  | CONCLUSIONS                                                                                                                                                                               |
| 8.0  | REFERENCES                                                                                                                                                                                |

i

# TABLE OF CONTENTS (Continued)

| APPENDIX A<br>APPENDIX A-1 | Lockheed Martin Range Fire Sampling Trip Reports<br>O-Field Trip Report (July 2000) |
|----------------------------|-------------------------------------------------------------------------------------|
| APPENDIX A-2               | O-Field Trip Report – Burn 2 (July 2000)                                            |
| APPENDIX A-3               | J-Field Trip Report (July 2000)                                                     |
| APPENDIX B                 | Air Sampling Equipment Photographs                                                  |
| APPENDIX C                 | List of Analytes for the Aberdeen Proving Ground Controlled Burn Project            |
| APPENDIX D                 | Burn Event Photographs                                                              |
| APPENDIX D-1               | Main Front Controlled Burn – April 1999                                             |
| APPENDIX D-2               | New O-Field Controlled Burn – December 1999                                         |
| APPENDIX D-3               | J-Field Controlled Burn – April 2000                                                |
| APPENDIX E                 | Controlled Burn Data Tables                                                         |
| APPENDIX E-1               | Data Tables for the Main Front Controlled Burn – April 1999                         |
| APPENDIX E-2               | Data Tables for the New O-Field Controlled Burn - December 1999                     |
| APPENDIX E-3               | Data Tables for the J-Field Controlled Burn – April 2000                            |

# LIST OF TABLES

| Table 1. | APG Controlled Burn Sample Collection and Analysis Methods6 |
|----------|-------------------------------------------------------------|
| Table 2. | Calculated Range Fire RBCs18                                |

## LIST OF FIGURES

| Figure 1 | Location of Aberdeen Proving Ground                                 | 2  |
|----------|---------------------------------------------------------------------|----|
| Figure 2 | Range Areas Selected for Controlled Burns                           | 5  |
| Figure 3 | Main Front Controlled Burn Area and Sampling Locations - April 1999 | 9  |
| Figure 4 | New O-Field Controlled Burn Area – December 1999                    |    |
| Figure 5 | New O-Field Controlled Burn Sampling Locations                      | 12 |
| Figure 6 | J-Field Burn Area and Sampling Locations - April 2000               |    |

# ACRONYMS AND ABBREVIATIONS

| 411                | Annual Limit on Intoles                       |
|--------------------|-----------------------------------------------|
| ALI                | Annual Limit on Intake                        |
| ANL                | Argonne National Laboratory                   |
| APG                | Aberdeen Proving Ground                       |
| ATC                | Aberdeen Test Center                          |
| CFR                | Code of Federal Regulations                   |
| DAAMS              | Depot Area Air Monitoring System              |
| DAC                | Derived Air Concentration                     |
| DDT ´              | Dichlorodiphenyltrichloroethane               |
| DU                 | Depleted Uranium                              |
| ECBC               | Edgewood Chemical Biological Center           |
| EPA                | U.S. Environmental Protection Agency          |
| GC/ECD             | Gas Chromatography/Electron Capture Detector  |
| GC/FID             | Gas Chromatography/Flame Ionization Detector  |
| GC/FPD             | Gas Chromatography/Flame Photometric Detector |
| GC/MS              | Gas Chromatograph/Mass Spectrometer           |
| HPLC               | High Performance Liquid Chromatography        |
| HQ                 | Hazard Quotient                               |
| ICP                | Inductively Coupled Plasma                    |
| IRP                | Installation Restoration Program              |
| K-40               | Potassium-40                                  |
| MDE                | Maryland Department of the Environment        |
|                    | microgram                                     |
| μg                 | 6                                             |
| μg/m <sup>3</sup>  | microgram per cubic meter                     |
| m³/min             | cubic meters per minute                       |
| mph                | miles per hour                                |
| OSHA               | Occupational Safety and Health Administration |
| Pb-212             | Lead-212                                      |
| PCB                | Polychlorinated Biphenyl                      |
| PCi                | pico-Curies                                   |
| pCi/m <sup>3</sup> | pico-Curies per cubic meter                   |
| PEL                | Permissible Exposure Limit                    |
| ppb                | parts per billion                             |
| PUF                | Polyurethane Foam                             |
| Ra-223             | Radium-223                                    |
| Ra-224             | Radium-224                                    |
| RBC                | Risk-Based Concentration                      |
| RfD                | Reference Dose                                |
| RF-RBC             | Range Fire Risk-Based Concentration           |
| TAP                | Toxic Air Pollutant                           |
| TCE                | Trichloroethene                               |
| TIC                | Tentatively Identified Compound               |
| TLV                | Threshold Limit Value                         |
| VOC                | Volatile Organic Compound                     |
| U-235              | Uranium-235                                   |
| UXO                |                                               |
| UAU                | Unexploded Ordnance                           |

#### **1.0 INTRODUCTION**

The Aberdeen Proving Ground (APG) Installation Restoration Program (IRP) identified the need to conduct a limited number of controlled burns at test ranges in the Aberdeen and Edgewood Areas of APG to support sampling of air emissions produced by range fires. The purpose of the study was to generate, to the extent possible, quantifiable emissions representative of fires occurring at APG test ranges to allow a screening assessment of potential human health impacts. This Technical Report documents the controlled burn air emissions sampling conducted during three events, and provides human health risk screening of the analytical data obtained.

APG lies on the northwestern shore of the Chesapeake Bay in southern Harford County and southeastern Baltimore County, Maryland (Figure 1). Major geographical areas bordering APG include the Chesapeake Bay and its tributaries; Gunpowder Falls State Park; the Crane Power Plant; and the towns of Bel Air, Edgewood, Joppatowne/Magnolia, Aberdeen, and various smaller residential areas. APG occupies 72,500 acres of land and water, of which approximately 75 percent are range areas. The Bush River divides the Installation into two noncontiguous areas commonly referred to as the Aberdeen Area and the Edgewood Area.

Since 1917, the Edgewood Area has been the center for the research, development, testing and manufacturing of military-related chemicals and agents. Activities at the Edgewood Area have included laboratory research and development, field testing, and pilot- and production-scale manufacture of chemical warfare agents. Chemical warfare materiel, hazardous wastes, and low-level radiological wastes have been stored at the Edgewood Area. The Aberdeen Area was established as the Ordnance Proving Ground in 1917, and has been the site of intense research and development, large-scale testing of munitions, weapons, and materiel, and a training school for ordnance officers and enlisted specialists.

#### 2.0 BACKGROUND

Ordnance firing, other test activities, residual white phosphorus in subsurface soils, and lightning strikes occasionally cause accidental fires in the test range areas of APG. These accidental fires may occur under unfavorable weather conditions (e.g., meteorological conditions may create wind directions that transport range fire smoke plumes toward residential communities), and the amount of vegetative fuel and acreage burned cannot always be controlled during these unplanned burns.

APG's long history of weapons testing and past disposal practices caused members of the public to express concerns that contaminants accumulated in surface soils and vegetation could be transported in smoke plumes produced by such fires. The potential transport and deposition of contaminants via the smoke plume and the associated health risks were of greatest concern to the public. Sources of contamination could include residues in and on vegetative matter and surface soils from previous weapons testing and disposal of hazardous substances; chemicals released from burning of uncontaminated vegetation; and detonation or rupture of unexploded ordnance (UXO).

1

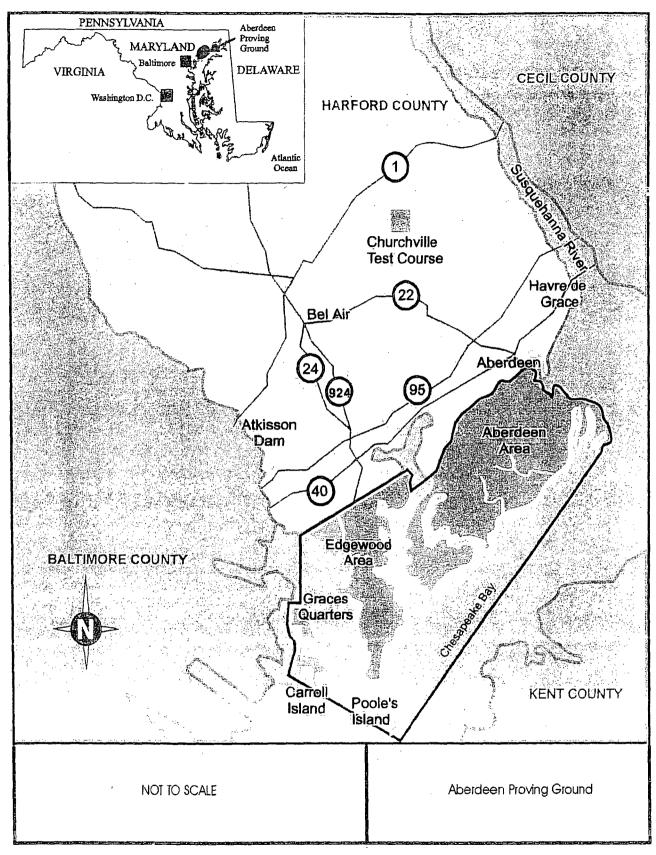



Figure 1. Location of Aberdeen Proving Ground

### 3.0 OTHER STUDIES

#### 3.1 Argonne National Laboratory 1998 Report

The Environmental Assessment Division of Argonne National Laboratory (ANL) completed a study in 1998 in response to the public concerns. The study, entitled "Potential Human Health Impacts from Range Fires at Aberdeen Proving Ground, Maryland," used atmospheric dispersion models to evaluate potential human health impacts resulting from exposure to contaminants resulting from range fires. The screening study focused specifically on five contaminants considered most likely to be present in surface soils and vegetation as a result of past activities at APG, two chemical agents, and two naturally-occurring compounds released during burning of uncontaminated vegetation. The contaminants, selected with input from APG personnel and a citizens advisory committee, were lead, arsenic, depleted uranium (DU), trichloroethene (TCE), dichlorodiphenyltrichloroethane (DDT), vinyl acetate, 2-furaldehyde, and mustard and phosgene in UXO. The modeling results were compared to U.S. Environmental Protection Agency (EPA) action levels.

The study concluded that range fires at APG do not pose a significant health risk to APG workers or the surrounding populations. Use of conservative assumptions in the study provided an upper bound estimate of potential risk. The study recommended future efforts be directed at fire management and control to reduce the occurrence and duration of range fires. The IRP elected to conduct a series of controlled burns for data collection purposes in response to on-going public concerns relating to range fires and potential risk to human health.

## 3.2 Argonne National Laboratory 2000 Report

The original report prepared by ANL in 1998 was modified in October 2000 to include actual air emissions data collected during the J-Field controlled burn conducted in April 2000. The updated report incorporated measured contaminant levels in vegetation samples taken from the Toxic Burn Pit area of J-Field. The data was used in the FIREPLUME computer model to calculate estimated ground-level contaminant concentrations during a range fire. The study then estimated exposure levels using conservative assumptions to evaluate impacts to human health. The model-predicted concentrations were one to two orders of magnitude greater than the field measured concentrations due to the use of conservative assumptions. The study concluded that the risk of adverse health effects from mobilization of contaminants as a result of range fires is extremely small. The study again recommended that future efforts be directed at range management to reduce the number of unplanned fires. The range management efforts could effectively include controlled burns.

#### 3.3 Environmental Protection Agency Data Collection

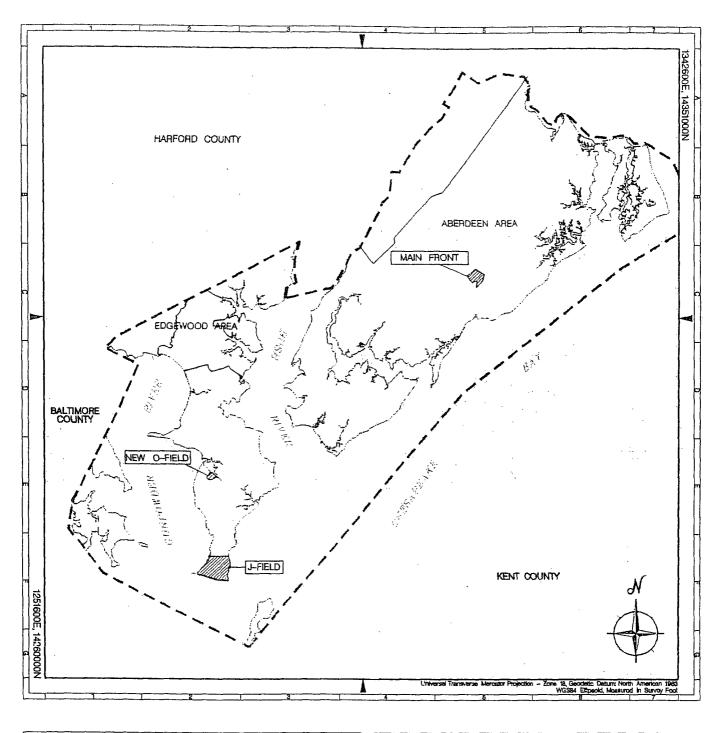
Lockheed Martin, under contract to the EPA through the Response, Engineering, and Analytical Contract, collected air samples for analysis during two O-Field burn attempts and the J-Field controlled burn. Samples were collected for analysis of dioxins, metals, polynuclear hydrocarbons, inorganic acids, volatile organic compounds (VOCs), and chemical agents. Particulate monitoring was also conducted using an MIE DataRAM. The three trip reports for these sampling events are included in Appendix A for reference. The data was not incorporated into the evaluation performed as part of this report.

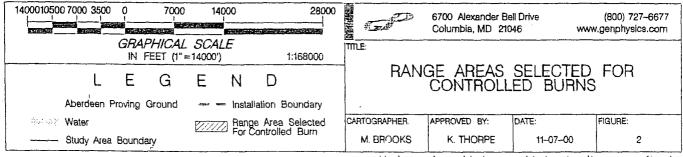
#### 4.0 CONTROLLED BURN STUDY PARAMETERS

The controlled burn study parameters were developed in close coordination with the U.S. Army Aberdeen Test Center (ATC), the agency responsible for range management and control at APG. Meteorological and range control personnel supported the development of the study parameters. In addition, close coordination with the APG Fire Department and Safety personnel provided guidance for developing sampling protocols and selecting range sites for the controlled burns. Input from the citizens advisory committee was solicited regarding potential controlled burn locations.

#### 4.1 Meteorological Conditions

The controlled burns for air emissions sampling were conducted under specific meteorological conditions to minimize potential impacts to civilian communities and to facilitate data collection. Wind directions were selected to minimize travel of the plumes toward populated areas. In general, the controlled burns were initiated with north-northeast or west-southwest wind directions. Controlled burns were initiated only with wind speeds of 15 miles per hour (mph) or less. Greater wind speeds would have resulted in difficulty in controlling and extinguishing the fires, as well as a reduction in the sampling period. Atmospheric stability Class D or Class C conditions were selected as burn parameters to obtain the most rapid return of range fire smoke to ground level and limited atmospheric dispersion. The site-specific burn plans developed for each controlled burn location provide specific details and procedures.


#### 4.2 Test Range Selection


Selection of range areas with the most potential surface soil contamination provided a "worst case" scenario for the controlled burn sampling events. With input from IRP, ATC, Fire Department, and Safety personnel, and the citizens advisory committee, three range areas (Figure 2) were selected for controlled burns and air emissions sampling:

- Main Front range in APG Aberdeen Area selected as representative of test ranges with the highest potential DU contamination and other toxic compounds
- J-Field in APG Edgewood Area selected as representative of worst-case air emissions due to historical testing and disposal activities, and based on soil contamination data collected as part of the IRP
- New O-Field in APG Edgewood Area selected as representative of worst-case air emissions due to historical testing and disposal activities, and based on contamination data collected as part of the IRP

#### 4.3 Sampling Locations and Analytes

For each controlled burn, monitoring involved the collection of both upwind and downwind air samples. Upwind samples were collected during each burn to measure the level of potential contaminants in ambient air. Downwind sample locations were placed at specified distances from the fire ignition point to capture air samples within the smoke plumes upon return to ground level.





i:\edgewood graphics\geographics\regional\apg\_rangefire.dgn

Sampling collection and analysis methods are listed in Table 1. Equipment setup is illustrated in photographs provided in Appendix B.

| Analyte           | Sampling Method | Equipment                  | Analytical Method    |  |
|-------------------|-----------------|----------------------------|----------------------|--|
| Volatile Organic  | USEPA TO-14     | Summa Canister –           | GC/MS                |  |
| Compounds         |                 | 3-hour sampling valve      | GC/FID               |  |
| Explosives        | TO-4 Modified   | High-Volume Sampler        | HPLC                 |  |
|                   |                 | Glass Fiber Filter and PUF |                      |  |
| Pesticides/PCBs   | TO-4            | High-Volume Sampler        | GC/ECD               |  |
|                   |                 | Glass Fiber Filter and PUF |                      |  |
| Inorganics        | 6010 Modified   | High-Volume Samplers (2)   | ICP                  |  |
|                   |                 | Quartz Filter              |                      |  |
| Chemical Agents   | DAAMS           | Calibrated Pump and DAAMS  | ECBC Analytical      |  |
|                   |                 | Tubes                      | Method               |  |
| Gross Alpha/Beta  | Quartz Filter   | High-Volume Sampler        | EPA 900.0 (Modified) |  |
| and Gamma Spectra |                 | Quartz Filter              | EPA 901.1 (Modified) |  |

#### Table 1. APG Controlled Burn Sample Collection and Analysis Methods

DAAMS – Depot Area Air Monitoring System ECBC – Edgewood Chemical Biological Center GC/ECD – Gas Chromatograph/Electron Capture Detector GC/FID – Gas Chromatograph/Flame Ionization Detector PCB – Polychlorinated Biphenyl PUF - Polyurethane Foam

GC/MS – Gas Chromatograph/Mass Spectrometer HPLC – High Performance Liquid Chromatography ICP – Inductively Coupled Plasma EPA –Environmental Protection Agency

The EPA Method TO-14 is designed for sampling and analysis of volatile organic compounds (VOCs) in ambient air as collected in summa canisters or other specially prepared canisters. A sample of ambient air is drawn through a sampling train, comprised of components that regulate the rate and duration of sampling, into a pre-evacuated, passivated canister. The VOCs are separated by gas chromatography and measured by a mass spectrometer or by multi-detector techniques. Analysis of VOCs included reporting of up to 10 tentatively identified compounds (TICs).

Method TO-4 is a procedure for detemination of a variety of organochlorine pesticides and polychlorinated biphenyls (PCBs) in ambient air. Method TO-4 utilizes a modified high volume sampler consisting of a glass fiber filter with a polyurethane foam (PUF) backup adsorbent cartridge used to sample ambient air at a rate of approximately 200 – 280 liters per minute. Flow rates for the high volume samplers are calculated during the calibration process prior to each sampling event. The high volume particulate sampler operates at an average flow rate of approximately 1.2 cubic meters per minute (m<sup>3</sup>/min); the average flow rate for the high volume PUF sampler is approximately 0.2 m<sup>3</sup>/min. The PCBs and pesticides are recovered by Soxhlet extraction and analyzed using gas chromatography with electron capture detection (GC/ECD). Samples collected using TO-4 (modified) are analyzed for explosives using high performance liquid chromatography (HPLC).

The EPA method 6010 utilizes Inductively Coupled Plasma (ICP) instrumentation with a hightemperature source for metals analysis. The samples are collected using a high-volume sampler and quartz filter media. The sample is prepared for ICP analysis by digesting the quartz filter in nitric acid.

The Depot Area Air Monitoring System (DAAMS) sampling method for chemical agents requires air flow through a solid sorbent tube at a controlled flow rate and a measured time period. The sampler flow rate is calibrated prior to the sampling event. The DAAMS tubes are analyzed by the U.S. Army Edgewood Chemical Biological Center (ECBC) laboratory using thermal desorption techniques to strip the analytes into a gas chromatography/flame photometric detector (GC/FPD) analytical system.

For radioactivity, the analysis included gross alpha analysis for radionuclides that emit alpha particles, gross beta analysis for radionuclides that emit beta particles, and gamma ray spectroscopy for radionuclides that emit gamma rays. Of the methods employed, ony gamma spectroscopy is capable of identifying the specific radionuclides and the amount of radioactive material present (in pico-Curies (pCi)) from that radionuclide. Gross alpha and gross beta analyses provide only the amount of radioactivity (pCi).

The specific analytes included in each sampling and analysis method are provided for reference in Appendix C.

### 4.4 Quality Assurance

The ambient air sampling of these short-term events (the controlled burns conducted at APG) is considered representative of fires in fields where these burns occurred. These events may not be representative of all fires, but can be considered "worst case" for evaluation of release of potential contaminants in vegetation at sites with soil contamination. The sampling efforts incorporated numerous quality assurance methods to provide the best possible results.

- Equipment calibration was performed prior to each sampling event to provide accuracy in field measurements. Field instruments were calibrated according to manufacturers' specifications, and the calibration results were recorded.
- Use of high-volume sampling equipment, as appropriate, reduced errors potentially associated with low sample volumes, and achieved lower detection limits.
- Filter or media blanks for each sampling method (except the summa canister) were sent to the laboratory for analysis to detect filter or media contamination unrelated to the range fire sampling. The summa canisters were cleaned and evacuated by the analytical laboratory.
- Generators providing power supply for the sampling equipment were placed downwind or cross-wind from the sampling points to prevent interferences.
- Vehicles used to transport personnel and sampling equipment were parked downwind of the sampling equipment or removed from the sampling location.
- Samples were collected at an upwind location during each range fire sampling event to allow evaluation of ambient concentrations of detected analytes.

Sampling locations were dictated by the availability of established roads and by explosive fragment hazard distances. No sampling points were selected in off-road locations due to UXO safety considerations.

#### 5.0 CONTROLLED BURN EVENTS AND RESULTS

Three controlled burn events were conducted from April 1999 through April 2000. Burn events were conducted in the J-Field and New O-Field ranges of the Edgewood Area, and in the Main

Front range of the Aberdeen Area of APG. A second burn event in the Main Front area was attempted in April 2001.

# 5.1 Main Front Range Controlled Burn – April 1999

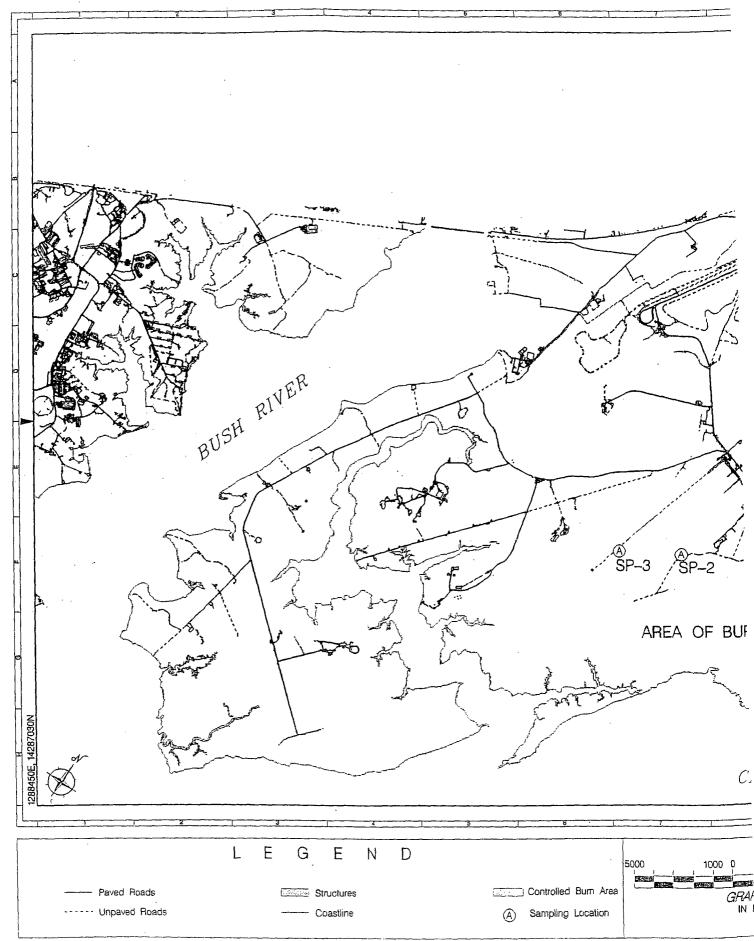
A controlled burn was conducted on 28 April 1999, at the Main Front range in the Aberdeen Area of APG (Figure 3). Samples were collected at three sites downwind of the fire, and at one upwind site to serve as a background location. Downwind sampling sites SP1, SP2, and SP3 were located southwest of the burn site at distances of approximately 1000, 2000, and 3000 meters, respectively.

With favorable meteorological conditions forecasted by the ATC Meteorological Office, the fire ignition by the APG Fire Department occurred at approximately 1500 hours. The sampling duration was approximately four hours.

Meteorological data collected during the controlled burn show that the wind direction shifted widely during the course of the burn. The forecasted wind direction was from the northeast (i.e., blowing toward the Edgewood Area and down the Chesapeake Bay); the average winds during the sampling event were from the southeast. The shifting wind direction resulted in a reduction of the burn area and intensity of the fire, causing less smoke to be produced. The variable wind direction resulted in exposure of the upwind sampling point (SP4) to smoke during a portion of the sampling period. Photographs taken during the Main Front burn event are presented in Appendix D-1.

Detections of several analytes were reported for the 1999 Main Front controlled burn event:

- Several VOCs were detected, including:
  - acetone
  - nonane
  - toluene
  - decane
  - methylene chloride
  - xylene.
- Analysis of the PUF media yielded detection of 2,2'3,4,5'-pentachlorobiphenyl and 2,4',5trichlorobiphenyl in the SP3 sample, and 2,4',5-trichlorobiphenyl in the SP4 sample. These PCBs were detected at a concentration of approximately 1 ppb.
- One pesticide (dieldrin) was detected by the PUF samplers at all downwind sampling locations (SP-1, -2, and -3) in the parts per trillion range.
- Numerous metals were detected, but not at levels exceeding blank concentrations.


Chemical agents and explosives were not detected at the downwind or upwind sampling locations during the Main Front controlled burn. Additionally, no specific radionuclides were detected above the minimum detection activity, the analytical error, or the blank radionuclide activity level. Appendix E-1: Tables E-1 through E-10 contain the results from the analysis of the air samples collected during the Main Front controlled burn.

| <u> </u>                          | 10 I N            | 12 | 13 14                                                                                        | 15                                        |
|-----------------------------------|-------------------|----|----------------------------------------------------------------------------------------------|-------------------------------------------|
| INSTALLATION F                    | BOUNDARY          |    |                                                                                              | 1326940E, 14362810N                       |
|                                   |                   |    |                                                                                              |                                           |
|                                   |                   |    |                                                                                              |                                           |
| 3P-1                              | P-4               |    |                                                                                              |                                           |
| <sup>2500</sup> 5000 10000        | <u>тпle:</u> МАIN | 12 | - Zone 18, Geodelic Delum: North American 192<br>13<br>LLED BURN AREA<br>LOCATIONS<br>L 1999 | 15                                        |
| CAL SCALE<br>(1' = 5000') 1:60000 | 6700 Alexand      |    | CARTOGRAPHER:<br>M. BROOKS                                                                   | APPROVED BY:<br>K. THORPE<br>FIGURE:<br>3 |

.

a da anta

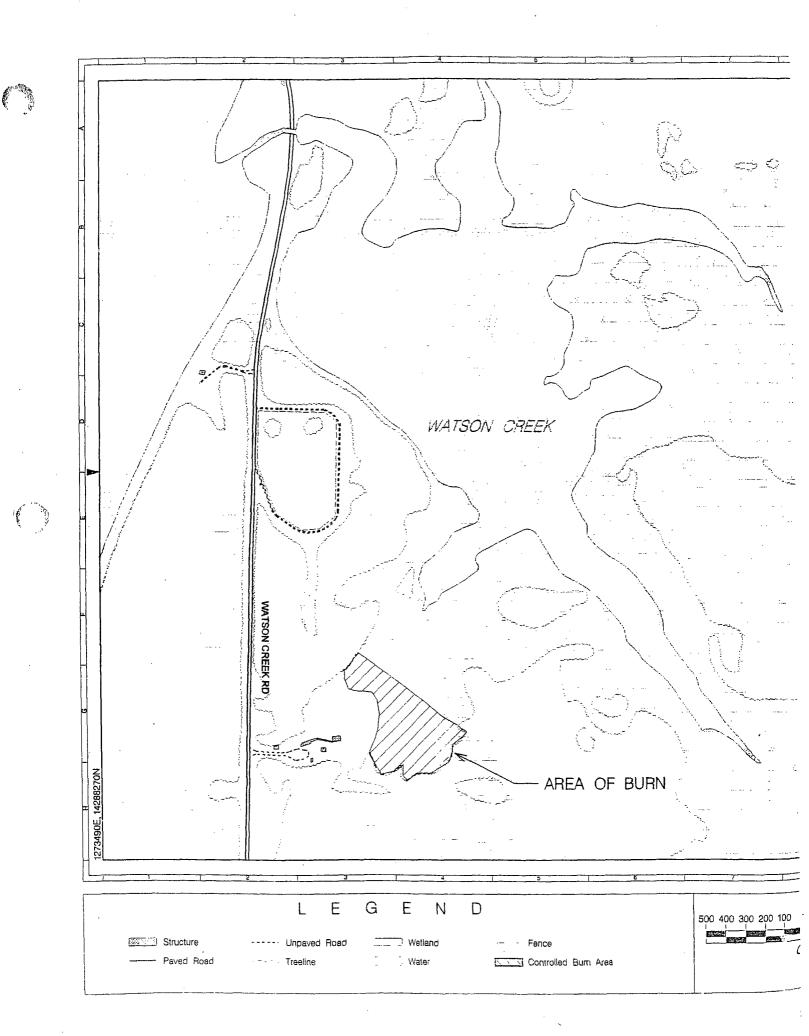
i:\edgewood graphics\geographics\range fires\mainfront\_data.dgn

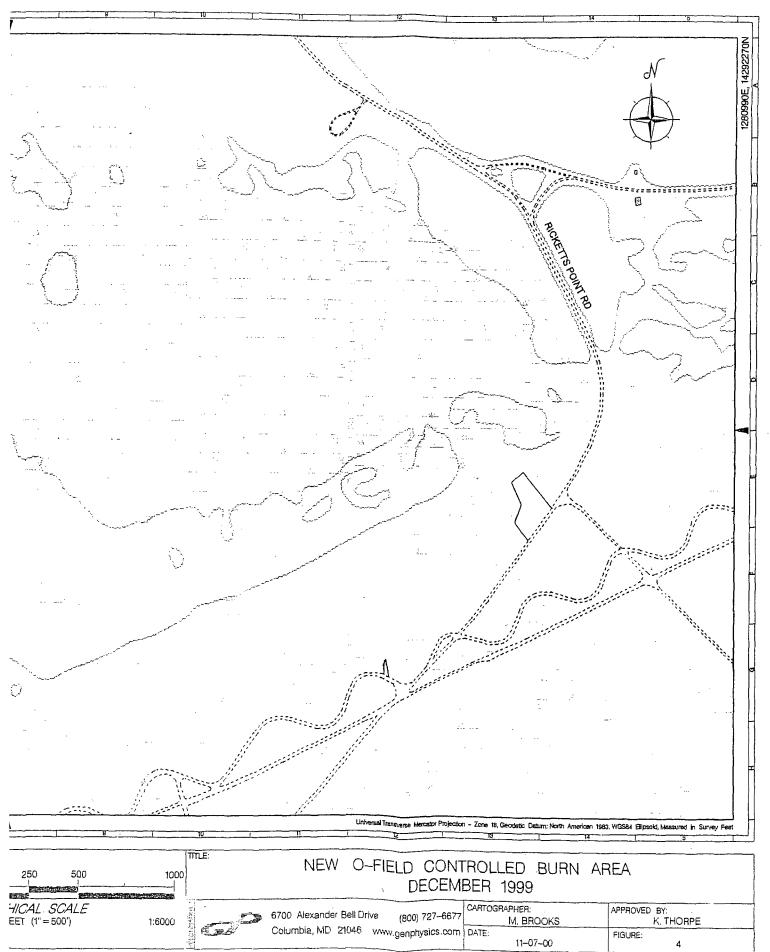


# 5.2 New O-Field Controlled Burn – December 1999

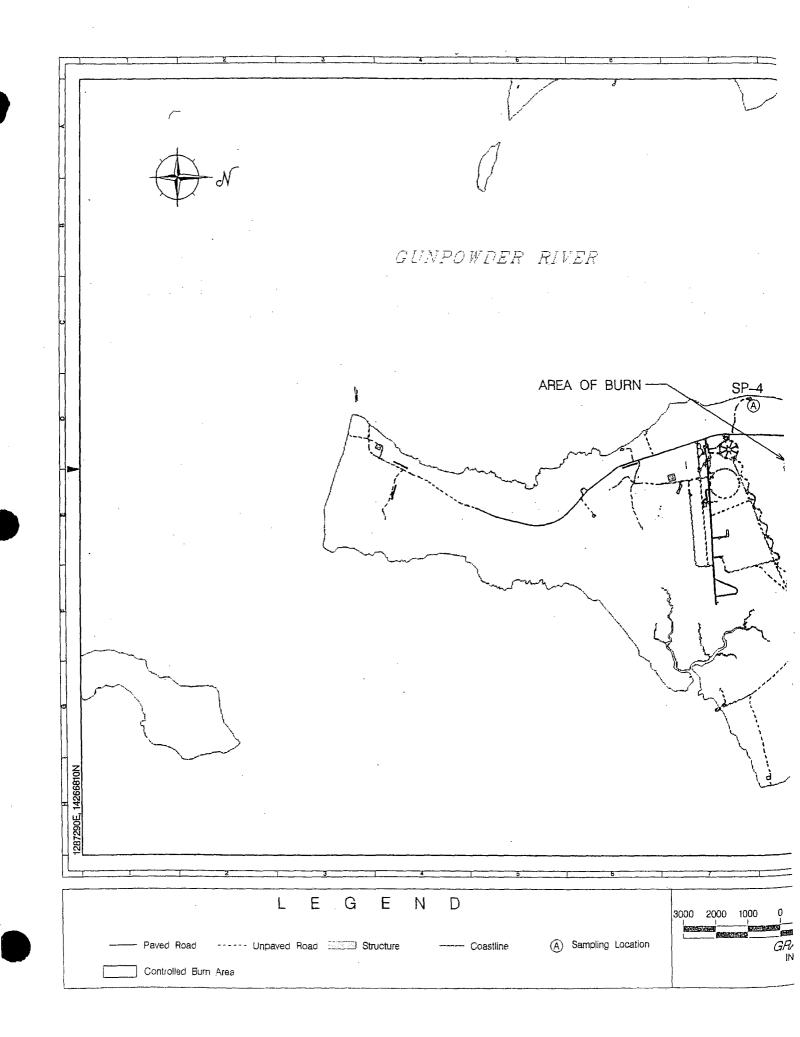
The New O-Field controlled burn occurred on 3 December 1999 in the Edgewood Area of APG (Figures 4 and 5). Downwind sampling locations SP1, SP2, and SP3 were located 335, 1200, and 2300 meters, respectively, from the burn area. Sampling point SP1 was located at Watson Creek, SP2 at Ricketts Point Road, and SP3 at Briery Point on the Bush River shoreline. Due to a slight variation in wind direction during the burn  $(238^{\circ} \pm 20^{\circ})$ , the SP2 sampling location was repositioned within the smoke plume. The upwind sampling point SP4 was located on the Gunpowder River shoreline, approximately 500 meters from the burn location.

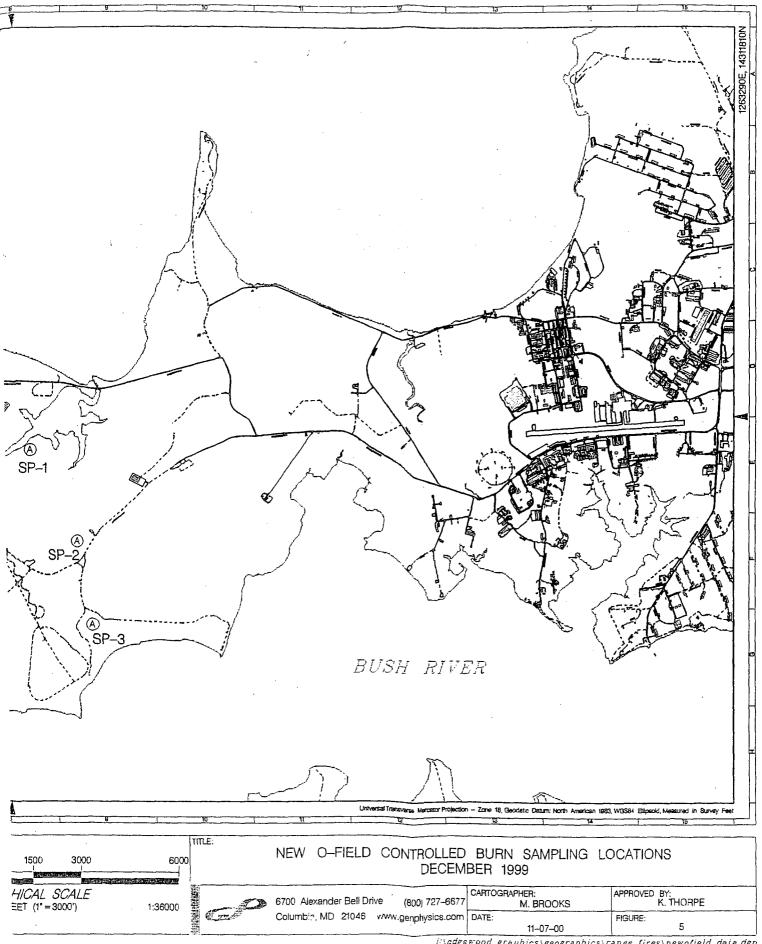
The meteorological forecast provided by the ATC Meteorological Office indicated winds speeds of less than 15 mph, a southwest wind direction, and Class D stability. Given the favorable forecast, the fire was ignited by the APG Fire Department at approximately 1530 hours. The sampling duration was approximately four hours.


The meteorological data collected during the controlled burn show that the wind direction generally remained from the southwest, with only slight variation during the course of the burn. However, reduced wind speeds, coupled with wet conditions in New O-Field, limited the size of the burn area during this event. Given that the area and the intensity of the burn were much less than anticipated, a reduced amount of smoke was produced from the fire for the air sampling event. Photographs of the area following the controlled burn are included in Appendix C-2.


Samples collected were analyzed for chemical agents, explosives, VOCs, PCBs, pesticides, inorganics, and radionuclides; detections of several analytes were reported:

- Several VOCs were detected in the ppb range, including:
  - acetone
  - benzene
  - benzonitrile
  - carbon disulfide
  - dedecene
  - hexane
  - methylene chloride
  - toluene
  - xylene
- 2,2',3,4,5-pentachlorobiphenyl was detected at sampling locations SP1, SP2, and SP3 in concentrations ranging from 0.0004 to 0.0011 micrograms per cubic meter (μg/m<sup>3</sup>).
   2,2',3,4,4'-tetrachlorobiphenyl was detected in the SP4 (upwind) sampling location at a concentration of 0.0020 μg/m<sup>3</sup>.
- Numerous metals were detected in the ppb range in samples collected both upwind and downwind of the burn area.


Chemical agents, explosive compounds, and pesticides were not detected at the downwind or upwind sampling locations during the New O-Field burn. Appendix E-2: Tables E-11 through E-17 contain the results from the analysis of the air samples collected during the controlled burn at New O-Field.








i:\edgewood graphics\geographics\range fires\ofield\_data.dgn





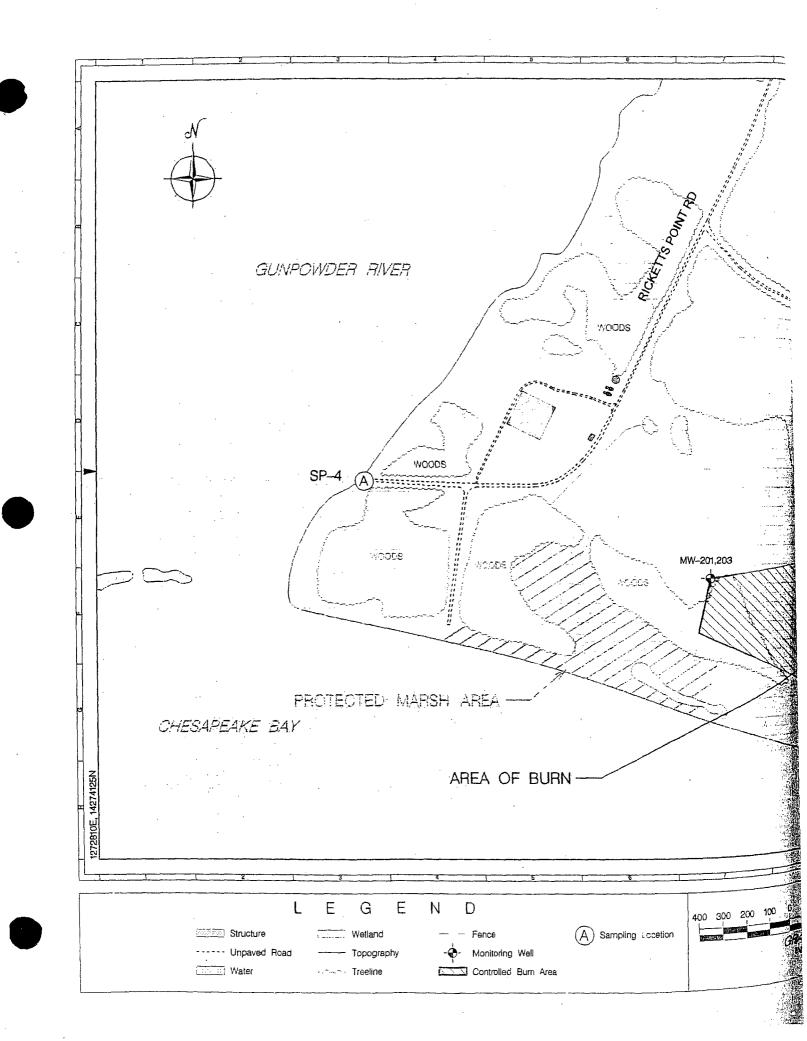
i:\cdgewood graphics\geographics\range fires\newofield\_data.dgn

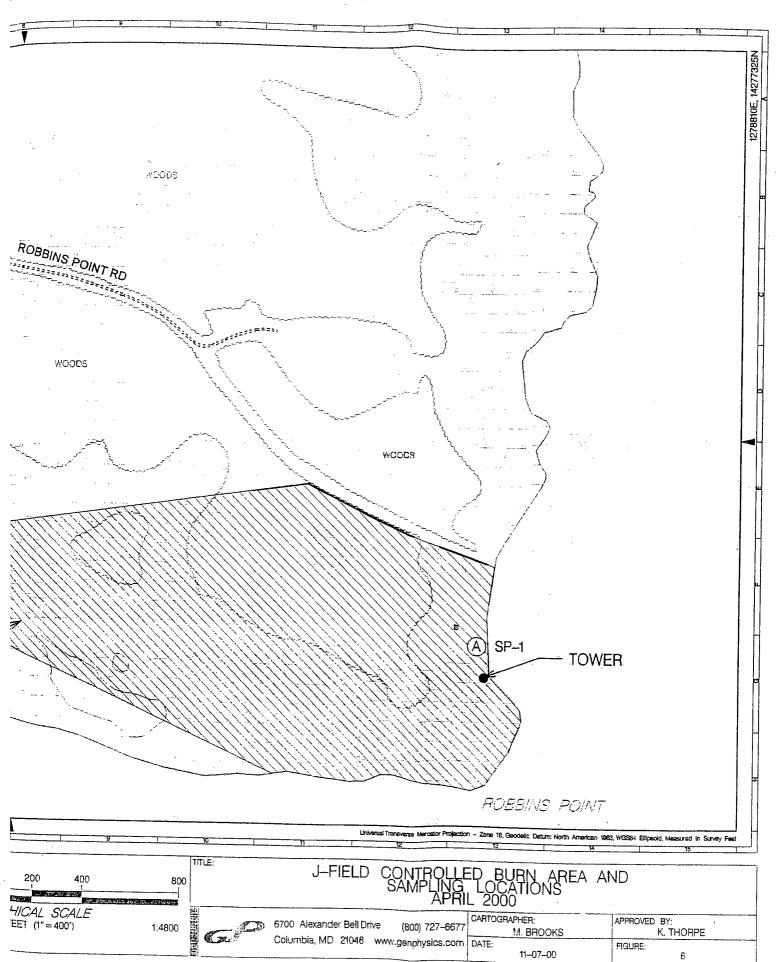
## 5.3 J-Field Controlled Burn – April 2000

The J-Field controlled burn occurred on 6 April 2000 in the Edgewood Area of APG (Figure 6). The burn area extended over the southeast portion of J-Field, covering both marsh and forest environments. Robbins Point Road and the Bush River served respectively as the northern and eastern firebreaks.

Air samples were collected at two monitoring locations during the J-Field controlled burn: one located downwind of the fire to capture smoke constituents (SP1), and one located upwind of the fire (SP4). The downwind sampling location was northeast of the burn area, along the end of Robbins Point Road on the shore of the Bush River. The SP1 sampling location was approximately 10 meters from the northernmost edge of the burned area. The upwind sampling location (SP4) was located on the Gunpowder River shoreline at the end of Ricketts Point Road, approximately 500 meters from the fire location. Collection of additional downwind samples did not occur due to the logistics of staging samplers at offshore locations in the Bush River.

The ATC Meteorological Office provided a favorable forecast for wind speeds of less than 15 mph from the southwest, and atmospheric stability Class D conditions. The APG Fire Department


initiated the controlled burn at approximately 1725 hours. The sampling duration was approximately three hours.


Meteorological data collected during the controlled burn period indicated stable wind directions from the southwest, with only slight variations. Wind gusts of up to 15 mph were recorded by an on-site weather station. Wind speeds, coupled with dry conditions and adequate vegetative fuel, sustained the fire during the J-Field controlled burn. A visible smoke plume extended from the burn area in a northeasterly direction.

Photographs taken during and following the J-Field controlled burn are presented in Appendix D-3. The J-Field controlled burn revealed a significant amount of surface waste and debris throughout the burned area, indicating disposal had previously occurred in the area. A separate removal action was conducted in May 2000 to remove the surface debris, including ordnance-related items.

Sampling was performed for chemical agents, explosives, VOCs, PCBs, pesticides, inorganics, and radionuclides; detections of several analytes were reported:

- Several VOCs were detected in the ppb range at the upwind location (SP4):
  - acetic acid
  - acetone
  - hydrocarbon compound (no identification from the TIC library)





i:\edgewood graphics\geographics\range fires\j\$400b.dgn

- Several VOCs were also detected in the ppb range at the downwind sampling location (SP1):
  - acetaldehyde
  - acetone
  - acetonitrile
  - ethylhexanol
  - furan
  - furfural
  - methylester acetic acid
  - methylfuran
  - methylpropene
  - hydrocarbon compound (no identification from the TIC library)
- An isolated pesticide detection (heptachlor) was reported in the ppb range at the upwind sampling location (SP4). No pesticides were detected at the downwind sampling location (SP1).
- Two explosive-related compounds (2-amino-4,6-dinitrotoluene and 4,-amino-2,6dinitrotoluene) were detected in the ppb range at the downwind sampling location. No explosive-related compounds were detected at the upwind sampling location.
- Numerous metals were detected in the ppb range in samples collected both upwind and downwind of the burn area.
- U-235 was reported as detected in the downwind sampling location.

No chemical agents or PCBs were detected in samples collected either upwind or downwind of the burn area. Appendix E-3: Tables E-18 through E-24 contain the results from the analysis of the air samples collected during the J-Field controlled burn.

#### 5.4 Main Front Controlled Burn Attempt – April 2001

A second controlled burn in the Main Front Range was planned in an area where testing of DU weapons has occurred. Immediately following the successful completion of the April 2000 J-Field controlled burn, coordination resumed for the second Main Front controlled burn. Wind directions under which the controlled burn could be conducted were northeast or southwest. However, given the active testing schedule and other limitations (wind direction and greening vegetation), the controlled burn could not be accomplished in the spring, and was delayed until fall.

Coordination resumed in late fall when the vegetation was determined by the APG Fire Department officials to be sufficiently dried to provide adequate fuel and a successful burn. Once again, the active testing schedule and unfavorable meteorological conditions prevented successful completion of the controlled burn. Coordination again resumed in spring of 2001 Under favorable wind conditions, the controlled burn was attempted in the Main Front Range on 6 April 2001. However, light precipitation and the wet condition of the underlying vegetative fuel prevented successful ignition of the burn area.

Evaluation of the selected burn area by Fire Department personnel indicated that a successful controlled burn was unlikely, given the wet conditions and reduced available fuel volume as a result of previous unplanned burns. Active test schedules were projected by ATC for the selected area. Given these limitations, completion of a second burn in the Main Front Range is not feasible.

### 6.0 RISK ANALYSIS

The evaluation of risk involves comparison of air sampling data collected from the controlled burn events to available human health screening criteria, and calculations to evaluate potential risk associated with exposure to range fire smoke via the inhalation pathway.

## 6.1 Risk-Based Screening Criteria

To provide a screening level evaluation of potential human health impacts from range fire smoke, concentrations of contaminants detected above quantitation limits are compared to the Maryland Toxic Air Pollutant (TAP) Screening Levels and EPA Region III Risk-Based Concentrations (RBCs). The TAP Screening Levels and RBCs for inhalation are more conservative than other screening criteria such as the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs). The PELs establish workplace exposure limits for inhalation by healthy workers, generally based on an 8- or 10-hour workday in a 40-hour workweek. The available TAP Screening Levels and RBCs provide consideration of the general population in evaluating exposure and associated risk.

#### 6.1.1 Maryland Toxic Air Pollutant Screening Levels

The Maryland TAP regulations were promulgated in September 1988 to protect the public from TAP emissions from stationary sources of air pollution. The Maryland Department of the Environment (MDE) maintains a list of screening levels for over 1700 compounds. These TAP Screening Levels are tools used to predict whether emissions from a source will unreasonably endanger public health. Emissions from a pollutant source are compared to benchmark concentrations known as "screening levels" which are considered safe or sufficiently conservative that no one would be endangered by that level of exposure. The TAP Screening Levels are included in Appendix E, Tables E-1 through E-24, for the compounds detected in range fire samples collected as part of the controlled burn project.

#### 6.1.2 EPA Region III Ambient Air Risk-Based Concentrations

The RBCs were developed originally for use in the EPA Region III Superfund Program. The primary use of RBCs is for chemical screening during baseline risk assessments. The RBCs combine toxicity factors with "standard" exposure scenarios to provide a numerical estimation of the concentration that relates to a specified risk level. The inhalation RBCs for ambient air presented in Tables E-1 through E-24 (Appendix E) are based on an increased lifetime cancer risk of  $1 \times 10^{-6}$  for carcinogens (i.e., one in one million), or a hazard quotient of 0.1 for non-carcinogens. The exposure factors used in the calculation of the ambient air RBCs are conservative, and are based on residential exposure to contaminants (i.e., 350 days per year).

Noncarcinogenic effects are evaluated by calculating the ratio of a site-specific exposure level for a specified time period to a reference dose (RfD). The RfD for a specific chemical is an estimate of the daily exposure level, with consideration of sensitive populations, that is not expected to cause adverse health effects over the course of a lifetime. The calculated ratio is known as the hazard quotient (HQ). Unlike cancer risk estimates, HQs are not expressed as a probability. An HQ of less than one indicates that exposures are not likely to be associated with adverse noncarcinogenic effects. As the hazard quotient approaches or exceeds 10, the likelihood of adverse effects is increased to the point where action to reduce human exposure should be considered (although the

| Controlled Burn Air Sampling Technical Report | Final, August 2001 |
|-----------------------------------------------|--------------------|
| U.S. Army Aberdeen Proving Ground             | GP-R-711E00060     |

magnitude of the uncertainty factors used to derive the RfD should also be considered). Because of the uncertainties involved with these estimates, values between one and 10 may be of concern, particularly when additional significant risk factors are present. Since RfDs do not have equal accuracy or precision and they are not based on the same severity of toxic effects, evaluation of hazard indices (i.e., the sum of two or more HQ values for multiple substances and/or multiple exposure pathways) should take into account the uncertainties associated with chemical-specific RfDs. Using this approach, contaminants can then be excluded when they contribute an HQ of less than 0.1 (for noncarcinogens).

### 6.1.3 Radiological Parameters

Air samples collected were analyzed for gross alpha and gross beta activity, and specific radionuclides by gamma spectroscopy. Results were evaluated against upwind (background) concentrations as well as blank analysis results. Further evaluation was on the basis of Title 10 Code of Federal Regulations (CFR), Part 20, Standards for Protection Against Radiation, Appendix B – Table 2, Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Effluent Concentrations. Table 2 of Appendix B of 10 CFR Part 20 provides concentration limits for radionuclides in airborne effluents released to the general public.

#### Main Front

Gross alpha and beta radioactivity were detected in the blank and samples. Gross alpha results were not statistically different between the blank and samples. Gross beta results for SP3 and SP4 were also not statistically different from the blank result.

Although gross beta activity was detected in the SP1 and SP2 samples at levels statistically different from the blank, the concentrations of radioactivity are less than 30 times the most restrictive limit for radioactivity per 10 CFR Part 20, Appendix B, Table 2 for unidentified radionuclides. Gamma ray spectroscopy identified the presence of only Potassium-40 (K-40), Lead-212 (Pb-212), Radium-223 (Ra-223), and Uranium-235 (U-235). All of these radionuclides are naturally occurring and were detected with amounts so small that they could not be quantified as statistically significant above the background for the detector used by the gamma ray spectroscopy system. These radionuclides were detected in the background spectrum for the instrument and are therefore considered as not detected.

The levels of airborne radioactivity detected during the Main Front controlled burn sampling event could not be distinguished from ambient concentrations, and do not pose an increased health risk.

#### New O-Field

Gross alpha and beta radioactivity were detected in the blank and the samples. Gross alpha results were not statistically different between the blank and sample results. Gross beta results were not significant between SP1 and the blank. The gross beta results for SP2, SP3, and SP4, although statistically different from the blank, are present at concentrations less than 10 times the most restrictive limit for radioactivity in air per 10 CFR Part 20, Appendix B, Table 2, for unidentified radionuclides.

Gamma spectroscopy identified the presence of only K-40, Pb-212, Radium-224 (Ra-224), and U-235. All of these radionuclides are naturally occurring, were detected in the blank, and were detected at levels too low to be quantified as statistically significant above background for the detector utilized for the analysis. The levels of radioactivity measured in air samples collected during the New O-Field controlled burn could not be distinguished from ambient concentrations and do not pose an increased health risk.

Final, August 2001 GP-R-711E00060

### J-Field

Gross alpha and beta activity detected was not statistically different between the blank and sample results, and could not be distinguished from ambient concentrations.

Gamma spectroscopy identified the presence of the naturally occurring radionuclides K-40, Pb-212, and U-235 at levels too low to be quantified as statistically different from background for the detector used. Thus, these radionuclides were considered not detected. Uranium-235 was reported as detected in the downwind sampling location (SP1) at 0.0005 pico-Curies per cubic meter (pCi/m<sup>3</sup>), less than one percent of the most restrictive limit for U-235 in air as per 10 CFR Part 20, Appendix B, Table 2 (i.e., 0.06 pCi/m<sup>3</sup>). On this basis, the detected levels of U-235 are not considered to pose a health risk.

# 6.2 Results of Risk-Based Screening

Several analytes detected in the controlled burn sampling events conducted at APG occurred at levels exceeding either the Maryland TAP Screening Levels or the EPA Region III ambient air RBCs. The analytes exceeding these criteria are highlighted in the data tables (Appendix E, Tables E-1 through E-24) and included in Table 2. Analytes for which screening levels are not available are not further evaluated.

|                            | Noncarcinogenic<br>RF-RBC | Carcinogenic         | Maximum Reported<br>Concentration        |  |  |
|----------------------------|---------------------------|----------------------|------------------------------------------|--|--|
| Analyte                    | (μg/m <sup>3</sup> )      | (µg/m <sup>2</sup> ) | (µg/m <sup>3</sup> ) <sup>e</sup>        |  |  |
| VOLATILE ORGANICS          |                           |                      |                                          |  |  |
| Acetaldehyde               |                           | 170.1                | 3.98                                     |  |  |
| Benzene                    |                           | 46.2                 | 19.9                                     |  |  |
| Furan                      | 777                       |                      | 8.58                                     |  |  |
| Methylene Chloride         | N/A                       | 798                  | 25.25                                    |  |  |
| Trimethylbenzene           | 1302                      |                      | 12.54 (Upwind)                           |  |  |
|                            |                           |                      |                                          |  |  |
| PCBs                       |                           |                      | n an |  |  |
| 2,4',5-Trichlorobiphenyl   |                           | 0.651                | 0.0110                                   |  |  |
|                            |                           |                      |                                          |  |  |
| PESTICIDES                 |                           |                      |                                          |  |  |
| Dieldrin                   |                           | 0.0819               | 0.0030                                   |  |  |
| Heptachlor                 |                           | 0.294                | 0.0020 (Upwind)                          |  |  |
|                            |                           |                      |                                          |  |  |
| EXPLOSIVES                 |                           |                      | ·                                        |  |  |
| 2-Amino-4,6-dinitrotoluene | 46.2                      |                      | 0.4570                                   |  |  |
|                            |                           |                      |                                          |  |  |
| INORGANICS                 |                           |                      | ·황수장(2010년) 영향(종종)                       |  |  |
| Aluminum                   | 777                       |                      | 51.19                                    |  |  |
| Arsenic                    |                           | 0.0861               | 0.0147                                   |  |  |
| Cadmium                    | ]                         | 0.208                | 0.0036                                   |  |  |
| Manganese                  | 10.92                     |                      | 0.5476                                   |  |  |

#### Table 2. Calculated Range Fire RBCs

<sup>a</sup> Maximum reported concentration is the maximum concentration detected based on three burn events.

18

### 6.3 Risk Calculations

Risk calculations were performed to further assess potential human health impacts from airborne range fire contaminant concentrations that exceeded the screening levels. The Maryland TAP Screening Levels assume emissions from a stationary source, indicating frequent emissions and associated exposure. The assumptions used in determining the EPA Region III RBCs for evaluating a residential exposure to contaminants in ambient air are overly conservative for evaluating potential human health impacts due to infrequent exposure to range fire smoke. Therefore, the default exposure parameters used in the RBC calculations are modified to reflect a more realistic scenario for exposure to smoke from infrequent range fires (Table 2). The revised exposure parameters are then employed in back-calculating a revised risk-based concentration for the chemicals detected during range fire smoke sampling at concentrations in excess of the risk-based screening criteria. The calculated concentration represents the upper bound of the risk levels established by EPA as acceptable: for carcinogens, increased lifetime cancer risk of 1 in 1,000,000 (1 x  $10^{-6}$ ); for non-carcinogens, a hazard quotient of 0.1.

Data evaluated by ANL in preparation of the "Potential Human Health Impacts from Range Fires at Aberdeen Proving Ground, Maryland" report indicate that, from the period of 1992 – 1997, an average of 80 fires occurred per year at APG. Of those fires, 84 percent involved areas less than 5 acres in size. Fires that burned 25 acres or more constituted only 2 percent of the fires during that period, although some fire reports did not include an estimate of the area burned. ANL used the assumption that five 25-acre or larger fires occurred per year. The ANL report also indicated that the average duration of range fires at APG is approximately one hour. The use of a helicopter with "Bambi bucket" to drop water directly onto the burning areas allows the fires to be extinguished in a short time. These factors were used to develop conservative exposure duration and frequency parameters for calculating revised risk-based concentrations.

The approach used in this report for determining the range fire RBCs (RF-RBCs) is based on modification of the EPA Region III RBCs to reflect a conservative frequency for the exposure of the general population to range fire smoke. The EPA Region III RBCs used for screening purposes assume a residential exposure to airborne contaminants from an ongoing source, with a frequency of 350 days per year. The RF-RBCs are derived on the basis of exposure to 10 range fires per year, with the assumption that wind direction would control exposure. The residential EPA Region III RBCs assume an exposure basis of 24 hours per day. For range fires, that basis is reduced to 4 hours per event. The conservative exposure duration assumes that the receptor would be exposed to smoke from 10 of 80 range fires occurring per year for a maximum duration of 4 hours per fire. The calculated RF-RBCs (presented in  $\mu g/m^3$ ) are compared (Table 2) to maximum concentrations detected (also presented in  $\mu g/m^3$ ) in the controlled burn sampling events.

### 7.0 CONCLUSIONS

Air emissions sampling was conducted during the course of three controlled burns at APG. To assess the potential impacts to human health resulting from exposure to smoke from range fires at APG, the analytical results obtained from the sampling events were compared against EPA Region III RBCs and Maryland TAP Screening Levels. Thirteen analytes were reported at concentrations exceeding at least one of the two screening criteria. To further screen the data, revised RF-RBCs were calculated using parameters conservatively considered representative of exposure of residential receptors to range fire smoke at APG. The conservative RF-RBCs were calculated based on the assumption that a receptor is exposed to smoke from 10 range fires per year at APG, for a

| Controlled Burn Air Sampling Technical Report | Final, August 2001 |
|-----------------------------------------------|--------------------|
| U.S. Army Aberdeen Proving Ground             | GP-R-711E00060     |

duration of four hours each. The resulting RF-RBCs were then compared to the maximum reported concentrations for the 13 analytes in any of the controlled burn sampling events.

The risk analysis presented in this report does not indicate significant impacts to human health resulting from range fires at APG. The risk analysis assumes that the data collected during the controlled burn events are representative of "typical" range fires occurring at APG.

#### **8.0 REFERENCES**

Argonne National Laboratory, 2000. Potential Health Impacts from Range Fires at Aberdeen Proving Ground, Maryland, Draft\_01. Prepared by Argonne National Laboratory, Argonne, Illinois for the U.S. Army Garrison, Aberdeen Proving Ground, MD. Draft, October 2000.

Argonne National Laboratory, 1998. Potential Health Impacts from Range Fires at Aberdeen Proving Ground, Maryland. Prepared by Argonne National Laboratory, Argonne, Illinois for the U.S. Army Garrison, Aberdeen Proving Ground, MD. March 1998.

General Physics Corporation, 2000. Final Burn Plan – Second Prescribed Burn at the Main Front for Air Monitoring of Range Fire Emissions. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. October 2000.

General Physics Corporation, 1999. Final Burn Plan – Prescribed Burn at the J-Field for Air Monitoring of Range Fire Emissions. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. April 1999.

General Physics Corporation, 1999. Final Burn Plan – Prescribed Burn at the Main Front for Air Monitoring of Range Fire Emissions. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. May 1999.

General Physics Corporation, 1999. Final Work Plan – Air Sampling of Range Fire Emissions in the Aberdeen and Edgewood Areas of Aberdeen Proving Ground – Planned Burns. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. February 1999.

General Physics Corporation, 1999. Final Environmental Assessment – Prescribed Burns at Aberdeen and Edgewood Test Ranges for Air Monitoring of Range Fire Emissions. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. February 1999.

U.S. EPA, 2000. *Risk-Based Concentration Table*. United States Environmental Protection Agency, Region III, Superfund Technical Support Section, Philadelphia, PA. 5 October 2000.

U.S. Department of Energy, 1997. The Code of Federal Regulations: Title 10—Energy. Part 20: Standards for Protection Against Radiation, Appendix B (Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Occupational Exposure; Effluent Concentrations; Concentrations for Release to Sewerage.

# APPENDIX A

# LOCKHEED MARTIN RANGE FIRE SAMPLING TRIP REPORTS

# APPENDIX A-1

# O-FIELD TRIP REPORT (JULY 2000)

/

'cheed Martin Technology Services Group ronmental Services REAC
20 Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679
Telephone 732-321-4200 Facsimile 732-494-4021

DATE: July 5, 2000

TO: David Mickunas, U.S. EPA/ERTC Work Assignment Manager

THROUGH: Jeff Bradstreet REAC Air Group Leader

FROM: Amy DuBois. REAC Task Leader

SUBJECT: AIR MONITORING AND SAMPLING AT THE AIR MONITORING SAMPLING, ANALYSIS, AND MODELING SUPPORT, AND UNDERWATER SURVEY ACTIVITIES SITE, ABERDEEN PROVING GROUND, ABERDEEN, MD, WORK ASSIGNMENT #0-110 - TRIP REPORT -O-FIELD

#### BACKGROUND

The United States Environmental Protection Agency/Environmental Response Team Center (U.S. EPA/ERTC) issued Work Assignment Number 0-110 to Lockheed Martin under the Response. Engineering. and Analytical Contract (REAC) to provide air monitoring and air sampling during two controlled burns in the Edgewood Area of Aberdeen Proving Ground (APG). One burn was to be conducted at O-Field and one at J-Field.

Ordnance firing, ongoing test activities, and lightning strikes occasionally cause accidental fires in the test range areas at APG. Because of APG's long history of weapons testing and disposal practices, there is concern that contaminants have accumulated in the surface soils and vegetation at these locations and could be transported in the smoke plumes produced by such fires, posing a health risk to exposed individuals on and off the installation.

The scope of work for this work assignment included air sampling for dioxins. metals, polynuclear aromatic hydrocarbons (PAHs), inorganic acids, volatile organic compounds (VOCs) and chemical warfare agents (CWAs). Particulate monitoring was conducted utilizing an MIE DataRAM at each location.

#### OBSERVATIONS AND ACTIVITIES

REAC personnel mobilized to APG on December 3, 1999. Air sampling and monitoring were conducted at 5 downwind and 2 upwind locations (Figure 1).

VOC sampling and analysis was conducted following EPA Method TO-14A: Determination of Volatile Organic Compounds in Ambient Air Using SUMMA Passivated Canister Sampling and Gas Chromatographic Mass Spectrometric (GC MS) Analysis. A sampling orifice was connected to each SUMMA canister to control the flow at 15 cubic centimeters per minute (cc/min). A solenoid valve was then connected to the SUMMA orifice. A trip wire was attached to each solenoid valve to trigger the solenoid to open just before personnel exited the downwind area.

PAH sampling and analysis was conducted following National Institute for Occupational Safety and Health (NIOSH) Method # 5515: *Polynuclear Aromatic Hydrocarbons*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (2 Liters per minute (L/min)) through a sampling train containing a teflon

#### c:\MyFiles\R1a00110\OFIELD1 tr1299.110

prefilter cassette and an XAD-2 sorbent tube. The pumps were programmed for a delayed start with a 4-hour sampling period.

Sampling and analysis for inorganic acids was conducted following NIOSH Method # 7903: Acids, Inorganic. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (250 cc/min) through a sampling train containing a silica gel sorbent tube. The pumps were programmed for a delayed start with a 4-hour sampling period.

Sampling and analysis for dioxins was conducted following modified U.S. EPA Method TO9A. Determination of Polychlorinated, Polybrominated and Brominated/Chlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a polyurethane foam (PUF) plug and quartz filter. The pumps were programmed for a delayed start with a 4-hour sampling period. PUF glassware, plugs, and quartz filters were cleaned and certified by Southwest Research Institute in San Antonio, Texas prior to use.

Sampling and analysis for metals was conducted following modified NIOSH Method # 7300: *Elements (ICP)*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a mixed cellulose ester filter cassette. The pumps were programmed for a delayed start with a 4-hour sampling period.

Samples were collected for CWAs utilizing a personal sampling pump (SKC) to draw a measured volume of air (100 cc/min) through a sampling train containing two Depot Area Air Monitoring System (DAAMS) sorbent tubes in a dual-sampling manifold. The CWAs analyzed for included: Sarin (GB), Soman (GD), Mustard (HD), and VX. The pumps were programmed for a delayed start with a 4-hour sampling period. Tubes and analysis were provided by Soldiers Biological and Chemical Command (SBC COM).

Air monitoring for total particulates was performed utilizing an MIE DataRAM portable real-time aerosol monitor. Concentration data was logged every 10 seconds for the duration of the burn.

APG personnel positioned support poles, at each of the five downwind locations, prior to REAC's mobilization to the site. Due to the heavy equipment required to position the poles, and the potential for unexploded ordinance in the marsh/brush area downwind of the proposed burn area, the support poles were positioned on solid ground along the edge of the marsh off Ricketts Point Road. Two nights before the scheduled burn, a spontaneous fire burned the marsh area between Watsons Creek and Ricketts Point Road right up to the support poles. The support poles were used to hold the sampling devices 15 feet above the ground, this positioned the samplers in the plume but out of the potential burn path of the fire. The collection of sampling devices was hoisted up the support pole after setting the timers on the individual pumps. The trip wire for each SUMMA canister allowed the solenoid valve for each SUMMA to be triggered from ground level. Each SUMMA was triggered just before sampling personnel left the potential burn area for a safe zone upwind. When all personnel were out of the area, the APG Fire Department initiated the burn.

#### RESULTS

- <u>VOCs</u>: Benzene and toluene were the only target VOCs detected in any of the samples. The detected concentrations of these two compounds were between 0.4 and 0.6 parts per billion volume (ppbv). These concentrations should be regarded as not detected because 0.6 ppbv each of benzene and toluene were detected in the trip blank. For complete analytical results for VOCs, see the Analytical Report in Appendix A.
- <u>PAHs</u>: No PAHs were detected in any of the samples. For complete analytical results for PAHs see the Analytical Report in Appendix B.
- Inorganic Acids: No inorganic acids were detected in any of the samples. For complete analytical results for inorganic acids see the Analytical Report in Appendix B.

#### c:\MyFiles\R1a00110\OFIELD1\tr1299.110

- Dioxins/Furans: A summary of dioxins/furans results can be found in Table 1. The method blank contained OCDD. 1234678-HpCDF. and OCDF: none of the sample results for these compounds were greater than five times the concentration detected in the method blank. The results for each of those compounds should be regarded as not detected. The trip blanks contained 123678-HxCDD, 1234678-HpCDD, OCDD, 12378-PeCDF, 1234678-HpCDF, and OCDF. None of the samples contained concentrations of 123678-HxCDD, 1234678-HpCDD, or 12378-PeCDF exceding five times the concentrations detected in the trip blank; the results for these compounds should be regarded as not detected. The field blank contained 12378-PeCDD. None of the samples contained 12378-PeCDD at concentrations greater than five times the detected field blank concentration The results for 12378-PeCDD should be regarded as not detected. The total dioxins/furans detected at each location after adjusting for the compounds regarded as not detected are as follows: O-2(not detected). O-3(not detected), O-4(0.0491 picograms per cubic meter (pg/m<sup>3</sup>)), O-5(0.705 pg/m<sup>3</sup>), O-UW1(not detected). and O-UW2(not detected). For complete analytical results for dioxins/furans, see the Analytical Report in Appendix B.
- <u>Metals</u>: A summary of metals results can be found in Table 2. The tin concentration detected in sample 28050 should be regarded as estimated because the acceptable quality control (QC) limits for the percent recovery of the blank spike (BS) and blank spike duplicate (BSD) were exceeded. All other concentrations should be regarded an not detected because they were each less than 5 times the lot blank concentration. For complete analytical results for metals, see the Analytical Report in Appendix B.
- <u>CWAs</u>: No chemical warfare agents were detected in any of the samples. CWA results are provided by SBC COM, see Appendix C.
- <u>Particulates</u>: Particulates results are shown in Figures 2 through 8. The overall maximum concentration of 54.9 micrograms per cubic meter (µg/m<sup>3</sup>) was detected at location O-UW1.
- Meteorological data: Windroses representing local wind speed and wind direction during the burn period are provided in Appendix D. The data was collected at H-Field using a 10-meter tower, and at Poverty Island using a 5meter tower. Winds at Poverty Island were predominantly out of the southwest, but were light and variable. H-Field recorded stronger winds at the 10-meter level, predominantly out of the south southwest.

Analysis for VOCs and PAHs were provided by REAC. Edison, NJ. Analysis for dioxins/furans, inorganic acids, and metals were provided by Southwest Research Institute. San Antonio, TX. Analysis for CWAs was provided by SBC COM, APG, MD.

#### FUTURE ACTIVITIES

Due to light winds and the wet marsh, the proposed burn area did not burn, only the area near the fire initiation line ignited. The sampling devices were too far away to capture the plume from the small burned area. A second controlled burn will be conducted at O-Field when the conditions are more favorable. After the O-Field burn is completed, the J-Field burn will be initiated. There are no eagle nesting restrictions affecting the J-Field burn.

| Sample Number<br>Sample Location    | 28080<br>O-1(Field Blank) | 28081<br>O-2 | 28082<br>O-3 | 28083<br>O-4 | 28084<br>0-5 | 28085<br>O-UW1 | 28086<br>O-UW2 | 28088<br>Trip Blank | 28089<br>Trip Blank |
|-------------------------------------|---------------------------|--------------|--------------|--------------|--------------|----------------|----------------|---------------------|---------------------|
| Adjusted concentration <sup>1</sup> | pg                        | pg           | PB           | pg/m^3       | pg/m^3       | pg/m^3         | pg/m^3         | pg/m^3              | pg/m^3              |
| 1,2,3,7,8-PeCDD <sup>1</sup>        | 4.35                      | U            | U.           | 6.9          | U            | 7.85           | 5.85           | U                   | U                   |
| 1,2,3,6,7,8-HxCDD <sup>3</sup>      | U                         | U            | U            | U            | U            | U              | 1.02           | U                   | 0.862               |
| 1,2,3,4,6,7,8-HpCDD <sup>3</sup>    | . U                       | U            | 0,192        | U            | U            | 0.277          | Ú              | U                   | 0.0574              |
| OCDD <sup>2</sup>                   | U                         | 0.0381       | 0.0548       | U            | U            | 0.0918         | 0.0306         | 0.0172              | 0.019               |
| 2,3,7,8-TCDF                        | U                         | U            | U            | U            | 0.526        | U              | U              | U                   | U                   |
| 1,2,3,7,8-PeCDF <sup>3</sup>        | U                         | 0.3845       | U            | 0.3895       | 0.351        | U              | 0.52           | 0.374               | 0.209               |
| 1,2,3,4,7,8-HxCDF                   | U                         | U            | U            | U            | 0.179        | U              | U              | U                   | υ                   |
| 1,2,3,7,8,9-HxCDF                   | U                         | υ            | U            | 0.0491       | U            | U.             | U              | U                   | U                   |
| 1,2,3,4,6,7,8-HpCDF <sup>2</sup>    | · U                       | U            | U            | U            | U            | U              | 0.146          | 0.0712              | U                   |
| OCDF <sup>2</sup>                   | 0.0115                    | 0.0215       | 0.0263       | 0.0201       | U            | 0.0511         | 0.0203         | 0.0113              | U                   |
| Total                               | 4.3615                    | 0.4441       | 0.2731       | 7.3587       | 1.056        | 8.2699         | 7.5869         | 0.4737              | 1.1474              |

# Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities Summary of Dioxins/Furans Sampling Results - O-Field Controlled Burn - December 3, 2000

pg - picograms

pg/m^3 - picograms per cubic meter

<sup>1</sup> Adjusted concentration - detected concentration multiplied by the toxicity equivalency factor (TEF) for each compound.

<sup>2</sup>The OCDD results for samples 28081, 28082, 28085, 28086, 28088, and 28089; the 1,2,3,4,6,7,8-HpCDF results for samples 28086 and 28088; and the OCDF results for samples 28080, 28081, 28082, 28083, 28085, 28086, and 28088 should be regarded as not detected because the concentrations in the samples were less than 5 times the concentration in the method blank.

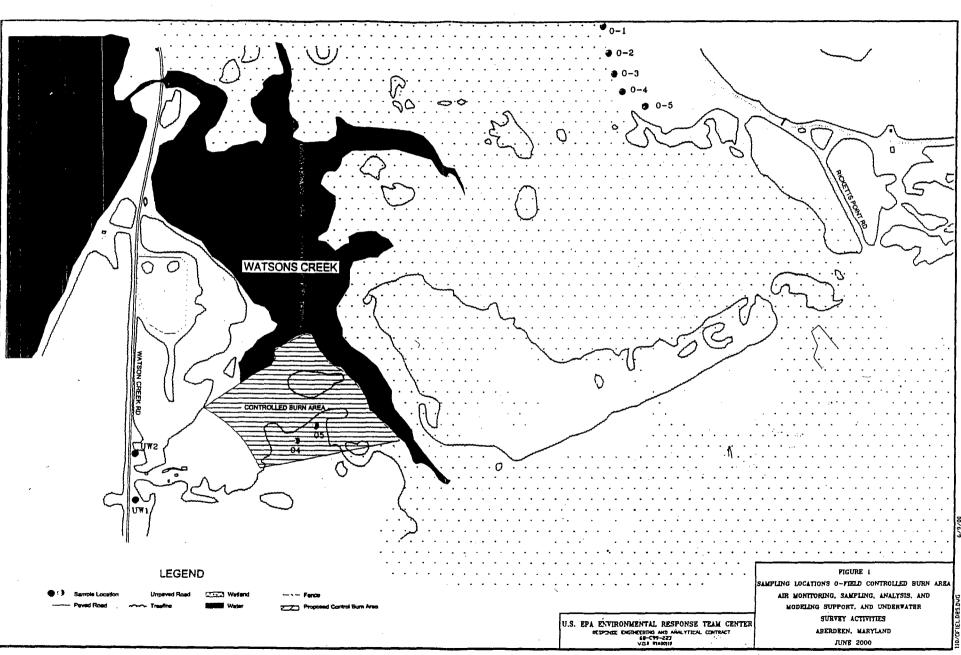
<sup>3</sup>The 1,2,3,6,7,8-HxCDD result for sample 28086; the 1,2,3,4,6,7,8-HpCDD result for samples 28082 and 28085; and the 1,2,3,7,8-PeCDF result for samples 28081, 28083, 28084, and 28086 should be regarded as not detected because the concentration in the sample is less than 5 times the concentration in the trip blank.

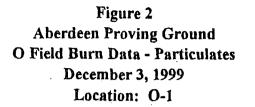
<sup>4</sup>The 1,2,3,7,8-PeCDD results for samples 28083, 28085, and 28086 should be regarded as not detected because the concentration in the samples were less than 5 times the concentration in the field blank.

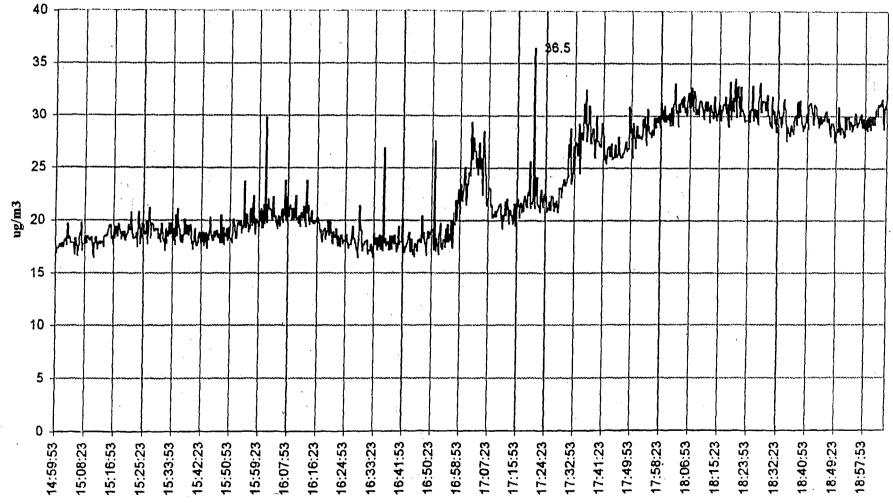
#### Table 1

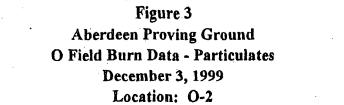
| Sample Number<br>Location<br>Parameter | 28050<br>Ο-1<br>μg/m <sup>3</sup> | 28051<br>О-2<br>µg/m <sup>3</sup> | 28052<br>О-3<br>µg/m³ | 28053<br><u>О-4</u><br>µg/m <sup>3</sup> | 28054<br><u>О-5</u><br>µg/m <sup>3</sup> | 28055<br><u>O-UW1</u><br>µg/m³ | 28056<br>O-UW2<br>µg/m³ | 28057<br>Field Blank<br>µg/filter | 28058<br>Trip Blank<br>µg/filter | 28059<br>Lot Blank<br>µg/filter |          |     |      |     |     |     |     |     |     |     |     |
|----------------------------------------|-----------------------------------|-----------------------------------|-----------------------|------------------------------------------|------------------------------------------|--------------------------------|-------------------------|-----------------------------------|----------------------------------|---------------------------------|----------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
|                                        |                                   |                                   |                       |                                          |                                          |                                |                         |                                   |                                  |                                 | Aluminum | U   | 1.5  | 3.5 | 2.7 | 4.0 | 2.0 | 2.0 | 1.3 | 1.3 | 2.3 |
|                                        |                                   |                                   |                       |                                          |                                          |                                |                         |                                   |                                  |                                 | Calcium  | 8.8 | .8.3 | 9.0 | 9.0 | 9.7 | 10  | 9.0 | 5.4 | 5,5 | 5,5 |
| Chromium                               | 0.59                              | Ó.47                              | 0.64                  | 0.66                                     | 0.76                                     | 0.97                           | 0.7                     | 0.56                              | 0.49                             | 0.44                            |          |     |      |     |     |     |     |     |     |     |     |
| Iron                                   | 1.5                               | 1.1                               | 1.1                   | 0.95                                     | 2.7                                      | 1.2                            | 2.1                     | 0.82                              | 0.45                             | 0.45                            |          |     |      |     |     |     |     |     |     |     |     |
| Phosphorus                             | U                                 | U                                 | U                     | U                                        | U                                        | U                              | U                       | U                                 | U                                | U                               |          |     |      |     |     |     |     |     |     |     |     |
| Sodium                                 | 9.0                               | 12.6                              | 12.5                  | 11.6                                     | 14                                       | 13.8                           | 12                      | 12.3                              | 7.8                              | 10                              |          |     |      |     |     |     |     |     |     |     |     |
| Tin                                    | 1.3                               | U                                 | U                     | U                                        | U                                        | U                              | U                       | U                                 | U                                | U                               |          |     |      |     |     |     |     |     |     |     |     |
| Zinc                                   | 0.21                              | U                                 | 0.25                  | 0.23                                     | 0.33                                     | 0.31                           | 0.16                    | 0.11                              | U                                | 0.12                            |          |     |      |     |     |     |     |     |     |     |     |

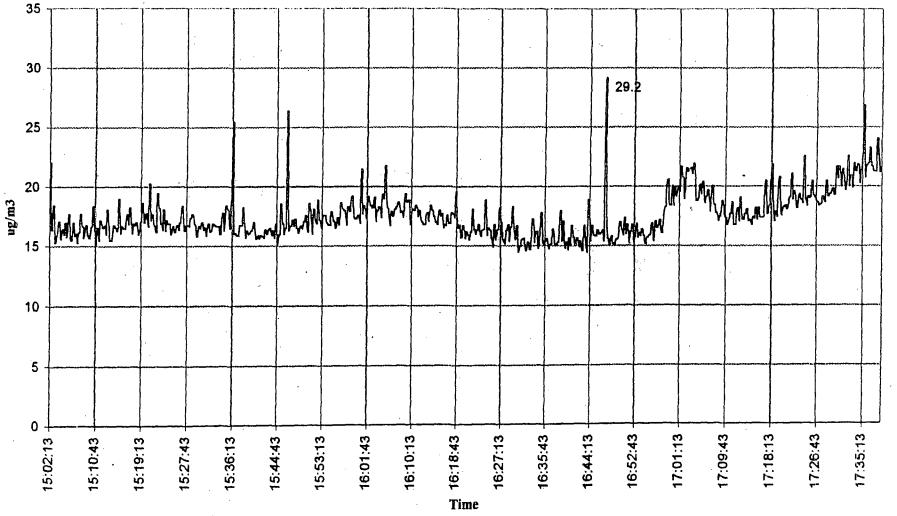
Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites Summary of Metals Sampling Results - O-Field Controlled Burn - December 3, 2000


<sup>1</sup>Regard concentration as estimated, acceptable QC limits for the %Recovery of the BS and the BSD were exceeded.

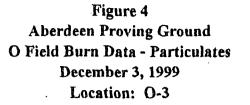

All detected concentrations for all compounds in this table should be regarded as not detected because they are each less than 5\* (Lot Blank Concentration).  $\mu g/m^3$  - micrograms per cubic meter

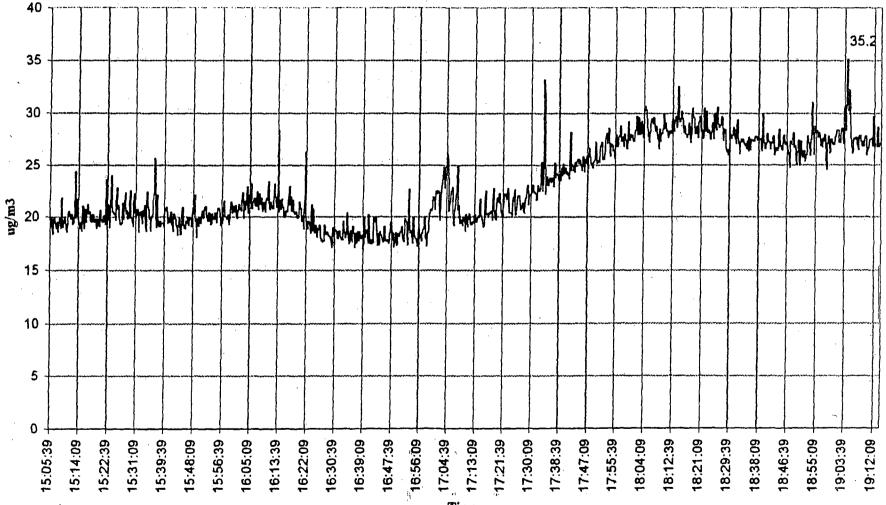

QC - Quality control

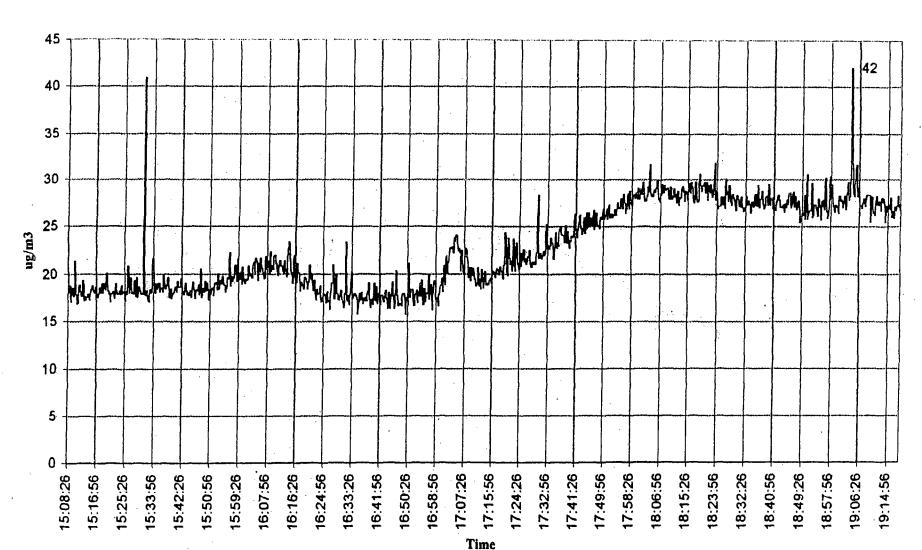

BS - Blank spike


BSD - Blank spike duplicate








A ...







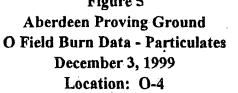
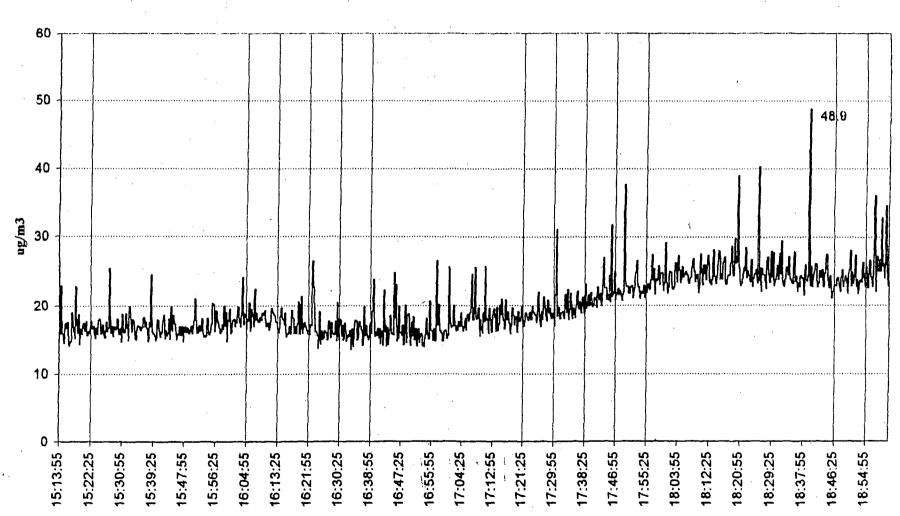
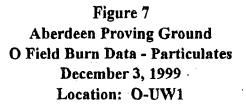
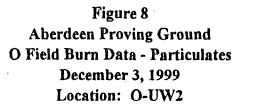
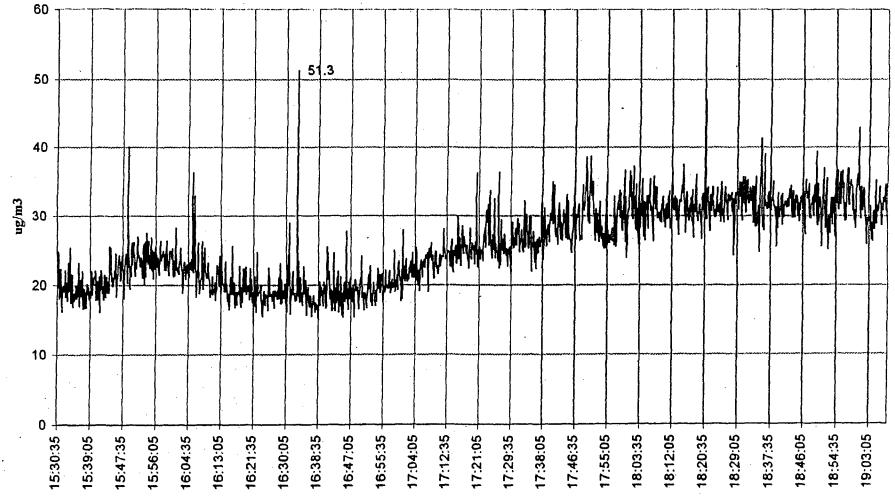



Figure 5





Figure 6 Aberdeen Proving Ground O Field Burn Data - Particulates December 3, 1999 Location: O-5



÷







### APPENDIX A Analytical Report (VOCs) Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\OFIELD1\tr1299.110

### ANALYTICAL REPORT

Prepared by Lockheed Martin Technology Services Group

Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Aberdeen, MD

### January 2000

### EPA Work Assignment No:0-110 LOCKHEED MARTIN Work Order No. R1A00110 EPA Contract No. 68-C99-223

Submitted to D. Mickunas EPA-ERTC

Dubois Date

Task Leader

100 Date

Dennis Miller Analytical Section Leader

Steven Clapp Date

Program Manager

0110/DEL/AR/0001/report

Analysis by: REAC

Prepared by: G. Karustis JungSug Jang G. Ball

Reviewed by: D. Killeen V. Kansal

### TABLE OF CONTENTS

### Topic

### **1.0 INTRODUCTION**

### 2.0 GC/MS CANISTER PROCEDURES

2.1 Sample Pressurization

2.2 Summa Canister Analysis

2.3 Calibration and Sample Spiking

2.4 Compound Identification/Quantitation

2.5 QA/QC

### 3.0 RESULTS

### 4.0 DATA ASSESSMENT

### LIST OF TABLES

| Table 1 - GC/MS Instrument Conditions                                  | 5    |
|------------------------------------------------------------------------|------|
| Table 2 - Air Toxic Standards (Concentrations and Quantitation lons)   | 6    |
| Table 3 - Air Toxic Target Compound Results for Summa Canister Samples | . 7  |
| Table 4 - Air Toxic Non-target Compounds Summa Canister Sample Results | - 10 |
| Table 5 - Air Toxic MS/MSD Recovery Summary for Summa Canister Samples | 20   |
|                                                                        |      |

### APPENDIX A - CHAIN-OF-CUSTODY

### **APPENDIX B - SUMMA CANISTER DATA**

(J 005)

23

21

Page Number

1

1

1

1

1

2

2

3

3

### 0110/DEL/AR/0001/report

### 1.0 INTRODUCTION

Summa canister samples were collected at the Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site in Aberdeen, MD on 03 December 1999. A total of eight (8) samples were collected in 6-liter passivated Summa canisters, the samples were transported back to the Environmental Response Team Center (ERTC) facility in Edison, New Jersey. These samples were analyzed by the Response Engineering and Analytical Contract (REAC) using gas chromatography/mass spectrometry (GC/MS) on 06, 07, and 08 December 1999.

### 2.0 GC/MS CANISTER PROCEDURES

### 2.1 Sample Pressurization

The Summa canisters used for sampling were cleaned by REAC using REAC Standard Operating Procedure (SOP) #1703 and were selected from batches certified clean by REAC. Before analysis, all canisters were pressurized. A pressurizing train was setup with a pressure gauge accurate to  $\pm 0.1$  pounds per square inch absolute (psia). The gauge and train were purged with nitrogen gas (Ultra High Pure grade) for 5 minutes. The train was then connected to the canister, an initial reading was taken. Nitrogen was added to all canister samples to bring the canister pressure to 3 times the initial reading, except 29007 trip blank.

|               |            | Initial         | <u>Final</u>           |
|---------------|------------|-----------------|------------------------|
| <u>Sample</u> | Location   | Pressure (psia) | <u>Pressure (psia)</u> |
| 29007         | Trip Blank | 0.7             | 20.0                   |
| 29000         | 01         | 8.2             | 24.6                   |
| 29001         | 02         | 10.2            | 30.6                   |
| 29002         | 03         | 9.2             | 27.6                   |
| 29003         | 04         | 8.5             | 25.5                   |
| 29004         | 05         | 9.8             | 27.4                   |
| 29005         | UPW1       | 10.4            | 31.2                   |
| 29006         | UPW2       | 8.3             | 24.9                   |

### 2.2 Summa Canister Analysis

Samples were analyzed by cryogenic trapping of aliquots from Summa canisters via a canister using a Hewlett-Packard 5890 gas chromatography (GC) and 5971A mass selective detector (MSD) running ChemStation software. Table 1 lists cryogenic trap and GC/MS conditions.

All canisters were attached to the Summa canister autosampler. Sample analysis began by cooling the first cryotrap, module -1 (M-1), to -160 degree Celsius (°C). Once M-1 was cooled, a specified aliquot of sample or standard was cryotrapped. This aliquot was transferred to a Tenax trap, M-2, to eliminate most of the water, and then cryofocussed at a third trap, M-3, before injection by direct heating.

### 2.3 Calibration and Sample Spiking

A twenty-five (25) compound standard was provided in compressed gas cylinder No ALM009519 by Scott Specialty Gases, Inc. This standard was diluted from 1 part per million volume (ppmv) to 20 parts per billion volume (ppbv) in a Silco canister. An initial calibration range was obtained by varying the volume of the 20 ppbv standard from 50 to 1250 milliliters (mL), equivalent to 1 nanoliter (nL) to 25 nL. Daily standards were obtained by analyzing the 20 ppbv standard at 500 mL (equivalent to 10 nL).

### 0110/DEL/AR/0001/report

Bromochloromethane (BCM) and p-bromofluorobenzene (BFB) were added to both samples and standards. Both standards were provided in compressed gas cylinder No. ALM046281 by Scott Specialty Gases. BCM was used as an internal standard and BFB was used as a surrogate standard. This standard was diluted from 1 ppmv to 100 ppbv in a Silco canister. An aliquot of 100 mL (equivalent to 10 nL) was added to all standards and samples. To validate the mass spectrometer tuning, an aliquot of 70 mL (equivalent to 50 nanograms of BFB) was analyzed alone. Standard cylinder 1.D. numbers, concentrations, and their quantitation ions are listed in Table 2.

### 2.4 <u>Compound Identification/Quantitation</u>

Contaminants in samples were identified and quantitated by the ChemStation software. This software was designed in order to tentatively identify and quantitate target compounds, using reconstructed and extracted ion chromatogram which were matched with retention time windows. The report format prints the identified compound mass spectra (both raw and background subtracted), quantitation, and qualifier ion chromatogram.

Target compound results are originally reported in nL. The limit of quantitation (LOQ) for all the target compounds is estimated to be 1 nL, being the lowest volume of standard on the calibration curve. The target compound results are calculated in ppbv using the following equation:

Concentration(ppbv) = Quant Result (nL) x 1000 Undiluted Sample Volume(mL)

The quantitation limit was 4 ppby.

Non-target compounds were identified by a library search of all peaks in a chromatogram. The library search report prints out the sample spectrum along with the ten best library matches and the three best library match spectra. These matches were used along with mass spectral interpretation techniques to tentatively identify the unknowns. Concentrations were calculated based on the total ion response of bromochloromethane in the daily standard. All compounds appearing in the method blank as well as other background compounds commonly found in Summa canister GC/MS analyses (siloxanes, carbon dioxide, etc.) were deleted from the sample results to provide a true listing of the compounds in the samples.

### 2.5 <u>QA/QC</u>

The following QA/QC procedures were performed for this analysis:

- The HP 5971A was tuned daily for perfluorotributylamine (PFTBA) to meet abundance criteria for p-bromofluorobenzene as listed in EPA Method 624. Tuning results are included in the QA/QC data section (Appendix B). The tune was adjusted when necessary.
  - An initial calibration by automated injection from a Silco canister standard at 20 ppbv was performed on 25 September 1999. All compounds met the acceptance criteria of having relative standard deviations (RSD) of less than 25%, except chloroethane (29.03%), 1,1,1-trichloroethane (25.71%) and carbon tetrachloride (26.97%).
- Continuing calibrations were performed on 06, 07, and 08 December 1999 to satisfy the 12 hour requirement. All compounds met the acceptance criteria of having relative percent difference (RPD) less than 25%.
- A surrogate standard of BFB was added to all standards and samples. Percent recoveries were calculated against daily standards, and are listed in Table 3. Recoveries should be within 70% to 130% for BFB.

- Method blanks were analyzed after continuing calibrations to ensure that the system was clean.
- A duplicate was analyzed on sample 29000 (01).
- One set of matrix spike and matrix spike duplicates (MS/MSD) was analyzed on sample 29006 (UPW2) by spiking the samples with 500 mL of the 20 ppbv standard. There is no specific recovery range established according to SOP # 1705.

### 3.0 <u>RESULTS</u>

Summa canister target and non-target results are listed in Tables 3 and 4, respectively. The recoveries for the MS/MSD are presented in Table 5. All results are reported in ppbv for Summa canister samples and blanks. The chain-of-custody is in Appendix A. The Summa canister data is in Appendix B.

In Appendix B, the Analysis Log is followed by the calibration package for each day of analysis. The calibration package includes the daily analysis log, canister pressurization log, BFB tune, and initial or continuing calibration quant report. The quant report lists the retention time, quantitation ion, peak area, and concentration in nL. Concentrations listed on this quant report are generated by using the average response factors of the initial calibration and the response factors of the continuing calibrations.

The following is a list of the QA/QC flags used in qualifying the results:

- A Assumed volume for method blank.
- B Concentration less than 3 times method blank value.
- C Compound calibration relative standard deviation (RSD) >25% (concentrations calculated by average response factor only).
- E Exceeds calibration range.
- J Below 1.0 nL quantitation limit.
- U-Not detected.

### 4.0 DATA ASSESSMENT

The following summarizes the data validation performed on the air toxic analysis of 8 Summa canister air samples received at REAC on 12/6/99, chain of custody 03218, collected on 12/3/99 for the Air Monitoring, Sampling, Analysis and Modeling Support, and Underwater Survey Activities project, WA# 0-110.

The data in this report have been validated to two significant figures. Any other representation of the data is the responsibility of the user.

The samples were treated with procedures consistent with those specified in SOP #1008.

The method blank of 12/7/99 contained 0.4 ppbv of benzene. The concentrations of benzene in samples 29004, 29005 and 29006 should be regarded as not detected.

The trip blank, sample 29007, contained 0.7 ppbv of trichlorofluoromethane, 0.6 ppbv of 1,1-dichloroethene, 0.8 ppbv methylene chloride, 0.6 ppbv trans 1.2-dichloroethylene, 0.6 ppbv 1,1-dichloroethane, 0.7 ppbv trichloroethane, 0.5 ppbv 1,2-dichloroethane, 0.6 ppbv benzene, 0.7 ppbv carbon tetrachloride, 0.6 ppbv trichloroethylene, 0.6 ppbv dibromomethane, 0.5 ppbv bromochloromethane, 0.6 ppbv of toluene and 0.6 ppbv tetrachloroethylene. The data are affected as follows:

The concentrations of benzene and toluene in samples 29000, 29001, 29003, 29004, 29005 and 29006 should be regarded as not detected.

The concentration of toluene in sample 29002 should be regarded as not detected.

The remainder of the data are not affected as the other analytes detected in the trip blank were not detected in the samples.

In the initial calibration of 9/25/99 the acceptable QC limits were exceeded for the percent relative standard deviation for 1,1,1-trichloroethane (26%) and carbon tetrachloride (27%). The data are not affected because these analytes were not detected in the associated samples.

#### 0110/DEL/AR/0001/report

1

### TABLE 1 - GC/MS Instrument Conditions

Ì

A. Single Tube Desorber Conditions

| Cool Desorb Temperature | : 20°C        |
|-------------------------|---------------|
| Cool Desorb Time        | : 1 minute    |
| Cool Desorb Flow        | : 50 mL/min   |
| Hot Desorb Temperature  | : 240°C       |
| Hot Desorb Time         | : 10.0 minute |
| Hot Desorb Flow         | : 50 mL/min   |
|                         |               |

(2) Preconcentrator Conditions:

| :-160°C       |
|---------------|
| : 1.0 minute  |
| : 150 mL/min  |
| : 20°C        |
| :-10°C        |
| : 4.5 minutes |
| : 240°C       |
| : -160°C      |
| : 3.5 minutes |
| : 2.0 minutes |
|               |

C. GC/MS Conditions, Sample Analysis:

| Initial Temperature | : 40.0°C         |
|---------------------|------------------|
| Initial Time        | : 6.0 minutes    |
| Ramp Rate           | : 8.0°C/min      |
| Final Temperature   | : 185.0°C        |
| Final Time          | : 11.4 minutes   |
| Run Time            | : 35.5 minutes   |
| Mass Scan Range:    | : 35 to 250 AMU. |
|                     |                  |

Column: 0.32 mm x 60 meter Restek RTx-5, 1.50 um film thickness (Restek Corporation)

### 0110/DEL/AR/0001/report

# TABLE 2 - Air Toxic Standards (Concentrations and Quantitation Ions)

| Compound                 | <u>Cylinder</u> | Conc. (ppmv) | <u>Quant. Ion</u> |
|--------------------------|-----------------|--------------|-------------------|
| chloromethane            | ALM009519       | 0.98         | 50                |
| vinyl chloride           | - ALM009519     | 0.97         | 62                |
| chloroethane             | ALM009519       | 1.00         | 64                |
| richlorofluoromethane    | ALM009519       | 1.04         | 101               |
| ,1-dichloroethene        | ALM009519       | 1.02         | • 61              |
| lichloromethane          | ALM009519       | 1.00         | 49                |
| rans-1,2-dichloroethene  | ALM009519       | 1.00         | 61                |
| ,1-dichloroethane        | ALM009519       | 1.02         | 63                |
| richloromethane          | ALM009519       | 1.02         | 83                |
| ,1,1-trichloroethane     | ALM009519       | 1.01         | 97                |
| ,2-dichloroethane        | ALM009519       | 1.02         | 62                |
| enzene                   | ALM009519       | 1.00         | 78                |
| arbon tetrachloride      | ALM009519       | 0.98         | 117               |
| ichloroethene            | ALM009519       | 1.00         | 130               |
| ibromomethane            | ALM009519       | 0.98         | 174               |
| romodichloromethane      | ALM009519       | 1.01         | 83                |
| oluene                   | ALM009519       | 1.01         | 9.1               |
| ,1,2-trichloroethane     | ALM009519       | 0.98         | 97                |
| etrachloroethene         | ALM009519       | 1.00         | 166               |
| thylbenzene              | ALM009519       | 1.01         | 91                |
| neta-xylene              | ALM009519       | 1.02         | 91                |
| tyrene                   | ALM009519       | 1.04         | 104               |
| rtho-xylene              | ALM009519       | 1.04         | 91                |
| ,1,2,2-tetrachloroethane | ALM009519       | 1.00         | 83                |
| ,3,5-trimethylbenzene    | ALM009519       | 1.05         | 120               |
| •<br>•                   |                 |              |                   |
| ourrogate Standards      |                 |              | · .               |
| promochloromethane       | ALM046281       | 1.06         |                   |
| o-bromofluorobenzene     | ALM046281       | 1.06         | 95                |
|                          |                 |              |                   |

0110/DEL/AR/0001/report

.

### Hable 5 Air Hoxic Harger Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites (concentrations in ppbv)

| Sample Number                  | Method   | 29007                          | 29000    | 29000 Rep  | 29001        |
|--------------------------------|----------|--------------------------------|----------|------------|--------------|
| Sample Location                | Blank    | <ul> <li>Trip Blank</li> </ul> | 01       | 01         | 02           |
| Date Sampled                   | N/A      | 12/03/99                       | 12/03/99 | 12/03/99   | 12/03/99     |
| Date Analyzed                  | 12/07/99 | 12/06/99                       | 12/06/99 | 12/06/99   | 12/06/99     |
| Data File                      | CET016   | ABS001                         | AB\$002  | ABS013     | ABS003       |
| Chloromethane                  | 4 U      | 4 U                            | 4 U      | 4 U        | 4 U          |
| Vinyl Chloride                 | 4 U      | 4 U                            | 4 U      | 4 U        | . 4 U        |
| Chloroethane                   | 4 U      | 4 U I                          | 4 U      | 4 U        | 4 U          |
| Trichiorofluoromethane         | 4 U      | 0.7 J                          | 4 U -    | 4 U        | 4 U          |
| 1,1-Dichloroethene             | 4 U      | 0.6 J                          | 4 U      | 4 U        | 4 U          |
| Methylene Chloride             | 4 U      | 0.8 J                          | 4 U      | 4 U        | 4 U          |
| trans-1,2-Dichloroethylene     | 4 U      | 0.6 J                          | 4 U      | 4 U        | 4 U          |
| 1,1-Dichloroethane             | 4 U'     | 0.6 J                          | 4 U      | 4 U        | 4 U          |
| Trichloromethane               | 4 U      | 4.0 U                          | - 4 U    | 4 U        | 4 U          |
| 1,1,1-Trichloroethane          | 4 U      | 0.7 J                          | 4 U      | 4 U        | 4 U          |
| 1,2-Dichloroethane             | 4 U      | 0.5 J                          | 4 U      | 4 U        | 4 U          |
| Benzene                        | 4 U      | 0.6 J                          | 0.4 J    | 0.4 J      | 0.4 J        |
| Carbon Tetrachloride           | 4 U      | 0.7 J                          | 4 U      | 4 U        | 4 U          |
| Trichloroethylene              | 4 U      | 0.6 J                          | 4 U      | . 4 U J    | 4 U.         |
| Dibromomethane                 | 4 U      | 0.6 J                          | 4 U      | 4 U        | -4 U         |
| Bromodichloromethane           | 4 U      | 0.5 J ·                        | 4 U      | 4 U        |              |
| Toluene                        | 4 U      | 0.6 J                          | 0.6 J    | 0.6 J      | 0.5 J        |
| 1,1,2-Trichloroethane          | 4 U      | 4 U                            | . 4 U    | 4 U        | - 4. U       |
| Tetrachloroethylene            | 4 U      | 0.6 J                          | - 4 U    | 4 U        | . 4⊶U        |
| Ethylbenzene                   | · 4 U    | 4 U                            | 4 U      | 4 U        | 4 U          |
| m & p-Xylenes                  | 4 U      | 4 U                            | 4 U      | 4 U        | 4 U          |
| Styrene                        | 4 U      | 4 U                            | 4 U      | <u>4 U</u> | · 4/ U       |
| o-Xylene                       | 4 U ·    | 4 U                            | 4 U      | 4 U        | - <b>4</b> U |
| 1,1,2,2-Tetrachloroethane      | 4 U      | 4 U                            | 4 U      | 4 U        | 4 U          |
| 1,3,5-Trimethylbenzene         | 4 U      | 4 U                            | 4 U      | 4 U        | - 4 U        |
|                                |          |                                |          |            |              |
| p-Bromofluorobenzene (% Rec)   | 117      | 116                            | 123      | 125        | 125          |
|                                |          |                                |          |            |              |
| Pressurized Sample Volume (mL) | 250      | 250                            | 750      | 750        | 750          |
| Initial Pressure (psia)        | N/A      | N/A                            | 8.2      | 10.4       | 10.2         |
| Final Pressure (psia)          | N/A      | N/A                            | 24.6     | 31.2       | 30.6         |
| Quantitation Limit (ppbv)      | 4        | . 4                            | 4        | 4          | . 4          |

A - Assumed volume for Blanks

B - <3 times Method Blank value C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

N/A - Not Applicable

0007

# Table 3 (cont.) Air Toxic Target Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites (concentrations in ppby)

| Sample Number                  | 29002    | 29003    | Method   | 29004    | 29005    |
|--------------------------------|----------|----------|----------|----------|----------|
| Sample Location                | 03       | 04       | Blank    | 05       | UPW1     |
| Date Sampled                   | 12/03/99 | 12/03/99 | N/A      | 12/03/99 | 12/03/99 |
| Date Analyzed                  | 12/06/99 | 12/06/99 | 12/07/99 | 12/07/99 | 12/07/99 |
| Data File                      | ABS004   | ABS005   | ABS007   | ABS011   | ABS012   |
| Chloromethane                  | 4 U ]    | 4 U      | .4 U     | 4 U      | 40       |
| Vinyl Chloride                 | 4 U      | 4 U      | 4 U      | 4 U      | 4 U 1    |
| Chioroethane                   | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| Trichlorofluoromethane         | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| 1,1-Dichloroethene             | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| Methylene Chloride             | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| trans-1,2-Dichloroethylene     | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| 1,1-Dichloroethane             | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| Trichloromethane               | 4 U      | 4 U      | 4 U      | 4 U      | 4 U.     |
| 1,1,1-Trichloroethane          | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| 1,2-Dichloroethane             | 4 U      | 4 U )    | 4 U      | 4 U      | 4 U      |
| Benzene                        | 4 U      | 0.4 J    | · 0.4 J  | 0.4 J    | 0.4 J    |
| Carbon Tetrachloride           | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| Trichloroethylene              | 4 U      | 4 U      | 4 U      | 4 U'     | 4 U      |
| Dibromomethane                 | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| Bromodichloromethane           | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| Toluene                        | 0.6 J    | 0.5 J    | 4 U      | 0.6 J    | 0.5 J    |
| 1,1,2-Trichloroethane          | 4 U      | 4 U      | 4 U      | 4 U      | _ 4 U    |
| Tetrachloroethylene            | 4 U      | 4 U      | 4 .U     | 4 U      | 4 U      |
| Ethylbenzene                   | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| m & p-Xylenes                  | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| Styrene                        | 4 U      | 4 U      | 4 U      | . 4 U    | 4 U      |
| o-Xylene                       | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| 1,1,2,2-Tetrachloroethane      | 4 U      | 4 U      | 4 Ü      | 4 U      | 4 U      |
| 1,3,5-Trimethylbenzene         | 4 U      | 4 U      | 4 U      | 4 U      | 4 U      |
|                                | λ        |          |          |          |          |
| p-Bromofluorobenzene (% Rec)   | 130      | 128      | 117      | 126      | 129      |
| Pressurized Sample Volume (mL) | 750      | 750      | 250      | 750      | 750      |
| Initial Pressure (psia)        | 9.2      | 8.5      | N/A      | 9.8      | 10.4     |
| Final Pressure (psia)          | 27.6     | 25.5     | N/Ā      | 27.4     | 31.2     |
| Quantitation Limit (ppbv)      | 4        | 4        | 4        | 4        | 4        |

A - Assumed volume for Blanks

B - <3 times Method Blank value C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

· --- m. . ٠.

N/A - Not Applicable

# Table 3 (cont.) Air Toxic Target Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites (concentrations in ppbv)

| Sample Number                  | 29006    |
|--------------------------------|----------|
| Sample Location                | UPW2     |
| Date Sampled                   | 12/03/99 |
| Date Analyzed                  | 12/07/99 |
| Data File                      | ABS014   |
| Chloromethane                  | . 4 U    |
| Vinyl Chloride                 | · 4 U    |
| Chloroethane                   | 4 U      |
| Trichlorofluoromethane         | 4 U .    |
| 1,1-Dichloroethene             | 4 U      |
| Methylene Chloride             | 4 U      |
| trans-1,2-Dichloroethylene     | 4 U      |
| 1,1-Dichloroethane             | 4 U      |
| Trichloromethane               | 4 U      |
| 1,1,1-Trichloroethane          | 4 U      |
| 1,2-Dichloroethane             | 4 U      |
| Benzene                        | 0.4 J    |
| Carbon Tetrachloride           | 4 U      |
| Trichloroethylene              | 4 U      |
| Dibromomethane                 | 4 U      |
| Bromodichloromethane           | 4 U      |
| Toluene                        | 0.5 J    |
| 1,1.2-Trichloroethane          | 4 U      |
| Tetrachloroethylene            | 4 U      |
| Ethylbenzene                   | 4 U      |
| m & p-Xylenes                  | 4 U      |
| Styrene                        | 4 U      |
| o-Xylene                       | 4 U      |
| 1,1,2,2-Tetrachloroethane      | 4 U      |
| 1,3,5-Trimethylbenzene         | 4 U      |
|                                |          |
| p-Bromofluorobenzene (% Rec)   | 126      |
|                                |          |
| Pressurized Sample Volume (mL) | 750      |
| Initial Pressure (psia)        | 8.3      |
| Final Pressure (psia)          | 24.9     |
| Quantitation Limit (ppbv)      | 4        |

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

N/A - Not Applicable

1

| Sample Number:<br>Sample Location:<br>Sample Volume (mL):<br>Date Sampled: | Method<br>Blank<br>250<br>N/A<br>12/07/99 | Reference Standard:<br>Reference Std Conc. (ppbv):<br>Reference Std Volume (mL):<br>Reference Std Area:<br>Initial Pressure (psig): | Bromochloromethane<br>21.2<br>500<br>11910887<br>N/A |
|----------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Date Analyzed:<br>Data File:                                               | CET016                                    | Final Pressure (psig):<br>Final Pressure (psig):                                                                                    | N/A<br>N/A                                           |
| Compound Name                                                              | Retention Time                            | Area                                                                                                                                | Concentration (ppbv)                                 |
| dichlorodifluoro-methane                                                   | 6.114                                     | 589021                                                                                                                              | 2                                                    |

\* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

0010

| Sample Number:           | 29007          | Reference Standard:         | Bromochloromethane   |
|--------------------------|----------------|-----------------------------|----------------------|
| Sample Location:         |                | Reference Std Conc. (ppbv): | 21.2                 |
| Sample Volume (mL):      | 250            | Reference Std Volume (mL):  | 500                  |
| Date Sampled:            | 12/03/99       | Reference Std Area:         | 11910887             |
| Date Analyzed:           | 12/06/99       | Initial Pressure (psig):    | N/A                  |
| Data File:               | ABS001         | Final Pressure (psig):      | N/A                  |
| Compound Name            | Retention Time | Агеа                        | Concentration (ppbv) |
| dichlorodifluoro-methane | 6.114          | 605224                      | 2 *                  |

\* - Below 4 ppbv Limit of Quantitation

N/A - Not Applicable

| Sample Number:           | 29000          | Reference Standard:         | Bromochloromethane   |
|--------------------------|----------------|-----------------------------|----------------------|
| Sample Location:         | 01             | Reference Std Conc. (ppbv): | 21.2                 |
| Sample Volume (mL):      | 750            | Reference Std Volume (mL):  | 500                  |
| Date Sampled:            | 12/03/99       | Reference Std Area:         | 11910887             |
| Date Analyzed:           | 12/06/99       | Initial Pressure (psig):    | 8.2                  |
| Data File:               | ABS002         | Final Pressure (psig):      | 24.6                 |
| Compound Name            | Retention Time | Area                        | Concentration (ppbv) |
| dichlorodifluoro-methane | 6.098          | 689263                      | 2                    |

\* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

| Sample Number:           | 29001                 | Reference Standard:         | Bromochloromethane   |
|--------------------------|-----------------------|-----------------------------|----------------------|
| Sample Location:         | 02                    | Reference Std Conc. (ppbv): | 21.2                 |
| Sample Volume (mL):      | 750                   | Reference Std Volume (mL):  | 500                  |
| Date Sampled:            | 12/03/99              | Reference Std Area:         | 11910887             |
| Date Analyzed:           | 12/06/99              | Initial Pressure (psig):    | 10.2                 |
| Data File:               | ABS003                | Final Pressure (psig):      | 30.6                 |
| Compound Name            | <b>Retention Time</b> | Area                        | Concentration (ppbv) |
| dichlorodifluoro-methane | 6.098                 | 664275                      | 2 *                  |

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

110/DELVAR/0001/AII

| Sample Number:           | 29002          | Reference Standard          | Bromochloromethane   |
|--------------------------|----------------|-----------------------------|----------------------|
| Sample Location:         | 03             | Reference Std Conc. (ppbv): | 21.2                 |
| Sample Volume (mL):      | 750            | Reference Std Volume (mL):  | 500                  |
| Date Sampled:            | 12/03/99       | Reference Std Area:         | 11910887             |
| Date Analyzed:           | 12/06/99       | Initial Pressure (psig):    | 9.2                  |
| Data File:               | ABS004         | Final Pressure (psig):      | 27.6                 |
| Compound Name            | Retention Time | Area                        | Concentration (ppbv) |
| dichlorodifluoro-methane | 6.114          | 636487                      | 2                    |

\* - Below 4 ppbv Limit of Quantitation

N/A - Not Applicable

110/DELVAR/00/11All

.

. .

| Sample Number:           | 29003          | Reference Standard:         | Bromochloromethane   |
|--------------------------|----------------|-----------------------------|----------------------|
| Sample Location:         | · 04           | Reference Sid Conc. (ppbv): | 21.2                 |
| Sample Volume (mL):      | 750            | Reference Std Volume (mL):  | 500                  |
| Date Sampled:            | 12/03/99       | Reference Std Area:         | 11910887             |
| Date Analyzed:           | 12/06/99       | Initial Pressure (psig):    | 8.5                  |
| Data File:               | ABS005         | Final Pressure (psig):      | 25.5                 |
| Compound Name            | Retention Time | Area                        | Concentration (ppbv) |
| dichlorodifluoro-methane | 6.122          | 629600                      | 2 •                  |

4

Below 4 ppby Limit of Quantitation
 N/A - Not Applicable

| Sample Number:           | Method         | Reference Standard:         | Bromochloromethane   |
|--------------------------|----------------|-----------------------------|----------------------|
| Sample Location:         | Blank          | Reference Std Conc. (ppbv): | 21.2                 |
| Sample Volume (mL):      | 250            | Reference Std Volume (mL):  | 500                  |
| Date Sampled:            | N/A            | Reference Std Area:         | 10549361             |
| Date Analyzed:           | 12/07/99       | Initial Pressure (psig):    | N/A                  |
| Data File:               | ABS007         | Final Pressure (psig):      | N/A                  |
| Compound Name            | Retention Time | Агеа                        | Concentration (ppbv) |
| dichlorodifluoro-methane | 6.066          | 555849                      | 2 •                  |

·-.,

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

L

| Sample Number:           | 29004          | Reference Standard:         | Bromochloromethane   |
|--------------------------|----------------|-----------------------------|----------------------|
| Sample Location:         | 05             | Reference Std Conc. (ppbv): | 21.2                 |
| Sample Volume (mL):      | 750            | Reference Std Volume (mL):  | 500                  |
| Date Sampled:            | 12/03/99       | Reference Std Area:         | 10549361             |
| Date Analyzed:           | 12/07/99       | Initial Pressure (psig):    | 9.8                  |
| Data File:               | ABS011         | Final Pressure (psig):      | 27.4                 |
| Compound Name            | Retention Time | Area                        | Concentration (ppbv) |
| dichlorodifluoro-methane | 6.082          | 615240                      | 2 *                  |

\* - Below 4 ppbv Limit of Quantitation

.

N/A - Not Applicable

| Sample Number.           | 29005          | Reference Standard:         | Bromochloromethane   |
|--------------------------|----------------|-----------------------------|----------------------|
| Sample Location:         | UPW1           | Reference Std Conc. (ppbv): | 21.2                 |
| Sample Volume (mL):      | 750            | Reference Std Volume (mL):  | 500                  |
| Date Sampled:            | 12/03/99       | Reference Std Area:         | 10549361             |
| Date Analyzed:           | 12/07/99       | Initial Pressure (psig):    | 10.4                 |
| Data File:               | ABS012         | Final Pressure (psig):      | 31.2                 |
| Compound Name            | Retention Time | Агеа                        | Concentration (ppbv) |
| dichlorodifluoro-methane | 6.075          | 599625                      | 2                    |

*.*--:

...

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

0018

| Sample Number:                          | 29006                 |                                                           | Bromochloromethane<br>21.2 |
|-----------------------------------------|-----------------------|-----------------------------------------------------------|----------------------------|
| Sample Location:<br>Sample Volume (mL): | 750                   | Reference Std Conc. (ppbv):<br>Reference Std Volume (mL): | 500                        |
| Date Sampled:                           | 12/03/99              | Reference Std Area:                                       | 10549361                   |
| Date Analyzed:<br>Data File:            | 12/07/99<br>ABS014    | Initial Pressure (psig):<br>Final Pressure (psig):        | 8.3<br>24.9                |
|                                         |                       | r mai r ressure (psig).                                   | 27.5                       |
| Compound Name                           | <b>Retention Time</b> | Area                                                      | Concentration (ppbv)       |
| dichlorodifluoro-methane                | 6.066                 | 638029                                                    | 3 1                        |

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

### Table 5 Air Toxic MS/MSD Recovery Summary for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample Number                 |        | 29006    | 29006 MS | 29006 MSD  |          |          |     |
|-------------------------------|--------|----------|----------|------------|----------|----------|-----|
| Sample Location               |        | UPW2     | UPW2     |            | ÚPW2     |          |     |
| Date Sampled                  |        | 12/03/99 | 12/03/99 |            | 12/03/99 |          |     |
| Date Analyzed                 | Spike  | 12/07/99 | 12/08/99 | %          | 12/08/99 | %        |     |
| Data File                     | Amount | ABS014   | ABS018   | Recovery   | ABS019   | Recovery | RPD |
| Chloromethane                 | 9.B    | U        | 10.13    | 103        | 10.03    | 102      | 1   |
| Vinyl Chloride                | 9.7    | Ū        | 10.05    | 104        | 9.87     | 102      | 2   |
| Chloroethane                  | 10.0   | U        | 10.59    | 106        | 10.54    | 105      | 0.5 |
| Trichlorofluoromethane        | 10.4   | U        | 9.93     | 95         | 9.85     | 95       | 1   |
| 1,1-Dichloroethene            | 10.2   | - U      | 10.27    | 101        | 10.15    | 100      | 1   |
| Methylene Chloride            | 10.0   | υ        | 10.14    | 101        | 10.01    | 100      | 1   |
| trans-1,2-Dichloroethene      | 10.0   | U        | 10.18    | 102        | 10.08    | 101      | 1   |
| 1,1-Dichloroethane            | 10.2   | U        | 10.09    | 99         | 9.87     | 97       | 2   |
| Trichloromethane              | 10.2   | U        | 10.22    | 100        | 9.98     | 98       | 2   |
| 1,1,1-Trichloroethane         | 10.1   | U.       | 9.67     | 96         | 9.25     | 92       | 4   |
| 1,2-Dichloroethane            | 10.2   | U        | 10.04    | 98         | 9.76     | 96       | 3   |
| Benzene                       | 10.0   | 0.11     | 10.02    | 99         | 9.79     | 97       | 2   |
| Carbon Tetrachloride          | 9.8    | U        | 9.49     | 97         | 9.40     | 96       | -1  |
| Trichloroethylene             | 10.0   | U        | 10.05    | 101        | 9.84     | 98       | 2   |
| Dibromomethane                | 9.8    | U        | 10.13    | 103        | 9.96     | 102      | Z   |
| Bromodichloromethane          | 10.1   | U        | 10.36    | 103        | 10.08    | 100      | 3   |
| Toluene                       | 10.1   | 0.13     | 10.33    | 101        | 10.34    | 101      | 0.1 |
| 1,1,2-Trichloroethane         | 9.8    | Ų        | 10.77    | 110        | 10.67    | 109      | 1   |
| Tetrachloroethylene           | 10.0   | υ        | 10.09    | 101        | 9.81     | 98       | 3   |
| Ethylbenzene                  | 10.1   | U        | 11.20    | 111        | 11.06    | 110      | 1   |
| meta & para-Xylenes           | 10.2   | U        | 11.01    | 108        | 11.05    | 108      | 0.4 |
| Styrene                       | 10.4   | U        | 10.63    | 102        | 10.75    | 103      | 1   |
| ortho-Xylene                  | 10.4   | U        | 11.15    | 107        | 11.04    | 106      | 1   |
| 1,1,2,2-Tetrachloroethane     | 10.0   | Ű        | 10.33    | 103        | 10.24    | 102      | 1   |
| 1,3,5-trimethlybenzene        | 10.5   | U        | 9.69     | 92         | 9.51     | 91       | 2   |
|                               |        | 400      |          |            | 400      |          |     |
| p-Bromofluorobenzene (% Rec.) | N/A    | 126      | 104      | <u>N/A</u> | 103      | N/A      | N/A |

N/A - Not Applicable

### APPENDIX A

Ξ.

)

-

# CHAIN-OF-CUSTODY

# Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities, Aberdeen, MD

### Sampled on 3 December 1999

### WA #: 0-110

)

0110/DEL/AR/0001/report

| <b>PE</b> AC, E<br><del>(998)</del> 321<br>EPA Con | ເ ∖, NJ<br>t⊶ ປ<br>otract 68- <del>64-</del><br>ແຈ | 0022 AP                                                       |             | Project Nan<br>Project Nun<br>two <del>RPW</del> Conta | CHAI,<br>ne: Afr<br>nber: Ki<br>ct: Tolum | CUSTOR<br>John Sur<br>A00/10          | Phone: 321 -                          | 4248     | ) No                        | ): 03<br>ЕЕТ NO. <u>/</u>           | 218                     |
|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|-------------|--------------------------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|----------|-----------------------------|-------------------------------------|-------------------------|
| 1:0699-                                            |                                                    | Sample                                                        | e Identific | • •                                                    | · .                                       | VOCS                                  | An                                    | alvses   | Requested                   | EET NO. <u>- (</u>                  | <u>_</u> OF <u>_/</u> _ |
| REAC #                                             | Sample No.                                         | Sampling Locat                                                |             | Date Collected                                         | # of Bottloo                              |                                       |                                       |          | tics N                      |                                     |                         |
| 643                                                | 29000                                              | OL                                                            | A           | 12/3/99                                                | 1                                         | Summa                                 |                                       | <u> </u> |                             |                                     | — <u>/</u> ]            |
| 644                                                | 29.001                                             | 02                                                            |             |                                                        |                                           |                                       | 316                                   |          | ~ \                         |                                     |                         |
| 645 :                                              | 29002                                              | 03                                                            |             | · · ·                                                  |                                           |                                       | 3.6                                   |          | ~                           |                                     |                         |
| 646                                                | 29003                                              | O¥                                                            |             |                                                        |                                           |                                       | 3.6                                   | ·        | V                           |                                     | 7                       |
| 647                                                | 29004                                              | 05                                                            |             |                                                        |                                           |                                       | 3,6                                   |          | /                           |                                     | 7                       |
| 648                                                | 29005                                              | LIPW1                                                         |             |                                                        |                                           |                                       | 3.6                                   |          | ~                           |                                     |                         |
|                                                    | 29006                                              | UPW2                                                          |             | ·····                                                  |                                           |                                       | 3,6                                   |          | /                           | $\rightarrow \downarrow \downarrow$ |                         |
| 650                                                | 29007                                              | Trip bla                                                      | re v        | ↓¥                                                     |                                           | · · · · · · · · · · · · · · · · · · · | - Ø                                   |          |                             |                                     |                         |
| }                                                  |                                                    |                                                               |             | ·                                                      |                                           |                                       |                                       |          | $\leq$                      |                                     |                         |
|                                                    |                                                    |                                                               |             |                                                        |                                           |                                       |                                       |          |                             |                                     |                         |
|                                                    | <u> </u>                                           | >                                                             |             |                                                        |                                           |                                       |                                       |          |                             | //                                  |                         |
|                                                    |                                                    |                                                               |             |                                                        | 101                                       |                                       |                                       |          |                             | -/                                  | ł                       |
| 0022                                               |                                                    | <u> </u>                                                      |             |                                                        | JANZ                                      |                                       |                                       |          |                             | -/                                  | ┝────┤                  |
| <u>b</u>                                           |                                                    |                                                               |             |                                                        |                                           |                                       |                                       |          |                             | /                                   | ·                       |
|                                                    | <u> </u>                                           |                                                               |             |                                                        |                                           |                                       |                                       |          | /                           | <u></u>                             | - <u>\</u>              |
|                                                    |                                                    |                                                               |             | F                                                      |                                           |                                       |                                       | ·        |                             |                                     |                         |
|                                                    |                                                    |                                                               |             |                                                        |                                           |                                       |                                       |          |                             |                                     |                         |
|                                                    |                                                    |                                                               | ·           |                                                        |                                           |                                       |                                       |          |                             |                                     |                         |
|                                                    |                                                    |                                                               |             |                                                        |                                           |                                       |                                       |          |                             |                                     | A                       |
| DS - Dru                                           | m Solids G<br>m Liquids S                          | W - Potable W<br>W - Groundwal<br>W - Surface W<br>L - Sludge | er W-       | Sper<br>Soil<br>Water<br>Oil<br>Air                    | cial Instructions:                        |                                       | FR                                    |          | CONTRACTI<br>IAIN OF<br>Y # | NG USE                              | ONLY                    |
| Items/Reas                                         | son Rejingu                                        | ished By Dat                                                  | e Rece      | Ived By Da                                             | ite Time                                  | Items/Reason                          | Relinquished By                       | Date     | Received By                 | Date                                | Time                    |
| Spina                                              | loss Marie                                         | ·····                                                         | 11          |                                                        | 1/91 95am                                 | Acy Angly DS                          | David Hewenn.                         | 12/6/99  |                             | - 1999                              |                         |
| - april and                                        | A March                                            | <u> </u>                                                      | 64          |                                                        |                                           |                                       | , , , , , , , , , , , , , , , , , , , | 7        |                             |                                     | 1                       |
|                                                    |                                                    |                                                               |             |                                                        |                                           |                                       |                                       |          |                             |                                     | t1                      |

| A REAL PROPERTY AND IN CONTRACTOR OF THE OWNER WATER ADDRESS OF THE OWNER WATER | - |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| المحمد مصب المحمد المارية بالمحمد ما يك مؤالية في يعين ال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| FORM #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| TANK WALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |

APPENDIX B

Analytical Report (PAH, Inorganic Acids, Metals, and Dioxins/Furans) Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\OFIELD1\tr1299.110

### ANALYTICAL REPORT

### Prepared by Lockheed Martin

### Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities Aberdeen Proving Ground, Aberdeen, MD

### February 2000

### EPA Work Assignment No. 0-110 LOCKHEED MARTIN Work Order No. R1A00110 EPA Contract No. 68-C99-223

Submitted to D. Mickunas EPA-ERTC

Dubois Task Leader

Date

Date

D. Miller Analytical Section Leader

S. Clapp

S. Clapp Program Manager Date

Date

SWRI

REAC

Analysis by:

Prepared by: G. Karustis

Reviewed by: D. Killeen

110\DEL\AR\0002\REPORT

# Table of Contents

| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |         |         |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|---------|---|
| Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | Page Ni | umber   |   |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                      | Page    | 1       |   |
| Case Narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | Page    | 1       |   |
| Summary of Abbreviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | Page    | 4       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1 420   | -       |   |
| Section J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |         |         |   |
| Analytical Procedure for PAH in Air (XAD-2 Tubes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Page    | 5       |   |
| Analytical Procedure for Metals in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | Page    | 8       |   |
| Analytical Procedure for Polychlorinated Dibenzodioxins and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | , "20   | U       |   |
| Polychlorinated Dibenzofurans in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | ·Page   | 8       |   |
| Analytical Procedure for Inorganic Acids in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Page    | 8       |   |
| Results of the Analysis for PAH in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 1.1              | Page    | 9       |   |
| Results of the TIC for PAHs in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 1.1              | Page    | 11      |   |
| Results of the Analysis for Metals in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 1.2              | Page    | 12      |   |
| Results of the Analysis for Polychlorinated Dibenzodioxins and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | rage    | 12      |   |
| Polychlorinated Dibenzofurans in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Table 1.4              | Daga    | 14      |   |
| Results of the Analysis for Inorganic Acids in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 1.4<br>Table 1.5 | Page    | 14      |   |
| Results of the Analysis for morganic Acids in All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 1.5              | Page    | 19      |   |
| Section II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                      |         |         |   |
| QA/QC for PAH in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | Page    | 20      |   |
| Results of the BS/BSD Analysis for PAH in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 2.1              | Page    | 20      |   |
| QA/QC for Metals in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | Page    | 23      |   |
| Results of the BS/BSD Analysis for Metals in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table 2.2              | Page    | 23      |   |
| Results of the Analysis of the Laboratory Control Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 2.2              | Fage    | 24      |   |
| for Metals in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 2.3              | Deee    | 25      |   |
| QA/QC for Polychlorinated Dibenzodioxins and Polych |                        | Page    | 25      |   |
| Results of the Internal Standard Recoveries for Polychlorinated Dibenzod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | Page    | 20      |   |
| and Polychlorinated Dibenzofurans in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 2.4              | Dago    | 27      |   |
| Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxin and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lable 2.4              | Page    | 21      |   |
| Polychlorinated Dibenzofurans in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T-51- 2 6              | Deee    | 20      |   |
| QA/QC for Inorganic Acids in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table 2.5              | Page    | 28      |   |
| Results of the BS/BSD Analysis for Inorganic Acids in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | Page    | 29      | • |
| Results of the B5/B5D Analysis for morganic Acids in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 2.6              | Page    | 30      |   |
| Section III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |         |         |   |
| Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | Page    | 31      |   |
| Chains of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Page    | 32      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1 age   | 22      |   |
| Appendix A Data for PAH in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | Page I  | 475 001 |   |
| Appendix B Data for Metals in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Page J  | 012 001 |   |
| Appendix C Data for Dioxins in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | Page J  | 015 001 |   |
| Appendix D Data for Inorganic Acids in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |         | 013 001 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | •       |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |         |   |

Appendices will be furnished on request.

110\DEL\AR\0002\REPORT

)

}

ŗ

### Introduction

REAC in response to WA # 0-110, provided analytical support for environmental samples collected from Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities, located in Aberdeen Proving Ground, Aberdeen, MD as described in the following table. The support also included QA/QC, data review, and preparation of an analytical report containing a summary of the analytical methods, the results, and the QA/QC results.

The samples were treated with procedures consistent with those described in SOP # 1008 and are summarized in the following table:

| со  | C # | Number<br>of<br>Samples | Sampling<br>Date | Date<br>Received | Matrix | Analysis           | Laboratory |
|-----|-----|-------------------------|------------------|------------------|--------|--------------------|------------|
| 03: | 215 | 9                       | 12/3/99          | 12/6/99          | Air    | Dioxin             | SWRI*      |
| 03: | 217 | 10                      | 12/3/99          | 12/6/99          | Air    | NIOSH 5515         | REAC       |
| 03  | 132 | 10                      | 12/3/99          | 12/6/99          | Air    | lnorganic<br>Acids | SWRI*      |
| 03  | 133 | 10                      | 12/3/99          | 12/6/99          | Air    | Metals             | SWRJ*      |

\* SWRJ denotes Southwest Research Institute

**Case Narrative** 

The data in this report have been validated to two significant figures. Any other representation of the data is the responsibility of the user.

### PAH in Air Package 1 475

The data were examined and were found to be satisfactory.

### Metals in Air Package J 012

The lot blank contained 2.3  $\mu$ g/ filter aluminum, 5.5  $\mu$ g/ filter calcium, 0.44  $\mu$ g/ filter chromium, 0.45  $\mu$ g/ filter iron, 10.0  $\mu$ g/ filter sodium and 0.12  $\mu$ g/ filter zinc. The data are affected as follows:

机运输力

110\DEL\AR\0002\REPORT

The results for calcium, chromium, iron, sodium and zinc in sample 28050 should be regarded as not detected because the concentration of analyte was less than five times that of the lot blank.

The results for aluminum, calcium, chromium, iron and sodium in samples 28051 and 28058 (the trip blank) should be regarded as not detected because the concentration of analyte was less than five times that of the lot blank.

The results for aluminum, calcium, chromium, iron, sodium and zinc in samples 28052, 28053, 28054, 28055, 28056 and 28057 (field blank) should be regarded as not detected because the concentration of analyte was less than five times that of the lot blank.

The acceptable QC limits for the percent recovery were exceeded in the laboratory control sample for phosphorous (73%), tin (63%) and zirconium (62%). The concentrations of these metals in samples 28050, 28051, 28052, 28053, 28054, 28055, 28056, 28057, 28058 and 28059 should be regarded as estimated.

The acceptable QC limits for the percent recovery were exceeded in the blank spike for phosphorous (52%), tin (36%) and zirconium (37%) and in the blank spike duplicate for the same metals (51%, 34% and 35%, respectively). The concentrations of these metals in samples 28050, 28051, 28052, 28053, 28054, 28055, 28056, 28057, 28058 and 28059 should be regarded as estimated.

#### Dioxins in Air Package J 015

The samples were received at 12° C by the subcontract laboratory.

The method blank contained 38.2 pg OCDD, 12.4 pg 1234678-HpCDF and 24.3 pg OCDF. The data are affected as follows:

| Sample ID | Analyte                  | The data should be regarded as |
|-----------|--------------------------|--------------------------------|
| 28080     | OCDF                     | Not detected                   |
| 28081     | OCDD, OCDF               | Not detected                   |
| 28082     | OCDD, OCDF               | Not detected                   |
| 28083     | OCDF                     | Not detected                   |
| 28085     | OCDD, OCDF               | Not detected                   |
| 28086     | OCDD, OCDF 1234678-HpCDF | Not detected                   |
| 28088     | OCDD, OCDF 1234678-HpCDF | Not detected                   |
| 28089     | OCDD                     | Not detected                   |

The values in the above samples are regarded as not detected because they are less than five times the mass found in the method blank.

The trip blank, 28088, contained 17.2 pg OCDD, 7.48 pg 12378-PeCDF, 7.12 pg 1234678-HpCDF and 11.3 pg OCDF. The trip blank, 28089, contained 8.62 pg 123678-HxCDD, 5.74 pg 1234678-HpCDD, 19.0 pg OCDD and 4.18 pg 12378-PeCDF. The data are affected as follows:

| <u>Sample ID</u> | Analyte       | The data should be regarded as |
|------------------|---------------|--------------------------------|
| 28081            | 12378-PeCDF   | Not detected                   |
| 28082            | 1234678-HpCDD | Not detected                   |
| 28083            | 12378-PeCDF   | Not detected                   |
| 28084            | 12378-PeCDF   | Not detected                   |

#### 110\DEL\AR\0002\REPORT

| 28085 | 1234678-HpCDD             | Not detected |
|-------|---------------------------|--------------|
| 28086 | 12378-PeCDF, 123678-HxCDD | Not detected |

The values in the above samples are regarded as not detected because they are less than five times the mass found in the trip blank.

Samples 28083, 28085 and 28086 had masses of 12378-PeCDD that were less than five times that found in the field blank. The values of 12378-PeCDD for these samples should be regarded as not detected.

In the ending calibration verification standard of 12/11/99 (9:06), the acceptable percent difference QC limits were exceeded for 12378-PeCDD (34%), 123478-HxCDD (20.7%), <sup>13</sup>C-12378-PeCDF (62%), <sup>13</sup>C-12378-PeCDD (64%) and <sup>13</sup>C-OCDD (87%). The subcontract laboratory used the average relative response factor calculated from the two continuing calibrations bracketing samples, method blank 12/7/99, 28080 and 28081. Only estimated values or EMPC values were reported in the samples. The data are not affected.

The acceptable QC limits were exceeded for the percent recoveries of several internal standards. The internal standards in question and the samples and analytes involved are summarized as follows:

| Sample ID   | Internal standard             | Effect                                                      |
|-------------|-------------------------------|-------------------------------------------------------------|
| 28086 /     | <sup>13</sup> C-2378-TCDF     | The data are not affected                                   |
| 28088       | <sup>13</sup> C-2378-TCDF     | The data are not affected                                   |
|             | <sup>13</sup> C-1234678-HpCDF | The data for 1234678-HpCDF should be regarded as estimated. |
| 28089       | <sup>13</sup> C-2378-TCDF     | The data are not affected                                   |
|             | <sup>13</sup> C-1234678-HpCDF | The data are not affected                                   |
| Blank Spike | <sup>13</sup> C-2378-TCDF     | The data for 2378-TCDF should be regarded as estimated      |

#### Inorganic Acids in Air Package J 013

The data were examined and were found to be satisfactory.

#### 110\DEL\AR\0002\REPORT

#### Summary of Abbreviations

No.

| АА             | Atomic Abcomt                     | ion                | •                    |                    |                                       |
|----------------|-----------------------------------|--------------------|----------------------|--------------------|---------------------------------------|
| B              | Atomic Absorpt<br>The analyte was |                    | ank                  |                    | 1                                     |
| BFB            | Bromofluoroben                    |                    | untu'                |                    | · · · · · · · · · · · · · · · · · · · |
| C              | Centigrade                        |                    |                      |                    |                                       |
| D              |                                   | e) this value is f | from a diluted same  | ole and was not ca | lculated                              |
| Ľ              |                                   |                    | btained from a dilu  |                    |                                       |
| Dioxin         |                                   |                    | 20-p-dioxins and Po  |                    | perizofiirans and/or                  |
| Dional         | PCDD and PCD                      |                    |                      |                    |                                       |
| CLP            | Contract Labora                   | -                  |                      |                    |                                       |
| COC            | Chain of Custod                   |                    |                      |                    |                                       |
| CONC           | Concentration                     | - <b>-</b>         |                      |                    |                                       |
| CRDL           | Contract Requir                   | ed Detection Li    | mit                  |                    |                                       |
| CRQL           | Contract Requir                   |                    |                      | · · ·              |                                       |
| DFTPP          | Decafluorotriph                   |                    |                      |                    |                                       |
| DL             | Detection Limit                   |                    |                      |                    |                                       |
| E              | The value is gre                  | ater than the high | ghest linear standar | d and is estimated | 1                                     |
| EMPC           | Estimated maxi                    |                    |                      |                    |                                       |
| ICAP           | Inductively Cou                   |                    | sma                  |                    |                                       |
| ISTD           | Internal Standar                  | —                  |                      |                    |                                       |
| J              |                                   |                    | detection limit and  | is estimated       |                                       |
| LCS            | Laboratory Con                    |                    | ••                   |                    |                                       |
| LCSD           | Laboratory Con                    |                    | plicate              |                    |                                       |
| MDL            | Method Detecti                    |                    |                      |                    |                                       |
| M] ··          | Matrix Interfere                  | ence               |                      |                    |                                       |
| MS             | Matrix Spike                      |                    |                      |                    |                                       |
| MSD<br>MW      | Matrix Spike D<br>Molecular Weij  |                    |                      |                    |                                       |
| NA             | either Not Appl                   |                    | vailable             | · ·                |                                       |
| NC             | Not Calculated                    | ICADIE OF NOLA     | Vallaule             | <i>x</i>           | •                                     |
| NR             | Not Requested                     |                    |                      |                    |                                       |
| NS             | Not Spiked                        |                    |                      |                    |                                       |
| % D            | Percent Differe                   | nce                |                      |                    |                                       |
| % REC          | Percent Recove                    |                    |                      |                    |                                       |
| PPB            | Parts per billion                 |                    |                      |                    |                                       |
| PPBV           | Parts per billion                 |                    |                      |                    |                                       |
| PPMV           | Parts per millio                  | n by volume        |                      |                    |                                       |
| PQL            | Practical Quant                   |                    |                      |                    |                                       |
| QA/QC          |                                   | nce/Quality Cor    | ntrol                | _ ·                | · · · ·                               |
| QL             | Quantitation Li                   |                    |                      | • **               |                                       |
| RPD            | Relative Percer                   |                    |                      |                    |                                       |
| RSD            | Relative Standa                   |                    |                      |                    |                                       |
| SIM            | Selected Ion M                    |                    | <b>x</b> .           |                    |                                       |
| TCLP           |                                   | ristics Leaching   | g Procedure          |                    |                                       |
| U              | Denotes not de                    |                    | -1                   |                    |                                       |
| W<br>          |                                   |                    | should be regarded   |                    |                                       |
| m <sup>3</sup> | cubic meter                       | kg                 | kilogram             | μg                 | microgram                             |
|                | liter                             | g                  | gram                 | PB                 | picogram                              |
| mL             | milliliter<br>microliter          | mg                 | milligram            | ng                 | nanogram                              |
| μL<br>•        |                                   | a that avagade 4   | ne acceptable QC li  |                    |                                       |
|                |                                   |                    |                      |                    | footnotes on that                     |
|                | ADDIEVIALIONS                     | mai are specific   | to a particular tabl | e ale explained it | nooundes on man                       |

table Revision 1/5/00

110\DEL\AR\0002\REPORT

## 40000

٠..

· · .

#### Analytical Procedure for PAH in Air (XAD-2 Tubes)

XAD-2 Tube Preparation

The XAD-2 tubes were analyzed for polycyclic aromatic hydrocarbons (PAH) using modified NIOSH Method 5515. The front, back and filter portions of the tubes were analyzed separately by extracting them with 2.0 mL methylene chloride. A preweighed filter was also collected with these tubes and this filter was extracted with 4.0 mL methylene chloride. One mL of extract was spiked with 20  $\mu$ L of a 2000 ppm XAD internal standards solution consisting of naphthalene-d<sub>8</sub>, acenaphthene-d<sub>10</sub>, phenanthrene-d<sub>10</sub>, chrysene-d<sub>12</sub>, and perylene-d<sub>12</sub>, resulting in a 40.0 ppm concentration and analyzed.

GC/MS Analysis

An HP 6890 MSD, equipped with a 6890 autosampler and controlled by a personal computer equipped with HP-Enviroquant software was used to analyze the samples.

The instrument conditions were:

| Column                     | Restek Rtx-5 (cross bonded SE-54)<br>30 meter x 0.25 mm ID, 0.50 µm<br>film thickness. |
|----------------------------|----------------------------------------------------------------------------------------|
| Flow Rate                  | 1 mL/min, EPC enabled                                                                  |
| Injection Temperature      | 280° C                                                                                 |
| Transfer Temperature       | 280° C                                                                                 |
| Source Temperature &       |                                                                                        |
| Analyzer Temperature       | Controlled by thermal transfer of heat from Transfer Line                              |
| Temperature                | 280° C                                                                                 |
| Temperature Program        | 70° C for 0.5 min                                                                      |
|                            | 30° C/min to 295° C                                                                    |
|                            | hold for 8 minutes                                                                     |
|                            | 30° C/min to 315° C; hold for 7 min                                                    |
| Pulsed Splitless Injection | Pressure Pulse = 16 psi for 1.0 min, then normal flow                                  |
|                            | 8:1 Split Ratio                                                                        |
| Injection Volume           | lμL                                                                                    |
|                            |                                                                                        |

Must use 4 mm ID single gooseneck liners packed with 10 mm plug of silanized and conditioned glass wool

The GC/MS was calibrated using 6 PAH standards at 10, 25, 50, 75, 100 and 150 ppm. Before analysis each day the system was tuned with 50-ng decafluorotriphenylphosphine (DFTPP) and passed a continuing calibration check by analyzing a  $50\mu g/mL$  daily standard. The QC limit for the initial calibration is %RSD less than 30 and %D less than 25 for the daily check. Sample quantification is based on the average response factor of the calibration curve or the response factor of the daily calibration check.

The XAD-2 tube PAH results are listed in Table 1.1. Tentatively identified compounds are listed in Table 1.2. The following equations were used to calculate the analyte - total  $\mu$ g/sample:

$$\mu g/sample = C_{\mu} x V x DE = \frac{A_{\mu} x C_{\mu} x V x DE}{A_{\mu} x RF}$$

where

The Relative Response Factor, RRF, is calculated from the calibration standard mixture using

$$RRF = \frac{A_{u} x C_{is}}{A_{is} x C_{u}}$$

where

RRF = Relative Response Factor (unitless)
 A<sub>u</sub> = Area of Analyte in the standard mixture
 C<sub>is</sub> = Concentration of Internal Standard in the standard mixture (μg/mL)
 A<sub>ia</sub> = Area of Internal Standard in the standard mixture
 C<sub>u</sub> = Concentration of Analyte in the standard mixture (μg/mL)

The concentration of the analyte in mg/m<sup>3</sup> and ppbv (parts per billion by volume) is calculated using the following:

$$mg/m^3 = \frac{(Total \mu g front + Total \mu g back)}{Liters Sampled}$$

$$ppbv = \frac{mg/m^3 x 24.45 x 1000}{MW}$$

where MW is the molecular weight of the analyte

Revision of 5/5/98

#### 110\DEL\AR\0002\REPORT

| Naphthalene-d. (IS)136108Naphthalene128127, 1292-Methylnaphthalene142141, 1151-Methylnaphthalene142141, 115Biphenyl154153, 1522,6-Dimethylnaphthalene156141, 1282-Fluorobiphenyl (SURR)172171, 173Acenaphthene-d. (IS)164162Acenaphthene153152, 151Dibenzofuran168139Fluorene166167, 165Phenanthrene-d. (IS)188189Phenanthrene178179, 176Anthracene178179, 176Anthracene167166, 168Fluoranthene202101, 200Pyrene202101, 200Pyrene202101, 200Pyrene228226, 229Chrysene-d. (IS)240236Benzo(a)anthracene228226, 229Chrysene228226, 229Perylene-d. (IS)264260Benzo(b)fluoranthene252250, 126Benzo(k)fluoranthene252250, 126Benzo(k)fluoranthene252250, 126 | Compound                          | Quant Ion    | Secondary Ions |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|----------------|
| 2-Methylnaphthalene142141, 1151-Methylnaphthalene142141, 115Biphenyl154153, 1522,6-Dimethylnaphthalene156141, 1282-Fluorobiphenyl (SURR)172171, 173Acenaphthene-d. (IS)164162Acenaphthene152151, 153Acenaphthene153152, 151Dibenzofuran168139Fluorene166167, 165Phenanthrene-d. (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Pyrene202101, 200Pyrene228226, 229Chrysene-d. (IS)240236Benzo(a)anthracene228226, 229Perylene-d. (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                           | Naphthalene-d <sub>s</sub> (IS)   | 136          | 108            |
| 2-Methylnaphthalene142141, 1151-Methylnaphthalene142141, 115Biphenyl154153, 1522,6-Dimethylnaphthalene156141, 1282-Fluorobiphenyl (SURR)172171, 173Acenaphthene-dt (IS)164162Acenaphthene152151, 153Acenaphthene153152, 151Dibenzofuran168139Fluorene166167, 165Phenanthrene178179, 176Anthracene178179, 176Anthracene167166, 168Fluoranthene202101, 200Pyrene202101, 200Terphenyl-d14 (SURR)244243Chrysene-d12 (IS)240236Benzo(a)anthracene228226, 229Perylene-d12 (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                          | Naphthalene                       | 128          | 127, 129       |
| Biphenyl154153, 1522,6-Dimethylnaphthalene156141, 1282-Fluorobiphenyl (SURR)172171, 173Acenaphthene-d. (IS)164162Acenaphthylene152151, 153Acenaphthene153152, 151Dibenzofuran168139Fluorene166167, 165Phenanthrene-d. (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Terphenyl-d. (SURR)244243Chrysene-d. (IS)240236Benzo(a)anthracene228226, 229Perylene-d. (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                              | 2-Methylnaphthalene               | 142          |                |
| Biphenyl154153, 1522,6-Dimethylnaphthalene156141, 1282-Fluorobiphenyl (SURR)172171, 173Acenaphthene-d. (IS)164162Acenaphthylene152151, 153Acenaphthene153152, 151Dibenzofuran168139Fluorene166167, 165Phenanthrene-d10 (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Terphenyl-d14 (SURR)244243Chrysene-d12 (IS)240236Benzo(a)anthracene228226, 229Perylene-d12 (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                          | 1-Methylnaphthalene               | 142          | 141, 115       |
| 2,6-Dimethylnaphthalene156141, 1282-Fluorobiphenyl (SURR)172171, 173Acenaphthene-da (IS)164162Acenaphthylene152151, 153Acenaphthene153152, 151Dibenzofuran168139Fluorene166167, 165Phenanthrene-da (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Terphenyl-da (SURR)244243Chrysene-da (IS)240236Benzo(a)anthracene228226, 229Perylene-da (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                                                 | Biphenyl                          | 154          |                |
| 2-Fluorobiphenyl (SURR)172171, 173Acenaphthene-da (IS)164162Acenaphthylene152151, 153Acenaphthene153152, 151Dibenzofuran168139Fluorene166167, 165Phenanthrene-da (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Pyrene202101, 200Chrysene-da (IS)244243Chrysene-da (IS)240236Benzo(a) anthracene228226, 229Chrysene228226, 229Perylene-da (IS)264260Benzo(b) fluoranthene252250, 126                                                                                                                                                                                                | 2,6-Dimethylnaphthalene           | 156          |                |
| Acenaphthylene152151, 153Acenaphthene153152, 151Dibenzofuran168139Fluorene166167, 165Phenanthrene-d10 (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Pyrene202101, 200Chrysene-d12 (IS)240236Benzo(a)anthracene228226, 229Chrysene228226, 229Perylene-d12 (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                                                                                                                                 | 2-Fluorobiphenyl (SURR)           | 172          | •              |
| Acenaphthene153152, 151Dibenzofuran168139Fluorene166167, 165Phenanthrene-d10 (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Pyrene202101, 200Chrysene-d12 (IS)240236Benzo(a)anthracene228226, 229Chrysene228226, 229Perylene-d12 (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                                                                                                                                                          | Acenaphthene-d <sub>s</sub> (IS)  | 164          | 162            |
| Dibenzofuran168139Fluorene166167, 165Phenanthrene- $d_{10}$ (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Pyrene202101, 200Chrysene-d_{12} (IS)240236Benzo(a)anthracene228226, 229Chrysene228226, 229Perylene-d_{12} (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                                                                                                                                                                     | Acenaphthylene                    | 152          | 151, 153       |
| Fluorene166167, 165Phenanthrene- $d_{10}$ (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Pyrene202101, 200Chrysene- $d_{12}$ (IS)240236Benzo(a)anthracene228226, 229Chrysene228226, 229Perylene- $d_{12}$ (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                                                                                                                                                                                 | Acenaphthene                      | 153          |                |
| Phenanthrene- $d_{10}$ (IS)188189Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Terphenyl-d <sub>14</sub> (SURR)244243Chrysene-d <sub>12</sub> (IS)240236Benzo(a)anthracene228226, 229Chrysene228226, 229Perylene-d <sub>12</sub> (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                                                                                                                                                                   | Dibenzofuran                      | , <b>168</b> | 139            |
| Phenanthrene178179, 176Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Terphenyl-d <sub>14</sub> (SURR)244243Chrysene-d <sub>12</sub> (IS)240236Benzo(a)anthracene228226, 229Chrysene228226, 229Perylene-d <sub>12</sub> (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                                                                                                                                                                                                    | Fluorene                          | 166          | 167, 165       |
| Anthracene178179, 176Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Terphenyl-d <sub>14</sub> (SURR)244243Chrysene-d <sub>12</sub> (IS)240236Benzo(a)anthracene228226, 229Chrysene228226, 229Perylene-d <sub>12</sub> (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                                                                                                                                                                                                                           | Phenanthrene-d <sub>10</sub> (IS) | 188          | 189            |
| Carbazole167166, 168Fluoranthene202101, 200Pyrene202101, 200Terphenyl-d <sub>14</sub> (SURR)244243Chrysene-d <sub>12</sub> (IS)240236Benzo(a)anthracene228226, 229Chrysene228226, 229Perylene-d <sub>12</sub> (IS)264260Benzo(b)fluoranthene252250, 126                                                                                                                                                                                                                                                                                                                                                                                                | Phenanthrene                      | 178          | 179, 176       |
| Fluoranthene       202       101, 200         Pyrene       202       101, 200         Terphenyl-d <sub>14</sub> (SURR)       244       243         Chrysene-d <sub>12</sub> (IS)       240       236         Benzo(a)anthracene       228       226, 229         Chrysene       228       226, 229         Perylene-d <sub>12</sub> (IS)       264       260         Benzo(b)fluoranthene       252       250, 126                                                                                                                                                                                                                                     | Anthracene                        | 178          | 179, 176       |
| Pyrene       202       101, 200         Terphenyl-d <sub>14</sub> (SURR)       244       243         Chrysene-d <sub>12</sub> (IS)       240       236         Benzo(a)anthracene       228       226, 229         Chrysene       228       226, 229         Perylene-d <sub>12</sub> (IS)       264       260         Benzo(b)fluoranthene       252       250, 126                                                                                                                                                                                                                                                                                   | Carbazole                         | 167          | 166, 168       |
| Terphenyl-d <sub>14</sub> (SURR)       244       243         Chrysene-d <sub>12</sub> (IS)       240       236         Benzo(a)anthracene       228       226, 229         Chrysene       228       226, 229         Perylene-d <sub>12</sub> (IS)       264       260         Benzo(b)fluoranthene       252       250, 126                                                                                                                                                                                                                                                                                                                           | Fluoranthene                      | 202          | 101, 200       |
| Chrysene-d <sub>12</sub> (IS)       240       236         Benzo(a)anthracene       228       226, 229         Chrysene       228       226, 229         Perylene-d <sub>12</sub> (IS)       264       260         Benzo(b)fluoranthene       252       250, 126                                                                                                                                                                                                                                                                                                                                                                                        | Pyrene                            | 202          | 101, 200       |
| Benzo(a)anthracene       228       226, 229         Chrysene       228       226, 229         Perylene-d <sub>12</sub> (IS)       264       260         Benzo(b)fluoranthene       252       250, 126                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Terphenyl- $d_{14}$ (SURR)        | 244          | 243            |
| Chrysene         228         226, 229           Perylene-d <sub>12</sub> (IS)         264         260           Benzo(b)fluoranthene         252         250, 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chrysene-d <sub>12</sub> (IS)     | 240          | 236            |
| Perylene-d <sub>12</sub> (IS)         264         260           Benzo(b)fluoranthene         252         250, 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzo(a)anthracene                | 228          | 226, 229       |
| Benzo(b)fluoranthene 252 250, 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chrysene                          | 228          | 226, 229       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Perylene-d <sub>12</sub> (IS)     | 264          | 260            |
| Benzo(k)fluoranthene 252 250, 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzo(b)fluoranthene              | 252          | 250, 126       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo(k)fluoranthene              | 252          | 250, 126       |
| Benzo(e)pyrene 252 250, 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzo(e)pyrene                    | 252          | 250, 126       |
| Benzo(a)pyrene 252 250, 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzo(a)pyrene                    | 252          | 250, 126       |
| Indeno(1,2,3-cd)pyrene 276 138, 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | 276          | 138, 277       |
| Dibenzo(a,h)anthracene 278 139, 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | 278          | -              |
| Benzo(g,h,i)perylene 276 277, 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | 276          |                |

#### LINEAR SCAN COMPOUND AND ION LIST FOR PAH/XAD TUBES

#### 110\DEL\AR\0002\REPORT

\*

#### Analytical Procedure for Metals in Air

The subcontract laboratory determined the metal concentration in the samples by analyzing them according to NIOSH method 7300. The results of the analysis are listed in Table 1.3.

Analytical Procedure for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

The subcontract laboratory determined the concentration of polychlorinated dibenzodioxins and polychlorinated dibenzofurans in the samples by analyzing them according to USEPA Method 8290. The results of the analysis are listed in Table 1.4.

#### Analytical Procedure for Inorganic Acids in Air

00008

The subcontract laboratory determined the concentration of inorganic acids in the samples by analyzing them according to NIOSH Method 7903. The results of the analysis for the soil samples are listed in Table 1.5.

#### 110\DEL\AR\0002\REPORT

| Sample No.<br>Sampling Location<br>Volume (L) | 28079<br>Lot Blank<br>0 |           | 28070<br>0-1<br>474.6 |             | 28071<br>0-2<br>458 |             | 28072<br>0-3<br>462 |             | 28073<br>0-4<br>460 |             |
|-----------------------------------------------|-------------------------|-----------|-----------------------|-------------|---------------------|-------------|---------------------|-------------|---------------------|-------------|
| Compound Name                                 | Conc.<br>µg             | MDL<br>Hg | Conc.<br>ppbv         | MDL<br>ppbv | Conc.<br>ppbv       | MDL<br>ppbv | Conc.<br>ppbv       | MDL<br>ppbv | Conc.<br>ppbv       | MDL<br>ppbv |
|                                               |                         |           |                       |             |                     |             |                     |             |                     |             |
| Naphthalene                                   | U                       | 8.6       | U                     | 3.5         | U                   | 3.6         | U                   | 3.6         | U                   | 3.6 -       |
| 2-Methylnaphthalene                           | U                       | 9.1       | U                     | 3.3         | U                   | 3.4         | U                   | 3.4         | υ                   | 3.4         |
| 1-Methylnaphthalene                           | U                       | 9.0       | Ů                     | 3.2         | U                   | 3.4         | U                   | 3.3         | U                   | 3.4         |
| Biphenyl                                      | U                       | 9.2       | U                     | 3.1         | U                   | 3.2         | U                   | 3.2         | U                   | 3.2         |
| 2,6-DimethyInaphthalene                       | U                       | 9.3       | Ú                     | 3.1         | U                   | 3.2         | U                   | 3.1         | U                   | 3.2         |
| Acenaphthylene                                | U                       | 9.2       | U                     | . • 3.1     | U                   | 3.2         | U                   | 3.2         | U                   | 3.2         |
| Acenaphthene                                  | U                       | 9.0       | U                     | 3.0         | U                   | 3.1         | υ                   | 3.1         | U                   | 3.1         |
| Dibenzofuran                                  | บ                       | 9.0       | U                     | 2.7         | U                   | 2.8         | U                   | 2.8         | U                   | 2.8         |
| Fluorene                                      | Ū                       | 9.1       | U                     | 2.8         | U                   | 2.9         | U                   | 2.9         | Ų                   | 2.9         |
| Phenanthrene                                  | U                       | 9.2       | U                     | 2.7         | υ                   | 2.8         | U                   | 2.7         | U                   | 2.8         |
| Anthracene                                    | U                       | 8.9       | υ                     | 2.6         | U                   | 2.7         | U                   | 2.6         | U                   | 2.7         |
| Carbazole                                     | U                       | 9.7       | U                     | 3.0         | . ປ                 | 3.1         | υ                   | 3.1         | ບໍ                  | 3.1         |
| Fluoranthene                                  | U                       | 9.2       | U                     | 2.4         | U                   | 2.4         | U                   | 2.4         | U                   | 2.4         |
| Pyrene                                        | U                       | 9.2       | U                     | 2.3         | U                   | .2.4        | U                   | 2.4         | U                   | 2.4         |
| Benzo(a)anthracene                            | U                       | 9.2       | U                     | 2.1         | U                   | 2.2         | U                   | 2.1         | U                   | 2.2         |
| Chrysene                                      | υ                       | 8.9       | υ                     | 2.0         | U                   | 2.1         | υ                   | 2.1         | U                   | 2.1         |
| Benzo(b)fluoranthene                          | U                       | 9.6       | U                     | 2:0         | υ                   | 2.0         | U                   | 2.0         | U                   | 2.0         |
| Benzo(k)fluoranthene                          | U                       | 9.3       | U                     | 1.9         | U                   | 2.0         | υ                   | 1.9         | U                   | 2.0         |
| Benzo(e)pyrene                                | U                       | 9.5       | υ                     | 1.9         | U                   | 2.0         | U                   | 2.0         | U                   | 2.0         |
| Benzo(a)pyrene                                | U                       | 9.6       | U                     | 2.0         | U                   | 2.0         | U                   | 2.0         | υ                   | 2.0         |
| Indeno(1,2,3-cd)pyrene                        | υ                       | 10        | υ                     | 1.9         | ົບ                  | 1.9         | υ                   | 1.9         | ίυ                  | 1.9         |
| Dibenzo(a,h)anthracene                        | U                       | 10        | U                     | 1.9         | U                   | 1.9         | U                   | 1.9         | Ω.                  | 1.9         |
| Benzo(g,h,i)perviene                          | υ                       | 10        | U                     | 1.9         | U                   | 2.0         | υ                   | 2.0         | U                   | 2.0         |

.

## Table 1.1 Results of the Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

110/DELWR/0002/AI

(TUTUE)

| · · ·                   |       |      |       |       |       |       |       |       |            |                  |  |
|-------------------------|-------|------|-------|-------|-------|-------|-------|-------|------------|------------------|--|
| Sample No.              | 28074 |      | 28075 |       | 28076 |       | 28    | 077   | 28078      |                  |  |
| Sampling Location       | 0     | -5   | 0-1   | 0-UW1 |       | 0-UW2 |       | Blank | Trip Blank |                  |  |
| Volume (L)              | 4     | 62   | 4     | 24    | 41    | 9.3   |       | 0     |            | 0                |  |
|                         | Conc. | MDL  | Conc. | MDL   | Conc. | MDL   | Conc. | MDL   | Conc.      | MDL              |  |
| Compound Name           | ppbv  | ppbv | ppbv  | ppbv  | ppbv  | рръу  | hà    | рg    | рg         | μg               |  |
|                         |       |      |       |       |       |       |       |       |            | _                |  |
| Naphthalene             | υ     | 3.6  | U     | 3.9   | U     | 3.9   | U     | 8.6   | U          | 8.6              |  |
| 2-Methylnaphthalene     | U     | 3.4  | U     | 3.7   | υ     | 3.7   | U     | 9.1   | U          | 9.1              |  |
| 1-Methylnaphthalene     | U     | 3.3  | U     | 3.6   | υ     | 3.7   | U     | 9.0   | U.         | 9.0              |  |
| Biphenyl                | U     | 3.2  | U     | 3.4   | U     | 3.5   | ប     | 9.2   | U.         | 9.2              |  |
| 2,6-Dimethylnaphthalene | U     | 3.1  | U     | 3.4   | υ     | 3.5   | U     | 9.3   | υ          | 9.3              |  |
| Acenaphthylene          | υ     | 3:2  | U     | 3.5   | U     | 3.5   | U     | 9.2   | U          | 9.2              |  |
| Acenaphthene            | υ     | 3.1  | U     | 3.4   | U     | 3.4   | -U    | 9:0   | U          | 9.0              |  |
| Dibenzofuran            | U     | 2.8  | U     | 3.1   | U     | 3.1   | U     | 9.0   | υ          | 9.0              |  |
| Fluorene                | U     | 2.9  | υ     | 3.2   | υ     | 3.2   | U     | 9.1   | U          | 9.1              |  |
| Phenanthrene            | U     | 2.7  | U     | 3.0   | Ú     | 3.0   | U     | 9.2   | U          | 9.2              |  |
| Anthracene              | U     | 2.6  | U     | 2.9   | υ     | 2.9   | U     | 8.9   | υ          | 8.9              |  |
| Carbazole               | U     | 3.1  | U     | 3.3   | υ     | 3.4   | υ     | 9.7   | U          | 9.7              |  |
| Fluoranthene            | U     | 2.4  | U     | 2.6   | υ     | 2.7   | U     | 9.2   | Ū          | <sup>-</sup> 9.2 |  |
| Pyrene                  | υ     | 2.4  | υ     | 2.6   | υ     | 2.6   | U     | 9.2   | υ          | 9.2              |  |
| Benzo(a)anthracene      | υ     | 2.1  | U     | 2.3   | U     | 2.4   | υ     | 9.2   | U          | 9.2              |  |
| Chrysene                | U     | 2.1  | U     | 2.3   | U     | 2.3   | υ     | 8.9   | U          | .8.9             |  |
| Benzo(b)fluoranthene    | U     | 2.0  | U     | 2.2   | U     | 2.2   | U     | 9.6   | υ          | 9.6              |  |
| Benzo(k)fluoranthene    | U     | 1.9  | U     | 2.1   | υ     | 2.1   | U     | 9.3   | υ          | 9.3              |  |
| Benzo(e)pyrene          | U     | 2.0  | υ     | 2.2   | U     | 2.2   | υ     | 9.5   | υ          | 9.5              |  |
| Benzo(a)pyrene          | U     | 2.0  | υ     | 2.2   | υ     | 2.2   | υ     | 9.6   | U          | 9.6              |  |
| indeno(1,2,3-cd)pyrene  | U     | 1.9  | υ     | 2.1   | U     | 2.1   | U     | 10    | υ          | 10               |  |
| Dibenzo(a,h)anthracene  | υ     | 1.9  | υ     | 2.1   | U     | 2.1   | U     | 10    | U          | 10               |  |
| Benzo(g,h,i)perylene    | U     | 2.0  | υ     | 2:1   | U     | 2.2   | U     | 10    | Ū          | .10              |  |

#### Table 1.1 (cont.) Results of the Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

)

### Table 1.2 Results of the TIC for PAHs in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample ID         | Compound Identification |
|-------------------|-------------------------|
| 28079 Lot Blank   | No TICs were found      |
| 28070             | No TICs were found      |
| 28071             | No TICs were found      |
| 28072             | No TICs were found      |
| 28072             | No TICs were found      |
| 28073             | No TICs were found      |
| 28074             | No TICs were found      |
| 28075             | No TICs were found      |
| 28076             | No TICs were found      |
| 28077 Field Blank | No TICs were found      |
| 28078 Trip Blank  | No TICs were found      |

110\DEL\AR\0002\All

. .

## 11000

..

eable 1.3 Results of the Analysis for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Client ID<br>Location<br>Air Volume (L) |            | PBW .<br>0 |               | 28050<br>0-1<br>678 |               | 28051<br>0-2<br>698.5 |               | 28052<br>0-3<br>713 |               | 28053<br>0-4<br>669.9 |               | 28054<br>0-5<br>693 |  |
|-----------------------------------------|------------|------------|---------------|---------------------|---------------|-----------------------|---------------|---------------------|---------------|-----------------------|---------------|---------------------|--|
| Parameter                               | Conc<br>µg | MDL<br>MDL | Conc<br>µg/m³ | MDL<br>µg/m³        | Conc<br>µg/m³ | MDL<br>µg/m³          | Conc<br>µg/m³ | MDL<br>µg/m³        | Conc<br>µg/m³ | MDL<br>µg/m³          | Conc<br>µg/m³ | MDL<br>µg/m³        |  |
| Aluminum                                | υ          | 1.0        | U             | 1.5                 | 1.5           | 1.4                   | 3.5           | 1.4                 | 2.7           | 1.5                   | 4.0           | 1.4                 |  |
| Arsenic                                 | U          | 0.1        | υ             | 0.15                | U             | 0.14                  | υ             | 0.14                | U             | 0.15                  | U             | 0.14                |  |
| Beryllium                               | U          | 0.1        | U             | 0.15                | U             | 0.14                  | U             | 0.14                | U             | 0.15                  | U             | 0.14                |  |
| Cadmium                                 | υ          | 0.1        | υ             | 0.15                | υ             | 0.14                  | υ             | 0.14                | υ             | 0.15                  | υ             | 0.14                |  |
| Calcium                                 | U          | 1.0        | 8.8           | 1.5                 | 8.3           | 1.4                   | 9.0           | 1.4                 | 9.0           | 1.5                   | 9.7           | 1.4                 |  |
| Chromium                                | υ          | 0.1        | 0.59          | 0.15                | 0.47          | 0.14                  | 0.64          | 0.14                | 0.66          | 0.15                  | 0.76          | 0.14                |  |
| Cobalt                                  | U          | 0.1        | υ             | 0.15                | U             | 0.14                  | U             | 0.14                | U             | 0.15                  | U             | 0.14                |  |
| Copper                                  | U          | 0.1        | U             | 0.15                | υ             | 0.14                  | U             | 0.14                | U             | 0.15                  | υ             | 0.14                |  |
| Iron                                    | U          | 0.4        | 1.5           | 0.59                | 1.1           | 0.57                  | 1.1           | 0.56                | 0.95          | 0.60                  | 2.7           | 0.56                |  |
| Lead                                    | U          | 0.1        | υ             | 0.15                | U             | 0.14                  | U             | 0.14                | U             | D.15                  | U_            | 0.14                |  |
| Lithium                                 | U          | D.1        | ບ             | 0.15                | ບ             | D.14                  | υ             | 0.14                | υ             | 0.15                  | U             | 0.14                |  |
| Magnesium                               | υ          | 1.0        | U             | 1.5                 | υ             | 1.4                   | Ų             | 1.4                 | U             | 1.5                   | U             | . 1.4               |  |
| Manganese                               | U          | 0.1        | U             | 0.15                | Ų             | 0.14                  | υ             | 0.14                | υ             | 0.15                  | υ             | 0.14                |  |
| Molybdenum                              | U          | 0.1        | U             | 0.15                | U             | 0.14                  | U             | 0.14                | υ             | 0.15                  | U             | 0.14                |  |
| Nickel                                  | υ          | 0.1        | υ             | 0.15                | υ             | 0.14                  | U             | 0.14                | υ             | 0.15                  | U             | 0.14                |  |
| Phosphorus                              | U          | 0.4        | U             | 0.59                | U,            | 0.57                  | υ.            | 0,56                | υ             | 0.60                  | U             | 0.56                |  |
| Platinum                                | υ          | 1.0        | U             | 1.5                 | U             | 1.4                   | υ             | 1.4                 | U             | 1.5                   | U             | 1.4                 |  |
| Selenium                                | U          | 0.2        | U             | 0.29                | U             | 0.29                  | U             | 0.28                | U             | 0.30                  | U             | 0.29                |  |
| Silver                                  | U          | 0.1        | U             | 0.15                | U             | 0.14                  | U             | 0.14                | υ             | 0.15                  | U             | 0.14                |  |
| Sodium                                  | U          | 6.0        | 9.0           | 8.8                 | 12.6          | 8.6                   | 12.5          | 8.4                 | 11.6          | 9.0                   | 14            | 8.7                 |  |
| Tellurium                               | U          | 1.0        | U             | 1.5                 | U             | 1.4                   | U             | 1.4                 | U             | 1.5                   | U             | 1.4                 |  |
| Thallium                                | υ          | 0.4        | υ             | 0.59                | υ             | 0.57                  | υ             | 0.56                | υ             | D.60                  | υ             | 0.56                |  |
| Tin                                     | U          | 0.2        | 1.3           | 0.29                | U             | 0.29                  | U             | 0.28                | U             | 0.30                  | U             | 0.29                |  |
| Titanium                                | U          | 0.1        | U             | 0.15                | U             | 0.14                  | U             | 0.14                | U             | 0.15                  | U             | 0.14                |  |
| Vanadium                                | U          | 0.1        | U             | 0.15                | U             | 0.14                  | U             | 0.14                | U             | 0.15                  | U             | 0.14                |  |
| Yttrium                                 | U          | 0.2        | U             | 0.29                | U             | 0.29                  | U             | 0.28                | U             | 0.30                  | U             | 0.29                |  |
| Zinc                                    | U          | 0.1        | 0.21          | 0.15                | U             | 0.14                  | 0.25          | 0.14                | 0.23          | 0.15                  | 0.33          | 0.14                |  |
| Zirconium                               | υ          | 0.2        | υ             | 0.29                | υ             | 0.29                  | U             | 0.28                | U             | 0.30                  | υ             | 0.29                |  |

}

110\DEL\AR\0002\All

J

| Client ID<br>Location<br>Air Volume (L) | 0-L           | 055<br>JW1<br>36 | 0-U           | 28056<br>0-UW2<br>648 |                   | 28057<br>Field Blank<br>0 |                   | 058<br>Blank<br>D | 28059<br>Lot Blank<br>0 |                  |  |
|-----------------------------------------|---------------|------------------|---------------|-----------------------|-------------------|---------------------------|-------------------|-------------------|-------------------------|------------------|--|
| Parameter                               | Conc<br>µg/m³ | MDL<br>µg/m³     | Conc<br>µg/m³ | MDL<br>µg/m³          | Conc<br>µg/filter | MDL<br>µg/filter          | Conc<br>µg/filter | MDL<br>µg/filter  | Conc<br>µg/filter       | MDL<br>µg/filter |  |
| Aluminum                                | 2.0           | 1.6              | 2.0           | 1.5                   | 1.3               | 1.0                       | 1.3               | 1.0               | 2.3                     | 1.0              |  |
| Arsenic                                 | U             | 0.16             | U             | 0.15                  | U                 | 0. <b>10</b>              | υ                 | 0.10              | υ                       | 0.10             |  |
| Beryllium                               | U             | 0.16             | U             | 0.15                  | U                 | 0.10                      | ບ                 | 0.10              | υ                       | 0.10             |  |
| Cadmium                                 | U             | 0.16             | U             | 0.15                  | U                 | 0.10                      | U                 | 0.10              | υ                       | 0.10             |  |
| Calcium                                 | 10            | 1.6              | 9.0           | 1.5                   | 5.4               | 1.0                       | 5.5               | 1.0               | 5.5                     | 1.0              |  |
| Chromium                                | 0.97          | 0.16             | 0.7           | 0.15                  | 0.56              | 0.10                      | 0.49              | 0.10              | 0.44                    | 0.10             |  |
| Cobalt                                  | U             | 0.16             | ບ             | 0.15                  | ຸບ                | 0.10                      | U                 | 0.10              | υ                       | 0.10             |  |
| Copper                                  | U             | 0.16             | U             | 0.15                  | U                 | 0.10                      | U                 | 0.10              | U                       | 0.10             |  |
| Iron                                    | 1.2           | 0.63             | 2.1           | 0.62                  | 0.82              | 0.4                       | 0.45              | 0.4               | 0.45                    | 0.4              |  |
| Lead                                    | υ             | 0.16             | υ             | D.15                  | ິບ                | 0.10                      | U                 | 0.10              | υ                       | 0.10             |  |
| Lithium                                 | υ             | 0.16             | U             | 0.15                  | U                 | 0.10                      | υ                 | 0.10              | U                       | 0.10             |  |
| Magnesium                               | U             | 1.6              | U             | 1.5                   | U                 | 1.0                       | U                 | 1.0               | υ                       | 1.0              |  |
| Manganese                               | υ             | 0.16             | υ             | 0.15                  | υ                 | 0.10                      | U                 | 0.10              | U                       | 0.10             |  |
| Molybdenum                              | U             | 0.16             | U             | 0.15                  | U                 | 0.10                      | U                 | 0.10              | υ                       | 0.10             |  |
| Nickel                                  | U             | 0.16             | υ             | 0.15                  | υ                 | 0.10                      | ບ                 | 0.10              | υ                       | 0.10             |  |
| Phosphorus                              | U             | 0.63             | U             | 0.62                  | U                 | 0.4                       | U                 | 0.4               | U                       | 0.4              |  |
| Platinum                                | υ             | 1.6              | υ             | 1.5                   | υ                 | 1.0                       | U                 | 1.0               | υ                       | 1.0              |  |
| Selenium                                | · U           | 0.31             | , U -         | 0.31                  | U                 | 0.20                      | U.                | 0.20              | υ                       | 0.20             |  |
| Silver                                  | U             | 0.16             | υ             | 0.15                  | U                 | 0.10                      | U                 | 0.10              | U                       | 0.10             |  |
| Sodium                                  | 13.8          | 9.4              | 12            | 9.3                   | 12.3              | 6.0                       | 7.8               | 6.0               | 10                      | 6.0              |  |
| Tellurium                               | U             | 1.6              | U             | 1.5                   | U                 | 1.0                       | υ                 | 1.0               | U                       | 1.0              |  |
| Thallium                                | υ             | 0.63             | υ             | 0.62                  | υ                 | 0.4                       | υ                 | 0.4               | บ                       | 0.4              |  |
| Tin                                     | υ             | 0.31             | υ             | 0.31                  | U                 | 0.20                      | U                 | 0.20              | U                       | 0.20             |  |
| Titanium                                | υ             | 0.16             | U             | 0.15                  | U                 | 0.10                      | U                 | 0.10              | U                       | 0.10             |  |
| Vanadium                                | U             | 0.16             | υ             | 0.15                  | U                 | 0.10                      | U                 | 0.10              | U                       | 0.10             |  |
| Yttrium                                 | υ             | 0.31             | υ             | 0.31                  | U                 | 0.20                      | U                 | 0.20              | υ                       | 0.20             |  |
| Zinc                                    | 0.31          | 0.16             | 0.16          | 0.15                  | 0.11              | 0.10                      | U                 | 0.10              | 0.12                    | 0.10             |  |
| Zirconium                               | υ             | 0.31             | U             | 0.31                  | Û                 | 0.20                      | - U               | 0.20              | υ                       | 0.20             |  |

Table 1.3 (cont.) Results of the Analysis for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

. .

Table 1.4 Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzoturans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample ID<br>Location                                                                                                                                                                        |                                            | B<br>12/                                                     |                                                                           |                                                    |                                                |                                                             |                                                                           |                                                                              |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Matrix<br>Volume of Air (L)                                                                                                                                                                  |                                            |                                                              | Air<br>0                                                                  |                                                    |                                                |                                                             | Air<br>687                                                                |                                                                              | . •                                                                 |
| Analyte                                                                                                                                                                                      | Result<br>P9                               | EMPC<br>Pg                                                   | MDL<br>Pg                                                                 | Adjusted<br>Conc (pg)                              | Result<br>pg/m <sup>3</sup>                    | EMPC<br>pg/m³                                               | MDL<br>pg/m³                                                              | Adjusted<br>Conc (pg/m³)                                                     | TEF                                                                 |
| 2.3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>OCDD                                                                | U<br>U<br>U<br>U<br>U<br>38.2              | 3.34<br>8.20<br>3.36<br>10.2<br>2.34<br>6.82                 | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0.0382               | U<br>U<br>U<br>U<br>38.1 J                     | 2.85<br>13.0<br>1.40<br>7.39<br>4.60<br>9.26                | 14.6<br>14.6<br>36.4<br>36.4<br>36.4<br>36.4<br>72.8                      | 0<br>0<br>0<br>0<br>0<br>0.0381                                              | 1<br>0.5<br>0.1<br>0.1<br>0.1<br>0.01<br>0.001                      |
| Total Tetra-Dioxins<br>Total Penta-Dioxins<br>Total Hexa-Dioxins<br>Total Hepta-Dioxins                                                                                                      | U<br>U<br>U<br>U                           |                                                              |                                                                           |                                                    | U<br>U<br>U<br>U                               |                                                             |                                                                           | · .                                                                          |                                                                     |
| 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>OCDF | U<br>U<br>U<br>U<br>U<br>12.4<br>U<br>24.3 | 5.34<br>5.96<br>2.82<br>1.74<br>6.98<br>1.40<br>2.76<br>3.38 | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>2 | 0<br>0<br>0<br>0<br>0<br>0<br>0.124<br>0<br>0.0243 | U<br>7.69 J<br>U<br>U<br>U<br>U<br>U<br>21.5 J | 5.68<br>1.80<br>2.91<br>6.35<br>1.05<br>1.02<br>17.5<br>4.1 | 14.6<br>14.6<br>36.4<br>36.4<br>36.4<br>36.4<br>36.4<br>36.4<br>36.4<br>3 | 0<br>0.3845<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.0215 | 0.1<br>0.05<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.01<br>0.01<br>0 |
| Total Tetra-Furans<br>Total Penta-Furans<br>Total Hexa-Furans<br>Total Hepta-Furans                                                                                                          | บ<br>บ<br>บ<br>บ                           |                                                              | . *                                                                       |                                                    | U<br>13.9<br>U<br>U                            |                                                             |                                                                           |                                                                              |                                                                     |
| Total                                                                                                                                                                                        |                                            |                                                              |                                                                           | 0.1865                                             |                                                |                                                             |                                                                           | 0.4441                                                                       |                                                                     |

00014

ļ

Table 1.4 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample ID<br>Location                                                                                                                                                                        |                                            |                                                                        | 1080<br>eld Blank)                                                           | ) .                                                                       |                                      | _                                                                    | 8082<br>0-3                                                                  |                                                     |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|
| Matrix<br>Volume of Air (L)                                                                                                                                                                  |                                            | ,                                                                      | Air<br>D                                                                     |                                                                           |                                      |                                                                      | Air<br>513.3                                                                 |                                                     |                                                                      |
| Analyte                                                                                                                                                                                      | Result<br>pg                               | EMPC<br>Pg                                                             | MDL<br>Pg                                                                    | Adjusted<br>Conc (pg)                                                     | Result<br>pg/m³                      | EMPC<br>pg/m <sup>3</sup>                                            | MDL<br>pg/m <sup>3</sup>                                                     | Adjusted<br>Conc (pg/m³)                            | TEF                                                                  |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>OCDD                                                                | ບ<br>8.7 J<br>ປ<br>ບ<br>ບ<br>ບ             | 1.44<br>0.740<br>5.46<br>2.18<br>4.20<br>20.3                          | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0                         | D<br>4.35<br>0<br>0<br>0<br>0<br>0<br>0                                   | U<br>U<br>U<br>19.2 J<br>54.8 J      | 5.73<br>16.3<br>1.68<br>15.2<br>1.40                                 | 19.5<br>19.5<br>48.7<br>48.7<br>48.7<br>48.7<br>97.4                         | 0<br>0<br>0<br>0<br>0.192<br>0.0548                 | 1<br>0.5<br>0.1<br>0.1<br>0.1<br>0.01<br>0.001                       |
| Total Tetra-Dioxins<br>Total Penta-Dioxins<br>Total Hexa-Dioxins<br>Total Hepta-Dioxins                                                                                                      | น<br>8.70<br>บ<br>บ                        |                                                                        |                                                                              |                                                                           | U<br>U<br>U<br>19.2                  |                                                                      |                                                                              | ·                                                   |                                                                      |
| 2.3,7,8-TCDF<br>1,2.3,7,8-PeCDF<br>2.3,4,7,8-PeCDF<br>1.2,3,4,7,8-HxCDF<br>1.2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>OCDF | ນ໌<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>11.5 J | 2.16<br>7.46<br>1.16<br>1.54<br>3.00<br>0.640<br>0.920<br>8.80<br>1.14 | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0 | D<br>O<br>O<br>D<br>D<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>115 | บ<br>U<br>U<br>U<br>U<br>U<br>26.3 J | 7.75<br>11.8<br>4.32<br>3.00<br>5.65<br>1.36<br>3.27<br>19.1<br>2.18 | 19.5<br>19.5<br>19.5<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>48.7<br>97.4 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.0263 | 0.1<br>0.05<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.01<br>0.0 |
| Total Tetra-Furans<br>Total Penta-Furans<br>Total Hexa-Furans<br>Total Hepta-Furans<br>Total                                                                                                 | บ<br>บ<br>บ<br>บ                           |                                                                        |                                                                              | 4.3615                                                                    | ບ<br>ບ<br>ບ<br>ບ                     |                                                                      |                                                                              | 0.2731                                              | • .<br>•<br>•                                                        |

.....

 Table 1.4 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

 WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

| Sample ID                   |                             | 21                        | 3083         | ·                                     |                 | . 2                       | 8084                     | i.                                    |       |
|-----------------------------|-----------------------------|---------------------------|--------------|---------------------------------------|-----------------|---------------------------|--------------------------|---------------------------------------|-------|
| Location                    |                             |                           | 0-4          |                                       |                 |                           | 0-5                      |                                       |       |
| Matrix<br>Volume of Air (L) |                             |                           | Air<br>693   | •                                     |                 |                           | Air<br>546.8             |                                       |       |
|                             |                             |                           | 000          |                                       |                 | •                         | -40.0                    |                                       |       |
| Analyte                     | Result<br>pg/m <sup>3</sup> | EMPC<br>pg/m <sup>3</sup> | MDL<br>pg/m³ | Adjusted<br>Conc (pg/m <sup>3</sup> ) | Result<br>pg/m³ | EMPC<br>pg/m <sup>3</sup> | MDL<br>pg/m <sup>3</sup> | Adjusted<br>Conc (pg/m <sup>3</sup> ) | TEF   |
| 2,3,7,8-TCDD                | U                           | 3.46                      | 14.4         | 0                                     | υ               | 4.76                      | 15.5                     | 0                                     | 1     |
| 1,2,3,7,8-PeCDD             | 13.8 J                      |                           | 14.4         | 6.9                                   | υ               | 9.89                      | 15.5                     | 0                                     | 0.5   |
| 1,2,3,4,7,8-HxCDD           | U                           | 0.895                     | 36.1         | 0                                     | U               | 2.10                      | 38.7                     | 0                                     | 0.1   |
| 1.2,3,6,7,8-HxCDD           | U                           | 8.63                      | 36.1         | 0                                     | U               | 7.17                      | 38.7                     | 0                                     | 0.1   |
| 1,2,3,7,8,9-HxCDD           | U                           | 2.51                      | 36.1         | 0                                     | U               | 1.42                      | 38.7                     | Q                                     | 0.1   |
| 1,2,3,4,6,7,8-HpCDD         | U                           | 14.9                      | 36.1         | 0                                     | U               | 6.00                      | 38.7                     | 0                                     | 0.01  |
| OCDD                        | U                           | 32.6                      | 72.2         | D                                     | υ               | 23.0                      | 77.3                     | D                                     | 0.001 |
| Total Tetra-Dioxins         | U                           |                           |              |                                       | Ŭ               | · .                       |                          |                                       |       |
| Total Penta-Dioxins         | 13.8                        |                           |              |                                       | U.              |                           |                          |                                       |       |
| Total Hexa-Dioxins          | U                           |                           |              |                                       | υ               |                           |                          | •                                     |       |
| Total Hepta-Dioxins         | υ                           |                           |              |                                       | U               | •                         |                          |                                       |       |
| 2,3,7,8-TCDF                | υ                           | 7.33                      | 14.4         | 0                                     | 5.26 J          |                           | 15.5                     | 0.526                                 | 0.1   |
| 1,2,3,7,8-PeCDF             | 7.79 J                      | 1.00                      | 14.4         | 0.3895                                | 7.02 J          |                           | 15.5                     | 0.351                                 | 0.05  |
| 2,3,4,7,8-PeCDF             | U                           | 1.41                      | 14.4         | 0                                     | U               | 3.31                      | 15.5                     | 0                                     | 0.5   |
| 1,2,3,4,7,8-HxCDF           | Ū                           | 2.48                      | 36.1         | 0                                     | 1.79 J          |                           | 38.7                     | 0.179                                 | 0.1   |
| 1,2,3,6,7,8-HxCDF           | Ú                           | 8.20                      | 36.1         | 0                                     | U               | 6.71                      | 38.7                     | 0                                     | 0.1   |
| 1,2,3,7,8,9-HxCDF           | 0.491 J                     |                           | 36.1         | 0.0491                                | U               | 0.866                     | 38.7                     | 0.                                    | 0.1   |
| 2,3,4,6,7.8-HxCDF           | U                           | 1.70                      | 36.1         | 0                                     | U               | 1.08                      | 38.7                     | . 0                                   | 0.1   |
| 1,2,3,4,6,7,8-HpCDF         | U                           | 16.1                      | 36.1         | 0                                     | υ               | 15.2                      | 38.7                     | 0                                     | 0.01  |
| 1,2,3,4,7,8,9-HpCDF         | U                           | 2.77                      | 36.1         | 0                                     | U,              | 1.08                      | 38.7                     | 0                                     | 0.01  |
| OCDF                        | 20.1 J                      |                           | 72.2         | 0.0201                                | υ               | 28.0                      | 77.3                     | 0                                     | 0.001 |
| Total Tetra-Furans          | U                           |                           |              |                                       | 7.64            |                           |                          |                                       |       |
| Total Penta-Furans          | 7.79                        |                           |              |                                       | 7.02            |                           |                          |                                       |       |
| Total Hexa-Furans           | 0.491                       |                           |              |                                       | 1.79            |                           |                          |                                       |       |
| Total Hepta-Furans          | υ                           |                           |              |                                       | υ               |                           |                          |                                       |       |
| Total                       |                             |                           |              | 7.3587                                |                 |                           |                          | 1.056                                 |       |

00016

Ì

110\DELVARIDOO2IAII

 Table 1.4 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

 WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample ID<br>Location                                                                                                                                                                        |                                                |                                                                      | 3085<br>-UW1                                                          |                                                                    |                                                          |                                                        | 8086<br>-UW2                                                                         |                                                            |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|
| Matrix<br>Volume of Air (L)                                                                                                                                                                  |                                                |                                                                      | Air<br>106                                                            |                                                                    |                                                          |                                                        | Air<br>612                                                                           |                                                            | .•                                                                   |
| Analyte                                                                                                                                                                                      | Result<br>pg/m³                                | EMPC<br>pg/m³                                                        | MDL<br>pg/m <sup>3</sup>                                              | Adjusted<br>Conc (pg/m <sup>3</sup> )                              | Result<br>pg/m³                                          | EMPC<br>pg/m³                                          | MDL<br>pg/m <sup>3</sup>                                                             | Adjusted<br>Conc (pg/m <sup>3</sup> )                      | TEF                                                                  |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>0CDD<br>Total Tetra-Dioxins                                         | U<br>15.7 J<br>U<br>U<br>27.7 J<br>91.8 J<br>U | 6.05<br>3.74<br>13.0<br>4.04                                         | 24.6<br>24.6<br>61.6<br>61.6<br>61.6<br>61.6<br>123.0                 | 0<br>7.85<br>0<br>0<br>0<br>0.277<br>0.0918                        | U<br>11.7 J<br>U<br>10.2 J<br>U<br>30.6 J<br>U           | 2.45<br>1.37<br>1.14<br>14.5                           | 16.3<br>16.3<br>40.8<br>40.8<br>40.8<br>40.8<br>81.7                                 | 0<br>5.85<br>0<br>1.02<br>0<br>0<br>0.0306                 | 1<br>0.5<br>0.1<br>0.1<br>0.1<br>0.01<br>0.001                       |
| Total Penta-Dioxins<br>Total Hexa-Dioxins<br>Total Hepta-Dioxins                                                                                                                             | 15.7<br>U<br>39.6                              |                                                                      |                                                                       |                                                                    | 11.7<br>10.2<br>4.05                                     |                                                        |                                                                                      |                                                            |                                                                      |
| 2.3,7,8-TCDF<br>1.2,3,7,8-PeCDF<br>2.3,4,7,8-PeCDF<br>1.2,3,4,7,8-HxCDF<br>1.2,3,6,7,8-HxCDF<br>1.2,3,7,8,9-HxCDF<br>2.3,4,6,7,8-HxCDF<br>1.2,3,4,6,7,8-HpCDF<br>1.2,3,4,7,8,9-HpCDF<br>OCDF | บ<br>บบ<br>บบ<br>บ<br>บ<br>บ<br>ร่1.1 J        | 7.59<br>15.0<br>1.48<br>2.96<br>18.2<br>2.81<br>3.15<br>28.6<br>6.45 | 24.6<br>24.6<br>61.6<br>61.6<br>61.6<br>61.6<br>61.6<br>61.6<br>123.0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | U<br>10.4 J<br>U<br>U<br>U<br>U<br>14.6 J<br>U<br>20.3 J | 2.88<br>3.40<br>1.08<br>9.05<br>0.882<br>1.05<br>0.784 | 16.3<br>16.3<br>16.3<br>40.8<br>40.8<br>40.8<br>40.8<br>40.8<br>40.8<br>40.8<br>81.7 | 0<br>0.52<br>0<br>0<br>0<br>0<br>0<br>0.146<br>0<br>0.0203 | 0.1<br>0.05<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.01<br>0.0 |
| Total Tetra-Furans<br>Total Penta-Furans<br>Total Hexa-Furans<br>Total Hepta-Furans<br>Total                                                                                                 | ບ<br>ບ<br>ບ<br>ບ                               |                                                                      |                                                                       | 8.2699                                                             | U<br>10.4<br>U<br>14.6                                   |                                                        | L.                                                                                   | 7,5869                                                     |                                                                      |
| ruidi                                                                                                                                                                                        |                                                |                                                                      |                                                                       | 0.2039                                                             |                                                          |                                                        |                                                                                      | 1.0000                                                     |                                                                      |

## 00017

**..** ·

Table 1.4 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

|                                                                                                                                                                                              |                                                               |                                                          | -                                                                            |                                                              |                                           |                                                                          |                                                                              | •                                                            |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|
| Sample ID<br>Location                                                                                                                                                                        |                                                               |                                                          | 3088<br>Blank                                                                |                                                              |                                           |                                                                          | 8089<br>Blank                                                                |                                                              |                                                                     |
| Matrix<br>Volume of Air (L)                                                                                                                                                                  |                                                               |                                                          | Air<br>0                                                                     |                                                              |                                           |                                                                          | Air<br>D                                                                     |                                                              |                                                                     |
| Analyte                                                                                                                                                                                      | Result<br>P9                                                  | EMPC<br>Pg                                               | MDL<br>Pg                                                                    | Adjusted<br>Conc (pg)                                        | Result<br>P9                              | EMPC<br>P9                                                               | MDL<br>pg                                                                    | Adjusted<br>Conc (pg)                                        | TEF                                                                 |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>0CDD                                                                | U<br>U<br>U<br>U<br>U<br>17.2 J                               | 3.24<br>7.86<br>0.880<br>5.90<br>0.920<br>6.26           | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0                         | 0<br>0<br>0<br>0<br>0<br>0<br>0.0172                         | U<br>U<br>8.62 J<br>U<br>5.74 J<br>19.0 J | 2.72<br>6.78<br>1.16<br>1.18                                             | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0                         | 0<br>0<br>0.862<br>0<br>0.0574<br>0.019                      | 1<br>0.5<br>0.1<br>0.1<br>0.1<br>0.01<br>0.001                      |
| Total Tetra-Dioxins<br>Total Penta-Dioxins<br>Total Hexa-Dioxins<br>Total Hepta-Dioxins                                                                                                      | บ<br>บ<br>บ<br>บ                                              | ·                                                        |                                                                              |                                                              | U<br>U<br>8.62<br>5.74                    |                                                                          |                                                                              | • •                                                          |                                                                     |
| 2.3.7.8-TCDF<br>1.2.3.7.8-PeCDF<br>2.3.4.7.8-PeCDF<br>1.2.3.4.7.8-HxCDF<br>1.2.3.6.7.8-HxCDF<br>1.2.3.7.8.9-HxCDF<br>2.3.4.6.7.8-HxCDF<br>1.2.3.4.6.7.8-HpCDF<br>1.2.3.4.7.8.9-HpCDF<br>0CDF | U<br>7.48 J<br>U<br>U<br>U<br>U<br>7.12 J<br>U<br>U<br>11.3 J | 1.72<br>0.960<br>1.04<br>4.46<br>0.420<br>0.220<br>0.740 | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0 | 0<br>0.374<br>0<br>0<br>0<br>0<br>0<br>0.0712<br>0<br>0.0113 | บ<br>4.18 J<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ | 2.90<br>0.620<br>0.900<br>4.78<br>0.540<br>0.940<br>8.96<br>1.72<br>15.3 | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0 | 0<br>0.209<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.1<br>0.05<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.01<br>0.01<br>0 |
| Total Tetra-Furans<br>Total Penta-Furans<br>Total Hexa-Furans<br>Total Hepta-Furans                                                                                                          | U<br>11.1<br>U<br>7.12                                        |                                                          |                                                                              |                                                              | 1.28<br>4.18<br>U<br>U                    |                                                                          |                                                                              | •<br>•<br>•                                                  |                                                                     |
| Total                                                                                                                                                                                        |                                                               |                                                          |                                                                              | 0.4737                                                       |                                           |                                                                          |                                                                              | 1.1474                                                       |                                                                     |

110\DEL\AR\0002\All

## 00013

- **x** 

## Table 1.5 Results of the Analysis for Inorganic Acids in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

| Sample ID28090LocationField BlankAir Volume (L):0 |            | Blank      | 28091<br>Trip blank<br>D |           | 28092<br>Lot Blank<br>0 |           | 28060<br>0-1<br>59.2      |                          | 28061<br>0-2<br>41.2      |                          | -<br>.* |
|---------------------------------------------------|------------|------------|--------------------------|-----------|-------------------------|-----------|---------------------------|--------------------------|---------------------------|--------------------------|---------|
| Analyte                                           | Conc<br>mg | MDL.<br>mg | Conc<br>mg               | MDL<br>mg | Conc<br>mg              | MDL<br>mg | Conc<br>mg/m <sup>3</sup> | MDL<br>mg/m <sup>3</sup> | Conc<br>mg/m <sup>3</sup> | MDL<br>mg/m <sup>3</sup> |         |
| Hydrobromic acid                                  | υ          | 0.0011     | U                        | 0.0011    | U                       | 0.0011    | U                         | 0.0171                   | υ                         | 0.0246                   |         |
| Hydrochloric acid                                 | U          | 0.001      | U                        | 0.001     | U                       | 0.001     | U                         | 0.0174                   | U                         | 0.0250                   |         |
| Hydrofluoric acid                                 | U          | 0.001      | U                        | 0.001     | U                       | 0.001     | U                         | 0.0178                   | U                         | 0.0256                   |         |
| Nitric acid                                       | U          | 0.0045     | ·U                       | 0.0045    | U                       | 0.0045    | U                         | 0.0760                   | U                         | 0.1092                   |         |
| Phosphoric acid                                   | U          | 0.0032     | U                        | 0.0032    | U -                     | 0.0032    | U                         | 0.0523                   | U                         | 0.0752                   |         |
| Sulfuric acid                                     | U          | 0.001      | U                        | 0.001     | U                       | 0.001     | U                         | 0.0172                   | U                         | 0.0248                   |         |

| Sample ID<br>Location<br>Air Volume (L): | 0                         | 062 <sub>.</sub><br>-3<br>7.8 | 0                         | 063<br>-4<br>2.0         | 0                         | 064<br>-5<br>8.0         | 0-0                       | 065<br>NV1<br>3.0        | 0-0                       | 066<br>VV2<br>3.2        |
|------------------------------------------|---------------------------|-------------------------------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------|
| Analyte                                  | Conc<br>mg/m <sup>3</sup> | MDL<br>mg/m <sup>3</sup>      | Conc<br>mg/m <sup>3</sup> | MDL<br>mg/m <sup>3</sup> | Conc<br>mg/m <sup>3</sup> | MDL<br>mg/m <sup>3</sup> | Conc<br>mg/m <sup>3</sup> | MDL<br>mg/m <sup>3</sup> | Conc<br>mg/m <sup>3</sup> | MDL<br>mg/m <sup>3</sup> |
| Hydrobromic acid                         | U                         | 0.0175                        | U                         | 0.0195                   | υ                         | 0.0174                   | υ                         | 0.0191                   |                           | 0.0234                   |
| Hydrochloric acid                        | U                         | 0.0178                        | U                         | 0.0198                   | U                         | 0.0177                   | U                         | 0.0194                   | U                         | 0.0238                   |
| Hydrofluoric acid                        | υ                         | 0.0182                        | υ                         | 0.0203                   | U                         | 0.0182                   | Ű                         | 0.0199                   | U                         | 0.0244                   |
| Nitric acid                              | U                         | 0.0779                        | U                         | 0.0865                   | U                         | 0.0776                   | υ                         | 0.0849                   | U                         | 0.1042                   |
| Phosphoric acid                          | υ                         | 0.0536                        | υ                         | 0.0596                   | υ                         | 0.0534                   | υ                         | 0.0584                   | U.                        | 0.0717                   |
| Sulfuric acid                            | υ                         | 0.0177                        | υ                         | 0.0196                   | υ                         | 0.0176                   | υ                         | 0.0193                   | υ                         | 0.0236                   |

,

#### QA/QC for PAH in Air

#### Results of the BS/BSD Analysis for PAH in Air

A lot blank and a lot blank filter were chosen for the blank spike/blank spike duplicate (BS/BSD) analyses. The percent recoveries, for the lot blank, ranging from 78 to 97, are listed in Table 2.1. The relative percent differences, also listed in Table 2.1, ranged from 3 to 8. The percent recoveries, for the lot blank filter, ranging from 41 to 101, are also listed in Table 2.1. The relative percent differences, also listed in Table 2.1. The relative percent differences, also listed in Table 2.1. The relative percent differences, also listed in Table 2.1. The relative percent differences, also listed in Table 2.1. The relative percent differences or the relative percent differences for the relative percent differences for the analysis.

110\DEL\AR\0002\REPORT

~ 5

#### Table 2.1 Results of BS/BSD Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

)

1.

Sample ID: Lot Blank

|                         | 0-3-4 | DC    | •      | BSD    |        |             |
|-------------------------|-------|-------|--------|--------|--------|-------------|
|                         | Spike | BS    |        | - +    |        |             |
| <b>.</b> .              | Added | Rec.  | N/ D   | Rec.   |        | 000         |
| Compound                | þĝ    |       | % Rec. | μg<br> | % Rec. | RPD         |
| Naphihalene             | 50    | 48.18 | 96     | 46.27  | 93     | 4           |
| 2-Methylnaphthalene     | 50    | 47.78 | 96     | 45.73  | 91     | 5           |
| 1-Methylnaphthalene     | 50    | 48.27 | 97     | 44.76  | 90     |             |
| Biphenyl                | 50    | 47.72 | 95     | 45.26  | 91     | 5           |
| 2,6-Dimethylnaphthalene | 50    | 47.60 | 95     | 45.11  | 90 '   | 8<br>5<br>5 |
| Acenaphthylene          | 50    | 47.86 | 96     | 46.05  | 92     | - 4         |
| Acenaphthene            | 50    | 48.20 | 96     | 46.41  | 93     | 4           |
| Dibenzofuran            | 50    | 47.16 | 94     | 45.51  | 91     | 4           |
| Fluorene                | 50    | 47.86 | 96     | 45.90  | 92     | 4           |
| Phenanthrene            | 50    | 47.98 | 96     | 45.95  | 92     | 5           |
| Anthracene              | 50    | 47.68 | 95     | 46.43  | - 93   | 3           |
| Carbazole               | 50    | 48.49 | 97     | 46.04  | 92     | 3<br>5<br>4 |
| Fluoranthene            | 50    | 48:13 | 96     | 46.26  | 93     | 4           |
| Pyrene                  | 50    | 48.69 | 97     | 46.62  | 93     | 4           |
| Benzo(a)anthracene      | 50    | 48.19 | 96     | 45.25  | 91     | 6           |
| Chrysene                | 50    | 37.28 | 75     | 38.75  | 78     | 4           |
| Benzo(b)fluoranthene    | 50    | 48.09 | 96     | 44.67  | 89     | 7           |
| Benzo(k)fluoranthene    | 50    | 46.43 | 93     | 44.84  | 90     | 4           |
| Benzo(e)pyrene          | 50    | 47.46 | 95     | 45.32  | 91     | 5           |
| Benzo(a)pyrene          | 50    | 47.14 | 94     | 44.61  | 89     | 6           |
| Indeno(1,2,3-cd)pyrene  | 50    | 48,18 | 96     | 45.77  | 92     | 5           |
| Dibenzo(a,h)anthracene  | 50    | 48.08 | 96     | 45.39  | 91     | 6           |
| Benzo(g,h,i)perylene    | 50    | 48.06 | 96     | 45.69  | 91     | 5           |

#### Table 2.1 (cont.) Results of BS/BSD Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID: Lot Blank filter

|                         | Spike<br>Added | BS<br>Rec. |        | BSD<br>Rec. |        |     |
|-------------------------|----------------|------------|--------|-------------|--------|-----|
| Compound                | þð             | pg         | % Rec. | þð          | % Rec. | RPD |
| Naphthalene             | 50             | 42.80      | 86.    | 20.62       | 41     | 70  |
| 2-Methylnaphthalene     | 50             | 46.56      | 93     | 33.82       | 68     | 32  |
| 1-Methylnaphthalene     | 50             | 47.38      | 95     | 36.54       | 73     | 26  |
| Biphenyl                | 50             | 48.02      | 96     | 39.62       | 79     | 19  |
| 2,6-Dimethylnaphthalene | 50             | 47.60      | 95     | 39.74       | 79     | 18  |
| Acenaphthylene          | 50             | 48.36      | 97     | 41.68       | 83     | 15  |
| Acenaphthene            | 50             | 49.52      | 99     | 43.70       | . 87   | 12  |
| Dibenzofuran            | 50             | 49.68      | 99     | 44.26       | 89     | 11  |
| Fluorene                | 50             | 49.36      | 99     | 44.44       | 89     | 11  |
| Phenanthrene            | 50             | 48.38      | 97     | 42.82       | 86     | 12  |
| Anthracene              | 50             | 50.60      | 101    | 46.20       | 92     | 9   |
| Carbazole               | 50             | 48.48      | 97     | 43.24       | 86     | 12  |
| Fluoranthene            | 50             | 50.52      | 101    | 45.06       | 90     | 11  |
| Pyrene                  | 50             | 50.02      | 100    | 44.44       | 89     | 12  |
| Benzo(a)anthracene      | 50             | 48.50      | 97     | 42.82       | 86     | 12  |
| Chrysene                | 50             | 50.08      | 100    | 46.74       | 93     | 7   |
| Benzo(b)fluoranthene    | 50             | 47.16      | 94     | 40.98       | 82     | 14  |
| Benzo(k)fluoranthene    | 50             | 45.04      | 90     | 40.14       | 80     | 12  |
| Benzo(e)pyrene          | 50             | 47.02      | 94     | 41.60       | 83     | 12  |
| Benzo(a)pyrene          | 50             | 44.00      | 88     | 39.32       | 79     | 11  |
| indeno(1,2,3-cd)pyrene  | 50             | 44.26      | 89     | 39.74       | 79     | 11  |
| Dibenzo(a,h)anthracene  | 50             | 43.44      | 87     | 40.00       | 80     | 8   |
| Benzo(g,h,i)perylene    | 50             | 43.B2      | 88     | 40.08       | 80     | 9   |

110\DELVAR\0002\All

#### Results of the BS/BSD Analysis for Metals in Air

A blank spike/blank spike duplicate analysis (BS/BSD) was run. The percent recoveries, listed in Table 2.2, ranged from 34 to 125. Fifty out of fifty-six values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.2, ranged from 0 (zero) to 7. QC limits are not available for this criterion.

#### Results of the Analysis of the Laboratory Control Sample for Metals in Air

Laboratory control samples were also analyzed. The percent recoveries ranged from 62 to 116 and are listed in Table 2.3. Twenty-five out of twenty-eight concentrations were within the acceptable QC limits.

#### 110\DEL\AR\0002\REPORT

## Table 2.2 Results of the BS/BSD Analysis for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Metal      | Sample Original Conc |                    | Recover          | ed Conc            | % Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | covery | RPD    | Recommended |                   |
|------------|----------------------|--------------------|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|-------------------|
|            | Conc<br>µg/filter    | Spike<br>µg/filter | Dup<br>µg/filter | Spike<br>µg/filter | Dup<br>µg/fitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spike  | Dup    |             | QC Limit<br>% Rec |
| Aluminum   | 2.3292               | 40.00              | 40.00            | 52.26              | 48.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125    | 117    | 7           | 75-125            |
| Arsenic    | υ                    | 40.00              | 40.00            | 40.839             | 40.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102    | 101    | 1           | 75-125            |
| Beryllium  | U                    | 1.00               | 1.00             | 1.0592             | 1.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106    | 105    | 1           | 75-125            |
| Cadmium    | U                    | 1.00               | 1.00             | 1.0498             | 1.0388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105    | 104    | 1           | 75-125            |
| Calcium    | 5.5364               | 1000               | 1000             | 1085.9             | 1074.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108    | 107    | 1           | 75-125            |
| Chromium   | 0.4428               | 4.00               | 4.00             | 4.9778             | 5.2212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113    | 120    | 6           | 75-125            |
| Cobalt     | U                    | 10.00              | 10.00            | 10.184             | 10.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102    | 100    | 1           | 75-125            |
| Copper     | υ                    | 5.00               | 5.00             | 5.47               | 5.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109    | 108    | 1           | 75-125            |
| Iron       | 0.4518               | 20.00              | 20.00            | 21.624             | 21.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106    | 103    | 2           | 75-125            |
| Lead       | ົບ                   | 10.00              | 10.00            | 10.885             | 10.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109    | 107    | 2           | 75-125            |
| Lithium    | Ŭ                    | 40.00              | 40.00            | 46.163             | 46.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 115    | 116    | 0           | 75-125            |
| Magnesium  | Ŭ                    | 1000               | 1000             | 1088.4             | 1078.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109    | 108    | 1           | 75-125            |
| Manganese  | Ŭ                    | 10.00              | 10.00            | 10.385             | 10.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104    | 102    | 1           | 75-125            |
| Molybdenum | U                    | 40.00              | 40.00            | 42,838             | 42,729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107    | 107    | 0           | 75-125            |
| Nickel     | U                    | 10.00              | 10.00            | 10.473             | 10.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105    | 104    | 1           | 75-125            |
| Phosphorus | Ũ                    | 40.00              | 40.00            | 20,931             | 20.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52     | • 51 • | З           | 75-125            |
| Platinum   | Ū                    | 40.00              | 40.00            | 40,866             | 39.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102    | 99     | 3           | 75-125            |
| Selenium   | Ū                    | 40.00              | 40.00            | 40,464             | 39.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101    | 100    | 1           | 75-125            |
| Silver     | Ū                    | 1.00               | 1.00             | 1.0042             | 0.9952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100    | 100    | 1           | 75-125            |
| Sodium     | 9.9974               | 1000               | 1000             | 1050.3             | 1039.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104    | 103    | 1           | 75-125            |
| Tellurium  | υ                    | 40.00              | 40.00            | 39.822             | 38.988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100    | 97     | 2           | 75-125            |
| Thallium   | ΰ                    | 40.00              | 40.00            | 45.497             | 44.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114    | 112    | 1           | 75-125            |
| Tin        | Ū                    | 40.00              | 40.00            | 14.508             | 13.513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36     | • 34 • | 7           | 75-125            |
| Titanium   |                      | 40.00              | 40.00            | 41.055             | 40.774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103    | 102    | 1           | 75-125            |
| Vanadium   | Ū                    | 10.00              | 10.00            | 10.586             | the state of the second st | 106    | 105    | 1           | 75-125            |
| Yttrium    | Ū.                   | 40.00              | 40.00            | 42.336             | 41.878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106    | 105    | 1           | 75-125            |
| Zinc       | 0.1208               | 10.00              | 10.00            | 10,784             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107    | 104    | 2           | 75-125            |
| Zirconium  | U                    | 40.00              | 40.00            | 14.671             | 14.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37     | • 35 • |             | 75-125            |

#### Table 2.3 Results of the Analysis of the Laboratory Control Sample for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Metal      | Analyzed<br>Value<br>µg/L | Accepted<br>Value<br>µg/L | %<br>Rec |   | QC Limits<br>% Rec |
|------------|---------------------------|---------------------------|----------|---|--------------------|
| Aluminum   | 4617.55                   | 4000                      | 115      |   | 80-120             |
| Arsenic    | 4116.9                    | 4000                      | 103      |   | 80-120             |
| Beryllium  | 107.5                     | 100                       | 107      |   | 80-120             |
| Cadmium    | 103.18                    | 100                       | 103      |   | 80-120             |
| Calcium    | 53193                     | 50000                     | 106      |   | 80-120             |
| Chromium   | 439.2                     | 400                       | 110      |   | 80-120             |
| Cobalt     | 1006.11                   | 1000                      | 101      |   | 80-120             |
| Copper     | 541.74                    | 500                       | 108      |   | 80-120             |
| iron       | 2144.08                   | 2000                      | 107      |   | 80-120             |
| Lead       | 1061.38                   | 1000                      | 106      |   | 80-120             |
| Lithium    | 2319.62                   | 2000                      | 116      |   | 80-120             |
| Magnesium  | 53566.16                  | 50000                     | 107      |   | 80-120             |
| Manganese  | 1018.99                   | 1000                      | 102      |   | 80-120             |
| Molybdenum | 2127.76                   | 2000                      | 106      |   | 80-120             |
| Nickel     | 1032.58                   | 1000                      | 103      |   | 80-120             |
| Phosphorus | 1451.11                   | 2000                      | 73       | * | 80-120             |
| Platinum   | 2068.2                    | 2000                      | 103      |   | 80-120             |
| Selenium   | 4062.26                   | 4000                      | 102      |   | 80-120             |
| Silver     | 100.04                    | 100                       | 100      |   | 80-120             |
| Sodium     | 50626.04                  | 50000                     | 101      |   | 80-120             |
| Tellurium  | 1994.5                    | 2000                      | 100      |   | 80-120             |
| Thallium   | 4513.77                   | 4000                      | 113      |   | 80-120             |
| Tin        | 1250.53                   | 2000                      | 63       | • | 80-120             |
| Titanium   | 2044.16                   | 2000                      | 102      |   | 80-120             |
| Vanadium   | 1040.05                   | 1000                      | 104      |   | 80-120             |
| Yttrium    | 2113.37                   | 2000                      | 106      |   | 80-120             |
| Zinc       | 1028.63                   | 1000                      | 103      |   | 80-120             |
| Zirconium  | 1244.98                   | 2000                      | 62       | • | 80-120             |
|            |                           |                           |          |   |                    |

110\DEL\AR\0002\All

ł

QA/QC for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

Results of the Internal Standard Recoveries for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

The results of the internal standard recoveries, listed in Table 2.4, ranged from 62 to 146, One hundred and two out of one hundred and eight values were within the acceptable QC limits.

Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

A blank was spiked in duplicate and analyzed. The percent recoveries ranged from 81 to 122 and are listed in Table 2.5. All thirty-four values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.5, ranged from 0 (zero) to 14. QC limits are not available for this analysis.

#### 110\DEL\AR\0002\REPORT

# Table 2.4 Results of the Internal Standard Recoveries for Polychlorinated Dibenzodioxin<br/>and Polychlorinated Dibenzofurans in AirWA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support<br/>and Underwater Survey Activites

-

| Sample ID                            | Method   | 28080    | 28081    | 28082    | 28083    | 28084    | ac      |
|--------------------------------------|----------|----------|----------|----------|----------|----------|---------|
| Location                             | Blank    | 0-1      | 0-2      | 0-3      | 0-4      | 0-5      | Limits  |
| Matrix<br>Units<br>Internal Standard | Air<br>% | Air<br>% | Air<br>% | Air<br>% | Air<br>% | Air<br>% | Percent |
| 13C-2,3,7,8-TCDD                     | 79       | 100      | 79       | 86       | . 94     | 84       | 40-135  |
| 13C-1,2,3,6,7,8-HxCDD                | 85       | 96       | 80       | 113      | 113      | 111      | 40-135  |
| 13C-2,3,7,8-TCDF                     | 79       | 103      | 80       | 108      | 109      | 109      | 40-135  |
| 13C-1,2,3,4,7,8-HxCDF                | 81       | 91       | 77       | 119 -    | 112      | 110      | 40-135  |
| 13C-1,2,3,7,8-PeCDD                  | 123      | 130      | 126      | 100      | 95       | 93       | 40-135  |
| 13C-1,2,3,4,6,7,8-HpCDD              | 80       | 86       | 68       | 85       | 107      | 72       | 40-135  |
| 13C-1,2,3,7,8-PeCDF                  | 117      | 127      | 122      | 98       | 104      | 97       | 40-135  |
| 13C-1,2,3,4,6,7,8-HpCDF              | 86       | 99       | 83       | 115      | · 107    | 106      | 40-135  |
| 13C-OCDD                             | 115      | 122      | 107      | 80       | 89       | 76       | 40-135  |

| 28085  | 28086                                                                 | 28088                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                               | 28089                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Blank<br>Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Blank<br>Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QC<br>Limits                                          |
|--------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 10-UW1 | 10-UW2                                                                | Trip<br>Blank                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                               | Trip<br>Blank                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| Air    | Air                                                                   | Air                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               | Air                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Percent                                               |
| %      | %                                                                     | %                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |
|        |                                                                       |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
| 63     | 85                                                                    | 83                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 88                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-135                                                |
| 94     | 109                                                                   | 110                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               | 113                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40-135                                                |
| 114    | 146 "                                                                 | 138                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                             | 143                                                                                                                                                                    | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40-135                                                |
| 98     | 119                                                                   | 128                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               | 129                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40-135                                                |
| 81     | 85                                                                    | 77                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 83                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-135                                                |
| 110    | 103                                                                   | 112                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               | 113                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40-135                                                |
| 91     | 106                                                                   | 91                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 102                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-135                                                |
| 119    | 126                                                                   | 139                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                             | 141                                                                                                                                                                    | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40-135                                                |
| 62     | 85                                                                    | 91                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 95                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-135                                                |
|        | 10-UW1<br>Air<br>%<br>63<br>94<br>114<br>98<br>81<br>110<br>91<br>119 | 10-UW1 10-UW2<br>Air Air<br>% %<br>63 85<br>94 109<br>114 146<br>98 119<br>81 85<br>110 103<br>91 106<br>119 126 | 10-UW1         10-UW2         Trip Blank           Air         Air         Air           %         %         %           63         85         83           94         109         110           114         146         *           81         85         77           110         103         112           91         106         91           119         126         139 | 10-UW1 10-UW2 Trip<br>Blank<br>Air Air Air<br>% % %<br>63 85 83<br>94 109 110<br>114 146 138 98<br>98 119 128<br>81 85 77<br>110 103 112<br>91 106 91<br>119 126 139 * | 10-UW1         10-UW2         Trip         Trip           Blank         Blank         Blank           Air         Air         Air           %         %         %           63         85         83           94         109         110           114         146         138         143           98         119         128         129           81         85         77         83           110         103         112         113           91         106         91         102           119         126         139         *         141 | 10-UW1         10-UW2         Trip         Trip           Blank         Blank         Blank           Air         Air         Air         Air           %         %         %         %           63         85         83         88           94         109         110         113           114         146         138         143           98         119         128         129           81         85         77         83           110         103         112         113           91         106         91         102           119         126         139         141 | Spike           10-UW1         10-UW2         Trip         Trip           Blank         Blank         Blank           Air         Air         Air         Air           %         %         %         %           63         85         83         88         75           94         109         110         113         111           114         146         138         143         142           98         119         128         129         124           81         85         77         83         75           110         103         112         113         100           91         106         91         102         91           119         126         139         141         132 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

00027

. .

#### Table 2.5 Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support and Underwater Survey Activities

4

#### Sample ID Blank

| Parameter     | Spike<br>Added<br>Pg | Sample<br>Conc<br>pg | BS<br>Conc<br>Pg | %<br>Rec | BSD<br>Conc<br>pg | %<br>Rec | RPD | QC<br>Limits<br>(% Rec) |
|---------------|----------------------|----------------------|------------------|----------|-------------------|----------|-----|-------------------------|
| 2378-TCDD     | 200                  | υ                    | 239              | 120      | 244               | 122      | 2   | 60-140                  |
| 12378-PeCDD   | 200                  | υ                    | 214              | 107      | 230               | 115      | 7   | 60-140                  |
| 123478-HxCDD  | 500                  | U                    | 550              | 110      | 507               | 101      | 8   | 60-140                  |
| 123678-HxCDD  | 500                  | U                    | 473              | 95       | 493               | 99       | 4   | 60-140                  |
| 123789-HxCDD  | 500                  | υ                    | 429              | 86       | 418               | 84       | 3   | 60-140                  |
| 1234678-HpCDD | 500                  | U                    | 494              | 99       | 525               | 105      | 6   | 60-140                  |
| OCDD          | 1000                 | 38.2                 | 969              | 93       | 1040              | 100      | 7   | 60-140                  |
| 2378-TCDF     | 200                  | U                    | 165              | 83       | 189               | 95       | 14  | 60-140                  |
| 12378-PeCDF   | 200                  | U                    | 218              | 109      | 239               | 120      | 9   | 60-140                  |
| 23478-PeCDF   | 200                  | υ                    | 232              | 116      | 233               | 116      | 0   | 6D-14D                  |
| 123478-HxCDF  | 500                  | υ                    | 455              | 91       | 461               | 92       | 1   | 60-140                  |
| 123678-HxCDF  | 500                  | U                    | 466              | 93       | 469               | 94       | 1   | 60-140                  |
| 123789-HxCDF  | 500                  | U                    | 435              | 87       | 421               | 84       | 3   | 60-140                  |
| 234678-HxCDF  | 500                  | U                    | 513              | 103      | 498               | 100      | 3   | 60-140                  |
| 1234678-HpCDF | 500                  | 12.4                 | 418              | 81       | 461               | 90       | 10  | 60-140                  |
| 1234789-HpCDF | 500                  | U                    | 407              | 81       | 434               | 87       | 6   | 60-140                  |
| OCDF          | 1000                 | 24.3                 | 1090             | 107      | 1090              | 107      | 0   | 60-140                  |

#### Results of the BS/BSD Analysis for Inorganic Acids in Air

A blank spike/blank spike duplicate analysis (BS/BSD) was run. The percent recoveries, listed in Table 2.6, ranged from 93 to 100. All twelve values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.6, ranged from 0 (zero) to 1. QC limits are not available for this criterion.

#### 110\DEL\AR\0002\REPORT

#### 00023

÷,

#### Table 2.6 Results of the BS/BSD Analysis for Inorganic Acids in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Analyte           | Original    | Conc      | Recover     | ed Conc   | % Rec | xvery | RPD | Recommended        |
|-------------------|-------------|-----------|-------------|-----------|-------|-------|-----|--------------------|
|                   | Spike<br>mg | Dup<br>mg | Spike<br>mg | Dup<br>mg | Spike | Dup   |     | QC Limits<br>% Rec |
| Hydrobromic acid  | 0.1053      | 0.1053    | 0.0983      | 0.0983    | 93    | 93    | 0   | 75-125             |
| Hydrochloric acid | 0.2054      | 0.2054    | 0.2042      | 0.2042    | 99    | 99    | 0   | 75-125             |
| Hydrofluoric acid | 0.4049      | 0.4049    | 0.3925      | 0.3937    | 97    | 97    | 0   | 75-125             |
| Nitric acid       | 0.4067      | 0.4067    | 0.3901      | 0.3919    | 96    | 96    | 0   | 75-125             |
| Phosphoric acid   | 0.5914      | 0.5914    | 0.5884      | 0.592     | 99    | 100   | 1   | 75-125             |
| Sulfuric acid     | 0.4085      | 0.4085    | 0.3949      | 0.3937    | 97    | 96    | 0   | 75-125             |

Lockheed Martin Technology Services Group Environmental Services REAC 2890 Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679 Telephone 732-321-4200 Facsimile 732-494-4021

LOCKHEED MARTIN

#### Southwest Research Institute PO Box 28510, 6220 Culebra Road San Antonio, TX 78228-0510

Attn: Jo Ann Boyd

19 November 1999

Project # RIA-00011 APG Burn Support

As per Lockheed Martin / REAC Purchase Order GA91969J73, please analyze samples according to the following parameters:

| Analysis/Method                                 | Matrix | # of<br>samples |
|-------------------------------------------------|--------|-----------------|
| Dioxin/Furans/Modified TO9                      | Air    | 20              |
| Inorganic Acids / NJOSH 7903                    | Air    | 20              |
| Metals/ NIOSH 7300                              | Air    | 20              |
| Data package: Package with Diskette Deliverable |        |                 |

Samples are expected to arrive at your laboratory between November 23-December 31, 1999. All applicable QA/QC (BS/BSD) analysis as per method, will be performed on our sample matrix. <u>Preliminary sample and QC result</u> tables plus a signed copy of our Chain of Custody must be faxed to REAC 10 business days after receipt of the last samples. The complete data package is due 21 business days after receipt of the last samples. The complete data package is due 21 business checklist. Expect all samples to be difficult matrix and all raw data must be included in final analytical report.

All sample and QC results(ie: BS/BSD, LCS, Duplicates, and Blanks) must be summarized in a ExCel diskette deliverable.

Please submit all reports and technical questions concerning this project to John Johnson at (732) 321-4248 or fax to (732) 494-4020.

Sincerely,

Deboral Killeen/ Data Validation and Report Writing Group Leader Lockheed Martin / REAC Project

DK:jj Attachments

cc. R. Singhvi D. Michunas 0011/non/mem/9911/sub/0011Con D. Miller Subcontracting File D. Angwenyi C. Lentini A. DuBois D. Killeen

#### 000..1

| 2 <sup>2</sup> TE | 908) 321<br>EPA Con                         | -4200<br>tract 68- <del>C4</del><br>C99 | <del>- 223</del>                                                                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Numl                          | t: <u>[[]</u>                                                                                                  | Kilman                                        |                                       | e: <u>737 ·</u> | 321-4 | -<br>h48     | No:<br>SHEET                           |              | 21            |
|-------------------|---------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|-----------------|-------|--------------|----------------------------------------|--------------|---------------|
| •                 |                                             |                                         | Sample Id                                                                                                      | entific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ation DI                              | UXINS                                                                                                          |                                               |                                       | A               | alyse | s Reques     |                                        | NO. <u>/</u> | .017_         |
| Γ                 | REAC                                        | Sample No.                              | Sampling Location                                                                                              | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date Collected                        | # of Bothe                                                                                                     | Container/Pr                                  | eservative                            | Volume          | V K   | LOXINS       | ······································ | T -          | <u> </u>      |
|                   |                                             | 28080                                   | 0-1                                                                                                            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/3/99                               |                                                                                                                | AMBGK TA                                      | K/KC                                  |                 | L     | V            | 1                                      |              |               |
|                   |                                             | 25081                                   | 0-2                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1                                                                                                              |                                               |                                       | 687             |       | 1            |                                        |              |               |
| -  _              |                                             | 28082                                   | - 0-3                                                                                                          | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                | _                                             |                                       | 513             | 3     | $\checkmark$ | <u> </u>                               |              | × [           |
| L                 |                                             | 28083                                   | 0-4                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · | !                                                                                                              |                                               | -                                     | 693             |       | V            |                                        |              | 1             |
|                   |                                             | 28084                                   |                                                                                                                | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                     |                                                                                                                |                                               | · · · · · · · · · · · · · · · · · · · | 64lar           |       | V            |                                        | _            | <u>L'</u>     |
| -                 | ·                                           | 4XUXS                                   | J-HW1                                                                                                          | ┨╌┠╼┥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | <u> </u>                                                                                                       |                                               |                                       | 406             |       | <u> </u>     | ·                                      | /            | /             |
| -                 |                                             | 25/200                                  | JO-UWZ                                                                                                         | ╉──╁──┤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | <u> </u>                                                                                                       |                                               |                                       | 1017-           |       |              | <del>}</del>                           |              | ÷.            |
| ⊢                 |                                             | 28087                                   | TRIP Blank                                                                                                     | ╉╾╍┽╍╍┥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                | ╺┨╍╍╌╌╌┨╌                                     |                                       | <u> </u>        |       | ~            | <i></i>                                | $H_{-}$      |               |
| -  -              |                                             | 20000                                   | 35/BSD                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                | - <u> </u> <u> </u> /                         |                                       | Ø               |       |              |                                        | VXE          | <del>í)</del> |
| ,                 |                                             |                                         | 130/030                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                |                                               |                                       | <u> </u>        |       |              |                                        | Ar           | 2             |
| -                 |                                             |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                |                                               | · · · · ·                             | · · · · · ·     |       |              | /                                      |              |               |
| · }-              |                                             |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |                                                                                                                |                                               | ·                                     |                 |       | ·            |                                        | +            |               |
| ┢                 |                                             |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ন্দ্রমা                                                                                                        |                                               |                                       | 1               |       |              |                                        | ++           |               |
| ┢                 |                                             |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                |                                               |                                       |                 |       | ┉┈┈┧╝        | ·/                                     | +            | <u> </u>      |
| F                 |                                             |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                |                                               |                                       |                 |       |              |                                        |              | +             |
|                   |                                             |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                |                                               |                                       |                 |       |              |                                        |              | -+-           |
|                   |                                             |                                         | 1                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                |                                               |                                       |                 | 1. 11 |              | 1                                      | 15           | +             |
|                   |                                             |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                |                                               |                                       |                 |       | 1. 1.        | <b>/</b>                               | E            |               |
|                   | ·                                           |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ,                                                                                                              |                                               |                                       |                 |       | $\leq$       |                                        | 0            |               |
| Ma<br>SC          | atrtx:<br>D- Sedir                          | nent Pi                                 | W- Poleble Water                                                                                               | <b>s</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Call                                  | Instructions:                                                                                                  |                                               |                                       |                 |       |              | ······                                 | 10           |               |
|                   | S- Drum<br>L- Drum<br>- Other               | n Solida Gi<br>a Liquida Si<br>r , Si   | W- Gröundweter<br>N- Surface Weter<br>Sludge<br>nch Zushtak<br>Gol<br>78228                                    | W.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water P                               | Gen<br>Gen                                                                                                     | gs + Qu<br>s certifi<br>sy south<br>ch Thisti | artz<br>iel<br>envest                 | FO              | OM CI | ICONTRA      | CTING L                                | JSE C        | DNL           |
| نې،<br>کې         | LZU Ci                                      | lebra lo                                | ad V                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in an in                              | CO.                                                                                                            | CI - U                                        |                                       |                 | STOD  |              | · ·                                    | :            |               |
| ريد<br>سيب        |                                             |                                         | the second s | The second distances of the se | nici use as                           |                                                                                                                |                                               |                                       |                 |       |              |                                        |              |               |
| 1                 | Home/Reaso                                  | n Rolingui                              | shed By Date                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | red By Deta                           |                                                                                                                | Items/Reason                                  | Relingui                              | lahed By        | Data  | Receive      | d By                                   | Date         | Tin           |
| U                 | [ Malys                                     | 18 Just                                 | 11/199                                                                                                         | D/Km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in 149                                | 9 07.43                                                                                                        |                                               |                                       |                 |       |              |                                        |              |               |
|                   |                                             | J. / :                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                | · · · · · · · · · · · · · · · · · · ·         | <b> </b>                              |                 |       |              |                                        |              |               |
|                   |                                             | - K                                     | ······································                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | i han in the second |                                               |                                       |                 | -     |              | ·                                      |              |               |
| <u> </u>          | و و الدي الدي الدي الدي الدي الدي الدي الدي |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | -┼┤-                                                                                                           |                                               | <u> </u>                              |                 |       |              |                                        | <u></u>      |               |
| 1                 |                                             |                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                |                                               | I                                     |                 | · ·   | 1            |                                        |              |               |

FORM #4

| <del>(908)</del> 32<br>EPA Cor                  | dison, NJ<br>1-4200<br>Nract 68- <del>64</del> -<br>C <sup>4</sup> 4- | <del>0022</del> (L)<br>- zz3<br>Sample Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | Project Numi                           | ter. <u>RIAC</u>  | Acidos                                                                                                          | 1e: <u>732-32</u>   |                                       | NO: (                                        |          |
|-------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------|----------------------------------------------|----------|
| REAC                                            | Sample No.                                                            | Sampling Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matrix          | Date Collected                         | S of Bolton       |                                                                                                                 |                     | Ingrand                               |                                              |          |
|                                                 | 28060                                                                 | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A               | 12/3/49                                | 1                 | united / 100                                                                                                    | 59.2                | - Agias                               | <u>₽</u>                                     | 7        |
|                                                 | 28061                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               | 19-11-1                                |                   | Numper / 100                                                                                                    | 41,2                | 10                                    |                                              |          |
|                                                 | 28062                                                                 | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                        | $1 \rightarrow 1$ |                                                                                                                 | 57.8                | V                                     | <u> </u>                                     |          |
|                                                 | 28063                                                                 | 0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                        | 1                 | <u> </u>                                                                                                        | 132.0               |                                       | <u>├</u>                                     |          |
|                                                 | 28060                                                                 | (i-<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-1-1           |                                        |                   | 1                                                                                                               | 50.0                | 1                                     | <u>├</u>                                     |          |
|                                                 | 28065                                                                 | X-UWI_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-1-1           |                                        | <del> </del>      | 1                                                                                                               | 53 0                | V                                     | <u>† }-</u>                                  |          |
|                                                 | 28066                                                                 | 0-412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ┨──┤──┤         |                                        | 1                 |                                                                                                                 | V3.2                | 1-7-                                  | +                                            | 1        |
| <del>ــــــــــــــــــــــــــــــــــــ</del> | 25:090                                                                | FIELD Hank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del> -/ </del> |                                        | 1 1               | <b> </b>                                                                                                        | (Y                  |                                       | <u>├</u> \#                                  |          |
|                                                 | 28/191                                                                | TYIP Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> -  </u>     |                                        | · · · · ·         | <b> </b>                                                                                                        | 8                   |                                       |                                              | R        |
|                                                 | 25/1892                                                               | LUT Blook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> -</u>       |                                        | 1                 | <u>├</u> ──── <u></u>                                                                                           | 0                   |                                       | <u> </u>                                     | ¥        |
|                                                 |                                                                       | 25 TACN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        | 20                |                                                                                                                 | 8                   |                                       | <u>├/</u> ह                                  |          |
|                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>        | ······································ |                   | X                                                                                                               | 1                   |                                       | ┼╾╍╌╱╌┼╲                                     |          |
|                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ┞────┤          | <u></u>                                |                   |                                                                                                                 |                     | ·                                     | ├ <del>──/</del>                             | <u>}</u> |
|                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                        |                   |                                                                                                                 |                     |                                       | <u>├</u> /                                   |          |
|                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>        |                                        |                   |                                                                                                                 | <u> </u>            |                                       |                                              |          |
|                                                 | · · · · · · · · · · · · · · · · · · ·                                 | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>├</u> /      |                                        |                   |                                                                                                                 | 1                   | 1                                     |                                              |          |
|                                                 | ·                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b> </b> †      |                                        | NW)               |                                                                                                                 |                     | <u> </u>                              | <b>                                     </b> |          |
|                                                 |                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | t                                      |                   |                                                                                                                 | 1 cole              | Tend 12                               | 60                                           |          |
|                                                 | ·····                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                        |                   |                                                                                                                 |                     |                                       | <b> -**</b>  -                               |          |
|                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>        |                                        |                   | · · · · · · · · · · · · · · · · · · ·                                                                           |                     |                                       | <b> </b> [-                                  |          |
| letrix:                                         |                                                                       | <del>ار در بر بر</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | Specia                                 | Instructions;     |                                                                                                                 | 007                 | · · · · · · · · · · · · · · · · · · · | ••••••••••••••••••••••••••••••••••••••       |          |
|                                                 |                                                                       | W - Polable Water<br>W - Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s.<br>w.        | Soil () Ju<br>Water                    | rorganic A        | cide by NIOSH 7                                                                                                 |                     |                                       |                                              |          |
|                                                 | n Liquids SI                                                          | W - Surface Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.              | oil All                                | Thurgan           | hic adius sum                                                                                                   | FOR S               | UBCONTR                               | ACTING US                                    | E ONL'   |
| - Oth                                           | 51<br>51                                                              | Eludan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Æ               | us us                                  | 10 LV4            | cide by N10547<br>mic asids Same<br># 1038 511100 1                                                             | EDON                | CHAIN OF                              |                                              |          |
| where                                           | st Kesso                                                              | Ach Inshtu<br>78228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | he              | •                                      |                   | •                                                                                                               |                     |                                       |                                              | ł        |
| 120 C                                           | ulebra l                                                              | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                        |                   | Post-It" Fax Not                                                                                                | e 7671 <sup>t</sup> | Date 1/19/2000                        | N of P 2                                     | -        |
| y int                                           | mo, TX                                                                | 18268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •               |                                        |                   | To John Jo                                                                                                      | hasad               | From Joe M                            |                                              |          |
| Items/Reas                                      | 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Receiv          | ved By Date                            | Time              | ibims/1 Co/Depi. 1 . 11                                                                                         | LUSON I             | Co CL. PT                             | will w                                       | Time     |
|                                                 |                                                                       | and the second se | $\sim$          | hours                                  |                   | Phone A                                                                                                         | A MANIN MAR         | Co. SW RI<br>Phone #                  |                                              | h        |
| Kindly                                          | Sit Court                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | your 1          |                                        | 77 9120           |                                                                                                                 |                     |                                       |                                              |          |
| 1                                               |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>U</u>        |                                        | ┉┼┈┈┉╂╼╸          | Fax = 772 - 40                                                                                                  | 14-4020             | Fax # 210-522                         | -6628                                        |          |
|                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                        |                   | La seconda de |                     |                                       |                                              |          |

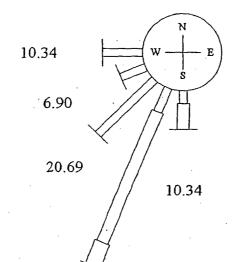
| REAC #         Sample No.         Sample No.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (EAC, E<br><del>308)</del> 32<br>(PA Col | Edison, NJ<br>1-4200<br>htract 68- <del>C4</del><br>( <sup>79-</sup>                                             |                           |          | Project Nan<br>Project Nun<br>ARFW Conta | CHAIN<br>ne: APG<br>nber: P/A<br>ct: J(ILA<br>GTALS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | DY REC          | e: 732 ·              |             | 1248                     | No:<br>SHEE                                    | · · · · ·        | 3133<br>_of_ |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|----------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------------|-------------|--------------------------|------------------------------------------------|------------------|--------------|------------|
| 2x 850       0-1       4       12/3/94       1x-vkack/r(a       675       1         2x 851       0-2       7       72       12/2       1       12/2       1         1x 852       0-3       1       1/2       1       1/2       1       1         1x 852       0-3       1       1/2       1       1/2       1       1         1x 852       0-3       1       1/2       1       1/2       1       1         1x 855       0-11 N2       1       1       1       1       1       1       1         1x 855       1/2 1/2       1       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th>BEAC #</th> <th>Sample No.</th> <th></th> <th>T</th> <th>1</th> <th>H of Bottler</th> <th></th> <th></th> <th></th> <th></th> <th>Ost ~&gt;</th> <th></th> <th><del>-  </del>-</th> <th></th> <th>Л</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BEAC #                                   | Sample No.                                                                                                       |                           | T        | 1                                        | H of Bottler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 |                       |             | Ost ~>                   |                                                | <del>-  </del> - |              | Л          |
| 25.951       0.2       773       773         25.952       0.4       773       773       773         25.952       0.4       1.92       773       773         25.952       0.4       1.93       1.93       1.93         25.952       0.4       1.93       1.93       1.93         25.952       0.4       1.94       1.93       1.93         25.952       1.102       0.0       1.93       1.93         25.952       1.102       0.0       1.93       1.94         25.957       1.102       0.0       1.93       1.94         25.957       1.102       1.94       0.0       1.94         25.957       1.93       1.94       1.94       0.0       1.94         25.957       1.94       1.94       0.0       1.94       1.94         25.957       1.94       1.94       1.94       0.0       1.94         25.957       1.94       1.94       1.94       0.95       1.94         1.95       1.95       1.94       1.94       1.94       1.94         1.95       1.95       1.94       1.94       1.94       1.94 <td< td=""><td>REAGE</td><td>al succession of the second second</td><td></td><td></td><td></td><td>- Urboise</td><td></td><td></td><td></td><td></td><td>-750</td><td><math>\wedge</math></td><td>·'</td><td>/</td><td>-</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REAGE                                    | al succession of the second  |                           |          |                                          | - Urboise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                       |             | -750                     | $\wedge$                                       | ·'               | /            | -          |
| 2.8 dist       0.7       773       773         2.8 dist       0.7       10.12       10.12       10.12         2.8 dist       0.11/1       0.73       10.12       10.12         2.8 dist       0.11/1       0.73       10.12       10.12         2.8 dist       0.11/1       0.73       10.12       10.12         2.8 dist       0.11/1       0.12       10.12       10.12         2.8 dist       1.01 Blank       0.12       11.12       10.12         2.8 dist       1.01 Blank       0.12       11.12       11.12         2.8 dist       1.01 Blank       0.12       11.12       11.12         2.8 dist       1.01 Blank       0.12       11.12       11.12         2.8 dist       0.12       0.12       11.12       11.12         2.8 dist       0.12       0.12       11.12       11.12         2.8 dist       0.12       0.12       11.12       11.12       11.12         2.9 dist       0.12       0.12       11.12       11.12       11.12       11.12         2.9 dist       0.12       0.12       0.12       11.12       11.12       11.12       11.12         0.12 <td></td> <td></td> <td><u>0</u>+<br/><u>1</u>-7</td> <td>1</td> <td>  <del>/ -   /   / / / / /</del><br/> </td> <td></td> <td>fill the factor</td> <td><u> </u></td> <td>ويستان فيشعون المرجوع</td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                  | <u>0</u> +<br><u>1</u> -7 | 1        | <del>/ -   /   / / / / /</del><br>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fill the factor | <u> </u>        | ويستان فيشعون المرجوع |             |                          | +                                              |                  |              | -          |
| 22025 0-UNZ<br>25056 0-UNZ<br>25057 FIED RANK<br>25059 I J PLANE<br>- 157850 V 2<br>- 107850 - 107850 V 2<br>- 1078500 V 2<br>- 107850 V 2                                                                                                                                  |                                          | 125 652                                                                                                          | 0-3                       | 1-1      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | 713                   |             | $\overline{\mathcal{V}}$ | 1-1                                            |                  |              |            |
| 22025 0-UNZ<br>25056 0-UNZ<br>25057 FIED RANK<br>25059 I J PLANE<br>- 157850 V 2<br>- 107850 - 107850 V 2<br>- 1078500 V 2<br>- 107850 V 2                                                                                                                                  |                                          | 28053                                                                                                            | 0.4                       |          | ·                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ·             |                 | 669.9                 |             | V                        | $\overline{\mathbf{V}}$                        |                  | 1            | 1          |
| 25.056 0-11W2<br>25.057 FIELD RANK<br>0<br>25.059 107 PLANK<br>0<br>25.059 107 PLANK<br>0<br>15.785D V<br>2<br>0<br>15.785D V<br>15.785D V<br>15. |                                          | 28054                                                                                                            | AK .                      |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | 1.93                  |             | V                        | 1.                                             |                  | 1            | ] ]        |
| 28057 FIELD RANK<br>28058 TAPBAANA<br>28058 TAPBAANA<br>28058 TAPBAANA<br>28058 TAPBAANA<br>28058 TAPBAANA<br>1907 Row Pounderson With Standard Standa                                                                                                                                                                                                                                                                                                                                                                           |                                          | 28055                                                                                                            | N-UN1                     |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | 10-36                 |             | · V                      |                                                |                  | 1            |            |
| 25058 TripBianic<br>25059 J. J. BLANT<br>BANT<br>BS/BSD V 2<br>BS/BSD V 2<br>DS/BSD V 2                                      |                                          | 25,056                                                                                                           | O-UW2                     |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | •               | 648                   |             | 1                        |                                                | $\overline{17}$  |              | 1          |
| 25.059 1 J PLANE<br>15/BSD V 2<br>15/BSD V 2<br>0<br>15/BSD V 2<br>0<br>15/BSD V 2<br>0<br>15/BSD V 2<br>0<br>15/BSD V 2<br>0<br>15/BSD V 2<br>0<br>15/BSD V 2<br>15/BSD                           |                                          | 28157                                                                                                            |                           |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | Ø                     |             |                          |                                                | $\nabla Z$       | -            | <b>]</b> • |
| UTA:<br>Special Instructions:<br>Special Instruct                                                                                                                                                                                                     |                                          | 28058                                                                                                            |                           |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | -               |                       | • ; •       | ~                        |                                                | Ver              | <u>,</u> )   | ]          |
| Utis:<br>Special Instructions:<br>Special Instruc                                                                                                                                                                                                     |                                          | 28:059                                                                                                           | 101 BLANK                 |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | · · · · · · · · | <u>Ø.</u>             |             |                          |                                                | Ant              | ソー           | ]          |
| utin:<br>Sectiment PW. Potable Water S. Soil Instructions:<br>Drum Solids GW. Groundwater W. Weier All metals ( eluments) samples<br>Drum Liquids SW. Surface Water O. Oil Collected using MCE Alfes<br>Hurst Lesbark Justitut<br>Util with Lesbark Justitut<br>W. Here All<br>WT # \$8900<br>MANITONO, TX 78228<br>MANITONO, TX 7828<br>MANITONO, TX 7828<br>MANITONO, TX 7828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                  | BS/BSD                    | V_       | V                                        | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>        |                 | 0                     |             | <u> </u>                 |                                                | $\sqrt{N}$       | 1.           |            |
| utin:<br>Sectiment PW. Potable Water S. Soil Instructions:<br>Drum Solids GW. Groundwater W. Weier All metals ( eluments) samples<br>Drum Liquids SW. Surface Water O. Oil Collected using MCE Alfes<br>Hurst Lesbark Justitut<br>Util with Lesbark Justitut<br>W. Here All<br>WT # \$8900<br>MANITONO, TX 78228<br>MANITONO, TX 7828<br>MANITONO, TX 7828<br>MANITONO, TX 7828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>، مسا</u> م                           |                                                                                                                  | ~                         |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | ·               | <u></u>               | 1           |                          |                                                | $\Box \Delta$    |              |            |
| utin:<br>Sectiment PW. Potable Water S. Soil Instructions:<br>Drum Solids GW. Groundwater W. Weier All metals ( eluments) samples<br>Drum Liquids SW. Surface Water O. Oil Collected using MCE Alfes<br>Hurst Lesbark Justitut<br>Util with Lesbark Justitut<br>W. Here All<br>WT # \$8900<br>MANITONO, TX 78228<br>MANITONO, TX 7828<br>MANITONO, TX 7828<br>MANITONO, TX 7828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                  |                           | <u> </u> |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                       | <u> </u>    |                          | /                                              |                  | ·            |            |
| utin:<br>Sectiment PW. Potable Water S. Soil Instructions:<br>Drum Solids GW. Groundwater W. Weier All metals ( eluments) samples<br>Drum Liquids SW. Surface Water O. Oil Collected using MCE Alfes<br>Hurst Lesbark Justitut<br>Util with Lesbark Justitut<br>W. Here All<br>WT # \$8900<br>MANITONO, TX 78228<br>MANITONO, TX 7828<br>MANITONO, TX 7828<br>MANITONO, TX 7828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                  | ·                         |          |                                          | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                       |             |                          | <b></b> /                                      |                  | $\lambda$    |            |
| Uta:<br>Sediment PW. Potable Water S. Soil<br>Drum Solids GW. Gröundwater W. Weier All metals (elements) Supples<br>Drum Liquids SW. Surface Water O. Oil Collected Using MCE Filter<br>Other SL. Skutge A. All WT & SIGOO<br>Utaurest ke search Justatut<br>W. Weier All WT & SIGOO<br>Utaurest ke search Justatut<br>W. Weier S. Status<br>W. Weier S. Skutge A. All WT & SIGOO<br>WANTONO, TX 78228<br>MANTONO, TX 78228<br>IsmarResson Relinquished By Date Received By Date Time<br>WANTS I, WHAN WITH JUSTATU<br>WANTS I, WHAN WITH JUSTATU<br>Society of the Status Status<br>Society Status Status<br>Society Status Status<br>MANTON SIL WITH STATUS<br>Society Status Status<br>Society                                                                                                                                                                                             | ,                                        |                                                                                                                  |                           | ┼╾┅╾┤    |                                          | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                 |                       | ·           |                          | <u>↓                                      </u> |                  | <u> </u>     | 4          |
| Uta:<br>Sediment PW. Potable Water S. Soil<br>Drum Solids GW. Gröundwater W. Weier All metals (elements) Supples<br>Drum Liquids SW. Surface Water O. Oil Collected Using MCE Filter<br>Other SL. Skutge A. All WT & SIGOO<br>Utaurest ke search Justatut<br>W. Weier All WT & SIGOO<br>Utaurest ke search Justatut<br>W. Weier S. Status<br>W. Weier S. Skutge A. All WT & SIGOO<br>WANTONO, TX 78228<br>MANTONO, TX 78228<br>IsmarResson Relinquished By Date Received By Date Time<br>WANTS I, WHAN WITH JUSTATU<br>WANTS I, WHAN WITH JUSTATU<br>Society of the Status Status<br>Society Status Status<br>Society Status Status<br>MANTON SIL WITH STATUS<br>Society Status Status<br>Society                                                                                                                                                                                             |                                          |                                                                                                                  |                           |          |                                          | $ \rightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                       | <u></u>     |                          | <b>├</b>                                       |                  | <del>\</del> | 1          |
| Uta:<br>Sediment PW. Potable Water S. Soil<br>Drum Solids GW. Gröundwater W. Weier All metals (elements) Supples<br>Drum Liquids SW. Surface Water O. Oil Collected Using MCE Filter<br>Other SL. Skutge A. All WT & SIGOO<br>Utaurest ke search Justatut<br>W. Weier All WT & SIGOO<br>Utaurest ke search Justatut<br>W. Weier S. Status<br>W. Weier S. Skutge A. All WT & SIGOO<br>WANTONO, TX 78228<br>MANTONO, TX 78228<br>IsmarResson Relinquished By Date Received By Date Time<br>WANTS I, WHAN WITH JUSTATU<br>WANTS I, WHAN WITH JUSTATU<br>Society of the Status Status<br>Society Status Status<br>Society Status Status<br>MANTON SIL WITH STATUS<br>Society Status Status<br>Society                                                                                                                                                                                             |                                          | <u> </u>                                                                                                         | ·                         |          |                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | $\sim$          | (                     | 1           | A 19                     | /0                                             |                  | - Here       | - 3        |
| Interiment       PW-       Potable Water       S-       Soil       ALL metals (elements) samples         Drum Solids       GW-       Gröundwater       W.       Weter       ALL metals (elements) samples         Drum Solids       GW-       Gröundwater       W.       Weter       Collected using mcE filter         Other       Skidge       All       Woter       All       WT # \$\$900       FOR SUBCONTRACTING USE ONLY         Unable Kessanch Justate       With The State       WT # \$\$900       The State       FOR SUBCONTRACTING USE ONLY         Water All       Skidge       All       WT # \$\$900       The State       FOR SUBCONTRACTING USE ONLY         Water All       Justate       All       WT # \$\$900       The State       FOR SUBCONTRACTING USE ONLY         Water All       Water All       WT # \$\$900       WT # \$\$900       FROM CHAIN OF         Water All       Water All       WT # \$\$900       For subcontracting user       For subcontracting user         MAN HTTORO /       TX 78228       Pote       Time       Itema/Reason       Relinquished By       Date       Received By       Dete       Time         Water Still water       Water All       Water All       Water All       Water All       Water       Water       Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                  |                           | ┨╌╌╼┥    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                       | - 14        | mp. 18                   | 7                                              |                  | <u> </u>     | 1          |
| Interiment       PW-       Potable Water       S-       Soil       ALL metals (elements) samples         Drum Solids       GW-       Gröundwater       W.       Weter       ALL metals (elements) samples         Drum Solids       GW-       Gröundwater       W.       Weter       Collected using mcE filter         Other       Skidge       All       Woter       All       WT # \$\$900       FOR SUBCONTRACTING USE ONLY         Unable Kessanch Justate       With The State       WT # \$\$900       The State       FOR SUBCONTRACTING USE ONLY         Water All       Skidge       All       WT # \$\$900       The State       FOR SUBCONTRACTING USE ONLY         Water All       Justate       All       WT # \$\$900       The State       FOR SUBCONTRACTING USE ONLY         Water All       Water All       WT # \$\$900       WT # \$\$900       FROM CHAIN OF         Water All       Water All       WT # \$\$900       For subcontracting user       For subcontracting user         MAN HTTORO /       TX 78228       Pote       Time       Itema/Reason       Relinquished By       Date       Received By       Dete       Time         Water Still water       Water All       Water All       Water All       Water All       Water       Water       Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | البيين مرابق المتقدين                    |                                                                                                                  |                           | ╎╧╍╼╍╢   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                       |             |                          | ¥                                              |                  | <del>/</del> | 13.0       |
| - Solution W. Possible Water S. Solin All metals ( elements) Samples<br>- Drum Solids GW. Groundwater W. Weler All metals ( elements) Samples<br>- Drum Liquids SW. Surface Water O. Di Collected using MCE Filter<br>- Other SL. Skrige All WT # \$9900<br>- Henrist Research Justitute<br>- With the second By Date Time Hama/Reason Relinquished By Date Time<br>- Management Reserved By Date Time Hama/Reason Relinquished By Date Time<br>- Management Reserved By Date Time Hama/Reason Relinquished By Date Time<br>- Management Reserved By Date Time Hama/Reason Relinquished By Date Time<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ulx:                                     |                                                                                                                  |                           | الم      | Spec                                     | al Instructions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 | L                     |             |                          | A                                              | ┉┉┶╲╤┉           |              | 1          |
| 1220 Webra Rd<br>MANITORIO, TX 78228<br>Larra/Reason Relinquished By Date Received By Date Received By Date Time<br>Whatyshi with 121199 Detham 121199 05:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                                                                                  | -                         |          | Soil ALL                                 | metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (element        | s) sam          | ples                  |             |                          |                                                |                  |              | <b>1</b> . |
| 1220 Webra Rd<br>MANITORIO, TX 78228<br>Larra/Reason Relinquished By Date Received By Date Received By Date Time<br>Whatyshi with 121199 Detham 121199 05:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Oni                                    | m Liquidis 🐪 💦 Sj                                                                                                | N = 🔬 Surface Water       | 0-       |                                          | lected 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wing mo         | e filt          | u F0                  | R SUI       | BCONTR                   | ACTING                                         | USE              | ONLY         |            |
| 1220 Webra Rd<br>MANITORIO, TX 78228<br>Larra/Reason Relinquished By Date Received By Date Received By Date Time<br>Whatyshi with 121199 Detham 121199 05:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · 00                                     | er Si                                                                                                            | L Sludge                  | C.       | ون الشب                                  | r # 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 900             |                 | FR                    | OM C        | HAIN OF                  |                                                | ·                | • • • • •    | ] 🗄        |
| MANTONIO, TX 78228<br>Isms/Resson Relinquished By Date Received By Date Time Items/Reason Relinquished By Date Received By Date Time<br>ILI naly Sil Luffer 12/1/29 ADMan 12/1/59 02:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 770                                      | ( ulelna                                                                                                         | you Justa                 | K        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | · ·             | CU                    |             |                          | · · ·                                          |                  | •            | l ·        |
| Isinguished By     Date     Received By     Date     Time       Isinguished By     Date     Received By     Date     Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Au                                       | to in T                                                                                                          | X 7877X                   | •        | ·                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | · ·                   |             |                          | <del></del>                                    | <u>.</u>         |              | J          |
| tunctysis upper 14/18 portround 12/11 59 05:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                  |                           |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                       | در میک      | 1                        |                                                |                  | ·<br>·       | 1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and a surger start of the                |                                                                                                                  |                           |          |                                          | and the second sec | Remarked on     | ruttindu        | neneg By              | Uate .      | Recei                    | Ved By                                         | Dete             | Time         | 1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kinal                                    | sil auto                                                                                                         | K. 14/98                  | pp/ka/   | mp later                                 | 9 17.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                 | <u> </u>              |             | - <u> </u>               |                                                | <u> </u>         | <b></b>      | 1.         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                  | 4                         | ,<br>    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                       | <del></del> | ╉╧╧╤╧                    |                                                |                  | <b></b>      | 12         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | <u>`</u> ``                                                                                                      |                           |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                       |             | - <b> </b>               |                                                |                  | <b> </b>     | 1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                  |                           |          |                                          | ╧┽╼╼╋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |                       |             | +                        |                                                |                  | + -          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MF4                                      | and the second |                           |          |                                          | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 | •                     |             | ·· `•                    |                                                |                  |              |            |

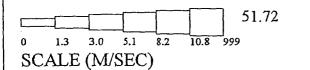
#### APPENDIX C SBC COM Clearances for GB, GD, VX, and HD Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

#### c:\MyFiles\R1a00110\OFIELD1\tr1299.110

| From:       | Smith Sandra D SBCCOM                                                              | <pre><sandra.smith@sbccom.apgea.army.mil></sandra.smith@sbccom.apgea.army.mil></pre> |
|-------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| To:         | Alfreda Dean <alfreda.< td=""><td>dean@SBCCOM.APGEA.ARMY.MIL&gt;,</td></alfreda.<> | dean@SBCCOM.APGEA.ARMY.MIL>,                                                         |
| Date:       | 12/8/99 4:57pm                                                                     |                                                                                      |
| Subject:    | EPA Clearances                                                                     | · · · · · · · · · · · · · · · · · · ·                                                |
|             | . •                                                                                |                                                                                      |
| POC: DuBois | 732-494-4013                                                                       | O-FLD                                                                                |
| Item#       | GVH BKGD                                                                           | taken 12/06/99                                                                       |
| UW-1        | 9912060122-M01                                                                     | Clear for GB, GD, VX, HD                                                             |
| UW-2        | 9912060123-M01                                                                     | Clear for GB, GD, VX, HD                                                             |

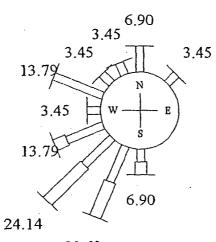
| 0-1  | 9912060124-M01 | Clear for GB, GD, VX, HD |
|------|----------------|--------------------------|
| 0-2  | 9912060125-M01 | Clear for GB, GD, VX, HD |
| 0-3  | 9912060126-M01 | Clear for GB, GD, VX, HD |
| 0-4  | 9912060127-M01 | Clear for GB, GD, VX, HD |
| .0-5 | 9912060128-M01 | Clear for GB, GD, VX, HD |


Sandra D. Smith (Sam)


#### APPENDIX D Windroses

Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\OFIELD1\tr1299.110


Aberdeen Proving Grounds Test Burn Wind Rose Generated From H-Field Meteorological Data 12/3/99 14:00 - 21:00





|   | w   | IND SPEE | ED (M/SEC | ) PERCI | ENT OCC | URRENCE  | WIND SPEED (M/SEC) PERCENT OCCURRENCE |   |     |       |         |         |         |          |       |
|---|-----|----------|-----------|---------|---------|----------|---------------------------------------|---|-----|-------|---------|---------|---------|----------|-------|
|   |     | 0-1.3    | 1.3-3.0   | 3.0-5.1 | 5.1-8.2 | 8.2-10.8 | >10.8                                 | 1 |     | 0-1.3 | 1.3-3.0 | 3.0-5.1 | 5.1-8.2 | 8.2-10.8 | >10.8 |
|   | N   | 0.00     | 0.00      | 0.00    | 0.00    | 0.00     | 0.00                                  |   | S   | 3.45  | 6.90    | 0.00    | 0.00    | 0.00     | 0.00  |
|   | NNE | 0.00     | 0.00      | 0.00    | 0.00    | 0.00     | 0.00                                  |   | SSW | 6.90  | 37.93   | 6.90    | 0.00    | 0.00     | 0.00  |
| 1 | NE  | 0.00     | 0.00      | 0.00    | 0.00    | 0.00     | 0.00                                  |   | sw  | 20.69 | 0.00    | Ò.00    | 0.00    | 0.00     | 0.00  |
|   | ENE | 0.00     | 0.00      | 0.00    | 0.00    | 0.00     | 0.00                                  |   | wsw | 6.90  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |
|   | E   | 0.00     | 0.00      | 0.00    | 0.00    | 0.00     | 0.00                                  |   | w   | 10.34 | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |
| , | ESE | 0.00     | 0.00      | 0.00    | 0.00    | 0.00     | 0.00                                  |   | WNW | 0.00  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |
|   | SE  | 0.00     | 0.00      | 0.00    | 0.00    | 0.00     | 0.00                                  |   | NW  | 0.00  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |
|   | SSE | 0.00     | 0.00      | 0.00    | 0.00    | 0.00     | 0.00                                  |   | NNW | 0.00  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |
|   |     |          |           |         |         |          |                                       | L |     |       |         |         |         |          |       |

### Aberdeen Proving Grounds Test Burn Wind Rose Generated From Poverty Island Meteorological Data 12/3/99 14:00 - 21:00



20.69

| 0  | 1.3 | 3.0   | 5.1  | 8.2 | 10.8 999 |  |
|----|-----|-------|------|-----|----------|--|
| SC | ALE | C (M/ | 'SEC | 5)  |          |  |

|   |                                       |       |         |         |         |          |       |          |     | i                                     |          |         |         |          |       |  |  |
|---|---------------------------------------|-------|---------|---------|---------|----------|-------|----------|-----|---------------------------------------|----------|---------|---------|----------|-------|--|--|
| 1 | WIND SPEED (M/SEC) PERCENT OCCURRENCE |       |         |         |         |          |       |          |     | WIND SPEED (M/SEC) PERCENT OCCURRENCE |          |         |         |          |       |  |  |
| 1 |                                       | 0-1.3 | 1.3-3.0 | 3.0-5.1 | 5.1-8.2 | 8.2-10.8 | >10.8 | 1        |     | 0-1.3                                 | 1.3-3.0  | 3.0-5.1 | 5.1-8.2 | 8.2-10.8 | >10.8 |  |  |
|   | N                                     | 6.90  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |          | S   | 3.45                                  | 3.45     | 0.00    | 0.00    | 0.00     | 0.00  |  |  |
|   | NNE                                   | 0.00  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |          | SSW | 10.34                                 | 10.34    | 0.00    | 0.00    | 0.00     | 0.00  |  |  |
|   | NE                                    | 3.45  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |          | sw  | 10.34                                 | 13.79    | 0.00    | 0.00    | 0.00     | 0.00  |  |  |
|   | ENE                                   | 0.00  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |          | wsw | 10.34                                 | 3.45     | 0.00    | 0.00    | 0.00     | 0.00  |  |  |
|   | Е                                     | 0.00  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |          | w   | 3.45                                  | 0.00     | 0.00    | 0.00    | 0.00     | 0.00  |  |  |
|   | ESE                                   | 0.00  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |          | WNW | 13.79                                 | 0.00     | 0.00    | 0.00    | 0.00     | 0.00  |  |  |
|   | SE                                    | 0.00  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |          | NW  | 3.45                                  | 0.00     | 0.00    | 0.00    | 0.00     | 0.00  |  |  |
|   | SSE                                   | 0.00  | 0.00    | 0.00    | 0.00    | 0.00     | 0.00  |          | NNW | 3.45                                  | 0.00     | 0.00    | 0.00    | 0.00     | 0.00  |  |  |
| L |                                       |       |         |         |         |          |       | <u> </u> |     |                                       | <b>.</b> |         |         |          |       |  |  |

### **APPENDIX A-2**

## O-FIELD TRIP REPORT – BURN 2 (JULY 2000)

Lockheed Martin Technology Services Group onmental Services REAC Woodbridge Avenue, Building 209 Annea Edison, NJ 08837-3679 (ephone 732-321-4200 Facsimile 732-494-4621

DATE: July 5, 2000

TO: David Mickunas. U.S. EPA/ERTC Work Assignment Manager

THROUGH: Jeff Bradstreet, REAC Air Group Leader

FROM: Amy DuBois. REAC Task Leader In St

SUBJECT: AIR MONITORING AND SAMPLING AT THE AIR MONITORING SAMPLING, ANALYSIS, AND MODELING SUPPORT, AND UNDERWATER SURVEY ACTIVITIES SITE, ABERDEEN PROVING GROUND. ABERDEEN, MD. WORK ASSIGNMENT #0-110 - TRIP REPORT -0-FIELD - BURN 2

#### BACKGROUND

The United States Environmental Protection Agency/Environmental Response Team Center (U.S. EPA/ERTC) issued Work Assignment Number 0-110 to Lockheed Martin under the Response. Engineering, and Analytical Contract (REAC) to provide air monitoring and air sampling during two controlled burns in the Edgewood Area of Aberdeen Proving Ground (APG). One burn was to be conducted at O-Field and one at J-Field. After problems igniting the marsh area during the O-Field burn, a second controlled burn was scheduled at O-Field.

Ordnance firing. ongoing test activities, and lightning strikes occasionally cause accidental fires in the test range areas at APG. Because of APG's long history of weapons testing and disposal practices, there is concern that contaminants have accumulated in the surface scals and vegetation at these locations and could be transported in the smoke plumes produced by such fires, posing a health risk to exposed individuals on and off the installation.

The scope of work for this work assignment included air sampling for dioxins, metals, polynuclear aromatic hydrocarbons (PAHs), inorganic acids, volatile organic compounds (VOCs) and chemical warfare agents (CWAs). Particulate monitoring was conducted utilizing an MIE DataRAM at each location.

#### OBSERVATIONS AND ACTIVITIES

REAC personnel mobilized to APG on December 17, 1999. Air sampling and monitoring were conducted at 5 downwind and 2 upwind locations (Figure 1).

VOC sampling and analysis was conducted following EPA Method TO-14A: Determination of Volatile Organic Compounds in Ambient Air Usung SUMMA Passivated Canister Sampling and Gas Chromatographic Mass Spectrometric (GCMS) Analysis. A sampling orifice was connected to each SUMMA canister to control the flow at 15 cubic centimeters per minute (cc/min). A solenoid valve was then connected to the SUMMA orifice. A battery operated timer was attached to each solenoid valve to trigger the solenoid at the anticipated start time for the burn.

PAH sampling and analysis was conducted following National Institute for Occupational Safety and Health (NIOSH) Method # 5515: *Polynuclear Aromatic Hydrocarbons*. Samples were collected utilizing a personal sampling pump

c:\MyFiles\R1a00110\OFIELD1 = 1299.110

(SKC) to draw a measured volume of air (2 Liters per minute (L/min)) through a sampling train containing a teflon prefilter cassette and an XAD-2 sorbent tube. The pumps were programmed for a delayed start with a 4-hour sampling period.

Sampling and analysis for inorganic acids was conducted following NIOSH Method # 7903: Acids, Inorganic. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (250 cc/min) through a sampling train containing a silica gel sorbent tube. The pumps were programmed for a delayed start with a 4-hour sampling period.

Sampling and analysis for dioxins was conducted following modified U.S. EPA Method TO9A, Determination of Polychlorinated, Polybrominated and Brominated/Chlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a polyurethane foam (PUF) plug and quartz filter. The pumps were programmed for a delayed start with a 4-hour sampling period. PUF glassware, plugs, and quartz filters were cleaned and certified by Southwest Research Institute in San Antonio, Texas prior to use.

Sampling and analysis for metals was conducted following modified NIOSH Method #7300: *Elements (ICP)*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a mixed cellulose ester filter cassette. The pumps were programmed for a delayed start with a 4-hour sampling period.

Samples were collected for CWAs utilizing a personal sampling pump (SKC) to draw a measured volume of air (100 cc/min) through a sampling train containing two Depot Area Air Monitoring System (DAAMS) sorbent tubes in a dual-sampling manifold. The pumps were programmed for a delayed start with a 4-hour sampling period. Tubes and analysis were provided by Soldiers Biological and Chemical Command (SBC COM).

Air monitoring for total particulates was performed utilizing an MIE DataRAM portable real-time aerosol monitor. Concentration data was logged every 10 seconds for the duration of the burn.

APG personnel positioned bridge sanctions at three downwind locations in Watsons Creek, prior to REAC's mobilization to the site. The two other downwind locations were positioned in trees along the edge of the marsh. REAC personnel set the samplers on the bridge sanctions and hoisted them into the trees with all timers set for a delayed start at 1345. When all personnel were out of the area, the APG Fire Department initiated the burn. In an attempt to propagate the burn through the marsh, approximately 8 to 10 gallons of kerosene were sprayed on the marsh vegetation. The fire still did not spread through the marsh and burned itself out after approximately 30 minutes.

#### RESULTS

Due to the short duration of the burn the decision was made between APG's Directorate of Safety, Health, and the Environment (DSHE) and the U.S. EPA/ERTC not to analyze the samples.

#### FUTURE ACTIVITIES

There are no future sampling activities planned for O-Field at this time.

#### c:\MyFiles\R1a00110\OFIELD1 \tr1299.110

• 0~1 0-2 **⊕** 0-3 **a** 0-4  $\sim$ ŝ **a** 0-5 Ö n 0 Ó WATSONS CREEK WATSON 0 18 CONTROLLED BURN AREA ັນ¶2 2 trw LEGEND FIGURE 1 SAMPLING LOCATIONS O-FIELD CONTROLLED BURN ARI AIR MONTTORING, SAMPLING, ANALYSIS, AND Unment Road Casto Wetland Semois Loceth ---- Ferre MODELING SUPPORT, AND UNDERWATER Prop ed Control Burn Are SURVEY ACTIVITIES U.S. EPA ENTRONMENTAL RESPONSE TEAM CENTER RESPORT DEGISERING AND ANALYTICAL CONTRACT 44-C99-223 Val Readild ABERDEEN, MARYLAND JUNE 2000

## **APPENDIX A-3**

## J-FIELD TRIP REPORT (JULY 2000)

ş

Lockheed Martin Technology Services Group

**Fnvironmental Services REAC** 

Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679 .-phone 732-321-4200 Facsimile 732-494-4021

J-FIELD

| DATE:    | July 5, 2000                                                                                                                                                                                                           |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TO:      | David Mickunas, U.S. EPA/ERTC Work Assignment Manager                                                                                                                                                                  |
| THROUGH: | Jeff Bradstreet. REAC Air Group Leader                                                                                                                                                                                 |
| FROM:    | Amy DuBois. REAC Task Leader . Turk                                                                                                                                                                                    |
| SUBJECT: | AIR MONITORING AND SAMPLING AT THE AIR MONITORING SAMPLING, ANALYSIS,<br>AND MODELING SUPPORT, AND UNDERWATER SURVEY ACTIVITIES SITE, ABERDEEN<br>PROVING GROUND. ABERDEEN. MD. WORK ASSIGNMENT #0-110 - TRIP REPORT - |

#### BACKGROUND

The United States Environmental Protection Agency/Environmental Response Team Center (U.S. EPA/ERTC) issued Work Assignment Number 0-110 to Lockheed Martin under the Response, Engineering, and Analytical Contract (REAC) to provide air monitoring and air sampling during two controlled burns in the Edgewood Area of Aberdeen Proving Ground (APG). One burn was to be conducted at O-Field and one at J-Field.

Ordnance firing, ongoing test activities, and lightning strikes occasionally cause accidental fires in the test range areas at APG. Because of APG's long history of weapons testing and disposal practices, there is concern that contaminants have accumulated in the surface soils and vegetation at these locations and could be transported in the smoke plumes produced by such fires, posing a health risk to exposed individuals on and off the installation.

The scope of work for this work assignment included air sampling for dioxins, metals, polynuclear aromatic hydrocarbons (PAHs), inorganic acids, volatile organic compounds (VOCs) and chemical warfare agents (CWAs). Particulate monitoring was conducted utilizing an MIE DataRAM at five locations.

#### OBSERVATIONS AND ACTIVITIES

REAC personnel mobilized to APG on April 6. 2000. Air sampling and monitoring was conducted at 5 downwind and 2 upwind locations (see Figure 1).

VOC sampling and analysis was conducted following EPA Method TO-14A: Determination of Volatile Organic Compounds in Ambient Air Using SUMMA Passivated Canister Sampling and Gas Chromatographic Mass Spectrometric (GCMS) Analysis. A sampling orifice was connected to each SUMMA canister to control the flow at 15 cubic centimeters per minute cc/min). A solenoid valve was then connected to the SUMMA orifice. A battery operated timer was attached to each solenoid valve to trigger the solenoid at the anticipated start time for the burn.

PAH sampling and analysis was conducted following National Institute for Occupational Safety and Health (NIOSH) Method # 5515: *Polynuclear Arc matic Hydrocarbons*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (2 Liters per minute (L/min)) through a sampling train containing a teflon

c:\MyFiles\R1a00110\JFIELD tr-j0400.110

prefilter cassette and an XAD-2 sorbent tube. The pumps were programmed for a delayed start with a 3-hour sampling period.

Sampling and analysis for inorganic acids was conducted following NIOSH Method # 7903: Acids, Inorganic. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (250 cc/min) through a sampling train containing a silica gel sorbent tube. The pumps were programmed for a delayed start with a 3-hour sampling period.

Sampling and analysis for dioxins was conducted following modified U.S. EPA Method TO9A. *Determination of Polychlorinated, PolybrominateC and Brominated/Chlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air.* Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a polyurethane foam (PUF) plug and quartz filter. The pumps were programmed for a delayed start with a 3-hour sampling period. PUF glassware, plugs, and quartz filters were cleaned and certified by Southwest Research Institute in San Antonio. Texas prior to use.

Sampling and analysis for metals was conducted following modified NIOSH Method #7300: *Elements (ICP)*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a mixed cellulose ester filter cassette. The pumps were programmed for a delayed start with a 3-hour sampling period.

Samples were collected for CWAs utilizing a personal sampling pump (SKC) to draw a measured volume of air (100 cc/min) through a sampling train containing two Depot Area Air Monitoring System (DAAMS) sorbent tubes in a dual-sampling manifold. The CWAs analyzed for included: Sarin (GB), Soman (GD), Mustard (HD), and VX. The pumps were programmed for a delayed start with a 3-hour sampling period. Tubes and analysis were provided by Soldiers Biological and Chemical Command (SBC COM).

Air monitoring for total particulates was performed utilizing an MIE DataRAM portable real-time aerosol monitor. Concentration data was logged every 10 seconds for the duration of the burn. DataRAMs were positioned at locations DW1, DW2, DW3, DW4 and UW2.

The sampling devices were suspended 15 feet above the ground from trees and/or support poles, this positioned the samplers in the plume but out of the potential burn path of the fire. The collection of sampling devices was hoisted off the ground after setting the timers on the individual pumps and SUMMA canisters. The timers for the pumps controlled the start time and duration of the sampling period. The SUMIMA timers only controlled the start of the sampling period. When all personnel were out of the area, the APG Fire Department initiated the burn.

#### RESULTS

<u>VOCs</u>: A summary of VOCs sampling results can be found in Table 1. Benzene and toluene were the only compounds detected above their quantitation limit in any of the samples. Benzene was detected at locations DW3 and DW4, and toluene was detected at locations DW3 and DW5. For complete analytical results for VOCs, see the Analytical Report in Appendix A.

PAHs: No PAHs were detected above the method detection limit in any of the samples.

Inorganic Acids: A summary of inorganic acids sampling results can be found in Table 2. Hydrochloric acid (Hcl) was detected in samples DW1, DW3, DW5, and the Lot Blank. The detected Hcl concentration ranged from 0.0176 to 0.1230 parts per million by volume (ppmv). The Lot Blank contained 0.0031 milligrams (mg) Hcl. Hydrofluoric acid (HF) was detected in samples DW1 through DW5 at concentrations ranging from 0.0292 to 0.1030 ppmv. For complete analytical results for inorganic acids see the Analytical Report in Appendix B.

#### c:\MyFiles\R1a00110\JFIELD\tr-j0400.110

- <u>Dioxins/Furans</u>: A summary of dioxins/furans results can be found in Table 3. Dioxins/furans were detected at six of the seven sampling locations. The OCDD results for samples DW3, DW5, UW1, and UW2 should be considered not detected because the concentration in the sample was less than five times that detected in the trip blank. The total dioxins/furans detected at each location after adjusting the OCDD results are as follows: DW1(not detected), DW2(1.920 picograms per cubic meter (pg/m<sup>3</sup>)), DW3(not detected), DW4(1.003 pg/m<sup>3</sup>), DW5(0.126 pg/m<sup>3</sup>). UW1(not detected), UW2(not detected). Trip Blank(0.0122 pg), Field Blank(not detected), and Lot Blank(0.070 pg). For complete analytical results for dioxins/furans, see the Analytical Report in Appendix B.
- <u>Metals</u>: A summary of metals results are shown in Table 4. Aluminum was detected in samples DW1, DW2, DW3. DW5. UW1. and UW2 at concentrations ranging from 1.9 to 31.0 micrograms per cubic meter (µg/m<sup>3</sup>). Copper was detected at DW2 at 0.2 µg/m<sup>3</sup>. Lead was detected at DW2 at 0.3 µg/m<sup>3</sup>. Magnesium was detected at locations DW1, DW2. DW3, and UW2 at concentrations ranging from 2.0 to 30.0 µg/m<sup>3</sup>. Manganese was detected at locations DW2, DW3, and UW2 at concentrations ranging from 0.8 to 1.0 µg/m<sup>3</sup>. Phosphorous was detected at locations DW1, DW2, DW3, DW4, UW1, and UW2 at concentrations ranging from 0.8 to 2.2 µg/m<sup>3</sup>. Titanium was detected at locations UW1 and UW2 at 1.0 and 2.1 µg/m<sup>3</sup>, respectively. Sodium was detected in the method blank and should be regarded as not detected in all of the samples. Calcium. chromium, and zinc were detected in the lot blank and should be regarded as not detected in the rest of the samples because the concentrations DW3 and UW2 both had iron concentrations greater than 5 times the lot blank, iron should be regarded as not detected in the lot blank. Iron was also detected in the lot blank. Locations DW3 and UW2 both had iron concentrations greater than 5 times the lot blank, iron should be regarded as not detected in the trip blank. Location UW1 had a nickel concentration greater than 5 times the trip blank, nickel should be regarded as not detected in the rest of the samples. For complete analytical results for metals, see the Analytical Report in Appendix B.
- <u>CWAs</u>: No chemical warfare agents were detected in any of the samples. CWA results are provided by SBC COM, see Appendix C.
- Particulates: Particulates results are shown in Figures 2 through 5. The DataRAM at location UW2 did not log data. The overall maximum concentration of 407.574.9 micrograms per cubic meter (μg/m<sup>3</sup>) was detected at location DW2 at 17:16 =astern standard time.
- <u>Meteorological data</u>: Windroses representing local wind speed and wind direction during the burn period are provided in Appendix D. The data was collected at H-Field using a 10-meter tower, and at Poverty Island using a 5meter tower. Winds were predominantly out of the west northwest. Times shown are in eastern standard time.

Analysis for VOCs and PAHs were provided by REAC. Edison. NJ. Analysis for dioxins/furans, inorganic acids, and metals were provided by Southwest Research Institute. San Antonio, TX. Analysis for CWAs was provided by SBC COM, APG, MD.

#### FUTURE ACTIVITIES

There are no future sampling activities planned at this time.

#### c:\MyFiles\R1a00110\JFIELD tr-j0400.110

| Sample Number<br>Sample Location<br>concentration | 17747<br>trip blank<br>ppby | 17740<br>DW3<br>ppbv | 17741<br>DW2<br>ppbv | 17742<br>DW1<br>ppbv | 17743<br>DW4<br>ppbv | 17744<br>DW5<br>ppbv | 17744 Dup<br>DW5<br>ppby | 17745<br>UW1<br>ppby | 17746<br>UW2<br>ppbv |
|---------------------------------------------------|-----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|
| Chloromethane                                     | Ū                           | 2 J                  | 9 J                  | 2 J                  | 3 J                  | 1 1                  | 1 ]                      | U                    | 1 J                  |
| Benzene                                           | U                           | 7                    | U                    | 3 J                  | 5                    | 3 J                  | 3 J                      | U                    | U                    |
| Toluene                                           | U                           | 4                    | ບ                    | -1 J                 | 3 J                  | 6                    | 6                        | U                    | U                    |
| Ethylbenzene 🧳                                    | U                           | υ                    | U                    | U ·                  | ·U                   | 1 ]                  | 1 ]                      | U                    | U                    |
| ın & p-Xylenes                                    | U                           | 1 J                  | υ                    | U.                   | U                    | 4 1                  | 41                       | U                    | . U                  |
| o-Xylene                                          | U                           | U                    | U                    | U                    | U                    | 1 J ·                | 1 J                      | U                    | U                    |

Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Summary of VOCs Sampling Results - J-Field Controlled Burn - April 6, 2000

VOCs - Volatile organic compounds ppbv - parts per billion by volume

J - Below 1.00 nL Quantitation Limit

U - Not Detected

#### Table 1

| Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities |
|--------------------------------------------------------------------------------------------|
| Summary of Inorganic Acids Sampling Results - J-Field Controlled Burn - April 6, 2000      |

Table 2

| Sample Number              | 17734     | 17732              | 17733      | 17700  | 17701  | 17702  | 17703  | 17704  | 17705  | 17706  |
|----------------------------|-----------|--------------------|------------|--------|--------|--------|--------|--------|--------|--------|
| Sample Location            | Lot Blank | <b>Field Blank</b> | Trip Blank | DW3    | DW2    | DW1    | DW4    | DW5    | UW1    | UW2    |
| concentration              | mg        | mg                 | mg         | ppmv   |
| Hydrobromic Acid           | U         | U                  | U          | U      | U      | U      | υ      | υ      | υ      | U      |
| Hydrochloric Acid          | 0.0031    | U                  | U          | 0.1230 | U      | 0.0387 | ·U     | 0.0188 | U.     | 0.0176 |
| Hydrofluoric Acid          | U .       | U                  | -U         | 0.0724 | 0.1030 | 0.0292 | 0.0439 | 0.0389 | ប      | υ      |
| Nitric Acid                | U         | U                  | U U        | υ      | U      | Ū      | U      | U      | U      | U      |
| Phosphoric Acid            | U         | U                  | U          | Ú      | U      | U      | U      | U      | υ.     | υ      |
| Sulfuric Acid <sup>1</sup> | 0.0050    | UU                 | 0.0013     | 0.0225 | 0.0262 | 0.0182 | 0.0161 | 0.0404 | 0.0175 | 0.0217 |

mg - total milligrams

ppmv - parts per million by volume U - Not detected

<sup>1</sup> Due to the sulfuric acid concentration detected in the Trip Blank, the results for samples 17700 through 17706 are considered not detected.

| Sample Number                       | 17677                       | 17678              | 17679     | 17670  | 17671    | 17672      | 17673  | 17674  | 17675  | 17676    |
|-------------------------------------|-----------------------------|--------------------|-----------|--------|----------|------------|--------|--------|--------|----------|
| Sample Location                     | Trip Blank                  | Field Blank        | Lot Blank | DW3    | DW2      | DW1        | DW4    | DW5    | UW1    | UW2      |
| Adjusted concentration <sup>1</sup> | pg                          | pg                 | pg        | pg/m^3 | pg/m^3   | pg/m^3     | pg/m^3 | pg/m^3 | pg/m^3 | pg/m^3   |
| 2,3,7,8-TCDD                        | $\mathbf{U}^{\mathrm{res}}$ | U.                 | U         | U      | U        | U          | U      | U      | U      | U        |
| 1,2,3,7,8-PeCDD                     | · U.                        | U ·                | U         | U      | 1.88     | • <b>U</b> | U      | U      | U      | U        |
| 1,2,3,4,7,8-HxCDD                   | U                           | U                  | U         | U      | ັບ       | υ          | U      | U      | U      | U        |
| 1,2,3,6,7,8-HxCDD                   | U                           | U                  | U         | U      | U        | U          | 0.42   | U      | U      | ບ        |
| 1,2,3,7,8,9-HxCDD                   | U.                          | U                  | 0.066     | U      | U        | U          | U      | U      | U      | U        |
| 1,2,3,4,6,7,8-HpCDD                 | U                           | U                  | U         | U      | U        | U          | 0.277  | 0.126  | U      | U        |
| OCDD <sup>2</sup>                   | 0.0122                      | U                  | U         | 0.035  | U        | U          | 0.0738 | 0.094  | 0.033  | 0.03     |
| 2,3,7,8-TCDF                        | U -                         | U                  | U         | U      | U        | U          | U      | U      | U      | U        |
| 1,2,3,7,8-PeCDF                     | U                           | U                  | U         | U      | U        | U          | U      | U      | U      | U        |
| 2,3,4,7,8-PeCDF                     | · U                         | U                  | U         | U      | U        | U          | U.     | U      | U -    | U        |
| 1,2,3,4,7,8-HxCDF                   | U                           | U                  | U -       | U      | U        | U          | 0.232  | Ū.     | U      | U        |
| 1,2,3,6,7,8-HxCDF                   | U                           | U                  | U         | U      | U        | U          | U      | ' U    | U      | ບໍ່      |
| 1,2,3,7,8,9-HxCDF                   | U                           | U                  | · U       | U      | U        | U          | U      | U      | U      | U        |
| 2,3,4,6,7,8-HxCDF                   | υ                           | ບໍ່                | U         | U      | U        | U          | U      | U      | U      | υĮ       |
| 1,2,3,4,6,7,8-HpCDF                 | U                           | U                  | U         | U      | U        | U          | • U•   | U      | U      | U        |
| 1,2,3,4,7,8,9-HpCDF                 | U                           | U                  | U         | U U    | 0.0396   | U          | U      | U      | U      | Ų        |
| OCDF <sup>3</sup>                   | <u> </u>                    | <u>     U     </u> | 0.00442   | U      | <u> </u> | Ú          | U      | U      | U      | <u> </u> |
| Total                               | 0.0122                      | บ                  | 0.07042   | 0.035  | 1.9196   | <u> </u>   | 1.0028 | 0.22   | 0.033  | 0.03     |

Table 3Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey ActivitiesSummary of Dioxins/Furans Sampling Results - J-Field Controlled Burn - April 6, 2000

pg - pleograms

pg/m^3 - picograms per cubic meter

<sup>1</sup> Adjusted concentration - detected concentration multiplied by the toxicity equivalency factor (TEF) for each compound.

<sup>2</sup> The OCDD results for samples 17670, 17674, 17675, and 17676 are considered not detected because the concentration in the sample was less than five times that found in the trip blank.

<sup>3</sup> The OCDF result for sample 17679 is considered estimated because the method blank contained 13 pg OCDF.

| Sample Number         | 17687              | 17688             | 17689     | 17680  | 17681  | 17682  | 17683  | 17684  | 17685  | 17686  |
|-----------------------|--------------------|-------------------|-----------|--------|--------|--------|--------|--------|--------|--------|
| Sample Location       | <b>Field Blank</b> | <b>Trip Blank</b> | Lot Blank | DW3    | DW2    | DW1    | DW4    | DW5    | UW1    | UW2 ·  |
| concentration         | ug/filter          | ug/filter         | ug/filter | ug/m^3 |
| Aluminum              | U                  | U                 | Ū         | 3.8    | 4.0    | 1.9    | U      | 1.9    | 4.0    | 31.0   |
| Calcium <sup>2</sup>  | 6.6                | 7.6               | 6.2       | 34.0   | 40.0   | 15.0   | 11.0   | 13.0   | 16.0   | 22.0   |
| Chromium <sup>2</sup> | 0.6                | 0.9               | 0.5       | 1.0    | 1.1    | 1.0    | 1.1    | 1.0    | 1.1    | 1.2    |
| Copper                | Ú.                 | U                 | U         | U      | 0.2    | υ      | U      | U      | U      | U      |
| lron <sup>3</sup>     | 4.0                | 2.7               | 1.6       | 25.0   | 9.2    | 3.6    | 2.6    | 2.0    | 5.7    | 58.0   |
| Lead                  | υ                  | U                 | Ū U       | U      | 0,3    | U.     | Ū      | U      | U      | υ      |
| Magnesium             | U                  | U.                | U         | 4.2    | 5.6    | 2.0    | U      | υ      | U      | 30.0   |
| Manganese             | U                  | Ū ·               | U         | 1.0    | 1.0    | U      | υ      | U      | U      | 0.8    |
| Nickel <sup>4</sup>   | 0.4                | 0.2               | υ         | U      | 0.8    | U      | 0.4    | U      | 6,9    | 0.6    |
| Phosphorous           | U                  | υ                 | U         | 1.3    | 2.2    | 1.3    | 0.8    | U      | 1.0    | 2.1    |
| Sodium <sup>1</sup>   | 9.8                | 9.0 <sup>-</sup>  | 7.3       | 17.0   | 18.0   | 17.0   | 16.0   | 11.0   | 14.0   | 18.0   |
| Titanium              | U                  | U                 | U         | U      | U      | υ      | υ      | ບໍ່    | 0.6    | 0.7    |
| Zinc <sup>2</sup>     | 2.1                | 2.4               | 1.1       | 3.4    | 2.0    | 0.9    | 1.1    | 0.8    | 1.7    | 1.2    |

 Table 4

 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

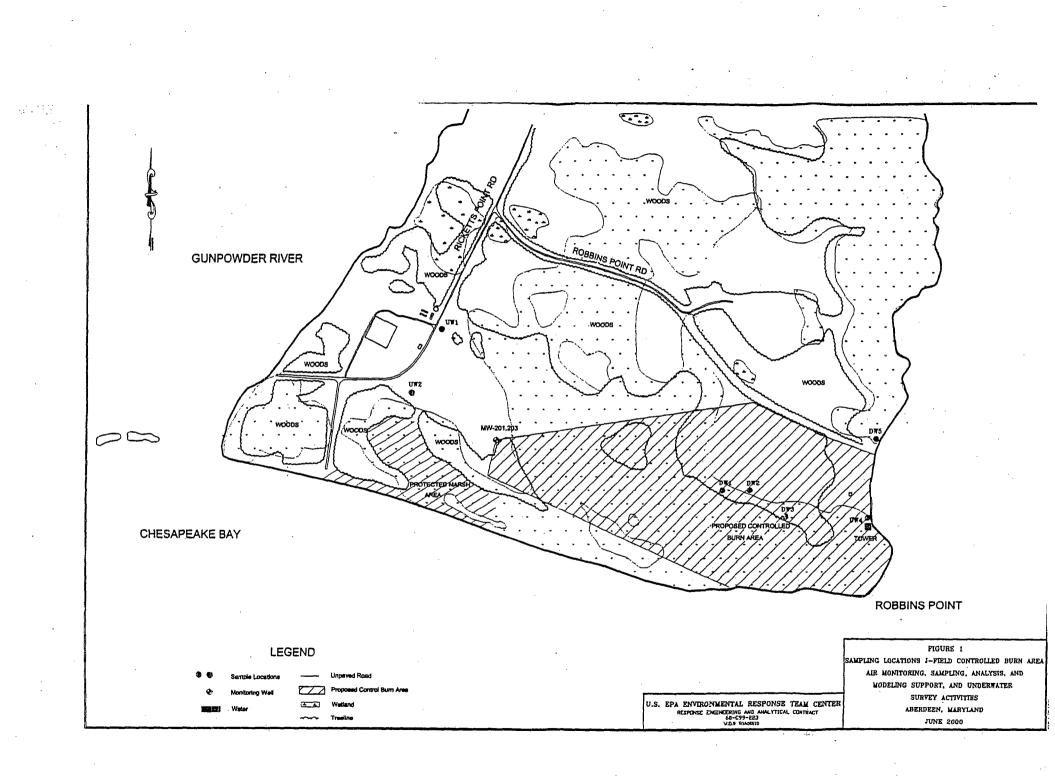
 Summary of Metals Sampling Results - J-Field Controlled Burn - April 6, 2000

ug/filter - micrograms per filter

ug/m^3 - micrograms per cubic meter

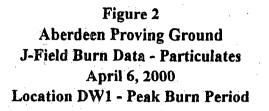
U - not detected

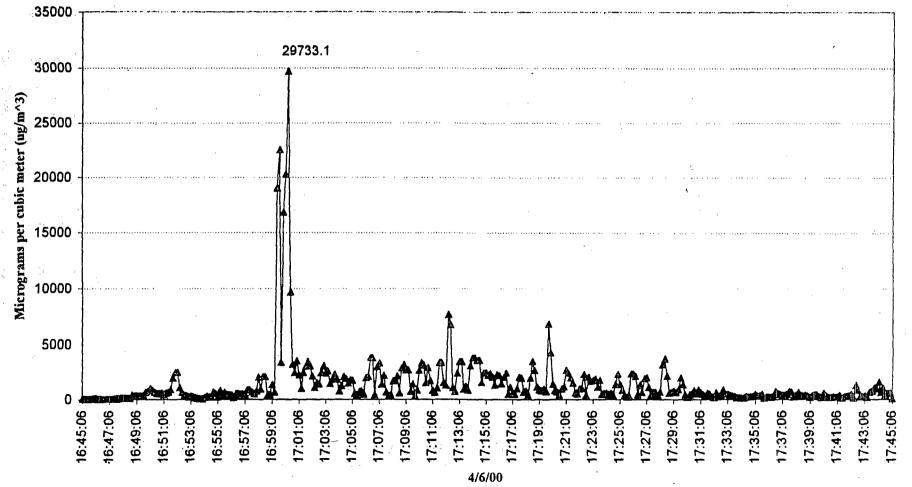
<sup>1</sup> The method blank contained 11.81 ug/filter sodium, the sodium results for all samples should be considered not detected.


<sup>2</sup> The Calcium, Chromium and Zine results for samples 17680 through 17688 are considered not detected because the concentration in the sample is less than 5 times that of the lot blank.

<sup>3</sup> The Iron results for samples 17681 through 17685, 17687 and 17688 are considered not detected because the concentration in the sample is less than 5 times that of the lot blank.

<sup>4</sup> The Nickel results for samples 17681, 17683, 17686, and 17687 are considered not detected because the concentration in the sample is less than 5 times that of the trip blank.


1.


£



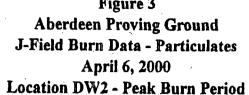
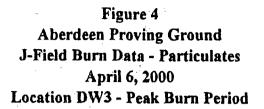
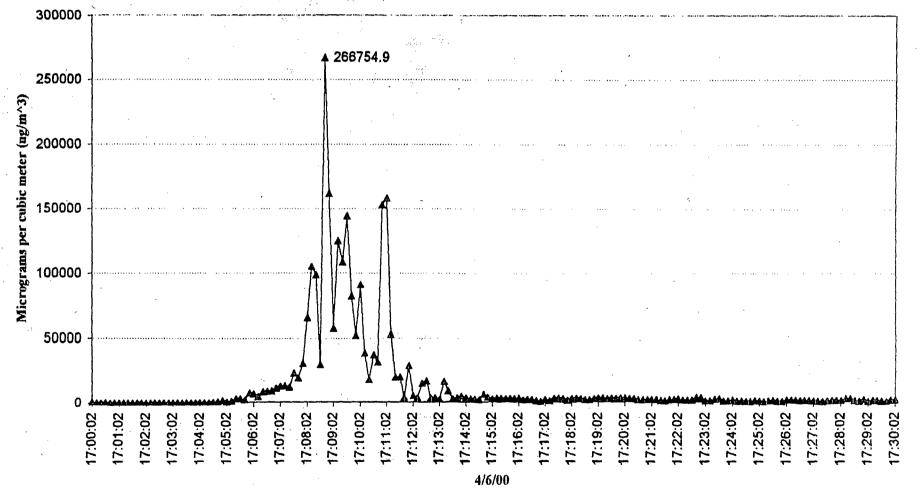
,

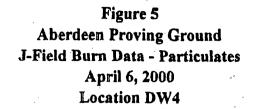
.

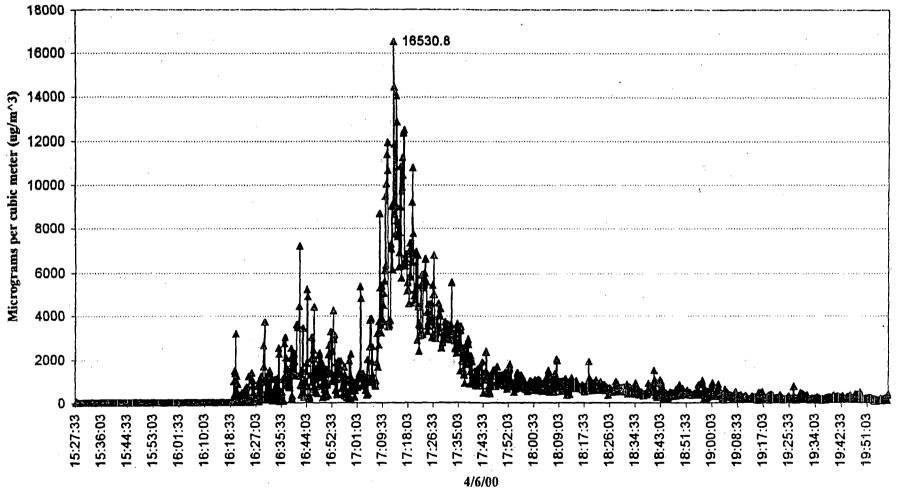




Time e.s.t.



Figure 3





Time e.s.t.





Time e.s.t.

.

### APPENDIX A

Analytical Report (VOCs) Air Monitoring. Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

#### c:\MyFiles\R1a00110\JFIELD tr-j0400.110

1

#### ANALYTICAL REPORT

Prepared by Lockheed Martin Technology Services Group

#### Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities Aberdeen Proving Ground, Aberdeen, MD

#### May 2000

EPA Work Assignment No. 0-110 Lockheed Martin Work Order No. R1A00110 EPA Contract No. 68-C99-223

> Submitted to David Mickunas EPA-ERTC

ubois Leader T

Dennis Miller \ Analytical Section Leader

Steven Clapp Program Manager

Date

REAC

Analysis by:

Prepared by: Mark Bernick JungSug Jang Gerald Ball

Reviewed by:

Vinod Kansal Deborah Killeen

#### TABLE OF CONTENTS

#### <u>Topic</u>

#### **1.0 INTRODUCTION**

2.0 GC/MS CANISTER PROCEDURES

2.1 Sample Pressurization

2.2 Summa Canister Analysis

2.3 Calibration and Sample Spiking

2.4 Compound Identification Quantitation

2.5 QA/QC

#### 3.0 RESULTS

#### 4.0 DATA ASSESSMENT

#### LIST OF TABLES

| Table 1 - GC/MS Instrument Conditions                                      | 4  |
|----------------------------------------------------------------------------|----|
| Table 2 - Air Toxic Standards (Concentrations and Quantitation Ions)       | 5  |
| Table 3 - Air Toxic Target Compound Results for Summa Canister Samples     | 6  |
| Table 4 - Air Toxic Non-target Compound Results for Summa Canister Samples | 9  |
| Table 5 - Air Toxic MS/MSD Recovery Summary for Summa Canister Samples     | 20 |

#### APPENDIX A - CHAIN-OF-CUSTODY

APPENDIX B - SUMMA CANISTER DATA

(J164)

Page Number

1

1

1

1

1

2

2

3

3

21

23

#### 1.0 INTRODUCTION

Summa canister samples were collected in support of the Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities work assignment at the Aberdeen Proving Ground, Aberdeen, MD on 06 April 2000. A total of seven (7) samples and a field blank were collected in 6-liter passivated Summa canisters. The samples were transported back to the Environmental Response Team Center (ERTC) facility in Edison, New Jersey. These samples were analyzed by the Response Engineering and Analytical Contract (REAC) using gas chromatography/mass spectrometry (GC/MS) on 10 and 11 April 2000.

#### 2.0 GC/MS CANISTER PROCEDURES

#### 2.1 Sample Pressurization

The Summa canisters used for sampling were cleaned by REAC using REAC Standard Operating Procedure (SOP) #1703 and were selected from clean batches certified by REAC. Before analysis, all canisters were pressurized. A pressurizing train was setup with a pressure gauge accurate to  $\pm 0.1$  pounds per square inch absolute (psia). The gauge and train were purged with nitrogen gas (Ultra High Pure grade) for 5 minutes. The train was then connected to the canister, an initial reading was taken. Nitrogen was added to all canister samples as followed:

|               |                 | Initial         | <u>Final</u>    |
|---------------|-----------------|-----------------|-----------------|
| <u>Sample</u> | <b>Location</b> | Pressure (psia) | Pressure (psia) |
| 17740         | DW3             | 14.8            | 29.6            |
| 17741 ·       | DW2             | 2.0             | 16.0            |
| 17742         | DWI             | 15.2            | 30.4            |
| 17743         | DW4             | 8.8             | 17.6            |
| 17744         | DW5             | 14.0            | 28.0            |
| 17745         | UWI             | 8.4             | 16.8            |
| 17746         | UW2             | 8.4             | 16.8            |
| 17747         | Trip/Field      | 0.3             | 20.0            |
|               |                 |                 |                 |

#### 2.2 <u>Summa Canister Analysis</u>

Samples were analyzed by cryogenic trapping of aliquots from Summa canisters via a canister using a Hewlett-Packard 5890 gas chromatography (GC) and 5971A mass selective detector (MSD) running ChemStation software. Table 1 lists cryogenic trap and GC/MS conditions.

All canisters were attached to the Summa canister autosampler. Sample analysis began by cooling the first cryotrap, module -1 (M-1), to -160 degree Celsius (°C). Once M-1 was cooled, a specified aliquot of sample or standard was cryotrapped. This aliquot was transferred to a Tenax trap, M-2, to eliminate most of the water, and then cryofocussed at a third trap, M-3, before injection by direct heating.

#### 2.3 Calibration and Sample Spiking

Standard mixture containing twenty-five (25) compounds was provided in compressed gas cylinder No ALM009519 by Scott Specialty Gases, Inc. These standard concentrations are .97 to 1.05 parts per million in volume (ppmv) and are listed in Table 2. The standards were diluted to a nominal concentration of 20 parts per billion (ppbv) in a Silco canister. An initial calibration range was obtained by varying the volume of the nominal 20 ppbv standard from 50 to 1250 milliliters (mL), equivalent to 1 nanoliter (nL) to 25 nL. Daily standards were obtained by analyzing the 20 ppbv standard at 500 mL (equivalent to 10 nL).

Bromochloromethane (BCM) and p-bromofluorobenzene (BFB) were added to both samples and standards. Both standards were provided in compressed gas cylinder No. ALM046281 by Scott Specialty Gases. These standard concentrations were 1.06 ppmv. BCM was used as an internal standard and BFB was used as a surrogate standard. This standard was diluted from a nominal concentration of 1 ppmv to 100 ppbv in a Silco canister. An aliquot of 100 mL (equivalent to 10 nL) was added to all standards and samples. To validate the mass spectrometer tuning, an aliquot of 70 mL (equivalent to 50 nanograms of BFB) was analyzed alone. Standard cylinder I.D. numbers, concentrations, and their quantitation ions are listed in Table 2.

#### 2.4 <u>Compound Identification/Quantitation</u>

Target Compounds in samples were identified and quantitated using ChemStation software. This software was used to tentatively identify and quantitate target compounds using reconstructed and extracted ion chromatogram which were matched with retention time windows. The report format includes the identified compound mass spectra (both raw and background subtracted), quantitation, and qualifier ion chromatogram.

Target compound results are originally reported in nL. The limit of quantitation (LOQ) for all the target compounds is estimated to be 1 nL, being the lowest volume of standard on the calibration curve. Any target compound detected at 4 times lower than the LOQ is not reported. The target compound results are calculated in ppbv using the following equation:

Concentration(ppbv) =  $\frac{Quant Result(nL) \times 1000}{Undiluted Sample Volume(mL)}$ 

Non-target compounds were identified by a library search of all peaks in a chromatogram. The library search report prints out the sample spectrum along with the ten best library matches and the three best library match spectra. These matches were used along with mass spectral interpretation techniques to tentatively identify the unknowns. Concentrations were calculated based on the total ion response of bromochloromethane in the daily standard. All compounds appearing in the method blank as well as other background compounds commonly found in Summa canister GC/MS analyses (siloxanes, carbon dioxide, etc.) were deleted from the sample results to provide a true listing of the compounds in the samples.

#### 2.5 <u>QA/QC</u>

The following QA/QC procedures were performed for this analysis:

- The HP 5971A was tuned daily for perfluorotributylamine (PFTBA) to meet abundance criteria for p-bromofluorobenzene as listed in EPA Method 624. Tuning results are included in the QA/QC data section (Appendix B). The tune was adjusted when necessary.
- An initial calibration by automated injection from a Silco canister standard at 20 ppbv was performed on 24 March 2000. All compounds met the acceptance criteria of having relative standard deviations (RSD) of less than 25%.
- Continuing calibrations were performed on 10 and 11 April 2000 to satisfy the 12 hour requirement. All compounds met the acceptance criteria of having relative percent difference (RPD) less than 25%, except chloroethane (43.8%) on 11 April 2000. This compound was not detected in the associated samples; the data are not affected.
- A surrogate standard of BFB was added to all standards and samples. Percent recoveries were calculated against the daily standards, and are listed in Table 3. Recoveries should be within 70% to 130% for BFB.

- Method blanks were analyzed after each continuing calibration to ensure that the system was clean.
- A replicate was analyzed on sample 17744 (DW5).
- A set of matrix spike and matrix spike duplicates (MS/MSD) was analyzed on sample 17746 (UW2) by spiking the samples with 500 mL of the 20 ppbv standard. There is no specific recovery range established according to SOP # 1705.

#### 3.0 <u>RESULTS</u>

Summa canister target and non-target results are listed in Tables 3 and 4, respectively. The recoveries for the MS/MSD are presented in Table 5. All results are reported in ppbv for Summa canister samples and blanks. The chain-of-custody is in Appendix A. The Summa canister data are in Appendix B.

In Appendix B, the Analysis Log is followed by the calibration package for each day of analysis. The calibration package includes the daily analysis log, canister pressurization log, BFB tune, and initial or continuing calibration quant report. The quant report lists the retention time, quantitation ion, peak area, and concentration in nL. Concentrations listed on the quant reports are generated by using the average response factors of the initial calibration and the response factors of the continuing calibrations.

The following is a list of the QA/QC flags used in qualifying the results:

- A Assumed volume for method blank.
- B Concentration less than 3 times method blank value.
- C Compound calibration relative standard deviation (RSD) >25% (concentrations calculated by average response factor only).
- E Exceeds calibration range.
- J Below 1.0 nL quantitation limit.
- U -Not detected.

#### 4.0 DATA ASSESSMENT

A total of 7 samples and a field blank were collected on 4/6/00 on chain of custody numbers 03310 from the Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities in Aberdeen Proving Ground, Aberdeen, MD under U.S.EPA WA# 0-110. The samples were received on 4/10/00.

The data contained in this report has been validated to two significant figures. Any other interpretation of the data is the responsibility of the user.

The samples were treated with procedures consistent with those described in SOP # 1008.

The reported year on the raw dara for the acquisition time is incorrectly reported as "100" and the reported year on the raw data for the quatitation time is incorrectly reported as "19100". This is due to a software problem related to the year 2000.

In the continuing calibration on -11/00 the percent difference for chloroethane (44%) exceeded the QC limits. This compound was not detected in the associated samples; the data are not affected.

#### TABLE 1 - GC/MS Instrument Conditions

A. Preconcentrator Conditions:

| M-1 Cryotrap Temperature        | :-160°C        |
|---------------------------------|----------------|
| Internal Standard Trap Time     | : 1.0 minute   |
| Sample flow                     | : 150 mL/min   |
| M-1 Cryotrap Desorb Temperature | : 20°C         |
| M-2 Cryotrap Temperature        | <b>∷-10°</b> C |
| Transfer (M-1 to M-2) Time      | : 4.5 minutes  |
| M-2 Cryotrap Desorb Temperature | : 240°C        |
| M-3 Cryotrap Temperature        | :-160°C        |
| Transfer (M-2 to M-3) Time      | : 3.5 minutes  |
| Injection Time                  | : 2.0 minutes  |

B. GC/MS Conditions, Sample Analysis:

| Initial Temperature | : 40.0°C        |
|---------------------|-----------------|
| Initial Time        | : 6.0 minutes   |
| Ramp Rate           | : 8.0°C/min     |
| Final Temperature   | : 220.0°C '     |
| Final Time          | : 9.5 minutes   |
| Run Time            | : 35.03 minutes |
| Mass Scan Range:    | : 35 to 250 AMU |

Column: 0.25 mm x 30 meter Restek RTx-VOA, 3.0 µm film thickness (Restek Corporation)

#### TABLE 2 - Air Toxic Standards (Concentrations and Quantitation Ions)

| Compound                  | Cylinder  | Conc. (ppmv) | Quant. Ion |
|---------------------------|-----------|--------------|------------|
| chloromethane             | ALM009519 | 0.98         | 50         |
| vinyl chloride            | ALM009519 | 0.97         | 62         |
| chloroethane              | ALM009519 | 1.00         | 64         |
| trichlorofluoromethane    | ALM009519 | 1.04         | 101        |
| 1,1-dichloroethene        | ALM009519 | 1.02         | 61         |
| dichloromethane           | ALM009519 | 1.00         | 49         |
| trans-1,2-dichloroethene  | ALM009519 | 1.00         | 61         |
| 1,1-dichloroethane        | ALM009519 | 1.02         | 63         |
| trichloromethane          | ALM009519 | 1.02         | 83         |
| 1,1,1-trichloroethane     | ALM009519 | 1.01         | 97         |
| 1,2-dichloroethane        | ALM009519 | 1.02         | 62         |
| benzene                   | ALM009519 | 1.00         | 78         |
| carbon tetrachloride      | ALM009519 | 0.98         | 117        |
| trichloroethene           | ALM009519 | 1.00         | 130        |
| dibromomethane            | ALM009519 | 0.98         | . 174      |
| bromodichloromethane      | ALM009519 | 1.01         | 83         |
| toluene                   | ALM009519 | 1.01         | 91         |
| 1,1,2-trichloroethane     | ALM009519 | 0.98         | 97         |
| tetrachloroethene         | ALM009519 | 1.00         | 166        |
| ethylbenzene              | ALM009519 | 1.01         | 91         |
| meta-xylene               | ALM009519 | 1.02         | 91         |
| styrene                   | ALM009519 | 1.04         | 104        |
| ortho-xylene              | ALM009519 | 1.04         | 91         |
| 1,1,2,2-tetrachloroethane | ALM009519 | 1.00         | 83         |
| 1,3,5-trimethylbenzene    | ALM009519 | 1.05         | 120        |
| Surrogate Standards       |           |              |            |
| bromochloromethane        | ALM046281 | 1.06         | 49         |
| p-bromofluorobenzene      | ALM046281 | 1.06         | 95         |

#### 00110/del/ar/0005/APGBurnar

0005

#### Table 3 - Air Toxic Target Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities ( concentrations in ppbv )

Page 1 of 3

|                                |            |                                                      |    |          |             | •        |
|--------------------------------|------------|------------------------------------------------------|----|----------|-------------|----------|
| Sample Number                  | Method     | 17747                                                |    | 17740    | 17741       | 17742    |
| Sample Location                | Blank      | Trip/Field                                           |    | DW3      | DW2         | DW1      |
| Date Sampled                   | N/A        | 04/06/00                                             |    | 04/06/00 | 04/06/00    | 04/06/00 |
| Date Analyzed                  | 04/10/00   | 04/10/00                                             |    | 04/10/00 | 04/10/00    | 04/10/00 |
| Data File                      | AGS003     | AGS004                                               |    | AGS005   | AGS006      | AGS007   |
| Chloromethane                  | 4 U        | 4                                                    | U  | 2 ]      | . 9 J       | 2 J      |
| Vinyl Chloride                 | 4 U        | 4                                                    | U  | 4 U      | 16 U        | 4 U      |
| Chloroethane                   | 4 U        | 4                                                    | υ  | 4.U      | . 16 U      | 4 U      |
| Trichlorofluoromethane         | 4 U        | 4                                                    | U  | 4. U     | 16 U        | 4 U      |
| 1,1-Dichloroethene             | 4 U        | 4                                                    | U  | 4 U      | 16 U        | 4 U      |
| Methylene Chloride             | 4 U        | 4                                                    | U  | 4 U      | 16 U        | 4 U      |
| trans-1,2-Dichloroethylene     | 4 U        |                                                      | U  | 4 U      | 16 U        | 4 U      |
| 1,1-Dichloroethane             | 4 U        |                                                      | U  | 4 U      | 16 U        | 4 U      |
| Trichloromethane               | 4 U        | 4                                                    | U  | 4 U      | 16 U        | 4 U      |
| 1,1,1-Trichloroethane          | 4 U        | 4.                                                   | U  | 4 U      | 16 U        | 4 U      |
| Carbon Tetrachloride           | 4 U        | 4                                                    | U  | 4 U      | 16 U.       | 4 U      |
| 1,2-Dichlroethane              | 4 U        | 4                                                    | U  | 4 U      | 16 U        | - 4 U    |
| Benzene                        | 4 U        | 4                                                    | U  | 7        | 16 U        | 3 J      |
| Trichloroethylene              | 4 U        | . 4                                                  | υ  | 4 U      | 16 U        | 4 U      |
| Bromodichloromethane           | 4 U        |                                                      | U  | 4 U      | 16 U        | 4 U      |
| Dibromomethane                 | 4 U        |                                                      | U  | 4 U      | 16 U        | 4 U      |
| Toluene                        | 4 U        |                                                      | U  | 4        | 16 U        | 1 J      |
| 1,1,2-Trichloroethane          | 4 U        |                                                      | U  | 4 U      | 16 U        | 4 U      |
| Tetrachloroethylene            | 4 U        |                                                      | U  | 4 U      | 16 U        | 4 U      |
| Ethylbenzene                   | 4 U        |                                                      | U  | 4 U      | <u>16 U</u> | 4 U      |
| m & p-Xylenes                  | 4 U        |                                                      | υ[ | 1 J      | 16 U        | 4 U      |
| o-Xylene                       | 4 U        |                                                      | U  | 4 U      | 16 U        | 4 U      |
| Styrene                        | 4 U        | 4                                                    | υ  | 1 J      | 16 U        | 4 U      |
| 1,1,2,2-Tetrachloroethane      | 4 U        | - 4                                                  | U  | 4 U      | 16 U        | 4 U      |
| 1,3,5-Trimethylbenzene         | 4 U        | 4                                                    | U  | 4 U      | 16 U        | 4 U      |
|                                |            | 1 - MY - 12   P - 10 - 10 - 10 - 10 - 10 - 10 - 10 - |    |          |             |          |
| p-Bromofluorobenzene (% Rec)   | 103        | 100                                                  |    | 107      | 101         | 109      |
| Pressurized Sample Volume (mL) | 250        | 250                                                  |    | 500      | 500         | 500      |
| Initial Pressure (psia)        | 250<br>N/A | 250<br>N/A                                           | -+ | 14.8     | 2.0         | 15.2     |
| Final Pressure (psia)          | N/A<br>N/A | N/A<br>N/A                                           |    | 29.6     | 16.0        | 30.4     |
| Quantitation Limit (ppbv)      | 4          | N/A 4                                                |    | <u> </u> | 16.0        | 30.4     |
| Quantitation Limit (ppbv)      | 4          | <u>4</u>                                             |    | 4        | 10          | <u> </u> |

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

0006

#### Table 3 - Air Toxic Target Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities ( concentrations in ppbv )

Page 2 of 3

|                                 |          |          |            | ;        |          |
|---------------------------------|----------|----------|------------|----------|----------|
| Sample Number                   | 17743    | 17744    | 17744 Rep  | 17745    | 17746    |
| Sample Location                 | DW4      | DW5      | DW5        | UW1      | UW2      |
| Date Sampled                    | 04/06/00 | 04/06/00 | 04/06/00   | 04/06/00 | 04/06/00 |
| Date Analyzed                   | 04/10/00 | 04/10/00 | 04/11/00   | 04/10/00 | 04/10/00 |
| Data File                       | AGS008   | AGS009   | AGS016     | AGS010   | AGS012   |
| Chloromethane                   | 3 J      | 1 J      | <u>1</u> J | 4 U      | 1 J      |
| Vinyl Chloride                  | 4 U      | 4 U.     | 4 U        | 4 U      | 4 U      |
| Chloroethane                    | - 4 Ŭ    | · 4 U    | 4 U        | 4 U      | 4 U      |
| Trichlorofluoromethane          | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| 1,1-Dichloroethene              | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| Methylene Chloride              | 4 U      | 4 - U    | 👻 4 U      | 4 U      | 4 U      |
| trans-1,2-Dichloroethylene      | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| 1,1-Dichloroethane              | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| Trichloromethane                | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| 1,1,1-Trichloroethane           | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| Carbon Tetrachloride            | 4 U      | 4 U      | 4 U        | 4 U I    | 4 U      |
| 1,2-Dichlroethane               | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| Benzene                         | 5        | 3 J      | 3 J        | 4 U      | 4 U      |
| Trichloroethylene               | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| Bromodichloromethane            | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| Dibromomethane                  | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| Toluene                         | 3 J      | 6        | 6          | 4 U      | 4 U      |
| 1,1,2-Trichloroethane           | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| Tetrachloroethylene             | · 4 U    | 4 U      | 4 U        | 4 U      | 4 U      |
| Ethylbenzene                    | 4 U      | 1 J      | 1 J        | 4 U      | 4 U      |
| m & p-Xylenes                   | _4 U     | 4 J      | 4 J        | 4 U      | 4 U      |
| o-Xylene                        | 4 U      | 1 J      | 1 J        | 4 U      | 4 U      |
| Styrene                         | 4 U      | 4 U      | 4 U        | 4 U      | 4 U      |
| 1,1,2,2-Tetrachloroethane       | 4 U      | 4 U      | • 4 U      | 4 U      | 🐑 🕹 U    |
| 1,3,5-Trimethylbenzene          | 4 U      | 4 Ū      | 4 U        | 4 U      | 4 U      |
|                                 | · · · ·  |          |            |          |          |
| p-Bromofluorobenzene (% Rec:    | 110      | 112      | 112        | 106      | 105      |
|                                 |          |          |            |          |          |
| Pressurized Sample Volume (m.L) | 500      | 500      | 500        | 500      | 500      |
| Initial Pressure (psia)         | 8.8      | 14.0     | 14.0       | 8.4      | 8.4      |
| Final Pressure (psia)           | 17.6     | 28.0     | 28.0       | - 16.8   | 16.8     |
| Quantitation Limit (ppbv)       | 4        | 4        | 4          | 4        | 4        |

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

N/A - Not Applicable

#### Table 3 - Air Toxic Target Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities ( concentrations in ppbv )

| · · · · · · · · · · · · · · · · · · · |          |   |
|---------------------------------------|----------|---|
| Sample Number                         | Method   |   |
| Sample Location                       | Blank    |   |
| Date Sampled                          | N/A      |   |
| Date Analyzed                         | 04/11/00 |   |
| Data File                             | AGS015   |   |
| Chloromethane                         | 4        | U |
| Vinyl Chloride                        | 4        | U |
| Chloroethane                          | 4        | U |
| Trichlorofluoromethane                | 4        | U |
| 1,1-Dichloroethene                    | 4        | U |
| Methylene Chloride                    | • 4      | υ |
| trans-1,2-Dichloroethylene            | . 4      | U |
| 1,1-Dichloroethane                    | . 4      | U |
| Trichloromethane                      | . 4      | υ |
| 1,1,1-Trichloroethane                 | 4        | U |
| Carbon Tetrachloride                  | . 4      | Ũ |
| 1,2-Dichlroethane                     | 4        | U |
| Benzene                               | 4        | Ū |
| Trichloroethylene                     | 4        | U |
| Bromodichloromethane                  | 4        | U |
| Dibromomethane                        | 4        | υ |
| Toiuene                               | 4        | υ |
| 1,1,2-Trichloroethane                 | 4        | U |
| Tetrachloroethylene                   | 4        | υ |
| Ethylbenzene                          | 4        | υ |
| m & p-Xylenes                         | 4        | U |
| o-Xylene                              | 4        | U |
| Styrene                               | 4        | Ű |
| 1,1,2,2-Tetrachloroethane             | 4        | U |
| 1,3,5-Trimethylbenzene                | 4        | U |
|                                       |          |   |
| p-Bromofluorobenzene (% Rec)          | 100      |   |
|                                       |          |   |
| Pressurized Sample Volume (mL)        | 250      |   |
| Initial Pressure (psia)               | N/A      |   |
| Final Pressure (psia)                 | N/A      |   |
| Quantitation Limit (ppbv)             | 4        |   |

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

N/A - Not Applicable

Page 1 of 11

### WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| · .                                    | Sample Number:    |      | Method      | d Reference Standard: Bromochlorometha |                      |
|----------------------------------------|-------------------|------|-------------|----------------------------------------|----------------------|
|                                        | Sample Location:  |      | Blank       | Reference Std Conc. (ppbv):            | 21.2                 |
| San                                    | nple Volume (mL): |      | 250         | Reference Std Volume (mL):             | 500                  |
|                                        | Date Sampled:     |      | N/A         | Reference Std Area:                    | 13322670             |
|                                        | Date Analyzed:    | 5 F  | -04/10/00   | Initial Pressure (psig):               | N/A                  |
|                                        | Data File:        |      | AGS003      | Final Pressure (psig):                 | N/A                  |
| Compound Name                          |                   | Rete | ention Time | Area                                   | Concentration (ppbv) |
| ······································ |                   | No   | non-targets | were found.                            |                      |

\* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

Page 2 of 11

#### WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample Number:      | 17747      | Reference Standard: Bromoc       | chloromethane |
|---------------------|------------|----------------------------------|---------------|
| Sample Location:    | Trip/Field | d Reference Std Conc. (ppbv): 21 |               |
| Sample Volume (mL): | 250        | Reference Std Volume (mL):       | 500           |
| Date Sampled:       | 04/06/00   | Reference Std Area:              | 13322670      |
| Date Analyzed:      | 04/10/00   | Initial Pressure (psig):         | N/A           |
| Data File:          | AGS004     | Final Pressure (psig):           | N/A           |

| Compound Name | Retention Time             | Area                                  | Concentration (ppbv) |
|---------------|----------------------------|---------------------------------------|----------------------|
|               | No non-targets were found. | · · · · · · · · · · · · · · · · · · · | î.                   |

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Page 3 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

|     | -                 | Detection Time | · · · · · · · · · · · · · · · · · · · | Concentration (anked) |
|-----|-------------------|----------------|---------------------------------------|-----------------------|
| ·   | Data File:        | AGS005         | Final Pressure (psig):                | 29.6                  |
|     | Date Analyzed:    | 04/10/00       |                                       | 14.8                  |
|     | Date Sampled:     | 04/06/00       | Reference Std Area:                   | 13322670              |
| Sar | mple Volume (mL): | 500            | Reference Std Volume (mL):            | 500                   |
|     | Sample Location:  |                | Reference Std Conc. (ppbv):           | 21.2                  |
|     | Sample Number:    | 17740          | Reference Standard: B                 | romochloromethane     |
|     |                   |                |                                       |                       |

| Compound Name           | Retention Time | Area    | Concentration (ppbv) |
|-------------------------|----------------|---------|----------------------|
| cycloalkane/alkene      | 2.792          | 2442275 | 8                    |
| cycloalkane/alkene      | 3.611          | 962606  | 3 *                  |
| acetealdehyde           | 3.914          | 916963  | 3 *                  |
| furan + unknown         | 6.675          | 2271909 | 7                    |
| acetone                 | 6.937          | 1719096 | 6                    |
| 2methyl-furan + unknown | 10.765         | 1956463 | 6                    |
| aldehyde                | 19.271         | 2398466 | 8                    |

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

#### Table 4 - Air Toxic Non-target Compound Results Summa Canister Samples

Page 4 of 11

)

### WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample Number:      | 17741          | Reference Standard: B       | romochloromethane    |
|---------------------|----------------|-----------------------------|----------------------|
| Sample Location:    | DW2            | Reference Std Conc. (ppbv): | 21.2                 |
| Sample Volume (mL): | 500            | Reference Std Volume (mL):  | 500                  |
| Date Sampled:       | 04/06/00       | Reference Std Area:         | 13322670             |
| Date Analyzed:      | 04/10/00       | Initial Pressure (psig):    | 2.0                  |
| Data File:          | AGS006         | Final Pressure (psig):      | 16.0                 |
| Compound Name       | Retention Time | Area                        | Concentration (ppbv) |
| acetone             | 6.999          | 1058843                     | 13 *                 |

\* - Below 16 ppbv Limit of Quantitation N/A - Not Applicable

acetone

Page 5 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample Number:      | 17742    | Reference Standard: Bromo   | chloromethane |
|---------------------|----------|-----------------------------|---------------|
| Sample Location:    | DW1      | Reference Std Conc. (ppbv): | 21.2          |
| Sample Volume (mL): | 500      | Reference Std Volume (mL):  | 500           |
| Date Sampled:       | 04/06/00 | Reference Std Area:         | 13322670      |
| Date Analyzed:      | 04/10/00 | Initial Pressure (psig):    | 15.2          |
| Data File:          | AGS007   | Final Pressure (psig):      | 30.4          |
|                     |          |                             |               |

| unknown 8.192 987161<br>aldebyde 19.288 940362 | ition (ppbv) | Concentrati | Area   | Retention Time | Compound Name |
|------------------------------------------------|--------------|-------------|--------|----------------|---------------|
| aldebyde 19,288 940362                         | 3 *          |             | 987161 | 8.192          | unknown       |
|                                                | 3 *          |             | 940362 | 19.288         | aldehyde      |

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Page 6 of 11

#### WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample Number:      | 17743    | Reference Standard: Bromochloromethane |          |
|---------------------|----------|----------------------------------------|----------|
| Sample Location:    | DW4      | Reference Std Conc. (ppbv):            | 21.2     |
| Sample Volume (mL): | 500      | Reference Std Volume (mL):             | 500      |
| Date Sampled:       | 04/06/00 | Reference Std Area:                    | 13322670 |
| Date Analyzed:      | 04/10/00 | Initial Pressure (psig):               | 8.8      |
| Data File:          | AGS008   | Final Pressure (psig):                 | 17.6     |
|                     |          | · · · · · ·                            |          |

| Compound Name            | Retention Time | Area    | Concentration (ppbv) |   |   |
|--------------------------|----------------|---------|----------------------|---|---|
| alkene                   | 2.800          | 1499003 |                      | 5 |   |
| acetone                  | 6.968          | 1622183 | 5                    |   |   |
| unknown                  | 8.193          | 1208501 |                      | 4 | * |
| alkane                   | 9.626          | 942198  |                      | 3 | * |
| 2-methyl-furan + unknown | 10.772         | 924300  | •                    | 3 | + |
| aldehyde                 | 19.283         | 936177  | •                    | 3 | • |

\* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

Page 7 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample Number:      | 17744    | Reference Standard: Brome   | ochloromethane |
|---------------------|----------|-----------------------------|----------------|
| Sample Location:    | DW5      | Reference Std Conc. (ppbv): | 21.2           |
| Sample Volume (mL): | 500      | Reference Std Volume (mL):  | 500            |
| Date Sampled:       | 04/06/00 | Reference Std Area:         | 13322670       |
| Date Analyzed:      | 04/10/00 | Initial Pressure (psig):    | 14.0           |
| Data File:          | AGS009   |                             | 28.0           |

| Compound Name            | Retention Time | Area    | Concentration (ppbv) |
|--------------------------|----------------|---------|----------------------|
| cycloalkane/alkene       | 2.800          | 834872  | 3 *                  |
| alkane + alkane          | 3.238          | 1004830 | 3 *                  |
| n-butane + alkane        | 3.628          | 1397502 | 4                    |
| n-hexane                 | 9.635          | 1440931 | 5                    |
| toluene + siloxane       | 16.720         | 2327997 | 7                    |
| trimethyl-benzene isomer | 22.913         | 939916  | 3 *                  |

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

## Page 8-of 11

# WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample Numbe  |                  | 17745          | Reference Standard: B       | romochloromethane    |
|---------------|------------------|----------------|-----------------------------|----------------------|
|               | Sample Location: | UW1            | Reference Std Conc. (ppbv): | 21.2                 |
| Sam           | ple Volume (mL): | 500            | Reference Std Volume (mL):  | 500                  |
|               | Date Sampled:    | 04/06/00       | Reference Std Area:         | 13322670             |
|               | Date Analyzed:   | 04/10/00       | Initial Pressure (psig):    | 8.4                  |
|               | Data File:       | AGS010         | Final Pressure (psig):      | 16.8                 |
| Compound Name |                  | Retention Time | Area                        | Concentration (ppbv) |

No non-targets were found.

| * - Below | 4 ppbv Limit of Quantitation |  |
|-----------|------------------------------|--|
| N/A - Not | Applicable                   |  |

Page 9 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

|              | Sample Number:    | 17746          | Reference Standard: E       | Bromochloromethane   |
|--------------|-------------------|----------------|-----------------------------|----------------------|
|              | Sample Location:  | UW2            | Reference Std Conc. (ppbv): | 21.2                 |
| Sa           | mple Volume (mL): | 500            | Reference Std Volume (mL):  | 500                  |
|              | Date Sampled:     | 04/06/00       | Reference Std Area:         | 13322670             |
|              | Date Analyzed:    | 04/10/00       | Initial Pressure (psig):    | 8.4                  |
|              | Data File:        | AGS012         | Final Pressure (psig):      | 16.8                 |
| Compound Nam | e                 | Retention Time | Area                        | Concentration (ppbv) |
|              |                   | No non-targets | were found.                 |                      |

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Page 10 of 11

# WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

|                            | Sample Number:   | Method         | Reference Standard: E       | Bromochloromethane   |  |  |  |  |  |
|----------------------------|------------------|----------------|-----------------------------|----------------------|--|--|--|--|--|
|                            | Sample Location: | Blank          | Reference Std Conc. (ppbv): | · 21.2               |  |  |  |  |  |
| Sam                        | ple Volume (mL): | 250            | Reference Std Volume (mL):  | 500                  |  |  |  |  |  |
|                            | Date Sampled:    | N/A            | Reference Std Area:         | 8543457              |  |  |  |  |  |
|                            | Date Analyzed:   | 04/11/00       | Initial Pressure (psig):    | N/A                  |  |  |  |  |  |
|                            | Data File:       | AGS015         |                             | N/A                  |  |  |  |  |  |
| Compound Name              | ·                | Retention Time | Area                        | Concentration (ppbv) |  |  |  |  |  |
| No non-targets were found. |                  |                |                             |                      |  |  |  |  |  |

\* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

Page 11 of 11

# WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample Number:      | 17744 Rep | Reference Standard: Bromo   | chloromethane |
|---------------------|-----------|-----------------------------|---------------|
| Sample Location:    | DW5       | Reference Std Conc. (ppbv): | 21.2          |
| Sample Volume (mL): | 500       | Reference Std Volume (mL):  | 500           |
| Date Sampled:       | 04/06/00  | Réference Std Area:         | 8543457       |
| Date Analyzed:      | 04/11/00  | Initial Pressure (psig):    | 14.0          |
| Data File:          | AGS016    | Final Pressure (psig):      | 28.0          |
|                     |           |                             |               |

| Compound Name            | Retention Time | Area    | Concentration (ppbv) |
|--------------------------|----------------|---------|----------------------|
| unknown + alkane         | 3.198          | 696075  | 4 *                  |
| alkane                   | 3.596          | 898837  | 5                    |
| alkene                   | 4.956          | 613106  | 3 *                  |
| acetone                  | 6.890          | 892721  | 4                    |
| toluene + siloxane       | 16.677         | 1684447 | 8                    |
| trimethyl-benzene isomer | 22.853         | 716418  | 4 *                  |

\* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

# Table 5 - Air Toxic MS/MSD Recovery Summary for Summa Canister Samples APG Burn Site, Edgewood, MD WA # 0-110

J

|                              |        |          |          |          |           | •        |
|------------------------------|--------|----------|----------|----------|-----------|----------|
| `ample Number                |        | 17746    | 17746 MS |          | 17746 MSD |          |
| Imple Location               |        | UW2      | UW2      |          | UW2       |          |
| Date Sampled                 |        | 04/06/00 | 04/06/00 |          | 04/06/00  |          |
| Date Analyzed                | Spike  | 04/10/00 | 04/10/00 | %        | 04/10/00  | %        |
| Data File                    | Amount | AGS012   | AGS013   | Recovery | AGS014    | Recovery |
| Chloromethane                | 9.8    | 0.19     | 10.95    | 110      | 10.99     | 110      |
| /inyl Chloride               | 9.7    | 0.00     | 11.12    | 115      | 11.50     | 119      |
| Chloroethane                 | 10.0   | 0.00     | 11.91    | 119      | 11.99     | 120      |
| Frichlorofluoromethane       | 10.4   | 0.00     | 12.87    | 124      | 13.33     | 128      |
| I,1-Dichloroethene           | 10.2   | 0.00     | 10.65    | 104      | 10.79     | 106      |
| Methylene Chloride           | 10.0   | 0.00     | 10.14    | 101      | 10.23     | 102      |
| rans-1,2-Dichloroethene      | 10.0   | 0.00     | 10.34    | 103      | 10.58     | 106      |
| 1,1-Dichloroethane           | 10.2   | 0.00     | 10.56    | 104      | 10.79     | 106      |
| Frichloromethane             | 10.2   | 0.00     | 10.22    | 100      | 10.54     | 103      |
| I,1,1-Trichloroethane        | 10.1   | 0.00     | 10.17    | 101      | 10.64     | 105      |
| Carbon Tetrachloride         | 9.8    | 0.00     | 10.40    | 106      | 10.68     | 109      |
| I,2-Dichloroethane           | 10.2   | 0.00     | 10.61    | 104      | 10.74     | 105      |
| Benzene                      | 10.0   | 0.00     | 10.06    | 101      | 10.19     | 102      |
| Frichloroethylene            | 10.0   | 0.00     | 9.95     | 99       | 10.12     | 101      |
| Bromodichloromethane         | 10.1   | 0.00     | 10.16    | 101      | 10.43     | 103      |
| Dibromomethane               | 9.8    | 0.00     | 10.10    | 103      | 10.23     | 104      |
| Foluene                      | 10.1   | 0.00     | 10.07    | 100      | 10.19     | 101      |
| I,1,2-Trichloroethane        | 9.8    | 0.00     | 10.12    | 103      | 10.45     | 107      |
| <b>Fetrachloroethylene</b>   | 10.0   | 0.00     | 10.35    | 103      | 10.49     | 105      |
| Ethylbenzene                 | 10.1   | 0.00     | 10.13    | 100      | 10.17     | 101      |
| reta & para-Xylenes          | 10.2   | 0.00     | 10.20    | 100      | 10.25     | 100      |
| ho-Xylene                    | 10.4   | 0.00     | 10.31    | 99       | 10.42     | 100      |
| Styrene                      | 10.4   | 0.00     | 10.51    | 101      | 10.52     | 101      |
| 1,1,2,2-Tetrachloroethane    | 10.0   | 0.00     | 10.70    | 107      | 10.96     | 110      |
| ,3,5-trimethlybenzene        | 10.5   | 0.00     | 10.67    | 102      | 10.82     | 103      |
|                              |        |          |          |          |           | •        |
| -Bromofluorobenzene (% Rec.) | N/A    | 105      | 105      | N/A      | 103       | N/A      |

I/A - Not Applicable

# APPENDIX A

# CHAIN-OF-CUSTODY

Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

## Sampled on 06 April 2000

WA#: R1A00110

| 68-019     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tAny pr                               | Phone Phone                            | •••••••••••••••••••••••••••••••••••••• | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0331<br>10. <u>/</u> of <u>/</u>                                                                                                                                                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·i         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>,</u>                                                                                                                                                                                                                                                                                                     |
|            | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | # of Bottles                          |                                        | VUCS                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4/16/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                     | none                                   |                                        | $\left  - \left( e^{\left( L \right)} \right) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ┨──┤───                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                                        | 0/2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b> </b> ,                                                                                                                                                                                                                                                                                                   |
| 12702      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | · · · ·                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ├                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ┨────┤                                                                                                                                                                                                                                                                                                       |
| 1.5-143    | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ┠┠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>├</b> ──/                                                                                                                                                                                                                                                                                                 |
| 17740      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>├</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ├                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>├</b> ──/──                                                                                                                                                                                                                                                                                               |
| 17711      | the second state of the se | ┼─┼──                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | ··                                     |                                        | والمحادية المدنية وسطور ومساور                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \ <u>\</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del> /</del>                                                                                                                                                                                                                                                                                                |
| 12202      | TRIPLICID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                                        | 7.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -/                                                                                                                                                                                                                                                                                                           |
| 11-11      | JELL/ LEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>I</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/3-                                                                                                                                                                                                                                                                                                         |
|            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (AOD)                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | ······································ |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NED                                   |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ι \ Ê                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        | 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · · |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                                                            |
| iment P    | W - Potable Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S۰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | · · ·                                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |
| m Solids G | W - Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10Cs-VL                               | Mahle Crepani                          | FORS                                   | UBCONTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |
|            | W - Surface Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |
|            | Sample No.<br>17740<br>17741<br>17742<br>17743<br>17743<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17747<br>17746<br>17746<br>17747<br>17746<br>17747<br>17746<br>17747<br>17746<br>17747<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17746<br>17747<br>17746<br>17747<br>17747<br>17746<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17747<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>17777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>177777<br>1777777<br>1777777<br>177777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample No.       Sampling Location         17740       DN3         17741       DW2         17742       DW1         17743       DW4         17744       DW1         17744       DW1 | Sample Identific:         Sample No.       Sampling Location       Matrix         17740       DW3       A         17741       DW2-       1         17742       DW1       1         17743       DW4       1         17744       DW5       1         17745       UW1       1         17746       UW2       1         17746       UW1       1         17747       Notest       1      N | Sample Identification                 | Sample Identification                  | Sample Identification                  | Sample Identification       Constant Preservative       Maly         Sample No.       Sampling Location       Matrix       Date Collected       # of Bottlers       Container/Preservative       WUC5         17740       Du3       At       Y/u/w/w       Image: Container/Preservative       WUC5         17740       Du3       At       Y/u/w       Image: Container/Preservative       WUC5         17740       Du3       At       Y/u/w       Image: Container/Preservative       WUC5         17740       Du3       Image: Container/Preservative       V       V         17740 <td>Sample Identification       Current of the collected       # of Bottlest       Container/Preservative       VULs       Volume         17740       DUS2       A       4/1/1/00       I       NATK       16(L-3)         17740       DUS2       A       4/1/1/00       I       NATK       16(L-3)         17740       DUS2       I       I       I       I       I       I         17740       DUS2       I       I       I       I       I       I       I         17741       DUS2       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I</td> <td>Sample Identification     Container/Preservative     WULS     Walking to catalogical of the collected of a of bottler       Sample Identification     Matrix     Date Collected of a of bottler     Container/Preservative     WULS     Volume       77740     DIM /     ///////////////////////////////////</td> | Sample Identification       Current of the collected       # of Bottlest       Container/Preservative       VULs       Volume         17740       DUS2       A       4/1/1/00       I       NATK       16(L-3)         17740       DUS2       A       4/1/1/00       I       NATK       16(L-3)         17740       DUS2       I       I       I       I       I       I         17740       DUS2       I       I       I       I       I       I       I         17741       DUS2       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I | Sample Identification     Container/Preservative     WULS     Walking to catalogical of the collected of a of bottler       Sample Identification     Matrix     Date Collected of a of bottler     Container/Preservative     WULS     Volume       77740     DIM /     /////////////////////////////////// |

| Items/Reason | Relinquished By | Date   | Received By    | Date    | Time | Items/Reason | Relinquished By | Date    | Received By | Date   | Time |
|--------------|-----------------|--------|----------------|---------|------|--------------|-----------------|---------|-------------|--------|------|
| Stendysi     | (Jac)           | 1/0/00 | Dand Ansteurs! | 4/10/00 | 1410 | ATL/Andys's  | Danothol Jenyi  | 4/10/00 | tops of Jy  | 7.0/00 | 156: |
| 7 7          |                 | · /    |                |         |      |              | <u> </u>        |         | 000         |        |      |
|              |                 |        |                |         |      |              |                 |         |             |        |      |
| ·            |                 |        |                |         |      |              |                 |         |             |        |      |
|              |                 |        |                |         |      | ]            |                 |         | ·           | ·      |      |

## APPENDIX B

Analytical Report (PAH. Inorganic Acids, Metals, and Dioxins/Furans) Air Monitoring, Sampling, Analysis. and Modeling Support, and Underwater Survey Activities Site July 2000

## c:\MyFiles\R1a00110\JFIELD tr-j0400.110

## ANALYTICAL REPORT

## Prepared by Lockheed Martin

## Air Monitoring. Sampling, and Modeling Support, and Underwater Survey Activities Aberdeen Proving Ground, Aberdeen, MD

## May 2000

EPA Work Assignment No. 0-110 LOCKHEED MARTIN Work Order No. R1A00110 EPA Contract No. 68-C99-223

> Submitted to D. Mickunas EPA-ERT

5/31/00

Date

ŀ

A. Dubois

Task Leader

D. Miller Analytical Section Leader

S. Clapp Program Manager

6 Date

Date

Analysis by: REAC SWRI

Prepared by: M. Bernick

Reviewed by: D. Killeen

00110\DEL\AR\0005\APGBurnar

(

## Table of Contents

|              |                                                                                   |                         |                  |        |         | )                                                                                                               |
|--------------|-----------------------------------------------------------------------------------|-------------------------|------------------|--------|---------|-----------------------------------------------------------------------------------------------------------------|
| <u>Topic</u> |                                                                                   |                         |                  | Page N | lumber  | A CARACTER STATE                                                                                                |
| Introduct    | tion                                                                              |                         |                  | Page   | 1       |                                                                                                                 |
| Case Nar     | rative                                                                            |                         |                  | Page   | 1       |                                                                                                                 |
| Summar       | y of Abbreviations                                                                |                         |                  | Page   | 3       |                                                                                                                 |
| Section 1    |                                                                                   |                         |                  | 0 -    | •       |                                                                                                                 |
| A - a la sta | -                                                                                 | ·                       |                  |        | _       | a a constante de la constante d |
| -            | al Procedure for PAH in Air (XAD-2 Tub                                            | esj                     |                  | Page   | 4       |                                                                                                                 |
|              | al Procedure for Inorganic Acids in Air                                           |                         |                  | Page   | 6       |                                                                                                                 |
|              | al Procedure for Metals in Air                                                    | 1°                      |                  | Page   | 6       |                                                                                                                 |
|              | al Procedure for Polychlorinated Dibenzoo<br>Polychlorinated Dibenzofurans in Air | JIOXINS and             |                  | 'n     |         |                                                                                                                 |
|              |                                                                                   |                         |                  | Page   | 6       |                                                                                                                 |
|              | of the Analysis for PAH in Air<br>of the TIC for PAH in Air                       |                         | Table 1.1        | Page   | 7       | •                                                                                                               |
|              |                                                                                   |                         | Table 1.2        | Page   | 9       |                                                                                                                 |
|              | of the Analysis for Inorganic Acids in Air                                        |                         | Table 1.3        | Page   | 19      | •                                                                                                               |
|              | of the Analysis for Metals in Air                                                 |                         | Table 1.4        | Page   | 20      |                                                                                                                 |
|              | of the Analysis for Polychlorinated Dibenz                                        | odioxins and            | <b>T</b> 1 1 1 5 | n      | ~~      |                                                                                                                 |
|              | Polychlorinated Dibenzofurans in Air                                              |                         | Table 1.5        | Page   | 22      |                                                                                                                 |
| Section I    | 1                                                                                 |                         |                  |        |         |                                                                                                                 |
| QA/QC        | for PAH in Air                                                                    |                         |                  | Page   | .28     |                                                                                                                 |
|              | of the BS/BSD Analysis for PAH in Air                                             |                         | Table 2.1        | Page   | 29      |                                                                                                                 |
| QA/QC        | for Inorganic Acids in Air                                                        |                         |                  | Page   | 31      | \$                                                                                                              |
| Results o    | of the BS/BSD Analysis for Inorganic Acid                                         | ls in Air               | Table 2.2        | Page   | 32      | 1                                                                                                               |
| QA/QC        | for Metals in Air                                                                 |                         |                  | Page   | 33      |                                                                                                                 |
| Results o    | of the BS/BSD Analysis for Metals in Air                                          |                         | Table 2.3        | Page   | 34      |                                                                                                                 |
| Results o    | of the Laboratory Control Sample Analysis                                         | :                       |                  | •      |         |                                                                                                                 |
| for Meta     | ls in Air                                                                         |                         | Table 2.4        | Page   | 35      |                                                                                                                 |
| QA/QC        | for Polychlorinated Dibenzodioxins and                                            | Polychlorinated Dibenzo | ofurans in Air   | Page   | 36      | . ,                                                                                                             |
| Results c    | of the Internal Standard Recoveries for Pol                                       | ÷ .                     | ns               |        |         |                                                                                                                 |
|              | and Polychlorinated Dibenzofura                                                   | ins in Air              | Table 2.5        | Page   | 37      |                                                                                                                 |
|              | of the BS/BSD Analysis for Polychlorinate                                         | d Dibenzodioxin and     |                  | · .    | · ·     |                                                                                                                 |
|              | Polychlorinated Dibenzofurans in Air                                              |                         | Table 2.6        | Page   | 38      |                                                                                                                 |
| Section I    |                                                                                   |                         |                  |        |         |                                                                                                                 |
| Commur       | nications                                                                         | ·                       |                  | Page   | 39      |                                                                                                                 |
| Chains o     | f Custody                                                                         | ал.<br>                 |                  | Page   | 41      |                                                                                                                 |
| Appendi      | x A Data for PAH in Air                                                           |                         |                  | Page J | 142 001 |                                                                                                                 |
|              | x B Data for Inorganic Acids in Air                                               | ,                       |                  | -      | 159 001 |                                                                                                                 |
| Appendi      | x C Data for Dioxins in Air                                                       |                         |                  | -      | 160 001 |                                                                                                                 |
| Appendi      | x D Data for Metals in Air                                                        |                         |                  | -      | 158 001 |                                                                                                                 |
| Appendi      | ces will be furnished on request.                                                 |                         |                  |        |         |                                                                                                                 |
| ·-PP-000     |                                                                                   | •                       |                  |        |         |                                                                                                                 |
|              |                                                                                   |                         |                  |        |         |                                                                                                                 |

00110\DEL\AR\0005\APGBurnar

## Introduction

REAC in response to WA # 0-110, provided analytical support for environmental samples collected from Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities, located in Aberdeen Proving Ground, Aberdeen, MD as described in the following table. The support also included QA/QC, data review, and preparation of an analytical report containing a summary of the analytical methods, the results, and the QA/QC results.

The samples were treated with procedures consistent with those described in SOP # 1008 and are summarized in the following table:

| COC # | Number<br>of<br>Samples | Sampling<br>Date | Date<br>Received | Matrix | Analysis        | Laboratory |
|-------|-------------------------|------------------|------------------|--------|-----------------|------------|
| 06966 | 10                      | 4/6/00           | 4/11/00          | Air    | Dioxin          | SWRI*      |
| 05254 | 10                      | 4/6/00           | 4/11/00          |        | Metals          |            |
| 06965 | 10                      | 4/6/00           | 4/11/00          |        | Inorganic Acids |            |
| 05654 | 10                      | 4/6/00           | 4/10/00          | и      | РАН             | REAC       |

\* SWRI denotes Southwest Research Institute

#### Case Narrative

The data in this report have been validated to two significant figures. Any other representation of the data is the responsibility of the user.

### PAH in Air Package J142

The data were examined and were found to be satisfactory.

#### Inorganic Acids in Air Package J159

All sample results were lot blank subtracted.

Sample 17733, the trip blank, contained 0.0013 mg of sulfuric acid. The sulfuric acid results for samples 17700 through 17706 are considered not detected.

### Metals in Air Package J158

The method blank contained 11.81  $\mu$ g/filter sodium (Na). The Na results for samples 17680 through 17689 are considered not detected.

Sample 17689, the lot blank, contained 6.2  $\mu$ g/filter calcium (Ca), 0.51  $\mu$ g/filter chromium (Cr), 1.6  $\mu$ g/filter iron (Fe) and 1.1  $\mu$ g/filter zinc (Zn). The Ca, Cr and Zn results for samples 17680 through 17688, and the Fe results for samples 17681 through 17685, 17687 and 17688 are considered not detected because the concentration in the

### 00110\DEL\AR\0005\APGBurnar

sample is less then five times the concentration in the lot blank.

Sample 17688, the trip blank, contained 0.23  $\mu$ g/filter nickel (Ni). The Ni results for samples 17681, 17683, 17686 and 17687 are considered not detected because the concentration in the sample is less then five times the concentration in the trip blank.

The LCS percent recovery exceeded the QC limits for tellurium (Te) (6.7%). The BS/BSD percent recovery exceeded the QC limits for Te (BS 8.2%, BSD 8.6%), phosphorus (P) (BS 126%, BSD 127%), tin (Sn) (BS 131%, BSD 132%), and zirconium (Zr) (BS 134%, BSD 131%). The Te results for samples 17680 through 17689 are considered unusable.

### Dioxins in Air Package J 160

The method blank contained 13 pg OCDF. The OCDF result for sample 17679 is considered estimated.

Sample 17679, the lot blank, contained 0.660 pg 123789-HxCDD. This compound was not detected in the associated samples; the data are not affected.

Sample 17677, the trip blank, contained 12.2 pg OCDD. The OCDD results for samples 17670, 17675, 17674 and 17676 are considered not detected because the sample concentrations were less than five times that found in the trip blank.

Lock mass ion 342 (penta dioxins and furans) exhibited a loss of sensitivity during the calibration verification on 4/17/00 (6:41 am) on instrument H. None of the associated samples exhibited a sensitivity loss for this ion during analysis; the data are not affected.

In the ending calibration verification standard of 4/17/00 (6:41 am), the acceptable percent difference QC limits were exceeded for <sup>13</sup>C-12378-PeCDD (45%) and <sup>13</sup>C-OCDD (46%). As required by the method criteria, the subcontracted laboratory used the two continuing calibrations bracketing the samples to calculate average relative response factors for quantitation.. Samples 17673, 17674, 17675, 17676, 17677 and 17678 were quantiated using these average response factors. The percent relative standard deviation of these average response factors exceeded the QC limits for OCDF (21), <sup>13</sup>C-12378-PeCDD (43) and <sup>13</sup>C-OCDD (33). The OCDD results for samples 17673, 17674, 17675, 17676 and 17677 are considered estimated.

The acceptable QC limits were exceeded for the percent recovery for internal standard <sup>13</sup>C-12378-PeCDD (138%) for sample 17676. 12378-PeCDD was not detected in this sample; the data are not affected

The acceptable QC limits were exceeded for the percent recovery for internal standard <sup>13</sup>C-12378-PeCDF (137%) for sample 17676. Pentafurans were not detected in this sample; the data are not affected.

#### 00110\DEL\AR\0005\APGBurnar

#### инных

|                | · · · · · ·                       | Summary of Abb          | previations       |                   | •                    |
|----------------|-----------------------------------|-------------------------|-------------------|-------------------|----------------------|
| AA             | Atomic Absorption                 | on .                    |                   |                   | · · ·                |
| В              | The analyte was                   |                         | ĸ                 |                   | . )                  |
| BFB            | Bromofluorobenz                   |                         |                   |                   |                      |
| C              | Centigrade                        |                         |                   |                   |                      |
| D              | (Surrogate Table)                 |                         |                   |                   | calculated           |
|                | (Result Table) th                 |                         |                   |                   |                      |
| Dioxin         | denotes Polychlo<br>PCDD and PCDI |                         | p-dioxins and P   | olychlorinated I  | Dibenzofurans and/or |
| CLP            | Contract Laborat                  |                         |                   |                   |                      |
| COC            | Chain of Custody                  |                         |                   |                   |                      |
| CONC           | Concentration                     | 1                       |                   |                   |                      |
| CRDL           | Contract Require                  | d Detection Limi        | +                 |                   |                      |
| CRQL           | Contract Require                  |                         |                   |                   |                      |
| DFTPP          | Decafluorotriphe                  |                         | 11110             |                   |                      |
| DL             | Detection Limit                   | путриозрише             |                   |                   |                      |
| E              |                                   | ter than the highe      | est linear standa | rd and is estimat | ed                   |
| EMPC           |                                   | num possible con        |                   |                   |                      |
| ICAP           |                                   | oled Argon Plasm        |                   |                   |                      |
| ISTD           | Internal Standard                 |                         | <b>u</b>          |                   |                      |
| J              |                                   | w the method de         | tection limit and | l is estimated    |                      |
| LCS            | Laboratory Cont                   |                         |                   | 1 IS CStmated     |                      |
| LCSD           |                                   | rol Sample Dupli        | cate              | · .               |                      |
| MDL            | Method Detectio                   |                         |                   |                   |                      |
| MI             | Matrix Interferen                 |                         |                   |                   |                      |
| MS             | Matrix Spike                      |                         |                   |                   |                      |
| MSD            | Matrix Spike Du                   | plicate                 |                   |                   |                      |
| MW             | Molecular Weigl                   |                         |                   |                   |                      |
| NA             |                                   | cable or Not Avai       | ilable            |                   |                      |
| NC             | Not Calculated                    |                         |                   |                   |                      |
| 'NR            | Not Requested                     |                         |                   |                   |                      |
| NS             | Not Spiked                        |                         |                   |                   |                      |
| % D            | Percent Differen                  | ce                      |                   |                   |                      |
| % REC          | Percent Recover                   | У                       |                   |                   |                      |
| PPB            | Parts per billion                 |                         |                   |                   |                      |
| PPBV           | Parts per billion                 |                         |                   |                   |                      |
| PPMV           | Parts per million                 |                         |                   |                   |                      |
| PQL            | Practical Quanti                  |                         | _                 |                   |                      |
| QA/QC          |                                   | ce/Quality Contro       |                   |                   |                      |
| QL             | Quantitation Lin                  |                         | •                 |                   |                      |
| RPD            | Relative Percent                  |                         |                   |                   |                      |
| RSD            | Relative Standar                  |                         |                   |                   |                      |
| SIM            | Selected Ion Mo                   |                         | •                 |                   |                      |
| TCLP           |                                   | istics Leaching Pr      | rocedure          |                   |                      |
| U              | Denotes not dete                  |                         |                   | J J               |                      |
| · W            |                                   | te; the results sho     |                   |                   |                      |
| m <sup>3</sup> | cubic meter                       | kg                      | kilogram          | μg                | microgram            |
| L,             | liter                             | g                       | gram              | Pg                | picogram             |
| mL             | millüiter                         | mg                      | milligram         | ng                | nanogram             |
| μL             | microliter                        | ah ad an an a da ah - a | anomtable OC 1    |                   |                      |
| <b>T</b> .     |                                   | that exceeds the a      |                   |                   | in footnoter on that |
|                |                                   | has are specific to     | a particular tab  | ie are explained  | in footnotes on that |
| р ·            | table                             |                         |                   |                   |                      |

Revision 1/5/00

00110\DEL\AR\0005\APGBurnar

## Analytical Procedure for PAH in Air (XAD-2 Tubes)

### XAD-2 Tube Preparation

The XAD-2 tubes were analyzed for polycyclic aromatic hydrocarbons (PAH) using modified NIOSH Method 5515. The front, back and filter portions of the tubes were analyzed separately by extracting them with 2.0 mL methylene chloride. A preweighed filter was also collected with these tubes and this filter was extracted with 4.0 mL methylene chloride. One mL of extract was spiked with 20  $\mu$ L of a 2000 ppm XAD internal standards solution consisting of naphthalene-d<sub>8</sub>, acenaphthene-d<sub>10</sub>, phenanthrene-d<sub>10</sub>, chrysene-d<sub>12</sub>, and perylene-d<sub>12</sub>, resulting in a 40.0 ppm concentration and analyzed.

### GC/MS Analysis

An HP 6890 MSD. equipped with a 6890 autosampler and controlled by a personal computer equipped with HP-Enviroquant software was used to analyze the samples.

The instrument conditions were:

Column

Flow Rate Injection Temperature Transfer Temperature Source Temperature & Analyzer Temperature Temperature Temperature Program Restek Rtx-5 (cross bonded SE-54) 30 meter x 0.25 mm ID, 0.50 μm film thickness. 1 mL/min, EPC enabled 280° C 280° C

Controlled by thermal transfer of heat from Transfer Line 280° C 70° C for 0.5 min 30° C/min to 295° C; hold for 8 minutes 30° C/min to 315° C; hold for 7 min

Pulsed Splitless Injection

Injection Volume

Pressure Pulse = 16 psi for 1.0 min, then normal flow 8:1 Split Ratio 1uL

The GC/MS was calibrated using 6 PAH standards at 10, 25, 50, 75, 100 and 150 ppm. Before analysis each day the system was tuned with 50-ng decafluorotriphenylphosphine (DFTPP) and passed a continuing calibration check by analyzing a 50µg/mL daily standard. The QC limit for the initial calibration is %RSD less than 30 and %D less than 25 for the daily check. Sample quantification is based on the average response factor of the calibration curve or the response factor of the daily calibration check.

## 00110\DEL\AR\0005\APGBurtar

The XAD-2 tube PAH results are listed in Table 1.1. Tentatively identified compounds are listed in Table 1.2. The following equations were used to calculate the analyte - total µg/sample:

$$\mu g/sample = C_{u} x V x D E = \frac{A_{u} x C_{is} x V x D E}{A_{u} x R F}$$

where

C<sub>u</sub> v

A,

Cis

Ais

- = Concentration of the analyte (µg/mL) = Extraction Volume (mL) DE
  - = Desorption Efficiency = 100/(% Recovery)

= Area of the analyte

- = Concentration of the internal standard (ug/mL)
- = Area of the internal standard

The Relative Response Factor, RRF, is calculated from the calibration standard mixture using

$$RRF = \frac{A_{u}xC_{is}}{A_{is}xC_{u}}$$

where

RRF = Relative Response Factor (unitless) = Area of Analyte in the standard mixture A<sub>u</sub> = Concentration of Internal Standard in the standard mixture ( $\mu$ g/mL)  $C_{1S}$ = Area of Internal Standard in the standard mixture Ais Ċ., = Concentration of Analyte in the standard mixture (µg/mL)

The concentration of  $\Box$  e analyte in mg/m<sup>3</sup> and ppbv (parts per billion by volume) is calculated using the following:

$$mg/m^3 = \frac{(Total \mu gfront + Total \mu g back)}{Liters Sampled}$$

 $ppbv = \frac{mg/m^3 x 24.45 x 1000}{MW}$ 

where MW is the molecular weight of the analyte

Revision of 3/6/00

00110\DEL\AR\0005\APGBurt.ar

## Analytical Procedure for Inorganic Acids in Air

The subcontract laboratory determined the concentration of inorganic acids in the samples by analyzing them according to NIOSH Method 7903. The results of the analysis for the air samples are listed in Table 1.3.

### Analytical Procedure for Metals in Air

The subcontract laboratory determined the concentration of Metals in the samples by analyzing them according to NIOSH Method 7300. The results of the analysis for the air samples are listed in Table 1.4.

Analytical Procedure for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

The subcontract laboratory determined the concentration of polychlorinated dibenzodioxins and polychlorinated dibenzofurans in the samples by analyzing them according to USEPA SW-846 Method 8290. The results of the analysis are listed in Table 1.5.

### 00110\DEL\AR\0005\APGBurtar

## (M)(M)G

## WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample No.<br>Sampling Location<br>Volume (L) |       | 7699<br>Eiank<br>0 | Ĺ     | 7690<br>DW3<br>360 | D     | 691<br>W2<br>51 | C     | 7692<br>DW1<br>360 | C    | 7693<br>)W4<br>369 |  |
|-----------------------------------------------|-------|--------------------|-------|--------------------|-------|-----------------|-------|--------------------|------|--------------------|--|
|                                               | Conc. | MDL                | Conc. | MDL                | Conc. | MDL             | Conc. | MDL                | Conc | MDL                |  |
| Compound Name                                 | рд    | μg                 | ррру  | ppbv               | ppbv  | ppbv            | ppbv  | ppbv               | ppbv | ppbv               |  |
| Naphthalene                                   | υ     | 11                 | U     | 5.6                | 1.7 J | 5.7             | υ     | 5.6                | Ů    | 5.4                |  |
| 2-Methylnaphthalene                           | U     | 11                 | U     | 5.3                | υ     | 5.4             | U     | 5.3                | υ    | 5.2                |  |
| 1-Methyinaphthalene                           | υ     | 11                 | U     | 5.2                | U     | 5.3             | U     | 5.2                | U    | 5.0                |  |
| Biphenyl                                      | υ     | 11                 | U     | 5.0                | U     | 5.1             | ົບ    | 5.0                | υ (  | 4.8                |  |
| 2,6-Dimethylnaphthalene                       | U     | 11                 | υ     | 4.9                | U     | 5.0             | U     | 4.9                | U    | 4.7                |  |
| Acenaphthylene                                | U     | 12                 | U     | 5.2                | U     | 5.3             | U     | 5.2                | U    | 5.1                |  |
| Acenaphthene                                  | U     | 11                 | U     | 4.7                | υ     | 4.9             | U     | 4.7                | U    | 4.6                |  |
| Dibenzofuran                                  | U     | 11                 | υ     | 4.6                | υ     | 4.7             | υ     | 4.6                | υ    | 4.5                |  |
| Fluorene                                      | U     | 11                 | ບ     | 4.7                | U     | 4.8             | U     | 4.7                | , U  | 4.6                |  |
| Phenanthrene                                  | υ     | 11                 | Ŭ     | 4.1                | U     | 4.2             | U     | 4.1                | ່ບ   | 4.0                |  |
| Anthracene                                    | U     | 10                 | U     | 3.9                | υ     | 4.0             | U     | 3.9                | U    | 3.8                |  |
| Carbazole                                     | U     | 12                 | υ     | 4.8                | υ     | 4.9             | υ     | 4.8                | U    | 4.6                |  |
| Fluoranthene                                  | U     | 12                 | υ     | 4.0                | U     | 4.1             | U     | 4.0                | U    | 3.9                |  |
| Pyrene                                        | U     | 12                 | υ     | 4.0                | U     | 4.1             | U     | 4.0                | υ    | 3.9                |  |
| Benzo(a)anthracene                            | U     | 12                 | υ     | 3.5                | U     | 3.6             | U     | 3.5                | U    | 3.4                |  |
| Chrysene                                      | U     | 14                 | υ     | 4.3                | υ.    | 4.4             | υ     | 4.3                | U    | <b>`4.2</b>        |  |
| Benzo(b)fluoranthene                          | ບ     | 11                 | υ     | 2.9                | U     | 3.0             | υ     | 2.9                | υ    | 2.8                |  |
| Benzo(k)fluoranthene                          | U     | 11                 | υ     | 3.1                | · U   | 3.2             | U     | 3.1                | U    | 3.0                |  |
| Benzo(e)pyrene                                | U     | 12                 | ບ     | 3.2                | U     | 3.3             | ົບ    | 3.2                | U    | 3.1                |  |
| Benzo(a)pyrene                                | U U   | 12                 | U     | 3.3                | · U   | 3.4             | · U   | 3,3                | U    | 3.2                |  |
| Indeno(1,2,3-cd)pyrene                        | U     | 13                 | υ     | 3.1                | - U   | 3.2             | U     | 3.1                | υ    | 3.0                |  |
| Dibenzo(a,h)anthracene                        | U     | 12                 | U     | 3.0                | U     | 3.1             | U     | 3.0                | υ    | 2.9                |  |
| Benzo(g,h,i)perylene                          | U     | 12                 | U     | 3.1                | U     | 3.1             | U     | 3.1                | U    | 3.0                |  |

00007

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample No.              |       | 7694<br>)\\ <i>\</i> 5 |       | 7695<br>IW1 |       | 7696<br>UW2 |          | 7697<br>I Blank |           | 7698  |
|-------------------------|-------|------------------------|-------|-------------|-------|-------------|----------|-----------------|-----------|-------|
| Sampling Location       |       | 360                    |       | 332         |       | 360         | _ Fier   |                 | пр        | Blank |
| Volume (L)              | Conc. | MDL                    | Conc. | MDL         | Conc. | MDL         | Conc.    | MDL             | Conc.     | MDL   |
| Compound Name           | ppbv  | ррбу                   | ppbv  | ppbv        | ppbv  | ppbv        | hà       | μg              | <u>hā</u> | ha    |
| Naphthalene             | ັບ    | 5.6                    | U     | 6.1         | U     | 5.6         | U        | 11              | U.        | 11    |
| 2-Methylnaphthalene     | U     | 5.3                    | U     | 5.8         | υ     | 5.3         | U        | 11              | U         | 11    |
| 1-Methylnaphthalene     | U     | 5.2                    | ·U    | 5.6         | U     | 5.2         | υ i      | 11              | U         | 11    |
| Biphenyl                | ົບ    | 5.0                    | U     | 5.4         | U     | 5.0         | U        | 11              | U         | 11    |
| 2,6-Dimethylnaphthalene | υ     | 4.9                    | υ     | 5.3         | U     | 4.9         | U        | 11              | υ         | 11    |
| Acenaphthylene          | ,U    | 5.2                    | υ     | 5.6         | U     | 5.2         | U        | 12              | U         | 12    |
| Acenaphthene            | U     | 4.7                    | U     | 5.1         | U     | 4.7         | ΄ U      | 11              | U         | 11    |
| Dibenzofuran            | U     | 4.6                    | υ     | 5.0         | U     | 4.6         | U,       | 11              | U         | 11    |
| Fluorene                | U     | 4.7                    | υ     | 5.1         | U     | 4.7         | U        | 11              | U         | 11    |
| Phenanthrene            | U     | 4.1                    | υ     | 4.4         | · U   | 4.1         | U        | 11              | U         | 11    |
| Anthracene              | υ     | 3.9                    | U     | 4.2         | U     | 3.9         | U        | 10              | U         | 10    |
| Carbazole               | U     | 4.8                    | U     | 5.2         | U.    | 4.8         | U        | 12              | Ū         | 12    |
| Fluoranthene            | U     | 4.0                    | U ·   | 4.3         | 1 U   | 4.0         | U        | 12              | U         | 12    |
| Pyrene                  | U     | 4.0                    | U     | 4.3         | U     | 4.0         | U        | 12              | U         | 12    |
| Benzo(a)anthracene      | ·· U  | 3.5                    | ບ່    | 3.8         | U     | 3.5         | U        | 12              | U         | 12    |
| Chrysene                | U     | 4.3                    | U     | 4.6         | U     | 4.3         | U        | 14              | U         | 14    |
| Benzo(b)fluoranthene    | U     | 2.9                    | U     | 3.1         | U     | 2.9         | υ        | 11              | U         | 11    |
| Benzo(k)fluoranthene    | U     | 3.1                    | ບ     | 3.4         | U     | 3.1         | ບ        | 11              | U ·       | 11    |
| Benzo(e)pyrene          | U     | 3.2                    | U     | 3.5         | U     | 3.2         | U        | 12              | υ         | 12    |
| Benzo(a)pyrene          | U     | 3.3                    | י ט   | 3.6         | U     | 3.3         | บ        | 12              | U         | 12    |
| Indeno(1,2,3-cd)pyrene  | U     | 3.1                    | U     | 3.4         | • U•  | 3.1         | · U      | 13              | U.        | 13    |
| Dibenzo(a,h)anthracene  | U     | 3.0                    | Ū     | 3.2         | U     | 3.0         | U        | 12              | • U       | 12    |
| Benzo(g.h.i)perylene    | U     | 3:1                    | U     | 3.3         | U     | 3.1         | <u> </u> | 12              | <u> </u>  | 12    |

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Samp  | ole #   | 17699 Lot Blank        |         |        |          |
|-------|---------|------------------------|---------|--------|----------|
| LabFi | ile #   | APG059                 | Con. Fa | actor  | 2.0      |
|       |         |                        |         |        | Conc **  |
|       | CAS#    | Compound               | Q       | RT     | Total µg |
| . 1   | 85-68-7 | Butyl benzyl phthalate | 95      | 9.73   | 28       |
| 2     |         | Unknown                |         | 15.14  | 13       |
| 3     |         |                        |         |        |          |
| 4     |         |                        |         |        |          |
| 5     |         |                        |         |        |          |
| 6     |         |                        |         |        |          |
| 7     |         |                        |         |        |          |
| 8     |         |                        |         |        |          |
| 9     |         |                        |         |        |          |
| 10    |         | ·                      |         |        |          |
| 11    |         |                        |         |        |          |
| 12    |         |                        |         |        |          |
| 13    |         |                        |         | ,<br>, |          |
| 14    |         |                        |         |        |          |
| 15    |         |                        |         |        |          |
| 16    |         |                        |         |        |          |
| 17    |         |                        |         |        |          |
| 18    |         |                        |         |        |          |
| 19    |         |                        |         |        |          |
| 20    |         |                        |         |        |          |

\*\*Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sa  | mple #                                | 17690                                 |         |         | •       |
|-----|---------------------------------------|---------------------------------------|---------|---------|---------|
| Lal | bFile #                               | APG062                                | Con. Fa | ictor . | 5.6     |
|     | · · · · · · · · · · · · · · · · · · · |                                       |         |         | Conc ** |
|     | CAS#                                  | Compound                              | Q       | RT      | µg/m3   |
|     | 1 85-68-7                             | Butyl benzyl phthalate                | 91      | 9.73    | 97      |
|     | 2                                     | Unknown                               |         | 15.15   | 48      |
|     | 3                                     |                                       |         |         |         |
|     | 4                                     |                                       |         |         |         |
|     | 5                                     |                                       |         |         |         |
|     | 6                                     |                                       |         |         |         |
|     | 7                                     |                                       |         |         | •       |
|     | 8                                     |                                       |         |         |         |
|     | 9                                     |                                       |         |         |         |
| 1   | 0                                     |                                       |         |         |         |
| 1   | 1                                     |                                       |         |         |         |
| 1   | 2                                     |                                       |         |         |         |
| 1   | 3                                     |                                       |         |         |         |
| 1   | 4                                     |                                       |         |         |         |
| 1   | 5                                     |                                       |         |         |         |
| 1   | 6                                     |                                       |         |         |         |
| 1   | 7                                     |                                       |         |         |         |
| 1   | 8                                     | · · · · · · · · · · · · · · · · · · · |         |         |         |
| 1   | 9                                     |                                       |         |         |         |
| 2   | 20                                    |                                       |         |         |         |

\*\*Estimated Concentration (Response Factor = 1.0)

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sam  | ple #                                 | 17691                                 |         |       | •                                     |
|------|---------------------------------------|---------------------------------------|---------|-------|---------------------------------------|
| LabF | ïle #                                 | APG065                                | Con. Fa | actor | 5.7                                   |
| ,    |                                       |                                       |         |       | Conc **                               |
|      | CAS#                                  | Compound                              | Q       | RT    | µg/m3                                 |
| 1    |                                       | Unknown phenol                        |         | 4.96  | 28                                    |
| 2    | 85-68-7                               | Butvi benzyl phthalate                | 91      | 7:93  | 100                                   |
| 3    |                                       | Unknown                               |         | 15.15 | 45                                    |
| 4    |                                       |                                       |         |       |                                       |
| 5    |                                       | · · ·                                 |         |       |                                       |
| 6    |                                       |                                       |         |       |                                       |
| 7    |                                       | ·                                     | · · ·   |       |                                       |
| 8    |                                       |                                       |         |       |                                       |
| 9    |                                       |                                       |         |       |                                       |
| 10   |                                       |                                       |         |       |                                       |
| 11   |                                       |                                       |         |       |                                       |
| 12   |                                       |                                       |         |       | · · · · · · · · · · · · · · · · · · · |
| 13   | · · · · · · · · · · · · · · · · · · · |                                       | ļ       |       |                                       |
| 14   |                                       |                                       |         |       |                                       |
| 15   |                                       |                                       |         |       |                                       |
| 16   |                                       | · · · · · · · · · · · · · · · · · · · |         |       |                                       |
| 17   | ·                                     |                                       |         |       |                                       |
| 18   |                                       |                                       |         |       |                                       |
| 19   | ·····                                 | ·                                     | ļ       |       |                                       |
| 20   |                                       |                                       |         | •     |                                       |

\*\*Estimated Concentration (Response Factor = 1.0)

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Samj | ple #   | 17692                                 |                                       |          | •                                      |     |
|------|---------|---------------------------------------|---------------------------------------|----------|----------------------------------------|-----|
| LabF | ile #   | APG068                                | Con. F                                | actor    |                                        | 5.6 |
|      |         |                                       | ·                                     |          | Conc **                                |     |
|      | CAS#    | Compound                              | Q                                     | RT       | µg/m3                                  |     |
| 1    | 85-68-7 | Butyl benzyl phthalate                | 70                                    | 9.73     |                                        | 93  |
| 2    |         |                                       |                                       |          | ······································ |     |
| 3    |         |                                       |                                       |          | · · · · · · · · · · · · · · · · · · ·  |     |
| 4    |         |                                       |                                       |          |                                        |     |
| 5    |         |                                       |                                       |          |                                        |     |
| 6    | -       | · · · · · · · · · · · · · · · · · · · |                                       |          |                                        |     |
| 7    |         |                                       |                                       |          | · · · · · · · · · · · · · · · · · · ·  |     |
| 8    |         |                                       | · · · · · · · · · · · · · · · · · · · |          |                                        |     |
| 9    |         | ·                                     |                                       |          | · · · · · · · · · · · · · · · · · · ·  |     |
| 10   |         |                                       |                                       |          |                                        |     |
| 11   |         |                                       |                                       |          |                                        |     |
| 12   |         |                                       |                                       | [        |                                        |     |
| 13   |         |                                       |                                       |          |                                        |     |
| 14   |         |                                       |                                       |          |                                        |     |
| 15   | · .     | ļ                                     |                                       |          | · · · · · · · · · · · · · · · · · · ·  |     |
| 16   |         |                                       |                                       | ļ        |                                        |     |
| 17   |         |                                       |                                       |          |                                        |     |
| 18   |         |                                       |                                       | <u>.</u> |                                        |     |
| 19   |         | ······                                | · · · · · · · · · · · · · · · · · · · | ļ        |                                        |     |
| 20   |         | <u>  .</u>                            | <u> </u>                              | <u> </u> | L                                      |     |

\*\*Estimated Concentration (Response Factor = 1.0)

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sam  | ole #   | 1/693                  |   |         | · .   | •       |     |
|------|---------|------------------------|---|---------|-------|---------|-----|
| LabF | ile #   | APG071                 |   | Con. Fa | actor |         | 5.4 |
|      | *       |                        |   |         | ,     | Conc ** | •   |
|      | CAS#    | Compound               |   | Q       | RT    | µg/m3   |     |
| 1    | 85-68-7 | Butyi benzyl phthalate |   | 95      | 9.73  |         | 92  |
| 2    |         |                        | • |         |       |         |     |
| 3    |         | -                      |   |         | •.    |         |     |
| · 4  |         |                        |   |         |       |         |     |
| 5    |         | <u> </u>               |   |         |       | ,       |     |
| 6    |         |                        |   |         |       |         |     |
| 7    |         |                        |   |         |       |         |     |
| 8    |         |                        |   |         |       |         |     |
| 9    |         |                        |   |         |       |         |     |
| 10   |         |                        |   |         |       |         |     |
| . 11 |         | ·                      |   |         |       |         |     |
| 12   |         |                        |   |         |       |         |     |
| 13   | ·       | · ·                    |   |         |       | •       |     |
| 14   |         | . ,                    |   |         |       |         |     |
| 15   |         | · · · · · ·            |   |         |       |         |     |
| 16   |         |                        |   |         |       |         |     |
| 17   |         |                        |   |         |       |         |     |
| 18   | · ·     |                        |   |         |       |         |     |
| 19   |         |                        |   |         | ÷     | с.<br>  |     |
| 20   |         |                        |   |         | · -   |         |     |

\*\*Estimated Concentration (Response Factor = 1.0)

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

|   | Sam  | ple #                                             | 17694                                 |         |            |                                         |
|---|------|---------------------------------------------------|---------------------------------------|---------|------------|-----------------------------------------|
|   | LabF | ile #                                             | APG074                                | Con. Fa | actor      | 5.6                                     |
|   |      | •.                                                |                                       |         |            | Conc **                                 |
|   |      | CAS#                                              | Compound                              | Q       | RT         | µg/m3                                   |
|   | 1    | 85-68-7                                           | Butyl benzyl phthalate                | 91      | 9.73       | 91                                      |
|   | 2    |                                                   |                                       |         |            |                                         |
|   | 3    |                                                   |                                       |         |            |                                         |
|   | 4    |                                                   |                                       |         |            |                                         |
|   | 5    |                                                   |                                       |         |            |                                         |
| ļ | 6    |                                                   |                                       |         |            |                                         |
| ļ | 7    | <del>, , , , , , , , , , , , , , , , , , , </del> |                                       |         |            |                                         |
|   | 8    | · · · · · ·                                       |                                       |         |            |                                         |
|   | 9    |                                                   |                                       |         |            | · · · · ·                               |
|   | 10   |                                                   |                                       |         |            | · · · · · · · · · · · · · · · · · · ·   |
|   | 11   |                                                   |                                       |         |            |                                         |
|   | 12   | · · · · · · · · · · · · · · · · · · ·             |                                       | 1       |            |                                         |
|   | 13   |                                                   |                                       |         |            |                                         |
|   | 14   |                                                   | · · · · · · · · · · · · · · · · · · · |         |            |                                         |
|   | 15   | ······································            |                                       |         | ·          |                                         |
|   | 16   | ·                                                 |                                       |         |            | · _ · · · · · · · · · · · · · · · · · · |
|   | 17   |                                                   |                                       |         |            |                                         |
|   | 18   |                                                   |                                       |         |            | ······                                  |
|   | 19   |                                                   |                                       |         |            |                                         |
|   | 20   | <u> </u>                                          |                                       | -       |            |                                         |
|   | 20   |                                                   | <u> </u>                              |         | لبـــــــا |                                         |

\*\*Estimated Concentration (Response Factor = 1.0)

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Samp | ole #   | 17695                                 |          |       |                                       |
|------|---------|---------------------------------------|----------|-------|---------------------------------------|
| LabF | ile #   | APG077                                | Con. Fa  | actor | 6.0                                   |
| ·    |         |                                       |          |       | Conc **                               |
|      | CAS#    | Compound                              | Q        | RT    | µg/m3                                 |
| 1    | 85-68-7 | Butyl benzyl phthalate                | 94       | 9.73  | 95                                    |
| 2    |         |                                       |          |       |                                       |
| 3    | )       |                                       |          |       |                                       |
| 4    |         | · · · · · · · · · · · · · · · · · · · | L        |       |                                       |
| 5    | ·       | · · · · · · · · · · · · · · · · · · · |          |       |                                       |
| 6    |         |                                       | <u> </u> |       |                                       |
| 7    |         |                                       |          |       |                                       |
| 8    | ·       |                                       |          |       |                                       |
| 9    |         |                                       | ļ        |       |                                       |
| 10   |         |                                       |          | · .   |                                       |
| 11   |         | · · · · · · · · · · · · · · · · · · · |          |       |                                       |
| . 12 |         |                                       |          |       |                                       |
| 13   |         |                                       |          |       |                                       |
| 14   |         |                                       |          |       | · · · · · · · · · · · · · · · · · · · |
| 15   |         |                                       |          |       |                                       |
| 16   |         |                                       |          |       |                                       |
| 17   |         | · · · · · · · · · · · · · · · · · · · | ·        |       |                                       |
| 18   | ·       |                                       |          |       |                                       |
| 19   |         |                                       |          |       |                                       |
| 20   |         |                                       |          |       |                                       |

\*\*Estimated Concentration (Response Factor = 1.0)

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sam  | ple #                                 | 17696                                 |       |         |       |                                       |     |
|------|---------------------------------------|---------------------------------------|-------|---------|-------|---------------------------------------|-----|
| LabF | ile #                                 | APG080                                |       | Con. Fa | ictor | · · · · · · · · · · · · · · · · · · · | 5.6 |
| ·    |                                       |                                       |       |         |       | Conc **                               |     |
|      | CAS#                                  | Compound                              |       | Q       | RT    | µg/m3                                 |     |
| 1    | 85-68-7                               | Butyl benzyl phthalate                |       | 70      | 9.73  |                                       | 85  |
| 2    |                                       |                                       |       |         |       | · · ·                                 |     |
| 3    |                                       |                                       |       |         |       |                                       |     |
| 4    |                                       |                                       |       |         |       |                                       |     |
| 5    |                                       |                                       |       |         |       |                                       |     |
| 6    |                                       | )<br>                                 |       |         |       | ·                                     |     |
| 7    |                                       |                                       |       |         |       |                                       |     |
| 8    |                                       |                                       |       |         |       | <u>-</u>                              |     |
| 9    |                                       | · · · · · · · · · · · · · · · · · · · |       |         |       |                                       |     |
| 10   |                                       |                                       |       | -       |       |                                       |     |
| 11   |                                       |                                       | •     |         |       | · · · · · · · · · · · · · · · · · · · |     |
| 12   |                                       |                                       |       |         |       |                                       |     |
| 13   |                                       |                                       |       |         |       |                                       |     |
| 14   |                                       |                                       |       |         |       |                                       |     |
| 15   |                                       |                                       |       |         |       |                                       |     |
| 16   |                                       |                                       | · · · |         |       | · · · · · · · · · · · · · · · · · · · |     |
| 17   |                                       |                                       |       |         |       |                                       |     |
| 18   | · · · · · · · · · · · · · · · · · · · | · · ·                                 |       |         |       |                                       |     |
| 19   |                                       | · · · · · · · · · · · · · · · · · · · |       |         |       |                                       |     |
| 20   |                                       |                                       |       |         |       |                                       |     |

\*\*Estimated Concentration (Response Factor = 1.0)

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| LabFile #                             |                                       | Con F  |       |                                        |
|---------------------------------------|---------------------------------------|--------|-------|----------------------------------------|
| Labrie #                              | APG083                                | Con. F | actor | 2.0                                    |
| · · · · · · · · · · · · · · · · · · · |                                       |        |       | Conc **                                |
| CAS#                                  | Compound                              | Q      | RT    | Total µg                               |
| 1 85-68                               | -7 Butvi benzyl phthalate             | 94     | 9.73  | 30                                     |
| 2                                     | Unknown                               |        | 15.13 | 12                                     |
| 3                                     |                                       | (      |       |                                        |
| 4                                     |                                       |        |       | · ,                                    |
| 5                                     |                                       |        |       | •                                      |
| 6                                     |                                       |        |       |                                        |
| 7                                     |                                       |        |       |                                        |
| 8                                     |                                       |        |       | ······································ |
| 9                                     | · · · · · · · · · · · · · · · · · · · |        |       |                                        |
| 10                                    |                                       |        |       | · · · · · · · · · · · · · · · · · · ·  |
| 11                                    |                                       |        |       |                                        |
| 12                                    |                                       |        |       |                                        |
| 13                                    |                                       |        |       |                                        |
| 14                                    | · · · · · · · · · · · · · · · · · · · |        |       |                                        |
| 15                                    |                                       |        |       |                                        |
| 16                                    |                                       |        |       | · · · · · · · · · · · · · · · · · · ·  |
| 17                                    |                                       |        |       | <u> </u>                               |
| 18                                    |                                       |        |       | <u> </u>                               |
| 19                                    |                                       |        |       | <u></u>                                |
| 20                                    |                                       |        |       |                                        |

ş

\*\*Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

Sample #

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

| Sample #  | 17698                  |         |       | •        |     |  |
|-----------|------------------------|---------|-------|----------|-----|--|
| LabFile # | APG086                 | Con. Fa | actor |          | 2.0 |  |
| ·····     |                        |         |       | Conc **  | •   |  |
| CAS#      | Compound               | Q       | RT    | Total µg |     |  |
| 1 85-68-7 | Butyl benzyl phthalate | .94     | 9.73  |          | 33  |  |
| 2         | Unknown                |         | 15.14 |          | 14  |  |
| 3         |                        |         |       |          |     |  |
| 4         |                        |         |       |          |     |  |
| . 5       |                        |         | •     | •        |     |  |
| 6         |                        |         |       |          |     |  |
| 7         |                        |         |       | •        |     |  |
| 8         |                        |         |       |          |     |  |
| 9         |                        |         |       |          |     |  |
| 10        |                        |         |       |          |     |  |
| 11        |                        |         |       |          |     |  |
| 12        |                        |         |       |          |     |  |
| 13        |                        |         |       |          |     |  |
| 14        |                        |         |       |          |     |  |
| 15        |                        |         |       |          |     |  |
| 16        |                        | ·       |       |          |     |  |
| 17        |                        |         |       |          |     |  |
| 18        |                        |         |       |          |     |  |
| 19        |                        |         |       |          |     |  |
| 20        |                        |         |       | · ·      |     |  |

\*\*Estimated Concentration (Response Factor = 1.0)

Table 1.3 Results of the Analysis for Inorganic Acids in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample ID<br>Location<br>Air Volume (L):                                                                      | Lot I                                    | 734<br>Blank<br>D                                        | 177<br>Field<br>(                         | Blank                                                    | Trip                                      | 733<br>blank<br>D                                        |                                           |                                                          |                                          | 17700<br>DW-3<br>45.9                                    |                                          |                                                          |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|------------------------------------------|----------------------------------------------------------|------------------------------------------|----------------------------------------------------------|
| Analyte                                                                                                       | Conc<br>mg                               | MDL<br>mg                                                | Conc<br>mg                                | MDL<br>mg                                                | Conc<br>mg                                | MDL<br>mg                                                |                                           |                                                          | Conc<br>mg/m <sup>3</sup>                | MDL<br>mg/m <sup>3</sup>                                 | Conc<br>ppmv                             | MDL<br>ppmv                                              |
| Hydrobromic acid<br>Hydrochloric acid<br>Hydrofluoric acid<br>Nitric acid<br>Phosphoric acid<br>Sulfuric acid | U<br>0.0031<br>U<br>U<br>U<br>0.0050     | 0.0010<br>0.0010<br>0.0011<br>0.0045<br>0.0032<br>0.0010 | บ<br>บ<br>บ<br>บ<br>บ                     | 0.0010<br>0.0010<br>0.0011<br>0.0045<br>0.0032<br>0.0010 | U<br>U<br>U<br>U<br>U<br>0.0013           | 0.0010<br>0.0010<br>0.0011<br>0.0045<br>0.0032<br>0.0010 | -                                         |                                                          | U<br>0.184<br>0.0592<br>U<br>U<br>0.0901 | 0.0220<br>0.0224<br>0.0229<br>0.0980<br>0.0689<br>0.0222 | U<br>0.123<br>0.0724<br>U<br>U<br>0.0225 | 0.0067<br>0.0150<br>0.0280<br>0.0380<br>0.0172<br>0.0055 |
| Sample ID<br>Location<br>Air Volume (L):                                                                      | 17701<br>DW2<br>45.0                     |                                                          |                                           |                                                          |                                           | D                                                        | 702<br>N1<br>5.9                          |                                                          | 17703<br>DW4<br>45.5                     |                                                          |                                          |                                                          |
| Analyte                                                                                                       | Conc<br>mg/m³                            | MDL<br>mg/m <sup>3</sup>                                 | Сопс<br>ррту                              | MDL<br>ppmv                                              | Conc<br>mg/m <sup>3</sup>                 | MDL<br>mg/m <sup>3</sup>                                 | Conc<br>ppmv                              | MDL<br>ppmv                                              | Conc<br>mg/m <sup>3</sup>                | MDL<br>mg/m <sup>3</sup>                                 | Conc<br>ppmv                             | MDL<br>ppmv                                              |
| Hydrobromic acid<br>Hydrochloric acid<br>Hydrofluoric acid<br>Nitric acid<br>Phosphoric acid<br>Sulfuric acid | U<br>U<br>0.0842<br>U<br>U<br>0.105      | 0.0225<br>0.0223<br>0.0234<br>0.1000<br>0.07C2<br>0.0227 | U<br>U<br>0.103<br>U<br>U<br>0.0262       | 0.0068<br>0.0153<br>0.0286<br>0.0388<br>0.0175<br>0.0057 | U<br>0.0578<br>0.0239<br>U<br>U<br>0.0732 | 0.0220<br>0.0224<br>0.0229<br>0.0980<br>0.0689<br>0.0222 | U<br>0.0387<br>0.0292<br>U<br>U<br>0.0182 | 0.0067<br>0.0150<br>0.0280<br>0.0380<br>0.0172<br>0.0055 | U<br>U<br>0.0359<br>U<br>U<br>0.0644     | 0.0222<br>0.0226<br>0.0231<br>0.0989<br>0.0695<br>0.0224 | U<br>U<br>0.0439<br>U<br>U<br>0.0161     | 0.0067<br>0.0152<br>0.0283<br>0.0384<br>0.0173<br>0.0056 |
| Sample ID<br>Location<br>Air Volume (L):                                                                      |                                          | 177<br>DV<br>45                                          |                                           |                                                          | ·······                                   | U                                                        | 705<br>W1<br>1.8                          |                                                          | 17706<br>UW2<br>45.5                     |                                                          |                                          |                                                          |
| Analyte                                                                                                       | Conc<br>mg/m³                            | MDL<br>mg/m <sup>.3</sup>                                | Conc<br>ppmv                              | MDL<br>ppmv                                              | Conc<br>mg/m <sup>3</sup>                 | MDL<br>mg/m <sup>3</sup>                                 | Conc<br>ppmv                              | MDL<br>ppmv                                              | Conc<br>mg/m <sup>3</sup>                | MDL<br>mg/m <sup>3</sup>                                 | Conc<br>ppmv                             | MDL<br>ppmv                                              |
| Hydrobromic acid<br>Hydrochloric acid<br>Hydrofluoric acid<br>Nitric acid<br>Phosphoric acid<br>Sulfuric acid | U<br>0.0281<br>0.0318<br>U<br>U<br>0.162 | 0.0225<br>0.0223<br>0.0234<br>0.10C0<br>0.07C2<br>0.0227 | U<br>0.0188<br>0.0389<br>U<br>U<br>0.0404 | 0.0068<br>0.0153<br>0.0286<br>0.0388<br>0.0175<br>0.0057 | U<br>U<br>U<br>U<br>0.0703                | 0.0242<br>0.0246<br>0.0252<br>0.1077<br>0.0756<br>0.0244 | U<br>U<br>U<br>U<br>0.0175                | 0.0073<br>0.0165<br>0.0308<br>0.0418<br>0.0189<br>0.0061 | U<br>0.0262<br>U<br>U<br>U<br>0.087      | 0.0222<br>0.0226<br>0.0231<br>0.0989<br>0.0695<br>0.0224 | U<br>0.0176<br>U<br>U<br>U<br>0.0217     | 0.0067<br>0.0152<br>0.0283<br>0.0384<br>0.0173<br>0.0056 |

All sample results are lot blank subtracted.

 Table 1.4 Results of the Analysis for Metals in Air

 WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Client ID<br>.ocation<br>Air Volume (L) | Method<br>-<br>0 |           | 176<br>DV<br>54 | <b>V</b> 3   | 176<br>DV<br>54 | V2               | 176<br>DV<br>54 | V1           | 176<br>DV<br>\ 54 | <b>V4</b> .  | 176<br>DV<br>54 | V5           |
|-----------------------------------------|------------------|-----------|-----------------|--------------|-----------------|------------------|-----------------|--------------|-------------------|--------------|-----------------|--------------|
| Parameter                               | Conc<br>µg       | MDL<br>Pg | Conc<br>µg/m³   | MDL<br>µg/m³ | Conc<br>µg/m³   | MDL<br>µg/m³     | Conc<br>µg/m³   | MDL<br>µg/m³ | Conc<br>µg/m³     | MDL<br>µg/m³ | Conc<br>µg/m³   | MDL<br>µg/m³ |
| Aluminum                                | U                | 1.0       | 3.8             | 1.9          | 4.0             | 1.9              | · 1.9           | 1.9          | υ                 | 1.9          | 1.9             | 1.9          |
| Arsenic                                 | υ                | 0.10      | U               | 0.19         | U               | 0.19             | U               | 0.19         | U                 | 0.19         | U               | 0.19         |
| Beryllium                               | U,               | 0.10      | U               | 0.19         | Ų               | 0.19             | U               | 0.19         | υ                 | 0.19         | U               | 0.19         |
| Cadmium                                 | U                | 0.10      | U               | 0.19         | U               | 0.19             | U               | 0.19         | υ                 | 0.19         | U:              | 0.19         |
| Calcium                                 | U                | 2.0       | 34              | 3.7          | 40              | 3.7              | 15              | 3.7          | 11                | 3.7          | 13              | 3.7          |
| Chromium                                | ບ                | 0.10      | 1.0             | 0.19         | 1.1             | 0.19             | . 1.0           | 0.19         | . 1.1             | 0.19         | 0.98            | 0.19         |
| Cobalt                                  | U                | 0.10      | U               | 0.19         | U               | 0.19             | U               | 0.19         | υ                 | 0.19         | U               | 0.19         |
| Copper                                  | U                | 0.10      | U               | 0.19         | 0.22            | 0.1 <del>9</del> | U               | 0.19         | U                 | 0.19         | U               | 0.19         |
| Iron                                    | υ                | 1.0       | 25              | 1.9          | 9.2             | 1.9              | 3.6             | 1.9          | 2.6               | 1.9          | 2.0             | 1.9          |
| Lead                                    | U                | 0.10      | U               | 0.19         | 0.33            | 0.19             | ប               | 0.19         | υ                 | 0.19         | υ               | 0.19         |
| Lithium                                 | υ                | 0.10      | U               | 0.19         | U               | 0.19             | U               | 0.19         | U                 | 0.19         | U               | 0.19         |
| Magnesium                               | U                | 1.0       | 4.2             | 1.9          |                 | 1.9              | 2.0             | 1.9          | U                 |              | U               | 1.9          |
| Manganese                               | IJ               | 0.10      | 1.0             | 0.19         | 1.0             | 0.19             | - U             | 0.19         | U                 | 0.19         | υ '             | 0.19         |
| Molybdenum                              | U                | 0.10      | U               | 0.19         | U               | 0.19             | · U             | 0.19         | บ                 | 0.19         | U               | 0.19         |
| Nickel                                  | U                | 0.20      | υ               | 0.37         | 0.81            | 0.37             | , U             |              | 0.38              |              | U               | 0.37         |
| Phosphorus                              | U                | 0.40      | 1.3             | 0.74         | 2.2             | 0.74             | 1.3             |              | 0.81              | 0.74         | U               | 0.74         |
| Platinum                                | U                | 1.0       | υ               | 1.9          | U               | 1.9              | U               |              | U                 |              | U               | 1.9          |
| Selenium                                | U                | 0.20      | U               | 0.37         | U               | 0.37             | U               |              | U                 |              | U               | 0.37         |
| Silver                                  | U                | 0.10      | U               |              | U               | 0.19             | U               |              | U                 |              | U               | 0.19         |
| Sodium                                  | 11.8             | 6.C       | 17              | 11           | 18              |                  | 17              |              | 16                |              | 11              | 11           |
| Tellurium                               | U                | 1.0       | U               |              | U               | 1.9              | U               |              | U                 |              | U               | 1.9          |
| hallium                                 | U                | 0.40      | U               | 0.74         | U               | 0.74             | U               |              | U                 |              | U               | 0.74         |
| Fin .                                   | U                | 0.40      | U               |              | Ű               | 0.74             | U               |              | U                 |              | U               | 0.74         |
| Titanium                                | U                | 0.10      | U               |              | U               | 0.19             | U<br>U          |              | U<br>U            |              | U<br>U          | 0.19<br>0.19 |
| Vanadium                                | U                | 0.10      | U               |              | U U             | 0.19             |                 | -            | . U               |              | U               | 0.19         |
| Yttrium                                 | U                | 0.20      | U               |              | U<br>2.0        | 0.37<br>0.56     | U<br>0.93       |              | 1.1               |              | 0.81            | 0.37         |
| Zinc                                    | U                | 0.30      | 3.4             |              |                 | 0.56             | 0.93<br>U       |              | י.י<br>ט          |              | U.81            | 0.55         |
| Zirconium                               | U                | 0.20      | U               |              | บ<br>- บ        |                  | U               |              | Ű                 |              | U               | 0.37         |
| Tungsten                                | <u> </u>         | 0.40      | <u>U</u>        | 0.74         | 0               | 0.74             | 0               | 0.74         | 0                 | 0.74         | <u>U</u>        | 0.14         |

Table 1.4 (cont.) Results of the Analysis for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Client ID<br>Location | Location UW1  |              | 176<br>UV     | V2           | 176<br>Field I    | Blank            | Trip E            | 688<br>Blank     | 17689<br>Lot Blank |                  |  |
|-----------------------|---------------|--------------|---------------|--------------|-------------------|------------------|-------------------|------------------|--------------------|------------------|--|
| Air Volume (L)        | 49            | 98           | 54            | ŀO           | 0                 | )                | (                 | )                | 0                  |                  |  |
| Parameter             | Conc<br>µg/m³ | MDL<br>µg/m³ | Conc<br>µg/m³ | MDL<br>µg/m³ | Conc<br>µg/filter | MDL<br>µg/filter | Conc<br>µg/filter | MDL<br>µg/filter | Conc<br>µg/filter  | MDL<br>µg/filter |  |
| Aluminum              | 4.0           | 2.0          | 31            | 1.9          | Ŭ                 | 1.0              |                   | 1.0              | , U                | 1.0              |  |
| Arsenic               | U             | 0.20         | U             | 0.19         | U                 | 0.10             | U                 | 0.10             | U                  | 0.10             |  |
| Beryllium             | U             | 0.20         | · U           | 0.19         | U                 | 0.10             | U                 | 0.10             | U                  | 0.10             |  |
| Cadmium               | U             | 0.20         | ·υ            | 0.19         | U                 | 0.10             | U                 | 0.10             | U                  | 0.10             |  |
| Calcium               | 16            | 4.0          | 22            | 3.7          | 6.6               | 2.0              | 7.6               | 2.0              | 6.2                | 2.0              |  |
| Chromium              | 1.1           | 0.20         | 1.2           | 0.19         | 0.62              | 0.10             | 0.88              | 0.10             | 0.51               | 0.10             |  |
| Cobalt                | U             | 0.20         | U             | 0.19         | U                 | 0.10             | U                 | 0.10             | U                  | 0.10             |  |
| Copper                | U             | 0.20         | U             | 0.19         | υ                 | 0.10             | U                 | 0.10             | U.                 | 0.10             |  |
| Iron                  | 5.7           | 2.0          | 58            | 1.9          | 4.0               | 1.0              | 2.7               | 1.0              | 1.6                | 1.0              |  |
| Lead                  | U             | 0.20         | U             | 0.19         | U                 | 0.10             | U                 | 0.10             | U                  | 0.10             |  |
| Lithium               | U             | 0.20         | U             | 0.19         | U                 | 0.10             | U                 | 0.10             | U                  | 0.10             |  |
| Magnesium             | U             | 2.0          | 30            | 1.9          | U                 | 1.0              | U                 | 1.0              | - U                | 1.0              |  |
| Manganese             | U             | 0.20         | 0.77          | 0.19         | U                 | 0.10             | U                 | 0.10             | U                  | 0.10             |  |
| Molybdenum            | U             | 0.20         | U             | 0.19         | - U               | 0.10             | ່ ປ               | 0.10             | U                  | 0.10             |  |
| Nickel                | 6.9           | 0.40         | 0.55          | 0.37         | 0.44              | 0.20             | 0.23              | 0.20             | U                  | 0.20             |  |
| Phosphorus            | 1.0           | 0.80         | 2.1           | 0.74         | U                 | 0.40             | ່ປ                | 0.40             | ບ                  | 0.40             |  |
| Platinum              | U             | 2.0          | υ             | 1.9          | U                 | 1.0              | U                 | 1.0              | บ                  | 1.0              |  |
| Selenium              | ບ             | 0.40         | U.            | 0.37         | U                 | 0.20             | U                 | 0.20             | U                  | 0.20             |  |
| Silver                | บ             | 0.20         | U             | 0.19         | U                 | 0.10             | U                 | 0.10             | · U                | 0.10             |  |
| Sodium                | 14            | 12           | 18            | 11           | 9.8               | 6.0              | 9.0               |                  | 7.3                | 6.0              |  |
| Tellurium             | U             | 2.0          | U             | 1.9          | · U               | 1.0              | U                 | 1.0              | U                  | 1.0              |  |
| Thallium              | U             | 0.80         | U             | 0.74         | U                 | 0.40             | U                 | 0.40             | U                  | 0.40             |  |
| Tin                   | U             | 0.80         | U             | 0.74         | U                 | 0.40             | U                 |                  |                    | 0.40             |  |
| Titanium              | 0.62          | 0.20         | 0.71          | 0.19         | U                 | 0.10             | υ                 |                  | U                  | 0.10             |  |
| Vanadium              | U             | 0.20         | U             | 0.19         | U                 | 0.10             | U                 |                  | U                  | 0.10             |  |
| Yttrium               | U             | 0.40         | U             | 0.37         | U                 | 0.20             | U                 |                  | U                  | 0.20             |  |
| Zinc                  | 1.7           | 0.60         | 1.2           | 0.56         | 2.1               | 0.30             | 2.4               |                  | 1.1                | 0.30             |  |
| Zirconium             | U             | 0.40         | U             | 0.37         | U                 |                  | U                 |                  |                    | 0.20             |  |
| Tungsten              | U             | 0.80         | <u> </u>      | 0.74         | <u> </u>          | 0.40             | U                 | 0.40             | U                  | 0.40             |  |

Table 1.5 Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample ID<br>Location<br>Volume of Air (L)                                                                                                                                                   |                            | Blank<br>04/12/00<br>0                                                              | •                                              |                             | 17670<br>DW3<br>540                                                                |                                |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------|
| Analyte                                                                                                                                                                                      | Result<br>Pg               | EMPC MDL<br>Pg Pg                                                                   | Adjusted<br>Conc (pg)                          | Result<br>pg/m <sup>3</sup> | EMPC MDL<br>pg/m <sup>3</sup> pg/m <sup>3</sup>                                    | Adjusted<br>Conc (pg/m³)       | TEF                                                                 |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>OCDD                                                                | U                          | 0.72 10.0<br>1.40 10.0<br>25.0<br>3.16 25.0<br>2.20 25.0<br>4.66 25.0<br>16.7 50.0  | บ<br>บ<br>บ<br>บ<br>บ<br>บ                     | 35.7 J                      | 3.89 18.5<br>2.92 18.5<br>4.85 46.3<br>1.22 46.3<br>3.37 46.3<br>2.63 46.3<br>92.5 | U<br>U<br>U<br>U<br>U<br>0.035 | 1<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.01<br>0.001               |
| Total Tetra-Dioxins<br>Total Penta-Dioxins<br>Total Hexa-Dioxins<br>Total Hepta-Dioxins                                                                                                      | ม<br>ม<br>ม<br>ม           |                                                                                     |                                                | U<br>U<br>U<br>U            |                                                                                    |                                |                                                                     |
| 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>OCDF | Մ<br>Մ<br>Մ<br>Մ<br>13.0 J | 10.0<br>10.0<br>2.72 25.0<br>1.38 25.0<br>25.0<br>25.0<br>12.5 25.0<br>25.0<br>50.0 | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ |                             | 2.0418.51.851.8.51.4418.50.25946.30.59246.31.4146.31.4146.37.3346.35.1192.5        |                                | 0.1<br>0.05<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.01<br>0.01<br>0 |
| Total Tetra-Furans<br>Total Penta-Furans<br>Total Hexa-Furans<br>Total Hepta-Furans<br>Total                                                                                                 | ບ<br>ບ<br>ບ<br>ບ           |                                                                                     | 0.0130                                         | ບ<br>ບ<br>ບ<br>ບ            | 46.3<br>92.5                                                                       | 0.035                          |                                                                     |

Table 1.5 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample ID<br>Location<br>Volume of Air (L)                                                                                                                                                   |                        |                                                                        | 673<br>W4<br>0                                                               | • •                                                | 17674<br>DW5<br>540         |                                                                  |                                                                      |                                       |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------|
| Analyte                                                                                                                                                                                      | Result<br>Pg           | EMPC<br>Pg                                                             | MDL<br>Pg                                                                    | Adjusted<br>Conc (pg)                              | Result<br>pg/m <sup>3</sup> | EMPC<br>pg/m <sup>3</sup>                                        | MDL<br>pg/m <sup>3</sup>                                             | Adjusted<br>Conc (pg/m <sup>3</sup> ) | TEF                                                                 |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>OCDD                                                                | 4.20 J<br>27.7<br>73.8 | 0.400<br>0.440<br>3.72<br>3.12                                         | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0                         | U<br>U<br>0.420<br>U<br>0.277<br>0.0738            | U<br>12.6 J<br>94.6         | 0.888<br>1.96<br>6.66<br>2.48                                    | 18.5<br>18.5<br>46.3<br>46.3<br>46.3<br>46.3<br>92.5                 | U<br>U<br>U<br>U<br>0.126<br>0.094    | 1<br>0.5<br>0.1<br>0.1<br>0.1<br>0.01<br>0.001                      |
| Total Tetra-Dioxins<br>Total Penta-Dioxins<br>Total Hexa-Dioxins<br>Total Hepta-Dioxins                                                                                                      | U<br>U<br>4.20<br>27.7 |                                                                        |                                                                              |                                                    | U<br>U<br>U<br>12.6         |                                                                  |                                                                      | •                                     |                                                                     |
| 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>OCDF | 2.32 J                 | 2.10<br>0.980<br>0.700<br>1.76<br>1.56<br>2.58<br>9.64<br>6.36<br>21.3 | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0 | U<br>U<br>0.232<br>U<br>U<br>U<br>U<br>U<br>U<br>U | ບ<br>ບ<br>ບ                 | 0.629<br>0.851<br>0.207<br>0.666<br>2.04<br>14.5<br>6.11<br>14.0 | 18.5<br>18.5<br>18.5<br>46.3<br>46.3<br>46.3<br>46.3<br>46.3<br>92.5 |                                       | 0.1<br>0.05<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.01<br>0.01<br>0 |
| Total Tetra-Furans<br>Total Penta-Furans<br>Total Hexa-Furans<br>Total Hepta-Furans<br>Total                                                                                                 | U<br>U<br>2.32<br>U    |                                                                        |                                                                              | 1.00                                               | U<br>3.18<br>U<br>U         |                                                                  |                                                                      | 0.221                                 |                                                                     |

Table 1.5 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

|                                            |                 |                           |                          | •                        |                             |                           |                          |                                       |       |
|--------------------------------------------|-----------------|---------------------------|--------------------------|--------------------------|-----------------------------|---------------------------|--------------------------|---------------------------------------|-------|
| Sample ID<br>Location<br>Volume of Air (L) |                 | ប                         | 675<br>W1<br>198         |                          |                             | U                         | 7676<br>)W2<br>540       |                                       | •     |
| Analyte                                    | Resuit<br>pg/m³ | EMPC<br>pg/m <sup>3</sup> | MDL<br>pg/m <sup>3</sup> | Adjusted<br>Conc (pg/m³) | Result<br>pg/m <sup>3</sup> | EMPC<br>pg/m <sup>3</sup> | MDL<br>pg/m <sup>3</sup> | Adjusted<br>Conc (pg/m <sup>3</sup> ) | TEF   |
| 2,3,7,8-TCDD                               |                 | 1.73                      |                          | U                        | U                           |                           | 18.5                     | U                                     | 1     |
| 1,2,3,7,8-PeCDD                            | U               |                           | 20.1                     | U                        |                             | 2.04                      |                          | U                                     | 0.5   |
| 1,2,3,4,7,8-HxCDD                          |                 | 1.53                      |                          | υ                        | U                           |                           | 46.3                     | U                                     | 0.1   |
| 1,2,3,6,7,8-HxCDD                          |                 | 3.01                      | 50.2                     | Ŭ -                      | U                           |                           | 46.3                     | U                                     | 0.1   |
| 1,2,3,7,8,9-HxCDD                          |                 | 3.14                      |                          | U                        |                             | 1.48                      |                          | U                                     | 0.1   |
| 1,2,3,4,6,7,8-HpCDD                        |                 | 10.0                      | 50.2                     | U                        |                             | 4.18                      | 46.3                     | U                                     | 0.01  |
| OCDD                                       | 33.0 J          |                           | 100                      | 0.033                    | 30.9 J                      |                           | 92.5                     | 0.030                                 | 0.001 |
| Total Tetra-Dioxins                        | U               |                           |                          |                          | U                           |                           |                          | •                                     |       |
| Total Penta-Dioxins                        | Ŭ               |                           |                          |                          | Ŭ                           |                           |                          |                                       |       |
| Total Hexa-Dioxins                         | Ū               |                           |                          |                          | Ŭ                           |                           |                          |                                       |       |
| Total Hepta-Dioxins                        | υ               |                           |                          |                          | υ                           |                           |                          |                                       | 1     |
|                                            |                 | 1.33                      | 20.1                     | U                        |                             | 1.11                      | 18.5                     | U                                     | 0.1   |
| 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF            |                 | 1.65                      |                          | U                        |                             | 0.481                     | 18.5                     | U.                                    | 0.05  |
| 2,3,4,7,8-PeCDF                            |                 | 0.804                     |                          | Ŭ                        |                             | 0.888                     | 18.5                     | U                                     | 0.05  |
| 1,2,3,4,7,8-HxCDF                          |                 | 1.81                      |                          | ŭ                        |                             | 1.37                      | 46.3                     | Ŭ                                     | 0.1   |
| 1,2,3,6,7,8-HxCDF                          |                 | 1.85                      |                          | Ŭ                        |                             | 1.44                      |                          | Ŭ                                     | 0.1   |
| 1,2,3,7,8,9-HxCDF                          | U               | 1.00                      | 50.2                     | Ŭ                        |                             | 0.925                     |                          | Ŭ -                                   | 0.1   |
| 2,3,4,6,7,8-HxCDF                          | Ũ               | 2.17                      |                          | Ŭ                        | υ                           | 0.020                     | 46.3                     | Ŭ.                                    | 0.1   |
| 1,2,3,4,6,7,8-HpCDF                        |                 | 28.9                      |                          | Ū                        | -                           | 7.84                      |                          | Ŭ                                     | 0.01  |
| 1,2,3,4,7,8,9-HpCDF                        | U               |                           | 50.2                     | Ū                        |                             | 0.703                     | 46.3                     | Ū                                     | 0.01  |
| OCDF                                       | · .             | 12.0                      | 100                      | υ                        | ,                           | 9.47                      | 92.5                     | U                                     | 0.001 |
| Total Tetra-Furans                         | U               |                           |                          |                          | U                           |                           |                          |                                       |       |
| Total Penta-Furans                         | Ŭ               |                           |                          |                          | υ                           |                           |                          |                                       | 1     |
| Total Hexa-Furans                          | U U             |                           |                          |                          | Ŭ                           |                           |                          |                                       | 1 .   |
| Total Hepta-Furans                         | Ŭ               |                           |                          |                          | Ŭ                           |                           |                          |                                       |       |
| Total                                      |                 |                           |                          | 0.033                    |                             |                           |                          | 0.030                                 | · ,   |

 Table 1.5 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

 WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample ID<br>Location<br>Volume of Air (L)                                                                                                                                                   |                  |                                                           | 7677<br>Blank<br>O                                                   |                                 |                     |                                                         | 7678<br>d Blank<br>0                                                 | •                          | •<br>•                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|---------------------|---------------------------------------------------------|----------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------|
| Analyte                                                                                                                                                                                      | Result<br>P9     | EMPC<br>Pg                                                | MDL<br>Pg                                                            | Adjusted<br>Conc (pg)           | Result<br>Pg        | EMPC<br>Pg                                              | MDL<br>Pg                                                            | Adjusted<br>Conc (pg)      |                                                                     |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>OCDD                                                                | U<br>U<br>12.2 J | 0.720<br>0.280<br>0.920<br>1.84                           | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0                 | U<br>U<br>U<br>U<br>U<br>0.0122 | U                   | 0.840<br>0.880<br>1.80<br>0.840<br>2.16<br>21.3         | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0                 |                            | 1<br>0.5<br>0.1<br>0.1<br>0.1<br>0.01<br>0.001                      |
| Total Tetra-Dioxins<br>Total Penta-Dioxins<br>Total Hexa-Dioxins<br>Total Hepta-Dioxins                                                                                                      | บ<br>บ<br>บ<br>บ |                                                           |                                                                      | · · · ·                         | บ<br>บ<br>บ<br>บ    |                                                         |                                                                      | U<br>U<br>U<br>U<br>U<br>U |                                                                     |
| 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>OCDF | ບ<br>ບ<br>ບ      | 0.780<br>0.680<br>0.520<br>0.600<br>0.520<br>3.38<br>2.82 | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0 |                                 | U<br>U<br>U         | 1.00<br>0.240<br>0.260<br>1.04<br>2.64<br>0.720<br>6.70 | 10.0<br>10.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>50.0 |                            | 0.1<br>0.05<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.01<br>0.01<br>0 |
| Total Tetra-Furans<br>Total Penta-Furans<br>Total Hexa-Furans<br>Total Hepta-Furans<br>Total                                                                                                 | ບ<br>ບ<br>ບ      |                                                           | • .                                                                  | 0.0122                          | U<br>1.96<br>U<br>U |                                                         |                                                                      | U                          |                                                                     |

 Table 1.5 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

 WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Sample ID<br>Location<br>Volume of Air (L)                                                                                                                                                   |                            | 17679<br>Lot Blank<br>0                                                                        |                                                      |   | - |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|---|---|---------------------------------------------------------------------|
| Analyte                                                                                                                                                                                      | Result<br>Pg               | EMPC MDI<br>pg pg                                                                              | Adjusted<br>Conc (pg)                                | , |   | TEF                                                                 |
| 2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,4,6,7,8-HpCDD<br>OCDD                                                                | 0.660 J                    | 1.70 10.0<br>1.02 10.0<br>1.06 25.0<br>0.500 25.0<br>25.0<br>0.330 25.0<br>20.9 50.0           | D U<br>D U<br>D U<br>D 0.0660<br>D U                 |   |   | 1<br>0.5<br>0.1<br>0.1<br>0.1<br>0.01<br>0.001                      |
| Total Tetra-Dioxins<br>Total Penta-Dioxins<br>Total Hexa-Dioxins<br>Total Hepta-Dioxins                                                                                                      | U<br>U<br>0.660<br>U       |                                                                                                |                                                      |   |   |                                                                     |
| 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>DCDF | U<br>U<br>U<br>U<br>4.22 J | 10.<br>10.<br>10.<br>1.20 25.<br>0.440 25.<br>25.<br>25.<br>5.64 25.<br>25.<br>5.64 25.<br>25. | 0 U<br>0 U<br>0 U<br>0 U<br>0 U<br>0 U<br>0 U<br>0 U |   |   | 0.1<br>0.05<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.01<br>0.01<br>0 |
| Total Tetra-Furans<br>Total Penta-Furans<br>Total Hexa-Furans<br>Total Hepta-Furans<br>Total                                                                                                 | ບ<br>ບ<br>ບ                |                                                                                                | 0.0702                                               |   |   |                                                                     |

00027

#### Results of the BS/BSD Analysis for PAH in Air

An XAD lot blank and a lot blank filter were chosen for the blank spike/blank spike duplicate (BS/BSD) analyses. The percent recoveries, for the XAD lot blank, ranging from 95 to 132, are listed in Table 2.1. The relative percent differences, also listed in Table 2.1, ranged from zero (0) to 6. The percent recoveries, for the lot blank filter. ranging from 82 to 96, are also listed in Table 2.1. The relative percent differences, also listed from zero (0) to 4. QC limits are not available for either the percent recoveries or the relative percent differences for this analysis.

#### 00110\DEL\AR\0005\APGBurtar

### nnn28

# Table 2.1 Results of BS/BSD Analysis for PAH in AirWA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

ł

Sample ID: XAD Spike

| Compound                | Spike<br>Added<br>µg | BS<br>Rec.<br>μg | % Rec.           | BSD<br>Rec.<br>μg | % Rec. | RPD    |
|-------------------------|----------------------|------------------|------------------|-------------------|--------|--------|
| Na-beb alarra           | 50                   | 50.02            | 100              | 50.73             | 101    | ·      |
| Naphthalene             | 50<br>50             | 50.02            | 100              | 50.73             | 101    | 2      |
| 2-Methylnaphthalene     |                      |                  |                  |                   |        |        |
| 1-Methylnaphthalene     | 50                   | 52.95            | 106              | 53.81             | 108    | 2<br>2 |
| Biphenyl                | 50                   | 50.63            | 101              | 51.75             | 103    |        |
| 2,6-Dimethylnaphthalene | 50                   | 49.41            | 99<br>08         | 50.51             | 101    | 2      |
| Acenaphthylene          | 50                   | 49.07            | 98               | 49.70             | 99     | 1      |
| Acenaphthene            | 50                   | 49.56            | 99               | 49.02             | 98     | I      |
| Dibenzofuran            | 50                   | 50.37            | 101              | 50.47             | 101    | 0      |
| Fluorene                | 50                   | 50.12            | 100              | 49.76             | 100    | 1      |
| Phenanthrene            | 50                   | 47.69            | 95               | 47.58             | 95     | 0      |
| Anthracene              | 50                   | 47.56            | 95               | 48.93             | 98     | 3      |
| Carbazole               | 50                   | 49.10            | 98               | 48.48             | 97     | 1      |
| Fluoranthene            | 50                   | 50.81            | 102              | 51.52             | 103    | 1      |
| Pyrene                  | 50                   | 50.59            | 101              | 50.28             | 101    | 1      |
| Benzo(a)anthracene      | 50                   | 51.55            | 103              | 51.53             | 103    | 0      |
| Chrysene                | <b>50</b> ·          | 65.94            | 132              | 66.08             | 132    | 0      |
| Benzo(b)fluoranthene    | 50                   | 51.85            | . 104            | 51.52             | 103    | _ 1    |
| Benzo(k)fluoranthene    | 50                   | 51.71            | 103              | 54.93             | 110    | 6      |
| Benzo(e)pyrene          | 50                   | 52.94            | <sup>·</sup> 106 | 53.19             | 106    | 1 /    |
| Benzo(a)pyrene          | 50                   | 55.93            | 112              | 52.47             | 105    | 6      |
| Indeno(1,2,3-cd)pyrene  | 50                   | 53.51            | 107              | 53.66             | 107    | 0      |
| Dibenzo(a,h)anthracene  | 50                   | 54.32 -          | 109              | 53.84             | 108    | 1      |
| Benzo(g,h,i)perylene    | 50                   | 53.69            | 107              | 53.45             | 107    | 1      |

00110/del/ar/0005/APGBurnres

00029

### Table 2.1 (cont.) Results of BS/BSD Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

### Sample ID: Filter Spike

|                         | Spike | BS    | •      | BSD   |        |     |
|-------------------------|-------|-------|--------|-------|--------|-----|
|                         | Added | Rec.  |        | Rec.  |        |     |
| Compound                | μg    | μg    | % Rec. | μg    | % Rec. | RPD |
| Naphthalene             | 50    | 46.32 | 93     | 45.88 | 92     | 1   |
| 2-MethyInaphthalene     | 50    | 45.10 | 90     | 44.80 | 90     | 0.7 |
| 1-Methylnaphthalene     | 50    | 48.10 | 96     | 48.24 | 96     | 0 / |
| Biphenyl                | 50    | 45.90 | 92     | 45.20 | 90     | 2   |
| 2,6-Dimethylnaphthalene | 50    | 44.46 | 89     | 44.94 | 90     | 1   |
| Acenaphthylene          | 50    | 44.10 | 88     | 44.40 | 89     | 1   |
| Acenaphthene            | 50    | 46.78 | 94     | 44.98 | 90     | 4   |
| Dibenzofuran            | 50    | 45.64 | 91     | 44.70 | 89     | 2   |
| Fluorene                | 50    | 45.00 | 90     | 44.88 | 90     | 0   |
| Phenanthrene            | 50    | 45.10 | 90     | 45.50 | 91     | 1   |
| Anthracene              | 50    | 47.32 | 95     | 47.26 | 95     | . 0 |
| Carbazole               | 50    | 45.02 | 90     | 44.36 | 89     | 1   |
| Fluoranthene            | 50    | 44.94 | 90     | 44.38 | 89     | 1   |
| Pyrene                  | 50    | 45.80 | 92     | 44.82 | 90     | 2   |
| Benzo(a)anthracene      | 50    | 44.36 | 89     | 43.46 | 87     | 2   |
| Chrysene                | 50    | 46.96 | 94     | 46.74 | 93     | 1   |
| Benzo(b)fluoranthene    | 50    | 42.18 | 84     | 40.78 | 82     | 3   |
| Benzo(k)fluoranthene    | 50    | 43.64 | 87     | 45.02 | 90     | 3   |
| Benzo(e)pyrene          | 50    | 43.28 | 87     | 42.50 | 85     | 2   |
| Benzo(a)pyrene          | 50    | 44.12 | 88     | 42.68 | 85     | 3   |
| Indeno(1,2,3-cd)pyrene  | 50    | 43.02 | 86     | 41.78 | 84     | 3   |
| Dibenzo(a,h)anthracene  | 50    | 43.04 | 86     | 41.74 | 83     | 3   |
| Benzo(g,h,i)perylene    | 50    | 42.92 | 86     | 42.88 | 86     | 0   |

#### Results of the BS/BSD Analysis for Inorganic Acids in Air

A blank spike/blank spike duplicate analysis (BS/BSD) was run. The percent recoveries, listed in Table 2.2, ranged from 83 to 105. All twelve values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.2, ranged from 0 (zero) to 9. QC limits are not available for the RPD.

#### 00110\DEL\AR\0005\APGBurtar

Table 2.2 Results of the BS/BSD Analysis for Inorganic Acids in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Original    | Conc                                                         | Recover                                                                                  | ed Conc                                                                                                                | % Rec                                                                                                                                                                                                                                   | overy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RPD                                                                                                                                                                                                                    | Recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spike<br>mg | Dup<br>mg                                                    | Spike<br>mg                                                                              | Dup<br>mg                                                                                                              | Spike                                                                                                                                                                                                                                   | Dup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                        | QC Limits<br>% Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0808      | 0.0808                                                       | 0.0843                                                                                   | 0.0845                                                                                                                 | 104                                                                                                                                                                                                                                     | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                      | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0413      | 0.0413                                                       | 0.0423                                                                                   | 0.0414                                                                                                                 | 102                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                      | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0211      | 0.0211                                                       | 0.0191                                                                                   | 0.0175                                                                                                                 | 91                                                                                                                                                                                                                                      | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                      | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0812      | 0.0812                                                       | 0.0808                                                                                   | 0.0808                                                                                                                 | 100                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                      | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.118       | 0.118                                                        | 0.110                                                                                    | 0.115                                                                                                                  | 93                                                                                                                                                                                                                                      | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                      | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0817      | 0.0817                                                       | 0.0846                                                                                   | 0.0852                                                                                                                 | 104                                                                                                                                                                                                                                     | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                      | 75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | Spike<br>mg<br>0.0808<br>0.0413<br>0.0211<br>0.0812<br>0.118 | mg mg<br>0.0808 0.0808<br>0.0413 0.0413<br>0.0211 0.0211<br>0.0812 0.0812<br>0.118 0.118 | Spike<br>mgDup<br>mgSpike<br>mg0.08080.08080.08430.04130.04130.04230.02110.02110.01910.08120.08120.08080.1180.1180.110 | Spike<br>mgDup<br>mgSpike<br>mgDup<br>mg0.0808<br>0.08080.0843<br>0.08430.0845<br>0.08430.0413<br>0.04130.0413<br>0.04230.0414<br>0.04140.0211<br>0.02110.0191<br>0.01910.0175<br>0.01750.0812<br>0.08120.0808<br>0.08080.0808<br>0.118 | Spike<br>mg         Dup<br>mg         Spike<br>mg         Dup<br>mg         Spike<br>mg         Dup<br>mg         Spike<br>mg           0.0808         0.0808         0.0843         0.0845         104           0.0413         0.0413         0.0423         0.0414         102           0.0211         0.0211         0.0191         0.0175         91           0.0812         0.0808         0.0808         100           0.118         0.118         0.110         0.115         93 | Spike<br>mgDup<br>mgSpike<br>mgDup<br>mgSpike<br>mgDup<br>mg0.0808<br>0.0808<br>0.0413<br>0.0413<br>0.0413<br>0.0413<br>0.0413<br>0.0413<br>0.0413<br>0.0413<br>0.0413<br>0.0413<br>0.0414<br>0.0414<br>102<br>100<br> | Spike         Dup<br>mg         Spike<br>mg         Dup<br>mg         Spike<br>mg         Dup<br>mg         Spike         Dup           0.0808         0.0808         0.0843         0.0845         104         105         0           0.0413         0.0413         0.0423         0.0414         102         100         2           0.0211         0.0211         0.0191         0.0175         91         83         9           0.0812         0.0808         0.0808         100         100         0           0.118         0.110         0.115         93         97         4 |

#### Results of the BS/BSD Analysis for Metals in Air

A blank spike/blank spike duplicate analysis (BS/BSD) was run. The percent recoveries, listed in Table 2.3, ranged from 8 to 134. Fifty out of fifty-eight values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.3, ranged from 0 (zero) to 20. QC limits are not available for the RPD.

#### Results of the Analysis of the Laboratory Control Sample for Metals in Air

A laboratory control samples was also analyzed. The percent recoveries ranged from 7 to 116 and are listed in Table 2.4. Twenty-eight out of twenty-nine concentrations were within the acceptable QC limits.

00033

#### 00110\DEL\AR\0005\APGBurt:ar

Table 2.3 Results of the BS/BSD Analysis for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

|            | Lot       |           |                |           |           |       |       |     | -           |
|------------|-----------|-----------|----------------|-----------|-----------|-------|-------|-----|-------------|
| Metal      | Blank     | Origina   | al Conc        | Recovere  | ed Conc   | % Rec | overy | RPD | Recommended |
|            | Conc      | Spike     | Dup            | Spike     | Dup       | Spike | Dup   |     | QC Limit    |
|            | µg/filter | µg/filter | µg/filter      | µg/filter | µg/filter | •     | •     |     | % Rec       |
|            |           |           |                |           | · - · · · |       |       |     |             |
| Aluminum   | Ū         | 40.00     | 40.00          | 44.49     | 44.56     | 111   | 111   | 0   | 75-125      |
| Arsenic    | ັບ        | 40.0D     | 40.00          | 43.98     | 44.17     | 110   | 110   | 0   | 75-125      |
| Beryllium  | Ū         | 1.00      | 1.00           | 1.04      | 1.05      | 104   | 105   | Ő   | 75-125      |
| Cadmium    | Ū         | 1.00      | 1.00           | 1.09      | 1.09      | 109   | 109   | 0   | 75-125      |
| Calcium    | 6.2       | 1000      | 1000           | 1058      | 1062      | 105   | 105   | 0   | 75-125      |
| Chromium   | 0.51      | 4.00      | 4.00           | 5.07      | 5.29      | 114   | 120   | 5   | 75-125      |
| Cobalt     | U         | 10.00     | 10.00          | 10.29     | 10.37     | 103   | 104   | 1   | 75-125      |
| Copper     | Ŭ         | 5.00      | 5.00           | 5.40      | 5.43      | 108   | 109   | . 1 | 75-125      |
| Iron       | 1.6       | 20.00     | 20.00          | 21.29     | 21.99     | 98    | 102   | 3   | 75-125      |
| Lead       | U         | 10.00     | 10.00          | 10.69     | 10.74     | 107   | 102   | õ   | 75-125      |
| Lithium    | Ū         | 40.00     | 40.00          | 43.52     | 44.06     | 109   | 110   | 1   | 75-125      |
| Magnesium  | Ū         | 1000      | 1000           | 1069      | 1072      | 107   | 107   | ò   | 75-125      |
| Manganese  | U         | 10.00     | 10.00          | 10.65     | 10.72     | 107   | 107   | 1   | 75-125      |
| Molybdenum | Ū         | 40.00     | 40.00          | 44.04     | 44.30     | 110   | 111   | - 1 | 75-125      |
| Nickel     | U         | 10.00     | 10.00          | 10.52     | 10.50     | 105   | 105   | O   | 75-125      |
| Phosphorus | ບ່        | 40.00     | 40.00          | 50.42     | 50.81     | 126 * |       | 1   | 75-125      |
| Platinum   | U         | 40.00     | 40.00          | 42.03     | 41.60     | 105   | 104   | 1   | 75-125      |
| Selenium   | . U       | 40.CO     | 40.00          | 42.56     | 42.44     | 106   | 106   | Ō   | 75-125      |
| Silver     | U         | 1.00      | 1.00           | 1.10      | 1.11      | 110   | 111   | Ō   | 75-125      |
| lodium     | 7.3       | 1000      | 1000           | 974       | 983       | 97    | 98    | 1   | 75-125      |
| Fellurium  | U         | 40.00     | 40.00          | 3.29      | 3.44      | 8 *   | 9 •   | 4   | 75-125      |
| Thallium   | U         | 40.CD     | 40.00          | 44.27     | 44.02     | 111   | 110   | 1   | 75-125      |
| Tin        | . U       | 40.00     | 40.00          | 52.36     | 52.70     | 131 • | 132 * | 1   | 75-125      |
| Titanium   | U         | 40.00     | 40.00          | 42.70     | 42.51     | 107   | 106   | 0   | 75-125      |
| Vanadium   | U         | 10.CO     | 1 <b>0</b> .00 | 10.50     | 10.56     | 105   | 106   | 1   | 75-125      |
| Yttrium    | υ         | 40.CO     | 40.00          | 43.51     | 43.31     | 109   | 108   | 0   | 75-125      |
| Zinc       | 1.1       | 10.00     | 10.00          | 11.43     | 11.41     | 103   | 103   | 0   | 75-125      |
| Zirconium  | U         | 40.00     | 40.00          | 53.59     | 52.21     | 134 • | 131 * | 3   | 75-125      |
| Tungsten   | <u> </u>  | 40.00     | 40.00          | 42.05     | 34.50     | 105   | 86    | 20  | 75-125      |

.

00034

### Table 2.4 Results of the Analysis of the Laboratory Control Sample for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

| Metal      | Analyzed<br>Value<br>µg/L | Accepted<br>Value<br>µg/L | %<br>Rec         | QC Limits<br>% Rec |
|------------|---------------------------|---------------------------|------------------|--------------------|
| Aluminum   | 4301.16                   | 4000                      | 108              | 80-120             |
| Arsenic    | 4299.25                   | 4000                      | 108              | 80-120             |
| Beryllium  | 103.75                    | 100                       | 104              | 80-120             |
| Cadmium    | 107.18                    | 100                       | 107              | 80-120             |
| Calcium    | 52777.01                  | 50000                     | 106              | 80-120             |
| Chromium   | 430.77                    | 400                       | 108              | 80-120             |
| Cobalt     | 1025.19                   | 1000                      | 103              | 80-120             |
| Copper     | 528.69                    | 500                       | 106              | 80-120             |
| Iron       | 2038.85                   | 2000                      | 102              | 80-120             |
| Lead       | 1058.99                   | 1000                      | 106              | 80-120             |
| Lithium    | 2162.79                   | 2000                      | 108              | 80-120             |
| Magnesium  | 53539.27                  | 50000                     | 107              | 80-120             |
| Manganese  | 1055.69                   | 1000                      | 106              | 80-120             |
| Molybdenum | 2202.15                   | 2000                      | <sup>.</sup> 110 | 80-120             |
| Nickel     | 1024.3                    | 1000                      | 102              | 80-120             |
| Phosphorus | 2197.74                   | 2000                      | 110              | 80-120             |
| Platinum   | 2123                      | 2000                      | 106              | 80-120             |
| Selenium   | 4167.54                   | 4000                      | 104              | 80-120             |
| Silver     | 107.28                    | 100                       | 107              | 80-120             |
| Sodium     | 48612.46                  | 50000                     | 97               | 80-120             |
| Tellurium  | 133.3                     | 2000                      | 7                | * 80-120           |
| Thallium   | 4446.75                   | 4000                      | 111              | 80-120             |
| Tin        | 2324.71                   | 2000                      | 116              | 80-120             |
| Titanium   | 2122.45                   | 2000                      | 106              | 80-120             |
| Vanadium   | 1047.41                   | 1000                      | 105              | 80-120             |
| Yttrium    | 2178.35                   | 2000                      | 109              | 80-120             |
| Zinc       | 1061.42                   | · 1000                    | 106              | 80-120             |
| Zirconium  | 2269.74                   | 2000                      | 113              | 80-120             |
| Tungsten   | 2035.00                   | 2000                      | 102              | 80-120             |

QA/QC for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

Results of the Internal Standard Recoveries for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

The internal standard percent recoveries, listed in Table 2.5, ranged from 70 to 138, One hundred and fifteen out of one hundred and seventeen values were within the acceptable QC limits.

Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

A blank was spiked in duplicate and analyzed. The percent recoveries, listed in Table 2.6, ranged from 76 to 114. All thirty-four values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.6, ranged from 0 (zero) to 16. All 17 RPDs were within the acceptable QC limits.

00036

#### 00110\DEL\AR\0005\APGBurnar

#### Table 2.5 Results of the Internal Standard Recoveries for Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support and Underwater Survey Activites

| Sample ID                  | Method<br>Blank | 17670 | 17671 | 17672 | 17673 | 17674 |   | QC<br>Limits |
|----------------------------|-----------------|-------|-------|-------|-------|-------|---|--------------|
| Units<br>Internal Standard | <b>%</b>        | %     | %     | %     | %     | %     |   |              |
| 13C-2,3,7,8-TCDD           | 90              | 94    | 102   | 98    | 92    | 98    |   | 40-135       |
| 13C-1,2,3,6,7,8-HxCDD      | 107             | 109   | 116.  | 117   | 116   | 117   |   | 40-135       |
| 13C-2,3,7,8-TCDF           | 91              | 103   | 103   | 108   | 108   | 112   |   | 40-135       |
| 13C-1,2,3,4,7,8-HxCDF      | 111             | 114   | 104   | 100   | 121   | 122   |   | 40-135       |
| 13C-1,2,3,7,8-PeCDD        | 98              | 121   | 118   | 118   | . 135 | 133   |   | 40-135       |
| 13C-1,2,3,4,6,7,8-HpCDD    | 94              | 107   | 98    | 102   | 101   | 90    |   | 40-135       |
| 13C-1,2,3,7,8-PeCDF        | 104             | 106   | 109   | 112   | 127 · | 137   | * | 40-135       |
| 13C-1,2,3,4,6,7,8-HpCDF    | 84              | 105   | 92    | 90    | 108   | 108   |   | 40-135       |
| 13C-OCDD                   | 99              | 103   | 111   | 88    | 128   | 128   |   | 40-135       |

| Sample ID                  | 17675 | 17676 | 17677 | 17678 | 17679 | Blank<br>Spike | Blank<br>Spike Duplicate | QC<br>Limits |
|----------------------------|-------|-------|-------|-------|-------|----------------|--------------------------|--------------|
| Units<br>Internal Standard | %     | %     | %     | %     | %     | %              | Spike Dupicate<br>%      | Linits       |
| 13C-2,3,7,8-TCDD           | 97    | 94    | 85    | 83    | 88    | 86             | 98                       | 40-135       |
| 13C-1,2,3,6,7,8-HxCDD      | 113   | 114   | 114   | 115   | 122   | 126            | 119                      | 40-135       |
| 13C-2,3,7,8-TCDF           | 112   | 110   | 100   | 96    | 91    | 95             | 109                      | 40-135       |
| 13C-1,2,3,4,7,8-HxCDF      | 117   | 127   | 118   | 118   | 109   | 105            | 101                      | 40-135       |
| 13C-1,2,3,7,8-PeCDD        | 126   | 138 * | 114   | 113   | 110   | 111            | 115                      | 40-135       |
| 13C-1,2,3,4,6,7,8-HpCDD    | 87    | 90    | 70    | 107   | · 116 | 104            | 114                      | 40-135       |
| 13C-1,2,3,7,8-PeCDF        | 132   | 132   | 110   | 111   | 102   | 102            | 105                      | 40-135       |
| 13C-1,2,3,4,6,7,8-HpCDF    | 110   | 119   | 104   | 104   | . 108 | 109            | 113                      | 40-135       |
| 13C-OCDD                   | 127   | 121   | 130   | 110   | 116   | 128            | 123                      | 40-135       |

00037

00110\DEL\AR\0005\APGBurnSWRIres

### Table 2.6 Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support and Underwater Survey Activites

| Sample ID Blank<br>Parameter<br>Units | Spike<br>Pg  | Blank<br>Conc<br>pg | BS<br>Conc<br>pg | Rec<br>% | BSD<br>Conc<br>Pg | Rec<br>%  | RPD                                    | Q(<br>Lim<br>%<br>Rec    |          |
|---------------------------------------|--------------|---------------------|------------------|----------|-------------------|-----------|----------------------------------------|--------------------------|----------|
| 2378-TCDD                             | 200          | U                   | 221              | 111      | 227               | 114       | 3                                      | 60.140                   | 50       |
| 12378-PeCDD                           | 200          | ະ ປ                 | 204              | 102      | 203               | 102       | 0                                      | 60-140<br>60-140         | 50       |
| 12378-Pecbb<br>123478-HxCDD           | 500 ,        | U                   | 204<br>542       | 102      | 203<br>553        | 102       | 2                                      | 60-140<br>60-140         | 50       |
| 123678-HxCDD                          | 500 .<br>500 | U                   | 447              | 89       | 452               | 90        |                                        | 60-140<br>60-140         | 50       |
| 123789-HxCDD                          | 500          | 0.66                | 385              | 77       | 452<br>385        | .77       | <u>1</u><br>0                          | 60-140<br>60-140         | 50       |
| 1234678-HpCDD                         | 500          | U.88                | 555              | 111      | 505<br>513        | 103       | 8                                      | 60-140                   | 50       |
| OCDD                                  | 1000         | U                   | 940              | 94       | 873               | 87        | 0.<br>7                                | 60-140                   | 50<br>50 |
| 2378-TCDF                             | 200          | U                   | 940<br>173       | 94<br>87 | 166               | 83        |                                        | 60-140<br>60-140         |          |
| 12378-PeCDF                           | 200          | ·U                  | 190              | 95       | 179               | 90        | 4<br>6                                 | 60-140                   | 50<br>50 |
| 23478-PeCDF                           | 200          | U                   | 190              | 99       | 204               | 90<br>102 | 3                                      | 60-140<br>60-140         | 50       |
| 123478-HxCDF                          | 200<br>500   | U                   | 499              | 100      | - 521             | 102       |                                        | 60-140<br>60-140         | 50       |
| 123678-HxCDF                          | 500          | . U                 | 433              | 89       | 450               | 90        | ······································ | 60-140<br>60-140         | 50<br>50 |
| 123789-HxCDF                          | 500          | U                   | 427              | 85       | 465               | 93        | 9                                      | 60-1 <u>40</u><br>60-140 | 50       |
| 234678-HxCDF                          | 500          | U.                  | 486              | 97       | 512               | 102       | 5                                      | 60-140<br>60-140         | 50       |
| 1234678-HpCDF                         | 500          | U                   | 468              | 94       | 459               | 92        | 2                                      | 60-140<br>60-140         | 50       |
| 1234789-HpCDF                         | 500          | Ŭ                   | 520              | 104      | 445               | 89        | 16                                     | 60-140<br>60-140         | 50       |
| OCDF                                  | 1000         | 4.22                | 767              | 76       | 815               | 81        | 6                                      | 60-140                   | 50       |
|                                       |              |                     |                  |          |                   |           |                                        |                          |          |

ockheed Martin Technology Services Group nvironmental Services REAC 890 Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679 elephone 732-321-4200 Facsimile 732-494-4821

LOCKHEED MARTIN 2

#### Southwest Research Institute PO Box 28510, 6220 Culebra Road San Antonio, TX 78228-0510

Attn: Jo Ann Boyd

19 November 1999

Project # RIA-00011 APG Burn Support

As per Lockheed Martin / REAC Purchase Order GA91969J73, please analyze samples according to the following parameters:

| Analysis Method                                 | Matrix | # of<br>samples |
|-------------------------------------------------|--------|-----------------|
| Dioxin/ Furans / Modified TO9                   | Air    | 20              |
| Inorganic Acids / NIOSH 7903                    | Air    | 20              |
| Metals/ NIOSH 7300                              | Air    | 20              |
| Data package: Package with Diskette Deliverable |        |                 |

Samples are expected to arrive at your laboratory between November 23-December 31, 1999. All applicable QA/QC BS/BSD) analysis as per method, will be performed on our sample matrix. <u>Preliminary sample and QC result</u> <u>ables plus a signed copy of our Chain of Custody must be faxed to REAC 10 business days after receipt of the last</u> <u>samples</u>. The complete data package is due 21 business days after receipt of the last samples. The complete data package must include all items on the deliverables checklist. Expect all samples to be difficult matrix and all raw data must be included in final analytical report.

All sample and QC results(ie: BS-BSD, LCS, Duplicates, and Blanks) must be summarized in a ExCel diskette deliverable.

Please submit all reports and technical questions concerning this project to John Johnson at (732) 321-4248 or fax to (732) 494-4020.

Sinderely. Deborah Killeen

Data Validation and Report Writing Group Leader Lockheed Martin / REAC Project

DK:jj Attachments

œ.

R. Singhvi D. Michunas 0011\non\mem\9911\sub'0011Con D. Miller Subcontracting File D. Angwenyi C. Lentini A. DuBois D. Killeen 400 NA 22 N3:00%

**Inorganic Acids** 

Hydrofluonic Acids

Hydrochloric Acids

Phosophoric acid

Hydrobromic acid

Ninc acid

Suffuric acid

# 000010

)

)

1.00 M 100

#### APG Burn Compound List

NIOSH 7300 Metals Aluminum Arsenic Beryllium Cadmium Calcium Chromium Cobelt Copper Iron Lead Lithium Magnesium Menganese Molybdenum Nickel Phosphorus Platinum Selenium Silver Socium Tellutum Tungsten Thallum Titanium Vanadium Ythium Zinc Zirconium

### 00040

|                                         | •                 | Comula Id                            |             | Project Numb<br>M- <del>RPW</del> Contac | · (             | - • ·                                 | •        | <u>494-4013</u> | SHEET N    | 0. <u>/</u> 0F_/ |
|-----------------------------------------|-------------------|--------------------------------------|-------------|------------------------------------------|-----------------|---------------------------------------|----------|-----------------|------------|------------------|
|                                         |                   | Sample Id                            |             |                                          | r               | ·                                     |          | alyses Requ     | ested      | r                |
| REAC #                                  | Sample No.        | Sampling Location                    | Matrix      | Date Collected                           | # of Bottles    | Container/Preservative                | 10lumel  | L) Daxins       | 1          | ·                |
| ~                                       | 17670             | DW3                                  | A           | 4/6/00                                   |                 | AMBERJAR/KE                           |          |                 | <u> </u>   | ·                |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 17671             | Dul2                                 |             | Ì                                        |                 |                                       | 540      | /               | - <u> </u> | /                |
|                                         | 7672              | Dist                                 |             |                                          |                 |                                       | 540      |                 | <u> </u>   | /_               |
|                                         | 7673              | Divy                                 | <u> </u>    | <u> </u>                                 | }               |                                       | Ø        |                 | - <u> </u> | /                |
|                                         | 17674             | DWS                                  |             | <b> </b>                                 |                 | · · · · · · · · · · · · · · · · · · · | 540      |                 |            | <i>i</i> /       |
|                                         | 14675             |                                      |             | <b>├───</b> ┤────                        | ╏╼╼╼┨╼╼╼╼╧      |                                       | 498      |                 |            | /                |
|                                         | 1'2676            | LINZ.                                |             | <u> </u>                                 |                 |                                       | 540      |                 |            | /                |
|                                         | 1 / 671           | TRIP BLANK                           | t           |                                          | ┟╌╼┦╍╍╼╧        |                                       | Ø        |                 |            |                  |
|                                         | 17678             | FiziDBANN                            | F           |                                          | { <u>{</u>      |                                       | Ŭ<br>B   |                 | -          | (a)              |
| ~                                       | 17679             | LOT RIANK                            |             | <u> ,</u>                                | 7               |                                       |          |                 | - ¥        | Ker              |
|                                         |                   | 150/16SD                             |             | <b>↓</b>                                 |                 | Ψ                                     | Ø        |                 | /          | <u> </u>         |
|                                         |                   | <hr/>                                |             |                                          |                 |                                       |          | 4               | - /        | _ <u></u>        |
|                                         |                   |                                      |             |                                          |                 |                                       |          | <del></del>     | /          | <u> </u>         |
|                                         |                   |                                      |             |                                          | <u>60</u>       |                                       |          |                 |            | <u> </u>         |
|                                         |                   |                                      |             |                                          |                 |                                       |          |                 |            |                  |
|                                         |                   |                                      |             |                                          |                 |                                       |          |                 |            | <u>}</u>         |
|                                         |                   |                                      |             |                                          |                 |                                       |          |                 |            |                  |
|                                         |                   |                                      |             |                                          | ·               |                                       | ~        |                 |            |                  |
|                                         |                   |                                      |             |                                          | ·               |                                       |          |                 |            |                  |
| trix:                                   |                   |                                      |             | Specia                                   | I Instructions: | <u></u>                               |          |                 | _//I       |                  |
|                                         |                   | W - Potable Water                    | S ·         | •                                        |                 | Jund                                  | r        |                 |            |                  |
|                                         |                   | W - Groundwaler<br>N - Surface Water | W -<br>.0 - | لان Water<br>میا ا                       | N. Down L       | 1)                                    | FOF      | R SUBCONTR      | RACTING US |                  |
| - Drur                                  |                   |                                      | A.          | An                                       | )-Lite          | Ś                                     |          |                 | -          |                  |
| - Drur                                  | A Charles and the | leanstitute                          |             |                                          | .) = ((4)       | ic                                    |          | OM CHAIN OF     |            |                  |
| - Drur                                  | st kesaw          |                                      | $\sim$      | no c'a la                                | Droxins         | Furans                                |          | STODY #         |            |                  |
| S - Drur<br>- Drur<br>- Othe<br>- Othe  | ist keixene       |                                      | (~1         | Lely 515 107                             |                 |                                       |          |                 |            | ····             |
| . Drur                                  | st kexava         |                                      | (~1         | helysis for                              |                 |                                       |          |                 |            |                  |
| - Drur                                  |                   | shed By Date                         |             | ved By Date                              |                 | ··· · · · · · · · · · · · · · · · · · | ished By | Date Rece       | ived By Da | ate Tinī         |

Domaint Hilos 120-3

T

1

-

|                          |                                       |                                       |            |                 | سطحہ,<br>ا                         | N                       |              |            |                |                  |              |
|--------------------------|---------------------------------------|---------------------------------------|------------|-----------------|------------------------------------|-------------------------|--------------|------------|----------------|------------------|--------------|
| REAC, E                  | ⊾                                     |                                       |            |                 | CHA.                               | JF CUSTODY R            | ECORD        |            |                |                  |              |
| ( <del>908</del> ) 321   |                                       |                                       |            | Project Name    | · AVG                              | BURN                    |              |            |                |                  |              |
| FPA Con                  | tract 68-C4-                          | nn22                                  |            | Project Numb    | her $(4A)$                         | 00110                   |              |            | No:            | 06               | 96           |
|                          | <del>68-64 tract</del>                | 9-223                                 |            | MREW Contac     | t Am D                             | ABATS PI                | none: 732-4  | 197-4013   |                |                  |              |
| •                        |                                       |                                       |            | ~ IXI // CC//_C |                                    |                         | ·····        |            | SHEET          | NO. [ (          | эғ <u>1</u>  |
|                          |                                       | Sample Id                             | entifica   | ation Burol     | gamicht                            | eins .                  |              | lyses Requ |                |                  |              |
| REAC #                   | , Sample No.                          | Sampling Location                     | Matrix     | Date Collected  | # of Bottles                       | Container/Preservati    |              | -) NIOSH03 |                |                  | ,            |
|                          | 17700                                 | DW3                                   | AF         | 4/4/00          |                                    | whenpak/ic              | E 45.9       |            |                |                  |              |
| $\checkmark$             | 17701                                 | DW2                                   | 1          | 1               |                                    |                         | 45.0         | V          |                |                  |              |
| V                        | 17702                                 | DWL                                   | ŀ          |                 |                                    |                         | 45.9         |            |                |                  |              |
|                          | 12203                                 | DW4                                   |            |                 |                                    |                         | 45.5         |            |                |                  | 1_           |
| /                        | 17704                                 | DWS                                   |            | -               |                                    |                         | 45.0         |            |                |                  | 7_           |
|                          | 17705                                 | UWI                                   |            |                 |                                    |                         | 41.8         |            |                | 7                |              |
|                          | 17706                                 | UW2                                   |            |                 |                                    |                         | 45.5         |            | $\overline{1}$ | TT               |              |
| ~                        | 17732                                 | FIELD BLANKE                          |            |                 |                                    | · · ·                   | 0            |            |                | 17               |              |
| ·                        | 17733                                 | TRIP BLAND                            | <u>-/</u>  |                 |                                    |                         | 0            |            |                | HAN S            | 5            |
|                          | 17734                                 | LOT BLANCE                            |            |                 |                                    | <u> </u>                | 0            |            | 1              | Mro.             | テ            |
|                          |                                       | BS /BSP                               |            |                 | <u> </u>                           |                         | 0            |            |                |                  |              |
|                          |                                       | <u></u>                               | <u> </u>   |                 |                                    |                         |              |            |                | +-               |              |
|                          |                                       | $\sim$                                |            | ·····           |                                    |                         |              |            | /              | +                |              |
|                          | ·                                     |                                       | L          |                 | (ED)                               |                         |              |            | /              | - <del> </del> \ | <u></u>      |
|                          |                                       | · · · · · · · · · · · · · · · · · · · |            |                 |                                    |                         |              |            | /              |                  | $\leftarrow$ |
|                          | ·                                     |                                       | {          |                 |                                    | f                       |              |            | /              |                  | ┯            |
|                          |                                       |                                       | <u></u>    |                 |                                    |                         |              |            |                |                  | ╧╋           |
|                          | · · · · · · · · · · · · · · · · · · · |                                       |            |                 |                                    |                         |              |            |                |                  |              |
|                          | <u> </u>                              |                                       |            |                 | <u> </u>                           |                         |              |            | -+-/           |                  |              |
|                          |                                       |                                       |            |                 |                                    | <u> </u>                |              |            | -//            |                  | مادات وكروس  |
| atrix:                   |                                       |                                       | I          | Snecia          | I Instructions:                    | <u>I</u>                |              |            | - <u>L</u>     |                  |              |
| ) - Sedi                 |                                       | W - Potable Water                     | <u>s</u> - | Soil A          | salue's .                          | for Jungarine<br>+ 7803 | Birly        |            |                |                  |              |
|                          |                                       | W - Groundwater<br>W - Surface Water  | W •        | Water (         | N. Mast                            | + 24/22                 | FOR          | SUBCONT    |                | JSE C            | )NL          |
| - Othe                   |                                       | L - Sludge                            | Q.         | Air b           | I WLUSE                            | 1105                    |              |            |                |                  |              |
|                          |                                       | -                                     |            |                 | U-Down                             | LUINIA                  | FRO          | M CHAIN OF | 2              |                  |              |
|                          |                                       |                                       |            | u               | W-Lyou                             | UND                     | CUS          | TODY #     |                |                  |              |
|                          |                                       |                                       |            | (L              | 10- Down<br>10 - Lupon<br>-) - Lut | 213                     | L            |            | ···            |                  |              |
|                          |                                       | Ished By Date,                        | Rece       | ved By Date     |                                    |                         | inquished By | Date Rece  | ived By        | Date             | Tif          |
| ltems/Reas               | on i prennqu                          |                                       |            |                 | {                                  |                         |              |            |                |                  |              |
|                          |                                       | h I That                              |            | 1               | 3 11                               |                         | •            | 1          |                |                  |              |
| Items/Reas               |                                       | 4 7/00                                |            | ·               |                                    |                         |              |            |                |                  |              |
|                          |                                       | 6 J 7/00                              |            | ······          |                                    |                         |              |            |                |                  |              |
| Item\$/Reas<br>///Lindle |                                       |                                       |            | ······          |                                    |                         |              |            |                |                  | \$<br>\$     |

| 3EAC, E<br><del>908</del> ) 32<br>EPA Cor | dison, NJ<br>1-4200<br>Itract <del>68-C4</del><br><i>68-</i> C9 | 0022 D                                |            | Project Nar                           | ne: <u>APG</u><br>nber: <u>PIF</u><br>act: <u>Amy C</u> | OF CUSTODY I<br>BURN<br>HOGHD |                |            | -        | No:        | 05            | 65          |
|-------------------------------------------|-----------------------------------------------------------------|---------------------------------------|------------|---------------------------------------|---------------------------------------------------------|-------------------------------|----------------|------------|----------|------------|---------------|-------------|
| r                                         | 68-69                                                           | 4-223                                 |            | -RFV Conta                            | ict: <u>Ancy C</u>                                      | <u>rvbois</u>                 | Phone: 73      | 2-494-     | 4013     | SHEET      | NO.L          | OF          |
| 41000                                     |                                                                 | Sample Id                             | lentific   | ation                                 |                                                         |                               |                | Analys     | es Reque | sted       |               |             |
| REAC #                                    | Sample No.                                                      | Sampling Location                     | Matrix     | Date Collected                        | # of Bottles                                            | Container/Preserva            | tive PA        | 94         | Olume )  | $\Lambda$  |               | •           |
| 415                                       | 17690                                                           | DW3                                   | A          | 4/6/00                                | 1                                                       | White PAK/ICE                 |                | /          | 360      |            |               |             |
| 416                                       | 17691                                                           | DW2                                   |            |                                       | 1                                                       |                               |                | /          | 351      |            | _             |             |
| 417                                       | 17692:                                                          | DW                                    |            |                                       |                                                         |                               | K              |            | 360      | 1          |               |             |
| 418                                       | 17693                                                           | BW4                                   |            |                                       |                                                         |                               | ن              |            | 369      | 1          | pp_           | _           |
| 419                                       | 17694                                                           | DWS                                   |            |                                       |                                                         |                               |                |            | 360      | <u> }¥</u> | 11            | فتقدان سنان |
| 420                                       | 171095                                                          | <u>uwi</u>                            |            |                                       |                                                         | <u> </u>                      | <i>v</i>       |            | 332      |            | Ŋ             |             |
| 421                                       | 17696                                                           | <u>4W2</u>                            | 4-4        |                                       |                                                         | ·····                         | /              |            | 360      | <u> /</u>  | <u>-</u>  }   |             |
| 422                                       | 171097                                                          | FIGIOBLANK                            |            |                                       |                                                         |                               | V              | ,          | Ø        | <b>↓</b>   | $\rightarrow$ | <del></del> |
| 423                                       | 17698                                                           | TRIPBANK                              |            |                                       |                                                         | ·                             |                | /          |          | _/         |               | <u> </u>    |
| 424                                       | 17699                                                           | LOT BLAN                              | °          | · · · · · · · · · · · · · · · · · · · | •                                                       |                               | K              | / <u>,</u> | Ø        | <i>/</i>   |               |             |
| <u> </u>                                  |                                                                 | BS/BSD                                |            |                                       | 2                                                       | ¥                             |                |            | Ø        | <u> </u>   |               | $\leq$      |
|                                           |                                                                 |                                       |            |                                       | $\downarrow$                                            | ¥                             |                | ·          |          |            | 1             | <u> </u>    |
| ·····                                     |                                                                 |                                       |            |                                       |                                                         | <u> </u>                      |                |            |          |            |               |             |
| · · · · · · · · · · · · · · · · · · ·     |                                                                 |                                       |            | -                                     |                                                         |                               |                | ····/      |          |            |               |             |
|                                           |                                                                 |                                       |            |                                       |                                                         | <u> </u>                      |                | $\times$   |          |            |               |             |
| <u>.</u>                                  |                                                                 |                                       |            | · · · · · · · · · · · · · · · · · · · | - Are-                                                  |                               | $\rightarrow$  | At         | ~_       |            |               |             |
| <u></u>                                   |                                                                 |                                       |            |                                       |                                                         |                               |                | <u>~</u>   |          | <u></u>    |               |             |
|                                           |                                                                 | · · · · · · · · · · · · · · · · · · · |            |                                       | $\downarrow$                                            |                               |                |            |          |            | +             |             |
| $\overline{}$                             |                                                                 | · · · · · · · · · · · · · · · · · · · |            |                                       | 1                                                       |                               |                |            |          |            |               |             |
| latrix:                                   |                                                                 |                                       | _          | Spe                                   | cial Instructions:                                      |                               |                |            |          |            |               |             |
|                                           |                                                                 | W - Potable Water                     | S -<br>W - | Soll<br>Water (2)                     | allers t                                                | or PAHS by N                  | liosh =        |            |          |            |               |             |
| L - Dru                                   | m Llquids 👘 S                                                   | W - Surface Water                     | 0-         | Uli                                   | 5515                                                    |                               | . [ <b>f</b>   | FOR SU     | BCONTR   |            | JSE C         | )NI         |
| - Oth                                     | er S                                                            | L - Sludge                            | CA-        | Air                                   | 6 has 7                                                 | 26-30.06 LOT                  | - with F       | FROM       | HAIN OF  |            |               |             |
|                                           |                                                                 | DW. Down WINI                         | ,<br>,     |                                       | TL JUS Z                                                |                               |                | CUSTO      |          |            |               |             |
|                                           |                                                                 | UW-LIPWIND                            | L-2        | -iters                                |                                                         |                               |                |            | <u> </u> | ······     |               |             |
|                                           |                                                                 |                                       |            | r                                     |                                                         |                               |                |            |          |            |               |             |
| Items/Reas                                | on Relinqu                                                      | ished By Date                         |            | ved By Da                             | ite Time                                                | Items/Reason Re               | elinguished By | Date       |          | /ed By     | Date          | Ti          |

|                                        |                                                                  |                                 |          |              |        |            | $\sim$          |            |                |                   |             | · •                              | North Contraction |                                 |
|----------------------------------------|------------------------------------------------------------------|---------------------------------|----------|--------------|--------|------------|-----------------|------------|----------------|-------------------|-------------|----------------------------------|-------------------|---------------------------------|
| REAC, Ed<br>008) 321                   | ณิธon, NJ<br>-4200<br>tract <del>68-C4</del><br>( <i>ค</i> ริ-C9 | name (AT)                       |          | Project N    | ame:   | APC        | JF CUSTO        | DY REC     | CORD           |                   | -           |                                  | 05                | 051                             |
| EPA Con                                | tract 68-64                                                      | 9-777                           | 1        |              | umber  | KI         | ADDI/O<br>DUBUS | Dhor       | ie: 732-       | nact_             | m/2         | No:                              | 05                | 254                             |
|                                        |                                                                  | 1223                            |          | AT PLA       |        |            | DIADOIS         | Phon       | ie. <u>736</u> | <del>4747</del> 5 | <i>fu</i> 3 | SHEET                            | NO /              | OF                              |
|                                        |                                                                  | Sample Id                       | entifica | ation /      |        | ALS        |                 |            | Α              | nalyse            | s Reques    |                                  |                   |                                 |
| REAC #                                 | Sample No.                                                       | Sampling Location               | Matrix   | Date Collect | ed #   | of         | Container/Pr    | eservative | Volume         | L) NI             | 05H 7300    |                                  |                   | :                               |
|                                        | 17680                                                            | DW3                             | A        | 4-6-00       | )      | 1          | whirlpak        | lice       | 540            |                   | 1           |                                  | ,                 | /                               |
|                                        | 17681                                                            | DW2                             |          |              |        |            |                 |            | 540            |                   | 1           |                                  |                   |                                 |
|                                        | 171082                                                           | DW4                             |          |              |        |            |                 |            | 540            |                   | ~           |                                  |                   |                                 |
|                                        | 17683                                                            | <u>DW4</u> _                    |          |              |        | <u> </u>   |                 |            | 540            |                   | V           | <u> </u>                         |                   |                                 |
| ~ ~                                    | 17684                                                            | DW5                             |          |              |        |            |                 |            | 540<br>498     |                   | /           |                                  |                   |                                 |
| /                                      | 17685                                                            | _ UWL                           |          |              |        | <u> </u>   |                 |            |                |                   | <u> </u>    |                                  |                   |                                 |
|                                        | 14686                                                            | <u> </u>                        |          |              |        |            |                 |            | 540            |                   | V           |                                  | $\square 7$       |                                 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 17687                                                            | FIELD BLANK                     |          |              |        |            |                 | •          | Ø              |                   | ~           | · · · · ·                        |                   | à.                              |
| ~                                      | 17688                                                            | TRIP BLANK                      |          |              |        |            |                 |            | 0              |                   | V           |                                  | VI                | <i>y</i>                        |
|                                        | 17689                                                            | LUT BLANK                       |          |              |        | V          |                 |            | Ø              |                   | V .         |                                  | TP                |                                 |
|                                        |                                                                  | BS (BSD                         | V        | Ý            |        | 2          | V               |            | 0              |                   |             |                                  | 71                | ه نسخ دوری تا ماهند.            |
|                                        | <u> </u>                                                         |                                 |          |              |        |            |                 | _          | · ·            |                   |             | /                                |                   | و بری را بردهای خطره            |
|                                        |                                                                  |                                 |          |              |        |            | •               |            |                |                   |             |                                  |                   |                                 |
|                                        |                                                                  |                                 |          |              |        | 100)       |                 |            | 1              |                   |             |                                  |                   |                                 |
|                                        |                                                                  |                                 |          |              |        |            |                 |            |                |                   |             |                                  |                   | 1                               |
|                                        |                                                                  |                                 |          |              | $\geq$ | $\leq$     |                 |            |                |                   |             |                                  |                   |                                 |
|                                        |                                                                  |                                 |          |              |        |            |                 |            |                |                   |             | 1                                |                   |                                 |
|                                        |                                                                  |                                 |          |              |        |            |                 |            |                |                   |             | 7                                | 1                 |                                 |
|                                        |                                                                  |                                 |          |              |        |            |                 |            |                |                   | /           | /                                | -                 |                                 |
|                                        |                                                                  |                                 |          |              |        |            |                 |            |                |                   |             | ويعتبرني المستحد ويبيره فتتنكرهم |                   | d                               |
| etrix;<br>) - Sedi                     | ment P                                                           | W - Potable Water               | s -      | Sr<br>Soll   |        | structions |                 |            |                |                   |             |                                  |                   | دی <u>محبره الخلی ال</u> اسیم ا |
| S- Drum                                | n Solids G                                                       | W - Groundwater                 | w -      | Water        | -      | -          | Down WIN        | 0          |                | 0.000             |             |                                  |                   |                                 |
| - Drum<br>- Othe                       |                                                                  | W - Surface Water<br>L - Sludge | 0.       | Oil          | L.     | W -        | UP LUND         |            | F0             | R SUB             | CONTRA      | CIING                            | JSE (             | JNLY                            |
| Othe                                   |                                                                  |                                 | $\sim$   | Air          |        | 2 -        | Lifeis          |            | FR             | ОМ СН             | IAIN OF     |                                  |                   |                                 |
|                                        |                                                                  |                                 | Analy    | is for 1     | Nota   | ls La      | NIOSH 7         | 3ØØ        | 1              | STOD              |             |                                  |                   |                                 |
|                                        |                                                                  |                                 | 1/100    |              | 2      | - 1        |                 |            |                |                   | · //        |                                  |                   |                                 |
|                                        |                                                                  |                                 | LUT      | # 0/         |        |            | ſ <u></u>       |            |                | ·                 |             |                                  |                   |                                 |
| Items/Reaso                            |                                                                  | ished By Daje                   | Receiv   | ved By       | Date   | Time       | Items/Reason    | Relingu    | uished By      | Date              | Received    | t By                             | Date              | Time                            |
| 1anabi                                 | ISIL Gel                                                         | -17/0                           |          |              |        |            |                 |            |                |                   |             |                                  |                   | نۍ<br>ا                         |
| / ·                                    | - (                                                              |                                 |          |              |        |            |                 |            |                |                   |             |                                  |                   |                                 |
|                                        |                                                                  |                                 |          |              |        |            |                 |            |                |                   |             |                                  |                   | ÷                               |
|                                        |                                                                  |                                 |          |              | (      |            |                 |            |                |                   |             |                                  |                   | <del> </del>                    |
|                                        |                                                                  |                                 | 18 Mon   |              |        | 0930       |                 |            |                |                   |             |                                  |                   | Y                               |

#### APPENDIX C

SBC COM Clearances for GB, GD, VX, and HD Air Monitoring. Sampling, Analysis, and Modeling Support. and Underwater Survey Activities Site July 2000

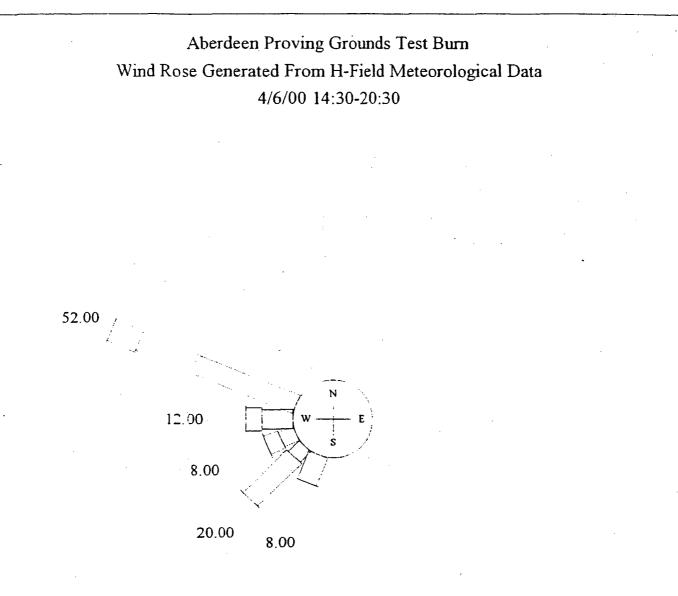
c:\MyFiles\R1a00110\JFIELD ::-j0400.110

### Jubois, Amy E

| ີ `າຫ:   | Snyder Juanita A SBCCOM [juanita.snyder@SBCCOM.APGEA.ARMY.MIL]<br>Wednesday, April 12, 2000 12:55 PM |
|----------|------------------------------------------------------------------------------------------------------|
| ·        | DUBOIS_AMY@EPAMAIL.EPA.GOV; salford@genphysics.com                                                   |
| )c:      | axdean@CBDCOM-EMH1.APGEA.ARMY.MIL; dghall@CBDCOM-                                                    |
|          | EMH1.APGEA.ARMY.MIL; fglattin@CBDCOM-EMH1.APGEA.ARMY.MIL;                                            |
|          | jasnyder@CBDCOM-EMH1.APGEA.ARMY.MIL; jefranch@CBDCOM-                                                |
|          | EMH1.APGEA.ARMY.MIL; rdmoore@CBDCOM-EMH1.APGEA.ARMY.MIL;                                             |
|          | sdsmith@CBDCOM-EMH1.APGEA.ARMY.MIL; tablades@CBDCOM-                                                 |
|          | EMH1.APGEA.ARMY.MIL; thomas.rosso@SBCCOM.APGEA.ARMY.MIL                                              |
| Subject: | J-field Clearances                                                                                   |

| '0C :  | Dubois, x (732)494-401 | .3 J- | -Fiel | ld |    |    |    |           |            |  |
|--------|------------------------|-------|-------|----|----|----|----|-----------|------------|--|
| tem    |                        | GVH   |       |    |    |    | ba | ackground | monitoring |  |
| 14/06/ | /00                    |       |       |    |    |    |    |           |            |  |
| SW(    | 0004070050-M01         | Clear | for   | GB | GD | VX | 6  | HD        |            |  |
| )W2    | 0004070051-M01         | Clear | for   | GB | GD | VX | ٤  | HD        |            |  |
| W1     | 0004070052-M01         | Clear | for   | GB | GD | VX | ٤  | HD        |            |  |
| )W4    | 0004070053-M01         | Clear | for   | GB | GD | VX | 8  | HD        |            |  |
| W5     | 0004070054-M01         | Clear | for   | GB | GD | VX | &  | HD        |            |  |
| wз     | 0004070055-M01         | Clear | for   | GB | GD | VX | £  | HD        |            |  |
| W4     | 0004070056-M01         | Clear | for   | GB | GD | VX | 6  | HD        |            |  |
| PA     | 0004070057-MOI         | Clear | for   | GB | GD | VX | &  | HD        |            |  |
| .Pl    | 0004070058-M01         | Clear | for   | GB | GD | VX | é  | HD        |            |  |
|        |                        |       |       |    |    |    |    |           |            |  |

ita Snyder ample Team


1

#### APPENDIX D Windroses

Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

#### c:\MyFiles\R1a00110\JFIELD tr-j0400.110

.

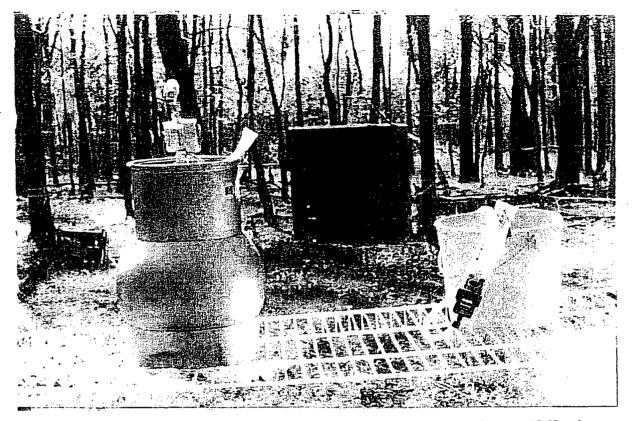


|    |      |     | !    |     |      |                  |
|----|------|-----|------|-----|------|------------------|
| 0  | 1.3  | 3.0 | 5.1  | 8.2 | 10.8 | -<br>9 <b>99</b> |
| SC | CALE | (M/ | 'SEC | :)  |      |                  |

| w   | IND SPEE | ED (M/SEC | ) PERCE      | ENT OCC         | URRENCE  | ;    |   | w   | IND SPEE | ED (M/SEC | C) PERCI | ENT OCC | URRENCE  | :   |
|-----|----------|-----------|--------------|-----------------|----------|------|---|-----|----------|-----------|----------|---------|----------|-----|
|     | 0-1.3    | 1.3-3.0   | 3.0-5.1      | £.1 <b>-8.2</b> | 8.2-10.8 | 10.8 |   |     | 0-1.3    | 1.3-3.0   | 3.0-5.1  | 5.1-8.2 | 8.2-10.8 | ÷10 |
| N   | 0.00     | 0.00      | · 0.00       | 0 <b>.00</b>    | 0.00     | 0.00 |   | S   | 0.00     | 0.00      | 0.00     | 0.00    | 0.00     | 0.0 |
| NNE | 0.00     | 0.00      | 0.00         | <b>0.00</b>     | 0.00     | 0.00 |   | SSW | 0.00     | 0.00      | 0.00     | 8.00    | 0.00     | 0.0 |
| NE  | 0.00     | 0.00      | 0.00         | <b>00</b> .C    | 0.00     | 0.00 | 1 | sw  | 0.00     | 0.00      | 4.00     | 16.00   | 0.00     | 0.0 |
| ENE | 0.00     | 0.00      | 0.00         | 0.00            | 0.00     | 0.00 |   | wsw | 0.00     | 0.00      | 4.00     | 4.00    | 0.00     | 0.0 |
| E   | 0.00     | 0.00      | ú. <b>00</b> | 0.00            | 0.00     | 0.00 | 1 | w   | 0.00     | 0.00      | 0.00     | 8.00    | 4.00     | 0.0 |
| ESE | 0.00     | 0.00      | 0.00         | 00.0            | 0.00     | 0.00 |   | WNW | 0.00     | 0.00      | 0.00     | 44.00   | 8.00     | 0.0 |
| SE  | 0.00     | 0.00      | 0.00         | 00.1            | 0.00     | 0.00 |   | NW  | 0.00     | 0.00      | 0.00     | 0.00    | 0.00     | 0.0 |
| SSE | 0.00     | 0.00      | 0.00         | 0.0 <b>0</b>    | 0.00     | 0.00 |   | NNW | 0.00     | 0.00      | 0.00     | 0.00    | 0.00     | 0.0 |

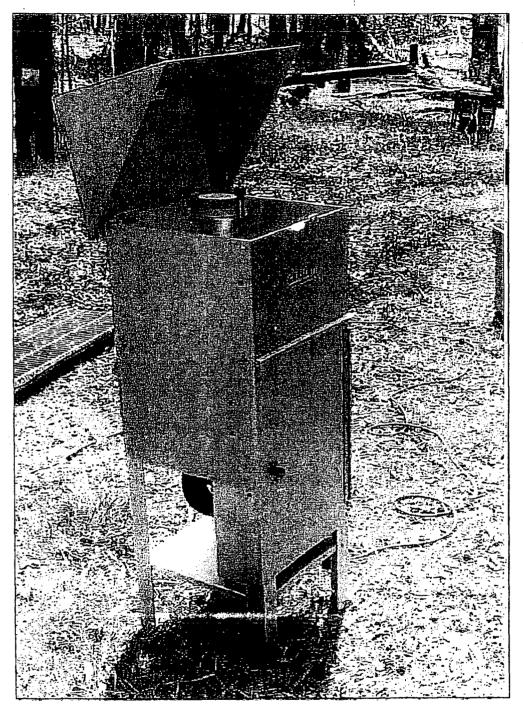
# APPENDIX B

# AIR SAMPLING EQUIPMENT PHOTOGRAPHS


# **Arrangement of Air Sampling Equipment**



### APG Controlled Burn Project – Analytes of Interest:


- Volatile Organic Compounds (VOCs)
- Pesticides and Polychlorinated Biphenyls (PCBs)
- Explosives
- Inorganics
- Radiologicals
- Chemical Agents

# Summa Canister (left) and DAAMS Tube (right)



Summa canister for collection of air samples for volatile organic analysis. DAAMS tubes used for collection of samples for chemical agent analysis.

# High Volume PUF Sampler



Sampler for collection of air samples for Pesticides, PCBs, and Explosives.

PUF – Polyurethane foam PCB – Polychlorinated biphenyls



Sampler for collection of air samples for Inorganics and Radionuclides analyses

# APPENDIX C

### LIST OF ANALYTES FOR THE ABERDEEN PROVING GROUND CONTROLLED BURN PROJECT

#### Table C-1. TARGET ANALYTES FOR EACH ANALYSIS PERFORMED ON AIR SAMPLES FROM THE MAIN FRONT, NEW O-FIELD, AND J-FIELD CONTROLLED BURNS

|                           |                                            |                                       | Metals               |                                       | Gamma                                 | Chemical        |
|---------------------------|--------------------------------------------|---------------------------------------|----------------------|---------------------------------------|---------------------------------------|-----------------|
| Volatiles <sup>1</sup>    | Pesticides/PCBs <sup>2</sup>               | Explosives 2                          | (Total)              | Radiologicals                         | Spectroscopy                          | Agents          |
| Freon 12                  | 4,4'-DDD                                   | 1,3,5-<br>Trinitrobenzene             | Aluminum             | Gross Alpha                           | Actinium-228                          | Mustard<br>(HD) |
| Chloromethane             | 4,4'-DDE                                   | 1,3-Dinitrobenzene                    | Antimony             | Gross Beta                            | Bismuth-212                           | Sarin (GB)      |
| Freon 114                 | 4,4'-DDT                                   | 2,4,6-<br>Trinitrotoluene             | Arsenic              |                                       | Bismuth-214                           | Soman (GD)      |
| Chloroethene              | Aldrin                                     | 2,4-Dinitrotoluene                    | Barium               |                                       | Cesium-137                            | VX              |
| Bromomethane              | Dieldrin                                   | 2,6-Dinitrotoluene                    | Beryllium            |                                       | Cobalt-60                             | · · · · · · ·   |
| Chloroethane              | Endosulfan I                               | 2.0-Dimitotoldene<br>2-Amino-4.6-     | Cadmium              |                                       | Lead-210                              |                 |
| Chioroeularie             | Encosulairi                                | dinitrotoluene                        | Cadinius             |                                       | Leau-210                              |                 |
| Freon 11                  | Endosulfan II                              | 2-Nitrotoluene                        | Calcium              | · · · · · · · · ·                     | Lead-212                              |                 |
| 1,1-Dichloroethene        | Endosulfan Sulfate                         | 3-Nitrotoluene                        | Chromium             |                                       | Lead-214                              |                 |
| Methylene chloride        | Endrin                                     | 4-Amino-2,6-                          | Cobalt               | · · ·                                 | Potassium-40                          |                 |
| Freon 113                 | Factor Aldel de                            | dinitrotoluene                        |                      |                                       | Desta stisture 004                    |                 |
|                           | Endrin Aldehyde                            | 4-Nitrotoluene                        | Copper               |                                       | Protactinium-231                      |                 |
| 1,1,-Dichloroethane       | Endrin Ketone                              | HMX                                   | Iron                 |                                       | Protactinium-234                      |                 |
| cis-1,2-Dichloroethylene  | Heptachlor                                 | Nitrobenzene                          | Lead                 |                                       | Radium-223                            |                 |
| Chloroform                | Heptachlor Epoxide                         | RDX                                   | Magnesium            |                                       | Radium-224                            | ļ               |
| 1,2-Dichloroethane        | Lindane (gamma-BHC)                        | Tetryl                                | Manganese            | I                                     | Radium-226                            | ·               |
| 1,1,1-Trichloroethane     | Methoxychior                               |                                       | Mercury              | <b> </b>                              | Uranium-235                           | <u>`</u>        |
| Benzene                   | Toxaphene                                  |                                       | Nickel               |                                       | Uranium-233/234                       |                 |
| Carbon tetrachloride      | alpha-BHC                                  |                                       | Potassium            |                                       | Uranium-235/236                       |                 |
| 1,2-Dichloropropane       | alpha-Chlordane                            |                                       | Selenium             |                                       | Uranium-238 <sup>4</sup>              |                 |
| Trichloroethene           | beta-BHC                                   |                                       | Silver               |                                       |                                       |                 |
| cis-1,3-Dichloropropene   | delta-BHC                                  | 1                                     | Sodium               |                                       |                                       |                 |
| trans-1,3-                | gamma-Chlordane                            |                                       | Thallium             |                                       |                                       |                 |
| Dichloropropene           |                                            |                                       |                      |                                       |                                       |                 |
| 1,1,2-Trichloroethane     | 2-Chlorobiphenyl                           |                                       | Uranium <sup>3</sup> |                                       |                                       |                 |
| Toluene                   | 2,3-Dichlorobiphenyl                       |                                       | Vanadium             |                                       |                                       |                 |
| 1,2-Dibromoethane         | 2,2'5-Trichlorobiphenyl                    |                                       | Zinc                 |                                       |                                       |                 |
| Tetrachloroethene         | 2,4'5-Trichlorobiphenyl                    |                                       | 1                    |                                       | ·                                     | ·               |
| Chlorobenzene             | 2,2'5,5'-<br>Tetrachlorobiphenyl           |                                       |                      |                                       |                                       |                 |
| Ethylbenzene              | 2,2'3,5'-                                  |                                       |                      |                                       |                                       | ·               |
|                           | Tetrachlorobiphenyl                        |                                       |                      |                                       |                                       |                 |
| m-/p- Zylenes             | 2,3'4,4'-                                  |                                       |                      |                                       |                                       |                 |
|                           | Tetrachlorobiphenyl                        |                                       |                      |                                       |                                       |                 |
| Styrene                   | 2,2'4,5,5'-<br>Pentachlorobiphenyl         |                                       |                      |                                       |                                       |                 |
| o-Xylene                  | 2,2',3,4,5'-                               |                                       |                      |                                       |                                       |                 |
| o Aylene                  | Pentachlorobiphenyl                        |                                       |                      |                                       |                                       |                 |
| 1,1,2,2-                  | 2,3,3',4',6-                               |                                       | 1                    |                                       |                                       |                 |
| Tetrachloroethane         | Pentachlorobiphenyl                        |                                       |                      |                                       |                                       |                 |
| 1,3,5-Trimethylbenzene    | 2,2',4,4',5,5',6-                          | · · · · · · · · · · · · · · · · · · · |                      |                                       |                                       |                 |
| 1,2,4-Trimethylbenzene    | Hexachlorobiphenyl<br>2,2',4,4',5,5'-      | 、                                     | [                    | · · · · · · · · · · · · · · · · · · · |                                       |                 |
| 1,2,4- minearyibenzene    | Hexachlorobiphenyl                         |                                       |                      |                                       |                                       |                 |
| 1.3-Dichlorobenzene       |                                            |                                       |                      |                                       |                                       |                 |
| 1.3-Dichlorobenzene       | 2,2',3,4,5,5'-<br>Hexachlorobiphenyl       | 1                                     | 1                    |                                       |                                       | {               |
| 1,4-Dichlorobenzene       | 2,2',3,4,4'-                               |                                       | <u>+</u>             |                                       |                                       |                 |
| 1,4-Dichiolobenzene       | Hexachlorobiphenyl                         |                                       |                      |                                       |                                       |                 |
| 1,2-Dichlorobenzene       | 2,2',3,4',5,5',6-                          |                                       |                      |                                       |                                       |                 |
|                           | Heptachlorobiphenyl                        | )                                     |                      |                                       | · · · · · · · · · · · · · · · · · · · |                 |
| 1,2,4-Trichlorobenzene    | 2,2',3,4,4',5',6-                          |                                       |                      |                                       |                                       |                 |
|                           | Heptachlorobiphenyl                        | · · · · · · · · · · · · · · · · · · · | ļ                    | ļ                                     |                                       |                 |
| Hexachlorobutadiene       | 2,2',3,4,4',5,5'-                          |                                       | ļ                    |                                       |                                       |                 |
| ·                         | Heptachlorobiphenyl                        |                                       | ļ                    |                                       |                                       | L               |
|                           | 2,2',3,3',4,4',5-                          | ł                                     | 1                    |                                       |                                       |                 |
|                           | Heptachlorobiphenyl<br>2,2'3,3'4,4',5,5'6- |                                       |                      | · · · · · · · · · · · · · · · · · · · |                                       |                 |
|                           | Nonchlorobiphenyl                          | ľ                                     |                      |                                       |                                       |                 |
| Veletiles onelusis en sis |                                            | L<br>W O Field and Main Fi            | L                    | <u></u>                               |                                       | <u> </u>        |

Volatiles analysis on air samples collected during New O-Field and Main Front controlled burns was performed for the purposes of identifying

only non-target peaks (a.k.a., Tentatively Identified Compounds (TICs)) and not the full range of TO-14 compounds. <sup>2</sup> Analysis for these analytes was performed on PUF and filter samples from the Main Front controlled burn; analysis for these analytes on the air samples from the New O-Field and J-Field controlled burns was performed only on filter samples. <sup>3</sup>Analysis for Total Uranium was performed only on the air samples from the Main Front and New O-Field controlled burns.

<sup>4</sup>Analysis for these radionuclides was performed only on the air samples from the J-Field controlled burn.

|                          |                  | 1                         |                  |
|--------------------------|------------------|---------------------------|------------------|
|                          | Method Detection |                           | Method Detection |
| Compound                 | Limit (MDL)*     | Compound                  | Limit (MDL) *    |
|                          | ppb              |                           | ppb              |
| Freon 12                 | ~ 0.2            | Cis-1,3-Dichloropropene   | ~ 0.2            |
| Chloromethane            | ~ 0.2            | Trans-1,3-Dichloropropene | ~ 0.2            |
| Freon 114                | ~ 0.2            | 1,1,2-Trichloroethane     | ~ 0.2            |
| Chloroethene             | ~ 0.2            | Toluene                   | ~ 0.2            |
| Bromomethane             | ~ 0.2            | 1,2-Dibromoethane         | ~ 0.2            |
| Chloroethane             | ~ 0.2            | Tetrachloroethene         | ~ 0.2            |
| Freon 11                 | ~ 0.2            | Chlorobenzene             | ~ 0.2            |
| 1,1-Dichloroethene       | ~ 0.2            | Ethylbenzene              | ~ 0.2            |
| Methylene chloride       | ~ 0.2            | m-/p-Xylenes              | ~ 0.2            |
| Freon 113                | ~ 0.2            | Styrene                   | ~ 0.2            |
| 1,1-Dichloroethane       | ~ 0.2            | o-Xylene                  | ~ 0.2            |
| Cis-1,2-Dichloroethylene | ~ 0.2            | 1,1,2,2-Tetrachloroethane | ~ 0.2            |
| Chloroform               | ~ 0.2            | 1,3,5-Trimethylbenzene    | ~ 0.2            |
| 1,2-Dichloroethane       | ~ 0.2            | 1,2,4-Trimethylbenzene    | ~ 0.2            |
| 1,1,1-Trichloroethane    | ~ 0.2            | 1,3-Dichlorobenzene       | ~ 0.2            |
| Benzene                  | ~ 0.2            | 1,4-Dichlorobenzene       | ~ 0.2            |
| Carbon tetrachloride     | ~ 0.2            | 1,2-Dichlorobenzene       | ~ 0.2            |
| 1,2-Dichloropropane      | ~ 0.2            | 1,2,4-Trichlorobenzene    | ~ 0.2            |
| Trichloroethene          | ~ 0.2            | Hexachlorobutadiene       | ~ 0.2            |

### Table C-2. Volatile Organic Compound Detection Limits

• Laboratory reports MDL of approximately 0.2 ppb for all compounds as adjusted for flow and sample volume.

#### Table C-3. Explosive Detection Limits

| Compound              | Method Detection<br>Limit (MDL) | Compound                   | Method Detection<br>Limit (MDL) |
|-----------------------|---------------------------------|----------------------------|---------------------------------|
|                       | ug/L *                          |                            | ug/L *                          |
| 1,3,5-Trinitrobenzene | 0.11                            | 3-Nitrotoluene             | 0.16                            |
| 2-Nitrotoluene        | 0.09                            | HMX                        | 0.23                            |
| 4-Nitrotoluene        | 0.21                            | Tetryl                     | 0.22                            |
| RDX                   | 0.23                            | 2,4,6-Trinitrotoluene      | 0.10                            |
| 2,4-Dinitrotoluene    | 0.10                            | 2-Amino-4,6-Dinitrotoluene | 0.09                            |
| 1,3-Dinitrobenzene    | 0.09                            | 4-Amino-2,6-Dinitrotoluene | 0.11                            |
| 2,6-Dinitrotoluene    | 0.13                            | Nitrobenzene               | 0.08                            |

\* The sample being analyzed is in a liquid matrix; therefore, the analytical MDL is expressed as ug/L.

| Compound            | Method Detection<br>Limit (MDL)<br>ug/L *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Compound               | Method Detection<br>Limit (MDL)<br>ug/L * |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------|
| 4,4'-DDD            | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methoxychlor           | 0.0096                                    |
| 4,4'-DDE            | 0.0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Toxaphene              | 0.39                                      |
| 4,4'-DDT            | 0.0069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,3-Dichlorobiphenyl   | 0.021                                     |
| Aldrin              | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,2',5-                | 0.015                                     |
|                     | and the second sec | Trichlorobiphenyl      |                                           |
| alpha-BCH           | 0.0085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,4',5-                | 0.0080                                    |
| 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trichlorobiphenyl      |                                           |
| alpha-Chlordane     | 0.0084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,2'5,5'-              | 0.0084                                    |
| 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tetrachlorobiphenyl    |                                           |
| beta-BHC            | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,2'3,5'-              | 0.012                                     |
|                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tetrachlorobiphenyl    | . '                                       |
| delta-BHC           | 0.0073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,3'4,4'-              | 0.0070                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tetrachlorobiphenyl    |                                           |
| Dieldrin            | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,2',4,5,5'-           | 0.0030                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pentachlorobiphenyl    |                                           |
| Endosulfan I        | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,2',3,4,5'-           | 0.0036                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pentachlorobiphenyl    |                                           |
| Endosulfan II       | 0.0097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,3,3',4',6-           | 0.0046                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pentachlorobiphenyl    |                                           |
| Endosulfan Sulfate  | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,2',3,5,5',6-         | -,                                        |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hexachlorobiphenyl     |                                           |
| Endrin              | 0.0068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,2',4,4',5,5'-        | 0.0045                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hexachlorobiphenyl     |                                           |
| Endrin Aldehyde     | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,2',3,4,5,5'-         | 0.0067                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hexachlorobiphenyl     |                                           |
| Endrin Ketone       | 0.0089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,2'3,4,4',5'-         | 0.0081                                    |
|                     | · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hexachlorobiphenyl     |                                           |
| gamma-BHC (Lindane) | 0.0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,2',3,4',5,5',6-      | 0.014                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heptachlorobiphenyl    |                                           |
| gamma-Chlordane     | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,2',3,4,4',5',6-      | 0.012                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heptachlorobipnenyl    |                                           |
| Heptachlor          | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,2',3,4,4',5,5'-      | 0.0033                                    |
| -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heptachlorobiphenyl    |                                           |
| Heptachlor Epoxide  | 0.0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,2',3,3',4,4',5-      | 0.9992                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heptachlorobiphenyl    |                                           |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,2',3,3',4,4',5,5',6- | 0.0031                                    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nonachlorobiphenyl     |                                           |

Table C-4. Pesticides/Polychlorinated Biphenyls Detection Limits

\* The sample being analyzed is in a liquid matrix; therefore, the analytical MDL is expressed as ug/L.

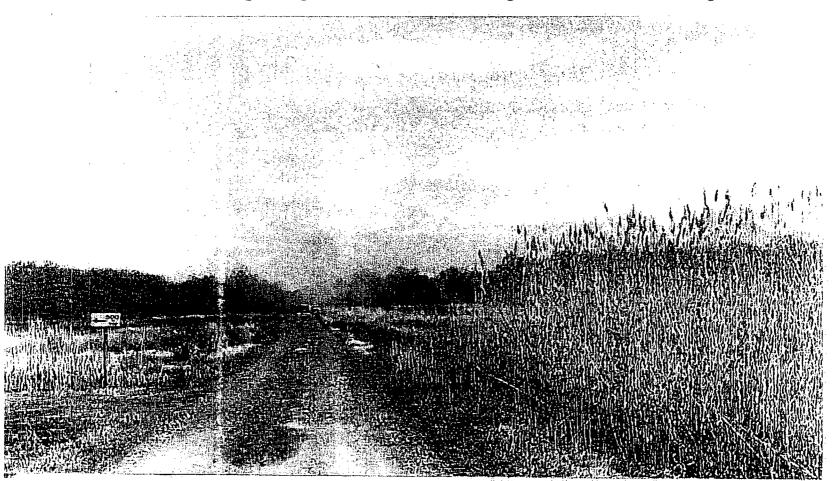
| Compound  | Method Detection<br>Limit (MDL)<br>ug/L * | Compound  | Method Detection<br>Limit (MDL)<br>ug/L * |
|-----------|-------------------------------------------|-----------|-------------------------------------------|
| Aluminum  | 176.0                                     | Magnesium | 82.4                                      |
| Antimony  | 3.7                                       | Manganese | 3.5                                       |
| Arsenic   | 1.5                                       | Mercury   | 0.2                                       |
| Barium    | 17.9                                      | Nickel    | 6.4                                       |
| Beryllium | 0.7                                       | Potassium | 68.3                                      |
| Cadmium   | 0.5                                       | Selenium  | 2.0                                       |
| Calcium   | 86.4                                      | Silver    | 1.4                                       |
| Chromium  | 11.9                                      | Sodium    | 281.0                                     |
| Cobalt    | 4.4                                       | Thallium  | 3.0                                       |
| Copper    | 1.9                                       | Vanadium  | 4.5                                       |
| Iron      | 114.0                                     | Zinc      | 3.0                                       |
| Lead      | 1.1                                       |           | ·                                         |

Table C-5. Metals Detection Limits

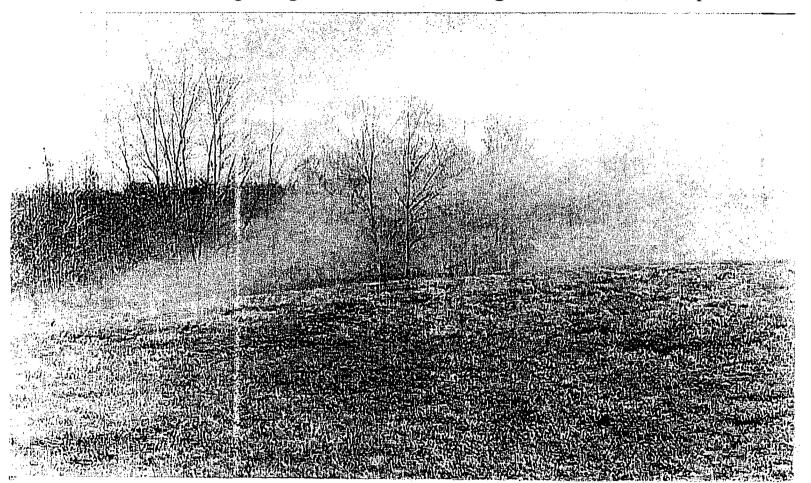
\* The sample being analyzed is in a liquid matrix; therefore, the analytical MDL is expressed as ug/L.

### Table C-6. Chemical Agents Detection Limits

| Compound                                                             | Method Detection Limit (MDL)<br>(mg/m <sup>3</sup> )* |  |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| Sarin (GB)                                                           | 0.0003                                                |  |  |  |
| Soman (GD)                                                           | 0.0003                                                |  |  |  |
| O-ethyl-S-(2-diisopropylaminoethyl)-<br>methylphosphonothiolate (VX) | 0.0003                                                |  |  |  |
| Mustard (HD)                                                         | 0.003                                                 |  |  |  |


\* MDL/sensitivity is not uniformly defined or reported. The above MDL/sensitivity is based on a 2-3 hour sampling time and represents the information currently available. (Reference: Site Monitoring Concept Plan, U.S. Army Chemical Materiel Destruction Agency, 15 September 1993).

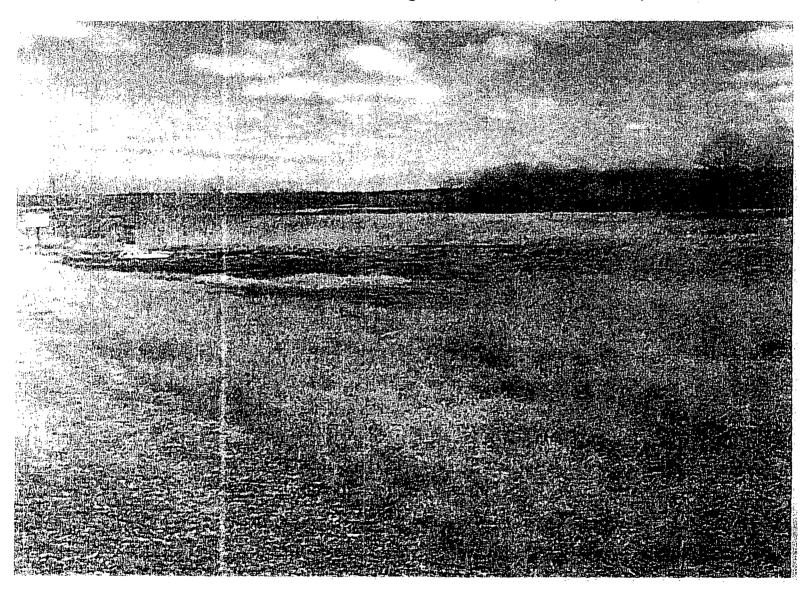
# APPENDIX D


# BURN EVENT PHOTOGRAPHS

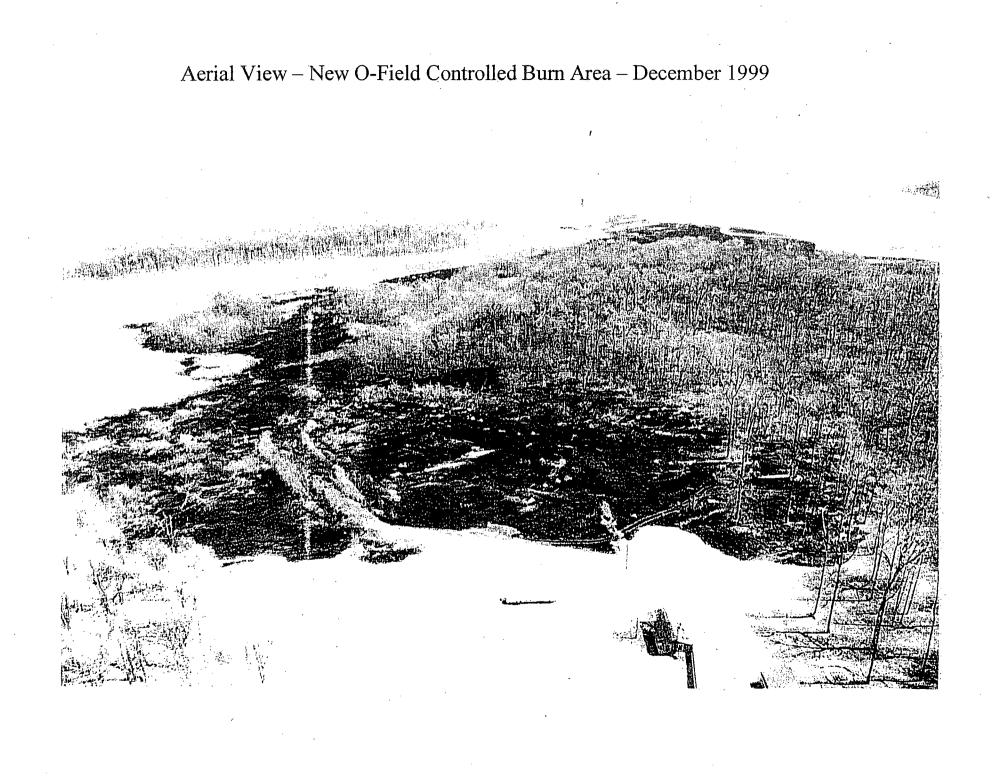
# APPENDIX D-1

# MAIN FRONT – 1999



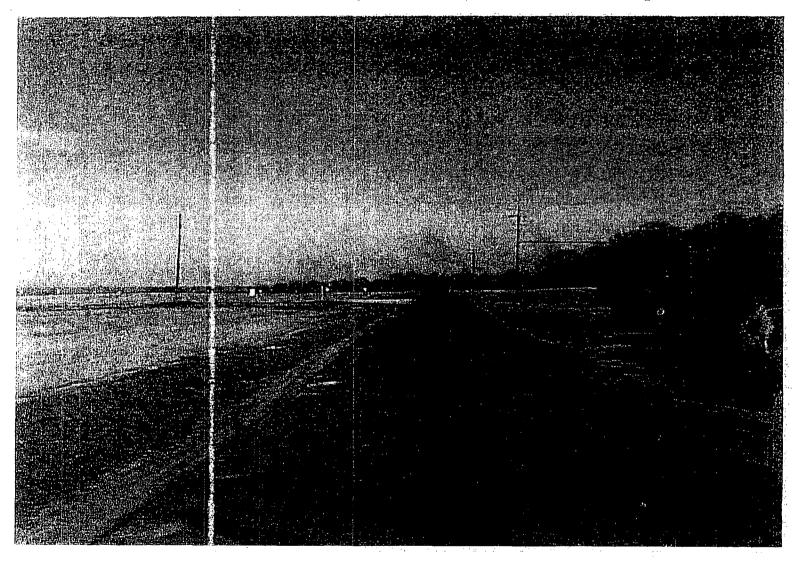

Smoke Plume at the Beginning of the Main Front Range Controlled Burn – April 1999




Smoke Plume at the Beginning of the Main Front Range Controlled Burn – April 1999

## APPENDIX D-2

## NEW O-FIELD – 1999




## New O-Field Burn Area – Facing Watson Creek (Northeast)



## APPENDIX D-3

J-FIELD - 2000



## Initial Smoke Plume Produced by the J-Field Controlled Burn – April 2000

-



## Smoke Plume Produced by the J-Field Controlled Burn – April 2000



Aerial View of Area Burned During J-Field Controlled Burn – April 2000

## APPENDIX E

## CONTROLLED BURN DATA TABLES

ŗ

## **APPENDIX E-1**

### DATA TABLES FOR THE MAIN FRONT CONTROLLED BURN – APRIL 1999

#### Table E-1. Main Front Controlled Burn Air Samples - April 1999

#### Volatile Organic Compound Analysis Results from Summa Canisters

1

|                            | 1-Nour Screening Level             | Ambient Ater Boca       | OSHA PELS Concentration - |                     |               | SI SI               | 24.11.41元中心                             | SI SI               |                           | SI CALLER AND SI    |               |
|----------------------------|------------------------------------|-------------------------|---------------------------|---------------------|---------------|---------------------|-----------------------------------------|---------------------|---------------------------|---------------------|---------------|
| Analytes                   | Concentration (pg/m <sup>4</sup> ) | - Concentration (ug/m ) | e (ug/m3) 🖓 🖓 🖓           | Concentration (opp) | Concentration | Concentration (ppb) | Concentration (<br>(up/m <sup>2</sup> ) | Concentration (ppb) | Concentration (<br>(uo/m) | Concentration (ppb) | Concentralion |
| Acetone                    | 17,820                             | 37                      | 2,400,000                 | 3.04                | 7.22          | 3.01                | 7.15                                    | 5.16                | 12.26                     | 3.08                | 7.32          |
| Methylene chloride         | NA                                 | 3.8                     | 86.843                    | ND                  | ND            | ND                  | ND                                      | 1.69                | 5.87 <sup>,57,14</sup>    | 1.85                | 6.43          |
| Toluene                    | NA                                 | 42                      | 753,703                   | 0.91                | 3.42          | 2.31                | 8.71                                    | 42.83               | 161 4                     | · 8.56              | 32.26         |
| Octane                     | 17500                              | NA                      | 2,350,000                 | ND                  | ND            | ND                  | ND                                      | 2.94                | 13,7                      | ND                  | ND            |
| Nonane                     | NA                                 | NA                      | NA                        | ND                  | ND            | 4.1                 | 21.5                                    | 20.2                | 106                       | 4.05                | 21.25         |
| Decane                     | NA                                 | NA                      | NA                        | ND                  | ND            | 4.22                | 24.56                                   | 4.08                | 23.7                      | 2.75                | 16            |
| m-/p-xylene                | 6,510                              | 730                     | 435,000                   | 1.77                | -             | 7.12                | -                                       | 32.13               |                           | 30.8                | -             |
| o-xylene                   | 6,510                              | 730                     | 435.000                   | ND                  | ND            | ND                  | ND                                      | 3.89                | 16.9                      | 3.83                | 16.63         |
| Unknown hydrocarbon        | •                                  |                         | -                         | ND                  | ND            | 24.59               | -                                       | 18.05               | -                         | 4.37                |               |
| Unknown hydrocarbon        |                                    | -                       |                           | ND                  | ND            | 2.71                | -                                       | 3.48                |                           | 18.75               | -             |
| Unknown hydrocarbon        |                                    |                         | -                         | ND                  | ND            | 2.11                | -                                       | 3.76                | -                         | 2.23                | -             |
| Unknown hydrocarbon        | -                                  | -                       |                           | ND                  | ND            | 1.61                |                                         | 3.13                |                           | 6.13                | -             |
| Unknown hydrocarbon        |                                    |                         | -                         | ND                  | ND            | 1.54                |                                         | 2.56                |                           | 8.08                | -             |
| Unknown hydrocarbon        |                                    | -                       |                           | ND                  | ND            | ND                  | ND                                      | 3.25                |                           | ND                  | ND            |
| Benzaldehyde               | NA                                 | 73                      | NA                        | 1.01                | 4.38          | ND                  | ND                                      | ND                  | ND                        | ND                  | ND            |
| Ethylhexanol               | NA                                 | NA                      | NA                        | 4.86                | -             | ND                  | ND                                      | ND                  | ND                        | ND                  | ND            |
| Methylheptanone            | NA                                 | NA                      | NA                        | 0.87                | 4.56          | ND                  | ND                                      | DND                 | ND                        | ND                  | ND            |
| Methylbutane               | NA                                 | NA                      | NA                        | ND                  | ND            | ND                  | ND                                      | . ND                | ND                        | 19.92               | 58.78         |
| Hexamethylcyclotrisiloxane | NA                                 | NA                      | · NA                      | ND                  | ND            | ND                  | ND                                      | ND                  | ND                        | 7.49                | 68.01         |
| Trimethylbenzene           | NA                                 | 0.62                    | NA                        | ND                  | ND            | ND -                | ND                                      | ND                  | ND                        | 2.55                | 12:54         |
| Dichlorobenzene            | 60.12                              | 0.28                    | 300,000                   | ND                  | ND            | ND                  | ND                                      | ND                  | ND                        | 1.56                | 9:40          |
| Total VOC                  |                                    |                         |                           | 12.46               |               | 53.32               |                                         | 147.15              |                           | 126                 |               |

\* The detected analytes were reported as Tentatively Identified Compounds (TICs)

.

NA - Screening criteria not available or does not apply

ND - nondetected

Shadowed cells indicate detected concentrations above screening criteria

.

#### Table E-2. Main Front Controlled Burn Air Samples - April 1999

|                | S. S.         | 910 - A 1922 | S                   | P21.1 | Sector Sector          | P3                                    | Si an Si      | 24                                 |
|----------------|---------------|--------------|---------------------|-------|------------------------|---------------------------------------|---------------|------------------------------------|
| Chemical Agent | Concentration |              | Concentration (ppb) |       | Concentration<br>(ppb) | Concentration<br>(ug/m <sup>3</sup> ) | Concentration | Concentration (ug/m <sup>3</sup> ) |
| Sarin (GB)     | ND            | ND           | ND                  | ND    | ND                     | ND                                    | ND            | ND                                 |
| Soman (GD)     | ND            | ND           | ND                  | ND    | ND                     | ND                                    | ND            | ND                                 |
| VX             | ND            | ND           | ND                  | ND    | ND                     | ND                                    | ND 、          | ND                                 |
| Mustard (HD)   | ND            | ND           | ND                  | ND    | ND                     | ND                                    | ND            | ND                                 |

#### Chemical Agent Analysis Results

ND - nondetected

Analysis provided by Edgewood Chemical Biological Center.

#### Table E-3. Main Front Controlled Burn Air Samples - April 1999

#### Radiological Analysis Results

|                                       | Toxic Air Pollutant                | EPA Region III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALCON THE SECOND SECOND SECOND      |                        | SP15. COMPANY                          |                         | SP2                                       | <b>11</b>               | SP3                                | SP4                     | (Upwind)                                  | Blank                    |
|---------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|----------------------------------------|-------------------------|-------------------------------------------|-------------------------|------------------------------------|-------------------------|-------------------------------------------|--------------------------|
| Analytes                              | Concentration (uj/m <sup>3</sup> ) | Concentration (ug/m <sup>3</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OSHA PEL's Concentration<br>(ug/m3) | Results                | Concentrations<br>(pCVm <sup>3</sup> ) | Results<br>(pCl/filter) | Concentrations (<br>(pCI/m <sup>3</sup> ) | Results<br>(pCi/filter) | Concentrations<br>(pCI/m³)         | Results<br>(pCl/filter) | Concentrations.<br>(pCI/m <sup>3</sup> ). | Results.<br>(pCl/filter) |
| Gross Alpha                           | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | 6.8                    | 0.0231                                 | 6.2                     | 0.0210                                    | 1                       | 0.0122                             | 1.4                     | 0.0133                                    | 5.6                      |
| Gross Bela                            | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | 37                     | 0.1257                                 | 42                      | 0.1424                                    | 0.6                     | 0.0073                             | 1.6                     | 0.0152                                    | 32                       |
| Actinium-228                          | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | -2.1                   | -0.0071                                | 1.6                     | 0.0054                                    | 15                      | 0.1833                             | 2.1                     | 0.0199                                    | 13                       |
| Eismulh-212                           | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | 43                     | 0.1461                                 | 42                      | 0.1424                                    | -72                     | -0.8797                            | 13                      | 0.1233                                    | 21                       |
| Eismuth-214                           | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | -8.5                   | -0.0289                                | 3.7                     | 0.0125                                    | 0.64                    | · 0.0078 ·                         | -7.4                    | -0.0702                                   | -6.1                     |
| Cesium-137                            | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | -0.72                  | -0.0024                                | -3.8                    | -0.0129                                   | 3.6                     | 0.0440                             | 1.3                     | 0.0123                                    | 3.7                      |
| Cobalt-60                             | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | 0.88                   | 0.0030                                 | 1.2                     | 0.0041                                    | -0.41                   | -0.0050                            | 1.3                     | 0.0123                                    | 0.71                     |
| Lead-210                              | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | -46                    | -0.1563                                | -14                     | -0.0475                                   | -70                     | -0.8552                            | -95                     | -0.9012                                   | 10                       |
| Lead-212                              | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | 0.37                   | 0.0013                                 | 16                      | 0.0543                                    | -2.5                    | -0.0305                            | -1.4                    | -0.0133                                   | 5.6                      |
| Lead-214                              | · NA                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | -3.6                   | -0.0122                                | 7,4                     | 0.0251                                    | -5.3                    | -0.0648                            | -0.18                   | -0.0017                                   | -3.6                     |
| Potassium-40                          | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | 52                     | 0.1767                                 | 4.1                     | 0.0139                                    | -47                     | -0.5742                            | 22                      | 0.2087                                    | 11                       |
| Protactinium-231                      | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | -7.8                   | -0.0265                                | 20                      | 0.0678                                    | 120                     | 1.4661                             | 97                      | 0.9202                                    | 4.6                      |
| Protactinium-234                      | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | 3.5                    | 0.0119                                 | -23                     | -0.0780                                   | 6.3                     | 0.0770                             | ÷3.4                    | -0.0323                                   | -4.9                     |
| Radium-223                            | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | -5.4                   | -0.0184                                | 1,4                     | 0.0047                                    | -6.9                    | -0.0843                            | -1.4                    | -0.0133                                   | 4.6                      |
| Radium-224                            | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | 9                      | 0.0306                                 | 180                     | 0.6104                                    | 120                     | 1.4661                             | -53                     | -0.5028                                   | 160                      |
| Radium-225                            | NA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | -8.3                   | -0.0282                                | 3.6                     | 0.0122                                    | 0.62                    | 0.0076                             | -7.2                    | -0.0683                                   | -5.9                     |
| Uranium-235                           | ŇA                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                  | -5.6                   | -0.0190                                | -3.3                    | -0.0112                                   | -14                     | -0.1710                            | 4.4                     | 0.0417                                    | 12                       |
|                                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Results<br>(ug/filter) | Concentration<br>(up/m <sup>3</sup> )  | Results (ug/filter)     | Concentration                             | Results (ua/filter)     | Concentration (up/m <sup>3</sup> ) | Results<br>(ua/filter)  | Concentration                             | Results;<br>(ua/filter)  |
| Total Uranium by<br>Mass Spectrometry | 6                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                  | 2                      | 0.0068                                 | 2                       | 0.0068                                    | ND                      | ND                                 | ND                      | ND                                        | 2.2                      |
| · · · · · · · · · · · · · · · · · · · |                                    | and a state of the |                                     |                        |                                        |                         |                                           |                         |                                    |                         |                                           |                          |

1

| Sampling     | Sampler ID  | Total Air Flow 2 |
|--------------|-------------|------------------|
| SP1          | TSP3        | 294.26           |
| SP2          | TSP6        | 294.87           |
| SP3          | Handi Vol 6 | 81.85            |
| SP4 (Upwind) | Handi Vol 7 | 105.41           |

NA - Screening criteria not available or does not apply

.

ND - Nondetected

#### Table E-4. Main Front Controlled Burn Air Samples - April 1999

#### Inorganics Analysis Results

|           | in the second second                                                                |                                                                         | Sentempo PLA                            |                        | SPINARO PARA           |                        | SP2                        | i di Santa             | SP3Htte                                | SP.                    | l (Upwind)                             | Blank                  |
|-----------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------|----------------------------|------------------------|----------------------------------------|------------------------|----------------------------------------|------------------------|
| Analytes  | Toxic Air Pollutant<br>1-Hour Screening Level<br>Concentration (ug/m <sup>3</sup> ) | EPA Region II Ambient<br>Air RBCs<br>Concentration (ug/m <sup>2</sup> ) | OSHA PEus (47)<br>Concentration (ug/m3) | Results<br>(ug/filter) | Concentrations (ug/m³) | Results<br>(ug/filter) | Concentrations)<br>(ug/m³) | Results<br>(ug/filter) | Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/filter) | Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/filter) |
| Mercury   | 0.3                                                                                 | 0.031                                                                   | 100 (acceptable                         | 0.01                   | 0.00003                | 0.01                   | 0.00003                    | BOL                    | • • •                                  | BQL                    | -                                      | BQL                    |
| Silver    | NA                                                                                  | 1.8                                                                     | 10 .:                                   | 2                      | 0.0068                 | 1.7                    | 0.0058                     | BQL                    | -                                      | BQL                    | ~                                      | 3.1                    |
| Aluminum  | NA                                                                                  | 0.37                                                                    | 5.000                                   | 15000                  | 51:1910                | 1,1800                 | 40,0489                    | 43.7                   | 0.5955.                                | 53.5                   | 0.4598                                 | 21700                  |
| Arsenic   | NA                                                                                  | 0.00041                                                                 | 500                                     | 4.3                    |                        | 3.6                    | 0,0122                     | BQL                    |                                        | BOL                    | -                                      | 6.5                    |
| Barium    | NA                                                                                  | 0.051                                                                   | 500                                     | 36900                  | 125:9300               | 29000                  | 98.4252                    | 2.5                    | 0.0341                                 | 2.7                    | 0.0232                                 | 48900                  |
| Beryllium | 0.1                                                                                 | 0.00075                                                                 | 2                                       | 0.14                   | 0.0005                 | 0.11                   | 0.0004                     | BOL                    | -                                      | BQL                    | -                                      | 0.17                   |
| Calcium   | NA                                                                                  | NA                                                                      | NA                                      | 10400                  | 35.4925                | 8340                   | 28.3057                    | 67.5                   | 0.9199                                 | 71.5                   | 0.6145                                 | 13800                  |
| Cadmium   | NA                                                                                  | 0.00099                                                                 | 5.                                      | BOL                    | •                      | BQL                    | -                          | 0.04                   | 0.0005                                 | BQL                    | -                                      | BQL                    |
| Cobalt    | NA                                                                                  | 22                                                                      | 100                                     | BQL                    |                        | BQL                    |                            | BQL                    | -                                      | 0.06                   | 0.0005                                 | BQL                    |
| Chromium  | NA <sup>.</sup>                                                                     | 0.00015                                                                 | 500                                     | 11,4                   | 0.0389                 | 9.1                    | 0.0309                     | 0.59                   | 0.0080                                 | 0.52                   | 0.0045                                 | 18.3                   |
| Copper    | NA                                                                                  | 15                                                                      | 100                                     | 16.2                   | 0.0553                 | 11.9                   | 0.0404                     | 22.8                   | 0.3107                                 | 4.9                    | 0.0421                                 | BQL                    |
| Iron      | NA                                                                                  | - 110                                                                   | NA                                      | 274                    | 0.9351                 | 230                    | 0.7806                     | 38.3                   | 0.5219                                 | 42.1                   | 0.3618                                 | 315                    |
| Potassium | NA                                                                                  | NA                                                                      | NA                                      | 22200                  | 75.7627                | 17100                  | 58.0369                    | 23.8                   | 0.3243                                 | 30.8                   | 0.2647                                 | 28800                  |
| Magnesium | NA                                                                                  | NA                                                                      | NA                                      | 991                    | 3.3820                 | .799                   | 2.7118                     | 15.2                   | 0.2071                                 | 19.4                   | 0.1667                                 | 1300                   |
| Manganese | NA                                                                                  | 0.0052                                                                  | _ 5000                                  | 10.3                   | 0.0352                 | 9.2                    | ······                     | 1,4                    |                                        | 1.7                    | 0.0146                                 | 11.3                   |
| Sodium    | NA                                                                                  | NA                                                                      | NA                                      | 66600                  | 227.2882               | 48500                  | 164.6077                   | 186                    | 2.5348                                 | 166                    | 1.4267                                 | 81400                  |
| Nickel    | NA                                                                                  | 7.3                                                                     | 1,000                                   | 1.7                    | 0.0058                 | 1.4                    | 0.0048                     | 0.45                   | 0.0061                                 | 0.41                   | 0.0035                                 | 1.7                    |
| Lead      | NA                                                                                  | NA                                                                      | 50                                      | 5                      | 0.0171                 | 3.9                    | 0.0132                     | 0.45                   | 0.0061                                 | 0.44                   | 0.0038                                 | 4.9                    |
| Antimony  | NA                                                                                  | 0.15                                                                    | 500                                     | BQL                    |                        | BQL                    | -                          | BQL                    | -                                      | BQL                    | -                                      | BQL                    |
| Selenium  | NA                                                                                  | 1.8                                                                     | 200                                     | BOL                    | -                      | BQL                    | -                          | BQL                    | · · ·                                  | BQL                    | •                                      | BQL                    |
| Thallium  | NA                                                                                  | 0.026                                                                   | 100                                     | 1.5000                 | 0.0051                 | 1.3                    | 0.0044                     | BQL                    |                                        | BQL                    | -                                      | 2.5                    |
| Vanadium  | NA                                                                                  | 2.6                                                                     | 500                                     | 0.6900                 | 0.0024                 | 0.68                   | 0.0023                     | 0.29                   | 0.0040                                 | 0.33                   | 0.0028                                 | 0.58                   |
| Zinc      | 100                                                                                 | 110                                                                     | NA                                      | 29300.0000             | 99.9932                | 22500                  | 76.3644                    | 3.5                    | 0.0477                                 | 4.1                    | 0.0352                                 | 38100                  |

| Sampling     | Sampler ID 5 | (m) rotal Alt Flows |         |
|--------------|--------------|---------------------|---------|
| SP1          | TSP1         | 293.02              | 1       |
| SP1          | TSP2         | 297.77              | Mercury |
| SP2          | TSP4         | 294.64              | 1       |
| SP2          | TSP5         | 294.64              | Mercury |
| SP3          | Handi Vol 1  | 73.38               | 1       |
| SP3          | Handl Vol 4  | 88.92               | Mercury |
| SP4 (Upwind) | Handi Vol 2  | 116.35              | 1       |
| SP4 (Upwind) | Handi Vol 5  | . 114.11            | Mercury |

NA - Screening criteria not available or does not apply

EQL - Below Quantitation Limit

Shadowed cells indicate detected concentrations above screening criteria.

#### Table E-5. Main Front Controlled Burn Air Samples - April 1999 PCBs Analysis Results from Filters

|                                  |                        | SP1                                    |                        | SP2                                    |                        | SP3                                     | SPA                     | (Upwind)                            | Blank                  |
|----------------------------------|------------------------|----------------------------------------|------------------------|----------------------------------------|------------------------|-----------------------------------------|-------------------------|-------------------------------------|------------------------|
| Analytes                         | Results<br>(ug/filter) | Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/filter) | Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/filter) | Concentrations.<br>(ug/m <sup>3</sup> ) | Results:<br>(ug/filter) | Concentrations (ug/m <sup>3</sup> ) | Results<br>(ug/filter) |
| 2.2',3,5'-Tetrachlorobiphenyl    | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     |                                     | BQL                    |
| 2.2,',5.5'-Tetrachlorobiphenyl   | BQL                    | -                                      | BQL                    | -                                      | BQL *                  | . <del>.</del>                          | BQL                     | •                                   | BQL                    |
| 2.2',5-Trichlorobiphenyl         | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 2,2'3.4,4'5-Hexachlorobiphenyl   | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 2,2'3,4,5'-Pentachlorobiphenyl   | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 2,2'3,4,5.5'Hexachlorobiphenyl   | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 2,2'3,5,5'6-Hexachlorobiphenyl   | BQL                    | -                                      | BQL                    | •                                      | BQL                    |                                         | BQL                     | -                                   | BQL                    |
| 2,2'4,4'5,5'Hexachlorobiphenyl   | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | <i>с</i> -                          | BQL                    |
| 2,2'4,5,5'-Pentachlorobiphenyl   | BQL                    | ÷                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 2.3',4,4'-Tetrachlorobiphenyl    | BQL                    |                                        | BQL                    | -                                      | BQL                    | ÷                                       | BQL                     | -                                   | BQL                    |
| 2.3.3'4'6-Pentachlorobiphenyl    | BQL                    | -                                      | BQL                    | -                                      | BQL                    |                                         | BQL                     | -                                   | BQL                    |
| 2,3-Dichlorobiphenyl             | BQL                    | -                                      | BQL                    |                                        | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 2,4',5-Trichlorobiphenyl         | BQL                    |                                        | BQL                    | • .                                    | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 2-Chlorobiphenyl                 | BQL                    | -                                      | BQL                    |                                        | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 22'33'44'5-Heptachlorobiphenyl   | BQL                    | •                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 22'33'44'55'6-Nonachlorobiphenyl | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 22'34'55'6-Heptachlorobiphenyl   | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | -                                   | BQL                    |
| 22'344'5'6-Heptachlorobiphenyl   | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     |                                     | BQL                    |
| 22'344'55'-Heptachlorobiphenyl   | BQL                    | -                                      | BQL                    | -                                      | BQL                    | -                                       | BQL                     | -                                   | BQL                    |

| Location     | Sampler ID | Total Air Flow |
|--------------|------------|----------------|
| SP1          | Filter7    | 53.39          |
| SP2          | Filter6    | 46.95          |
| SP3          | Filter1    | 37.78          |
| SP4 (Upwind) | Filter3    | 61.1           |

#### Table E-6. Main Front Controlled Burn Air Samples - April 1999

#### PCBs Analysis Results from PUF Samplers

| 1. ···································· | Ar Toxic Air Pollutant            | ERA Region III,          |                                    | NO CONCERNS         | SPICE                               |                      |                                         | and the second second second second | SP3                                     |                     |                        | S.Blank            |
|-----------------------------------------|-----------------------------------|--------------------------|------------------------------------|---------------------|-------------------------------------|----------------------|-----------------------------------------|-------------------------------------|-----------------------------------------|---------------------|------------------------|--------------------|
| Analytės                                | 1-Hour Screening Level<br>(ug/m³) | Amblent Air RBCs (ug/m²) | OSHA PELS<br>Concentration (ug/m3) | Results<br>(ug/PUF) | Concentrations (ug/m <sup>2</sup> ) | Results:<br>(ug/PUF) | "Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF)                 | Concentrations:<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | Concentrations (ug/m³) | Results<br>(ug/PUF |
| 2,2',3,5'-Tetrachlorobiphenyl           | NA                                | 0.0031                   | 500                                | BQL                 | •                                   | BQL                  | -                                       | BQL                                 |                                         | BQL                 |                        | BQL                |
| 2.2,1,5,5'-Tetrachlorobipheny'          | NA                                | 0.0031                   | 500                                | BQL                 |                                     | BQL                  | -                                       | BQL                                 |                                         | BQL                 |                        | BQL                |
| 2,2'.5-Trichlorobiphenyl                | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BOL                  | -                                       | BQL                                 | -                                       | BOL                 | stra correna           | BQL                |
| 2,2'3,4,4'5-Hexachlorobiphenyl          | NA                                | 0.0031                   | 500                                | BQL                 | •                                   | BQL                  | -                                       | BQL                                 | -                                       | BQL                 | -                      | BQL                |
| 2,2'3,4,5'-Pentachlorobiphenyl          | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BQL                  | -                                       | 0.03                                | 0.0008                                  | BQL                 |                        | BQL                |
| 2,2'3,4,5,5'Hexachlorobiphenyl          | NA                                | 0.0031                   | 500                                | BQL                 |                                     | BQL                  | -                                       | BQL                                 | •                                       | BQL                 | -                      | BQL                |
| 2,2'3,5.5'6-Hexachlorobiphenvl          | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BQL                  | •                                       | BQL                                 | -                                       | BQL                 | -                      | BOL                |
| 2,2'4,4'5,5'Hexachlorobiphenyl          | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BQL                  | -                                       | BQL                                 | -                                       | BQL                 | -                      | BOL                |
| 2,2'4,5,5'-Pentachlorobiphenyl          | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BQL                  | -                                       | BQL                                 | -                                       | BQL                 | -                      | BOL                |
| 2,3',4,4'-Tetrachlorobiphenyl           | NA                                | 0.0031                   | 500                                | BQL                 | •                                   | BQL                  | -                                       | BQL                                 | -                                       | BQL                 | -                      | BQL                |
| 2,3,3'4'6-Pentachlorobiphenyl           | NA                                | 0.0031                   | 500                                | BQL                 | · · ·                               | BQL                  | ·                                       | BQL                                 | -                                       | BQL                 | -                      | BQL                |
| 2,3-Dichlorobiphenyl                    | NA                                | 0.0031                   | 500                                | BQL                 |                                     | BQL                  | -                                       | BQL                                 | · -                                     | BOL                 | -                      | BQL                |
| 2,4',5-Trichlorobiphenyl                | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BQL                  | -                                       | 0.43                                | 4.0.0 <b>.0110</b>                      | 0.073               | 0.0012                 | BQL                |
| 2-Chlorobiphenyl                        | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BQL                  | •                                       | BQL                                 | -                                       | BQL                 |                        | BQL                |
| 22'33'44'5-Heptachlorobiphenyl          | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BQL                  | -                                       | BQL                                 | -                                       | BQL                 | •                      | BQL                |
| 22'33'44'55'6-Nonachlorobiphenyl        | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BQL                  |                                         | BQL                                 | •                                       | BOL                 | -                      | BQL                |
| 22'34'55'6-Heptachlorobiphenyl          | NA                                | 0.0031                   | 500                                | BQL.                | -                                   | BQL                  |                                         | BOL                                 | -                                       | BQL                 | -                      | BOL                |
| 22'344'5'6-Heptachlorobiphenyl          | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | BQL                  | -                                       | BQL                                 | -                                       | BQL                 | -                      | BQL                |
| 22'344'55'-Heptachlorobiphenyl          | NA                                | 0.0031                   | 500                                | BQL                 | -                                   | 8QL                  |                                         | BQL                                 | -                                       | BQL                 | -                      | BQL                |

.

.

•

| Sampling     | Sampler D C Cost | Total All Flow (m1) |
|--------------|------------------|---------------------|
| SP1          | PUF7             | 53.39               |
| SP2          | PUF6             | 46.95               |
| SP3          | PUF1             | 37.78               |
| SP4 (Upwind) | PUF3             | 61.1                |

NA - Screening criteria not available or does not apply  $\mathsf{EQL}$  - Below Quantitation Limit

Shadowed cells indicated detected concentrations above screening criteria

### Table E-7. Main Front Controlled Burn Air Samples - April 1999

### Pesticides Analysis Results from Filters

|                     | SP1 |                                        | Western States and States |                                        |                        |                                     |                        | l'(Upwind)                          | Blank                  |
|---------------------|-----------------------------------------|----------------------------------------|---------------------------|----------------------------------------|------------------------|-------------------------------------|------------------------|-------------------------------------|------------------------|
| Analytes            | Results<br>(ug/filter)                  | Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/filter)    | Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/filter) | Concentrations (ug/m <sup>3</sup> ) | Results<br>(ug/filter) | Concentrations (ug/m <sup>3</sup> ) | Results<br>(ug/filter) |
| alphá-BHC           | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| beta-BHC            | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| delta-BHC           | BQL                                     |                                        | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Lindane (gamma-BHC) | BQL                                     |                                        | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Heptachlor          | BQL                                     |                                        | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Aldrin              | BQL                                     | -                                      | BQL                       | · -                                    | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Heptachlor epoxide  | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | · · ·                               | BQL                    | -                                   | BQL                    |
| Endosulfan I        | BQL                                     | -                                      | BQL                       | _ /                                    | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Dieldrin            | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| 4,4'-DDE            | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Endrin              | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Endosulfan II       | BQL                                     | +                                      | BQL                       | -·                                     | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| 4,4'-DDD            | BQL                                     |                                        | BQL                       | ·                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Endosulfan sulfate  | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| 4,4'-DDT            | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | -                                   | BQL                    | ~                                   | BQL                    |
| Methoxychlor        | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Endrin ketone       | BQL                                     | -                                      | BQL                       |                                        | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Endrin aldehyde     | BQL                                     | - · ·                                  | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| alpha-Chlordane     | BQL                                     | -                                      | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| gamma-Chlordane     | BQL                                     |                                        | BQL                       | -                                      | BQL                    | -                                   | BQL                    | -                                   | BQL                    |
| Toxaphene           | BQL                                     |                                        | BQL                       | -                                      | BQL                    | -                                   | BOL                    | -                                   | BQL                    |

| Samplinging Samplinging Samplinging Samplinging Samplinging Samplinging Samplinging Samplinging Samplinging Sam | Sampler ID: | Total All Flow |
|-----------------------------------------------------------------------------------------------------------------|-------------|----------------|
| SP1                                                                                                             | Filter9     | 60.17          |
| SP2                                                                                                             | Filter8     | 41.09          |
| SP3                                                                                                             | Filter2     | 33.16          |
| SP4 (Upwind)                                                                                                    | Filter4     | 45.89          |

#### Table E-8. Main Front Controlled Burn Air Samples - April 1999

Pesticides Analysis Results from PUF Samplers

| PERSONAL SYNCES     | Toxic Air Pollutant               | EPA Region III + 54         | A CONTRACTOR OF STREET |                     | ospi                                                    | A CARLENCER         | SP2 SP2                               |                     | SP3                                     | SP.                 | 4 (Upwind)                            | Blank              |
|---------------------|-----------------------------------|-----------------------------|------------------------|---------------------|---------------------------------------------------------|---------------------|---------------------------------------|---------------------|-----------------------------------------|---------------------|---------------------------------------|--------------------|
| Analytes            | 1-Hour Screening Level<br>(vg/m³) | Amblent Air RBCs<br>(ug/m³) | (Ig/m3)                | Results<br>(ug/PUF) | Concentration (ug/m <sup>1</sup> )                      | Results<br>(ug/PUF) | Concentration<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | Concentration ?<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | Concentration<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF |
| alpha-BHC           | NA                                | NA                          | NA                     | BQL                 | -                                                       | BQL                 | •                                     | BQL                 |                                         | BQL                 | -                                     | BQL                |
| beta-BHC            | NA                                | NA                          | NA                     | BQL                 | • •                                                     | BQL                 | -                                     | BQL                 | -                                       | BQL                 | -                                     | BQL                |
| delta-BHC           | NA                                | NA                          | NA                     | BQL                 | •                                                       | BQL                 |                                       | BQL                 | •                                       | BQL                 | · · ·                                 | BQL                |
| Lindane (gamma-BHC) | NA                                | NA                          | 500                    | BQL                 | -                                                       | BQL                 | -                                     | BQL                 | · -                                     | BOL                 | -                                     | BQL                |
| Heptachlor          | NA                                | 0.0014                      | 500                    | BOL                 | -                                                       | BQL                 | •                                     | BQL                 | -                                       | BQL                 | -                                     | BQL                |
| Aldrin              | NA                                | 0.00037                     | 250                    | BQL                 | -                                                       | BQL                 | •                                     | BQL                 | -                                       | BOL                 | -                                     | BQL                |
| Heptachlor epoxide  | NA                                | 0.00069                     | NA                     | BQL                 | •                                                       | BQL                 |                                       | BQL                 | -                                       | BQL                 | -                                     | BQL                |
| Endosulfan I        | NA                                | 2.2                         | NA                     | BQL                 | •                                                       | BQL                 | -                                     | BQL                 | -                                       | BQL                 | -                                     | BOL                |
| Dieldrin            | NA                                | 0.00039                     | 250                    | 0.032               | 142 <sup>12</sup> 10.0005 <sup>1</sup> 55 <sup>41</sup> | 0.02                | 0.0005                                | 0.1                 | 0.0030                                  | BQL                 | -                                     | BQL                |
| 4.4'-DDE            | NA                                | 0.018                       | NA                     | BQL                 | -                                                       | BQL                 |                                       | BQL                 |                                         | BOL                 | -                                     | BQL                |
| Endrin              | NA                                | 0.11                        | NA                     | BOL                 | -                                                       | BQL                 | · ·                                   | BQL                 | -                                       | BQL                 |                                       | BQL                |
| Endosulfan II       | NA                                | 2.2                         | NA                     | BQL                 | -                                                       | BQL                 | -                                     | BQL                 |                                         | BOL                 | -                                     | BOL                |
| 4,4'-DDD            | NA                                | 0.026                       | NA                     | BOL                 | -                                                       | BQL                 | -                                     | BOL                 | · ·                                     | BQL                 | -                                     | BOL                |
| Endosulfan sulfale  | NA                                | NA                          | NA                     | BQL                 |                                                         | BQL                 | -                                     | BQL                 |                                         | BQL                 | -                                     | BOL                |
| 4.4'-DDT            | NA                                | 0.018                       | 1,000                  | BQL                 | •                                                       | BQL                 |                                       | BQL                 | -                                       | BQL.                | -                                     | BQL                |
| Methoxychlor        | NA                                | 1.8                         | 1,500                  | BQL                 |                                                         | BQL                 | -                                     | BQL                 | -                                       | BQL                 | · ·                                   | BQL                |
| Endrin ketone       | NA                                | NA                          | NA                     | BQL                 | -                                                       | BQL                 | · ·                                   | BQL                 | -                                       | BQL                 | -                                     | BQL                |
| Endrin aldehyde     | NA                                | NA                          | NA                     | BQL                 |                                                         | BQL                 |                                       | BQL                 |                                         | BQL                 | -                                     | BQL                |
| alpha-Chlordane     | NA                                | NA                          | 500                    | BOL                 | -                                                       | BQL                 | -                                     | BQL                 |                                         | BQL                 |                                       | BOL                |
| gamma-Chlordane     | NA                                | NA                          | 500                    | BQL                 | -                                                       | BQL                 | -                                     | BQL                 | -                                       | BQL                 |                                       | BOL                |
| Toxaphene           | NA                                | 0.0057                      | 500                    | BOL                 | •                                                       | BQL                 |                                       | BQL                 | -                                       | BQL                 |                                       | BQL                |

| Campling     | Sampler (D.a. 1994 | Total Ard Figware |
|--------------|--------------------|-------------------|
| SP1          | PUF9               | 60.17             |
| SP2          | PUF8               | 41.09             |
| SP3          | PUF2               | 33.16             |
| SP4 (Upwind) | PUF4               | 45.89             |

NA - Screening criteria not available or does not apply

BQL - Below Quantitation Limit

Shadowed cells indicate detected concentrations above screening criteria

|              | 100 million (1996)      |              | SP1+34              | le sa nava a ten statis | Set Street of           |               | 5P2 4 4 4 4 4 4     |                         | SAL STREET              | <b>HERE DE LA CONTRACT</b>             | P3 the Pter Ha        |                         |
|--------------|-------------------------|--------------|---------------------|-------------------------|-------------------------|---------------|---------------------|-------------------------|-------------------------|----------------------------------------|-----------------------|-------------------------|
| Analytes     | Results<br>(pCi/filter) | Error<br>+/- | MDA<br>(pCl/filter) | Validation<br>Qualifier | Results<br>(pCI/filter) | Error.<br>+/- | MDA<br>(pCi/filter) | Validation<br>Qualifier | Results<br>(pCl/filter) | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | MDA:<br>(pCl/filter). | Validation<br>Qualifier |
| Gross Alpha  | 6.8                     | 2.4          | 1.8                 | U3, J6                  | 6.2                     | 2.3           | 2                   | U3, J6                  | 1                       | 0.8                                    | 1                     | U1, U3, J6              |
| Gross Beta   | 37                      | 3.2          | 1.9                 | D                       | 42                      | 3.4           | . 2                 | D                       | 0.6                     | 0.9                                    | 1.5                   | U1, U2, U3              |
| Bismuth-212  | 43                      | 43           | 85                  | U1, U2 *                | 42                      | 75            | 130                 | U1, U2 *                | -72                     | 73                                     | 110                   | U1, U2 *                |
| Lead-212     | 0.37                    | 7.5          | 7.3                 | U1, U2 D                | 16                      | 16            | 14                  | U1, U2 D                | -2.5                    | 9.2                                    | 15                    | U1, U2 *                |
| Potassium-40 | 52                      | 48           | 51                  | U1, J6 D                | 4.1                     | 83            | 180                 | U1, U2 *                | -47                     | 75                                     | 160                   | U1, U2 *                |
| Radium-223   | -5.4                    | 6.5          | 11                  | U1, U2 *                | 1,4                     | 10            | 17                  | U1, U2 D                | -6,9                    | 11                                     | 17                    | U1, U2 *                |
| Uranium-235  | -5.6                    | 14           | 23                  | U1, J6 *                | -3.3                    | 30            | 50                  | U1, U2 *                | -14                     | 30                                     | 49                    | U1, U2 *                |

| a (1997)<br>1997 - Maria Maria (1997)<br>1997 - Maria Maria (1997) |                         | SP4 (I                                        | Jpwind)             |          | Blank                   |     |     |                           |  |  |  |
|--------------------------------------------------------------------|-------------------------|-----------------------------------------------|---------------------|----------|-------------------------|-----|-----|---------------------------|--|--|--|
| Analytes                                                           | Results<br>(pCI/filter) | 2020 7 4 3 16 5 2 8 4 5 2 + 2 5 4 26 M 16 3 M | MDA<br>(pCl/filter) |          | Results<br>(pCl/filter) |     |     | Validation .<br>Qualifier |  |  |  |
| Gross Alpha                                                        | 1.4                     | 0.8                                           | 1                   | U3, J6   | 5.6                     | 2.1 | 1.7 | J6                        |  |  |  |
| Gross Beta                                                         | 1.6                     | 1                                             | 1.5                 | U3, J6   | 32                      | 2.9 | 1.6 | D                         |  |  |  |
| Bismuth-212                                                        | 13                      | 42                                            | 79                  | U1, U2 * | 21                      | 69  | 120 | U1, U2                    |  |  |  |
| Lead-212                                                           | -1.4                    | 4.9                                           | 9                   | U1, U2 * | 5.6                     | 9   | 15  | U1, U2 *                  |  |  |  |
| Potassium-40                                                       | 22                      | 57                                            | 65                  | U1, U2 D | 11                      | 120 | 80  | U1, U2                    |  |  |  |
| Radium-223                                                         | -1.4                    | 6.4                                           | 11                  | U1, U2 * | 4.6                     | 12  | 18  | U1, U2 *                  |  |  |  |
| Uranium-235                                                        | 4.4                     | 4.2                                           | 24                  | U1, U2 D | 12                      | 29  | 50  | U1, U2 *                  |  |  |  |

\* reported nondetected in 8 results

MDA - minimum detectable amount

D reported detected in 8 results

#### Qualifier

U1 - results less than MDA

U2 - results less than error

U3 - results less than blank

J6 - error greater than 20%

## Table E-9. Main Front Controlled Burn Air Samples - April 1999Explosives Analysis Results from PUF Samplers

|                            |                     | SP11 States                           | Signal Constants    | 2                                     | SI SI               | 3                                     | SP4                 | Blank                              |                     |
|----------------------------|---------------------|---------------------------------------|---------------------|---------------------------------------|---------------------|---------------------------------------|---------------------|------------------------------------|---------------------|
| Analytes                   | Results<br>(ug/PUF) | Concentration<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | Concentration<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | Concentration<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | Concentration (ug/m <sup>3</sup> ) | Results<br>(ug/PUF) |
| 1,3,5-Trinitrobenzene      | BQL                 | -                                     | BQL                 | -                                     | BQL                 | ·                                     | BQL                 | -                                  | BQL                 |
| 1,3-Dinitrobezene          | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                  | BQL                 |
| 2,4,6-Trinitrotoluene      | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                  | BQL                 |
| 2.4-Dinitrotoluene         | BQL                 | -                                     | BQL                 |                                       | BQL                 | -                                     | BQL                 | -                                  | BQL                 |
| 2,6-Dinitrotoluene         | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                  | BQL                 |
| 2-Amino-4,6-dinitrotoluene | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                  | BQL                 |
| 2-Nitrotoluene             | BQL                 | -                                     | BQL                 |                                       | BQL                 | -                                     | BQL                 | -                                  | BQL                 |
| 3-Nitrotoluene             | BQL                 | -                                     | BQL                 | -                                     | BQL                 | •                                     | BQL                 | -                                  | BQL                 |
| 4-Amino-2,6-dinitrotoluene | BQL                 | -                                     | BQL                 | -                                     | BQL                 |                                       | BQL                 | -                                  | BQL                 |
| 4-Nitrotoluene             | BQL                 | -                                     | BQL                 |                                       | BQL                 | -                                     | . BQL               | -                                  | BQL                 |
| НМХ                        | BQL                 | -                                     | BQL                 | -                                     | BQL                 | · •                                   | BQL                 | -                                  | BQL                 |
| Nitrobenzene               | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                  | BQL                 |
| RDX                        | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                  | BQL                 |
| Tetryi                     | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                     | BQL                 | -                                  | BQL                 |

-

## Table E-10Main Front Controlled Burn Air Samples - April 1999Explosives Analysis Results from Filters

| Apposives Analysis         |                        | SP1: A SP1: A            |                        | SP2                      | fersten poorstat       | SP3                      | SP4                    | (Upwind)                              | 🙀 Blank                |  |
|----------------------------|------------------------|--------------------------|------------------------|--------------------------|------------------------|--------------------------|------------------------|---------------------------------------|------------------------|--|
| . Analytes                 | Results<br>(ug/filter) | Concentration<br>(ug/m³) | Results<br>(ug/filter) | Concentration<br>(ug/m³) | Results<br>(ug/filter) | Concentration<br>(ug/m³) | Results<br>(ug/filter) | Concentration<br>(ug/m <sup>3</sup> ) | Results<br>(ug/filter) |  |
| 1.3,5-Trinitrobenzene      | BQL                    | - ~                      | BQL                    | -                        | BQL                    | •                        | BQL                    |                                       | BQL                    |  |
| 1,3-Dinitrobezene          | BQL                    | -                        | BQL                    | -                        | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| 2.4.6-Trinitrotoluene      | BQL                    | -                        | BQL                    | -                        | BQL                    |                          | BQL                    | -                                     | BQL                    |  |
| 2,4-Dinitrotoluene         | BQL                    | -                        | BQL                    | -                        | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| 2,6-Dinitrotoluene         | BQL                    | -                        | BQL                    | - <u>.</u>               | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| 2-Amino-4,6-dinitrotoluene | BQL                    | -                        | BQL                    | · -                      | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| 2-Nitrotoluene             | BQL                    | · -                      | BQL                    | - ·                      | BQL                    | · <u>-</u>               | BQL                    | -                                     | BQL                    |  |
| 3-Nitrotoluene             | BQL                    | -                        | BQL                    | -                        | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| 4-Amino-2.6-dinitrotoluene | BQL                    | -                        | BQL                    | -                        | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| 4-Nitrotoluene             | BQL                    | -                        | BQL                    | -                        | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| НМХ                        | BQL                    | . <del>.</del>           | BQL                    | -                        | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| Nitrobenzene               | BQL                    | -                        | BQL                    | •                        | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| RDX                        | BQL                    | •                        | BQL                    | -                        | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |
| Tetryl                     | BQL                    | -                        | BQL                    | -                        | BQL                    | -                        | BQL                    | -                                     | BQL                    |  |

### APPENDIX E-2

ł

### DATA TABLES FOR THE NEW O-FIELD CONTROLLED BURN – DECEMBER 1999

#### Table E-11. New O-Field Controlled Burn Air Samples - December 1999

Volatile Organic Compound Analysis Results from Summa Canisters

| Analytes *                     | Forto Air Pollitant 12 m           | EPA Region III Ambient | Concerns attorn (up/m3) | Sec. 1        | PAR Line of                             | S      | P2 7 1. 6-           | Sec. S        | Rainin Frank?         | SP4-A (B               | ckground) 🛀                        | SP4-B (B)              | ckground) 32             |
|--------------------------------|------------------------------------|------------------------|-------------------------|---------------|-----------------------------------------|--------|----------------------|---------------|-----------------------|------------------------|------------------------------------|------------------------|--------------------------|
| Analytes                       | Concentration (ug/m <sup>2</sup> ) | Concentration (ug/m)   |                         | Concentration | Concentration :<br>(ug/m <sup>3</sup> ) |        | (ug/m <sup>2</sup> ) | Concentration | Concentration (ug/m²) | Concentration<br>(ppb) | Concentration (ug/m <sup>2</sup> ) | Concentration<br>(ppb) | Concentration<br>(ug/m³) |
| Acetone                        | .17,820                            | 37                     | 2,400,000               | 1.68          | 3.99                                    | . 27.6 | 65.56                | 1.11          | 2.64                  | ND                     |                                    | 1.51                   | 3.59                     |
| Benzène                        | 80                                 | 0.22                   | 3,195                   | 0.806         | 2.58                                    | 6.23   | 19.9                 | 0.727         | 2.32                  | 1.42                   | 4.54                               | 1,54                   | 4.92                     |
| Benzonitrile                   | NA                                 | NA                     | NA                      | 0.609         | 2.57                                    | ND .   | NÐ                   | ND            | ND                    | ND                     | ND                                 | ND                     | ND                       |
| Carbon Dioxide                 | 2.088,000                          | NA                     | 9,000,000               | ND            | ND                                      | ND     | ND                   | ND            | ND :                  | ND                     | ND                                 | ND                     | ND                       |
| Carbon Disulfide               | NA                                 | 73                     | 62,275                  | ND            | ND                                      | 5.94   | 18.5                 | ND            | ND                    | ND                     | ND                                 | ND                     | ND                       |
| Dodecene                       | NA                                 | NA                     | NA                      | 2.9           | 19.96                                   | ND     | ND                   | ND            | ND                    | ND                     | . ND                               | ND                     | ND                       |
| Hexane                         | NA                                 | 21                     | 1,800,000               | ND            | ND                                      | 11.3   | 39.83                | ND            | ND                    | ND                     | ND                                 | ND                     | ND                       |
| Methylene Chloride             | NA                                 | 3.8                    | 86,843                  | ND            | ND                                      | 7.27   | 25.25                | ND            | ND                    | ND                     | ND                                 | ND                     | ND                       |
| Pinene Isomer                  | NA                                 | NA                     | NA                      | ND            | ND                                      | ND     | ND                   | ND            | ND                    | 1.49                   | -                                  | ND                     | ND                       |
| Toluene                        | NA                                 | 42                     | 753703                  | 1.48          | 5.58                                    | 23.6   | 88.94                | 1.6           | 6.03                  | 3.58                   | 13.49                              | 1.21                   | 4.56                     |
| Xylene Isomer                  | 6,510                              | 730                    | NA                      | 0.796         | -                                       | 81.94  | ÷                    | 0.797         | -                     | 1.6                    | -                                  | 0.831                  | -                        |
| Unknown C11 Hydrosarbon        | -                                  |                        | -                       | ND            | ND                                      | ND     | ND                   | ND            | ND                    | 1.33                   | -                                  | ND                     | ND                       |
| Unknown C12 Hydrocarbon        | -                                  | ·                      | -                       | ND            | ND                                      | ND     | ND                   | ND            | ND-                   | 1.97                   | -                                  | ND                     | ND                       |
| Unknown Chloroflurohydrocarbon |                                    |                        | •                       | ND            | ND                                      | ND     | ND                   | ND            | ND                    | 1.85                   | -                                  | ND                     | ND                       |
| ~ Unknown                      | -                                  |                        | -                       | ND            | ND                                      | ND     | ND                   | ND            | ND                    | 3.26                   | -                                  | ND                     | ND                       |
| Unknown                        | -                                  | • ,                    |                         | ND            | ND.                                     | ND     | ND                   | ND            | ND                    | 1.83                   | -                                  | ND                     | ND                       |
| Unknown                        | -                                  | •                      | -                       | ND            | ND                                      | ND     | ND                   | ND            | ND                    | 1.89                   | -                                  | ND                     | ND                       |
| Total VOC                      |                                    |                        |                         | 8.271         | is and w                                | 81.940 |                      | 4.2340        |                       | 20.220                 |                                    | 5.091                  |                          |

\* The detected analytes were reported as Tentatively Identified Compounds (TICs) NA - Screening criteria not available or does not apply

ND - nondetected

(

Shadowed cells indicated detected concentrations above criteria

Table E-12. New O-Field Controlled Burn Air Samples - December 1999

| Pesticide An | alysis Result | s from PUF | Samplers |
|--------------|---------------|------------|----------|
|              |               |            |          |

|                     |                     | SP1 ASS STREET                         | and S. S.           | P2./                      | entre sie der Gebers | R3 States of the Artic                   | (B                  | ackground)                          | Blank               |
|---------------------|---------------------|----------------------------------------|---------------------|---------------------------|----------------------|------------------------------------------|---------------------|-------------------------------------|---------------------|
| Analytes            | Results<br>(ug/PUF) | Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | Concentrations<br>(ug/m³) | Results<br>(ug/PUF)  | Concentrations (<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | Concentrations (ug/m <sup>3</sup> ) | Results<br>(ug/PUF) |
| alpha-BHC           | BQL                 | -                                      | BQL                 | -                         | BQL                  | ÷                                        | BQL                 | -                                   | BQL                 |
| beta-BHC            | BQL                 | -                                      | BQL                 | -                         | BQL                  | <u>ر</u> -                               | BQL                 | -                                   | BQL                 |
| delta-BHC           | BQL                 | -                                      | BQL                 |                           | BQL                  |                                          | BQL                 | -                                   | BQL                 |
| Lindane (gamma-BHC) | BQL                 | -                                      | BQL                 |                           | BQL 🗸                | -                                        | BQL                 | -                                   | BQL                 |
| Heptachlor          | BQL                 | -                                      | BQL                 | -                         | BQL                  | • •                                      | BQL                 | -                                   | BQL                 |
| Aldrin              | BQL                 | <b>.</b>                               | BQL                 | -                         | BQL                  |                                          | BQL                 | -                                   | BQL                 |
| Heptachlor epoxide  | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| Endosulfan I        | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| Dieldrin            | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| 4,4'-DDE            | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| Endrin              | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| Endosulfan II       | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| 4.4'-DDD            | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| Endosulfan sulfate  | BQL                 | -                                      | BQL                 | _                         | BQL                  | -                                        | BQL                 |                                     | BQL                 |
| 4,4'-DDT            | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| Methoxychlor        | BQL                 | •                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| Endrin ketone       | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| Endrin aldehyde     | BQL                 | -                                      | BQL                 | -                         | BQL                  | • ·                                      | BQL                 | -                                   | BQL                 |
| alpha-Chlorðane     | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| gamma-Chlordane     | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BQL                 | -                                   | BQL                 |
| Toxaphene           | BQL                 | -                                      | BQL                 | -                         | BQL                  | -                                        | BOL                 | -                                   | BQL                 |

| Sampling Location | Sampler ID | TOTAL ALLE OWNER |
|-------------------|------------|------------------|
| SP1               | PUF9       | 36.59            |
| SP2               | PUF8       | 42.36            |
| SP3               | PUF2       | 34.4             |
| SP4 (Background)  | PUF4       | 46.37            |

#### Table E-13 New O-Field Controlled Burn Air Samples - December 1999

|  | m PUF Samplers |  |
|--|----------------|--|
|  |                |  |
|  |                |  |

|                                  | Toxic Air Pollutant    | FEPA Region III  | OSHAPELs Concentration |                     | SP1:::////////////////////////////////// | 2 199 a 1 1 1 SI    | 2                         | Si Si                | <b>3</b> 4. (K. K. S. |                     | ackground)                             | Blank            |
|----------------------------------|------------------------|------------------|------------------------|---------------------|------------------------------------------|---------------------|---------------------------|----------------------|-----------------------------------------------------------|---------------------|----------------------------------------|------------------|
| Analytes                         | 1-Hour Screening Level | Amblent Air RBCs | (upina)                | Results<br>(ug/PUF) | Concentrations (ug/m³)                   | Results<br>(ug/PUF) | Concentrations<br>(ug/m1) | Results:<br>(ug/PUF) | Concentrations (ug/m <sup>3</sup> )                       | Results<br>(ug/PUF) | Concentrations<br>(ug/m <sup>3</sup> ) | Results (ug/PUF) |
| 2.2'.3.5'-Tetrachlorobiphenyl    | (ug/m³)                | ( <b>ug/m²)</b>  | 500                    | BQL                 | <u>BROSSING AN SUMAN</u>                 | BQL                 |                           | BOL                  | Stilled Arrestellight                                     | BOL                 |                                        | BOL              |
| 2.2.1.5.5'-Tetrachlorobiphenyl   | NA                     | 0.0031           | 500                    | BQL                 |                                          | BQL                 |                           | BQL                  |                                                           | BQL                 |                                        | 0.017            |
| 2.2',5-Trichlorobiphenyl         | NA                     | 0.0031           | 500                    | BOL                 |                                          | BQL                 | · · · ·                   | BQL                  |                                                           | BOL                 |                                        | BQL              |
| 2,2'3,4,4'5-Hexachlorobiphenyl   | NA                     | 0.0031           | 500                    | BQL                 |                                          | BQL                 |                           | BOL                  |                                                           | BQL                 | · · · · · · · · · · · · · · · · · · ·  | BQL              |
| 2.2'3.4.5'-Pentachlorobiphenyl   | NA                     | 0.0031           | 500                    | 0.042               | 0.0010                                   | 0.0160              | 0.0004                    | 0.0130               | 0.0004                                                    | BQL                 |                                        | BQL              |
| 2,2'3.4,5,5'Hexachlorobiphenyl   | NA                     | 0.0031           | 500                    | BQL                 | · · ·                                    | BQL                 | -                         | BQL                  |                                                           | BQL                 |                                        | BQL              |
| 2.2'3.5.5'6-Hexachlorobiphenyl   | NA                     | 0.0031           | 500                    | BQL                 | , ·                                      | 0.0050              | 0.0001                    | 0.0200               | 0.0006                                                    | 0.009               | 0.0002                                 | BQL              |
| 2.2'4.4'5.5'Hexachlorobiphenyl   | NA                     | 0.0031           | 500                    | BQL                 |                                          | BQL                 | •                         | BQL                  | -                                                         | BQL                 | •                                      | BQL              |
| 2.2'4.5.5'-Pentachlorobiphenyl   | NA                     | 0.0031           | 500                    | BQL                 | -                                        | BQL                 | •                         | BOL                  |                                                           | BOL                 | ······································ | BQL              |
| 2.3'.4.4'-Tetrachlorobiphenyl    | NA                     | 0.0031           | 500                    | BQL                 |                                          | BQL                 | · -                       | BQL                  | -                                                         | 0.091               |                                        | 0.004            |
| 2.3.3'4'6-Pentachlorobiphenyl    | NA                     | 0.0031           | 500                    | BOL                 |                                          | BOL                 | -                         | BQL                  |                                                           | BQL                 | •                                      | BQL              |
| 2.3-Dichlorobiphenyl             | NA                     | 0.0031           | 500                    | BQL                 |                                          | BOL                 | -                         | BQL                  |                                                           | BQL                 |                                        | 0.11             |
| 2.4'.5-Trichlorobiphenyl         | NA                     | 0.0031           | 500                    | BOL                 |                                          | BQL                 | -                         | BQL                  |                                                           | BQL                 |                                        | BOI.             |
| 2-Chlorobiphenyl                 | NA                     | 0.0031           | 500                    | BOL                 | •                                        | BQL                 |                           | BQL                  | -                                                         | BQL                 | -                                      | BOL              |
| 22'33'44'5-Heptachlorobiphenyl   | N.A.                   | 0.0031           | 500                    | BOL                 |                                          | BQL                 |                           | BQL                  | -                                                         | BQL                 |                                        | BOL              |
| 22'35'44'55'6-Nonachtorobiphenyl | NA                     | 0.0031           | 500                    | BQL                 | -                                        | BQL                 | -                         | BQL                  | •                                                         | BQL                 | •                                      | BQL              |
| 22'34'55'6-Heptachlorobiphenyl   | NA .                   | 0.0031           | 500                    | BOL                 | - ,                                      | BQL                 | -                         | BQL                  | •                                                         | BQL                 | -                                      | BOL              |
| 22'344'5'6-Heplachlorobiphenyl   | NA                     | 0.0031           | 500                    | BQL                 | -                                        | BQL                 | -                         | BQL                  | -                                                         | BQL                 |                                        | BOL              |
| 22'344'55'-Heptachlorobiphenyl   | N,A                    | 0.0031           | 500                    | BOL                 | -                                        | BQL                 | -                         | BQL .                |                                                           | BQL                 | •                                      | BQL              |

2

.

.

| Sampling - Location | Sampler/ID | Total Air Flows |
|---------------------|------------|-----------------|
| SP1                 | PUF9       | 36.59           |
| SP2                 | PUF6       | 42.36           |
| SP3                 | PUF2       | 34.4            |
| SP4 (Background)    | PUF4       | 46.37           |

NA - Screening criteria not available or does not apply BQL - Below Quantitation Limit

#### Table E-14 New O-Field Controlled Burn Air Samples - December 1999

**Explosives Analysis Results from PUF Samplers** 

| Explosives Allarysis Results | el en periodat      | SPT ALASIAN AND                        | SI SI               | 2 August Marshill States  | SI                  | 20 Martin Bartin Barton States | SP4.(               | Background)               | Blank               |
|------------------------------|---------------------|----------------------------------------|---------------------|---------------------------|---------------------|--------------------------------|---------------------|---------------------------|---------------------|
| Analytes                     | Results<br>(ug/PUF) | Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | Concentrations<br>(ug/m³) | Results<br>(ug/PUF) | Concentrations<br>(ug/m³)      | Results<br>(ug/PUF) | Concentrations<br>(úg/m³) | Results<br>(ug/PUF) |
| 1.3,5-Trinitrobenzene        | BQL                 | -                                      | BQL                 | -                         | BQL                 |                                | BQL                 |                           | BQL                 |
| 1,3-Dinitrobezene            | BQL                 | ·                                      | BQL                 | -                         | BQL                 | -                              | BQL                 | -                         | BQL                 |
| 2,4,6-Trinitrotoluene        | BQL                 | •                                      | BQL                 | -                         | BQL                 | -                              | BQL                 | -                         | BQL                 |
| 2,4-Dinitrotoluene           | BQL                 |                                        | BQL                 |                           | BQL                 | -                              | BQL                 | -                         | BQL                 |
| 2,6-Dinitrotoluene           | BQL                 | -                                      | BQL                 | -                         | BQL                 | -                              | BQL                 | -                         | BQL                 |
| 2-Amino-4.6-dinitrotoluene   | BOL                 | -                                      | BQL                 | •                         | BQL                 |                                | BQL                 | -                         | BQL                 |
| 2-Nitrotoluene               | BQL                 | -                                      | BQL                 | -                         | BQL                 | -                              | BQL                 | -                         | BQL                 |
| 3-Nitrotoluene               | BQL                 | -                                      | BQL                 | -                         | BQL                 | -                              | BQL                 | -                         | BQL                 |
| 4-Amino-2,6-dinitrotoluene   | BQL                 | -                                      | BQL                 | -                         | BQL                 | -                              | BQL                 | -                         | BQL                 |
| 4-Nitrotoluene               | BQL                 |                                        | BQL                 | -                         | BQL                 | -                              | BQL                 |                           | BQL                 |
| нмх                          | BQL                 | -                                      | BQL                 | -                         | BQL                 | -                              | BOL                 | -                         | BQL                 |
| Nitrobenzene                 | BQL                 | -                                      | BQL                 | -                         | BQL                 | -<br>-                         | BQL                 | -                         | BQL                 |
| RDX                          | BQL                 | -                                      | BQL                 | •                         | BQL                 | -                              | BOL                 | -                         | BQL                 |
| Tetryl                       | BQL                 | ~                                      | BQL                 | -                         | BQL                 | -                              | BOL                 | -                         | BQL                 |

| Sampling Location | Sampler ID | Total/AlraFlow/ |
|-------------------|------------|-----------------|
| SP1               | PUF7       | 36.15           |
| SP2               | PUF6       | 42.95           |
| SP3               | PUF1       | 38.14           |
| SP4 (Background)  | PUF3       | 54.08           |

#### Teble E-15 New O-Field Controlled Burn Air Samplas - December 1999 Inorganics Analysis Results

| 2.000000000 |                                      |                                                       |                          |                          |                                     |             |                                                      |                                   |                                       | 310 SP4 (              | Background), 2007                      | Blank                         | Hank Blank             |
|-------------|--------------------------------------|-------------------------------------------------------|--------------------------|--------------------------|-------------------------------------|-------------|------------------------------------------------------|-----------------------------------|---------------------------------------|------------------------|----------------------------------------|-------------------------------|------------------------|
| Analytos    | 1-Hour Screening Level 14<br>(ug/m³) | Amblent Air RBCs <sup>2</sup><br>(ug/m <sup>3</sup> ) | (ug/m3)                  | C Results<br>(ug/filter) | Concentrations (ug/m <sup>1</sup> ) | (ug/filter) | Concentrations <sup>12</sup><br>(ug/m <sup>3</sup> ) | Results <sup>(2)</sup> (ug/liter) | Concentrations<br>(ug/m²)             | Results<br>(ug/filter) | Concentratione<br>(ug/m <sup>1</sup> ) | Results<br>(ug/filter)<br>TSP | (ug/filter)<br>HANDIVO |
| Marcury     | 0.3                                  | 0.03                                                  | 100 (acceptable ceiling) | BQL                      |                                     | BOL         | •                                                    | BQL                               | -                                     | 8QL                    |                                        | BOL                           | BOL                    |
| Silver      | NA                                   | 1.8                                                   | .10                      | BOL                      | -                                   | BQL         | -                                                    | BQL                               | -                                     | BQL                    |                                        | BOL                           | BOL                    |
| Aluminum    | NA                                   | 0.37                                                  | 5,000                    | 110                      | 0.5200                              | 55.7        | 0.2000                                               | 44.9                              | 0.3600                                | 39.9                   | 0.3100                                 | 24.6                          | BOL                    |
| Arsenic     | NA                                   | 0.00041                                               | 500                      | 3.2                      |                                     | BOL         |                                                      | BQL                               | ·                                     | BQL                    | •                                      | BOL                           | BOL                    |
| Barium      | NA                                   | 0.051                                                 | 500                      | 24.7                     | 0.1100                              | .1B.4       | 0.0700                                               | 2,3                               | 0.0200                                | 2.2                    | 0.0200                                 | 20.1                          | 1,4                    |
| Beryllium   | 0.1                                  | 0.00075                                               | . 2                      | BQL                      | -                                   | BQL         |                                                      | BQL                               | •                                     | BQL                    |                                        | BQL                           | BOL                    |
| Calcium     | NA                                   | NA                                                    | NA                       | 595                      | 2.5900                              | 362.0       | 1.3300                                               | 89.2                              | 0.7200                                | 77.2                   | 0.6000                                 | 373                           | BQL                    |
| Cadmlum     | NA                                   | 0.00099                                               | 5                        | BQL                      | •                                   | BQL         |                                                      | BQL                               | •                                     | BOL                    |                                        | , BOL                         | BQL                    |
| Coball      | NA                                   | 22                                                    | 100                      | BQL                      | •                                   | BOL         |                                                      | BOL                               | · _                                   | BQL                    |                                        | BQL                           | BOL                    |
| Chromium    | NA                                   | 0.00015                                               | 500                      | 2.1                      | 0,0100                              | 1.4         | 0.0010                                               | BQL                               |                                       | BQL                    | -                                      | 1.3                           | BQL                    |
| Copper      | NA                                   | 15                                                    | 100                      | 87,7                     | 0.3800                              | 31,4        | 0.1200                                               | 6.4                               | 0.0500                                | 10.3                   | 0.0800                                 | 0.68                          | BQL                    |
| lton        | NA                                   | 110                                                   | NA                       | . 186                    | 0.8100                              | 69. f       | 0.2500                                               | 49.6                              | 0.4000                                | 55                     | 0.4300                                 | 13.2                          | BOL.                   |
| Petassium   | · NA                                 | NA                                                    | NA                       | 197                      | 0.8600                              | BOL         | ·                                                    | BQL                               |                                       | BQL                    | •                                      | BQL                           | BOL                    |
| Magnesium   | NA                                   | NA                                                    | NA                       | 60                       | 0.3500                              | 44.5        | 0.1500                                               | BQL                               | · ·                                   | BOL                    | •                                      | 35.3                          | BQL                    |
| Manganese   | NA                                   | 0.0052                                                | 5000                     | 4.5                      | 0.0200                              | 1.6         | 5.0100                                               | 1.0                               | · · · · · · · · · · · · · · · · · · · | 11                     | 0.0080                                 | SQL                           | BOL                    |
| Sodium      | NA                                   | NA                                                    | NA                       | 1270                     | 5.5300                              | 993.0       | 3.6400                                               | 230.0                             | 1.8500                                | 225                    | 1.7600                                 | 1150                          | 213                    |
| Nickel      | NA                                   | 7,3                                                   | 1,000                    | 3                        | 0.0100                              | . 1.0       | 0.0040                                               | BOL                               | •                                     | BQL                    | -                                      | BQL                           | * 8QL                  |
| Lead        | NA                                   | NA                                                    | 50                       | 17.1                     | 0.0700                              | 6.0         | 0.0220                                               | 5.5                               | 0.0400                                | 12.5                   | 0,1000                                 | BQL                           | BQL                    |
| Antimony    | NA                                   | 0.15                                                  | 500                      | BOL                      | •                                   | BOL         | ·                                                    | 8QL                               |                                       | BOL                    |                                        | BQL                           | - BQL                  |
| Selenium    | NA                                   | 1.8                                                   | 200                      | 1.80                     | 0.0100                              | D.5         | 0.0020                                               | 0.6                               | 0.0050                                | 0.52                   | 0.0040                                 | BQL                           | BQL                    |
| Thallium    | NA                                   | 0.026                                                 | 100                      | BOL                      | •                                   | BOL         | •                                                    | BQL                               | -                                     | BQL                    | -                                      | BQL                           | BQL                    |
| Vanadium    | NA                                   | 2.6                                                   | 500                      | 6.9                      | 0.0300                              | 1,4         | 0.0050                                               | 1.4                               | 0.0110                                | 1.6                    | 0.0100                                 | BOL                           | BOL                    |
| Zinc        | 100                                  | 110                                                   | NA                       | 33.9                     | 0.1500                              | 12.2        | 0.0450                                               | 6.5                               | 0.0500                                | 6.2                    | 0.0500                                 | 2.1                           | BOL                    |

.

-

1

| Location 2       | Sampler, D. D. C. | Total Air Flow |         |
|------------------|-------------------|----------------|---------|
| SP1              | TSP3              | 222.12         | Mercury |
| SP1              | TSP2              | 229.68         | 1       |
| SF2              | TSP6              | 271.98         | Marcury |
| SP2              | TSP5              | 272.62         | 1       |
| SP3              | Handi Vol 8       | 138.96         | Mercury |
| SP3              | Handi Vol 4       | 124.06         | 1.      |
| SP4 (Background) | Handi Vol 5       | 118.58         | Mercury |
| SP4 (Background) | Handl Vol 7       | 127.94         | 3       |

NA - Screening criteria not available or does not apply BQL - Below Quantitation Limit

Shadowed cells indicate detected concentrations above screening criteria

## Table E-16. New O-Field Controlled Burn Air Samples - December 1999 Chemical Agent Analysis Results

| Chemical Agent | SP1 SP1 SP1 SP2 SP2 SP3 SP3 SP3 SP3 SP3 SP4 |                            |                     |               |                     |                                       |                     |               |
|----------------|---------------------------------------------|----------------------------|---------------------|---------------|---------------------|---------------------------------------|---------------------|---------------|
| Chemical Ayent | Concentration (ppb)                         | - Goncentration<br>(µg/m²) | Concentration (ppb) | Concentration | Concentration (ppb) | Concentration<br>(ug/m <sup>3</sup> ) | Concentration (ppb) | Concentration |
| Sarin (GB)     | ND                                          | ND                         | ND                  | ND            | ND                  | ND                                    | ND                  | ND            |
| Soman (GD)     | ND                                          | ND                         | ND                  | ND            | ND                  | ND                                    | ND                  | ND            |
| VX             | ND                                          | ND                         | ND                  | ND            | ND                  | ND                                    | ND                  | ND            |
| Mustard (HD)   | ND                                          | ND                         | ND                  | ND            | ND                  | ND .                                  | ND                  | ND            |

ND - nondetected Analysis provided by Edgewood Chemical Biological Center

#### Table E-17. New O-Fleid Controlled Burn Air Samples - December 1999

Radiological Analysis Results

|                                       |         | Toxic Air Pollutant               |                                         | Measure S               | R Martin Contractor                |                        |                                         |                         |                                         | SP4 (Bac                | kground)                                |
|---------------------------------------|---------|-----------------------------------|-----------------------------------------|-------------------------|------------------------------------|------------------------|-----------------------------------------|-------------------------|-----------------------------------------|-------------------------|-----------------------------------------|
| Analytes                              | (úg/m²) | 1-Hour Screening Level<br>(ug/m³) | OSRA HELla Concentration I<br>(Lig/m J) | Results<br>(pCl/filter) | Concentrations*<br>(pCi/m*)        | Results (pClifilter)   | Concentrations<br>(pCl/m <sup>3</sup> ) | Results<br>(pCl/filter) | Concentrations<br>(pCl/m <sup>1</sup> ) | Results<br>(pCl/filter) | Concentrations<br>(pCl/m <sup>3</sup> ) |
| Gross Alpha                           | NA      | NA                                | NA                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Gross Beta                            | NA      | NA                                | NA                                      | 23                      | 0.1013                             | ND                     | ND                                      | 3.4                     | 0.0255                                  | 4.3                     | 0.0363                                  |
| Actinium-228                          | NA      | NA                                | NA                                      | ND                      | ND                                 | ND                     | ND                                      | NĐ                      | ND                                      | ND                      | ND                                      |
| Bismuth-212                           | NA      | NA                                | ŅA                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Bismuth-214                           | NA      | NA                                | NA                                      | ND .                    | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Cesium-137                            | NA      | NA                                | NA                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Cobalt-60                             | NA      | NA                                | NA                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Lead-210                              | NA      | NA                                | NA                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Lead-212                              | NA      | NA                                | NA                                      | ND                      | NÐ                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Lead-214                              | NA      | NA                                | NA                                      | ND                      | ND .                               | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Potassium-40                          | NA      | NA                                | NA                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Protactinium-231                      | NA      | NA                                | NA                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Protactinium-234                      | NA      | NA                                | NA                                      | ND                      | ND                                 | NO                     | NO                                      | ND .                    | ND                                      | ND                      | ND                                      |
| Radium-223                            | NA      | NA                                | NA                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Radium-224                            | NA      | NA                                | NA                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Radium-226                            | NA      | NA                                | NA                                      | ND                      | ND                                 | ND .                   | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
| Uranium-235                           | NA      | NA                                | NA                                      | ND                      | ND                                 | · ND                   | ND                                      | ND                      | ND                                      | ND                      | ND                                      |
|                                       |         |                                   |                                         | Results (ug/filter)     | Concentration (ug/m <sup>3</sup> ) | Results<br>(ug/filter) | Concentration (ug/m <sup>3</sup> )      | Results<br>(ug/filter)  | Concentration                           | (ug/filter)             | Concentration                           |
| Total Uranium by<br>Mass Spectrometry | 6       | 11                                | 50                                      | ND                      | ND                                 | ND                     | ND                                      | ND                      | ND                                      | ND                      | ND                                      |

.

.

| Location         | Sampler (D. C. | A Total Air Flow (1997) |
|------------------|----------------|-------------------------|
| SP1              | TSP1           | 226.98                  |
| SP2              | TSP4           | 267.69                  |
| SP3              | Handi Vol 1    | 133,45                  |
| SP4 (Background) | Handi Vol 2    | 118.58                  |

NA - Screening criteria not available or does not apply

NO - nondetected

.

### **APPENDIX E-3**

# DATA TABLES FOR THE J-FIELD CONTROLLED BURN – APRIL 2000

Table E-18. J-Field Controlled Burn Air Samples - April 2000

Volatile Organic Compound Analysis Results from Summa Canisters

| olatile Organic Compound Analy | Toxie All Pollutant (M.<br>Hour Streening Level | JEPA Regionili Ambient |                                         |                         | distant and                                               | SP4((Background))   |                                       |  |
|--------------------------------|-------------------------------------------------|------------------------|-----------------------------------------|-------------------------|-----------------------------------------------------------|---------------------|---------------------------------------|--|
| Analytes                       | Concentration (ug/m)) .                         |                        | ObriA PELs (2)<br>Concentration (ug/m3) | Gencentration.<br>(ppb) | Concentrations<br>(ug/m <sup>*</sup> ) <sup>(12,12)</sup> | Concentration (ppb) | Concentration<br>(ug/m <sup>*</sup> ) |  |
| Acetaldehyde *                 | 450                                             | 0.81                   | 360,000                                 |                         | 3:98                                                      | ND                  | ND                                    |  |
| Acetic Acid *                  | 370                                             | NA                     | 25,000                                  | ND                      | ND                                                        | 1.07                | 2.63                                  |  |
| Acetone *                      | 17,820                                          | 37                     | 2,400,000                               | 6.05                    | 14.37                                                     | 3.29                | 7.82                                  |  |
| Acetonitrile *                 | 1,010                                           | 62                     | 70,000                                  | 1.73                    | 2.9                                                       | ND                  | ND                                    |  |
| Benzene                        | 80                                              | 0.22                   | 3,195                                   | 6.44                    | 10 520 57 PE                                              | 0.746 J             | 2:38                                  |  |
| Chloroethene                   | NA                                              | 0.21                   | 2,556                                   | 0.332 J                 | 0.849                                                     | ND                  | ND                                    |  |
| Chloromethane                  | 525                                             | 1.80                   | NA                                      | 1.65                    | 941                                                       | 0.757               | 1.56                                  |  |
| Ethylbenzene                   | 5,430                                           | 110                    | 435,000                                 | 5.91                    | 25.66                                                     | 1.62                | 7.03                                  |  |
| Ethylhexanol *                 | NA                                              | NA                     | NA                                      | 1.88                    | 10.01                                                     | ND                  | ND                                    |  |
| Freon 12                       | NA                                              | NA                     | NA                                      | ND                      | ND                                                        | 0.385 J             | 1.90                                  |  |
| Furan *                        | NA                                              | 0.37                   | NA                                      | 3.08                    | 8.58                                                      | ND                  | ND                                    |  |
| Furfural *                     | NA                                              | 3.70                   | 20,000                                  | 6.56                    | 25 78 0                                                   | ND                  | ND                                    |  |
| m-/p-Xylenes                   | 6,510                                           | 730                    | 435,000                                 | 3.43                    | 14.89                                                     | 0.967 J             | 4.2                                   |  |
| Methylester Acetic Acid *      | 7,570                                           | NA                     | NA                                      | 1.21                    | 3.67                                                      | ND                  | ND                                    |  |
| Methylfuran *                  | NA                                              | NA                     | NA                                      | 2.49                    | 8.36                                                      | ND                  | ND                                    |  |
| Methylpropene *                | NA                                              | NA                     | NA                                      | 1.89                    | 4.34                                                      | ND                  | ND                                    |  |
| o-Xylene                       | 6,510                                           | 730                    | 435,000                                 | 0.335 J                 | 1.45                                                      | ND                  | ND                                    |  |
| Styrene                        | 1,700                                           | 100                    | 42,598                                  | 9.01                    | 38.38                                                     | 2.54                | 10.82                                 |  |
| Toluene                        | NA                                              | 42                     | 753,703                                 | 5.93                    | 22.35                                                     | 1.42                | 5.35                                  |  |
| Unknown C8 Hydrocarbon *       | · ·                                             | -                      | •                                       | 1.92                    | •                                                         | 0.973               | -                                     |  |
| Unknown C4 Alkene *            | -                                               | -                      | . •                                     | 0.922                   | •                                                         | ND                  | ND                                    |  |
| Unknown *                      |                                                 | -                      | -                                       | 0.855                   | •                                                         | ND                  | ND                                    |  |
| Unknown *                      |                                                 | -                      | ÷                                       | 1.52                    | •                                                         | ND                  | ND                                    |  |
| Total VOC                      |                                                 |                        |                                         | 62.477                  |                                                           | 11                  |                                       |  |

\* Analyte identified as a Tentatively Identified Compound (TIC)

NA - Screening criteria not available or does not apply

ND - nondetected

J - Estimate concentration. Target detected at greater than the detection limit, but less than the quatitation limit (i.e., detection limit x5) Shadowed cells indicate detected concentrations above screening criteria

### Table E-19. J-Field Controlled Burn Air Samples - April 2000

| Pesticide Anal | ysis Results from PU | Samplers |
|----------------|----------------------|----------|

|                     | Toxic Air Pollutant                             | EPA Region III.                          | THE REAL PROPERTY.                 |         | SP1                                 |                      | CARACTER CONTRACTOR STREET STREET, BURGER STREET, STREE | Blank               |
|---------------------|-------------------------------------------------|------------------------------------------|------------------------------------|---------|-------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Analytes            | 1-Hour Screening Level:<br>(ug/m <sup>3</sup> ) | Amblent Air RBCs<br>(ug/m <sup>3</sup> ) | OSHA PELs<br>Concentration (ug/m3) | Results | Concentrations (ug/m <sup>3</sup> ) | Results<br>(ug/PUF); | Concentrations<br>(ug/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Results<br>(ug/PUF) |
| alpha-BHC           | NA                                              | NA                                       | NA                                 | BQL     | ÷ .                                 | BQL                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| beta-BHC            | NA                                              | NA                                       | NA                                 | BQL     | • · · · ·                           | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| delta-BHC           | NA                                              | NA                                       | NA                                 | BQL     |                                     | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Lindane (gamma-BHC) | NA                                              | NA                                       | 500                                | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Heptachlor          | NA                                              | 0.0014                                   | 500                                | BQL     | -                                   | 0.078                | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BQL                 |
| Aldrin              | NA                                              | 0.00037                                  | 250                                | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Heptachlor epoxide  | NA                                              | 0.00069                                  | NA                                 | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Endosulfan I        | · NA                                            | 2.2                                      | NA                                 | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Dieldrin            | NA                                              | 0.00039                                  | 250                                | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| 4.4'-DDE            | NA                                              | 0.018                                    | NA                                 | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Endrin              | NA                                              | 0.11                                     | NA                                 | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Endosulfan II       | NA                                              | 2.2                                      | NA                                 | BQL     | -                                   | BQL                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| 4,4'-DDD            | NA                                              | 0.026                                    | NA                                 | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Endosulfan sulfate  | NA                                              | NA                                       | NA                                 | BQL     | _                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| 4.4'-DDT            | NA                                              | 0.018                                    | 1,000                              | BQL     | -                                   | BQL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BQL                 |
| Methoxychlor        | NA                                              | . 1.8                                    | 1,500                              | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Endrin ketone       | NA                                              | NA                                       | NA.                                | BQL     | •                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Endrin aldehyde     | . NA                                            | NA                                       | NA                                 | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| alpha-Chlordane     | NA                                              | NA                                       | 500                                | BQL     | -                                   | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| gamma-Chlordane     | NA                                              | NA                                       | 500                                | BQL     |                                     | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |
| Toxaphene           | NA                                              | 0.0057                                   | 500                                | BQL     |                                     | BQL                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BQL                 |

Sampling Location Sampler/ID otal AIRFI (m) 47,59 SP1 PUF9 SP4 (Background) PUF4 39.52

NA - Screening criteria not available or does not apply

**BQL - Below Quantitation Limit** 

Shadowed cells indicate detected concentrations above screening criteria

#### Table E-20. J-Field Controlled Burn Air Samples - April 2000

#### PCBs Analysis Results from PUF Samplers

|                                  | Toxic Air Pollutant               | EPA Region III              |                                   | States and the state of the state of the state of the state | SP1 Sector                             | SP4 (Bac            | kground)                   | Blank               |
|----------------------------------|-----------------------------------|-----------------------------|-----------------------------------|-------------------------------------------------------------|----------------------------------------|---------------------|----------------------------|---------------------|
| Analytes                         | 1-Hour Screening Level<br>(ug/m³) | Amblent Air RBCs<br>(ug/m³) | OSHAPELs<br>Concentration (ug/m3) | Results<br>(ug/PUF)                                         | Concentrations<br>(ug/m <sup>3</sup> ) | Results<br>(ug/PUF) | •Concentrations<br>(ug/m³) | Results<br>(ug/PUF) |
| 2.2',3.5'-Tetrachlorobiphenyl    | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 2,2,'.5,5'-Tetrachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | •                                      | BQL                 | •                          | BQL                 |
| 2,2',5-Trichlorobiphenyl         | NA                                | 0.0031                      | 500                               | BQL                                                         |                                        | BQL                 | -                          | BQL                 |
| 2.2'3,4.4'5-Hexachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 2,2'3,4,5'-Pentachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 2,2'3,4,5,5'Hexachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 2.2'3.5.5'6-Hexachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | •                                      | BQL                 | -                          | BQL                 |
| 2,2'4,4'5,5'Hexachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | •                          | BQL                 |
| 2,2'4,5,5'-Pentachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 2,3',4,4'-Tetrachlorobiphenyl    | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 |                            | BQL                 |
| 2.3.3'4'6-Pentachlorobiphenyl    | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 2.3-Dichlorobiphenyl             | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 2,4',5-Trichlorobiphenyl         | . NA                              | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 2-Chlorobiphenyl                 | NA                                | 0.0031                      | 500                               | BQL .                                                       | . <del>.</del>                         | BQL                 | -                          | BQL                 |
| 22'33'44'5-Heptachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 22'33'44'55'6-Nonachlorobiphenyl | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | •                          | BQL                 |
| 22'34'55'6-Heptachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 |                            | BQL                 |
| 22'344'5'6-Heptachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 | -                          | BQL                 |
| 22'344'55'-Heptachlorobiphenyl   | NA                                | 0.0031                      | 500                               | BQL                                                         | -                                      | BQL                 |                            | BQL                 |

~

| Sampling Sampling | server Sampler, ID. 44 | Total Air Flower |
|-------------------|------------------------|------------------|
| SP1               | PUF9                   | 47.86            |
| SP4 (Background)  | PUF4                   | 39.52            |

.

NA - Screening criteria not available or does not apply

#### Table E-21. J-Field Controlled Burn Air Samples - April 2000

Explosives Analysis Results from PUF Samplers

| xpiosives Analysis Results iro |                                   | EPA Region IIII                                                                                                 | Status - Status - Status           | Here and the state  | SP1                    | 1911 SP4 (          | Blank                      |                     |
|--------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|------------------------|---------------------|----------------------------|---------------------|
| Analytes                       | 1-Hour Screening Level<br>(ug/m³) | and the Arrow of the second | OSHA PELs Condentration<br>(ug/m3) | Results<br>(ug/PUF) | Concentrations (ug/m³) | Results<br>(ug/PUF) | Concentrations:<br>(ug/m³) | Results<br>(ug/PUF) |
| 1,3,5-Trinitrobenzene          | NA                                | 11                                                                                                              | NA                                 | BQL                 | •                      | BQL                 |                            | BQL                 |
| 1.3-Dinitrobezene              | NA                                | 0.037 .                                                                                                         | 1,000                              | BQL                 | -                      | BQL                 | •                          | BQL                 |
| 2,4,6-Trinitrotoluene          | NA                                | 0.21                                                                                                            | 1,500                              | BQL                 | -                      | BQL                 | - · ·                      | BQL                 |
| 2,4-Dinitrotoluene             | 50                                | 0.73                                                                                                            | 1,500                              | BQL                 | -                      | BQL                 | -                          | BQL                 |
| 2.6-Dinitrotoluene             | . NA                              | 0.37                                                                                                            | 1,500                              | BQL                 |                        | BQL                 | ·                          | BQL                 |
| 2-Amino-4,6-dinitrotoluene     | NA                                | NA                                                                                                              | NA                                 | 21.3                | 0.4570                 | BQL                 | -                          | BQL                 |
| 2-Nitrotoluene                 | NA                                | NA                                                                                                              | 30,000                             | BQL                 | -                      | BQL                 | -                          | BQL                 |
| 3-Nitrotoluene                 | NA                                | NA                                                                                                              | 30,000                             | BQL                 | -                      | BQL                 | ÷                          | BQL                 |
| 4-Amino-2,6-dinitrotoluene     | NA                                | NA                                                                                                              | NA                                 | 5.9                 | 0.1266                 | BQL                 | -                          | BQL                 |
| 4-Nitrotoluene                 | NA                                | NA                                                                                                              | 30,000                             | BQL                 | -                      | BQL                 | -                          | BOL                 |
| НМХ                            | NA                                | 18                                                                                                              | NA                                 | BQL                 | -                      | BQL                 | -                          | BQL                 |
| Nitrobenzene                   | NA                                | 0.22                                                                                                            | 5.000                              | BQL                 | -                      | BQL                 | -                          | BQL                 |
| RDX                            | NA                                | 0.0057                                                                                                          | NA                                 | BQL                 | · -                    | BQL                 | -                          | BQL                 |
| Tetrył                         | NA                                | 3.7                                                                                                             | 1,500                              | BQL                 | -                      | BQL                 | -                          | BQL                 |

|   | Location         | Sampler, ID J. Conserve | Total Air Flow Service |
|---|------------------|-------------------------|------------------------|
|   | SP1              | PUF7                    | 46.61                  |
| ļ | SP4 (Background) | PUF3                    | 47.27                  |

.

NA - Screening criteria not available or does not apply

BQL - Below Quantitation Limit

Shadowed cells indicated detected concentrations above screening criteria

#### Table E-22. J-Field Controlled Burn Air Samples - April 2000

Inorganics Analysis Results

|           | Toxic Air Pollutant                  |                                | 17世纪的19世纪中国的19世纪                   |                        | SP1:L1:10-21-22-22         |                        | Background)                 |                               | A CONTRACTOR A A CONTRACTOR A      |
|-----------|--------------------------------------|--------------------------------|------------------------------------|------------------------|----------------------------|------------------------|-----------------------------|-------------------------------|------------------------------------|
| Analytes  | 1-Hour Screening Level: :<br>(ug/m³) | Amblent Alr RBCs 27<br>(ug/m³) | OSHA PELs Concentration<br>(ug/m3) | Results<br>(ug/filter) | Concentrations,<br>(ug/m³) | Results<br>(ug/filter) | Concentrations .<br>(ug/m³) | Results<br>(ug/filter)<br>TSP | Results<br>(ug/filter)<br>HANDIVOL |
| Mercury   | 0.3                                  | 0.03                           | 100 (acceptable ceiling)           | 0,1                    | 0.00043                    | BQL                    |                             | BQL                           | BQL                                |
| Silver    | NA                                   | 1.8                            | 10                                 | 0.1                    | 0.0004                     | 0.08                   | 0.0009                      | BQL                           | BQL                                |
| Aluminum  | NA                                   | 0.37                           | 5,000                              | 159                    | 0.6802                     | 80.8                   | ••• 0.8831 •••+             | 6.8                           | 2.3                                |
| Arsenic   | NA                                   | 0.00041                        | 500                                | 0.59                   | 0.0025                     | BQL                    | -                           | BQL                           | BQL                                |
| Barium    | NA                                   | 0.051                          | 500                                | 18.3                   | 0.0783                     | 2.6                    | 0.0284                      | 3.6                           | 1.2                                |
| Beryllium | 0.1                                  | 0.00075                        | 2                                  | BQL                    | -                          | BQL                    | -                           | BļQL                          | BQL                                |
| Calcium   | NA                                   | NA                             | NA                                 | · 1910                 | 8.1711                     | 187                    | 2.0437                      | 161                           | 43.4                               |
| Cadmium   | NA ·                                 | 0.00099                        | 5                                  | 0.84                   | 0.0036                     | 0.05                   | 0.0005                      | BQL                           | BQL                                |
| Cobalt    | NA                                   | 22                             | 100                                | 0.21                   | 0.0009                     | BQL                    | -                           | BQL                           | BQL                                |
| Chromium  | NA                                   | 0.00015                        | 500                                | 0.82                   | 0.0035                     | 0.51                   | 0:0056                      | 0.52                          | 0.13                               |
| Copper    | NA                                   | 15                             | 100                                | 16.2                   | 0.0693                     | 11                     | 0.1202                      | 0.22                          | 0.23                               |
| Iron      | NA                                   | 110                            | NA                                 | : 148                  | 0.6332                     | 63.7                   | 0.6962                      | 5.5                           | 3.2                                |
| Potassium | NA                                   | NA                             | NA                                 | 740                    | 3.1658                     | 26.1                   | 0.2852                      | 14.4                          | 8.5                                |
| Magnesium | NA                                   | NA                             | NA                                 | 321                    | 1.3733                     | 35.3                   | 0.3858                      | 17.1                          | 6.2                                |
| Manganese | NA                                   | 0.0052                         | 5000                               | 128                    | 0.5476                     | 2.4                    | 0.0262                      | 0.19                          | 0.1                                |
| Sodium    | NA                                   | NA                             | NA                                 | 618                    | 2.6439                     | 158                    | 1.7268                      | 413                           | 131                                |
| Nickel    | NA                                   | 7.3                            | 1,000                              | 0.95                   | 0.0041                     | 0.35                   | 0.0038                      | BQL                           | BQL                                |
| Lead      | NA                                   | )NA                            | 50                                 | 7.6                    | 0.0325                     | 0.7                    | 0.0077                      | BQL                           | BQL                                |
| Antimony  | NA                                   | 0.15                           | 500                                | BQL                    | -                          | BQL                    | -                           | BQL                           | BQL                                |
| Selenium  | NA                                   | 1.8                            | 200                                | 0.52                   | 0.0022                     | BQL                    | •                           | BQL                           | BQL                                |
| Thallium  | NA                                   | 0.026                          | 100                                | BQL                    | -                          | BQL                    | -                           | BQL                           | BQL                                |
| Vanadium  | NA ·                                 | 2.6                            | 500                                | 0.6                    | 0.0026                     | 0.29                   | .0.0032                     | BQL                           | BQL                                |
| Zinc      | 100                                  | 110                            | NA                                 | 30.9                   | 0.1322                     | 4                      | 0.0437                      | 0.48                          | 0.61                               |

| Sampling.        | Sampler/ID  | (mi)   |         |
|------------------|-------------|--------|---------|
| SP1              | TSP2        | 233.75 |         |
| SP1              | TSP3        | 230.2  | Mercury |
| SP4 (Background) | Handi Vol 5 | 91.5   |         |
| SP4 (Background) | Handi Vol 7 | 107.26 | Mercury |

NA - Screening criteria not available or does not apply

BQL - Below Quantitation Limit Shadowed cells indicate detected concentrations above screening criteria

## Table E-23.J-Field Controlled Burn Air Samples - April 2000Chemical Agent Analysis Results

|                   | The states            | 初期的影响的影响              | States and States States | <b>84/28/28/28</b>   |
|-------------------|-----------------------|-----------------------|--------------------------|----------------------|
| Chemical Agentics | Concentration: (ppb): | Concentration (Ug/m²) | Concentration (ppb)      | Concentration (up/m) |
| Sarin (GB)        | ND                    | ND                    | ND                       | ND                   |
| Soman (GD)        | ND                    | ND                    | ND                       | ND                   |
| VX                | ND                    | ND                    | ND                       | ND                   |
| Mustard (HD)      | ND                    | ND                    | ND                       | ND                   |

ND - nondetected

Analysis provided by Edgewood Chemical Biological Center

| Ť | able | E | 24. | J. | Field | C | ont | rolled | Burn A | ١r | Samples | - April 2 | 000 |
|---|------|---|-----|----|-------|---|-----|--------|--------|----|---------|-----------|-----|
|   |      |   |     |    |       |   | _   |        |        |    |         |           |     |

Radiological Analysis Results

|                  | Toxic Air Rollulants              | EPAiRegion III              |                                    | of the survey of the standard of the design of the standard of the stand |                                         | SP4 (Background)        |                            |  |
|------------------|-----------------------------------|-----------------------------|------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|-------------------------|----------------------------|--|
| Pollutants       | 1-Hour Screening Level<br>(ug/m³) | Amblent Air RBCs<br>(ug/m³) | OSHA PELs Concentration<br>(ug/m3) | Results<br>(pCl/filter)                                                  | Concentrations<br>(pCl/m <sup>3</sup> ) | Results<br>(pCl/filter) | Concentrations<br>(pCi/m³) |  |
| Gross Alpha      | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Gross Beta       | NA                                | NA                          | NA                                 | ND                                                                       | _ ND                                    | ND                      | ND                         |  |
| Actinium-228     | NA                                | NA                          | NA                                 | . ND                                                                     | ND                                      | ND                      | ND                         |  |
| Bismuth-212      | NA                                | NA                          | NA                                 | ND                                                                       | ND -                                    | ND                      | ND                         |  |
| Bismuth-214      | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Cesium-137       | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Cobalt-60        | ∽ NA                              | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Lead-210         | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Lead-212         | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND -                       |  |
| Lead-214         | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Potassium-40     | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Protactinium-231 | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Protactinium-234 | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Radium-223       | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Radium-224       | NA                                | NA                          | NÀ                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Radium-226       | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| Uranium-235      | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| U-233/234        | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ND                      | ND                         |  |
| U-235/236        | NA                                | NA                          | NA                                 | 0.12                                                                     | 0.0005                                  | ND                      | ND                         |  |
| U-238            | NA                                | NA                          | NA                                 | ND                                                                       | ND                                      | ŇD                      | ND                         |  |

 SamplerID
 Total/Alt Flow

 Location
 Implementation

 SP1
 TSP1

 SP4 (Background)
 Handi Vol 2

~

NA - Screening criteria not available or does not apply

ND - nondetected