Overview of Seismic Hazard Analysis Program

Luminant Comanche Peak COLA

Dr. William Lettis President & Senior Principal Geologist William Lettis & Associates, Inc.

Geotechnical Site Characterization Luminant Comanche Peak COLA

Jeff Bachhuber William Lettis & Associates, Inc.

Project Status

- Site Conditions
- Geotechnical Program
 - Field Exploration
 - Laboratory Testing Program
 - Geotechnical Analysis
- Subsurface Conditions
- Geologic Mapping

0.6 Mile Imagery (1994-1997)

Geologic Mapping

- 0.6 Mile
 - Correlation to stratigraphy noted in COLA borings and Unit 1 & 2
 - Comparison to published maps
- 5 Mile
 - Correlation to 0.6 Mile map
 - Ground check of exposed regional units
 - Discontinuities
 - Structure
 - Lithologies
 - Presence of dissolution features
- 25 Mile
 - Confirmation of regional contacts
 - Ground check of regional structural features
- 200 Mile +
 - Ground check of regional structural features

WLA

0.6 Mile Imagery (1949)

0.6 Mile Geologic Map

Site Conditions

- Existing General Site Elevation
- Yard Grade 830' MSL
- Previous grading/fill activities in the area

Soil Cut/Fill Explanation A € 70 60 CPNPP 80 Water Boundary ۲ • - 50 feet Cut Fill No change 30 feet ¥ 8 10 ft contour 3 -10 3 Ð WLA

Cut and Fill Analysis Plant Grade 830 ft MSL

Field Exploration

- 186 Foundation Specific Borings
- 15 P-S Suspension Borings
- 2 Down-hole surveys
- 3 SASW surveys
- 7 Pressuremeter Test Borings
- · 6 Packer Test Borings
- · 7540' Seismic Refraction
- 3 Test Pits
- 32 Cone Penetration Test Sounding locations

Laboratory Testing Program

- Unconfined Compression (28)
- Unconfined Compression w
- Modulus & Poisson Ratio (24)
- Point Load (21)
- Pulse Velocity (78)
- Triaxial UU-1pt (4)
- Triaxial CU w Sat, w/o pp-1pt (2)
- Triaxial CU w/o pp- 1pt (18)
- Triaxial CU w/o pp- 3pt (4)

- •Triaxial CU w pp- 3pt Staged (3)
- •Direct Shear- 3pt (7)
- Consolidation (4)
- Swell (8)
- •Atterberg Limits (7)
- •Slake Durability (7)
- Moisture-Density (106)
- Specific Gravity (2)
- •Calcium Carbonate (28)

Subsurface Conditions

- Presence of a Shale Unit between 800-790 (776-786) MSL
- Thick (~65), Competent Foundation Bearing Unit at ~ 782 MSL
- Uniform Stratigraphy
 - Flat uniform thickness and lithology laterally
 - Alternating limestone, shale and sandstone sequences
- High RQD Values and % Recoveries
- Limited discontinuities (joints and fractures)
- Few zones of noted dissolution
- Soft Rock Site
 - Vs (3200-6200 ft/sec)

Site Velocity Profile

Shallow Velocity Profile

Velocity Measurements Techniques

- Suspension
- SASW
- Down-hole
- Cross-hole (Units 1&2)
- Deep Velocity Profile
 - Stratigraphy
 - Velocity Measurements from Regional Wells
 - Definition of Basement

22

Engineering Layers					
		Top Elevations (MSL, ft)			
Layer	Mean Thickness (ft)	Mean	Max	Min	Std Dev
A	35	834	858	887	12.0
B1	8	798	802	794	1.8
B2	8	790	794	786	1.8
C	65	782	786	716	1.9
D	4	717	722	713	1.4
E1	23	714	719	710	1.6
E2	35	690	692	688	1.0
E3	33	656	658	654	0.9
F	30	622	626	618	2.1
G	80	593	598	584	4.0
Н	63	513	517	507	3.5
1		451	455	446	3.3
					WLA

Suspension, Downhole, SASW Log Locations

Velocity Data for Units 3&4, Cross-hole Data for 1&2

Comparison of Cross-hole Velocities Units 1 & 2 71. Vs Vp Vp ٧s Suspension Log Integrated Profile 750 SASW_ **Crosshole Data** Downhole :. 650 Elevation (ft above msl) 550 45 . 350 WLA 5000 10000 15000 Velocity (ft/sec)

Well Date Used for Deep Velocity Profile

Unit Name	Lithology		Elevation
Glen Rose			(ft) 840
Twin Mountains	Mudstone	[See Integrated Site Profile for top 500 feet]	500
2.	Shales inter- bedded with		0 500
Strawn -	sandstone, limestone	45 > 9200 ft/sec	1000
			1500
Atoka Sand	And a definition of the second		2000 2500 3000
Smithwick Big Saline Marble Falls	Shale Conglomerate Limestone		3500
Barnett Shale	Shale	-L-JL-	Top Basement
Ellenburger	Limestone		4500

FIRS Development

- Excavation for all Category I Structures to Remove Layer B (Shale)
- All Category I Structures to be Founded on Layer C (Limestone, Vs >5685 ft/sec) with Fill Concrete (Vs >6000 ft/sec) as required.
 - Emergency Power Source Building to be placed on ~ 16 ft of Fill Concrete
 - Duct Banks to be embedded with Structural Fill placed around structures to Yard Grade

Summary of Geotechnical Site Characterization

- Uniform rock site with Vs 3000-7000 fps
- · Competent rock foundation
 - Stable w/o significant karst or voids
 - · High bearing capacity factor of safety
 - Minimal settlement
 - Linear dynamic properties

Seismic Source Characterization

Luminant Comanche Peak COLA

William Lettis President & Senior Principal Geologist William Lettis & Associates, Inc.

PSHA Input

Use 1986/1989 EPRI-SOG model for Comanche Peak as base source model

 Revise existing source zones from EPRI-SOG model to reflect new (post-1986) information

Screen for new significant seismic sources

Existing EPRI-SOG Source Model for CP

Six ESTs each with unique source zones characterized by:

- Geometry
- Maximum magnitudes
- Probability of activity
- Recurrence parameters

Dames & Moore Source Zones

Rondout Associates Source Zones

Woodward-Clyde Source Zones

Revisions to EPRI-SOG Source Model

No new information post-dating 1986 EPRI-SOG study to suggest revisions to contributing source zone:

- Geometries
- Probabilities of activity
- Seismicity parameters (pending results of sensitivity analysis for affects of 1985-2006 seismicity)

However:

- Earthquakes in updated seismicity catalog require updates to Mmax for some source zones
- Seismicity parameters need to be calculated for some regions

Mmax Revisions

Two earthquakes with Emb greater than the lower bound Mmax for some source zones require updating Mmax values:

- Emb 5.5, 2 February 2006 in Gulf of Mexico
- Emb 5.0, 2 January 1992 in SE New Mexico

WLA

Source Zone	Original Mmax Distribution and Weights (EPRI, 1989)	Updated Mmax Distribution and Weights
Dames and Moore South	5.3 [0.8]	5.5 [0.8]
Coastal Margin	7.2 [0.2]	7.2 [0.2]

Seismicity Parameter Update

- EPRI-SOG PSHA model uses seismicity parameters defined on 1°x1° cells.
- Parameters were not calculated south of red line, so no contribution to hazard from cells south of line.
- Calculate seismicity parameters for empty 1°x1° cells within the extent of updated catalog.

Rio Grande Rift

- Only explicitly considered by one EST in EPRI-SOG study
- Post EPRI-SOG studies indicate higher activity rates and larger magnitude earthquakes
- Use two complimentary models of RGR as a seismic source

Rio Grande Rift

Model 1: 2002 USGS National Seismic Hazard Map faults for RGR representing discrete faults

Model 1: 41 faults used in USGS	Seismic Hazard Maps as distinct sources.
Trace Coordinates (Lon., Lat.)	Take from Table A1
Dip, Dip Direction	90¼, NA
Recurrence Model	Characteristic Earthquake
Recurrence Rate (EQs/yr)	Use USGS defined characteristic recurrence rate
Magnitude (Mw) and weights	Use USGS defined characteristic magnitude (M_CHAR) with branches M_CHARŠ0.2 [0.2], M CHAR [0.6], M CHAR+0.2 [0.2]
Probability of Activity	1.0

Rio Grande Rift

Model 2: Conservative representation of the easternmost extent of RGR with seismicity parameters derived from bulk behavior of USGS parameterized faults. Source represents potential for EQs distal from identified faults

ne closest approach of RGR morphotectonic c erial source zone.	lomain as a
(-102.671¼, 29.796¼)	
Characteristic Earthquake	
14,500 [0.4], 37,500 [0.4], 119,000 [0.2]	
6.3 [0.1], 6.65 [0.3], 6.95 [0.4], 7.3 [0.2]	
1.0	
	he closest approach of RGR morphotectonic c (-102.671¼, 29.796¼) Characteristic Earthquake 14,500 [0.4], 37,500 [0.4], 119,000 [0.2] 6.3 [0.1], 6.65 [0.3], 6.95 [0.4], 7.3 [0.2] 1.0

53

Cheraw Fault

Not considered in EPRI-SOG study

 Research post-dating EPRI-SOG has shown three surface rupturing events in past ~25 ka

Use conservative simplification of fault as described in 2002 USGS National Seismic Hazard Maps

Recurrence Model	Characteristic Earthquake	
Recurrence Rate	1.148e-4 per year	
Magnitude (Mw) and weights	6.8 [0.2], 7.0 [0.6], 7.2 [0.2]	
Probability of Activity	1.0	

New Madrid Seismic Zone

- Not a contributor to hazard at CP in EPRI-SOG study
- Research post-dating EPRI-SOG has lead to revised maximum magnitudes, source geometry, and recurrence rates
- Use conservative simplification of model from Clinton ESP parameterization of New Madrid Seismic Zone

55

 Identified in EPRI-SOG study as tectonic feature with non-zero probability of activity

Meers Fault

 Post EPRI-SOG research indicates need for revision of source to account for higher recurrence rates, larger Mmax, refined location of Quaternary-active segment

 Source model based on work by Geomatrix in late 80s and early 90s

Criner Fault

- Not identified as unique source by EPRI-SOG
- Research in early 1990s identified fault as potentially active
- More recent studies suggest very low probability of activity (Pa ~ 0.2
- Source may be adequately characterized by existing EPRI-SOG area source zones

Status of Ground Motion Analysis

- Screening studies in progress
 - Meers, Cheraw, RGR, NMSZ, Criner
- PSHA and site response to be completed
 - CAV filtering
 - Modified sigma

Summary of Geotechnical and Seismic Conditions

- Excellent rock site
 - Vs 3000-7000 fps
 - Uniform horizontal layering
 - Competent rock foundation
- Low seismic environment
 - Modified EPRI-SOG SSC
 - Consistent with other applicants
 - Expected GMRS < CSDRS
- Complete Application
 - Nothing deferred

59