Designated Original

VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261

August 17, 2006

United States Nuclear Regulatory Commission Regional Administrator – Region II Sam Nunn Atlanta Federal Center Suite 23 T85 61 Forsyth Street, SW Atlanta, Georgia 30303-8931 Serial No.: 06-529 NLOS/vlh Docket No.: 50-280 License No.: DPR-32

VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION) SURRY POWER STATION UNIT 1 CYCLE 21 STARTUP PHYSICS TESTS REPORT

As required by Surry Technical Specification 6.6.A.1, enclosed is the Virginia Electric and Power Company (Dominion) Technical Report NE-1487, Revision 0, entitled "Surry Unit 1, Cycle 21 Startup Physics Tests Report." This report summarizes the results of the physics testing program performed after the initial criticality of Cycle 21 on May 25, 2006. The results of the physics tests were within the applicable Technical Specification limits.

Please note that although this report is for Surry, the reference to an issue during "N1C19" startup testing on page 23 of the enclosure refers to North Anna Unit 1 Cycle 19. If you have any questions or require additional information, please contact Mr. Gary Miller at (804) 273-2771.

Very truly yours,

C. L. Funderburk, Director Nuclear Licensing and Operations Support Dominion Resources Services, Inc. for Virginia Electric and Power Company

Enclosure

Commitments made in this letter: None

NRR

Serial No. 06-529 Surry 1 Cycle 21 Startup Physics Tests Report, Rev. 0 cc page 1 of 1

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555-0001

Mr. S. R. Monarque U. S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Rockville, MD 20852-2738

Mr. S. P. Lingam U. S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Rockville, MD 20852-2738

Mr. N. P. Garrett NRC Senior Resident Inspector Surry Power Station

cc:

Technical Report Cover Sheet Page 1 of 51 Rev. 0 NDCM-3.11 Attachment 1

TECHNICAL REPORT No. NE-1487

SURRY UNIT 1, CYCLE 21 STARTUP PHYSICS TESTS REPORT

NUCLEAR ANALYSIS AND FUEL

NUCLEAR ENGINEERING DOMINION

JULY 2006

Prepared By: J. B. Duc

Reviewed, By Meszaroś

W. Schleicher

Reviewed By: N. A. Yonker

Approved By:

QA Category: Nuclear Safety Related

Key Words: S1C21, S1CL, SPS1, Startup Physics Test Report, SPTR

7/19/06

Date

07/19/06 Date

 $\frac{7/30/06}{\text{Date}}$

CLASSIFICATION/DISCLAIMER

The data, techniques, information, and conclusions in this report have been prepared solely for use by Dominion (the Company), and they may not be appropriate for use in situations other than those for which they have been specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability. particular, THE COMPANY MAKES NO WARRANTY In OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

TABLE OF CONTENTS

CLASSIFICATION/DISCLAIMER	2
TABLE OF CONTENTS	3
LIST OF TABLES	4
LIST OF FIGURES	5
PREFACE	6
SECTION 1 — INTRODUCTION AND SUMMARY	7
SECTION 2 — CONTROL ROD DROP TIME MEASUREMENTS	17
SECTION 3 — CONTROL ROD BANK WORTH MEASUREMENTS	23
SECTION 4 — BORON ENDPOINT AND WORTH MEASUREMENTS	29
SECTION 5 — TEMPERATURE COEFFICIENT MEASUREMENT	33
SECTION 6 — POWER DISTRIBUTION MEASUREMENTS	35
SECTION 7 — REFERENCES	43
APPENDIX STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEETS	S45

LIST OF TABLES

TABLE 1.1 — CHRONOLOGY OF TESTS	11
TABLE 2.1 — HOT ROD DROP TIME SUMMARY	19
TABLE 3.1 — CONTROL ROD BANK WORTH SUMMARY	25
TABLE 4.1 — BORON ENDPOINTS SUMMARY	30
TABLE 4.2 — BORON WORTH COEFFICIENT	31
TABLE 5.1 — ISOTHERMAL TEMPERATURE COEFFICIENT SUMMARY	34
TABLE 6.1 — INCORE FLUX MAP SUMMARY	37
TABLE 6.2 — COMPARISION OF MEASURED POWER DISTRIBUTION	·
PARAMETERS WITH THEIR CORE OPERATING LIMITS	

LIST OF FIGURES

FIGURE 1.1 — CORE LOADING MAP12
FIGURE 1.2 — BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS
FIGURE 1.3 — AVAILABLE INCORE MOVEABLE DETECTOR LOCATIONS
FIGURE 1.4 — BURNABLE POISON LOCATIONS15
FIGURE 1.5 — CONTROL ROD LOCATIONS16
FIGURE 2.1 — TYPICAL ROD DROP TRACE
FIGURE 2.2 — ROD DROP TIME - HOT FULL FLOW CONDITIONS
FIGURE 3.1 — CONTROL BANK D INTEGRAL ROD WORTH - HZP
FIGURE 3.2 — CONTROL BANK D DIFFERENTIAL ROD WORTH - HZP27
FIGURE 6.1 — ASSEMBLYWISE POWER DISTRIBUTION 28.2% POWER
FIGURE 6.2 — ASSEMBLYWISE POWER DISTRIBUTION 69.7% POWER40
FIGURE 6.3 — ASSEMBLYWISE POWER DISTRIBUTION 99.97% POWER

PREFACE

This report presents the analysis and evaluation of the physics tests that were performed to verify that the Surry Unit 1, Cycle 21 core could be operated safely, and makes an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken. Standard testing techniques and methods of data analysis were used. The test data, results and evaluations, together with the detailed startup procedures, are on file at the Surry Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented include a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results.

The Surry Unit 1, Cycle 21 startup physics tests results and evaluation sheets are included as an appendix to provide additional information on the startup test results. These are the revised and condensed evaluation sheets introduced last year. Each data sheet provides the following information: 1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values (at design conditions) of the measured parameters were completed prior to the startup physics testing. The entries for the design values were based on calculations performed by Dominion's Nuclear Analysis and Fuel Group. During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to facilitate the preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occurring during the tests.

SECTION 1 — INTRODUCTION AND SUMMARY

On 23 April 2006, Unit No. 1 of the Surry Power Station shut down for its twentieth refueling [Ref. 1]. During this shutdown, 62 of the 157 fuel assemblies in the core were replaced with 60 fresh Batch 23 assemblies and two Batch 18 assemblies last irradiated in S2C17 [Ref. 8]. The Cycle 21 core consists of 11 sub-batches of fuel: five fresh batches (S1/23A, S1/23B, S1/23C, S1/23D, and S1/23E), two once-burned batches (S1/22A and S1/22B), and four twice-burned batches (S1/21A, S1/21B, S2/18B, and S2/18C). Batches S1/21, S1/22, and S1/23 are of the SIF/P+ZIRLO+2 fuel type. Batch S2/18 is of the SIF/P+ZIRLO design [Ref. 1].

Both Westinghouse SIF/P+ZIRLO and SIF/P+ZIRLO+2 fuel assembly designs incorporate ZIRLO fuel cladding, intermediate grids, guide tubes, instrumentation tubes, and debris resistance features that are part of the Westinghouse PERFORMANCE+ design [Ref. 1]. The SIF/P+ZIRLO+2 design used in batches S1/23A, S1/23B, S1/23C, S1/23D, S1/23E, S1/22A, S1/22B, S1/21A, and S1/21B is similar to the SIF/P+ZIRLO design used in batches S2/18B and S2/18C. The differences in the P+ZIRLO+2 design include the following [Ref. 13]: the overall assembly length has increased by 0.2 inches, the fuel rod length has increased by 0.2 inches, the fuel holddown spring height is slightly decreased, the fuel rod top end plug length has decreased by 0.1 inch, and the bottom end plug is longer by 0.2 inches. These dimensional changes result in a small net increase in the fission gas plenum volume of the fuel rod. The bottom of the active fuel region for both the SIF/P+ZIRLO and SIF/P+ZIRLO+2 fuel is the same.

This is the first Surry cycle to use Westinghouse's IFBA fuel product. All physical changes for IFBA are internal to the fuel rod cladding, with no apparent difference from existing fuel assemblies in any external features. The IFBA design involves the application of a thin (0.0003125 inch) coating of ZrB₂ on the fuel pellet surface during fabrication. Pellets with the IFBA coating are placed in specific symmetric patterns in each fresh assembly, typically affecting from 16 to 148 rods per assembly. The top and bottom 6 inches of the fuel pellet stack in the IFBA rods will contain pellets that have no IFBA coating, and have a hole in the center (annular).

This additional void space helps accommodate the helium gas that accumulates from neutron absorption in ZrB_2 . IFBA rods generate more internal gas during operation because neutron absorption in the ZrB_2 coating creates helium gas in addition to the fission gas created during irradiation of the fuel. Therefore, the initial pressure is set lower so the internal pressure early in lifetime may be lower [Ref. 8].

In addition to the IFBA rods, several discrete burnable poison rod assemblies were also used for S1C21. The burnable poison (BP) rod design for this cycle is B_4C in Alumina which is available in various B_4C enrichments [Ref. 1]. Flux suppression inserts (FSIs) have been removed from Surry 1 for this cycle (the last eight Surry 1 cycles had FSIs to reduce neutron fluence at specific reactor vessel weld locations) [Ref. 8]. In conjunction with the FSI removal, the active burnable absorber length for Surry 1 was changed from the 135.5 inch design (which was compatible with the FSIs) to the 127.1 inch design similar to the BP product currently in use at Surry 2 [Ref. 5].

The S1C21 full core loading plan [Ref. 12] is given in Figure 1.1 and the beginning of cycle fuel assembly burnups [Ref. 6] are given in Figure 1.2. The available incore moveable detector locations used for the flux map analyses [Ref. 7] are identified in Figure 1.3 and the Cycle 21 burnable poison locations are detailed in Figure 1.4. Figure 1.5 identifies the location and number of control rods in the Cycle 21 core [Ref. 1].

According to the Startup Physics logs, the Cycle 21 core achieved initial criticality on 25 May 2006 at 02:04. Prior to and following criticality, startup physics tests were performed as outlined in Table 1.1. This cycle used the FTI Reactivity Measurement and Analysis System (RMAS) to perform startup physics testing. Note that RMAS v.6 was used for S1C21 Startup Physics Testing. The tests performed are the same as in previous cycles. A summary of the test results follows.

The measured drop time of each control rod was within the 2.4 second Technical Specification [Ref. 4] limit, as well as the 1.93 second administrative limit [Ref. 11].

NE-1487 Rev. 0

Individual control rod bank worths were measured using the rod swap technique [Ref. 2], [Ref. 16], incorporating the recommendations of [Ref 10]. The sum of the individual measured control rod bank worths was within -2.2% of the design prediction. The reference bank (Control Bank D) worth was within -2.6% of its design prediction (corresponding to 31.7 pcm). The other control rod banks were within $\pm 3.2\%$ (-3.2% was recorded for Bank B, which corresponds to a difference of 38.1 pcm) of the design predictions, which was the greatest percent difference of all control rod banks with design predictions greater than 600 pcm. For individual banks worth 600 pcm or less (only Control Bank A fits this category), the difference was within -9.8 pcm of the design prediction. These results are within the design tolerances of $\pm 15\%$ for individual banks worth more than 600 pcm ($\pm 10\%$ for the rod swap reference bank worth), ± 100 pcm for individual banks worth 600 pcm or less, and $\pm 10\%$ for the sum of the individual control rod bank worths.

Measured critical boron concentrations for two control bank configurations (ARO and Dbank in) were within 7.3 ppm of the design predictions. These results were within the design tolerances and also met the Technical Specification [Ref. 4] criterion that the overall core reactivity balance shall be within $\pm 1\% \Delta k/k$ of the design prediction. The boron worth coefficient measurement was within $\pm 1.75\%$ of the design prediction, which is within the design tolerance of $\pm 10\%$.

The measured isothermal temperature coefficient (ITC) for the all-rods-out (ARO) configuration was within $-0.416 \text{ pcm/}^{\circ}\text{F}$ of the design prediction. This result is within the design tolerance of $\pm 2.0 \text{ pcm/}^{\circ}\text{F}$.

Core power distributions, as measured by startup flux mapping, were within established design tolerances. The measured core power distributions were within $\pm 5.6\%$ of the design predictions, where a -5.6% maximum difference occurred in the 28.2% power map. The heat flux hot channel factors, $F_Q(Z)$, and enthalpy rise hot channel factors, $F_{\Delta H}^N$, were within the limits of COLR Sections 3.3 and 3.4, respectively. All power flux maps were within the maximum incore power tilt design tolerance of 2% (QPTR ≤ 1.02).

The total RCS Flow was successfully verified as being greater than 273000 gpm as required by Technical Specification 3.12.F.1. The total RCS Flow was measured as 286074 gpm.

In summary, all startup physics test results were acceptable. Detailed results, specific design tolerances and acceptance criteria for each measurement are presented in the following sections of this report. The screening (PRC, CDS, and ASC) for this technical report will be included in the engineering transmittal that implements and distributes the report.

Table 1.1

SURRY UNIT 1 – CYCLE 21 CHRONOLOGY OF TESTS

				Reference
Test	Date	Time	Power	Procedure
Hot Rod Drop-Hot Full Flow	05/23/06	1446	HSD	1-NPT-RX-014
Reactivity Computer Checkout	05/25/06	0249	HZP	1-NPT-RX-008
Boron Endpoint – ARO	05/25/06	0249	HZP	1-NPT-RX-008
Zero Power Testing Range	05/25/06	0249	HZP	1-NPT-RX-008
Boron Worth Coefficient	05/25/06	0249	HZP	1-NPT-RX-008
Temperature Coefficient – ARO	05/25/06	0325	HZP	1-NPT-RX-008
Bank D Worth	05/25/06	0419	HZP	1-NPT-RX-008
Boron Endpoint - D in	05/25/06	0541	HZP	1-NPT-RX-008
Bank A Worth - Rod Swap	05/25/06	0552	HZP	1-NPT-RX-008
Bank C Worth - Rod Swap	05/25/06	0559	HZP	1-NPT-RX-008
Bank SA Worth - Rod Swap	05/25/06	0613	HZP	1-NPT-RX-008
Bank B Worth - Rod Swap	05/25/06	0638	HZP	1-NPT-RX-008
Bank SB Worth - Rod Swap	05/25/06	0626	HZP	1-NPT-RX-008
Total Rod Worth	05/25/06	0419	HZP	1-NPT-RX-008
Flux Map – less than 30% Power	05/27/06	0211	28.2%	1-NPT-RX-002
Peaking Factor Verification				1-NPT-RX-008
& Power Range Calibration	-			1-NPT-RX-005
Flux Map – 65% - 75% Power	05/27/06	2111	69.7%	1-NPT-RX-002
Peaking Factor Verification				1-NPT-RX-008
& Power Range Calibration				1-NPT-RX-005
Flux Map – 95% - 100% Power	06/02/06	0859	99.97%	1-NPT-RX-002
Peaking Factor Verification				1-NPT-RX-008
& Power Range Calibration	. u			1-NPT-RX-005
	· .			
RCS Flow Measurement	06/05/06	1400	HFP	1-NPT-RX-009

Figure 1.1

SURRY UNIT 1 – CYCLE 21 CORE LOADING MAP

						5	URRI	OUTT		CICI	1 <u>7</u> 22		•				·
						F	ULL	CORE	LOAI)ING	plan					DACH	1 of 2
	· ·						R	EVIS:	ION N	10. 1							
VEP-NES-NAF		λ	B	¢	Ď	В	F	G	H	J	ĸ	L	м	N	P	R	
									1	· ·	1						15
								20F	4SF	061							
							RCC	5P	RCC	5P	RCC		1				14
*						29F	43F	558	43G	51H	28F	39F	ŀ				
NORTH						3P		RCC	20P	RCC		3P					13
				•	22F	49H	10H	,05H	388	04H	13H	478	SSF				
I				[RCC		RCC			ŀ	RCC		RCC		1		12
				26F	41H	17H	32G	19G	15G	12G	42G	22H	44H	40F			
				3P		RCC			20P			RCC		3P			. 11
			51F	56H	20H	07G	49G	23Ġ	35H	16G	58G	26G	24H	бон	33F		
			RCC		RCC		RCC		RCC	·	RCC		RCC		RCC		10
			48F	11 H	520	51G	40G	29H	29G	30H	37G	603	36G	12H	42P		
	. [SF	RCC				RCC		RCC				RCC	5P		9.
		25F	53H	06H	20G	110	32H	02G	44G	030	26H	28G	18G	01H	54H	37F	
• ·	- J.	ļ	RCC	20P		20P	RCC				RCC	20P		20P	RCC	·	8
27	70° [31F	390	371	25G	- 33H	38G	59G	27N	31G	34G	36н	08G	39H	56G	52F	
			5P	RCC				RCC		RCC				RCC	5₽		7
		38F	58H	02H	10G	05G	27H	24G	540	22ġ	25H	27G	17G	08H	48H	23F	
,			RCC		RCC		RCC		RCC		RCC		RCC		RCC		6
		1	275	16H	35G	46G	45G	31H	50G	28H	48G	53G	47G	15H	57N		
			•	3P		RCC			20P			RCC		ЗP			5
			56F	46H	23H	21G	57G	09G	40H	06G	30G	01G	21H	59H	49F		
1					RCC		RCC				RCC		RCC				4
				35F	43H	29H	41G	13G	14G	04G	33G	181	42H	46F		·	
INCORE DEVICE DESC	RIPT	IONS	•			.3₽		RCC	20P	RCC		3 P					3
RCC- FULL LENGTH C	ONTR	DL R(ישרולאני דרי	,	54F	52H	14H	03H	34H	07H	09H	5711	418	Ι.		· .	
SP- S BURNABLE FO	ISON	ROD	CLUST	ÉR			RCC	5P	RCC	5P	RCC						2
20P- 20 BURNABLE P	oiso	ROI) CLUS	TER		34P	47F	458	55G	50H	36F	<u>04</u> ¥	Ľ				_ .
																	1
								05#	1000	036				noli			
			at.,	N I			51 . i	_ *	180.	-		. .	al	KARA.		-	51,106
Prepa	ređ	BY '	<u>wikie</u>	a D. Mul	<u></u>	Date:	SIL	06		Conc	urrenc	e By:				pare:	-111-0
Revie	wed	By:	J.	An-		Date:	s/1	06				7	neu	Joef	de		
		-	A O	×	· 0	D	- 1.1	tar.						APE .	e	Dates	51,106

For T.W. Schleicher

Figure 1.2

SURRY UNIT 1 – CYCLE 21 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS

	R	Р)	N	м	L .	ĸ	J	н	G	F	E	ם ^י	с	в	A	
1							41.44 41.69	33.82 33.71	41.50 41.70					MEA PRED	SURED	•••
2				(34.52 34.47	38.79 38.73	0.00	17.71	0.00	38.73 38.75	34.12 34.45	•				
3			-	43.02 43.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	43.03 43.05				
4		-	43.07 43.04	0.00	0.00	22.11 22.11	22.40 22.40	22.20 21.94	22.51 22.41	22.39 22.13	0.00	0.00	43.07 43.04	-		-
5		37.82 38.13	0.00	0.00	22.05 22.11	17.92	23.21 23.24	0.00	23.17 23.22	17.74	21.95 22.12	0.00	0.00	38.02 38.12	-	
6		37.81 37.96	0.00	22.50 22.11	17.89 17.81	20.46(20.47	0.00 0.00	20.51	0.00	20.54	17.85 17.83	22.30 22.10	0.00	38.86 38.78		
7	43.40 42.92	0.00	0.00	22.50 22.42	23.20 23.23	0.00 0.00	22.03 22.15	17.78 17.77	22.10 22.15	0.00	23.30 23.25	22.39 22.42	0.00	0.00	42.98 42.92	
8	33.72 33.71	17.70 17.77	0.00	21.95 21.91	0.00	20.62	17.51 17.71	38.22 37.74	17.67 17.71	20.54	0.00	22.04 21.91	0.00	18.21 17.77	34.04 33.71	
9.	43.17	0.00	0.00	22.50 22.42	23.25	0.00	22.06	17.81 17.77	22.42 22.16	0.00	23.27 23.23	22.63	0.00	0.00	43.34 42.92	
D		38.93	0.00	22.37 22.10	18.01 17.83	20.60	0.00	20.43 20.55	0.00	20.57	18.06 17.81	22.10 22.10	0.00	38.38 38.80		
1		38.18 38.17	0.00	0.00	22.00 22.11	17.84 17.83	23.24	0.00	23 . 35 23 . 25	17.92 17.88	21.95 22.11	0.00	0.00	38.04 38.16	-	
2			43.09 43.04	0.00	0.00	22.43 22.12	22.26 22.41	22.13 21.94	22.36 22.40	22.19 22.11	0.00	0.00	43.11 43.04		-	
3		-		43.09 43.05	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	43.21 43.05		-		•
1			-	·	34.33 34.45	38.92	0.00	17.80 17.82	0.00	38.56 38.73	34.31 34.47			·.		
5			•	-			41.55 41.70	33.71 33.71	41.44 41.70							
						-										

Page 13 of 51

T 7*	1 0
HIGHTO	
L'IVIII C	
1,5,410	1.0
<u> </u>	

SURRY UNIT 1 – CYCLE 21 AVAILABLE INCORE MOVEABLE DETECTOR LOCATIONS

MD - Moveable Detector

** - Locations Not Used For Flux Map 1 for S1C21

* - Locations Not Used For Flux Map 1, 2, or 3 for S1C21

Figure 1.4

SURRY UNIT 1 – CYCLE 21 **BURNABLE POISON LOCATIONS**

SURRY UNIT 1 - CYCLE 21 FULL CORE LOADING PLAN REVISION NO. 1

VEP-NES-WAF

CORE	ASSY	EP
LOC	ĨĎ	ID
G14	· 55H	BP1215
J14	51H	BP1213
B13	4911	BP1223
H13	3-8H	BP1207
L13	47H	BP1222
C11	56H	BP1221
H11	3511	BP1206
N11	60H	BP1220

	BP CORE LOCATIONS											
1	CORE	ASSY	BP									
	LOC	ID	ID									
1	B09	53R	BP1214									
	P09	54H	BP1212									
1	C08	37H	BP1205									
ł	E08	33н	BP1204									
1	L08	36H	B21203									
I	NO8	398	BP1202									
	B07	5.9H	BP1211									
l	P07	48H	B.P1209									

CORE	ASSY	BP
LOC	ID	ID
 C05	46H	BP1219
HÓS	40H	BP1201
N05	591	BP1218
E03	52H	BP1217
H03	34H	BP1200
L03	57H	BP1216
G02	4514	BP1210
J02	50H	BP1208

PAGE 2 of 2

Prepared By: Releas D. Ked Reviewed By: Approved By: T.W. Schleicher

Date: 5/1/06

Date: 5/1/06

Date: 5/./06

Approved By:

_ Concurrence By: __alth

n. P. Whethose Brookmire Date: 5/1/06

Date: 5/1/06

NE-1487 Rev. 0

Figure 1.5

SURRY UNIT 1 – CYCLE 21 CONTROL ROD LOCATIONS

R P N M L K J H G F E D C B A

D = Control Bank D C = Control Bank C B = Control Bank B A = Control Bank A SB = Shutdown Bank SB SA = Shutdown Bank SA

SECTION 2 — CONTROL ROD DROP TIME MEASUREMENTS

The drop time of each control rod was measured in hot shutdown with three RCPs in operation (full flow) and with T_{ave} greater than 530 F as per 1-NPT-RX-014. This verified that the time to the entry of the rod into the dashpot was less than or equal to the maximum allowed Technical Specification 3.12.C.1 [Ref. 4].

Surry Unit 1 Cycle 21 used the rod drop test computer (RDTC) in conjunction with the Computer Enhanced Rod Position Indication (CERPI) system. The CERPI system equipment replaced the Individual Rod Position Indication (IRPI) system. The rod drop times were measured by withdrawing all banks to their fully withdrawn position and dropping all of the 48 control rods into the core by opening the reactor trip breakers. This allowed the rods to drop into the core as they would during a plant trip.

Data prior to S1C20 was previously acquired using the primary RPI coil terminals (/1 & /2) for each rod. Traces that printed from the Yokogawas were used to determine initial quality, while binary output was saved to diskette for further analysis using ACRAWin32 software. The new methodology acquires data using the secondary RPI coil terminals (/3 & /4) on the CERPI racks for each rod. Data is immediately saved to the rod drop test computer (RDTC) which computes the rod drop time automatically. Original data is also saved as an ASCII file and burned to CD-R. Further details about the RDTC can be found in [Ref. 14].

As shown on the typical rod drop trace in Figure 2.1, the initiation of the rod drop is indicated by quick increase of voltage. The magnitude of this voltage is a function of control rod velocity. As the rod enters the dashpot region of the guide tube, its velocity slows causing a sharp voltage decrease. This voltage reaches a minimum when the rod reaches the bottom of the dashpot. In each trace, there should be an evident oscillation in the voltage curve after it has reached that bottom of the dashpot. This "bounce" indicates that the rod has not gotten stuck in the dashpot. Subsequent variations in rod drop traces are caused by rod bouncing.

The measured drop times for each control rod are recorded on Figure 2.2 in accordance with station procedure 1-NPT-RX-014. The slowest, fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.12.C.1 [Ref. 4] specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 2.4 seconds for all rods. These test results satisfied this technical limit as well as the administrative limit [Ref. 11] of 1.93 seconds. In addition, rod bounce was observed at the end of each trace demonstrating that no control rod stuck in the dashpot region.

Table 2.1

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS HOT ROD DROP TIME SUMMARY

ROD DROP TIME TO DASHPOT ENTRY

SLOWEST ROD	FASTES	ΓROD	AVERAGE TIME				
P-08 1.39 sec.	L-05 & M-12	1.25 sec	1.30 sec.	-			
•							

NE-1487 Rev. 0

Figure 2.1

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS TYPICAL ROD DROP TRACE

NE-1487 Rev. 0

					•										. • •	
	R	Р	N	М	L	K	J	H.	G	F	E.	D	С	В	A	
			•			•			1							1
		· . ·	•			1.29	1	1.28		1.28	·]				2
							1.30		1.32]	•		3
		• . 		1.29		1.26				1.28		1.31				4
					1.25			.			1.28					5
		1.27		1.26		1.29		1.30		1.28		1.27		1.36		6
			1.28				1.31	<u> </u>	1.29				1.30			7
·		1.39			. 	1.31		<u> </u>		1.38			 	1.30		8
		 	1.34	 			1.29	ļ	1.32				1.30			9
		1.29	ļ	1.29		1.27		1.29		1.31	<u> </u>	1.29		1.31	ļ	10
				 	1.28		ļ	ļ	 	ļ	1.29	ļ		 		11
				1.25	L	1.26		<u> </u>		1.28		1.32	<u> </u>]		12

1.30

1.27

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS ROD DROP TIME – HOT FULL FLOW CONDITIONS

Figure 2.2

x.xx

===> Rod drop time to dashpot entry (sec.)

1.32

NE-1487 Rev. 0

S1C21 Startup Physics Tests Report

1.31

1.36

Page 21 of 51

13

14

This page is intentionally blank.

SECTION 3 --- CONTROL ROD BANK WORTH MEASUREMENTS

Control rod bank worths were measured for the control and shutdown banks using the rod swap technique [Ref. 2]. The initial step of the rod swap method diluted the predicted most reactive control rod bank (hereafter referred to as the reference bank) into the core and measured its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer and were used to determine the differential and integral worth of the reference bank. Surry 1 used a dilution rate of 1100 pcm/hr for the reference bank measurement. For Cycle 21, Control Bank D was used as the reference bank.

During the N1C19 startup physics testing campaign, a control rod became stuck on bottom eventually forcing a reactor trip to fix the issue. A theorized potential cause of the stuck rod issue was the presence of debris near the upper core plate interfering with the rod grippers when the control rods were manually inserted to the fully inserted position (0 steps withdrawn). A possible solution to this theory for startup physics testing was to avoid requiring control rods to be manually inserted to 0 steps. To accomplish this, an evaluation of the startup physics testing process was performed [Ref. 15], concluding that the definition of fully inserted for control rod to 2 steps withdrawn. The S1C21 startup physics testing campaign used 2 steps withdrawn for all conditions requiring control rods to be manually fully inserted.

After completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were allowed to stabilize with the reactor near critical and the reference bank near its full insertion. Initial statepoint data (core reactivity and moderator temperature) for the rod swap maneuver were next obtained with the reference bank at its fully inserted position and all other banks fully withdrawn.

Test bank swaps proceed in sequential order from the bank with the smallest worth to the bank with the largest worth. The second test bank should have a predicted worth higher than the first bank in order to ensure the first bank will be moved fully out. The rod swap maneuver was

performed by withdrawing the previous test bank (or reference bank for the first maneuver) several steps and then inserting the next test bank to balance the reactivity of the reference bank withdrawal. This sequence was repeated until the previous test bank was fully withdrawn and the test bank was nearly inserted. The next step was to swap the rest of the test bank in by balancing the reactivity with the withdrawal of the reference bank, until the test bank was fully inserted and the reference bank was positioned such that the core was just critical or near the initial statepoint condition. This measured critical position (MCP) of the reference bank with the test bank fully inserted was used to determine the integral reactivity worth of the test bank.

The core reactivity, moderator temperature, and differential worth of the reference bank were recorded with the reference bank at the MCP. The rod swap maneuver was repeated for all test banks. Note that after the final test bank was fully inserted, the test bank was swapped with the reference bank until the reference bank was fully inserted and the last test bank was fully withdrawn. Here the final statepoint data for the rod swap maneuver was obtained (core reactivity and moderator temperature) in order to verify the reactivity drift for the rod swap test.

A summary of the test results is given in Table 3.1. As shown in this table and the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for the control and shutdown banks were within the design tolerance of $\pm 10\%$ for the reference bank, $\pm 15\%$ for test banks of worth greater than 600 pcm, and ± 100 pcm for test banks of worth less than or equal to 600 pcm. The sum of the individual measured rod bank worths was within -2.2% of the design prediction. This is well within the design tolerance of $\pm 10\%$ for the sum of the individual control rod bank worths.

The integral and differential reactivity worths of the reference bank (Control Bank D) are shown in Figures 3.1 and 3.2, respectively. The design predictions [Ref. 1] and the measured data from station procedure 1-NPT-RX-008 are plotted together in order to illustrate their agreement. In summary, the measured rod worth values were satisfactory.

Table 3.1

	MEASURED	PREDICTED	PERCENT
	WORTH	WORTH	DIFFERENCE (%)
BANK	(PCM)	(PCM)	(M-P)/P X 100
D - Reference	1198.3	1230.0	-2.6
B	1159.3	1197.4	-3.2
С	815.9	816.6	-0.1
Α	277.0	286.8	-3.4 (a)
SB	1004.1	1025.5	-2.1
SA	979.3	997.4	-1.8
Total Bank Worth	5433.9	5553.6	-2.2

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS CONTROL ROD BANK WORTH SUMMARY

(a). M - P = -9.8 pcm

SURRY UNIT 1 CYCLE 21 STARTUP PHYSICS TESTS
CONTROL BANK D INTEGRAL ROD WORTH - HZP
ALL OTHER RODS WITHDRAWN

Figure 3.1

Figure 3.2

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS CONTROL BANK D DIFFERENTIAL ROD WORTH - HZP ALL OTHER RODS WITHDRAWN

Page 27 of 51

This page is intentionally blank.

SECTION 4 — BORON ENDPOINT AND WORTH MEASUREMENTS

Boron Endpoint

With the reactor critical at hot zero power, reactor coolant system (RCS) boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions. For each critical boron concentration measurement, the RCS conditions were stabilized with the control banks at or very near a selected endpoint position. Adjustments to the measured critical boron concentration values were made to account for off-nominal control rod position and moderator temperature, if necessary.

The results of these measurements are given in Table 4.1. As shown in this table and in the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the measured critical boron endpoint values were within their respective design tolerances. The ARO endpoint comparison to the predicted value met the requirements of Technical Specification 4.10.A [Ref. 4] regarding core reactivity balance. In summary, the boron endpoint results were satisfactory.

Boron Worth Coefficient

The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient or differential boron worth (DBW) was determined. By relating each endpoint concentration to the integrated rod worth present in the core at the time of the endpoint measurement, the value of the DBW over the range of boron endpoint concentrations was obtained.

A summary of the measured and predicted DBW is shown in Table 4.2. As indicated in this table and in the Appendix, the measured DBW was well within the design tolerance of $\pm 10\%$. In summary, the measured boron worth coefficient was satisfactory.

Table 4.1

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS BORON ENDPOINTS SUMMARY

Control Rod Configuration	Measured Endpoint (ppm)	Predicted Endpoint (ppm)	Difference M-P (ppm)
ARO	1692	1693	-1
D Bank In	1533	1526*	+7

* The predicted endpoint for the D Bank In configuration was adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheet in the Appendix.

Table 4.2

Measured Boron Worth	Predicted Boron Worth	Percent	
(pcm/ppm)	(pcm/ppm)	(M-P)/P x 100	
-7.54	-7.41	-1.75	

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS BORON WORTH COEFFICIENT

NE-1487 Rev. 0

S1C21 Startup Physics Tests Report

Page 31 of 51

This page is intentionally blank.

SECTION 5 — TEMPERATURE COEFFICIENT MEASUREMENT

The isothermal temperature coefficient (ITC) at the all-rods-out condition is measured by controlling the reactor coolant system (RCS) temperature with the steam dump valves to the condenser, establishing a constant heatup or cooldown rate, and monitoring the resulting reactivity changes on the reactivity computer.

Reactivity was measured during the RCS heatup of $+3.04^{\circ}$ F, followed by the RCS cooldown of -3.03° F. Reactivity and temperature data were taken from the reactivity computer. Using the statepoint method, the temperature coefficient was determined by dividing the change in reactivity by the change in RCS temperature. Plots of reactivity versus temperature confirmed the statepoint method in calculating the measured ITC.

The predicted and measured isothermal temperature coefficient values are compared in Table 5.1. As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheet given in the Appendix, the measured isothermal temperature coefficient value was within the design tolerance of ± 2 pcm/°F. The measured ITC of -2.009 pcm/°F meets the Core Operating Limits Report (COLR) 3.1.1 criterion [Ref. 9] that the moderator temperature coefficient (MTC) be less than or equal to +6.0 pcm/°F. When the Doppler temperature coefficient [Ref. 1] of -1.81 pcm/°F and a 0.5 pcm/°F uncertainty are accounted for with the MTC limit, the MTC requirement is satisfied as long as the ITC is less than or equal to +3.69 pcm/°F.

Table 5.1

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT SUMMARY

BANK	TEMPER RANC	RATURE EE (°F)	BORON	ISOTHERMAL TEMPERATURE COEFFICIENT (PCM/°F)						
(STEPS)	LOWER LIMIT	UPPER LIMIT	(ppm)	HEAT- UP	COOL- DOWN	AVG. MEAS	PRED	DIFFER (M-P)		
D/210	546.63	550.08	1684	-2.022	-1.996	-2.009	-1.593	-0.416		

S1C21 Startup Physics Tests Report

Page 34 of 51

SECTION 6 — POWER DISTRIBUTION MEASUREMENTS

The core power distributions were measured using the moveable incore detector flux mapping system. This system consists of five fission chamber detectors which traverse fuel assembly instrumentation thimbles in up to 50 core locations. Figure 1.3 shows the available locations monitored by the moveable detectors for the ramp to full power flux maps for Cycle 21. For each traverse, the detector voltage output is continuously monitored on a recorder, and scanned for 610 discrete axial points. Full core, three-dimensional power distributions are determined from this data using a Dominion-modified version of the Combustion Engineering computer program, CECOR [Ref. 3]. CECOR couples the measured voltages with predetermined analytic power-to-flux ratios in order to determine the power distribution for the whole core.

A list of the full-core flux maps [Ref. 7] taken during the startup test program and the measured values of the important power distribution parameters are given in Table 6.1. A comparison of these measured values with their COLR limits is given in Table 6.2. Flux map 1 was taken at 28.2% power to verify the radial power distribution (RPD) predictions at low power. Figure 6.1 shows the measured RPDs from this flux map. Flux maps 2 and 3 were taken at 69.7% and 99.97% power, respectively, with different control rod configurations. These flux maps were taken to check at-power design predictions and to measure core power distributions at various operating conditions. The radial power distributions for these maps are given in Figures 6.2 and 6.3.

The radial power distributions for the maps given in Figures 6.1, 6.2, and 6.3 show that the measured relative assembly power values deviated from the design predictions by at most -5.6% in the 28.2% power map, -5.4% in the 69.7% power map, and -4.3% in the 99.97% power map. The maximum quadrant power tilts for 28.2%, 69.7%, and 99.97% power maps were +1.29% (1.0129), +0.46% (1.0046), and +0.46% (1.0046), respectively. These power tilts were within the design tolerance of 2% (1.02).

The measured $F_Q(Z)$ and $F_{\Delta H}^N$ peaking factor values for the at-power flux maps were within the limits of COLR Sections 3.3 and 3.4 [Ref. 9], respectively. Flux Maps 1, 2, and 3 were used

NE-1487 Rev. 0

for power range detector calibration or were used to confirm existing calibrations. The flux map analyses are documented in [Ref. 7].

In conclusion, the power distribution measurement results were considered to be acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the COLR [Ref. 9]. It is therefore anticipated that the core will continue to operate safely throughout Cycle 21.

Table 6.1

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS INCORE FLUX MAP SUMMARY

Мар	Map Date	Burn up	Power	Bank	Peak $F_Q(Z)$ Hot Channel Factor (1)		$F_{\Delta H}^{N}$ Hot Channel Factor		Core F _Z Max		Core Tilt (2)		Axial	No. Of		
Description	No.	Date	MWD/ MTU	(%)	Steps	Assy	Axial Point	F _Q (Z)	Assy	$F_{\Delta H}^N$	Axial Point	Fz	Max	Loc	(%)	Thimbles
Low Power	1	05/27/06	3	28.20	172	H13	30	2.202	H13	1.551	30	1.319	1.0129	NE	+2.686	41
Int. Power (3)	2	05/27/06	17	69.70	194	C8.	25	1.919	C8	1.511	23	1.179	1.0046	NE	+2.626	42
Hot Full Power	3	06/02/06	155	99.97	228	H11	32	1.778	H11	1.466	30	1.134	1.0046	NE	+1.660	42

NOTES: Hot spot locations are specified by giving assembly locations (e.g. H-8 is the center-of-core assembly) and core height (in the "Z" direction the core is divided into 61 axial points starting from the top of the core). Flux Maps 1, 2, and 3 were used for power range detector calibration or were used to confirm existing calibrations.

(1) $F_0(z)$ includes a total uncertainty of 1.08

(2) CORE TILT - defined as the average quadrant power tilt from CECOR. "Max" refers to the maximum positive core tilt (QPTR > 1.0000).

(3) Int. Power – intermediate power flux map.

NE-1487 Rev. 0⁻

S1C21 Startup Physics Tests Report

Page 37 of 51

Table 6.2

Map	Pea Cha	ık F _Q (Z) nnel Fac	Hot tor*	(At N	F _Q (Z) Hot Channel Factor** (At Node of Minimum Margin)				$F_{\Delta H}^{N}$ Hot Channel Factor			
No.	Meas.	Limit	Node	Meas.	Limit	Node	Margin (%)	Meas.	Limit	Margin (%)		
1	2.202	4.628	30	2.183	4.582	26	52.36	1.551	1.896	18.20		
2	1.919	3.279	25	1.907	3.254	22	41.40	1.511	1.702	11.22		
3	1.778	2.321	32	1.770	2.257	20	21.58	1.466	1.560	6.03		

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR CORE OPERATING LIMITS

*The Core Operating Limit for the heat flux hot channel factor, $F_Q(Z)$, is a function of core height and power level. The value for $F_Q(Z)$ listed above is the maximum value of $F_Q(Z)$ in the core. The COLR [Ref. 9] limit listed above is evaluated at the plane of maximum $F_Q(Z)$.

**The value for $F_Q(Z)$ listed above is the value at the plane of minimum margin. The minimum margin values listed above are the minimum percent difference between the measured values of $F_Q(Z)$ and the COLR limit for each map.

The measured $F_0(z)$ hot channel factors include 8% total uncertainty.

Figure 6.1

SURRY UNIT 1 – CYCLE 21 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 28.2% POWER

R	P	N	м	L	ĸ	J	н	G	F	E	D	с	в	A
		PREDICT	ED.			285 .	. 374	285				PREDICTEI	. .	
		MEASURE	D.			283 .	.360	283 .			• • •	MEASURED		
	. PC	T DIFFER	ENCE.			8.	-3.6	7			. PCT	DIFFERE	NCE.	
		•••••	••••			•••••••••		•••••••••••••••••••••••••••••••••••••••			• ••••	•••••		
				334	527	1.162 .	. 992 .	. 1.157 .	527 . 576	329	•			
					527	. 1.165 .	. 991	. 1.160 .	526 .		•			
						• • • •			- · I		•			
			352	1.079	1.087	1.306	1.318	1.303	1.084	1.072	351			
			345	. 1.078	. 1.087	. 1.310 .	1.331	1.313	1.092	1.082	351			
			2.1	1	0	3.	. 9	8.	.8	. 1.0	1			
		344	845	. 1.096	. 1.232	· 1.254· .	1.284	. 1.253 .	1.230	. 1.096	849	348		
		343	841	. 1.099	. 1.229	. 1.257 .	1.309 .	. 1.268 .	1.244 .	1.110	864	354 .		
		2	5	2	2	2.	2.0	. 1.2.	1.1.	. 1.3	. 1.8	. 1.8		
			••••••				• • • • • • •					••••••		
	296	. 1.038	. 1.082	. 1.152	. 1.319	. 1.227 .	1.322	1.226	1.319	. 1.156	. 1.091	. 1.056	305 .	
	296	. 1.041	. 1.072	. 1.125	. 1.304	. 1.210 .	1.321	. 1.234 .	. 1.334 .	. 1.175	. 1.121	. 1.077	297 .	
· .	1	2	9	2.3	1.2	1.4.	. 0 .		1.2	. 1.7	. 2.1	. 2.0	-2.7.	
	497	1 052	1 213	1 312	1 195	1 190	1 783	1 198	1 196	1 319	. 1 225	1 073	517	
	489	1.048	. 1.205	1,302	1.182	1 177	1 269	1.189	1.207	1.342	1.255	. 1.099		
	6		6	- 8	-1.1	-1.1	-1 1	. 1.105 .	1.0	1.7	2.4	. 2.4	2.6	
.284	. 1.132	. 1.27,9	. 1.239	. 1.220	1.188	1.188 .	1.300 .	1.185 .	1.189 .	1.225	1.250	. 1.298 .	1.156 .	.287 .
. 277	. 1.121	. 1.273	. 1.232	. 1.213	. 1.178	. 1.179 .	1.291 .	. 1.184 .	1.199 .	1.245	1.283	. 1.336 .	1.204 .	.297 .
-2.1	1.0	4	6	5	8	7.	6.		.8.	. 1.6	. 2.7	. 2.9	4.1.	3.5 .
.370	979	. 1.302	. 1.273	. 1.316	1.285	1.307 .	1.020	1.300 .	1.284	1.320	. 1.280	. 1.313	.990 .	.374 .
.349	962	. 1.288	. 1.263	. 1.315	. 1.275	. 1.296 .	1.011 .	1.295 .	1.294 .	. 1.336 .	. 1.304	. 1.344	1.010 .	.380 .
-5.6	1.8	1.1	7	1	8	9.	8.	4 -	.7	. 1.2	1.9	. 2.4.	2.1.	1.6 .
	1 147	1 200	1 245	1 224			1 200		1 100	1 226	1 250	1 205	1 1 1 1 1	
203	1 120	1 273	1 227	1 195	1,191	1 175	1 201	1 169 .	1 205	1 237	1 263	1 310	1 150	.200.
-2 6	-16	-14	-1.4	-2 3	-1 6	-1 4	-1 2	-1.7	1.3	1.2.57	1.1	1.1	6	-2 3
	514	. 1.069	. 1.223	. 1.318	1.197	1.192	1.287	1.193 .	1.200 .	1.320	1.226	. 1.073 .	.516 .	
	507	. 1.054	. 1.204	. 1.297	1.177	1.166 .	1.277 .	1.184 .	1.196	1.321	1.230	1.074	.505 .	
	1.5	1.4	1.5	1.6	-1.7	2.1.	8.	8 .	3 .	0	3	1.	~2.3 .	
	304	. 1.053	. 1.090	. 1.156	. 1.320	. 1.229 .	1.325 .	. 1.231 .	1.325 .	1.160	. 1.094	. 1.057 .	305 .	
	., .299	. 1.035	. 1.073	. 1.142	. 1.308	. 1.222 .	1.333 .	. 1.229 .	1.310 .	1.148	. 1.093	. 1.054 .	302 .	
	1.7	1.7	1.5	1.2	9	5.	.6.	1.	-1.1.	1.0	0	3	- 9 .	
	•••••										· · · · · · · · · ·		• • • • • • • • •	
		347	848	1 096	1 231	1.256 .	1.287	1.258	1 237 .	1 102	853	349 .		
		-38	-16	. 1.085	- 5	. 1.258 .	1.299 .	. 1.200 .	2.2.3 .	. 1.104		-20		
		5.0	1.0	1.1						• • •	. 1.5	2.0	· .	
			351	. 1.073	1.085	1.305	1.321	1.310	1.091	1.084	355			
			346	. 1.063	1.083	1.314	1.349	1.326 .	1.104	1.093	358			
			1.3	9	3	6 .	2.1 .	1.3.	1.1 .	8	1.0			
				329	527	. 1.159 .	.994	1.165 .	. 529 .	336,	•			
				319	52 6	1.164 .	1.004 .	. 1.179 .	.535 .	338	•			
				3.0	3	4 .	1.0.	. 1.2.	1.1 .	9	•			
				· · · · · · · · ·	•••••		••••••••		• • • • • • • •	••••			•••	
	•	STANDAR	ມ . ດາ			286 .	.375 .	. 286 .			·	AVERAGE		
	•	UEVIATI	. 10			280 .	. 3 / 6 .	288 .			.PCT	- 1 J	ч с Е.	
	•	= .913	·			-2.2.		. 1.0.			•	- 1.2	·	
			• • • • •			•••••	••••••					•••••	• • • •	
R	P	N	м	· L	к	J	н	G	F	Е	D	с	в	А

Summary:

Map No: S1-21-01 Control Rod Position: D Bank at 172 Steps

Date: 05/2	7/2006		Power:	28.2%
$F_Q(z) =$	2.202	QPTR:	0.9907	1.0129
$F_{\Delta H}^{N} =$	1.551		0.9899	1.0065
$F_{Z} =$	1.319		Avial Offert ('‰) → ±2.686
Burnup =	3	MWD/MTU	Aniai Oliset (<i>(10)</i> – +2.080

S1C21 Startup Physics Tests Report

10

11

12

13

14

Figure 6.2

SURRY UNIT 1 - CYCLE 21 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 69.7% POWER G PREDICTED MEASURED .301 .396 .301 PREDICTED MEASURED PCT DIFFERENCE. -.3 -1.9 -.6 .PCT DIFFERENCE. 1.156 348 .541 .543 1.160 . 02 Z .540 .342 . 349 1.164 .340 1.023 .1 -1.9 . 6 .367 .361 -1.6 1.083 080 285 292 282 . 080 072 .365 1.291 1.084 1.303 286 1.079 1.072 .361 . 4 . 9 . 3 +.1 .0 -.9 .861 .863 .2 .862 .868 .359 1.233 1.218 1.097 257 1.096 .362 .365 1.224 1.240 1.275 1.5 . 4 .4 . 9 . 3 . 6 . 4 . 4 . 8 1.293 1.215 1.087 058 .311 .313 .5 . 092 1.046 . 15 5 1.319 1.217 .318 1.054 1.086 1.147 1.310 1.209 1.295 1.318 1.164 1.108 068 .310 1 -.4 . 2 . 3 . 4 1.5 1.0 -2.7 . 512 1.056 1.207 1.310 1.235 1.194 1.269 1.192 1.234 1.314 1.214 1.071 . 532 . 513 1.060 1.205 1.298 -.9 1.228 1.189 1.269 1.189 1.234 1.322 1.228 .085 .539 1 . 6 1.1 . 2 .302 1.290 1 141 1 267 .225 212 193 1 188 1.184 193 1.215 1.230 278 156 1 1 304 1.141 1.278 1.225 1.208 1.187 1.184 1.174 1.191 . 243 304 187 .309 . 221 -1.4 -.3 1.1 2.0 2.7 1.7 . 0 . 9 . 0 -.3 -.5 -.4 -.9 -.1 . 5 1.021 .395 1.283 251 291 272 1.297 . 02 5 289 270 291 1.254 289 . 397 1.016 .374 -5.4 1.007 1.292 -.4 1.021 1.285 1.270 .326 2.9 1.280 1.248 1.289 1.267 1.270 1.297 . 393 -. 5 +.3 -.3 -.1 -.4 -.4 . 0 4 -1.4 -1.1 .305 .295 -3.1 .303 1.152 1.141 -.9 1.152 .276 1.229 215 195 1:190 .294 187 1.193 . 230 277 1.230 .296 1.142 1.266 1.218 1.194 1.185 1.291 1.216 1.284 1.184 1.182 . 0 . 2 . 6 1.315 1.297 -1.3 . 531 1.069 1.214 235 1,194 . 272 1.195 1.237 1.314 1.214 1.070 .531 . 52 6 1.061 1.200 1.224 1.188 1.273 1.233 1.066 .516 1.194 1.309 1.213 -.5 .1 ~.1 -.3 -.4 ~.1 1.057 1.294 1.310 1.2 .318 1.092 1.157 31.5 1.217 .218 1.317 1.159 1.093 1.058 .318 1,137 1.076 .314 .314 1.043 1.306 1.308 1.142 1.091 1.052 1.219 1.222 -1.3 -.7 . 2 . 4 -.7 -1.4 -.1 -.5 .865 .883 2.2 .362 .862 .362 1.096 1.219 1.234 . 258 1.236 222 1.240 1.275 1.226 1.104 -3.2 -1.6 -1.2 - . 4 . 5 1.3 . 9 . 4 . 3 -2.2 .368 . .365 1.072 1.080 . 293 1.085 1.082 1.283 1.286 .360 1.059 1.077 1.293 . 324 1.304 1.096 1.091 .373 . .348 .351 1.0 .542 .548 .342 .541 1.157 1.023 .161 -4.7 -.6 . 4 1.3 1.4 1.2 . 397 .301 STANDARD .301 AVERAGE DEVIATION = .842 .292 -3.1 .398 . .304 .PCT DIFFERENCE. . 9

Map No: S1-21-02 Control Rod Position: D Bank at 194 Steps

Date: 05/27/2006		Power:	69.7%
$F_Q(z) = 1.919$	QPTR:	0.9977	1.0046
$F_{\Delta H}^{N} = 1.511$		0.9938	1.0039
$F_{Z} = 1.179$	· .	Avial Offert	「你)— 上つ 6つ6
Burnup = 17	MWD/MTU	Aniai Oliset ($(70) = \pm 2.020$

S1C21 Startup Physics Tests Report

Summary:

10

11

12

13

14

Figure 6.3

SURRY UNIT 1 - CYCLE 21 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 99.97% POWER

r.	r	14	14	4		5	, n	9	r	D		C	5	~
						. .				•				
		PREDICT	ED.			307	408	307	•			PREDICTED	-	
		MEASUREI	Þ.			307	405	306			. 1	MEASURED		
	. PC7	r differi	ENCE.		• •	1	7	3	•		.PCT	DIFFEREN	CE.	
		•••••		· · · · <u>·</u> · · · ·		• • • • • • • • •	••••••	•••••••••	••••				· • •	
				347	541	. 1.144	. 1.048	. 1.140	540	342	•			
				349	543	. 1.149	. 1.050	. 1.139	530	340	•			
			•	6	4	4		1	1.8	4	•			
				1 05 6	1 060	1 265	1 260	1 262	1 066	1 040				•
			367	1 066	1.009	1 223	1 208	1 262	1 066	1 049		•		
			305	. 1.065 .	. 1.0/4	. 1.2/1	. 1.2/5	. 1.205	. 1.000	. 1.055	300	•		
				• • • •		5			0			•		
		360		1.088	1.210	1.224	1.242	. 1.222	. 1.207	1.086	. 854			
		.362	858	. 1.102	1.215	1.229	1.257	1.229	1.213	1.093	.864	366 .		
			4	. 1.3		4	1.2	6	5	7	1.1	. 1.1 .		
	314 .	. 1.028 .	1.079	. 1.159 .	1.324	. 1.222	1.280	. 1.220	. 1.322 .	1.159	1.082	. 1.036 .	.319	
	314 .	. 1.032 .	1.078	. 1.150 .	1.321	. 1.215	1.282	. 1.224	. 1.329	1.169	1.103	. 1.048 .	.312	
	1.	4.	1	. ~.8.	2	. ~.5	1	3	5	9	. 1.9	. 1.1 .	-2.2	• •
				••••••									• • • • • • •	•
	518 .	. 1.047 .	1.200	. 1.320 .	1.302	. 1.220	. 1.278	. 1.217	. 1.300	1.323	1.204	. 1.057 .	.531	•
	516 .	. 1.046 .	1.198	. 1.318 .	1.299	. 1.217	. 1.277 .	. 1.218	. 1.303 .	. 1.332	1.217	. 1.069 .	. 538	•
	3.	1.	2	2.	2	3.	1	0	2		1.1	. 1.2 .	1.2	•
200	1 120	1 251	1 216	1 21 0	1 210	1 210	1 205	1 207	1 210	1 210	1 220	1 250	1 140	310
304	1 1 2 3	1 2/9	1 213	1 215	1 216	1 209	1 304	1 205	1 221	1 226	1 220	1 276	1 167	314
-1 6	- 6	- 2	_ 1	~ 2	7	- 1	- 1	2		5	7	1.3.	2.3	1.3
1.0														
.408	. 1.045 .	1.262	1.238	. 1.279	1.281	1.312	1.052	1.305	. 1.279	1.279	1.240	. 1.265 .	1.048	409 .
. 390	. 1.034 .	1.254	1.232	. 1.276 .	1.276	. 1.309	1.050	1.302	. 1.283	1.284	1.249	. 1.282 .	1.032	404 .
-4.3	1.1 .	7.	5	2 .	4	3	3	2	3	. 4	7	. 1.3.	-1.6	1.2 .
.309	. 1.138 .	1.258 .	1.219	. 1.220 .	1.221	. 1.213 .	1.309	1.209	1.219	1.219 .	1.219	. 1.257 .	1.137	311 .
.304	. 1.128 .	. 1.248 .	1.207	. 1.198 .	1.210	. 1.207 .	1.305	. 1.199	. 1.229 .	1.224	1.223	. 1.258 .	1.124	304 .
-1.8	9 .	7.	9	1.8.	9		3	9	8.	4 .	3	0.	-1.1	2.2.
• • • • •	• • • • • • • • •		******	• • • • • • • • •		• • • • • • • • •		••••••	• • • • • • • • •			••••••		••••
	531 .	1.056 .	1.204	. 1.323 .	1.302	. 1.220 .	1.280 .	1.221	. 1.303 .	1.323	1.204	. 1.056 .	.531	•
	527 .	. 1.053 .	1.194	. 1.310 .	1.293	. 1.214 .	. 1.282 .	1.219	. 1.304 .	1,323	1.204	. 1.052 .	.516	•
	/.		8	1.0 .	/			1			0		-2.0	•
	210	1 076	1 002	1 160	1 222	1 221	1 292	1 223	1 376	1 161	1 093	1 036	319	•
	316	1 027	1 072	1 148	1 317	1 223	1 202	1 227	1 319	1 154	1 085	1 033	315	•
	- 8	- 8	-1 0	-10	- 4	. 1.223 .	1.3		5	- 6		3 -	-1.2	
		.362 .	.854	. 1.086 .	1.208	. 1.223	1.243	1.225	. 1.211	1.090	857	362 .		
		353 .	.844	. 1.076 .	1.203	. 1.225	1.252	. 1.232	. 1.216 .	1.096	. 875	359 .		
		-2.4.	-1.2	. ÷.9.	4	2.	7 .	6	4 .	6 .	2.1	1.1 .		
						• • • • • • • • •			• • • • • • • • •	• • • • • • • •				
			.365	. 1.050 .	1.066	. 1.263 .	1.269	. 1.266	. 1.070 .	1.058	368	٠.		
		-	360	. 1.038 .	1.061	. 1.263	, 1,279 .	. 1.276	. 1.083 .	1.069	373	•		•
		•	-1.2	1.1.	5	1	8	8	. 1.2	1.0	. 1.5			
		-	• • • • • • • •	342	540	1 141	1 049	1 145	541 541	347		•		
					535	1 138	1 053	1,153	546	351				
				-3.9	- 9		. 1.055			1.0				
		STANDARD), (307	.408	. 307	•			AVERAGE		
		DEVIATIO	NN.			299	. 407 .	308			. PCT	DIFFEREN	CE.	
		≈ 686				2.8	~.2	4				= .7		
									•			• • • • • • • • •		
				· .		_				-				
R	P	N	м	L	к	J	н	G	F	Е	D	C	в	A

Map No: S1-21-03 Control Rod Position: D Bank at 228 Steps Summary:

Date: 06/02/	/2006		Power:	99.97%
$F_Q(Z) = 1$.778	QPTR:	0.9986	1.0046
$F_{\Delta H}^{N} = 1$.466	_	0.9939	1.0029
$F_z = 1$.134		Avial Officiat (∽ ‰) – ⊥1 660
Burnup =	155	MWD/MTU	Axiai Olisei ((0) = +1.000

S1C21 Startup Physics Tests Report

Page 41 of 51

1

10

11

12

13

14

This page is intentionally blank.

SECTION 7 — REFERENCES

- C. D. Clemens, "Surry Unit 1 Cycle 21 Design Report", Technical Report NE-1480, Rev. 0, May 2006
- 2. R. W. Twitchell, "Control Rod Reactivity Worth Determination By The Rod Swap Technique," Topical Report VEP-FRD-36-Rev. 0.2-A, September 2004
- D. A. Pearson, "The Virginia Power CECOR Code Package", Technical Report NE-0831, Rev. 8, August 2004
- 4. Surry Units 1 and 2 Technical Specifications, Sections 3.12.C.1, 4.10.A.
- R. W. Twitchell, "Operational Impact of the Implementation of Westinghouse Integral Fuel Burnable Absorber (IFBA) and the Removal of Flux Suppression Inserts (FSIs) for Surry Unit 1 Cycle 21," Technical Report NE-1466, Rev. 0, January 2006
- D. M. Rohan, "Surry Unit 1 Cycle 21 TOTE Calculations", Calculation PM-1139, Rev. 0, May 2006
- R. A. Hall et al, "Surry Unit 1, Cycle 21 Flux Map Analysis", Calculation PM-1138, Rev. 0, and Addenda A - B, May 2006
- 8. T. R. Flowers, "Reload Safety Evaluation Surry 1 Cycle 21 Pattern RB", Technical Report NE-1479, Rev. 1, May 2006
- Appendix to Technical Report NE-1479 "Reload Safety Evaluation, Surry 1 Cycle 21 Pattern RB", "Core Operating Limits Report Surry 1 Cycle 21 Pattern RB Revision 1," May 2006
- P. D. Banning, "Implementation of RMAS for Startup Physics Testing", Calculation PM-0824, Rev. 0 and Addendum, March 2000
- W. R. Kohlroser, "Administrative Limits on Hot Rod Drop Time Testing for Use as Acceptance Criteria in 1/2-NPT-RX-014 and 1/2-NPT-RX-007", Eng Transmittal ET-NAF-97-0197, Rev. 0, August 21, 1997
- 12. R. D. Kepler to T. A. Brookmire, "Surry Unit 1 Cycle 21 Core Loading Plan", Engineering Transmittal ET-NAF-05-0098, Rev. 1, May 2006
- T. R. Flowers, "Reload Safety Evaluation Surry 2 Cycle 18 Pattern GW," Technical Report NE-1310, Rev. 0, February 2002
- 14. N. A. Yonker, "Validation of Rod Drop Test Computer for Hot Rod Drop Analysis," Calculation PM-1044, Rev. 0, November 2004

- A. H. Nicholson, "Justification For Defining 0 To 2 Steps Withdrawn As Fully Inserted When Measuring Control And Shutdown Banks During The Surry Startup Physics Testing Program," Eng Transmittal ET-NAF-06-0046, Rev. 0, April 2006.
- 16. R. W. Twitchell, "Control Rod Reactivity Worth Determination By The Rod Swap Technique," Technical Report NE-1378, Rev. 1, September 2004

APPENDIX --- STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEETS

NE-1487 Rev. 0

S1C21 Startup Physics Tests Report

Page 45 of 51

Surry Pol	wer station omt i Cycle 21 Statiup	Physics rest dummary Sheet - For	0.01 18313	(Fayo i oi		
Moasured Value	Design Criteria	Acceptance Criteria	Design Criteria Met	Acceptance Critoria Met	Date/ Time of Test	Prepare Reviewe
		Teallogicance@aterminationacterics	CARGE COMPANY		Sector Sector	
ZPTR=	background < ZPTR < POAH		Ves		01:47 ·	ROK
259 m 157	background - 8.32.6-12 amos	N/A		N/A	SISIA	2P
	$POAH_{2} > 2E-7$ amos		No			- - - - - - - - - - -
al i ba	I want with a state of the stat					
		WINComputerCheckout				
Po= +63.50 -35.76 pom	1110 - A 1/4 11 x 10081 < 1 0 813		Voc			anti
(measured reactivity)			199		and Hill	12pr
LEU AT ATCOL	of the mageurod results or the new				0271	200
p= <u>**61.47</u> pcm	critical bench lest.		No		211519	and
(blémčieu lescnyn)		N/A		NA		
s	Pro-ortical Bonch Tost Repute					
%D = {(po - pt)/pt} x 100%	Tizo nom					
%D = -1.182, -0.632	Allowable rance I 100 pcm					
					·	
	Collent	Socontegozcentration: AROS ASSISTED				
(Ca) 1692 00m	(Caluer=1 1693 ± 50 pcm	$ \alpha C_{g} \times \Delta (C_{g})_{ARC} \le 1000 \text{ pcm}$	Yes	Yes	62:49	OK
		[1.5.4.10.A]			5/25/4	Sans
(Adf. To design conds.)	$\Delta(C_n)_{ABO} = (C_n)^M_{ABO} \sim (C_n)_{ABO} = \frac{-1}{2} DDM$	$\alpha C_{\rm p} = 1.7.4 \rm pcm/ppm$	No	No		-NI
			and the state of the		San	and the second
	kiski kasi di shingi taka na shingi na s I					
4 180 M	ISO 1 = 1 +5.97	$u_{1}^{\mu} \geq u_{4} - \omega_{7} + u_{7}$	(Vm	King	62:25	141
(CT) ARD =	$\mu \alpha_T \mu_{ABO} = 1.07.1 \pm 2 \text{ points}$			V res	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sap
<u>-2.007</u> pcm/F		where: $(\alpha_{M}^{(m)})$; 6.0 pcm/F [COLR 3.1.1]	No	No	\$\$#0/G	a ay
	$(\alpha_{T}^{180})^{M}_{A80} - (\alpha_{T}^{180})_{A80} = 0.416 \text{ pcm/F}$	$(\alpha_T^{\text{read}})^2$; 0.5 pcm/F				1
		(cr. 00P)11 81 pcm/F				
		Massilianiani Hoo Swabi Reference Pari	No.	I SIGNATION OF		
REFM_	L^{FEF} 1230 + 123 rem		Yas		~4:19	10 1/
Ð		N/A		N/A	e he la	KUL
1198.32 pcm	100x(Meas Des.)/Des. = <u>-2.6</u> %	,	No		9103100	AN
Relerances	1.) NE-1480, Hev. 0			£		
	2) Memoraarkim from C.T. Spow to E.J.	Lozito, dated June 27, 1980				· ·

8.) WCAP-7905, Rev. 1 4.) ET NAF-06-0053, Rev. 0

Measured Value	Design Critoria	Acceptance Criteria	Design Criteria Met	Acceptance Criteria Met	Date/ Time of Test	Prepare Reviews
The state of the s	Critical Bor	on Concentration - D-Battking S.S.			2800-2800 	
$C_{0}^{M} = 1 \le 33 = 3$	$(C_{B})_{O}$ = 1527+ Δ ($C_{B})_{ABO}$ ± 27 ppm	· · · ·	V Yes	At	5/25/06	AN
<u>15 00 12 ppm</u>	$(C_{B})_{D} = \frac{1526}{\pm 27} \text{ ppm}$	N/A	NoN/A	N/A. "	03:49 05:41	7DX
	$(C_0)^{M_0} - (C_0)_0 = 7.3$ ppm		MENTO-LA INTE		11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
		M/A	V VAR		5105/04-	(AL)
aG ₀)"= +7,54 pcm/ppm	$\Delta C_{B} = (\alpha C_{B})^{M} - (\alpha C_{B}) = -0.13 \text{ pcm/ppm}$	iwA	No	N/A	02:49	74344
	A Street Street Street Control Dank A	Worth Measurement, RodiSwap				Sector in
A5	$(l_{A}^{R5})^{4}=286.8\pm 100 \text{ pcm}$		Yes	N/A	5/25/06	AN
277.0 pom	Meas Des. = <u>-7.8</u> pcm	N/A	No			1.03.04
	Control Bankes	Worth MeasurementaRoots wepe	<u>V 3 (3 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>		ekenilisinta	
	$(l_{c}^{HS})^{4} = -\frac{6 l_{0.0}}{6} \pm 15\%$	· ·	Yes	N/A	5125106	- mo
<u>815.9 pcm</u>	100x(Meas Des.)/Des. = -0.1 %	N/A	No		<i>ዕ</i> 5:S۹	1404
	and the second	A Worth Measurement, Rodi Swap				
663 8A —	(1 ₈ , ^{AS}) ⁴ <u>997.9</u> ± 15%		Yes	N/A	5/25/06	HN
979.3 pcm	100x(Meas Des.)/Des. = -1.8 %	N/A	No	1011	06115	74r
	The second s	BillorthillersinementsRod(Swapsers	2009 - Alba			304-74
AS So ^m	$(l_{66})^{4} = 1025.5 \pm 15\%$		∕_Yes	ARÌA.	5/25/06	AN)
1004.1 pcm	100x(Meas Des.)/Des. = -2.1 %	N/A	No	1¥6.	05.70	RUK
	Control BankB	Worth Measuranien I Rod Swap & Se		0.00	人。 中国	
_ns	$(l_8^{RS})^4 = 1197.4 \pm 15\%$		📝 Yes	MZA	5/25/06	(AP)
1159.3 pcm	100x(Meas Des.)/Des. = -3.2 %	N/A	No	NV.A	C6:38	RAL
		Rochword, Rocks Wapes and Press				
Total	(lateral) = 5553.0 ± 10%	N/A	Yes	N/A	5/25/06	HR
<u>5433,9</u> pcm	100x(Meas Des.)/Des. = -2.2 %		No		04.11	RDC
References	1.) NE-1480, Rev. 0	ozito daled lune 27 1980				
	3) WGAP-7905. Rev. 1	anananta sang antan nontro tan antan tan ang ang ang ang ang ang ang ang ang a			•	

e1

4.) ET NAF-06-0053, Rev. 0

NE-1487 Rev. 0

Posidii Auroim	Acceptance Criteria	Criteria Met	Criteria Met	Time of Test	Reviewe
M	D`Flüx Map (Rower ≤ 30%				
<u> </u>					· ·
(M-P)/P					
±10% for Pi 20.9		Yes		5/27/04	DRP
±15% for P ₁ <0.9	N/A	No	N/A	02:11	RAM
$(P_i = assy power)^{1.3}$					
ctor, FAH(N)		- ·			· ·
N/A	F∆H(N)≤1.56(1+0.3(1-P)) [COLR 3.4]	N/A	Yes No		
¥(Z)					
N/A	F _Q (Z)≤4.84*K{Z) [COLR 3.3] Margin to COLR Limit=	N/A	Yes		
wer Tilt					
<u>≤</u> 1.02 ³	N/A		N/A		
FDH Difference, Core Location H11 (or any	of it's eighth core partners)			Staplan	Dar
N⁄A	≤ 14.9% Note that if this criteria is not met, a flux map must be taken at ≤30% power, with the control rods at the rod insertion limits	N/A	Yes No	02:11	Roa
	$\frac{2}{(M-P)/P}$ $\frac{\pm 10\% \text{ for } P_i \approx 7.5 \times 10^4}{\pm 10\% \text{ for } P_i \approx 0.9}$ $\frac{P_i \approx \text{assy power}^{1.3}}{(P_i \approx \text{assy power})^{1.3}}$ $\frac{P_i \approx 1.02^3}{N/A}$ $\frac{1.02^3}{N/A}$	$\frac{4}{(M-P)/P}$ $\frac{1}{\pm 10\% \text{ for } P_1 \swarrow 10\% \text{ for } P_2 \swarrow 10\% \text{ for } P_1 \swarrow 10\% \text{ for } P_2 \swarrow 10\% \text{ for } P_1 \swarrow 10\% \text{ for } P_1 \oiint 10\% \text{ for } P_1 \pitchfork 10\% $	$\frac{4}{MD} F_{UX} Map \#Power \leq 30\%$	$\frac{Met}{MD} = \frac{Met}{MD} = M$	$\frac{4}{4}$ $\frac{4}{4}$ $\frac{4}{4}$ $\frac{4}{2}$ $\frac{4}$

3.) WCAP-7905, Rev. 1 4.) ET NAF-06-0053, Rev. 0

Surry Power Station Unit 1 Cycle 21 Startup Physics Test Summary Sheet - Formal Tests (Page 3 of 6)

Measured Value	Design Criteria	Acceptance Criteria	Design Criteria Met	Acceptance Criteria Met	Date/ Time of Test	Preparer/ Reviewer
	M/D	Flux Map, 65% < Power < 75%				
Map Power Level (% Full Power) = 69.7			· ·			
Max Relative Assembly Power, %DIFF (M-	PVP Qui jash	ما			. Int	
	±10% for P. 0.9		Yes		5/27/00	gum
%DIFF=_129_% tor Pi ≥0.9	±15% for Pr<0.9	N/A	No	N/A	21:11	5/28/06
-5.4 % for Pico.9	$(P_i = assy power)^{1,2}$					5101
Nuclear Enthalpy Rise Hot Channel Factor	r, FΔH(N)			-		
Fah(N)=1.511	N/A	F∆H(N)≤1.56(1+0.3(1-P)) [COLR 3.4]	N/A	Yes	-	sbs/ab
Total Heat Flux Hot Channel Factor, FQ(Z))					
(1,907 @ Mun Margun)	· · · · ·	F _Q (Z)≤(2.32/P)*K(Z) [COLR 3.3]		<u> </u>		
Fo(Z)=_1_919	N/A	Margin to COLR Limit= 70, 6%	N/A			
Maximum Positive Incore Quadrant Powe	Tilt			• • • • • • • • • • • • • • • • • • • •		
TIN= <u>1,0041</u>	≤1.02 ⁵	N/A	Yes	N/A		

urry Power Station Unit 1 Cycle 21 Startup Physics Test Summary Sheet - Formal Tests (Page 4 of 6)

References 1.) NE-1480, Rev. 0

2.) Memorandum from C.T. Snow to E.J. Lozito, dated June 27, 1980

3.) WCAP-7905, Rev. 1

4.) ET NAF-06-0053, Rev. 0

Surry Power S	station Unit 1 Cycle 21 Startu	p Physics Test Summary Sneet - Po	ormai Tests	(Page 5 of	6)	
Measured Value	Design Criteria	Acceptance Criteria	Design Criteria Met	Acceptance Criteria Met	Date/ Time of Test	Preparer Reviewe
	M/DIELU	x Map: 95% < Rover < 100%				
Map Power Level (% Full Power) = 99.97	1					
Max Relative Assembly Power, %DIFF (M	-РУР				· · · · ·	•••
	±10% for P ₁ ≥0.9		Yes	·		
%DIFF=2.3% for Pi ≥0.9	±15% for P _I <0.9	N/A	No	N/A		May
-4.3 % for Pi<0.9	(P _i = assy power) ^{1,3}			t.		6/6/00
Nuclear Enthalpy Rise Hot Channel Facto	и, FAH(N)				6/2/06 NA-59	
	6.//A	FΔH(N)≤1.56(1+0.3(1-P)) [COLR 3.4]		Yes	00.51	TOS
FAH(N)= 1.466	IWA .		N/A	No		
Total Heat Flux Hot Channel Factor, FQ(Z)			· · ·		
(1770 at Min Margin)	L//A	F₀(Z)≤(2.32/P)*K(Z) [COLR 3.3]		X Yes		
Fo(Z)=1.778	. 19/4	Margin to COLR Limit=	NA	No	· .	
Maximum Positive Incore Quadrant Powe	r Tilt	······································]	
TIN-1.0046	≤ 1.02 ³	N//	Yes		1	
	•	N/A	No	N/A		
Peteranaca 1 \ N	E 1490 Day 0		· · · · · · · · · · · · · · · · · · ·	·	•	• • • • • • • • • • • • • • • • • • • •

Heie

3 1.) NE-1480, Rev. 0
2.) Memorandum from C.T. Snow to E.J. Lozito, dated June 27, 1980
3.) WCAP-7905, Rev. 1
4.) ET NAF-06-0053, Rev. 0

Surry Pow	er Stauon Unit T Cycle 21 Startup	Filysics Test Summary Sheet - Ful	mai resis	(Faye o oi	0)	
Measured Value	Design Criteria	Acceptance Criteria	Design Criteria Met	Acceptance Criteria Met	Date/ Time of Test	Preparer/ Reviewer
	RG	SEIOW Measurements.			にはある。	
F _{Tola} =	N1/A	F _{total} ≥ 273000 gpm [T.S. 3.12.F.1]	Ν/Α	_X Yes	6/5/06	JDS .
286073,96gpm				No	1400	na
References	1.) NE-1480, Rev. 0					

(Pana 6 of 6) DL Toot Cu 06 E. Teste \sim

2.) Memorandum from C.T. Snow to E.J. Lozito, dated June 27, 1980 3.) WCAP-7905, Rev. 1 4.) ET NAF-06-0053, Rev. 0

NE-1487 Rev. 0

Page 51 of 51