

# U.S. EPR Pre-Application Meeting: U.S. EPR Rod Ejection Accident Methodology Topical Report

**AREVA NP Inc. and the NRC** 

October 25, 2007





Sandra M. Sloan Regulatory Affairs Manager New Plants Deployment



AREVA NP Inc.

AREVA



# **Meeting Objectives**

- Discuss the Rod Ejection Accident Methodology, the U.S. EPR application, and their coordination with the Design Certification application
- Provide introduction to topical report contents and organization
- > Obtain timely NRC feedback and interactions to support informed development of the Design Certification application





# **Presentation Overview**

| > | Summary and next steps                                                         | Sloan   |
|---|--------------------------------------------------------------------------------|---------|
| > | Conclusions                                                                    | Witter  |
| > | U.S. EPR Sample Problem Results                                                | Witter  |
|   | <ul> <li>Boundary Conditions and Uncertainties</li> </ul>                      |         |
|   | <ul> <li>Computer Codes for Rod Ejection Accident<br/>(REA) Methods</li> </ul> |         |
| > | Analysis Methods                                                               | Deveney |
| > | Reactivity Initiated Accident (RIA) Requirements                               | Deveney |
| > | Methodology Overview                                                           | Deveney |
| > | Overall Goals                                                                  | Deveney |
| > | Introduction                                                                   | Sloan   |



# U.S. EPR Rod Ejection Accident Methodology Topical Report

#### Dick Deveney Supervisor, Neutronics Methods Fuel America



AREVA NP Inc.

U.S. EPR Rod Ejection Accident Methodology Topical Report Presentation to the U.S. NRC – October 25, 2007

#### **Overall Goals**

- > An approach that builds upon existing codes and methods
  - Parallel to existing methods except 3-D kinetics
  - Key parameters outlined by PIRT for PWR REA addressed
  - No PCMI coolability issues
- > Method minimizes burnup dependencies
- > Allows simple cycle specific confirmation





#### Methodology Overview





#### Reactivity Initiated Accident (RIA) Requirements



AREVA NP Inc.

U.S. EPR Rod Ejection Accident Methodology Topical Report Presentation to the U.S. NRC – October 25, 2007



### **RIA Limit Requirements**

- Summary of SRP Section 4.2 Appendix B
  - Cladding failure
    - PCMI \u00e5cal/g versus oxide thickness
    - Total Enthalpy limit of 170 cal/g for pins below system pressure and 150 cal/g for pins above system pressure for < 5% power</li>
    - DNBR for > 5% power
  - Coolability
    - 230 cal/g limit
    - Preclude incipient melt conditions
    - Pressure boundary, reactor internals and fuel assembly structural integrity
    - No loss of coolable geometry due to fuel fragmentation and ballooning
  - Radiological RIA impacts
    - Failed rods include enhanced transient fission gas release for energy depositions > 31.2 ∆cal/g
  - No deviations taken for U.S. EPR





#### RIA Requirements U.S. EPR PCMI Limits

#### U.S. EPR Limiting M5™ Fuel Rod from 0 to 62 GWD/MTU

FIGURE B-1: PWR PCMI Fuel Cladding Failure Criteria





## RIA Requirements REA Analysis Limits for the U.S. EPR

- > Maximum ∆cal/g ≤ 110 for PCMI
- Maximum total cal/g < 150 for all powers</p>
- > Maximum fuel temperatures < minimum rim melt temperature
  - Melt temperature at the maximum rim burnup for a rod average burnup of 62 GWD/MTU which is the lowest value for all burnups
  - Reduced by the appropriate uncertainty
- Maximum clad temperatures < phase transition temperature</p>
- Coolability concerns are avoided since conditions for fuel expulsion and ballooning are precluded
- Radiological consequences are based on equivalent DNBR failures.
  - The maximum number of allowed failures due to only DNBR is determined based on the radiological evaluation
  - The number of failures for REA are counted when MDNBR is exceeded
  - This number is increased for the enhanced transient fission gas release for energy depositions > 31.2 ∆cal/g
  - Total must be less than the maximum number of DNBR only failures
- Limits are set to avoid burnup dependencies







AREVA NP Inc.

AREVA

U.S. EPR Rod Ejection Accident Methodology Topical Report Presentation to the U.S. NRC – October 25, 2007



#### Computer Codes for REA Methods Requirements

- > NRC approved computer codes
- Codes/Methods capable of evaluating the parameters in "Phenomenon Identification and Ranking Tables (PIRTs) for Rod Ejection Accidents in Pressurized Water Reactors Containing High Burnup Fuel," NUREG/CR6742
- > 3-D Kinetics with T-H and fuel temperature feedback
- > Open channel T-H and fuel thermal model capable of calculating temperatures and DNBR related parameters
- Fuel performance code capable of providing fuel, gap, and cladding thermal properties as a function of temperature and burnup
- > A plant system code capable of calculating system behavior versus time as well as a conservative estimate of trip actuation
- The data from the codes can be separately passed to each other or the codes could be directly coupled in the time solution domain





#### Computer Codes for REA NRC Approved Codes

#### > NEMO-K - BAW-10221PA

- Includes benchmarks for ejected rod simulations
- This REA methods topical includes a subset of these comparisons and some additional comparisons
- > LYNXT BAW-10156A, Rev. 1
  - Includes ejected rod simulations
  - This REA methods topical includes REA comparisons with COPERNIC
- > COPERNIC BAW-10231PA, Rev. 1
  - Establishes fuel rod thermal properties with temperature and burnup
- > S-RELAP5 EMF-2310PA Revision 1
  - Used for the system input validation. It is approved for REA peak pressure evaluations





# Computer Codes for REA U.S. EPR REA Sample Problem Approach

- COPERNIC provides the fuel thermal properties for both NEMO-K and LYNXT simulations
- > The REA occurs fast enough that the plant transient time dependence can be separated into a core model (NEMO-K) and system model (S-RELAP5)
- > The NEMO-K power level and power distribution information is analyzed using LYNXT to obtain the temperatures and DNBR as a function of time
- S-RELAP5 is used to provide or validate the system inputs of inlet temperature, pressure, and flow boundary conditions to both NEMO-K and LYNXT





## **Computer Codes for REA Added Features for REA and U.S. EPR**

#### > NEMO-K Features

- Flux rate trip
  - Excore signal model
  - Rate lagged processed signal
  - 2/4 trip logic and delays
  - Rod drop
- Adjustment factors for uncertainties
- Pellet weighted temperature for cross sections
- > LYNXT Features
  - Increased the number of solution locations in the fuel pellet to more accurately model the peak rim fuel temperatures during an REA
  - Added temperature dependent lookup tables to provide the fuel, gap, and clad thermal properties from COPERNIC or other fuel performance codes
- The same temperature dependent gap conductance model is used in both NEMO-K and LYNXT
- S-RELAP5 model input changes
  - Point kinetics turned off
  - Power versus time input from neutronics simulation (NEMO-K)





## Analysis Methods: Boundary Conditions and Uncertainties



AREVA NP Inc.

U.S. EPR Rod Ejection Accident Methodology Topical Report Presentation to the U.S. NRC – October 25, 2007



## Boundary Conditions and Uncertainties Requirements

- > This section addresses the requirements for the boundary conditions and uncertainties
- Parameters outlined in the referenced PIRT are also discussed
  - Plant transient analysis
  - Transient fuel rod analysis
    - The PCMI related parameters are not significant since they are effectively replaced by the cal/g limits
    - The thermal related parameters are retained
- Each of the parameters are discussed with respect to the need to bound, to apply uncertainty, or to demonstrate it to be of negligible consequence





# Boundary Conditions and Uncertainties U.S. EPR Sample Problem

- > NEMO-K
- > LYNXT
- > Initial conditions
- > Failure analysis





# Boundary Conditions and Uncertainties U.S. EPR Sample Problem - NEMO-K

- The NEMO-K conditions are initialized with uncertainties applied to:
  - Ejected rod worth
  - Delayed neutron fraction
  - Doppler temperature coefficient
  - Moderator temperature coefficient
- Rationale is provided for the conditions of the remaining variables outlined by the PIRT for the plant transient simulations with NEMO-K.
  - Rate of reactivity insertion
  - Reactor trip reactivity
  - Power peaking
  - Heat capacity
  - Fuel conductivity
  - Gap conductance
  - Coolant heat transfer
  - Fractional heat deposited in fuel
  - Pellet radial power profile



**A** AREVA

# **Boundary Conditions and Uncertainties** U.S. EPR Sample Problem NEMO-K (cont'd)

- > Other variables are also examined which may affect DNBR predictions
- > Core design
  - An 18 month equilibrium core design is used as the base analysis
  - NEMO-K base results are compared to Cycle 1
    - When key parameters are the same, a very different core design yields similar results
    - Base analysis can be used to bound future cycles

#### These conditions form the basis for the NEMO-K REA initial conditions and transients



AREVA NP Inc.



# Boundary Conditions and Uncertainties U.S. EPR Sample Problem LYNXT

- > The LYNXT results are run with uncertainties applied to:
  - Power peaking- measurement uncertainty, calculational allowance, fuel rod and assembly bow
  - Pellet and cladding dimensions engineering hot channel factor locally applied in addition to power considerations
  - CHF and failure is assumed when the MDNBR reaches the design limit of the correlation
- Rationale is provided for the conditions of the remaining variables outlined by the PIRT for the LYNXT simulations
  - Cladding oxidation
  - Coolant conditions
  - Transient power
  - Heat resistances
  - Transient coolant heat transfer coefficient
  - Transient coolant conditions
- For each NEMO-K case, two LYNXT cases are run with fuel thermal parameters at minimum and maximum burnup expected at BOC and EOC to ensure that the range of heat transfer conditions are analyzed





#### Boundary Conditions and Uncertainties U.S. EPR Sample Problem Initial Core Power Level

#### U.S. EPR average temperature versus power level



- > The percent power levels at 0, 25, 35, 60, 100 are analyzed as the initial conditions prior to rod ejection.
  - Endpoints of HZP and HFP will likely be limiting.
  - Since DNBR is one of the main failure criteria, the failures may be sensitive to the initial coolant temperature.

AREVA NP Inc.



## **Boundary Conditions and Uncertainties U.S. EPR Sample Problem Initial Conditions**

- To establish bounding values for the key parameters to avoid the need for a cycle specific analysis, several U.S. EPR cycles are surveyed
- > Adverse xenon distribution obtained within LCO limits
- The limiting value for BOC and EOC conditions at HZP and HFP are obtained for
  - Ejected rod worth
  - Delayed neutron fraction
  - Doppler temperature coefficient
  - Moderator temperature coefficient
- > To these values additional operation allowance and uncertainty are added
- NEMO-K simulations are run with these boundary conditions at the various power levels at BOC and EOC





# Boundary Conditions and Uncertainties U.S. EPR Sample Problem Ejected Rod Worths

> An example of this process is shown below:

| Case     | Maximum Ejected Rod<br>Worth in cycles 1, 2, 3<br>and Eq cycle<br>(pcm) | Ejected Rod Worth in<br>NEMO for the<br>Example REA<br>Analysis (pcm) |
|----------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|
| BOC, HZP | 231                                                                     | 433                                                                   |
| BOC, HFP | 31                                                                      | 64                                                                    |
| EOC, HZP | 319                                                                     | 634                                                                   |
| EOC, HFP | 43                                                                      | 97                                                                    |





#### **Boundary Conditions and Uncertainties** U.S. EPR Sample Problem Failure Conditions

- > The minimum DNBR Safety Design Limit is used as a failure criterion
- Different assembly power distributions versus time from NEMO-K are run in LYNXT that have different changes in the peaking during the transient simulation
  - The higher the initial power the lower the change in the peak can be before failing
- > The LYNXT power is scaled up or down by a constant value until the results will not exceed the criteria above
- > Fuel rod powers higher than the scaled value on  $F_{\Delta H}$  or  $F_Q$  will be assumed failed
- Fission Gas Release will be increased by the equation in SRP 4.2 Appendix B

TFGR = [(0.2286 x ∆H) – 7.1419]





# Dr. Jonathan Witter Advisory Engineer Fuel America



AREVA NP Inc.

A AREVA

U.S. EPR Rod Ejection Accident Methodology Topical Report Presentation to the U.S. NRC – October 25, 2007





#### U.S. EPR Sample Problem Results NEMO-K Results BOC HZP

- > The selected ejected rod worth for BOC HZP is not prompt critical
- > The prompt jump doubles the power which is insignificant when starting at less than 5% power
- > Results are bounded by the 25% initial power case with the flux rate trip disabled





#### U.S. EPR Sample Problem Results **NEMO-K Results BOC 25% FOP**





# U.S. EPR Sample Problem Results Limiting Conditions No Trip

- > To obtain the limiting conditions for the no trip simulations, the following steps are performed
  - S-RELAP5 is run to estimate the pressure, temperature, and flow conditions that could occur
  - NEMO-K is run at numerous conditions to define the highest power
  - LYNXT is run with highest power and worst thermal conditions for DNBR





# U.S. EPR Sample Problem Results

S-RELAP5 Boundary Conditions for No Flux Rate Trip Conditions

#### > Power versus time from NEMO-K

- Near steady state power after ~5 seconds and held constant for remaining time of plant response simulation
- > Assumed a leakage hole size of 2.95" in diameter based on control rod flange
  - Degrades thermal performance boundary conditions
- > No credit for non-safety control systems
- > Incore trips are ignored
  - Simulation terminated by plant system trip





# U.S. EPR Sample Problem Results S-RELAP5 Results for BOC 25% FOP

Trip occurred at 27 seconds on high secondary steam pressure



AREVA NP Inc.

U.S. EPR Rod Ejection Accident Methodology Topical Report Presentation to the U.S. NRC – October 25, 2007

R



#### U.S. EPR Sample Problem Results- BOC 25% NEMO-K Static Power Survey for No Flux Rate Trip

#### > NEMO-K is run statically at the ranges of conditions defined by S-RELAP5

- Pressure change
  0 to -100 psi
- Inlet temperature change
   0 to +10°F
- Inlet mass flow0 to -2.0%
- Individually and together
- > Highest power calculated (no changes) 55%





#### U.S. EPR Sample Problem Results LYNXT MDNBR Results for BOC 25% FOP





#### U.S. EPR Sample Problem Results LYNXT Temperature Results BOC 25% FOP





#### **U.S. EPR Sample Problem Results NEMO-K Results BOC HFP (Maximum Failures)**





#### U.S. EPR Sample Problem Results S-RELAP5 Results for HFP



R

EP



#### U.S. EPR Sample Problem Results NEMO-K Static Power Survey for No Flux Rate Trip

#### Used to provide maximum power level predictions for HFP LYNXT T-H calculations

| Core<br>Condition | ∆Pressure<br>(psi) | ∆Tinlet<br>(°F) | Flow, (%)  | Resultant FOP |
|-------------------|--------------------|-----------------|------------|---------------|
| BOC HFP           | 0 to -250          | 0 to +10        | 0 to -2.5% | 1.00 to1.08   |





# U.S. EPR Sample Problem Results LYNXT MDNBR Results for BOC HFP





#### U.S. EPR Sample Problem Results LYNXT Temperature Results for BOC HFP



#### U.S. EPR Sample Problem Results **NEMO-K Results EOC HZP (Maximum \alpha cal/g)**

A

AREVA



42



# U.S. EPR Sample Problem Results LYNXT MDNBR Results for EOC HZP





#### U.S. EPR Sample Problem Results LYNXT Temperature Results for EOC HZP





# U.S. EPR Sample Problem Results LYNXT Energy Deposition (*Acal/g*) Results for EOC HZP



45



#### U.S. EPR Sample Problem Results Failed Fuel Census

|                   | % Failed Rods in<br>Census |                   |  |
|-------------------|----------------------------|-------------------|--|
| Core Condition    | Prompt<br>< 5 sec          | Static<br>> 5 sec |  |
| BOC 25% (no trip) | 0.0                        | 1.8               |  |
| BOC 60%           | 0.0*                       | 0.0               |  |
| BOC HFP (no trip) | 0.3                        | 7.2               |  |
| EOC 60%           | 0.0*                       | 0.0               |  |
| EOC HFP (no trip) | 0.0*                       | 1.9               |  |

\* Conservative peak pin analysis without cycle to cycle peaking allowance did not fail any pins.





#### U.S. EPR Sample Problem Results BOC Results

| Parameter                                              | Criterion                                                                                | 0          | 25                      | 35    | 60    | 100        |
|--------------------------------------------------------|------------------------------------------------------------------------------------------|------------|-------------------------|-------|-------|------------|
| Maximum Neutron Power,<br>FOP                          | -                                                                                        | 0.32       | 0.55                    | 0.69  | 0.98  | 1.10       |
| Maximum cal/g                                          | <u>&lt;</u> 150                                                                          | -          | 70.4                    | 50.4  | 63.9  | 109.4      |
| Maximum ∆cal/g, prompt                                 | <u>&lt;</u> 110                                                                          | -          | 10.0                    | 10.9  | 11.8  | 7.2        |
| Max. Fuel Temperature, °F                              | <rim melt<="" td=""><td>-</td><td>2655</td><td>1901</td><td>2529</td><td>4014</td></rim> | -          | 2655                    | 1901  | 2529  | 4014       |
| Maximum Cladding<br>Temperature, °F                    | <u>&lt;</u> φ <sup>a</sup>                                                               | -          | 1098                    | 727   | 951   | 1461       |
| MDNBR/SAFDL Normalized                                 | <u>&lt;</u> 1.0<br>for failure                                                           | -          | 0.71                    | 1.86  | 0.96  | 0.33       |
| Time of Trip (start of safety bank insertion), seconds | -                                                                                        | No<br>Trip | No<br>Trip <sup>b</sup> | 0.850 | 0.825 | No<br>Trip |
| Equivalent nominal rods failed, %                      | <u>&lt;</u> 30                                                                           | 0          | 1.8                     | 0     | 0     | 7.2        |

<sup>a</sup>Phase transition temperature for M5<sup>™</sup>

<sup>b</sup>Trip is disabled to bound consequences of powers lower than 25%.





#### U.S. EPR Sample Problem Results EOC Results

| Parameter                                          | Criterion                                                                                   | 0     | 25    | 35    | 60    | 100        |
|----------------------------------------------------|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|------------|
| Maximum Neutron Power,<br>FOP                      | -                                                                                           | 2.04  | 1.75  | 1.75  | 1.58  | 1.17       |
| Maximum cal/g                                      | <u>&lt;</u> 150                                                                             | 33.9  | 62.2  | 64.6  | 73.1  | 103.4      |
| Maximum ∆cal/g, prompt                             | <u>&lt;</u> 110                                                                             | 13.8  | 10.2  | 9.0   | 6.0   | 7.9        |
| Max. Fuel Temperature, °F                          | <rim melt<="" td=""><td>1140</td><td>2402</td><td>2534</td><td>2987</td><td>3856</td></rim> | 1140  | 2402  | 2534  | 2987  | 3856       |
| Maximum Cladding<br>Temperature, °F                | <u>&lt;</u> φ <sup>a</sup>                                                                  | 741   | 777   | 774   | 1062  | 1337       |
| MDNBR/SAFDL Normalized                             | <u>≤</u> 1.0<br>For failure                                                                 | 1.82  | 1.36  | 1.33  | 0.97  | 0.46       |
| Time of Trip (initiation of safety bank insertion) | -                                                                                           | 1.000 | 0.850 | 0.850 | 0.825 | No<br>Trip |
| Equivalent nominal rods failed, %                  | <u>&lt;</u> 30                                                                              | 0     | 0     | 0     | 0     | 1.9        |

<sup>a</sup> Phase transition temperature for M5<sup>™</sup>





# U.S. EPR Sample Problem Results Cycle to Cycle Checklist

- > 3-D Kinetics not sensitive to cycle variations
- Static initial conditions can be used to characterize the applicability of the analysis of record
- Key parameters for HZP and HFP at BOC and EOC are compared to analysis of record





#### U.S. EPR Sample Problem Results Cycle to Cycle Checklist

|                                      | Acceptable                | Cycle Specific Criteria |        |                 |        |
|--------------------------------------|---------------------------|-------------------------|--------|-----------------|--------|
| Parameter                            | values                    | BOC                     |        | EOC             |        |
|                                      |                           | HZP                     | HFP    | HZP             | HFP    |
| Maximum Ejected Rod Worth, pcm       | <                         | 433                     | 64     | 634             | 97     |
| $\beta_{eff}$                        | >                         | 0.0055                  | 0.0055 | 0.0047          | 0.0047 |
| MTC, pcm/°F                          | <                         | 2.16                    | 0.01   | -19.4           | -28.47 |
| DTC, pcm/ºF                          | < <u> </u>                | -1.22                   | -0.96  | -1.52           | -1.28  |
| Initial F <sub>Q</sub>               | <                         | NA <sup>a</sup>         | 2.36   | NA <sup>a</sup> | 2.10   |
| Static F <sub>Q</sub> after ejection | <                         | 9.89                    | 3.39   | 20.33           | 4.78   |
| Maximum Design $F_{_{\DeltaH}}$      | <                         | NA <sup>a</sup>         | 1.70   | NA <sup>a</sup> | 1.70   |
| Static $F_{\Delta H}$ after ejection | >                         | 5.34                    | 2.37   | 6.51            | 2.63   |
| Equivalent nominal rods failed, %    | <                         | 0                       | 30     | 0               | 30     |
| Trip setpoints                       | Not Affected <sup>b</sup> |                         |        |                 |        |

<sup>a</sup> Not applicable since initial stored energy above the coolant temperature is zero.

<sup>b</sup> Any changes to the flux rate trip or low DNBR trip would have to be reviewed relative to their impact on this accident analysis.





#### U.S. EPR Sample Problem Results Conclusions

- Provides an REA methodology which meets regulatory requirements based on approved codes
- > U.S. EPR sample problem demonstrates
  - Prompt energy deposition less than Δ110 cal/g
  - Total energy deposition less than 150 cal/g
  - No rim fuel melt or centerline fuel melt
  - No coolability issues
  - Failures for example cycle is less than 10% (30% radiological limit)
- Minimal burnup dependence allows simple cycle specific static checks to verify the analysis of record







- > Analysis performed using NRC-approved codes with enhancements
- > Consistent with the requirements of 10 CFR 50, Appendix A & NUREG-0800
- > Today's NRC feedback will inform development of the topical report and the Design Certification application



AREV/



- Submittal of U.S. EPR Setpoints Analysis Methods Topical Report (by December 2007)
- Submittal of U.S. EPR Rod Ejection Accident Methodology Topical Report (by December 2007)
- Submittal of POWERTRAX/E Online Core Monitoring Software for the U.S. EPR Report (by December 2007)



AREV/



| BC              | Boundary Conditions                                          |
|-----------------|--------------------------------------------------------------|
| BOC             | Beginning of cycle                                           |
| CHF             | Critical heat flux                                           |
| DC              | Design certification                                         |
| DCD             | Design control document                                      |
| DTC             | Doppler temperature coefficient of reactivity                |
| (M)DNB(R)       | (Minimum) departure from nucleate boiling (ratio)            |
| EOC             | End of cycle                                                 |
| ERW             | Ejected Rod Worth                                            |
| FOP             | Fraction of power                                            |
| F <sub>∆H</sub> | Maximum relative rod power, axially integrated enthalpy rise |
| F <sub>Q</sub>  | Peak relative pellet power                                   |
| Fz              | Maximum relative axial power shape peaking factor            |
| HZP             | Hot zero power                                               |
| HFP             | Hot full power                                               |
| LCO             | Limiting conditions for operation                            |
| MTC             | Moderator temperature coefficient of reactivity              |
| рст             | percent milli-rho of reactivity (10 <sup>-5</sup> Δρ/ρ)      |
| PCMI            | Pellet clad mechanical interaction                           |
| PIRT            | Phenomena identification and ranking tables                  |
| PWR             | Pressurized Water Reactor                                    |
| RCSL            | Reactor control surveillance limitation                      |
| REA             | Rod ejection accident                                        |
| RIA             | Reactivity initiated accident                                |
| SAFDL           | Safety analysis fuel design limit                            |
| SRP             | Standard review plan                                         |
| TFGR            | Transient fission gas release                                |
| T-H             | Thermal hydraulic                                            |

AREVA NP Inc.



Acronyms