U.E. NUCLEAR REPULTIORY COMMISSION

Dochat No	Official Exhibit	No
IDENTIFIED of		
		WITHDRAWN
Reporter/Clork		

CONTROLLED BURN AIR SAMPLING TECHNICAL REPORT

FINAL August 2001

Prepared for

Directorate of Safety, Health and Environment U.S. Army Garrison Aberdeen Proving Ground, Maryland

Prepared by

General Physics Corporation 500 Edgewood Road, Suite 110 Edgewood; Maryland 21040

GP-R-711E00060

NRC Staff Exh. 32

TABLE OF CONTENTS

ACRC	YMS AND ABBREVIATIONS	iii
1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	OTHER STUDIES	3
	3.1 Argonne National Laboratory 1998 Report	3
	3.2 Argonne National Laboratory 2000 Report	3
	3.3 Environmental Protection Agency Data Collection	3
4.0	CONTROLLED BURN STUDY PARAMETERS	4
	4.1 Meteorological Conditions	4
	4.2 Test Range Selection	4
	4.3 Sampling Locations and Analytes	4
	4.4 Quality Assurance	7
5.0	CONTROLLED BURN EVENTS AND RESULTS	7
	5.1 Main Front Range Controlled Burn – April 1999	8
	5.2 New O-Field Controlled Burn – December 1999	10
	5.3 J-Field Controlled Burn – April 2000	13
	5.4 Main Front Range Burn Attempt – April 2001	15
6.0	RISK ANALYSIS	16
	5.1 Risk Analysis	16
	6.1.1 Maryland Toxic Air Pollutant Screening Levels	16
	6.1.2 EPA Region III Ambient Air Risk-Based Concentrations	
	6.1.3 Radiological Parameters	
	5.2 Results of Risk-Based Screening	18
	5.3 Risk Calculations	19
7.0	CONCLUSIONS	19
8.0	REFERENCES	20

TABLE OF CONTENTS (Continued)

APPENDIX A APPENDIX A-1	Lockheed Martin Range Fire Sampling Trip Reports O-Field Trip Report (July 2000)
APPENDIX A-2	O-Field Trip Report – Burn 2 (July 2000)
APPENDIX A-3	J-Field Trip Report (July 2000)
APPENDIX B	Air Sampling Equipment Photographs
APPENDIX C	List of Analytes for the Aberdeen Proving Ground Controlled Burn Project
APPENDIX D	Burn Event Photographs
APPENDIX D-1	Main Front Controlled Burn – April 1999
APPENDIX D-2	New O-Field Controlled Burn – December 1999
APPENDIX D-3	J-Field Controlled Burn – April 2000
APPENDIX E	Controlled Burn Data Tables
APPENDIX E-1	Data Tables for the Main Front Controlled Burn - April 1999
APPENDIX E-2	Data Tables for the New O-Field Controlled Burn – December 1999
APPENDIX E-3	Data Tables for the J-Field Controlled Burn – April 2000

LIST OF TABLES

Table 1.	APG Controlled Burn Sample Collection and Analysis Methods	.6
Table 2.	Calculated Range Fire RBCs	8

LIST OF FIGURES

Figure 1	Location of Aberdeen Proving Ground	2
Figure 2	Range Areas Selected for Controlled Burns	
Figure 3	Main Front Controlled Burn Area and Sampling Locations - April 1999	9
Figure 4	New O-Field Controlled Burn Area – December 1999	
Figure 5	New O-Field Controlled Burn Sampling Locations	12
Figure 6	J-Field Burn Area and Sampling Locations – April 2000	

ACRONYMS AND ABBREVIATIONS

ALI	Annual Limit on Intake
ANL	Argonne National Laboratory
APG	Aberdeen Proving Ground Aberdeen Test Center
ATC	
CFR	Code of Federal Regulations
DAAMS	Depot Area Air Monitoring System
DAC	Derived Air Concentration
DDT	Dichlorodiphenyltrichloroethane
DU	Depleted Uranium
ECBC	Edgewood Chemical Biological Center
EPA	U.S. Environmental Protection Agency
GC/ECD	Gas Chromatography/Electron Capture Detector
GC/FID	Gas Chromatography/Flame Ionization Detector
GC/FPD	Gas Chromatography/Flame Photometric Detector
GC/MS	Gas Chromatograph/Mass Spectrometer
HPLC	High Performance Liquid Chromatography
HQ	Hazard Quotient
ICP	Inductively Coupled Plasma
IRP	Installation Restoration Program
K-40	Potassium-40
MDE	Maryland Department of the Environment
μg	microgram
$\mu g/m^3$	microgram per cubic meter
m^3/min	cubic meters per minute
mph	miles per hour
OSHA	Occupational Safety and Health Administration
Pb-212	Lead-212
PCB	Polychlorinated Biphenyl
PCi	pico-Curies
pCi/m ³	pico-Curies per cubic meter
PEL	Permissible Exposure Limit
ppb	parts per billion
PUF	Polyurethane Foam
Ra-223	Radium-223
Ra-223 Ra-224	Radium-224
RBC	Risk-Based Concentration
RfD	Reference Dose
RF-RBC	
ТАР	Range Fire Risk-Based Concentration Toxic Air Pollutant
TCE	
	Trichloroethene
TIC	Tentatively Identified Compound
TLV	Threshold Limit Value
VOC	Volatile Organic Compound
U-235	Uranium-235
UXO	Unexploded Ordnance

1.0 INTRODUCTION

The Aberdeen Proving Ground (APG) Installation Restoration Program (IRP) identified the need to conduct a limited number of controlled burns at test ranges in the Aberdeen and Edgewood Areas of APG to support sampling of air emissions produced by range fires. The purpose of the study was to generate, to the extent possible, quantifiable emissions representative of fires occurring at APG test ranges to allow a screening assessment of potential human health impacts. This Technical Report documents the controlled burn air emissions sampling conducted during three events, and provides human health risk screening of the analytical data obtained.

APG lies on the northwestern shore of the Chesapeake Bay in southern Harford County and southeastern Baltimore County, Maryland (Figure 1). Major geographical areas bordering APG include the Chesapeake Bay and its tributaries; Gunpowder Falls State Park; the Crane Power Plant; and the towns of Bel Air, Edgewood, Joppatowne/Magnolia, Aberdeen, and various smaller residential areas. APG occupies 72,500 acres of land and water, of which approximately 75 percent are range areas. The Bush River divides the Installation into two noncontiguous areas commonly referred to as the Aberdeen Area and the Edgewood Area.

Since 1917, the Edgewood Area has been the center for the research, development, testing and manufacturing of military-related chemicals and agents. Activities at the Edgewood Area have included laboratory research and development, field testing, and pilot- and production-scale manufacture of chemical warfare agents. Chemical warfare materiel, hazardous wastes, and low-level radiological wastes have been stored at the Edgewood Area. The Aberdeen Area was established as the Ordnance Proving Ground in 1917, and has been the site of intense research and development, large-scale testing of munitions, weapons, and materiel, and a training school for ordnance officers and enlisted specialists.

2.0 BACKGROUND

Ordnance firing, other test activities, residual white phosphorus in subsurface soils, and lightning strikes occasionally cause accidental fires in the test range areas of APG. These accidental fires may occur under unfavorable weather conditions (e.g., meteorological conditions may create wind directions that transport range fire smoke plumes toward residential communities), and the amount of vegetative fuel and acreage burned cannot always be controlled during these unplanned burns.

APG's long history of weapons testing and past disposal practices caused members of the public to express concerns that contaminants accumulated in surface soils and vegetation could be transported in smoke plumes produced by such fires. The potential transport and deposition of contaminants via the smoke plume and the associated health risks were of greatest concern to the public. Sources of contamination could include residues in and on vegetative matter and surface soils from previous weapons testing and disposal of hazardous substances; chemicals released from burning of uncontaminated vegetation; and detonation or rupture of unexploded ordnance (UXO).

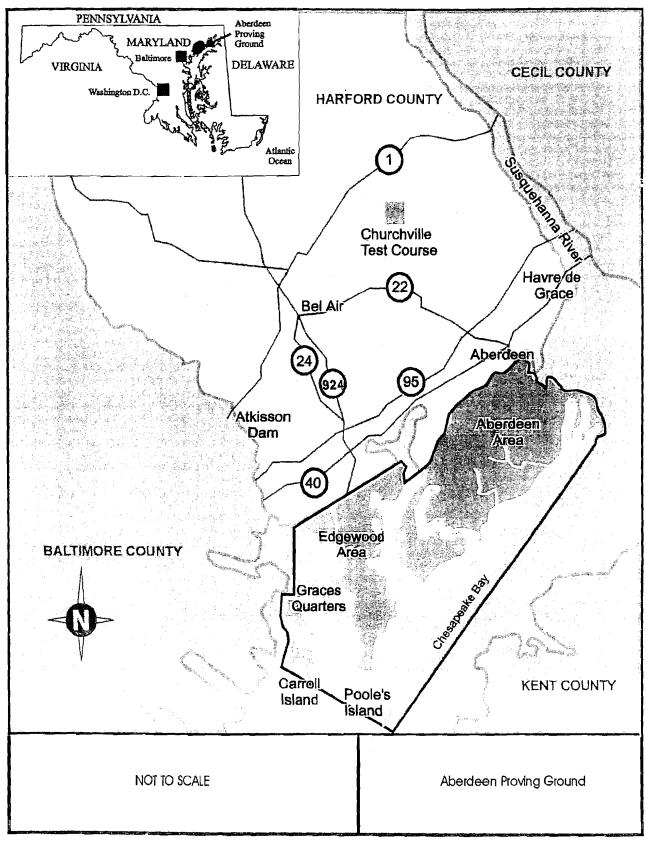


Figure 1. Location of Aberdeen Proving Ground

3.0 OTHER STUDIES

3.1 Argonne National Laboratory 1998 Report

The Environmental Assessment Division of Argonne National Laboratory (ANL) completed a study in 1998 in response to the public concerns. The study, entitled "Potential Human Health Impacts from Range Fires at Aberdeen Proving Ground, Maryland," used atmospheric dispersion models to evaluate potential human health impacts resulting from exposure to contaminants resulting from range fires. The screening study focused specifically on five contaminants considered most likely to be present in surface soils and vegetation as a result of past activities at APG, two chemical agents, and two naturally-occurring compounds released during burning of uncontaminated vegetation. The contaminants, selected with input from APG personnel and a citizens advisory committee, were lead, arsenic, depleted uranium (DU), trichloroethene (TCE), dichlorodiphenyltrichloroethane (DDT), vinyl acetate, 2-furaldehyde, and mustard and phosgene in UXO. The modeling results were compared to U.S. Environmental Protection Agency (EPA) action levels.

The study concluded that range fires at APG do not pose a significant health risk to APG workers or the surrounding populations. Use of conservative assumptions in the study provided an upper bound estimate of potential risk. The study recommended future efforts be directed at fire management and control to reduce the occurrence and duration of range fires. The IRP elected to conduct a series of controlled burns for data collection purposes in response to on-going public concerns relating to range fires and potential risk to human health.

3.2 Argonne National Laboratory 2000 Report

The original report prepared by ANL in 1998 was modified in October 2000 to include actual air emissions data collected during the J-Field controlled burn conducted in April 2000. The updated report incorporated measured contaminant levels in vegetation samples taken from the Toxic Burn Pit area of J-Field. The data was used in the FIREPLUME computer model to calculate estimated ground-level contaminant concentrations during a range fire. The study then estimated exposure levels using conservative assumptions to evaluate impacts to human health. The model-predicted concentrations were one to two orders of magnitude greater than the field measured concentrations due to the use of conservative assumptions. The study concluded that the risk of adverse health effects from mobilization of contaminants as a result of range fires is extremely small. The study again recommended that future efforts be directed at range management to reduce the number of unplanned fires. The range management efforts could effectively include controlled burns.

3.3 Environmental Protection Agency Data Collection

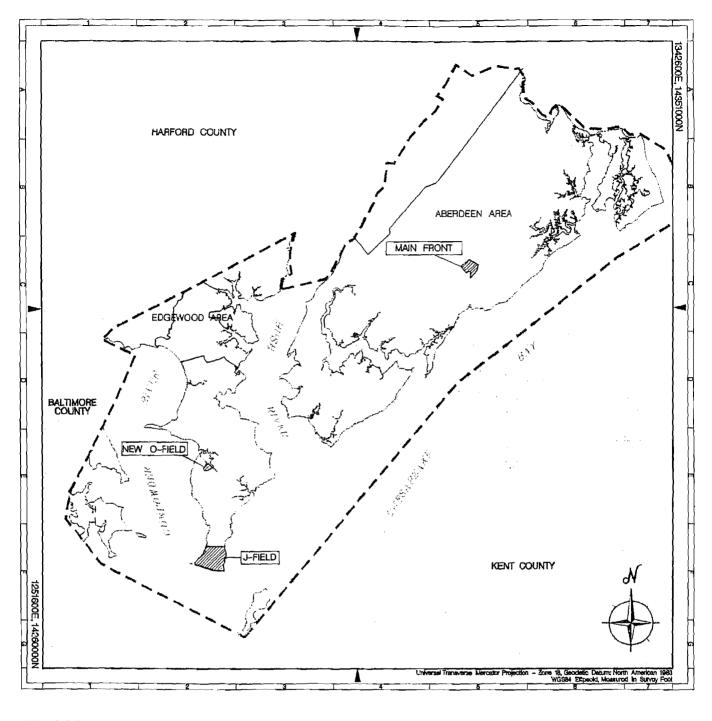
Lockheed Martin, under contract to the EPA through the Response, Engineering, and Analytical Contract, collected air samples for analysis during two O-Field burn attempts and the J-Field controlled burn. Samples were collected for analysis of dioxins, metals, polynuclear hydrocarbons, inorganic acids, volatile organic compounds (VOCs), and chemical agents. Particulate monitoring was also conducted using an MIE DataRAM. The three trip reports for these sampling events are included in Appendix A for reference. The data was not incorporated into the evaluation performed as part of this report.

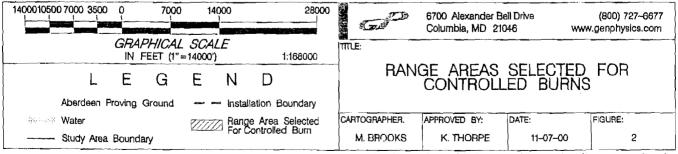
4.0 CONTROLLED BURN STUDY PARAMETERS

The controlled burn study parameters were developed in close coordination with the U.S. Army Aberdeen Test Center (ATC), the agency responsible for range management and control at APG. Meteorological and range control personnel supported the development of the study parameters. In addition, close coordination with the APG Fire Department and Safety personnel provided guidance for developing sampling protocols and selecting range sites for the controlled burns. Input from the citizens advisory committee was solicited regarding potential controlled burn locations.

4.1 Meteorological Conditions

The controlled burns for air emissions sampling were conducted under specific meteorological conditions to minimize potential impacts to civilian communities and to facilitate data collection. Wind directions were selected to minimize travel of the plumes toward populated areas. In general, the controlled burns were initiated with north-northeast or west-southwest wind directions. Controlled burns were initiated only with wind speeds of 15 miles per hour (mph) or less. Greater wind speeds would have resulted in difficulty in controlling and extinguishing the fires, as well as a reduction in the sampling period. Atmospheric stability Class D or Class C conditions were selected as burn parameters to obtain the most rapid return of range fire smoke to ground level and limited atmospheric dispersion. The site-specific burn plans developed for each controlled burn location provide specific details and procedures.


4.2 Test Range Selection


Selection of range areas with the most potential surface soil contamination provided a "worst case" scenario for the controlled burn sampling events. With input from IRP, ATC, Fire Department, and Safety personnel, and the citizens advisory committee, three range areas (Figure 2) were selected for controlled burns and air emissions sampling:

- Main Front range in APG Aberdeen Area selected as representative of test ranges with the highest potential DU contamination and other toxic compounds
- J-Field in APG Edgewood Area selected as representative of worst-case air emissions due to historical testing and disposal activities, and based on soil contamination data collected as part of the IRP
- New O-Field in APG Edgewood Area selected as representative of worst-case air emissions due to historical testing and disposal activities, and based on contamination data collected as part of the IRP

4.3 Sampling Locations and Analytes

For each controlled burn, monitoring involved the collection of both upwind and downwind air samples. Upwind samples were collected during each burn to measure the level of potential contaminants in ambient air. Downwind sample locations were placed at specified distances from the fire ignition point to capture air samples within the smoke plumes upon return to ground level.

i:\edgewood graphics\geographics\regional\apg_rangefire.dgn

Sampling collection and analysis methods are listed in Table 1. Equipment setup is illustrated in photographs provided in Appendix B.

Analyte	Sampling Method	Equipment	Analytical Method
Volatile Organic	USEPA TO-14	Summa Canister –	GC/MS
Compounds		3-hour sampling valve	GC/FID
Explosives	TO-4 Modified	High-Volume Sampler	HPLC
		Glass Fiber Filter and PUF	
Pesticides/PCBs	TO-4	High-Volume Sampler	GC/ECD
		Glass Fiber Filter and PUF	
Inorganics	6010 Modified	High-Volume Samplers (2)	ICP
		Quartz Filter	
Chemical Agents	DAAMS	Calibrated Pump and DAAMS	ECBC Analytical
		Tubes	Method
Gross Alpha/Beta	Quartz Filter	High-Volume Sampler	EPA 900.0 (Modified)
and Gamma Spectra		Quartz Filter	EPA 901.1 (Modified)

Table 1.	APG	Controlled	Burn Sa	ample (Collection	and An	alysis Methods
		Controlled	DUIND	ampie (Concetton	WALKER L R. R. R.	MIJOID TRECINCUS

DAAMS – Depot Area Air Monitoring System ECBC – Edgewood Chemical Biological Center GC/ECD – Gas Chromatograph/Electron Capture Detector GC/FID – Gas Chromatograph/Flame Ionization Detector PCB – Polychlorinated Biphenyl PUF - Polyurethane Foam

GC/MS – Gas Chromatograph/Mass Spectrometer HPLC – High Performance Liquid Chromatography ICP – Inductively Coupled Plasma

EPA - Environmental Protection Agency

The EPA Method TO-14 is designed for sampling and analysis of volatile organic compounds (VOCs) in ambient air as collected in summa canisters or other specially prepared canisters. A sample of ambient air is drawn through a sampling train, comprised of components that regulate the rate and duration of sampling, into a pre-evacuated, passivated canister. The VOCs are separated by gas chromatography and measured by a mass spectrometer or by multi-detector techniques. Analysis of VOCs included reporting of up to 10 tentatively identified compounds (TICs).

Method TO-4 is a procedure for determination of a variety of organochlorine pesticides and polychlorinated biphenyls (PCBs) in ambient air. Method TO-4 utilizes a modified high volume sampler consisting of a glass fiber filter with a polyurethane foam (PUF) backup adsorbent cartridge used to sample ambient air at a rate of approximately 200 - 280 liters per minute. Flow rates for the high volume samplers are calculated during the calibration process prior to each sampling event. The high volume particulate sampler operates at an average flow rate of approximately 1.2 cubic meters per minute (m³/min); the average flow rate for the high volume PUF sampler is approximately 0.2 m^3 /min. The PCBs and pesticides are recovered by Soxhlet extraction and analyzed using gas chromatography with electron capture detection (GC/ECD). Samples collected using TO-4 (modified) are analyzed for explosives using high performance liquid chromatography (HPLC).

The EPA method 6010 utilizes Inductively Coupled Plasma (ICP) instrumentation with a hightemperature source for metals analysis. The samples are collected using a high-volume sampler and quartz filter media. The sample is prepared for ICP analysis by digesting the quartz filter in nitric acid.

The Depot Area Air Monitoring System (DAAMS) sampling method for chemical agents requires air flow through a solid sorbent tube at a controlled flow rate and a measured time period. The sampler flow rate is calibrated prior to the sampling event. The DAAMS tubes are analyzed by the U.S. Army Edgewood Chemical Biological Center (ECBC) laboratory using thermal desorption techniques to strip the analytes into a gas chromatography/flame photometric detector (GC/FPD) analytical system.

For radioactivity, the analysis included gross alpha analysis for radionuclides that emit alpha particles, gross beta analysis for radionuclides that emit beta particles, and gamma ray spectroscopy for radionuclides that emit gamma rays. Of the methods employed, ony gamma spectroscopy is capable of identifying the specific radionuclides and the amount of radioactive material present (in pico-Curies (pCi)) from that radionuclide. Gross alpha and gross beta analyses provide only the amount of radioactivity (pCi).

The specific analytes included in each sampling and analysis method are provided for reference in Appendix C.

4.4 Quality Assurance

The ambient air sampling of these short-term events (the controlled burns conducted at APG) is considered representative of fires in fields where these burns occurred. These events may not be representative of all fires, but can be considered "worst case" for evaluation of release of potential contaminants in vegetation at sites with soil contamination. The sampling efforts incorporated numerous quality assurance methods to provide the best possible results.

- Equipment calibration was performed prior to each sampling event to provide accuracy in field measurements. Field instruments were calibrated according to manufacturers' specifications, and the calibration results were recorded.
- Use of high-volume sampling equipment, as appropriate, reduced errors potentially associated with low sample volumes, and achieved lower detection limits.
- Filter or media blanks for each sampling method (except the summa canister) were sent to the laboratory for analysis to detect filter or media contamination unrelated to the range fire sampling. The summa canisters were cleaned and evacuated by the analytical laboratory.
- Generators providing power supply for the sampling equipment were placed downwind or cross-wind from the sampling points to prevent interferences.
- Vehicles used to transport personnel and sampling equipment were parked downwind of the sampling equipment or removed from the sampling location.
- Samples were collected at an upwind location during each range fire sampling event to allow evaluation of ambient concentrations of detected analytes.

Sampling locations were dictated by the availability of established roads and by explosive fragment hazard distances. No sampling points were selected in off-road locations due to UXO safety considerations.

5.0 CONTROLLED BURN EVENTS AND RESULTS

Three controlled burn events were conducted from April 1999 through April 2000. Burn events were conducted in the J-Field and New O-Field ranges of the Edgewood Area, and in the Main

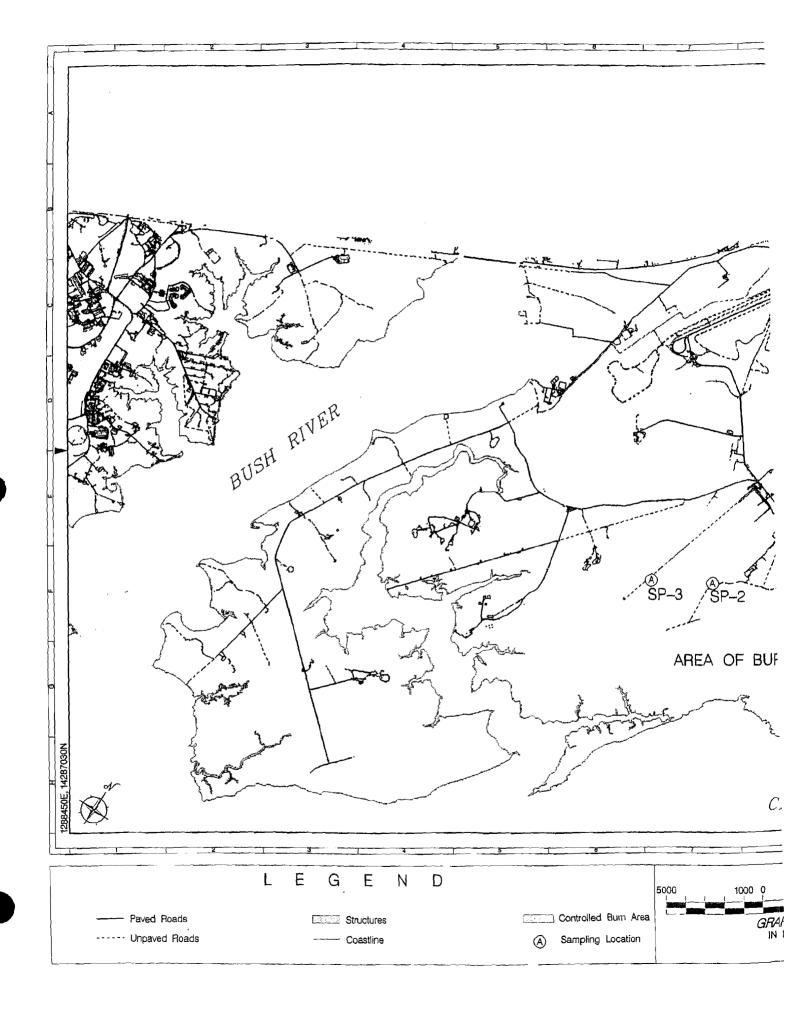
Front range of the Aberdeen Area of APG. A second burn event in the Main Front area was attempted in April 2001.

5.1 Main Front Range Controlled Burn – April 1999

A controlled burn was conducted on 28 April 1999, at the Main Front range in the Aberdeen Area of APG (Figure 3). Samples were collected at three sites downwind of the fire, and at one upwind site to serve as a background location. Downwind sampling sites SP1, SP2, and SP3 were located southwest of the burn site at distances of approximately 1000, 2000, and 3000 meters, respectively.

With favorable meteorological conditions forecasted by the ATC Meteorological Office, the fire ignition by the APG Fire Department occurred at approximately 1500 hours. The sampling duration was approximately four hours.

Meteorological data collected during the controlled burn show that the wind direction shifted widely during the course of the burn. The forecasted wind direction was from the northeast (i.e., blowing toward the Edgewood Area and down the Chesapeake Bay); the average winds during the sampling event were from the southeast. The shifting wind direction resulted in a reduction of the burn area and intensity of the fire, causing less smoke to be produced. The variable wind direction resulted in exposure of the upwind sampling point (SP4) to smoke during a portion of the sampling period. Photographs taken during the Main Front burn event are presented in Appendix D-1.


Detections of several analytes were reported for the 1999 Main Front controlled burn event:

- Several VOCs were detected, including:
 - acetone
 - nonane
 - toluene
 - decane
 - methylene chloride
 - xylene.
- Analysis of the PUF media yielded detection of 2,2'3,4,5'-pentachlorobiphenyl and 2,4',5trichlorobiphenyl in the SP3 sample, and 2,4',5-trichlorobiphenyl in the SP4 sample. These PCBs were detected at a concentration of approximately 1 ppb.
- One pesticide (dieldrin) was detected by the PUF samplers at all downwind sampling locations (SP-1, -2, and -3) in the parts per trillion range.
- Numerous metals were detected, but not at levels exceeding blank concentrations.

Chemical agents and explosives were not detected at the downwind or upwind sampling locations during the Main Front controlled burn. Additionally, no specific radionuclides were detected above the minimum detection activity, the analytical error, or the blank radionuclide activity level. Appendix E-1: Tables E-1 through E-10 contain the results from the analysis of the air samples collected during the Main Front controlled burn.

SAPEAKE BAY	D	10 1	1212	13	14	15
NOTALLATION BUT ALLATION BUT ALL'ATAILATION BUT ALL'ATAI		DARY				14362810N
AL SCALE P-5007 16000 AL SCALE P-5007 10000 1000 1000 1000 10000 1000 1000 1000 1000	INSTALL	ATION BOUNDA				8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Image: Scape AKE BAY				A A A A A A A A A A A A A A A A A A A		
Image: Scape AKE BAY						
Image: Scape AKE BAY	3	The second secon				
Image: Scape AKE BAY	A.				N. S.	
Image: Scape AKE BAY Universit Transversi Medalor Propeter - Zone BL Bendet Delarm: Notifi American Usel, WGB4: Elspecid, Messared In Survey Feet Image: Scape AKE BAY Image: Scape AKE BAY <	3P-1	SP-4				
Universa Transverse Mercalor Projection - Zone 18, Geodelic Datum: North American 1989, WG884 Ebipedid, Measured in Survey Feel 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15						-
Universal Transverse Mercalor Projection - Zone 18, Geodaic Datum: North American 1983, WG884 Ebipedid, Measured in Survey Feel 10 11 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15		T AR		A P		
Image: Solution of the second seco	SAPEAKE	BA Y		Principa - 7mg 18 Geodelin Data		
AL SCALE (1'= 5000') 1:60000 6700 Alexander Bell Drive Columbia, MD 21046 (800) 727-6677 CARTOGRAPHER: M. BROOKS APPROVED BY: K. THORPE DATE: TI-07-00 TI-07-00 3	U	10	11 12 12	13	14 14 14	15
(I* = 5000') 1:60000 €700 Alexander Bell Drive (800) 727-6677 M. BROOKS K. THORPE Output Columbia, MD 21046 www.genplysics.com DATE: 11–07-00 FIGURE: 11-07-00 3		10000	MAIN FRONT CC SAMF	NTROLLED BUP DLING LOCATION APRIL 1999	RN AREA AND NS	
i:\edgewood_graphics\geographics\range_iires\mainfront_data.dg	AL SCALE (1°=5000')	1:60000 6700 Colum		727-6677 <u>M. BRC</u> sics.com DATE: 11-07-	-00 Figure:	3

146.000

- ----

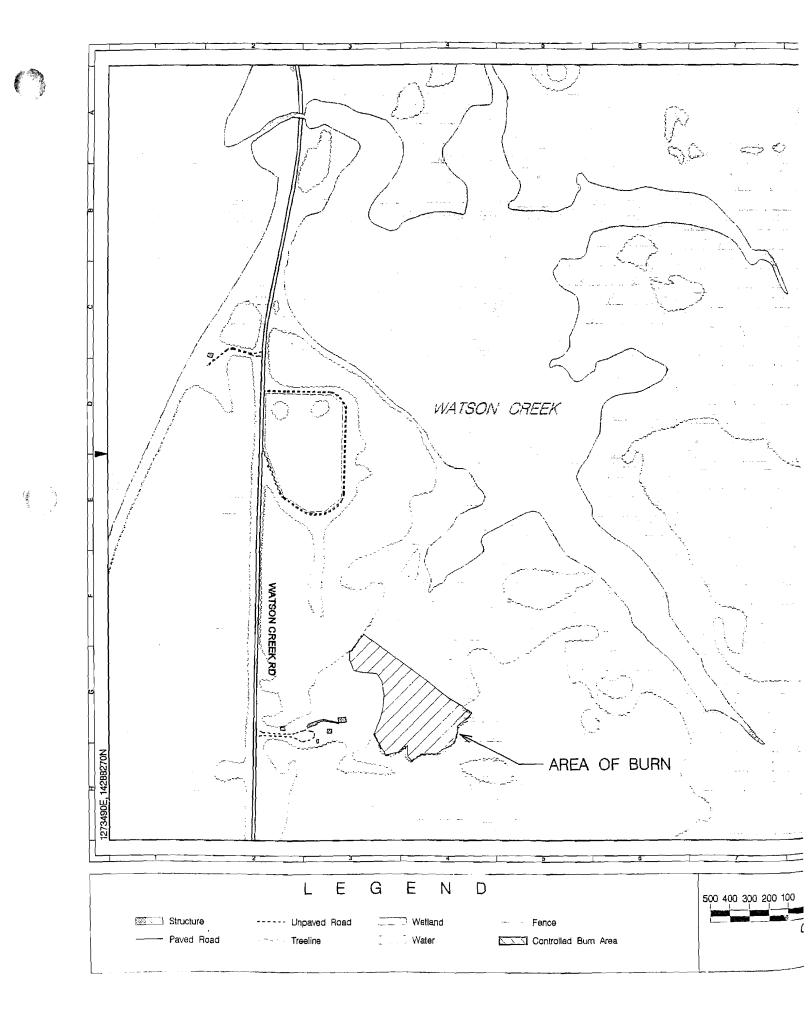
52

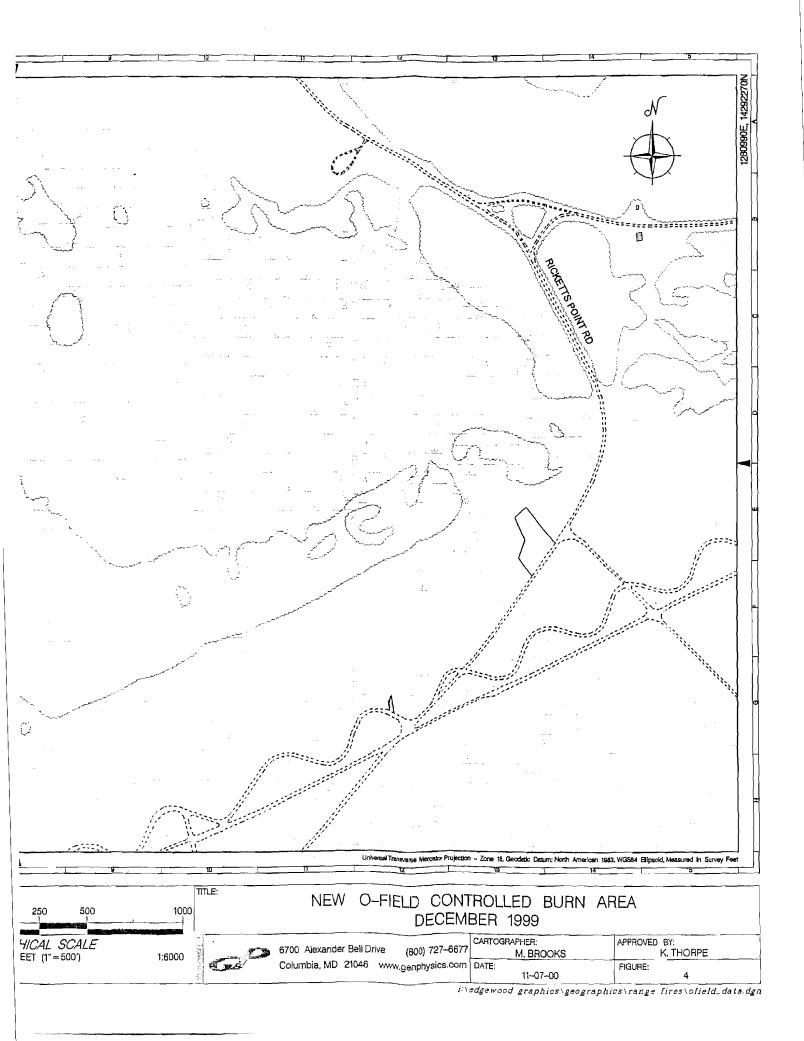
5.2 New O-Field Controlled Burn – December 1999

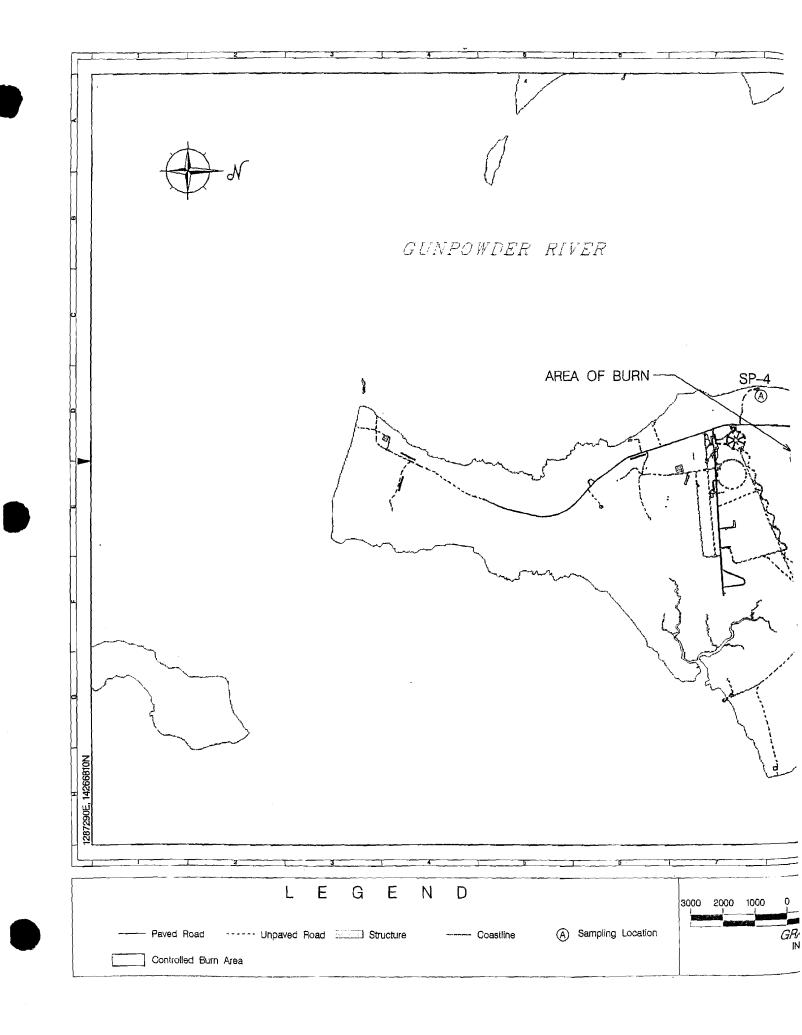
The New O-Field controlled burn occurred on 3 December 1999 in the Edgewood Area of APG (Figures 4 and 5). Downwind sampling locations SP1, SP2, and SP3 were located 335, 1200, and 2300 meters, respectively, from the burn area. Sampling point SP1 was located at Watson Creek, SP2 at Ricketts Point Road, and SP3 at Briery Point on the Bush River shoreline. Due to a slight variation in wind direction during the burn ($238^{\circ} \pm 20^{\circ}$), the SP2 sampling location was repositioned within the smoke plume. The upwind sampling point SP4 was located on the Gunpowder River shoreline, approximately 500 meters from the burn location.

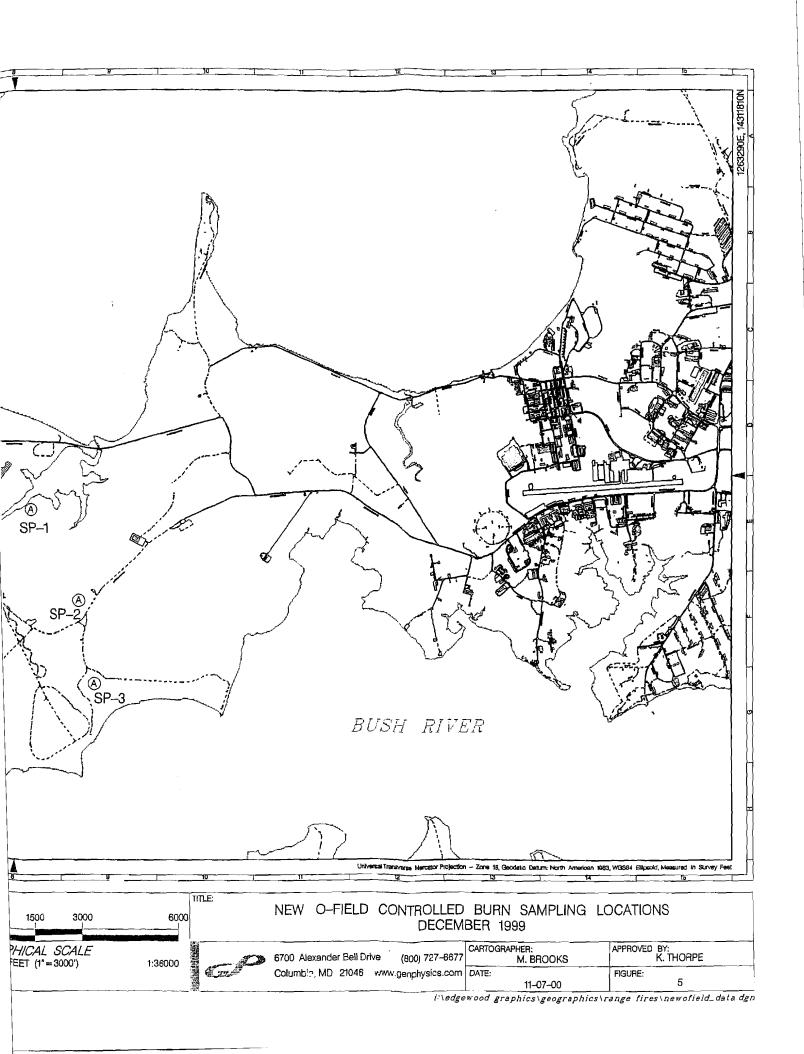
The meteorological forecast provided by the ATC Meteorological Office indicated winds speeds of less than 15 mph, a southwest wind direction, and Class D stability. Given the favorable forecast, the fire was ignited by the APG Fire Department at approximately 1530 hours. The sampling duration was approximately four hours.

The meteorological data collected during the controlled burn show that the wind direction generally remained from the southwest, with only slight variation during the course of the burn. However, reduced wind speeds, coupled with wet conditions in New O-Field, limited the size of the burn area during this event. Given that the area and the intensity of the burn were much less than anticipated, a reduced amount of smoke was produced from the fire for the air sampling event. Photographs of the area following the controlled burn are included in Appendix C-2.


Samples collected were analyzed for chemical agents, explosives, VOCs, PCBs, pesticides, inorganics, and radionuclides; detections of several analytes were reported:


- Several VOCs were detected in the ppb range, including:
 - acetone
 - benzene
 - benzonitrile
 - carbon disulfide
 - dedecene
 - hexane
 - methylene chloride
 - toluene
 - xylene
- 2,2',3,4,5-pentachlorobiphenyl was detected at sampling locations SP1, SP2, and SP3 in concentrations ranging from 0.0004 to 0.0011 micrograms per cubic meter (μg/m³).
 2,2',3,4,4'-tetrachlorobiphenyl was detected in the SP4 (upwind) sampling location at a concentration of 0.0020 μg/m³.
- Numerous metals were detected in the ppb range in samples collected both upwind and downwind of the burn area.


Chemical agents, explosive compounds, and pesticides were not detected at the downwind or upwind sampling locations during the New O-Field burn. Appendix E-2: Tables E-11 through E-17 contain the results from the analysis of the air samples collected during the controlled burn at New O-Field.

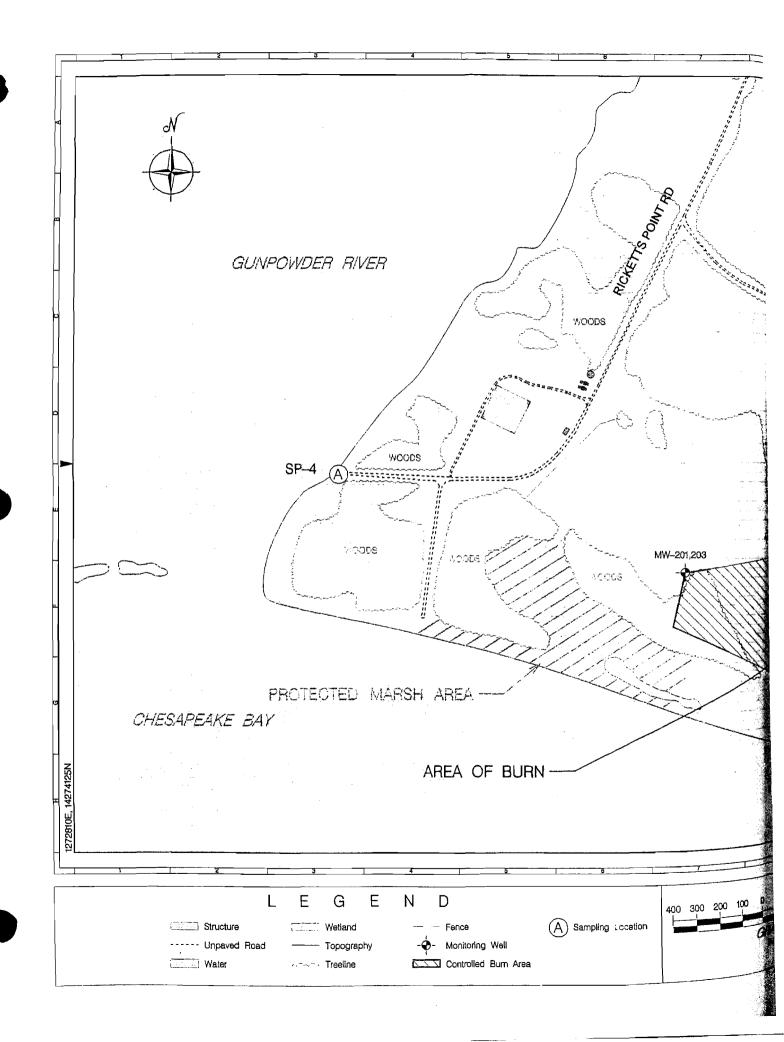

10

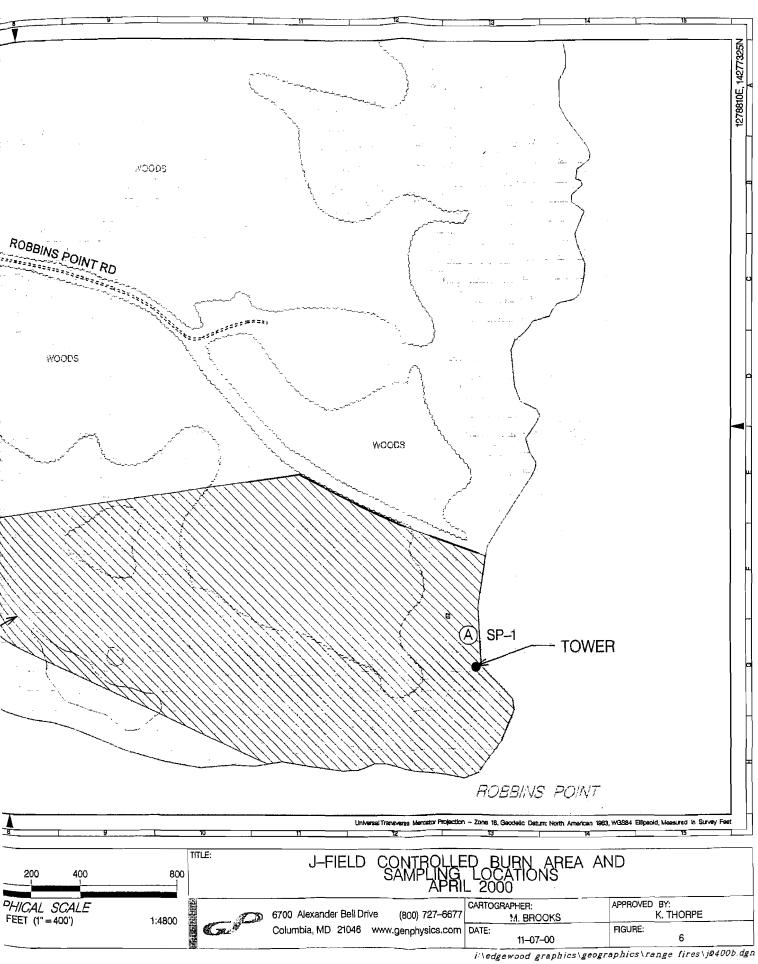
5.3 J-Field Controlled Burn – April 2000

The J-Field controlled burn occurred on 6 April 2000 in the Edgewood Area of APG (Figure 6). The burn area extended over the southeast portion of J-Field, covering both marsh and forest environments. Robbins Point Road and the Bush River served respectively as the northern and eastern firebreaks.

Air samples were collected at two monitoring locations during the J-Field controlled burn: one located downwind of the fire to capture smoke constituents (SP1), and one located upwind of the fire (SP4). The downwind sampling location was northeast of the burn area, along the end of Robbins Point Road on the shore of the Bush River. The SP1 sampling location was approximately 10 meters from the northernmost edge of the burned area. The upwind sampling location (SP4) was located on the Gunpowder River shoreline at the end of Ricketts Point Road, approximately 500 meters from the fire location. Collection of additional downwind samples did not occur due to the logistics of staging samplers at offshore locations in the Bush River.

The ATC Meteorological Office provided a favorable forecast for wind speeds of less than 15 mph from the southwest, and atmospheric stability Class D conditions. The APG Fire Department


initiated the controlled burn at approximately 1725 hours. The sampling duration was approximately three hours.


Meteorological data collected during the controlled burn period indicated stable wind directions from the southwest, with only slight variations. Wind gusts of up to 15 mph were recorded by an on-site weather station. Wind speeds, coupled with dry conditions and adequate vegetative fuel, sustained the fire during the J-Field controlled burn. A visible smoke plume extended from the burn area in a northeasterly direction.

Photographs taken during and following the J-Field controlled burn are presented in Appendix D-3. The J-Field controlled burn revealed a significant amount of surface waste and debris throughout the burned area, indicating disposal had previously occurred in the area. A separate removal action was conducted in May 2000 to remove the surface debris, including ordnance-related items.

Sampling was performed for chemical agents, explosives, VOCs, PCBs, pesticides, inorganics, and radionuclides; detections of several analytes were reported:

- Several VOCs were detected in the ppb range at the upwind location (SP4):
 - acetic acid
 - acetone
 - hydrocarbon compound (no identification from the TIC library)

- Several VOCs were also detected in the ppb range at the downwind sampling location (SP1):
 - acetaldehyde
 - acetone
 - acetonitrile
 - ethylhexanol
 - furan
 - furfural
 - methylester acetic acid
 - methylfuran
 - methylpropene
 - hydrocarbon compound (no identification from the TIC library)
- An isolated pesticide detection (heptachlor) was reported in the ppb range at the upwind sampling location (SP4). No pesticides were detected at the downwind sampling location (SP1).
- Two explosive-related compounds (2-amino-4,6-dinitrotoluene and 4,-amino-2,6dinitrotoluene) were detected in the ppb range at the downwind sampling location. No explosive-related compounds were detected at the upwind sampling location.
- Numerous metals were detected in the ppb range in samples collected both upwind and downwind of the burn area.
- U-235 was reported as detected in the downwind sampling location.

No chemical agents or PCBs were detected in samples collected either upwind or downwind of the burn area. Appendix E-3: Tables E-18 through E-24 contain the results from the analysis of the air samples collected during the J-Field controlled burn.

5.4 Main Front Controlled Burn Attempt – April 2001

A second controlled burn in the Main Front Range was planned in an area where testing of DU weapons has occurred. Immediately following the successful completion of the April 2000 J-Field controlled burn, coordination resumed for the second Main Front controlled burn. Wind directions under which the controlled burn could be conducted were northeast or southwest. However, given the active testing schedule and other limitations (wind direction and greening vegetation), the controlled burn could not be accomplished in the spring, and was delayed until fall.

Coordination resumed in late fall when the vegetation was determined by the APG Fire Department officials to be sufficiently dried to provide adequate fuel and a successful burn. Once again, the active testing schedule and unfavorable meteorological conditions prevented successful completion of the controlled burn. Coordination again resumed in spring of 2001 Under favorable wind conditions, the controlled burn was attempted in the Main Front Range on 6 April 2001. However, light precipitation and the wet condition of the underlying vegetative fuel prevented successful ignition of the burn area.

Evaluation of the selected burn area by Fire Department personnel indicated that a successful controlled burn was unlikely, given the wet conditions and reduced available fuel volume as a result of previous unplanned burns. Active test schedules were projected by ATC for the selected area. Given these limitations, completion of a second burn in the Main Front Range is not feasible.

6.0 RISK ANALYSIS

The evaluation of risk involves comparison of air sampling data collected from the controlled burn events to available human health screening criteria, and calculations to evaluate potential risk associated with exposure to range fire smoke via the inhalation pathway.

6.1 Risk-Based Screening Criteria

To provide a screening level evaluation of potential human health impacts from range fire smoke, concentrations of contaminants detected above quantitation limits are compared to the Maryland Toxic Air Pollutant (TAP) Screening Levels and EPA Region III Risk-Based Concentrations (RBCs). The TAP Screening Levels and RBCs for inhalation are more conservative than other screening criteria such as the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs). The PELs establish workplace exposure limits for inhalation by healthy workers, generally based on an 8- or 10-hour workday in a 40-hour workweek. The available TAP Screening Levels and RBCs provide consideration of the general population in evaluating exposure and associated risk.

6.1.1 Maryland Toxic Air Pollutant Screening Levels

The Maryland TAP regulations were promulgated in September 1988 to protect the public from TAP emissions from stationary sources of air pollution. The Maryland Department of the Environment (MDE) maintains a list of screening levels for over 1700 compounds. These TAP Screening Levels are tools used to predict whether emissions from a source will unreasonably endanger public health. Emissions from a pollutant source are compared to benchmark concentrations known as "screening levels" which are considered safe or sufficiently conservative that no one would be endangered by that level of exposure. The TAP Screening Levels are included in Appendix E, Tables E-1 through E-24, for the compounds detected in range fire samples collected as part of the controlled burn project.

6.1.2 EPA Region III Ambient Air Risk-Based Concentrations

The RBCs were developed originally for use in the EPA Region III Superfund Program. The primary use of RBCs is for chemical screening during baseline risk assessments. The RBCs combine toxicity factors with "standard" exposure scenarios to provide a numerical estimation of the concentration that relates to a specified risk level. The inhalation RBCs for ambient air presented in Tables E-1 through E-24 (Appendix E) are based on an increased lifetime cancer risk of 1×10^{-6} for carcinogens (i.e., one in one million), or a hazard quotient of 0.1 for non-carcinogens. The exposure factors used in the calculation of the ambient air RBCs are conservative, and are based on residential exposure to contaminants (i.e., 350 days per year).

Noncarcinogenic effects are evaluated by calculating the ratio of a site-specific exposure level for a specified time period to a reference dose (RfD). The RfD for a specific chemical is an estimate of the daily exposure level, with consideration of sensitive populations, that is not expected to cause adverse health effects over the course of a lifetime. The calculated ratio is known as the hazard quotient (HQ). Unlike cancer risk estimates, HQs are not expressed as a probability. An HQ of less than one indicates that exposures are not likely to be associated with adverse noncarcinogenic effects. As the hazard quotient approaches or exceeds 10, the likelihood of adverse effects is increased to the point where action to reduce human exposure should be considered (although the

Controlled Burn Air Sampling Technical Report	Final, August 2001
U.S. Army Aberdeen Proving Ground	GP-R-711E00060

magnitude of the uncertainty factors used to derive the RfD should also be considered). Because of the uncertainties involved with these estimates, values between one and 10 may be of concern, particularly when additional significant risk factors are present. Since RfDs do not have equal accuracy or precision and they are not based on the same severity of toxic effects, evaluation of hazard indices (i.e., the sum of two or more HQ values for multiple substances and/or multiple exposure pathways) should take into account the uncertainties associated with chemical-specific RfDs. Using this approach, contaminants can then be excluded when they contribute an HQ of less than 0.1 (for noncarcinogens).

6.1.3 Radiological Parameters

Air samples collected were analyzed for gross alpha and gross beta activity, and specific radionuclides by gamma spectroscopy. Results were evaluated against upwind (background) concentrations as well as blank analysis results. Further evaluation was on the basis of Title 10 Code of Federal Regulations (CFR), Part 20, Standards for Protection Against Radiation, Appendix B – Table 2, Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Effluent Concentrations. Table 2 of Appendix B of 10 CFR Part 20 provides concentration limits for radionuclides in airborne effluents released to the general public.

Main Front

Gross alpha and beta radioactivity were detected in the blank and samples. Gross alpha results were not statistically different between the blank and samples. Gross beta results for SP3 and SP4 were also not statistically different from the blank result.

Although gross beta activity was detected in the SP1 and SP2 samples at levels statistically different from the blank, the concentrations of radioactivity are less than 30 times the most restrictive limit for radioactivity per 10 CFR Part 20, Appendix B, Table 2 for unidentified radionuclides. Gamma ray spectroscopy identified the presence of only Potassium-40 (K-40), Lead-212 (Pb-212), Radium-223 (Ra-223), and Uranium-235 (U-235). All of these radionuclides are naturally occurring and were detected with amounts so small that they could not be quantified as statistically significant above the background for the detector used by the gamma ray spectroscopy system. These radionuclides were detected in the background spectrum for the instrument and are therefore considered as not detected.

The levels of airborne radioactivity detected during the Main Front controlled burn sampling event could not be distinguished from ambient concentrations, and do not pose an increased health risk.

New O-Field

Gross alpha and beta radioactivity were detected in the blank and the samples. Gross alpha results were not statistically different between the blank and sample results. Gross beta results were not significant between SP1 and the blank. The gross beta results for SP2, SP3, and SP4, although statistically different from the blank, are present at concentrations less than 10 times the most restrictive limit for radioactivity in air per 10 CFR Part 20, Appendix B, Table 2, for unidentified radionuclides.

Gamma spectroscopy identified the presence of only K-40, Pb-212, Radium-224 (Ra-224), and U-235. All of these radionuclides are naturally occurring, were detected in the blank, and were detected at levels too low to be quantified as statistically significant above background for the detector utilized for the analysis. The levels of radioactivity measured in air samples collected during the New O-Field controlled burn could not be distinguished from ambient concentrations and do not pose an increased health risk.

17

J-Field

Gross alpha and beta activity detected was not statistically different between the blank and sample results, and could not be distinguished from ambient concentrations.

Gamma spectroscopy identified the presence of the naturally occurring radionuclides K-40, Pb-212, and U-235 at levels too low to be quantified as statistically different from background for the detector used. Thus, these radionuclides were considered not detected. Uranium-235 was reported as detected in the downwind sampling location (SP1) at 0.0005 pico-Curies per cubic meter (pCi/m³), less than one percent of the most restrictive limit for U-235 in air as per 10 CFR Part 20, Appendix B, Table 2 (i.e., 0.06 pCi/m³). On this basis, the detected levels of U-235 are not considered to pose a health risk.

6.2 Results of Risk-Based Screening

Several analytes detected in the controlled burn sampling events conducted at APG occurred at levels exceeding either the Maryland TAP Screening Levels or the EPA Region III ambient air RBCs. The analytes exceeding these criteria are highlighted in the data tables (Appendix E, Tables E-1 through E-24) and included in Table 2. Analytes for which screening levels are not available are not further evaluated.

des Zer 1991 Bill State	Noncarcinogenic RF-RBC	Carcinogenic	Maximum Reported Concentration
Analyte		μg/m ³)	
VOLATILE ORGANICS			tar proceduration of a track of a conservation of the second second second second second second second second s
Acetaldehyde		170.1	3.98
Benzene		46.2	19.9
Furan	777		8.58
Methylene Chloride	N/A	798	25.25
Trimethylbenzene	1302		12.54 (Upwind)
PCBs			
2,4',5-Trichlorobiphenyl		0.651	0.0110
PESTICIDES			
Dieldrin		0.0819	0.0030
Heptachlor		0.294	0.0020 (Upwind)
EXPLOSIVES			
2-Amino-4,6-dinitrotoluene	46.2		0.4570
INORGANICS			
Aluminum	777		51.19
Arsenic		0.0861	0.0147
Cadmium		0.208	0.0036
Manganese	10.92		0.5476

Maximum reported concentration is the maximum concentration detected based on three burn events.

6.3 Risk Calculations

Risk calculations were performed to further assess potential human health impacts from airborne range fire contaminant concentrations that exceeded the screening levels. The Maryland TAP Screening Levels assume emissions from a stationary source, indicating frequent emissions and associated exposure. The assumptions used in determining the EPA Region III RBCs for evaluating a residential exposure to contaminants in ambient air are overly conservative for evaluating potential human health impacts due to infrequent exposure to range fire smoke. Therefore, the default exposure parameters used in the RBC calculations are modified to reflect a more realistic scenario for exposure to smoke from infrequent range fires (Table 2). The revised exposure parameters are then employed in back-calculating a revised risk-based concentration for the chemicals detected during range fire smoke sampling at concentrations in excess of the risk-based screening criteria. The calculated concentration represents the upper bound of the risk levels established by EPA as acceptable: for carcinogens, increased lifetime cancer risk of 1 in 1,000,000 (1 x 10⁻⁶); for non-carcinogens, a hazard quotient of 0.1.

Data evaluated by ANL in preparation of the "Potential Human Health Impacts from Range Fires at Aberdeen Proving Ground, Maryland" report indicate that, from the period of 1992 – 1997, an average of 80 fires occurred per year at APG. Of those fires, 84 percent involved areas less than 5 acres in size. Fires that burned 25 acres or more constituted only 2 percent of the fires during that period, although some fire reports did not include an estimate of the area burned. ANL used the assumption that five 25-acre or larger fires occurred per year. The ANL report also indicated that the average duration of range fires at APG is approximately one hour. The use of a helicopter with "Bambi bucket" to drop water directly onto the burning areas allows the fires to be extinguished in a short time. These factors were used to develop conservative exposure duration and frequency parameters for calculating revised risk-based concentrations.

The approach used in this report for determining the range fire RBCs (RF-RBCs) is based on modification of the EPA Region III RBCs to reflect a conservative frequency for the exposure of the general population to range fire smoke. The EPA Region III RBCs used for screening purposes assume a residential exposure to airborne contaminants from an ongoing source, with a frequency of 350 days per year. The RF-RBCs are derived on the basis of exposure to 10 range fires per year, with the assumption that wind direction would control exposure. The residential EPA Region III RBCs assume an exposure basis of 24 hours per day. For range fires, that basis is reduced to 4 hours per event. The conservative exposure duration assumes that the receptor would be exposed to smoke from 10 of 80 range fires occurring per year for a maximum duration of 4 hours per fire. The calculated RF-RBCs (presented in $\mu g/m^3$) are compared (Table 2) to maximum concentrations detected (also presented in $\mu g/m^3$) in the controlled burn sampling events.

7.0 CONCLUSIONS

Air emissions sampling was conducted during the course of three controlled burns at APG. To assess the potential impacts to human health resulting from exposure to smoke from range fires at APG, the analytical results obtained from the sampling events were compared against EPA Region III RBCs and Maryland TAP Screening Levels. Thirteen analytes were reported at concentrations exceeding at least one of the two screening criteria. To further screen the data, revised RF-RBCs were calculated using parameters conservatively considered representative of exposure of residential receptors to range fire smoke at APG. The conservative RF-RBCs were calculated based on the assumption that a receptor is exposed to smoke from 10 range fires per year at APG, for a

duration of four hours each. The resulting RF-RBCs were then compared to the maximum reported concentrations for the 13 analytes in any of the controlled burn sampling events.

The risk analysis presented in this report does not indicate significant impacts to human health resulting from range fires at APG. The risk analysis assumes that the data collected during the controlled burn events are representative of "typical" range fires occurring at APG.

8.0 REFERENCES

Argonne National Laboratory, 2000. Potential Health Impacts from Range Fires at Aberdeen Proving Ground, Maryland, Draft_01. Prepared by Argonne National Laboratory, Argonne, Illinois for the U.S. Army Garrison, Aberdeen Proving Ground, MD. Draft, October 2000.

Argonne National Laboratory, 1998. Potential Health Impacts from Range Fires at Aberdeen Proving Ground, Maryland. Prepared by Argonne National Laboratory, Argonne, Illinois for the U.S. Army Garrison, Aberdeen Proving Ground, MD. March 1998.

General Physics Corporation, 2000. Final Burn Plan – Second Prescribed Burn at the Main Front for Air Monitoring of Range Fire Emissions. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. October 2000.

General Physics Corporation, 1999. Final Burn Plan – Prescribed Burn at the J-Field for Air Monitoring of Range Fire Emissions. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. April 1999.

General Physics Corporation, 1999. Final Burn Plan – Prescribed Burn at the Main Front for Air Monitoring of Range Fire Emissions. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. May 1999.

General Physics Corporation, 1999. Final Work Plan – Air Sampling of Range Fire Emissions in the Aberdeen and Edgewood Areas of Aberdeen Proving Ground – Planned Burns. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. February 1999.

General Physics Corporation, 1999. Final Environmental Assessment – Prescribed Burns at Aberdeen and Edgewood Test Ranges for Air Monitoring of Range Fire Emissions. Prepared by General Physics Corporation, Edgewood, Maryland for the U.S. Army Garrison, Aberdeen Proving Ground, MD. February 1999.

U.S. EPA, 2000. *Risk-Based Concentration Table*. United States Environmental Protection Agency, Region III, Superfund Technical Support Section, Philadelphia, PA. 5 October 2000.

U.S. Department of Energy, 1997. The Code of Federal Regulations: Title 10—Energy. Part 20: Standards for Protection Against Radiation, Appendix B (Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Occupational Exposure; Effluent Concentrations; Concentrations for Release to Sewerage.

APPENDIX A

LOCKHEED MARTIN RANGE FIRE SAMPLING TRIP REPORTS

و

APPENDIX A-1

O-FIELD TRIP REPORT (JULY 2000)

<a href="https://www.second.com/works.com/works-action-com/works-com/work

LOCKHEED MART

DATE: July 5, 2000

TO: David Mickunas. U.S. EPA/ERTC Work Assignment Manager

THROUGH:	Jeff Bradstreet_REAC Air Group Leader
FROM:	Jeff Bradstreel REAC Air Group Leader

SUBJECT: AIR MONITORING AND SAMPLING AT THE AIR MONITORING SAMPLING, ANALYSIS, AND MODELING SUPPORT, AND UNDERWATER SURVEY ACTIVITIES SITE, ABERDEEN PROVING GROUND, ABERDEEN, MD, WORK ASSIGNMENT #0-110 - TRIP REPORT -O-FIELD

BACKGROUND

The United States Environmental Protection Agency/Environmental Response Team Center (U.S. EPA/ERTC) issued Work Assignment Number 0-110 to Lockheed Martin under the Response. Engineering, and Analytical Contract (REAC) to provide air monitoring and air sampling during two controlled burns in the Edgewood Area of Aberdeen Proving Ground (APG). One burn was to be conducted at O-Field and one at J-Field.

Ordnance firing, ongoing test activities, and lightning strikes occasionally cause accidental fires in the test range areas at APG. Because of APG's long history of weapons testing and disposal practices, there is concern that contaminants have accumulated in the surface soils and vegetation at these locations and could be transported in the smoke plumes produced by such fires, posing a health risk to exposed individuals on and off the installation.

The scope of work for this work assignment included air sampling for dioxins, metals, polynuclear aromatic hydrocarbons (PAHs), inorganic acids, volatile organic compounds (VOCs) and chemical warfare agents (CWAs). Particulate monitoring was conducted utilizing an MIE DataRAM at each location.

OBSERVATIONS AND ACTIVITIES

REAC personnel mobilized to APG on December 3, 1999. Air sampling and monitoring were conducted at 5 downwind and 2 upwind locations (Figure 1).

VOC sampling and analysis was conducted following EPA Method TO-14A: Determination of Volatile Organic Compounds in Ambient Air Using SUMMA Passivated Canister Sampling and Gas Chromatographic Mass Spectrometric (GC MS) Analysis. A sampling orifice was connected to each SUMMA canister to control the flow at 15 cubic centimeters per minute (cc/min). A solenoid valve was then connected to the SUMMA orifice. A trip wire was attached to each solenoid valve to trigger the solenoid to open just before personnel exited the downwind area.

PAH sampling and analysis was conducted following National Institute for Occupational Safety and Health (NIOSH) Method # 5515: *Polynuclear Aromatic Hydrocarbons*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (2 Liters per minute (L/min)) through a sampling train containing a teflon prefilter cassette and an XAD-2 sorbent tube. The pumps were programmed for a delayed start with a 4-hour sampling period.

j

Sampling and analysis for inorganic acids was conducted following NIOSH Method # 7903: Acids, Inorganic. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (250 cc/min) through a sampling train containing a silica gel sorbent tube. The pumps were programmed for a delayed start with a 4-hour sampling period.

Sampling and analysis for dioxins was conducted following modified U.S. EPA Method TO9A. Determination of Polychlorinated, Polybrominated and Brominated/Chlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a polyurethane foam (PUF) plug and quartz filter. The pumps were programmed for a delayed start with a 4-hour sampling period. PUF glassware, plugs, and quartz filters were cleaned and certified by Southwest Research Institute in San Antonio, Texas prior to use.

Sampling and analysis for metals was conducted following modified NIOSH Method # 7300: *Elements (ICP)*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a mixed cellulose ester filter cassette. The pumps were programmed for a delayed start with a 4-hour sampling period.

Samples were collected for CWAs utilizing a personal sampling pump (SKC) to draw a measured volume of air (100 cc/min) through a sampling train containing two Depot Area Air Monitoring System (DAAMS) sorbent tubes in a dual-sampling manifold. The CWAs analyzed for included: Sarin (GB), Soman (GD), Mustard (HD), and VX. The pumps were programmed for a delayed start with a 4-hour sampling period. Tubes and analysis were provided by Soldiers Biological and Chemical Command (SBC COM).

Air monitoring for total particulates was performed utilizing an MIE DataRAM portable real-time aerosol monitor. Concentration data was logged every 10 seconds for the duration of the burn.

APG personnel positioned support poles, at each of the five downwind locations, prior to REAC's mobilization to the site. Due to the heavy equipment required to position the poles, and the potential for unexploded ordinance in the marsh/brush area downwind of the proposed burn area, the support poles were positioned on solid ground along the edge of the marsh off Ricketts Point Road. Two nights before the scheduled burn, a spontaneous fire burned the marsh area between Watsons Creek and Ricketts Point Road right up to the support poles. The support poles were used to hold the sampling devices 15 feet above the ground, this positioned the samplers in the plume but out of the potential burn path of the fire. The collection of sampling devices was hoisted up the support pole after setting the timers on the individual pumps. The trip wire for each SUMMA canister allowed the solenoid valve for each SUMMA to be triggered from ground level. Each SUMMA was triggered just before sampling personnel left the potential burn area for a safe zone upwind. When all personnel were out of the area, the APG Fire Department initiated the burn.

RESULTS

- <u>VOCs</u>: Benzene and toluene were the only target VOCs detected in any of the samples. The detected concentrations of these two compounds were between 0.4 and 0.6 parts per billion volume (ppbv). These concentrations should be regarded as not detected because 0.6 ppbv each of benzene and toluene were detected in the trip blank. For complete analytical results for VOCs, see the Analytical Report in Appendix A.
- <u>PAHs</u>: No PAHs were detected in any of the samples. For complete analytical results for PAHs see the Analytical Report in Appendix B.
- <u>Inorganic Acids</u>: No inorganic acids were detected in any of the samples. For complete analytical results for inorganic acids see the Analytical Report in Appendix B.

c:\MyFiles\R1a00110\OFIELD1\tr1299.110

- Dioxins/Furans: A summary of dioxins/furans results can be found in Table 1. The method blank contained OCDD. 1234678-HpCDF. and OCDF: none of the sample results for these compounds were greater than five times the concentration detected in the method blank. The results for each of those compounds should be regarded as not detected. The trip blanks contained 123678-HxCDD, 1234678-HpCDD, OCDD, 12378-PeCDF, 1234678-HpCDF, and OCDF. None of the samples contained concentrations of 123678-HxCDD, 1234678-HpCDD, or 12378-PeCDF exceding five times the concentrations detected in the trip blank; the results for these compounds should be regarded as not detected. The field blank contained 12378-PeCDD. None of the samples contained 12378-PeCDD at concentrations greater than five times the detected field blank concentration The results for 12378-PeCDD should be regarded as not detected. The total dioxins/furans detected at each location after adjusting for the compounds regarded as not detected are as follows: O-2(not detected). O-3(not detected), O-4(0.0491 picograms per cubic meter (pg/m³)), O-5(0.705 pg/m³), O-UW1(not detected), and O-UW2(not detected). For complete analytical results for dioxins/furans, see the Analytical Report in Appendix B.
- <u>Metals</u>: A summary of metals results can be found in Table 2. The tin concentration detected in sample 28050 should be regarded as estimated because the acceptable quality control (QC) limits for the percent recovery of the blank spike (BS) and blank spike duplicate (BSD) were exceeded. All other concentrations should be regarded an not detected because they were each less than 5 times the lot blank concentration. For complete analytical results for metals, see the Analytical Report in Appendix B.
- <u>CWAs</u>: No chemical warfare agents were detected in any of the samples. CWA results are provided by SBC COM, see Appendix C.
- <u>Particulates</u>: Particulates results are shown in Figures 2 through 8. The overall maximum concentration of 54.9 micrograms per cubic meter ($\mu g/m^3$) was detected at location O-UW1.
- <u>Meteorological data</u>: Windroses representing local wind speed and wind direction during the burn period are provided in Appendix D. The data was collected at H-Field using a 10-meter tower, and at Poverty Island using a 5meter tower. Winds at Poverty Island were predominantly out of the southwest, but were light and variable. H-Field recorded stronger winds at the 10-meter level, predominantly out of the south southwest.

Analysis for VOCs and PAHs were provided by REAC. Edison, NJ. Analysis for dioxins/furans, inorganic acids, and metals were provided by Southwest Research Institute, San Antonio, TX. Analysis for CWAs was provided by SBC COM, APG, MD.

FUTURE ACTIVITIES

Due to light winds and the wet marsh, the proposed burn area did not burn, only the area near the fire initiation line ignited. The sampling devices were too far away to capture the plume from the small burned area. A second controlled burn will be conducted at O-Field when the conditions are more favorable. After the O-Field burn is completed, the J-Field burn will be initiated. There are no eagle nesting restrictions affecting the J-Field burn.

·

Sample Number	28080	28081	28082	28083	28084	28085	28086	28088	28089
Sample Location	O-1(Field Blank)	0-2	0-3	0-1	0-5	<u>0-UW1</u>	<u>0-UW2</u>	Trip Blank	Trip Blank
Adjusted concentration ¹	pg	pg	Pg	pg/m^3	pg/m^3	pg/m^3	pg/m^3	pg/m^3	pg/m^3
1,2,3,7,8-PeCDD ⁴	4.35	U	U	6.9	U	7.85	5,85	U	U
1,2,3,6,7,8-HxCDD ³	U	U	U	U	U	U	1.02	U	0.862
1,2,3,4,6,7,8-HpCDD ³	U	U	0,192	U	U	0.277	U	U	0.0574
OCDD ²	U	0.0381	0.0548	U	U	0.0918	0.0306	0.0172	· 0.019
2,3,7,8-TCDF	υ	U	U_	U	0.526	U	U	U	U
1,2,3,7,8-PeCDF ³	U	0.3845	U	0.3895	0.351	U	0.52	0.374	0.209
1,2,3,4,7,8-HxCDF	U	U	U	U	0.179	U	U	U	U
1,2,3,7,8,9-HxCDF	U	U	U	0.0491	U	U	U	U	U
1,2,3,4,6,7,8-HpCDF ²	U	U	U	U	U	U	0.146	0.0712	U
OCDF ²	0.0115	0.0215	0.0263	0.0201	U	0.0511	0.0203	0.0113	U
Total	4.3615	0.4441	0.2731	7.3587	1.056	8.2699	7.5869	0.4737	1.1474

Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities
Summary of Dioxins/Furans Sampling Results - O-Field Controlled Burn - December 3, 2000

pg - picograms

.

pg/m^3 - picograms per cubic meter

¹ Adjusted concentration - detected concentration multiplied by the toxicity equivalency factor (TEF) for each compound.

²The OCDD results for samples 28081, 28082, 28085, 28086, 28088, and 28089; the 1,2,3,4,6,7,8-HpCDF results for samples 28086 and 28088; and the OCDF results for samples 28080, 28081, 28082, 28083, 28085, 28086, and 28088 should be regarded as not detected because the concentrations in the samples were less than 5 times the concentration in the method blank.

³The 1,2,3,6,7,8-HxCDD result for sample 28086; the 1,2,3,4,6,7,8-HpCDD result for samples 28082 and 28085; and the 1,2,3,7,8-PeCDF result for samples 28081, 28083, 28084, and 28086 should be regarded as not detected because the concentration in the sample is less than 5 times the concentration in the trip blank.

⁴The 1,2,3,7,8-PeCDD results for samples 28083, 28085, and 28086 should be regarded as not detected because the concentration in the samples , were less than 5 times the concentration in the field blank.

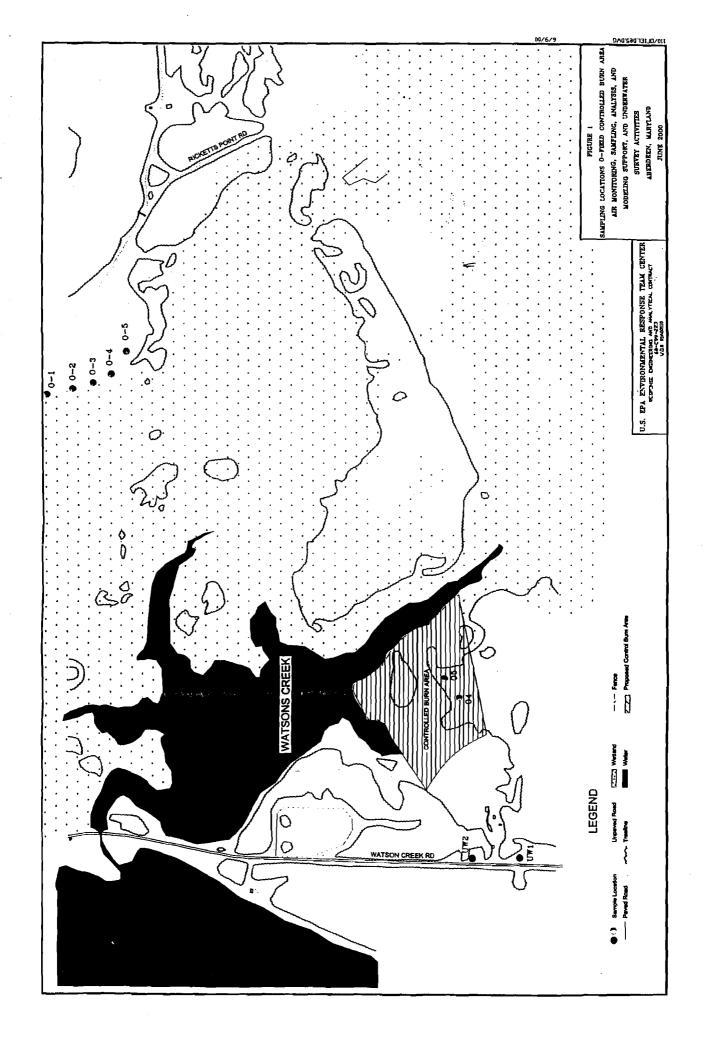
Table I

Sample Number	28050	28051	28052	28053	28054	28055	28056	28057	28058	28059
Location	0-1	O-2	0-3	O-4	O-5	O-UW1	0-UW2	Field Blank	Trip Blank	Lot Blank
Parameter	µg/m³	μg/m³	µg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/filter	µg/filter	µg/filter
Aluminum	U	1.5	3.5	2,7	4.0	2.0	2.0	1.3	1.3	2.3
Calcium	8.8	8.3	9 .0	9.0	9.7	10	9.0	5.4	5.5	5.5
Chromium	0.59	0:47	0.64	0.66	0.76	0.97	0.7	0.56	0.49	0.44
Iron	1.5	1.1	1.1	0.95	2.7	1.2	2.1	0.82	0.45	0.45
Phosphorus	U	U	U	U	Ū	U	U	U	U	U
Sodium	9.0	12.6	12.5	11.6	14	13.8	12	12.3	7.8	10
Tin	1.3	U	U	U	U	U	U	U	U	U
Zinc	0.21	U	0.25	0.23	0.33	0.31	0.16	0.11	U	0.12

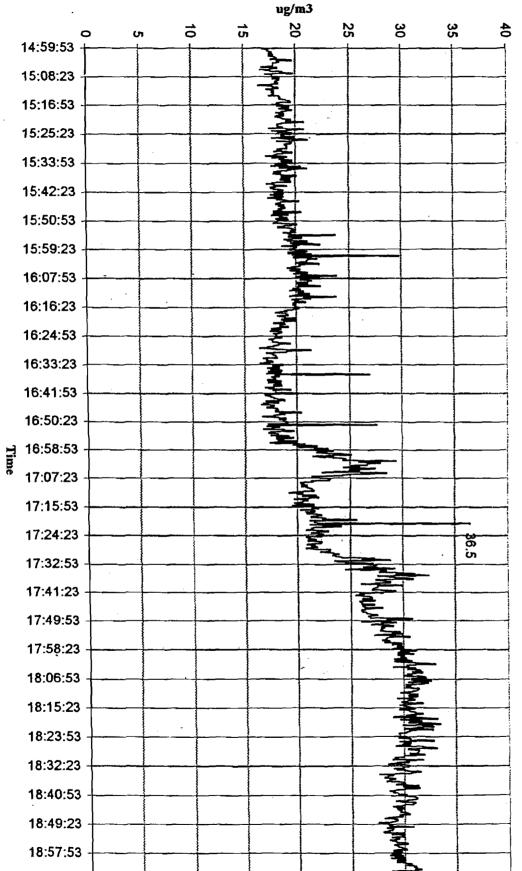
Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites Summary of Metals Sampling Results - O-Field Controlled Burn - December 3, 2000

¹Regard concentration as estimated, acceptable QC limits for the %Recovery of the BS and the BSD were exceeded.

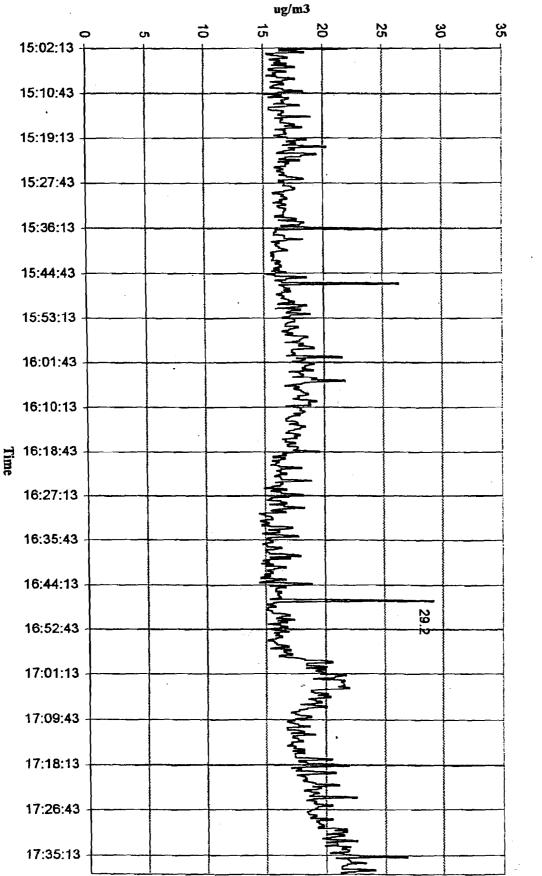
All detected concentrations for all compounds in this table should be regarded as not detected because they are each less than 5*(Lot Blank Concentration). $\mu g/m^3$ - micrograms per cubic meter


QC - Quality control

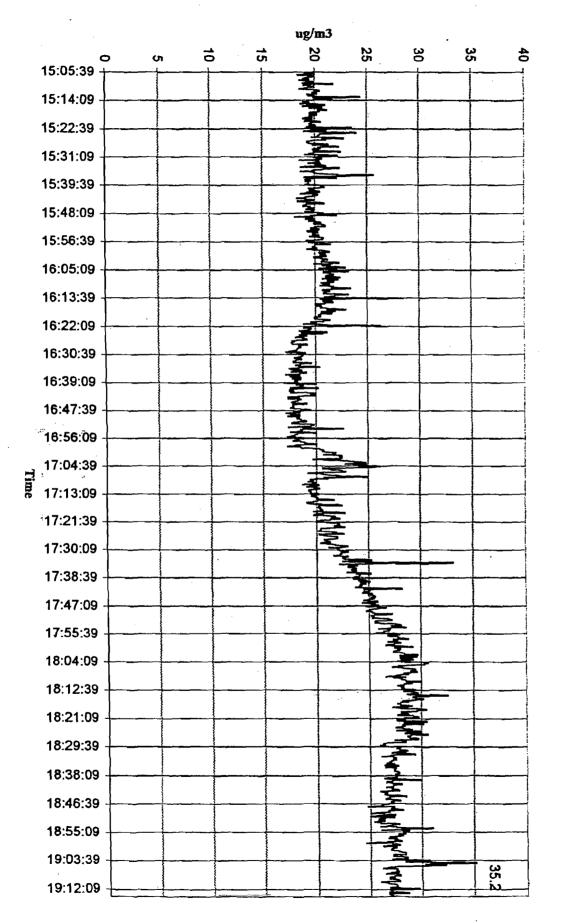
BS - Blank spike


BSD - Blank spike duplicate

15.60


Table 2

•


O Field Burn Data - Particulates Aberdeen Proving Ground December 3, 1999 Location: 0-1 Figure 2

O Field Burn Data - Particulates Figure 3 Aberdeen Proving Ground December 3, 1999 Location: 0-2


)

9

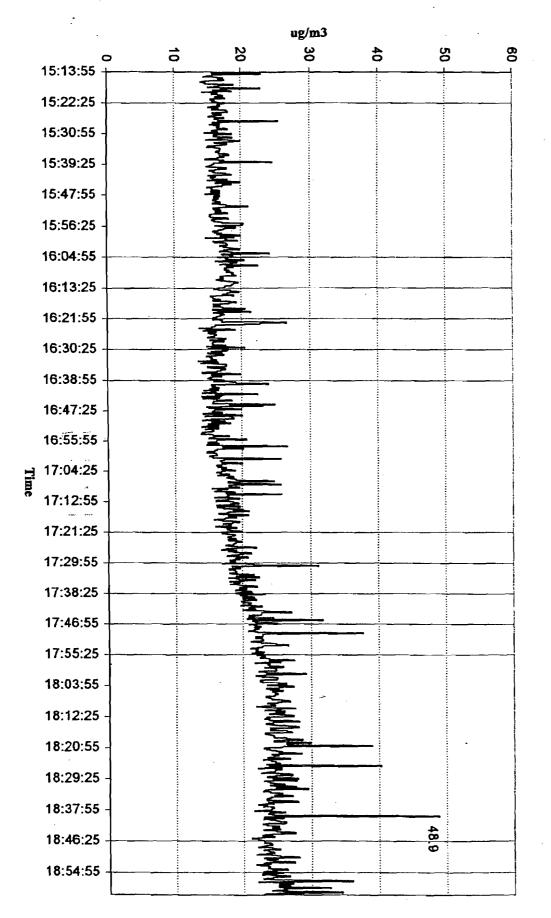

O Field Burn Data - Particulates Aberdeen Proving Ground December 3, 1999 Location: 0-3

Figure 4

O Field Burn Data - Particulates **Aberdeen Proving Ground** December 3, 1999 Location: 0-4 **Figure 5**

ĵ

O Field Burn Data - Particulates Aberdeen Proving Ground December 3, 1999 Location: 0-5

Figure 6

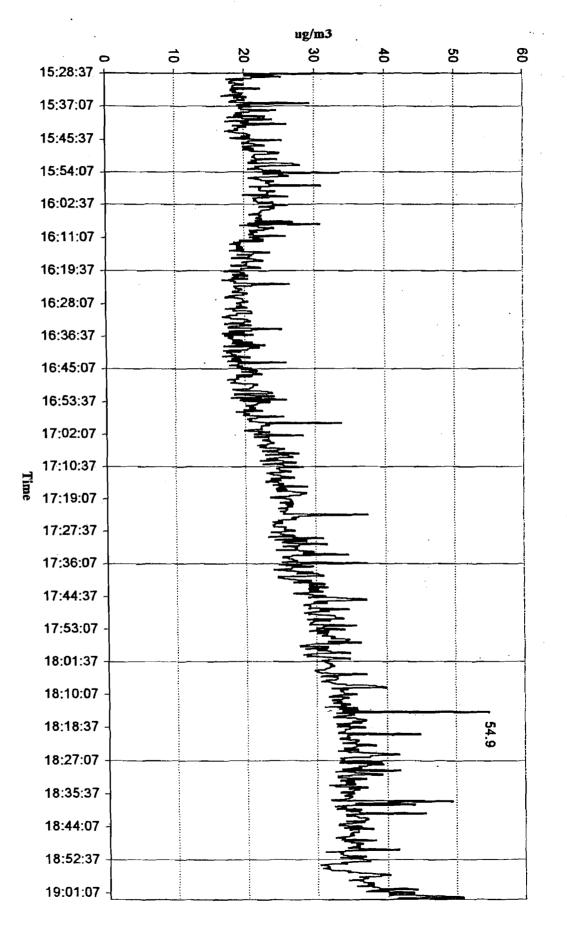
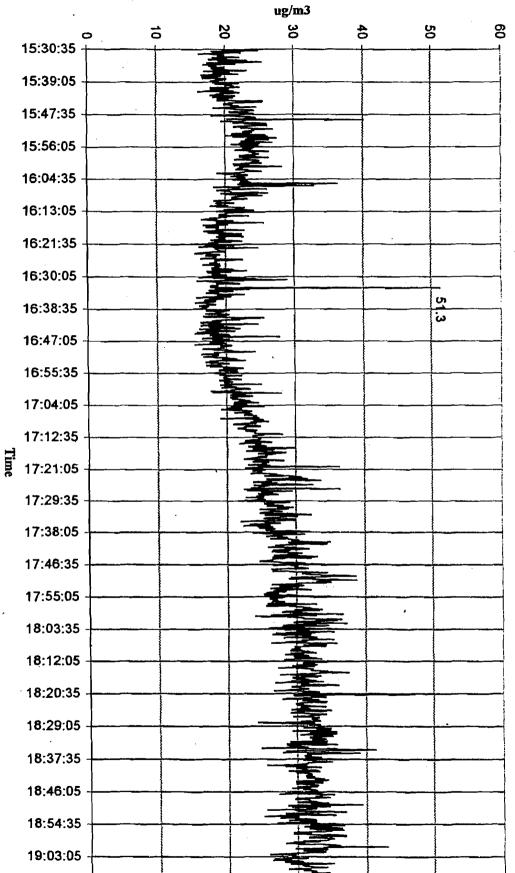



Figure 7 Aberdeen Proving Ground O Field Burn Data - Particulates December 3, 1999 Location: O-UW1

Ì

- Martin

O Field Burn Data - Particulates Aberdeen Proving Ground Location: O-UW2 December 3, 1999

Figure 8

APPENDIX A Analytical Report (VOCs) Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\OFIELD1\tr1299.110

)

)

.

ANALYTICAL REPORT

Prepared by Lockheed Martin Technology Services Group

Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Aberdeen, MD

January 2000

EPA Work Assignment No:0-110 LOCKHEED MARTIN Work Order No. R1A00110 EPA Contract No. 68-C99-223

Submitted to D. Mickunas EPA-ERTC

Dinpo

Task Leader

Lew Date

Dennis Miller Analytical Section Leader

Steven Clapp Date

Program Manager

Analysis by: REAC

Prepared by: G. Karustis JungSug Jang G. Ball

Reviewed by: D. Killeen V. Kansal

TABLE OF CONTENTS

<u>Topic</u>

1.0 INTRODUCTION		1
2.0 GC/MS CANISTER PROCEDURES		1
2.1 Sample Pressurization		1
2.2 Summa Canister Analysis		1
2.3 Calibration and Sample Spiking		1
2.4 Compound Identification/Quantitation		2
2.5 QA/QC		2
3.0 RESULTS	•	3
4.0 DATA ASSESSMENT		3

LIST OF TABLES

Table 1 - GC/MS Instrument Conditions	5
Table 2 - Air Toxic Standards (Concentrations and Quantitation Ions)	6
Table 3 - Air Toxic Target Compound Results for Summa Canister Samples	. 7
Table 4 - Air Toxic Non-target Compounds Summa Canister Sample Results	- 10
Table 5 - Air Toxic MS/MSD Recovery Summary for Summa Canister Samples	20

APPENDIX A - CHAIN-OF-CUSTODY

APPENDIX B - SUMMA CANISTER DATA

(J 005)

23

21

Page Number

1.0 INTRODUCTION

Summa canister samples were collected at the Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site in Aberdeen, MD on 03 December 1999. A total of eight (8) samples were collected in 6-liter passivated Summa canisters, the samples were transported back to the Environmental Response Team Center (ERTC) facility in Edison, New Jersey. These samples were analyzed by the Response Engineering and Analytical Contract (REAC) using gas chromatography/mass spectrometry (GC/MS) on 06, 07, and 08 December 1999.

2.0 GC/MS CANISTER PROCEDURES

2.1 <u>Sample Pressurization</u>

The Summa canisters used for sampling were cleaned by REAC using REAC Standard Operating Procedure (SOP) #1703 and were selected from batches certified clean by REAC. Before analysis, all canisters were pressurized. A pressurizing train was setup with a pressure gauge accurate to ± 0.1 pounds per square inch absolute (psia). The gauge and train were purged with nitrogen gas (Ultra High Pure grade) for 5 minutes. The train was then connected to the canister, an initial reading was taken. Nitrogen was added to all canister samples to bring the canister pressure to 3 times the initial reading, except 29007 trip blank.

	•	Initial	<u>Final</u>
Sample	<u>Location</u>	<u>Pressure (psia)</u>	<u>Pressure (psia)</u>
29007	Trip Blank	0.7	20.0
29000	01	8.2	24.6
29001	02	10.2	30.6
29002	03	9.2	27.6
29003	04	8.5	25.5
29004	05	9.8	27.4
29005	UPW1	10.4	31.2
29006	UPW2	8.3	24.9

2.2 <u>Summa Canister Analysis</u>

Samples were analyzed by cryogenic trapping of aliquots from Summa canisters via a canister using a Hewlett-Packard 5890 gas chromatography (GC) and 5971A mass selective detector (MSD) running ChemStation software. Table 1 lists cryogenic trap and GC/MS conditions.

)

All canisters were attached to the Summa canister autosampler. Sample analysis began by cooling the first cryotrap, module -1 (M-1), to -160 degree Celsius (°C). Once M-1 was cooled, a specified aliquot of sample or standard was cryotrapped. This aliquot was transferred to a Tenax trap, M-2, to eliminate most of the water, and then cryofocussed at a third trap, M-3, before injection by direct heating.

2.3 Calibration and Sample Spiking

A twenty-five (25) compound standard was provided in compressed gas cylinder No ALM009519 by Scott Specialty Gases, Inc. This standard was diluted from 1 part per million volume (ppmv) to 20 parts per billion volume (ppbv) in a Silco canister. An initial calibration range was obtained by varying the volume of the 20 ppbv standard from 50 to 1250 milliliters (mL), equivalent to 1 nanoliter (nL) to 25 nL. Daily standards were obtained by analyzing the 20 ppbv standard at 500 mL (equivalent to 10 nL).

Bromochloromethane (BCM) and p-bromofluorobenzene (BFB) were added to both samples and standards. Both standards were provided in compressed gas cylinder No. ALM046281 by Scott Specialty Gases. BCM was used as an internal standard and BFB was used as a surrogate standard. This standard was diluted from 1 ppmv to 100 ppbv in a Silco canister. An aliquot of 100 mL (equivalent to 10 nL) was added to all standards and samples. To validate the mass spectrometer tuning, an aliquot of 70 mL (equivalent to 50 nanograms of BFB) was analyzed alone. Standard cylinder 1.D. numbers, concentrations, and their quantitation ions are listed in Table 2.

2.4 <u>Compound Identification/Quantitation</u>

Contaminants in samples were identified and quantitated by the ChemStation software. This software was designed in order to tentatively identify and quantitate target compounds, using reconstructed and extracted ion chromatogram which were matched with retention time windows. The report format prints the identified compound mass spectra (both raw and background subtracted), quantitation, and qualifier ion chromatogram.

Target compound results are originally reported in nL. The limit of quantitation (LOQ) for all the target compounds is estimated to be 1 nL, being the lowest volume of standard on the calibration curve. The target compound results are calculated in ppbv using the following equation:

Concentration(ppbv) = <u>Quant Result (nL) x 1000</u> <u>Undiluted Sample Volume(mL)</u>

The quantitation limit was 4 ppbv.

Non-target compounds were identified by a library search of all peaks in a chromatogram. The library search report prints out the sample spectrum along with the ten best library matches and the three best library match spectra. These matches were used along with mass spectral interpretation techniques to tentatively identify the unknowns. Concentrations were calculated based on the total ion response of bromochloromethane in the daily standard. All compounds appearing in the method blank as well as other background compounds commonly found in Summa canister GC/MS analyses (siloxanes, carbon dioxide, etc.) were deleted from the sample results to provide a true listing of the compounds in the samples.

2.5 <u>QA/QC</u>

The following QA/QC procedures were performed for this analysis:

- The HP 5971A was tuned daily for perfluorotributylamine (PFTBA) to meet abundance criteria for p-bromofluorobenzene as listed in EPA Method 624. Tuning results are included in the QA/QC data section (Appendix B). The tune was adjusted when necessary.
- An initial calibration by automated injection from a Silco canister standard at 20 ppbv was performed on 25 September 1999. All compounds met the acceptance criteria of having relative standard deviations (RSD) of less than 25%, except chloroethane (29.03%), 1,1,1-trichloroethane (25.71%) and carbon tetrachloride (26.97%).
- Continuing calibrations were performed on 06, 07, and 08 December 1999 to satisfy the 12 hour requirement.
 All compounds met the acceptance criteria of having relative percent difference (RPD) less than 25%.
- A surrogate standard of BFB was added to all standards and samples. Percent recoveries were calculated against daily standards, and are listed in Table 3. Recoveries should be within 70% to 130% for BFB.

- Method blanks were analyzed after continuing calibrations to ensure that the system was clean.
- A duplicate was analyzed on sample 29000 (01).
- One set of matrix spike and matrix spike duplicates (MS/MSD) was analyzed on sample 29006 (UPW2) by spiking the samples with 500 mL of the 20 ppbv standard. There is no specific recovery range established according to SOP # 1705.

3.0 <u>RESULTS</u>

Summa canister target and non-target results are listed in Tables 3 and 4, respectively. The recoveries for the MS/MSD are presented in Table 5. All results are reported in ppbv for Summa canister samples and blanks. The chain-of-custody is in Appendix A. The Summa canister data is in Appendix B.

In Appendix B, the Analysis Log is followed by the calibration package for each day of analysis. The calibration package includes the daily analysis log, canister pressurization log, BFB tune, and initial or continuing calibration quant report. The quant report lists the retention time, quantitation ion, peak area, and concentration in nL. Concentrations listed on this quant report are generated by using the average response factors of the initial calibration and the response factors of the continuing calibrations.

The following is a list of the QA/QC flags used in qualifying the results:

- A Assumed volume for method blank.
- B Concentration less than 3 times method blank value.
- C Compound calibration relative standard deviation (RSD) >25% (concentrations calculated by average response factor only).
- E Exceeds calibration range.
- J Below 1.0 nL quantitation limit.
- U -Not detected.

4.0 DATA ASSESSMENT

The following summarizes the data validation performed on the air toxic analysis of 8 Summa canister air samples received at REAC on 12/6/99, chain of custody 03218, collected on 12/3/99 for the Air Monitoring, Sampling, Analysis and Modeling Support, and Underwater Survey Activities project, WA# 0-110.

The data in this report have been validated to two significant figures. Any other representation of the data is the responsibility of the user.

The samples were treated with procedures consistent with those specified in SOP #1008.

The method blank of 12/7/99 contained 0.4 ppbv of benzene. The concentrations of benzene in samples 29004, 29005 and 29006 should be regarded as not detected.

The trip blank, sample 29007, contained 0.7 ppbv of trichlorofluoromethane, 0.6 ppbv of 1,1-dichloroethene, 0.8 ppbv methylene chloride, 0.6 ppbv trans 1.2-dichloroethylene, 0.6 ppbv 1,1-dichloroethane, 0.7 ppbv trichloroethane, 0.5 ppbv 1,2-dichloroethane, 0.6 ppbv benzene, 0.7 ppbv carbon tetrachloride, 0.6 ppbv trichloroethylene, 0.6 ppbv dibromomethane, 0.5 ppbv bromochloromethane, 0.6 ppbv of toluene and 0.6 ppbv tetrachloroethylene. The data are affected as follows:

The concentrations of benzene and toluene in samples 29000, 29001, 29003, 29004, 29005 and 29006 should be regarded as not detected.

The concentration of toluene in sample 29002 should be regarded as not detected.

The remainder of the data are not affected as the other analytes detected in the trip blank were not detected in the samples.

In the initial calibration of 9/25/99 the acceptable QC limits were exceeded for the percent relative standard deviation for 1,1,1-trichloroethane (26%) and carbon tetrachloride (27%). The data are not affected because these analytes were not detected in the associated samples.

0110/DEL/AR/0001/report

÷

TABLE 1 - GC/MS Instrument Conditions

Single Tube Desorber Conditions Α. : 20°C **Cool Desorb Temperature** Cool Desorb Time : 1 minute Cool Desorb Flow : 50 mL/min Hot Desorb Temperature : 240°C Hot Desorb Time : 10.0 minute Hot Desorb Flow : 50 mL/min (2) Preconcentrator Conditions: M-1 Cryotrap Temperature :-160°C Internal Standard Trap Time : 1.0 minute Sample flow : 150 mL/min M-1 Cryotrap Desorb Temperature : 20°C M-2 Cryotrap Temperature :-10°C Transfer (M-1 to M-2) Time : 4.5 minutes M-2 Cryotrap Desorb Temperature : 240°C M-3 Cryotrap Temperature :-160°C : 3.5 minutes Transfer (M-2 to M-3) Time

: 2.0 minutes

C. GC/MS Conditions, Sample Analysis:

Injection Time

: 40.0°C
: 6.0 minutes
: 8.0°C/min
: 185.0°C
: 11.4 minutes
: 35.5 minutes
: 35 to 250 AMU.

Column: 0.32 mm x 60 meter Restek RTx-5, 1.50 um film thickness (Restek Corporation)

TABLE 2 - Air Toxic Standards (Concentrations and Quantitation lons)

Compound	Cylinder	Conc. (ppmv)	Quant. Ion
chloromethane	ALM009519	0.98	50
vinyl chloride	 ALM009519 	0.97	62
chloroethane	ALM009519	1.00	64
richlorofluoromethane	ALM009519	1.04	ĺ1 01
1,1-dichloroethene	ALM009519	1.02	• 61
dichloromethane	ALM009519	1.00	49 .
trans-1,2-dichloroethene	ALM009519	1.00	61 ·
1,1-dichloroethane	ALM009519	1.02	63
richloromethane	ALM009519	1.02	83
1,1,1-trichloroethane	ALM009519	1.01	97
1,2-dichloroethane	ALM009519	1.02	62
benzene	ALM009519	1.00	78
carbon tetrachloride	ALM009519	0.98	117 .
trichloroethene	ALM009519	1.00	130
dibromomethane	ALM009519	0.98	174
bromodichloromethane	ALM009519	1.01	83
toluene	ALM009519	1.01	91
1,1,2-trichloroethane	ALM009519	0.98	97
tetrachloroethene	ALM009519	1.00	166
ethylbenzene	ALM009519	1.01	91
meta-xylene	ALM009519	1.02	91
styrene	ALM009519	1.04	104
ortho-xylene	ALM009519	1.04	91
1,1,2,2-tetrachloroethane	ALM009519	1.00	83
1,3,5-trimethylbenzene	ALM009519	1.05	120
Surrogate Standards			
bromochloromethane	ALM046281	1.06	49
p-bromofluorobenzene	ALM046281	1.06	

WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites (concentrations in ppby)

Sample Number	Method	29007	29000	29000 Rep	29001
Sample Location	Blank	Trip Blank	01	01	02
Date Sampled	N/A	12/03/99	12/03/99	12/03/99	12/03/99
Date Analyzed	12/07/99	12/06/99	12/06/99	12/06/99	12/06/99
Data File	CET016	ABS001	ABS002	ABS013	ABS003
Chloromethane	40	4 U	4 U	4 U [4 U
Vinyl Chloride	4 U	4 U	4 U	4 U	4 U
Chloroethane	4 U	<u>4</u> U	4 U	4 U	4 U
Frichlorofluoromethane	4 U	0.7 J	4 U	4 U	4 U
1,1-Dichloroethene	4 U	0.6 J	4 U	4 U	4 U
Methylene Chloride	4 U	0.8 J	4 U	4 U	4 U
rans-1,2-Dichloroethylene	4 U	0.6 J	4 U	4 U	4 U
1,1-Dichloroethane	4 U'	0.6 J	4 U	4 U	4 U
Trichloromethane	4 U	4.0 U	4 Ū	4 U	- 4 U
1,1,1-Trichloroethane	4 U	0.7 J	4 U	4 0	4 U
1,2-Dichloroethane	4 U [0.5 J		4 U	· 4 U
Benzene	4 U	0.6 J	0.4 J	0.4 J	0.4 J
Carbon Tetrachloride	4 U	0.7 J	4 U	- 4 U	4 U
Trichloroethylene	4 U [0.6 J	4 U	4 U .	4 U
Dibromomethane	4 U	0.6 J	4 U	4 U	
Bromodichloromethane	4 U	0.5 J ·	4 U	4 U	·····4
Toluene	4 U	0.6 J	0.6 J	0.6 J	0.5 J
1,1,2-Trichloroethane	4 U	4 U	· 4 U	4 U	- 4 U
Tetrachloroethylene	4 U	0.6 J	<u> </u>	4 U .	4 U
Ethylbenzene	· 4 U	4 U	4 U	4 U	4 U
m & p-Xylenes	4 U	4 U	4 Ū	4 U	4 U
Styrene	4 U	4 U	4 U	4 U	· · 4 · U
o-Xylene	4 U ·	4 U	4 U	4 U	· 4 U
1,1,2,2-Tetrachloroethane	4 U	<u>4</u> U	4 U	- 4 U	4 U
1,3,5-Trimethylbenzene	4 U	4 U -	4_Ŭ	4 U	4 U
p-Bromofluorobenzene (% Rec)	117	116	123	125	125
Pressurized Sample Volume (mL)	250	250	750	750	750
Initial Pressure (psia)	N/A	N/A	8.2	10.4	10.2
Final Pressure (psia)	<u>N/A</u>	N/A	24.6	31.2	30.6
Quantitation Limit (ppbv)	4	- 4	4	4	4

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

N/A - Not Applicable

Sec. 10

Table 3 (cont.) Air Toxic Target Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites (concentrations in ppbv)

Sample Number	29002	29003	Method	29004	29005
Sample Location	03	04	Blank	05	UPW1
Date Sampled	12/03/99	12/03/99	N/A	12/03/99	12/03/99
Date Analyzed	12/06/99	12/06/99	12/07/99	12/07/99	12/07/99
Data File	ABS004	ABS005	ABS007	ABS011	ABSD12
Chloromethane	4 U	40	·4 U	4 U	4 0 1
Vinyl Chloride	4 U	4 U	4 U	4 U	4 U
Chloroethane	4 U	<u>4</u> U	4 U	4 U	4 U
Trichlorofluoromethane	4 U	4 U	4 U	4 U	4 U
1,1-Dichloroethene	<u>4</u> U	4 U	4 U	4 U	4 U
Methylene Chloride		<u>4</u> U	4 U	4 U	4 U
trans-1,2-Dichloroethylene	4 U	4 U	4 U	4 U	4 U
1,1-Dichloroethane	4 U	4 U	4 U	4 U	4 U
Trichloromethane	4 U	4 U	4 U	4 U	4 U
1,1,1-Trichloroethane	4 U	4 U	4 U	4 U	4 U
1,2-Dichloroethane	4 U	4 U	4 U	4 U	4 U
Benzene	4 U	0.4 J	· 0.4 J	0.4 J	0,4 J
Carbon Tetrachloride	4 U	4 U	4 U	4 U	4 U
Trichloroethylene	4 U	4 U	4 U	4 U'	4 U
Dibromomethane	4 U	4 U	4 U	4 U	4 U
Bromodichloromethane	4 U	4 U	4 U	4 U	4 U
Toluene	0.6 J	0.5 J	4 U	0.6 J	0.5 J
1,1,2-Trichloroethane	4 U	4 U	4 U	4 U	4 U
Tetrachloroethylene	4 U	<u>4</u> U	4.U	4 U	4 U
Ethylbenzene	4 U	4 U	4 U	4 U	4 U
m & p-Xylenes	4 U	4 U	4 U	4 U	4 Ú
Styrene	4 U	4 U	4 U	4 U	4 U
o-Xylene	4 U	4 U	<u>4</u> U	4 U	4 U
1,1,2,2-Tetrachloroethane	4 U	4 U	4 U	4 U	4 U
1,3,5-Trimethylbenzene	4 U	<u>4 U</u>	4 U	4 U	4 U
				· ·	
p-Bromofluorobenzene (% Rec)	130	128	117	126	129
Pressurized Sample Volume (mL)	750	750	250	750	750
Initial Pressure (psia)	9.2	8.5	N/A	9.8	10.4
Final Pressure (psia)	27.6	25.5	N/A	27.4	31.2
Quantitation Limit (ppbv)	4	4	4	4	4

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

N/A - Not Applicable

...

Table 3 (cont.) Air Toxic Target Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites (concentrations in ppbv)

Ż

Sample Number	29006
Sample Location	UPW2
Date Sampled	12/03/99
Date Analyzed	12/07 <i>1</i> 99
Data File	ABS014
Chloromethane	4 U
Vinyl Chloride	4 U
Chloroethane	
Trichlorofluoromethane	4 U
1,1-Dichloroethene	4 U
Methylene Chloride	4 U_
trans-1,2-Dichloroethylene	. 4 U
1,1-Dichloroethane	4 U
Trichloromethane	4 U
1,1,1-Trichloroethane	4 U
1,2-Dichloroethane	4 U
Benzene	0.4 J
Carbon Tetrachloride	4 U
Trichloroethylene	4 U
Dibromomethane	4 U
Bromodichloromethane	4 U
Toluene	0.5 J
1,1,2-Trichloroethane	4 U
Tetrachloroethylene	4 U
Ethylbenzene	4 U
m & p-Xylenes	4 U
Styrene	4 U
o-Xylene	4 U
1,1,2,2-Tetrachloroethane	4 U
1,3,5-Trimethylbenzene	4 U
p-Bromofluorobenzene (% Rec)	126
Pressurized Sample Volume (mL)	750
Initial Pressure (psia)	8.3
Final Pressure (psia)	24.9
Quantitation Limit (ppby)	4

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

N/A - Not Applicable

Sample Number:	Method	Reference Standard:	Bromochloromethane
Sample Location:	Blank	Reference Std Conc. (ppbv):	21.2
Sample Volume (mL):	250	Reference Std Volume (mL):	500
Date Sampled:	N/A	Reference Std Area:	11910887
Date Analyzed:	12/07/99	Initial Pressure (psig):	N/A
Data File:	CET016	Final Pressure (psig):	N/A
Compound Name	Retention Time	Алеа	Concentration (ppbv)
dichlorodifluoro-methane	6.114	589021	

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

. .

	29007	Defenses Standards	D
Sample Number:			Bromochloromethane
Sample Location:	Trip Blank	Reference Std Conc. (ppbv):	. 21.2
Sample Volume (mL):	250	Reference Std Volume (mL):	500
Date Sampled:	12/03/99	Reference Std Area:	11910887
Date Analyzed:	12/06/99	Initial Pressure (psig):	N/A
Data File:	ABS001	Final Pressure (psig):	N/A
Compound Name	Retention Time	Area	Concentration (ppbv)
dichlorodifluoro-methane	6 1 1 4	605224	2

* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

...

• •

Sample Num	iber: 2900	0 Reference Standard:	Bromochloromethane
Sample Loca	tion: 0	1 Reference Std Conc. (ppbv):	21.2
Sample Volume (mL): 75	0 Reference Std Volume (mL):	500
Date Samp	oled: 12/03/9	9 Reference Std Area:	11910887
Date Analy	zed: 12/06/9	9 Initial Pressure (psig):	· 8.2
Data	File: ABS00	2 Final Pressure (psig):	24.6
Compound Name	Retention Tim	e Area	Concentration (ppbv)
dichlorodifluoro-metha	ine 6.09	8 689263	2.

* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

Sample Number:	29001	Reference Standard:	Bromochloromethane
Sample Location:	02	Reference Std Conc. (ppbv):	21.2
Sample Volume (mL):	750	Reference Std Volume (mL):	500
Date Sampled:	12/03/99	Reference Std Area:	11910887
Date Analyzed:	12/06/99	Initial Pressure (psig):	10.2
Data File:	ABS003	Final Pressure (psig):	30.6
Compound Name	Retention Time	Агеа	Concentration (ppbv)
dichlorodifluoro-methane	6.098	664275	2 *

1

Sector.

* - Below 4 ppbv Limit of Quantitation

N/A - Not Applicable

Sample Number:	29002	Reference Standard:	Bromochloromethane
Sample Location:	03	Reference Std Conc. (ppbv):	21.2
Sample Volume (mL):	750	Reference Std Volume (mL):	500
Date Sampled:	12/03/99	Reference Std Area:	11910887
Date Analyzed:	12/06/99	Initial Pressure (psig):	9.2
Data File:	ABS004	Final Pressure (psig):	27.6
Compound Name	Retention Time	Area	Concentration (ppbv)
dichlorodifluoro-methane	6.114	636487	2 •

 Below 4 ppby Limit of Quantitation N/A - Not Applicable

Sample Number:	29003	Reference Standard:	Bromochloromethane	
Sample Location:	.04	Reference Std Conc. (ppbv):	21.2	
Sample Volume (mL):	750	Reference Std Volume (mL):	500	
Date Sampled:	12/03/99	Reference Std Area:	11910887	
Date Analyzed:	12/06/99	Initial Pressure (psig):	8.5	
Data File:	ABS005	Final Pressure (psig):	25.5	
Compound Name	Retention Time	Area	Concentration (ppbv)	
dichlorodifluoro-methane	6.122	629600	2	

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

-

Sample Number: Sample Location: Sample Volume (mL): Date Sampled: Date Analyzed:	Method Blank 250 N/A 12/07/99	Reference Standard: Reference Std Conc. (ppbv): Reference Std Volume (mL): Reference Std Area: Initial Pressure (psig):	Bromochloromethane 21.2 500 10549361 N/A
Data File:	ABS007	Final Pressure (psig):	N/A
Compound Name	Retention Time	Area	Concentration (ppbv)
dichlorodifluoro-methane	6.066	555849	2

* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

0016

Sample Number.	29004	Reference Standard:	Bromochloromethane
Sample Location:	05	Reference Std Conc. (ppbv):	21.2
Sample Volume (mL):	750	Reference Std Volume (mL):	500
Date Sampled:	12/03/99	Reference Std Area:	10549361
Date Analyzed:	12/07/99	Initial Pressure (psig):	9.8
Data File:	ABS011	Final Pressure (psig):	27.4
Compound Name	Retention Time	Area	Concentration (ppbv)
dichlorodifluoro-methane	6.082	615240	2_*

. .

Ì

~

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Sample Number:	29005	Reference Standard:	Bromochloromethane
Sample Location:	UPW1	Reference Std Conc. (ppbv):	21.2
Sample Volume (mL):	750	Reference Std Volume (mL):	500
Date Sampled:	12/03/99	Reference Std Area:	10549361
Date Analyzed:	12/07/99	Initial Pressure (psig):	10.4
Data File:	ABS012	Final Pressure (psig):	31.2
Compound Name	Retention Time	Area	Concentration (ppbv)
dichlorodifluoro-methane	6.075	599625	2 *

.....

* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

Sample Number:	29006	Reference Standard:	Bromochloromethane
Sample Location:	UPW2	Reference Std Conc. (ppbv):	21.2
Sample Volume (mL):	750	Reference Std Volume (mL):	500
Date Sampled:	12/03/99	Reference Std Area:	10549361
Date Analyzed:	12/07/99	Initial Pressure (psig):	8.3
Data File:	ABS014	Final Pressure (psig):	24.9
Compound Name	Retention Time	Area	Concentration (ppbv)
dichlorodifluoro-methane	6.066	638029	3 •

ł

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Table 5 Air Toxic MS/MSD Recovery Summary for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

Sample Number		29006	29006 MS		29006 MSI	D	
Sample Location		UPW2	UPW2		ÚPW2		
Date Sampled		12/03/99	12/03/99		12/03/99		
Date Analyzed	Spike	12/07/99	12/08/99	%	12/08/99	%	
Data File	Amount	ABS014	ABS018	Recovery	ABS019	Recovery	RPD
Chloromethane	9.8	U	10.13	103	10.03	102	1
Vinyl Chloride	9.7	U	10.05	104	9.87	102	2
Chloroethane	10.0	0]	10.59	106	10.54	105	0.5
Trichlorofluoromethane	10.4	U	9.93	95	9.85	95	1
1,1-Dichloroethene	10.2		10.27	101	10.15	100	· 1
Methylene Chloride	10.0	U	10.14	101	10.01	100	1
trans-1,2-Dichloroethene	10.0	U	10.18	102	10.08	101	1
1,1-Dichloroethane	10.2	U	10.09	99	9.87	97	2
Trichloromethane	10.2	<u> </u>	10.22	100	9.98	98	2
1,1,1-Trichloroethane	10.1	<u> </u>	9.67	96	9.25	92	4
1,2-Dichloroethane	10.2	U	10.04	98	9.76	96	3
Benzene	10.0	0.11	10.02	99	9.79	97	2
Carbon Tetrachloride	9.8	U	9.49	97	9.40	96	1
Trichloroethylene	10.0	U	10.05	101	9.84	98	2
Dibromomethane	9.8	υ	10.13	103	9.96	102	2
Bromodichloromethane	10.1	U	10.36	103	10.08	100	3
Toluene	10.1	0.13	10.33	101	10.34	101	0.1
1,1,2-Trichloroethane	9.8	U	10.77	110	10.67	109	1
Tetrachloroethylene	10.0	U	10.09	101	9.81	98	3
Ethylbenzene	10.1		11.20	111	11.06	110	1
meta & para-Xylenes	10.2	Ū	11.01	108	11.05	108	0.4
Styrene	10.4	U	10.63	102	10.75	103	1
ortho-Xylene	10.4	U	11.15	107	11.04	106	1
1,1,2,2-Tetrachloroethane	10.0	ບ	10.33	103	10.24	102	1
1,3,5-trimethlybenzene	10.5	U	9.69	92	9.51	91	2
p-Bromofluorobenzene (% Rec.)		126	104	N/Á	103	N/A	N/A

N/A - Not Applicable

APPENDIX A

Z. C.

CHAIN-OF-CUSTODY

Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities, Aberdeen, MD

Sampled on 3 December 1999

WA #: 0-110

0110/DEL/AR/0001/report

BEAC , E (008) 32 EPA Con	ic ∖, NJ 1, J htract 68- 84= ©?9	0022 AFB - 223	c	Project I Project I WoRPW Co	Name: Number	: KIF	CUSTOD Fun Su HOU/10 Jolinson		321~	1218		No: 03 SHEET NO. <u>1</u>	218
120699 -		Sample Id				. .	VOCS		An	alyses	Requested	ј	
REAC #	Sample No.	Sampling Location	Matrix	Date Colle	cted #	of Bottion	Container/Pres	ervative	Volund		tis N		
643	29000	<u>OL</u>	A	12/3/9	79	1	Summar	more	3.6		- 1		
644	29,001	02			/				3.6				
645	29002	03									~		
646	29003					·	┨		3.6	···	V		
647	29004	_05	┠╌┠╼┥	┝───┣──			╂_───┠──		3,6				-/
648	29005	UPW1 UPW2	┠╼╂╼┙	┟──╌╂╾╴			+		3.6				4
	29007	Trip blank		├ <u>─</u> ─┼ _─ ─		<u> </u>	<u>-</u>		3,6		2		
650	CIOUT	- per plane		↓			+		<u> </u>				A
							+						
		~										/ <u>\</u>	
	1		\sim									-//\	
002						1021							
22						Re	1						
						\leq						/	
	ļ											/	·
	·											∠	
											/		
}	+		}							\rightarrow			
l Matrix:		L	L	l	Special li	nstructions:		I				l	لا
SD- See DS- Dru DL- Dru	um Solids G um Liquids S	W - Potable Water W - Groundwater W - Surface Water L - Sludge	s. W. A.	Soil Water Oil Air				·	FR		CONTRAC AIN OF (#	TING USE	ONLY
Items/Rea	ison Rejinqu	ished By Date		ived By	Date	Time	Items/Reason	1 1 1	ished By	Date	Received I		Time
Stena		1-> 12ka	Dand	figuring !	12/1/21	75am	All Annups	Dassel	Leweny,	12/6/79		~ 779	Volon

Items/Reason	Relinquished By	Uate	Keceived By	Date	111110		Kennidulaned by		Received by	UNUS). I ime - j	Ι.
Stenalyn:	Marts	12/18	Dand Augurny !	aller	75am	All Amaly Dr	David Hereway	12/6/73		149	1011	pr.
	proper	1.07	· · · · · · · · · · · · · · · · · · ·) U			1		
												1
						I	L	L		\downarrow \downarrow		
707144					1					•		

APPENDIX B

Analytical Report (PAH, Inorganic Acids, Metals, and Dioxins/Furans) Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\OFIELD1\tr1299.110

.)

۰. ۱

ANALYTICAL REPORT

Prepared by Lockheed Martin

Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities Aberdeen Proving Ground, Aberdeen, MD

February 2000

EPA Work Assignment No. 0-110 LOCKHEED MARTIN Work Order No. R1A00110 EPA Contract No. 68-C99-223

Submitted to D. Mickunas EPA-ERTC

Ł

Dubois

D. Miller

Task Leader

Analytical Section Leader

S. Clapp Program Manager

Date

Date

Date

REAC SWRI

> Prepared by: G. Karustis

Analysis by:

Reviewed by: D. Killeen

110\DEL\AR\0002\REPORT

Table of Contents

Topic		Page N	umber
Introduction		Page	1
Case Narrative		Page	1
Summary of Abbreviations		Page	4
Section J		-	
Analytical Procedure for PAH in Air (XAD-2 Tubes)		Page	5
Analytical Procedure for Metals in Air		Page	8
Analytical Procedure for Polychlorinated Dibenzodioxins and			
Polychlorinated Dibenzofurans in Air		· Page	8
Analytical Procedure for Inorganic Acids in Air		Page	8
Results of the Analysis for PAH in Air	Table 1.1	Page	9
Results of the TIC for PAHs in Air	Table 1.2	Page	11
Results of the Analysis for Metals in Air	Table 1.3	Page	12
Results of the Analysis for Polychlorinated Dibenzodioxins and		_	
Polychlorinated Dibenzofurans in Air	Table 1.4	Page	14
Results of the Analysis for Inorganic Acids in Air	Table 1.5	Page	19
Section II	•.		
QA/QC for PAH in Air		Page	20
Results of the BS/BSD Analysis for PAH in Air	Table 2.1	Page	21
QA/QC for Metals in Air	,	Page	23
Results of the BS/BSD Analysis for Metals in Air	Table 2.2	Page	24
Results of the Analysis of the Laboratory Control Sample		-	
for Metals in Air	Table 2.3	Page	25
QA/QC for Polychlorinated Dibenzodioxins and Polychlorinated Dibe Results of the Internal Standard Recoveries for Polychlorinated Dibenzodi	oxins	Page	26
and Polychlorinated Dibenzofurans in Air	Table 2.4	Page	27
Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxin and	T 11 0 C		
Polychlorinated Dibenzofurans in Air	Table 2.5	Page	28
QA/QC for Inorganic Acids in Air		Page	29
Results of the BS/BSD Analysis for Inorganic Acids in Air	Table 2.6	Page	30
Section III			
Communications		Page	31
Chains of Custody		Page	32
		5.	
Appendix A Data for PAH in Air		Page 1	475 001
Appendix B Data for Metals in Air		-	012 001
Appendix C Data for Dioxins in Air		-	015 001
Appendix D Data for Inorganic Acids in Air		-	013 001
· · · · · · · · · · · · · · · · · · ·		1 050 3	010 001
Appendices will be furnished on request.			

110\DEL\AR\0002\REPORT

.

-

)

Introduction

REAC in response to WA # 0-110, provided analytical support for environmental samples collected from Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities, located in Aberdeen Proving Ground, Aberdeen, MD as described in the following table. The support also included QA/QC, data review, and preparation of an analytical report containing a summary of the analytical methods, the results, and the QA/QC results.

The samples were treated with procedures consistent with those described in SOP # 1008 and are summarized in the following table:

COC #	Number of Samples	Sampling Date	Date Received	Matrix	Analysis	Laboratory
03215	9	12/3/99	12/6/99	Air	Dioxin	SWR1*
03217	10	12/3/99	12/6/99	Air	NIOSH 5515	REAC
03132	10	. 12/3/99	12/6/99	Air	Inorganic Acids	SWRJ*
03133	10	12/3/99	12/6/99	Air	Metals	SWRI*

* SWRI denotes Southwest Research Institute

Case Narrative

The data in this report have been validated to two significant figures. Any other representation of the data is the responsibility of the user.

PAH in Air Package 1 475

The data were examined and were found to be satisfactory.

Metals in Air Package J 012

The lot blank contained 2.3 μ g/ filter aluminum, 5.5 μ g/ filter calcium, 0.44 μ g/ filter chromium, 0.45 μ g/ filter iron, 10.0 μ g/ filter sodium and 0.12 μ g/ filter zinc. The data are affected as follows:

110\DEL\AR\0002\REPORT

积的财产

The results for calcium, chromium, iron, sodium and zinc in sample 28050 should be regarded as not detected because the concentration of analyte was less than five times that of the lot blank.

The results for aluminum, calcium, chromium, iron and sodium in samples 28051 and 28058 (the trip blank) should be regarded as not detected because the concentration of analyte was less than five times that of the lot blank.

The results for aluminum, calcium, chromium, iron, sodium and zinc in samples 28052, 28053, 28054. 28055, 28056 and 28057 (field blank) should be regarded as not detected because the concentration of analyte was less than five times that of the lot blank.

The acceptable QC limits for the percent recovery were exceeded in the laboratory control sample for phosphorous (73%), tin (63%) and zirconium (62%). The concentrations of these metals in samples 28050, 28051, 28052, 28053, 28054, 28055, 28056, 28057, 28058 and 28059 should be regarded as estimated.

The acceptable QC limits for the percent recovery were exceeded in the blank spike for phosphorous (52%), tin (36%) and zirconium (37%) and in the blank spike duplicate for the same metals (51%, 34% and 35%, respectively). The concentrations of these metals in samples 28050, 28051, 28052, 28053, 28054, 28055, 28056, 28057, 28058 and 28059 should be regarded as estimated.

Dioxins in Air Package J 015

The samples were received at 12° C by the subcontract laboratory.

The method blank contained 38.2 pg OCDD, 12.4 pg 1234678-HpCDF and 24.3 pg OCDF. The data are affected as follows:

Sample ID	Analyte	The data should be regarded as
28080	OCDF	Not detected
28081	OCDD, OCDF	Not detected
28082	OCDD, OCDF	Not detected
28083	OCDF	Not detected
28085	OCDD, OCDF	Not detected
28086	OCDD, OCDF 1234678-HpCDF	Not detected
28088	OCDD, OCDF 1234678-HpCDF	Not detected
28089	OCDD	Not detected

The values in the above samples are regarded as not detected because they are less than five times the mass found in the method blank.

The trip blank, 28088, contained 17.2 pg OCDD, 7.48 pg 12378-PeCDF, 7.12 pg 1234678-HpCDF and 11.3 pg OCDF. The trip blank, 28089, contained 8.62 pg 123678-HxCDD, 5.74 pg 1234678-HpCDD, 19.0 pg OCDD and 4.18 pg 12378-PeCDF. The data are affected as follows:

Sample ID	Analyte	The data should be regarded as
28081	12378-PeCDF	Not detected
28082	1234678-HpCDD	Not detected
28083	12378-PeCDF	Not detected
28084	12378-PeCDF	Not detected

110\DEL\AR\0002\REPORT

00002

28085	1234678-HpCDD	Not detected
28086	12378-PeCDF, 123678-HxCDD	Not detected

The values in the above samples are regarded as not detected because they are less than five times the mass found in the trip blank.

Samples 28083, 28085 and 28086 had masses of 12378-PeCDD that were less than five times that found in the field blank. The values of 12378-PeCDD for these samples should be regarded as not detected.

In the ending calibration verification standard of 12/11/99 (9:06), the acceptable percent difference QC limits were exceeded for 12378-PeCDD (34%), 123478-HxCDD (20.7%), ¹³C-12378-PeCDF (62%), ¹³C-12378-PeCDD (64%) and ¹³C-OCDD (87%). The subcontract laboratory used the average relative response factor calculated from the two continuing calibrations bracketing samples, method blank 12/7/99, 28080 and 28081. Only estimated values or EMPC values were reported in the samples. The data are not affected.

The acceptable QC limits were exceeded for the percent recoveries of several internal standards. The internal standards in question and the samples and analytes involved are summarized as follows:

Sample ID	Internal standard	Effect
28086 /	¹³ C-2378-TCDF	The data are not affected
28088	¹³ C-2378-TCDF	The data are not affected
	¹³ C-1234678-HpCDF	The data for 1234678-HpCDF should be regarded as estimated.
28089	¹³ C-2378-TCDF	The data are not affected
	¹³ C-1234678-HpCDF	The data are not affected
Blank Spike	¹³ C-2378-TCDF	The data for 2378-TCDF should be regarded as estimated

Inorganic Acids in Air Package J 013

The data were examined and were found to be satisfactory.

110\DEL\AR\0002\REPORT

00003

Summary of Abbreviations

.

3

11.000

۰۰.

· - -

AA	Atomic Absorption
В	The analyte was found in the blank
BFB	Bromofluorobenzene
С	Centigrade
Đ	(Surrogate Table) this value is from a diluted sample and was not calculated
-	(Result Table) this result was obtained from a diluted sample
Dioxin	denotes Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans and/or
DIOXI	PCDD and PCDF
CLP	Contract Laboratory Protocol
COC	Chain of Custody
CONC	Concentration
CRDL	Contract Required Detection Limit
CRQL	Contract Required Quantitation Limit
DFTPP	Decafluorotriphenylphosphine
DL	Detection Limit
E	The value is greater than the highest linear standard and is estimated
EMPC	Estimated maximum possible concentration
ICAP	Inductively Coupled Argon Plasma
ISTD	Internal Standard
J	The value is below the method detection limit and is estimated
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MDL	Method Detection Limit
MI	Matrix Interference
MS	Matrix Spike
MSD	Matrix Spike Duplicate
MW	Molecular Weight
NA	either Not Applicable or Not Available
NC	Not Calculated
NR	Not Requested
NS	Not Spiked
% D	Percent Difference
% REC	Percent Recovery
PPB	Parts per billion
PPBV	Parts per billion by volume
PPMV	Parts per million by volume
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance/Quality Control
QL	Quantitation Limit
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
SIM	Selected Ion Monitoring
TCLP	Toxic Characteristics Leaching Procedure
υ	Denotes not detected
W	Weathered analyte; the results should be regarded as estimated
m3	cubic meter kg kilogram μ g microgram
L	liter g gram pg picogram
mL	milliliter mg milligram ng nanogram
μL	microliter
*	denotes a value that exceeds the acceptable QC limit
	Abbreviations that are specific to a particular table are explained in footnotes on that
	table
	Revision 1/5/00

110\DEL\AR\0002\REPORT

00004

• .

Analytical Procedure for PAH in Air (XAD-2 Tubes)

XAD-2 Tube Preparation

The XAD-2 tubes were analyzed for polycyclic aromatic hydrocarbons (PAH) using modified NIOSH Method 5515. The front, back and filter portions of the tubes were analyzed separately by extracting them with 2.0 mL methylene chloride. A preweighed filter was also collected with these tubes and this filter was extracted with 4.0 mL methylene chloride. One mL of extract was spiked with 20 μ L of a 2000 ppm XAD internal standards solution consisting of naphthalene-d₈, acenaphthene-d₁₀, phenanthrene-d₁₀, chrysene-d₁₂, and perylene-d₁₂, resulting in a 40.0 ppm concentration and analyzed.

GC/MS Analysis

An HP 6890 MSD, equipped with a 6890 autosampler and controlled by a personal computer equipped with HP-Enviroquant software was used to analyze the samples.

The instrument conditions were:

Column	Restek Rtx-5 (cross bonded SE-54) 30 meter x 0.25 mm ID, 0.50 μm film thickness.
Flow Rate	1 mL/min, EPC enabled
Injection Temperature	280° C
Transfer Temperature	280° C
Source Temperature &	
Analyzer Temperature	Controlled by thermal transfer of heat from Transfer Line
Temperature	280° C
Temperature Program	70° C for 0.5 min
	30° C/min to 295° C
	hold for 8 minutes
	30° C/min to 315° C; hold for 7 min
Pulsed Splitless Injection	Pressure Pulse = 16 psi for 1.0 min, then normal flow 8:1 Split Ratio
Injection Volume	լու
	Must use 4 mm 1D single gooseneck liners packed with 10 mm plug of silanized and conditioned glass wool

The GC/MS was calibrated using 6 PAH standards at 10, 25, 50, 75, 100 and 150 ppm. Before analysis each day the system was tuned with 50-ng decafluorotriphenylphosphine (DFTPP) and passed a continuing calibration check by analyzing a 50µg/mL daily standard. The QC limit for the initial calibration is %RSD less than 30 and %D less than 25 for the daily check. Sample quantification is based on the average response factor of the calibration curve or the response factor of the daily calibration check.

110\DEL\AR\0002\REPORT

The XAD-2 tube PAH results are listed in Table 1.1. Tentatively identified compounds are listed in Table 1.2. The following equations were used to calculate the analyte - total μ g/sample:

$$\mu g/sample = C_{\mu} x V x D E = \frac{A_{\mu} x C_{\mu} x V x D E}{A_{\mu} x R F}$$

where

C,	= Concentration of the analyte (μg/mL)
V	= Extraction Volume (mL)
DE	= Desorption Efficiency = 100/(% Recovery)
Α _υ	= Area of the analyte
C _{is}	= Concentration of the internal standard (µg/mL)
A _{is}	= Area of the internal standard

The Relative Response Factor, RRF, is calculated from the calibration standard mixture using

$$RRF = \frac{A_{u} x C_{is}}{A_{is} x C_{u}}$$

where

RRF	= Relative Response Factor (unitless)
A _u	= Area of Analyte in the standard mixture
C	= Concentration of Internal Standard in the standard mixture (µg/mL)
A _{is}	= Area of Internal Standard in the standard mixture
Cu	= Concentration of Analyte in the standard mixture (µg/mL)

The concentration of the analyte in mg/m³ and ppbv (parts per billion by volume) is calculated using the following:

$$mg/m^3 = \frac{(Total \mu g front + Total \mu g back)}{Liters Sampled}$$

$$ppbv = \frac{mg/m^3x 24.45x 1000}{MW}$$

where MW is the molecular weight of the analyte

Revision of 5/5/98

110\DEL\AR\0002\REPORT

00006

Compound	Quant Ion	Secondary lons
Naphthalene-d _s (IS)	136	108
Naphthalene	128	127, 129
2-Methylnaphthalene	142	141, 115
1-Methylnaphthalene	142	141, 115
Biphenyl	154	153, 152
2,6-Dimethylnaphthalene	156	141, 128
2-Fluorobiphenyl (SURR)	172	171, 173
Acenaphthene- d_s (IS)	164	162
Acenaphthylene	152	151, 153
Acenaphthene	153	152, 151
Dibenzofuran	168	139
Fluorene	166	167, 165
Phenanthrene-d ₁₀ (IS)	188	189
Phenanthrene	178	179, 176
Anthracene	178	179, 176
Carbazole	167	166, 168
Fluoranthene	202	101, 200
Pyrene	202	101, 200
Terphenyl-d ₁₄ (SURR)	244	243
Chrysene-d ₁₂ (IS)	240	236
Benzo(a)anthracene	228	226, 229
Chrysene	228	226, 229
Perylene-d ₁₂ (IS)	264	260
Benzo(b)fluoranthene	252	250, 126
Benzo(k)fluoranthene	252	250, 126
Benzo(e)pyrene	252	250, 126
Benzo(a)рутепе	252	250, 126
Indeno(1,2,3-cd)pyrene	276	138, 277
Dibenzo(a,h)anthracene	278	139, 278
Benzo(g,h,i)perylene	276	277, 138

LINEAR SCAN COMPOUND AND ION LIST FOR PAH/XAD TUBES

110\DEL\AR\0002\REPORT

Analytical Procedure for Metals in Air

The subcontract laboratory determined the metal concentration in the samples by analyzing them according to NIOSH method 7300. The results of the analysis are listed in Table 1.3.

Analytical Procedure for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

The subcontract laboratory determined the concentration of polychlorinated dibenzodioxins and polychlorinated dibenzofurans in the samples by analyzing them according to USEPA Method 8290. The results of the analysis are listed in Table 1.4.

Analytical Procedure for Inorganic Acids in Air

}

The subcontract laboratory determined the concentration of inorganic acids in the samples by analyzing them according to NIOSH Method 7903. The results of the analysis for the soil samples are listed in Table 1.5.

110\DEL\AR\0002\REPORT

Table 1.1 Results of the Analysis for PAH in Air
WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample No.	Lot E)79	28070		28071		28072		28073	
Sampling Location		Blank	0-1		0-2		0-3		0-4	
Volume (L))	474.6		458		462		460	
Compound Name	Conc.	MDL LIQ	Conc. ppbv	MDL ppbv	Conc. ppbv	MDL ppbv	Conc. ppbv	MDL ppbv	Conc. ppbv	MDL ppbv
Naphthalene	ប	8.6	U	3.5	U	3.6	U	3.6	U	3.6 ⁻
2-Methylnaphthalene	ប	9.1	U	3.3	U	3.4	U	3.4	U	3.4
1-Methylnaphthalene Biphenyl	บ บ บ	9.0 9.2 9.3	ບ ບ ບ	3.2 3.1 3.1	ย บ	3.4 3.2 3.2	U U	3.3 3.2 3.1	Ŭ	3.4 3.2
2,6-Dimethylnaphthalene	U	9.3	ບ	3.1	ย	3.2	U	3.1	U	3.2
Acenaphthylene	U	9.2	ບ	- 3.1	บ	3.2	U	3.2	U	3.2
Acenaphthene	U	9.0	ບ	3.0	บ	3.1	U	3.1	U	3.1
Dibenzofuran	Ŭ	9.0 9.1	มั บ	2.7 2.8	ບັ ບ	2.8	ບັ ນ	2.8 2.9	ບັ ບ	2.8 2.9
Phenanthrene	Ŭ	9.2	มั	2.7	มั	2.8	ບ	2.7	υ	2.8
Anthracene		8.9	บ	2.6	บ	2.7	ບ	2.6	υ	2.7
Carbazole	Ū	9.7	U	3.0	Ŭ	3.1	บ้.	3.1	ບ	3.1
Fluoranthene	U	9.2	U	2.4	U	2.4	บ	2.4	ບ	2.4
Pyrene	บ	9.2	U	2.3	U	2.4	บ	2.4	บ	2.4
Benzo(a)anthracene	บ	9.2	U	2.1	U	2.2	บ	2.1	บ	2.2
Chrysene Benzo(b)fluoranthene	บ บ	8.9 9.6	UU	2.0 2.0	U U	2.1 2.0	U	2.1 2.0	U U	2.1 2.0
Benzo(k)fluoranthene	U	9.3	U	1.9	U	2.0	UU	1.9	U	2.0
Benzo(e)pyrene	U	9.5	U	1.9	U	2.0		2.0	U	2.0
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	U U	9.6 10 10	บ บ บ	2.0 1.9 1.9	บ บ บ	2.0 1.9 1.9	U U U	2.0 1.9 1.9	U U U	2.0 1.9 1.9
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	U U	10	<u> </u>	1.9	U	2.0	<u> </u>	2.0	<u> </u>	2.0

. .

. .

. .

• •

. .

- -

۰.

Table 1.1 (cont.) Results of the Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

)

Sample No. Sampling Location Volume (L)	0)74 -5 52	28075 0-UW1 424		28076 0-UW2 419.3		28077 Field Blank 0		28078 Trip Blank 0	
Compound Name	Солс. ррbv	MDL ppbv	Conc. ppbv	MDL ppbv	Conc. ppbv	MDL ppbv	Conc. µg	MDL	Conc. µg	MDL P9
Naphthalene	U	3.6	U	3.9	U	3.9	υ	8.6	U	8.6
2-Methyinaphthalene	U	3.4	υ	3.7	υ	3.7	U	9.1	ບ	9.1
1-Methylnaphthalene	υ	3.3	υ	3.6	υ	3.7	บ	9.0	υ.	9.0
Biphenyl	υ	3.2	υ	3.4	U	3.5	U	9.2	υ.	9.2
2,6-Dimethylnaphthalene	U	3.1	U	3.4	· U	3.5	U	9.3	U	9.3
Acenaphthylene	U	3:2	υ	3.5	U	3.5	υ	9.2	υ	9.2
Acenaphthene	U	3.1	U	3.4	U	3.4	٠U	9.0	υ	9.0
Dibenzofuran	Ú	2.8	υ	3.1	U	3.1	U	9.0	υ	9.0
Fluorene	υ	2.9	υ	3.2	υ	3.2	U	9.1	υ	9.1
Phenanthrene	υ	2.7	υ	3.0	Ú	3.0	υ	9.2	U.	9.2
Anthracene	U	2.6	υ	2.9	U	2.9	υ	8.9	ປ	8.9
Carbazole	υ	3.1	บ	3.3	υ	3.4	บ	9.7	υ	9.7
Fluoranthene	υ	2.4	Ū	2.6	Ŭ	2.7	Ū ·	9.2	Ū	[•] 9.2
Pyrene	Ū	2.4	U	2.6	Ū	2.6	Ū	9.2	Ū	9.2
Benzo(a)anthracene	Ŭ	2.1	U	2.3	Ū	2.4	Ū	9.2	U	9.2
Chrysene	υ	2.1	U	2.3	υ	2.3	Ū	8.9	Ú	8.9
Benzo(b)fluoranthene	Ũ	2.0	Ŭ	2.2	Ū	2.2	Ū	9.6	Ū	9.6
Benzo(k)fluoranthene	Ŭ	1.9	Ŭ	2.1	ΰ	2.1	Ū	9.3	U	9.3
Benzo(e)pyrene	ΰ	2.0	Ū	2.2	Ŭ	2.2	ΰ	9.5	Ū	9.5
Benzo(a)pyrene	Ũ	2.0	Ū	2.2	Ū	2.2	Ū	9.6	Ŭ	9.6
Indeno(1,2,3-cd)pyrene	Ū.	1.9	Ŭ	2.1	Ũ	2.1	Ŭ	10	Ū	10
Dibenzo(a,h)anthracene	Ū	1.9	Ū	2.1	Ū	2.1	Ū	10	Ũ	.10
Benzo(g,h,i)perylene	Ŭ	2.0	Ū	2.1	υ	2.2	Ú	10	Ū	10

.

,

Table 1.2 Results of the TIC for PAHs in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID	Compound Identification
28079 Lot Blank	No TICs were found
28070	No TICs were found
28071	No TICs were found
28072	No TICs were found
28073	No TICs were found
28074	No TICs were found
28075	No TICs were found
28076	No TICs were found
28077 Field Blank	No TICs were found
28078 Trip Blank	No TICs were found

.

,

. .

• •

. .

- -

. -

 Table 1.3 Results of the Analysis for Metals in Air

 WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

Client ID Location Air Volume (L)	PBW .		28050 0-1 678		0-	28051 0-2 698.5		28052 0-3 713		28053 0-4 669.9		28054 0-5 693	
Parameter	Conc µg	MDL ¥9	Conc µg/m³	MDL µg/m³	Conc µg/m³	MDL µg/m³	Conc µg/m³	MDL µg/m³	Conc µg/m³	MDL µg/m³	Conc µg/m³	MDL µg/m³	
Aluminum		1.0	υ	1.5	1.5	1.4	3.5	1.4	2.7	1.5	4.0	1.4	
Arsenic	U	0.1	υ	0.15	U	0.14	U	0.14	U	0.15	U	0.14	
Beryllium	U	0.1	U	0.15	U	0.14	U	0.14	U	0.15	U	0.14	
Cadmium	U	0.1	U	0.15	υ	0.14	υ	0.14	U	0.15	U	0.14	
Calcium	U	1.0	8.8	1.5	, 8.3	1.4	9.0	1.4	9 .0	1.5	9.7	1.4	
Chromium	U	0,1	0.59	0.15	0.47	0.14	0.64	0.14	0.66	0.15	0.76	0.14	
Cobalt	υ	0.1	U	0.15	υ	0.14	υ	0.14	υ	0.15	U	0.14	
Copper	U	0.1	U	0.15	U	0.14	U	0.14	υ	0.15	U	0.14	
Iron	U	0.4	1.5	0.59	1.1	0.57	1.1	0.56	0.95	0.60	2.7	0.56	
Lead	U	0.1	U	0.15	υ	0.14	U	0.14	υ	0.15	U	0.14	
Lithium	U	0.1	U	0.15	U	0.14	U	0.14	U	0.15	U	0.14	
Magnesium	U	1.0	U	1.5	υ	1.4	U	1.4	υ	1.5	U	1.4	
Manganese	υ	0.1	υ	0.15	υ	0.14	Ù	0.14	υ	0.15	U	0.14	
Molybdenum	υ	0.1	U	0.15	U	0.14	U	0.14	U	0.15	U	0.14	
Nickel	υ	0.1	U	0.15	U	0.14	υ	0.14	U	0.15	U	0.14	
Phosphorus	U	0.4	υ	0.59	U,	0.57	υ	0.56	υ	0.60	υ	0.56	
Platinum	υ	1.0	U	1.5	U	1.4	U	1.4	U	1.5	U	1.4	
Selenium	υ	0.2	υ	0.29	υ	0.29	υ	0.28	U	0.30	U	0.29	
Silver	U	0.1	U	0.15	υ	0.14	U	0.14	U	0.15	U	0.14	
Sodium	U	6.0	9.0	8.8	12.6	8.6	12.5	8.4	11.6	9.0	14	8.7	
Tellurium	U	1.0	U	1.5	U	1.4	U	1.4	U	1.5	U	1.4	
Thallium	U	0.4	U	0.59	U	0.57	U	0.56	υ	0.60	U	0.56	
Tin	υ	0.2	1.3	0.29	U	0.29	υ	0.28	U	0.30	U	0.29	
Titanium	υ	0,1	υ	0.15	U	0.14	U	0.14	U	0.15	U	0.14	
Vanadium	U	0.1	U	0.15	U	0.14	U	0,14	U	0.15	U	0.14	
Yttrium	υ	0.2	U	0.29	U	0.29	U	0.28	U	0.30	U	0.29	
Zinc	U	0.1	0.21	0.15	U	0.14	0.25	0.14	0.23	0.15	0.33	0.14	
Zirconium	υ	0.2	υ	0.29	υ	0.29	U	0.28	υ	0.30	U	0.29	

in the second se

. .

- -

Table 1.3 (cont.) Results of the Analysis for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Client ID28055Location0-UW1Air Volume (L)636		0-L	28056 0-UW2 648		057 Blank D	Trip	058 Blank D	28059 Lot Blank 0		
Parameter.	Conc µg/m³	MDL µg/m³	Conc µg/m³	MDL µg/m³	Conc µg/filter	MDL µg/filter	Conc µg/filter	MDL µg/filter	Conc µg/filter	MDL µg/filter
Aluminum	2.0	1.6	2.0	1.5	1.3	1.0	1.3	1.0	2.3	1.0
Arsenic	U	0.16	U	0.15	υ	0.10	U	0.10	U	0.10
Beryllium	U	0.16	υ	0.15	υ	0.10	U	0.10	U	0.10
Cadmium	υ	0.16	υ	0.15	U	0.10	U	0.10	U	0.10
Calcium	10	1.6	9.0	1.5	5.4	1.0	5.5	1.0	5.5	1.0
Chromium	0.97	0.16	0.7	0.15	0.56	0.10	0.49	0.10	0.44	0.10
Cobalt	U	0.16	U	0.15	U	0.10	U	0.10	U -	0.10
Copper	U	0.16	U	0.15	U	0.10	U	0. 10	U	0.10
Iron	1.2	0.63	2.1	0.62	0.82	0.4	0.45	0.4	0.45	0.4
Lead	U	0.16	U	0.15	U	0.10	U	0.10	U	0.10
Lithium	U	0.16	U	0.15	U	0.10	U	0.10	υ	0.10
Magnesium	U	1.6	U	1.5	U	1.0	U	1.0	υ	1.0
Manganese	U	0.16	U	0.15	U	0.10	U	0.10	υ	0.10
Molybdenum	U	0.16	U	0.15	U	0.10	υ	0.10	U	0.10
Nickel	U	0.16	υ	0,15	U	0.10	U	0.10	U	0.10
Phosphorus	U	0.63	υ	0.62	υ	0.4	υ	0.4	U	0.4
Platinum	υ	1.6	υ	1.5	U	1.0	U	1.0	U	1.0
Selenium	. บ	0.31	υ	0.31	U	0.20	U.	0.20	U	0.20
Silver	บ	0.16	U	0.15	υ	0.10	U	0.10	U	0.10
Sodium	13.B	9.4	12	9.3	12.3	6.0	7.8	6.0	10	6.0
Tellurium	U	1.6	υ	1.5	U	1.0	U	1.0	U	1.0
Thallium	U	0.63	U	0.62	υ	0.4	U	0.4	U	0.4
Tin	U	0.31	U	0.31	υ	0.20	U	0.20	U	0.20
Titanium	U	0.16	U	0.15	U	0.10	U	0,10	U	0.10
Vanadium	U	0.16	U	0.15	U	0.10	U	0.10	U	0.10
Yttrium	U	0.31	U	0.31	U	0.20	ប	0.20	υ	0.20
Zinc	0.31	0.16	0.16	0.15	0.11	0.10	ບ	0.10	0.12	0.10
Zirconium	U	0.31	U	0.31	υ	0.20	υ	0.20	υ	0.20

Table 1.4 Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

Sample ID Location	•		lank 07/99			-	8081 0-2		
Matrix Volume of Air (L)			Air 0				Air 687		• *
Analyte	Result Pg	EMPC Pg	MDL Pg	Adjusted Conc (pg)	Result pg/m ³	EMPC pg/m ³	MDL pg/m ³	Adjusted Conc (pg/m ³)	TEF
2.3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	U U U U U 38.2 J	3.34 8.20 3.36 10.2 2.34 6.82	10.0 10.0 25.0 25.0 25.0 25.0 50.0	0 0 0 0 0 0 0 0.0382	U U U U U 38.1 J	2.85 13.0 1.40 7.39 4.60 9.26	14.6 14.6 36.4 36.4 36.4 36.4 72.8	0 0 0 0 0 0 0.0381	1 0.5 0.1 0.1 0.1 0.01 0.01
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	ບ ບ ບ ບ				บ บ บ บ				
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	U U U U U 12.4 J U 24.3 J	3.38	10.0 10.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0	0 0 0 0 0 0 0.124 0 0.0243	U 7.69 J U U U U U 21.5 J	5.68 1.80 2.91 6.35 1.05 1.02 17.5 4.1	14.6 14.6 36.4 36.4 36.4 36.4 36.4 36.4 36.4 72.8	0 0.3845 0 0 0 0 0 0 0 0 0 0.0215	0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans	່ນ ບ ບ ບ				U 13.9 U U				
Total				0.1865				0.4441	

00014

. •

ĵ

-

. .

. .

Table 1.4 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID Location			080 Id Blank)) .		_	8082 0-3		
Matrix Volume of Air (L)		,	Air O			:	Air 513.3		•
Analyte	Result Pg	EMPC Pg	MDL Pg	Adjusted Conc (pg)	Result pg/m ³	EMPC pg/m ³	MDL pg/m ³	Adjusted Conc (pg/m ³)	TEF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	U 8.7 J U U U U U U	1.44 0.740 5.46 2.18 4.20 20.3	10.0 10.0 25.0 25.0 25.0 25.0 50.0	0 4.35 0 0 0 0 0 0	U U U U 19.2 J 54.8 J	5.73 16.3 1.68 15.2 1.40	19.5 19.5 48.7 48.7 48.7 48.7 97.4	0 0 0 0.192 0.0548	1 0.5 0.1 0.1 0.1 0.01 0.001
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	ບ 8.70 ບ ບ				U U U 19.2				
2.3.7.8-TCDF 1.2.3.7.8-PeCDF 2.3.4.7.8-PeCDF 1.2.3.4.7.8-HxCDF 1.2.3.6.7.8-HxCDF 1.2.3.7.8.9-HxCDF 2.3.4.6.7.8-HxCDF 1.2.3.4.6.7.8-HxCDF 1.2.3.4.6.7.8-HpCDF 1.2.3.4.7.8.9-HpCDF OCDF	บ บ บ บ บ บ 11.5 J	2.16 7.46 1.16 1.54 3.00 0.640 0.920 8.80 1.14	10.0 10.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U U U U U U 26.3 J	7.75 11.8 4.32 3.00 5.65 1.36 3.27 19.1 2.18	19.5 19.5 19.5 48.7 48.7 48.7 48.7 48.7 48.7 97.4	0 0 0 0 0 0 0 0 0.0263	0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans Total	ս ս ս ս			4.3615	บ บ บ บ			0.2731	

110/DEL/AR/0002/AII

••

 Table 1.4 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

 WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

Sample ID Location			3083 D-4	• • •		_	8084 0-5		
Matrix Volume of Air (L)			Air 693	•			Air 546.8		• *
Analyte	Result pg/m ³	EMPC pg/m ³	MDL pg/m ³	Adjusted Conc (pg/m³)	Result pg/m³	EMPC pg/m ³	MDL pg/m ³	Adjusted Conc (pg/m³)	TEF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	U 13.8 J U U U U U U	3.46 0.895 8.63 2.51 14.9 32.6	14.4 14.4 36.1 36.1 36.1 36.1 72.2	0 6.9 0 0 0 0 0	U U U U U U	4.76 9.89 2.10 7.17 1.42 6.00 23.0	15.5 15.5 38.7 38.7 38.7 38.7 77.3	0 0 0 0 0 0 0	1 0.5 0.1 0.1 0.1 0.01 0.001
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	U 13.8 U U				U U U U	.			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	U 7.79 J U U 0.491 J U U U 20.1 J	7.33 1.41 2.48 8.20 1.70 16.1 2.77	14.4 14.4 36.1 36.1 36.1 36.1 36.1 36.1 36.1	0 0.3895 0 0 0.0491 0 0 0 0.0201	5.26 J 7.02 J U 1.79 J U U U U U U	3.31 6.71 0.866 1.08 15.2 1.08 28.0	15.5 15.5 38.7 38.7 38.7 38.7 38.7 38.7 38.7 77.3	0.526 0.351 0 0.179 0 0 0 0 0 0 0 0	0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans Total	U 7.79 0.491 U			7.3587	7.64 7.02 1.79 U			1.056	

110\DEL\AR\0002\All

۰.

00016

ł

1. The 1.

Table 1.4 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID Location			3085 •UW1				8086 I-UW2		-
Matrix Volume of Air (L)			Air 106				Air 612		•
Analyțe	Result pg/m ³	EMPC pg/m ³	MDL pg/m ³	Adjusted Conc (pg/m³)	Result pg/m³	EMPC pg/m ³	MDL pg/m ³	Adjusted Conc (pg/m ³)	TEF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	U 15.7 J U U 27.7 J 91.8 J	6.06 3.74 13.0 4.04	24.6 24.6 61.6 61.6 61.6 61.6 123.0	0 7.85 0 0 0 0.277 0.0918	U 11.7 J U 10.2 J U U 30.6 J	2.45 1.37 1.14 14.5	16.3 16.3 40.8 40.8 40.8 40.8 40.8 81.7	0 5.85 0 1.02 0 0 0.0306	1 0.5 0.1 0.1 0.1 0.01 0.001
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hexa-Dioxins	U 15.7 U 39.6				U 11.7 10.2 4.05				
2.3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	U U U U U U 51.1 J	7.59 15.0 1.48 2.96 18.2 2.81 3.15 28.6 6.45	24.6 24.6 61.6 61.6 61.6 61.6 61.6 61.6 123.0	0 0 0 0 0 0 0 0 0.0511	U 10.4 J U U U U 14.6 J U 20.3 J	2.88 3.40 1.08 9.05 0.882 1.05 0.784	16.3 16.3 40.8 40.8 40.8 40.8 40.8 40.8 40.8 40.8	0 0.52 0 0 0 0 0 0.146 0 0.0203	0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans Total	ີ ບ ບ ບ ບ	·		8.2699	U 10.4 U 14.6			7.5869	

110\DEL\AR\0002\All

...

00017

--

. .

Table 1.4 (cont.) Results of the Analysis for Polychlonnated Dibenzodioxins and Polychlonnated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

Sample ID Location			088 Blank			_	8089 Blank		
Matrix Volume of Air (L)			Air O				Air 0		• *
Analyte	Result Pg	EMPC Pg	MDL Pg	Adjusted Conc (pg)	Result pg	EMPC Pg	MDL P9	Adjusted Conc (pg)	TEF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	U U U U U 17.2 J	3.24 7.86 0.880 5.90 0.920 6.26	10.0 10.0 25.0 25.0 25.0 25.0 25.0 50.0	0 0 0 0 0 0 0 0 0.0172	U U 8.62 J U 5.74 J 19.0 J	2.72 6.78 1.16 1.18	10.0 10.0 25.0 25.0 25.0 25.0 25.0 50.0	0 0 0.862 0 0.0574 0.019	1 0.5 0.1 0.1 0.1 0.01 0.001
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	Մ Մ Մ Մ				U U 8.62 5.74			· .	
2.3,7,8-TCDF 1.2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1.2,3,4,7,8-HxCDF 1.2,3,6,7,8-HxCDF 1.2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1.2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	U 7.48 J U U U U 7.12 J U 11.3 J	1.72 0.960 1.04 4.46 0.420 0.220 0.740	10.0 10.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0	0 0.374 0 0 0 0 0 0.0712 0 0.0113	U 4.18 j U U U U U U U U	2.90 0.620 0.900 4.78 0.540 0.940 8.96 1.72 15.3	10.0 10.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0	0 0.209 0 0 0 0 0 0 0 0 0	0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans Total	U 11.1 U 7.12			0.4737	1.28 4.18 U U			1.1474	

0001a

-01

A PROPERTY.

Table 1.5 Results of the Analysis for Inorganic Acids in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID Location Air Volume (L):		090 Blank 0	Trip	091 blank O	Lot	092 Blank O	0	060 -1 9.2	0	061 -2 1.2	
Analyte	Conc mg	MDL mg	Conc mg	MDL mg	Conc mg	MDL mg	Conc mg/m³	MDL mg/m ³	Conc mg/m³	MDL mg/m ³	· = · Ē. 🏎
Hydrobromic acid	υ	0.0011	υ	0.0011	U	0.0011	U	0.0171	U	0.0246	
Hydrochloric acid	Ŭ	0.001	U	0.001	U	0.001	Ū	0.0174	Ŭ	0.0250	
Hydrofluoric acid	Ŭ	0.001	U	0.001	υ	0.001	บ	0.0178	ΰ	0.0256	
Nitric acid	Ŭ	0.0045	·υ	0.0045	υ	0.0045	U	0.0760	U	0.1092	
Phosphoric acid	Ŭ	0.0032	υ	0.0032	υ	0.0032	U	0.0523	U	0.0752	
Sulfuric acid	U	0.001	U	0.001	U	0.001	U	0.0172	υ	0.0248	

.

Sample ID Location Air Volume (L):	0	062 _. -3 7.8	0	0-4 · 0-		28064 28065 0-5 0-UW1 58.0 53.0		W1	28066 0-UW2 43.2	
Analyte	Conc mg/m ³	MDL mg/m ³	Conc mg/m ³	MDL mg/m ³	Conc mg/m ³	MDL mg/m ³	Conc mg/m ³	MDL mg/m³	Conc mg/m ³	MDL mg/m ³
Hydrobromic acid		0.0175	U	0.0195	U	0.0174	U	0.0191	υ	0.0234
Hydrochloric acid	U	0.0178	υ	0.0198	υ	0.0177	U	0.0194	U	0.0238
Hydrofluoric acid	υ	0.0182	U	0.0203	U	0.0182	U	0.0199	U	0.0244
Nitric acid	U	0.0779	U	0.0865	U	0.0776	U	0.0849	υ	0.1042
Phosphoric acid	U	0.0536	U	0.0596	U	0.0534	υ	0.0584	U.	0.0717
Sulfuric acid	U	0.0177	ບ	0.0196	υ	0.0176	U	0.0193	U	0.0236

١

.

,

ļ

. !

Results of the BS/BSD Analysis for PAH in Air

A lot blank and a lot blank filter were chosen for the blank spike/blank spike duplicate (BS/BSD) analyses. The percent recoveries, for the lot blank, ranging from 78 to 97, are listed in Table 2.1. The relative percent differences, also listed in Table 2.1, ranged from 3 to 8. The percent recoveries, for the lot blank filter, ranging from 41 to 101, are also listed in Table 2.1. The relative percent differences, also listed in Table 2.1. The relative percent differences, also listed in Table 2.1. The relative percent differences, also listed in Table 2.1. The relative percent differences, also listed in Table 2.1. The relative percent differences or the relative percent differences for this analysis.

00020

110\DEL\AR\0002\REPORT

Table 2.1 Results of BS/BSD Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID: Lot Blank

	Spike Added	BS Rec.	•	BSD Rec.		
Compound	99994	hà	% Rec.	Pg.	% Rec.	RPD
Naphthalene	50	48.18	96	46.27	93	
2-Methyinaphthalene	50	47.78	96	45.73	91	5
1-Methylnaphthalene	50	48.27	97	44.76	90	8
Biphenyl	50	47.72	95	45.26	91	5
2,6-Dimethylnaphthalene	50	47.60	95	45.11	90	5
Acenaphthylene	50	47.86	96	46.05	92	4
Acenaphthene	50	48.20	96	46.41	93	4
Dibenzofuran	50	47.16	94	45.51	91	4
Fluorene	50	47.86	96	45.90	92	4
Phenanthrene	50	47.98	96	45.95	92	5
Anthracene	50	47.68	95	46.43	93	3
Carbazole	50	48.49	97	46.04	92	5
Fluoranthene	50	48.13	96	46.26	93	4
Pyrene	50	48.69	97	46.62	93	4
Benzo(a)anthracene	50	48.19	96	45.25	91	6
Chrysene	50	37.28	75	38,75	78	4
Benzo(b)fluoranthene	50	48.09	96	44.67	89	7
Benzo(k)fluoranthene	50	46.43	93	44.84	90	4
Benzo(e)pyrene	50	47.46	95	45.32	91	5
Benzo(a)pyrene	50	47.14	94	44.61	89	6
Indeno(1,2,3-cd)pyrene	50	48,18	96	45.77	92	5
Dibenzo(a,h)anthracene	50	48.08	96	45.39	91	6
Benzo(g,h,i)perylene	50	48.06	96	45.69	91	5

-

.

. .

Table 2.1 (cont.) Results of BS/BSD Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID: Lot Blank filter

Compound	Spike Added µg	BS Rec. µg	* Rec.	BSD Rec. Vg	% Rec.	RPD
Naphthalene	50	42.80	86.	20.62	41	70
2-Methylnaphthalene	50	46.56	93	33.82	68	32
1-Methylnaphthalene	50	47.38	95	36.54	73	26
Biphenyl	50	48.02	96	39.62	79	19
2,6-DimethyInaphthalene	50	47.60	95	39.74	79	18
Acenaphthylene	50	48.36	97	41.68	83	15
Acenaphthene	50	49.52	99	43.70	. 87	12
Dibenzofuran	50	49.68	99	44.26	89	11
Fluorene	50	49.36	99	44.44	89	11
Phenanthrene	50	48.38	97	42.82	86	12
Anthracene	50	50.60	101	46.20	9 2	9
Carbazole	50	48.48	97	43.24	86	12
Fluoranthene	50	50.52	101	45.06	90	11
Pyrene	50	50.02	100	44.44	89	12
Benzo(a)anthracene	50	48.50	97	42.82	86	12
Chrysene	50	50.08	100	46,74	93	7
Benzo(b)fluoranthene	50	47.16	94	40.98	82	14
Benzo(k)fluoranthene	50	45.04	90	40.14	80	12
Benzo(e)pyrene	50	47.02	94	41.6D	83	12
Benzo(a)pyrene	50	44.00	88	39.32	79	11
Indeno(1,2,3-cd)pyrene	50	44.26	89	39.74	79	11
Dibenzo(a,h)anthracene	50	43.44	87	40.00	80	8
Benzo(g,h,i)perylene	50	43.82	88	40.08	80	9

••

. .

Results of the BS/BSD Analysis for Metals in Air

A blank spike/blank spike duplicate analysis (BS/BSD) was run. The percent recoveries, listed in Table 2.2, ranged from 34 to 125. Fifty out of fifty-six values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.2, ranged from 0 (zero) to 7. QC limits are not available for this criterion.

Results of the Analysis of the Laboratory Control Sample for Metals in Air

Laboratory control samples were also analyzed. The percent recoveries ranged from 62 to 116 and are listed in Table 2.3. Twenty-five out of twenty-eight concentrations were within the acceptable QC limits.

110\DEL\AR\0002\REPORT

Ì

ş

Table 2.2 Results of the BS/BSD Analysis for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Metal	Sample	Origina	al Conc	Recover	ed Conc	% Re	covery	RPD	Recommended
	Conc µg/filter	Spike µg/filter	Dup µg/filter	Spike µg/filter	Dup µg/filter	Spike	Dup		QC Limit % Rec
Aluminum	2.3292	40.00	40.00	52.26	48.965	125	117	7	75-125
Arsenic	υ	40.00	40.00	40.839	40.458	102	101	1	75-125
Beryllium	υ	1.00	1.00	1.0592	1.046	106	105	1	75-125
Cadmium	υ	1.00	1.00	1.0498	1.0388	105	104	1	75-125
Calcium	5.5364	1000	1000	1085.9	1074.6	108	107	1	75-125
Chromium	0.4428	4.00	4.00	4.9778	5.2212	113	120	6	75-125
Cobalt	U	10.00	10.00	10,184	10.04	102	100	1	75-125
Соррег	U	5.00	5.00	5.47	5.41	109	108	1	75-125
Iron	0.4518	20.00	20.00	21.624	21.132	106	103	2	75-125
Lead	U	10.00	10.00	10.885	10.719	109	107	2	75-125
Lithium	U	40.00	40.00	46.163	46.319	115	116	0	75-125
Magnesium	U	1000	1000	1088.4	1078.6	109	108	1	75-125
Mangariese	U	10.00	10.00	10.385	10.242	104	· 102	1	75-125
Molybdenum	Ŭ	40.00	40.00	42,838	42,729	107	107	Ó	75-125
Nickel	Ū	10.00	10.00	10.473	10.37	105	104	1	75-125
Phosphorus	Ŭ	40.00	40.00	20.931	20.372	52	• 51 •	3	75-125
Platinum	Ŭ	40.00	40.00	40.866	39.58	102	99	3	75-125
Selenium	ŭ	40.00	40.00	40.464	39.955	101	100	1	75-125
Silver	Ŭ	1.00	1.00	1.0042	0.9952	100	100	1	75-125
Sodium	9.9974	1000	1000	1050.3	1039.6	104	103	1	75-125
Tellurium	Ŭ	40.00	40.00	39.822	38.988	100	97	2	75-125
Thallium	Ŭ	40.00	40.00	45,497	44.952	114	112	1	75-125
Tin	Ŭ	40.00	40.00	14.508	13.513	36	• 34 •	7	75-125
Titanium		40.00	40.00	41.055	40.774	103	102	1	75-125
Vanadium	U	10.00	10.00	10.586	10.46	106	105	1	75-125
Yttrium	ŭ	40.00	40.00	42.336	41.878	106	105	1	75-125
Zinc	0.1208	10.00	10.00	10.784	10.535	107	104	2	75-125
Zirconium	U	40.00	40.00	14.671	14.075	37	• 35 •	4	75-125

~ ~

Table 2.3 Results of the Analysis of theLaboratory Control Sample for Metals in AirWA # 0-110 Air Monitoring, Sampling, Analysis,and Modeling Support, and Underwater Survey Activities

Metal	Analyzed Value µg/L	Accepted Value µg/L	% Rec		QC Limits % Rec
Aluminum Arsenic Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Phosphorus Platinum Selenium Silver Sodium Tellurium	+		115 103 107 103 106 110 101 106 116 107 106 103 73 103 103 102 100 101 100		% Rec 80-120
Teliunum Thailium	1994.5 4513.77	4000	100		80-120 80-120
Tin	1250.53	2000	63	*	80-120
Titanium Vanadium	2044.16 1040.05	2000 1000	102 104		80-120 80-120
Vanadium Yttrium	2113.37	2000	104		80-120 80-120
Zinc	1028.63	1000	103		80-120
Zirconium	1244.98	2000	62	*	80-120

ł

ţ

۰.

110\DEL\AR\0002\All

. .

QA/QC for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

Results of the Internal Standard Recoveries for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

The results of the internal standard recoveries, listed in Table 2.4, ranged from 62 to 146, One hundred and two out of one hundred and eight values were within the acceptable QC limits.

Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

A blank was spiked in duplicate and analyzed. The percent recoveries ranged from 81 to 122 and are listed in Table 2.5. All thirty-four values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.5, ranged from 0 (zero) to 14. QC limits are not available for this analysis.

00025

110\DEL\AR\0002\REPORT

Table 2.4 Results of the Internal Standard Recoveries for Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support and Underwater Survey Activites

J

Sample ID	Method	28080	28081	28082	28083	28084	QC
Location	Blank	0-1	0-2	0-3	0-4	O-5	Limits
Matrix Units Internal Standard	Air %	Air %	Air %	Air %	Air %	Air %	Percent
13C-2,3,7,8-TCDD	79	100	79	86	. 94	84	40-135
13C-1,2,3,6,7,8-HxCDD	85	96	80	113	113	111	40-135
13C-2,3,7,8-TCDF	79	103	80	108	109	109	40-135
13C-1,2,3,4,7,8-HxCDF	81	91	77	119	112	110	40-135
13C-1,2,3,7,8-PeCDD	123	130	126	100	95	93	40-135
13C-1,2,3,4,6,7,8-HpCDD	80	86	68	85	107	72	40-135
13C-1,2,3,7,8-PeCDF	117	127	122	98	104	97	40-135
13C-1,2,3,4,6,7,8-HpCDF	86	99	83	115	107	106	40-135
13C-OCDD	115	122	107	80	89	76	40-135

Sample ID Location	28085 10-UW1	28086 10-UW2	28088 Trip Blank		28089 Trip Blank	•	Blank Spike	Blank Spike Duplicate	QC Limits
Matrix Units Internal Standard	Air %	Air %	Air %		Air %		Air %	Air %	Percent
13C-2,3,7,8-TCDD	63	85	83		88		75	79	40-135
13C-1,2,3,6,7,8-HxCDD	94	109	110		113		111	110	40-135
13C-2,3,7,8-TCDF	114	146	• 138	*	143	٠	142	• 128	40-135
13C-1,2,3,4,7,8-HxCDF	98	119	128		129		124	124	4D-135
13C-1,2,3,7,8-PeCDD	81	85 ⁻	77		83		75	70	40-135
13C-1,2,3,4,6,7,8-HpCDD	110	103	112		113		100	103	40-135
13C-1,2,3,7,8-PeCDF	91	106	91		102		91	88	40-135
13C-1,2,3,4,6,7,8-HpCDF	119	126	139	*	141	٠	132	127	4D-135
13C-OCDD	62	85	91		95		75	82	40-135

.

00027

Table 2.5 Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support and Underwater Survey Activities

÷

Sample ID Blank

Parameter	Spike Added Pg	Sample Conc pg	BS Conc Pg	% Rec	BSD Conc Pg	% Rec	RPD	QC Limits (% Rec)
2378-TCDD	200	ບ ບ	239	120	244	122	2	60-140
12378-PeCDD	200	υ	214	107	230	115	7	60-140
123478-HxCDD	500	U	550	110	507	101	8	60-140
123678-HxCDD	500	U	473	95	493	99	4	60-140
123789-HxCDD	500	U	429	86	418	84	3	60-140
1234678-HpCDD	500	U	494	99	525	105	6	60-140
OCDD	1000	38,2	969	93	1040	100	7	60-140
2378-TCDF	200	U	165	83	189	95	14	60-140
12378-PeCDF	200	U	218	109	239	120	9	60-140
23478-PeCDF	200	U	232	116	233	116	D	60-140
123478-HxCDF	500	υ	455	91	461	92	1	60-140
123678-HxCDF	500	υ	466	93	469	94	1	60-140
123789-HxCDF	500	U	435	87	421	84	3	60-140
234678-HxCDF	500	U	513	103	498	100	3	60-140
1234678-HpCDF	500	12.4	418	81	461	90	10	60-140
1234789-HpCDF	500	U	407	81	434	87	6	60-140
OCDF	1000	24.3	1090	107	1090	107	0	60-140

110/DEL\AR\0002/AII

00028

. .

Results of the BS/BSD Analysis for Inorganic Acids in Air

A blank spike/blank spike duplicate analysis (BS/BSD) was run. The percent recoveries, listed in Table 2.6, ranged from 93 to 100. All twelve values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.6, ranged from 0 (zero) to 1. QC limits are not available for this criterion.

110\DEL\AR\0002\REPORT

00029

1

Table 2.6 Results of the BS/BSD Analysis for Inorganic Acids in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Analyte	Original	Conc	Recover	ed Conc	% Rec	overy	RPD	Recommended	
	Spike mg	Dup mg	Spike mg	Dup mg	Spike	Dup		QC Limits % Rec	,•
Hydrobromic acid	0.1053	0.1053	0.0983	0.0983	93	93	0	75-125	
Hydrochloric acid	0.2054	0.2054	0.2042	0.2042	99	99	0	75-125	· · :
Hydrofluoric acid	0.4049	0.4049	0.3925	0.3937	97	97	0	75-125	
Nitric acid	0.4067	0.4067	0.3901	0.3919	96	96	0	75-125	
Phosphoric acid	0.5914	0.5914	0.5884	0.592	99	100	1	75-125	
Sulfuric acid	0.4085	0.4085	0.3949	0.3937	97	96	0	75-125	
		•				_			

00050

. .

. .

. .

Lockheed Martin Technology Services Group Environmental Services REAC 2890 Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679 Telephone 732-321-4200 Facsimile 732-494-4021

Southwest Research Institute PO Box 28510, 6220 Culebra Road San Antonio, TX 78228-0510

Attn: Jo Ann Boyd

19 November 1999

Project # RIA-00011 APG Burn Support

As per Lockheed Martin / REAC Purchase Order GA91969J73, please analyze samples according to the following parameters:

Analysis/Method	Matrix	# of samples
Dioxin/Furans / Modified TO9	Air	20
Inorganic Acids / NIOSH 7903	Air	20
Metals/ NIOSH 7300	Air	20
Data package: Package with Diskette Deliverable		

Samples are expected to arrive at your laboratory between November 23-December 31, 1999. All applicable QA/QC (BS/BSD) analysis as per method, will be performed on our sample matrix. <u>Preliminary sample and QC result</u> tables plus a signed copy of our Chain of Custody must be faxed to REAC 10 business days after receipt of the last samples. The complete data package is due 21 business days after receipt of the last samples. The complete data package is due 21 business days after receipt of the last samples. The complete data package is checklist. Expect all samples to be difficult matrix and all raw data must be included in final analytical report.

All sample and QC results(ie: BS/BSD, LCS, Duplicates, and Blanks) must be summarized in a ExCel diskette deliverable.

Please submit all reports and technical questions concerning this project to John Johnson at (732) 321-4248 or fax to (732) 494-4020

Sincerely, Deborah Killeen

Deborah Killeen/ Data Validation and Report Writing Group Leader Lockheed Martin / REAC Project

DK:jj Attachments

cc. R. Singhvi D. Michunas 0011\non\mem\9911\sub\0011Con D. Miller Subcontracting File D. Angwenyi C. Lentini A. DuBois D. Killeen

000..1

(908) 321 EPA Con	tract 68-C4	0022 - 223	Lf	Project Nur	ne: <u>APG</u> nber <u>: R1</u>	BUENSION	SUPPO	KLÍ e: <u>737 ·</u>	32/-4	hus	No: SHEET	03;	
		Sample	dentific	ation D	IUXINS			Ar	alyse	s Reque		NO. <u></u> C	л- <u>г</u>
REAC	Sample No.	Sampling Location	Matrix	Date Collected	# of Bothe	Container/Pre	servetive	Volume	N K	oxins		1	
	28880	Ú-1	A	12/3/99		ANIBGK JAN		0	Ľ	V	$\sum_{i=1}^{n}$		
	25081	0-2						687	L	1			
	28882	-0-3		I				5131	3	2			
	28083	0-4		L.	!			693		V			\mathbf{I}
	28084	1-2-5-		↓ ↓ <u>`</u>				64lar	K L	V			/
ļ	28085	J-HW1	╶┼┼─╴	┨━━━━┨━━━━━			·····	406			<u> </u>		
	28086	jo-uwz		┢━━━┤╧╼━╸	_ <u></u>	_ <u>_</u>	·	Lazzi		<u></u>	<u>↓</u>		<u> </u>
	28089	TRIP Blan		<u> </u>	╺┼╾╌╎╌		·	<u> </u>			<u>نـــــ</u>		
<u> </u>	28088	TIC P BLAN		├ ─- ├ ──	+			0		<u> </u>		Vint	\overline{A}
		35/BSD		↓ ₹∕		- Ψ_		Ø	╾┼╧			AVX0	2
			+	 		_ _	·					41\	
J					+ -	_ 				·	├─── /		
			$\rightarrow \sim$	<u></u>	500	+		<u>}</u>	÷		/		
		<u> </u>						 '			<u> → </u>		
}		·			⋗ं←			<u> </u>			/	╺┼──┘	\leftarrow
		<u> </u>				+	<u> </u>					╧╋╼╌╼	\mathcal{F}
<u>├</u> ────┤		· · · · · ·						<u> </u>	1. 1.		1/	-1-5	-+
	······		+			- <u> </u>			1			12-	<u></u>
┝╼╾╌╴┤		· · · · · · · · · · · · · · · · · · ·						· · · ·	- 1 -		¥	8-	
Matrix:					cial Instructions:			·				1	
DS - Drur DL - Drur X - Othe	n Solida G n Liquida S M S	W- Potable Wate W- Groundwater W- Surface Wate L- Sludge ACH The Shift	W	Soil Water Oil Air	Put phi Filter Uran	gs + Que s certifi by South rely Elistif	el.	F0 FR	OMC	HAIN OF	ACTING	USE O	NL
6220 C	ulebra lo	nch Eushbur and 78228			Vesau	nch dhistri	TUR		STOD		, 	•	
xun 141 !		and the second	T			flow the		0-	r			<u> </u>	
items/Reas		Ished By Date	<u>n</u>	ived By De		Hems/Reason	Relingu	uished By	Data	Recei	ved By	Date	Tin
U. A Maly	SIR Juff	2	10/hon	nip 186	99 0123				 	<u> </u>			
Τ.	1		¥						 	┝			
	- At-	·····	·										- i
			·		`	<u>.</u>	·						_
						· · · · · · · · · · · · · · · · · · ·			L	L			

22000

	ntract 68- C4 - CIG		LM	Project Num RPW Contact ation Ino	The Bl	Acids Phon	e: <u>732-32</u>	· · ·	No: SHEET N	
·	·		1		T HAPR		Analy	ses Reques		
REACH	Sample No.	Sampling Location	Matrix	Date Collected	# of Botton!	g		ALICIS	\	
ļ	28060	0-1	IA-	12/3/49	<u> </u>	unileat/100	59.2		1	
<u> </u>	28061	<u><u> </u></u>	┨─┼╼╾		{	<u> </u>	442	~ · · ·		
	28062	<u> </u>	┟┈┝──	<u> </u>	<u> </u>	├──	57.8	V	<u> </u>	
L	28063	0-4	 	├	┨╼╧╼╌╄╼╼╼╼╸	<u> </u>	32.0			
	28060	U-5			<u> </u>	<u> </u>	59.0	- C		
	28065	8-UWI	 _	┟╌ <u>╼</u> ╴┦╌╼╾╍╸	<u> </u>	<u>├</u>	53.0	- V ,		
	28066	0-42	┟╼┟───┘	<i> </i>		}	43.2			1
	28.090	FIEld Blank	- <i> </i>	┟──┹┟────	<u> </u>		- A		·····	Δ
	28091	TKIP Blank			·····	<u> </u>		-K	Y	
	28092	WT Blank				{	Q		/	<u>v</u>
		BS/BSD_	V	¥	20		0			1 interest
ļ										1
ļ									/	<u>:\</u>
					 		<u> </u>			فيسهلهت
Į	··								/	<u> </u>
					TAN-		╏		_/	<u>_</u>
 					HQ					
					F		inde	Imf. 10	60	
			i	 						
Matrix;				Sneci	al instructions:	L	l			
	liment P	W - Polable Water	s -	Soil () Tu	noran min A	rid, by NIOSH 7	903		· ·	
DS - Dru		W - Groundwaler W - Surface Water	₩- 0-	Water Oil All	TIANCERIA	in acids som	FOR S ا دم/م	SUBCONTRA	ACTING US	E ONL
DI D-	•	- •• •	مسيني		ue int	(10, by N10547 11, acids Sam # 1038 5,11:00	intro			
	1) During	Ach Justite	He		0		FROM	CHAIN OF		1.
			. –			n . Real M Caubia		Data . / /	H 01	i T
X - Oth	ilebra l	La				Post-it" Fax No	le 7671	Date 1/19/2000		
X - Oth	ulebra 1	78228					lacol l	From The	~ m (* * *	1
X - Oth	Mo M	1846				- Tohu Jo		Joem	olan) <u> </u>
x othere 220 (an Anti Items/Res	ion Belingu	18 CC 8 Ished By Dife,	Recel	ved By Date				CO. SWRI	oju~	The
x othere 220 (an Anti Items/Res	ion Belingu	TS CC S Ished By Date,	Recel	ved By Date			& MONTIN Repe	Co. SWRI Phone #		The
x. other	ion Belingu	TS CC S Ished By Date,	Recel		19 A45	items/ CorDept. Lock/tee	d montin Repe	CO. SWRI		Tim

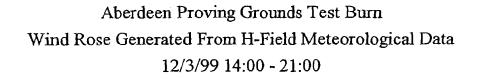
EAC, E (08) 32 PA Cor	Edison, NJ 1-4200 htract 68- C4 - (7-	0022 (Ja) -	Lm	Project Name Project Numi	9: APG per: P/A 1: July	OF CUSTOD · Burn S · OU 11 O · Toh 75m	WOORY	F.	327-4	- [248			133 of
		Sample	Identific	ation MC	STALS	a			alyse	s Reque	sted		. · · · · · · · · · · · · · · · · · · ·
REAC	Sample No.	Sampling Location		Data Collected	For Botten			Here (<u>L) ['</u>	outin	<u> </u>	<u> </u>	/
	28050	<u>0-7</u>	4	12/3/99		W-VKRak/	1(4)	678		<u> </u>	<u> </u>		
	25.051	Q-4	╺┥┥┥╸	├── ┤ <u></u> ───	┟╼╌┟╼╍╌	┼━━┼──-		698.		<u> </u>	\downarrow		
	28652	- 0 - 2		<u>├──</u>	┝━┥━━	╉───╁────		713		<u></u>		_	4
	18055		╶┼┼─ ╸		┝╌┼╾╼	╉╼╼╼┊┨╼╌╌╼╸		<u>leleg. 9</u>		<u> </u>			71
	28059			<u>├──</u> ┤────				693		<u> </u>	┟───┼──	·	/f
	28055	0-UN1	╶┼┼─╸	└ <u>─</u> ─┤────	<u> </u>	╁──╁───		1936			-+	/	
	25020	C- LIV Z				┦╌╾╧╂╶╧╼╼╛		648	-	<u> </u>	$ \rightarrow $		
	28177	TupBiank			┝╼╆╼╼╧	<u> </u>		<u></u> 					∼∼ –
	72038	LUI BLANK				╎──┼──	· · · ·			<u> </u>		TAE	
	128/05/	Pec 12Ch	=		2	├── ↓	·		· · · ·				إلىنيك
		1/1/102	¥									(+)	
												++	
					0								
					R				<u></u>	•			+
					\sim	·····					17		
											7	4.19	
		i						Coo	1-1Z	nel. 17	BC	1.5	
											/	6	
		<u>.</u>									· · · · · ·		<u> </u>
rix: - Sec	liment P	W- Potable Wate	S-	Soil Specia	Instructions:	16. 6	100	ales	<u> </u>	<u> </u>		Ö.	
- Dru	m Solids G	W - Groundwater W - Surface Wate	W -	Soil Water ALL Oil Col	metals(alon MC	EGLA	FO	R SUI	BCONTR	ACTING	USE	ONLY
there	er si ist kesec (ulera	L- Sludge Mch Jirsttn	the the	AT LUT	# .89	elements woing MC 900	• •	FR	OM C STOE	HAIN OF			
1/An	tonio, T	X 78228		· · ·					a. '		•		
		ished By Date		ved By Date	Time	Items/Reason	Relinqui	ished By	Date	Recei	red By	Dete	Time
tinal		2 12-19	Aptho	mp 12/19	9 09.45								
			N										
	12	· · · · · · ·	1				· · · · · · · · · · · · · · · · · · ·		· · · ·				
					·		· .						I - I -

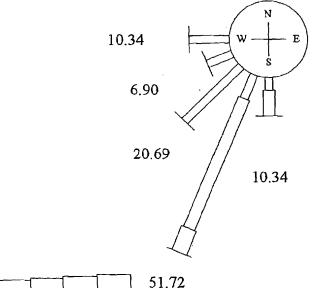
APPENDIX C SBC COM Clearances for GB, GD, VX, and HD Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\OFIELD1\tr1299.110

From:	Smith Sandra D SBCCOM < sandra.smith@SBCCOM.APGEA.ARMY MIL>
To:	Alfreda Dean <alfreda.dean@sbccom.apgea.army.mil>,</alfreda.dean@sbccom.apgea.army.mil>
Date: ·	12/8/99 4:57pm
Subject:	EPA Clearances
	•

POC:	DuBois,	732-494-4013	O-FLD					
Item#	GVH	BKGD	taken	12/0	06/99	Ð		
UW-1	99120	60122-M01	Clear	for	GB,	GD,	VX,	HD
UW-2	99120	60123-M01	Clear	for	GB,	GD,	νx,	HD
0-1	99120	60124-M01	Clear	for	GB,	GD,	VX,	HD
0-2	99120	60125-M01	Clear	for	GB,	GD,	vx,	HD
0-3	99120	60126-M01	Clear	for	GB,	GD,	VX,	HD
0-4	99120	60127-M01	Clear	for	GB,	GD,	VX,	HD
0-5	99120	60128-M01	Clear	for	GB,	GD,	vx,	HD

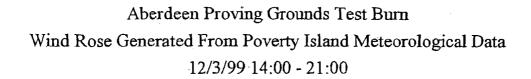

Sandra D. Smith (Sam)

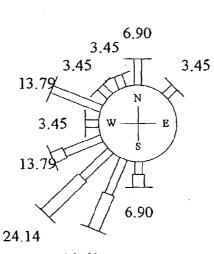

APPENDIX D

Windroses

Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\OFIELD1\tr1299.110





ſ		_L				1 51.	
0	1.3	3.0	5.1	8.2	10.8	999	
SC	CALE	: (M/	'SEC)			

W	WIND SPEED (M/SEC) PERCENT OCCURRENCE							WIND SPEED (M/SEC) PERCENT OCCURRENCE						
	0-1.3	1.3-3.0	3.0-5.1	5.1-8.2	8.2-10.8	>10.8	}		0-1.3	1.3-3.0	3.0-5.1	5.1-8.2	8.2-10.8	>10.8
N	0.00	0.00	0.00	0.00	0.00	0.00	{	S	3.45	6.90	0.00	0.00	0.00	0.00
NNE	0.00	0.00	0.00	0.00	0.00	0.00	ł	SSW	6.90	37.93	6.90	0.00	0.00	0.00
NE	0.00	0.00	0.00	0.00	0.00	0.00	}	sw	20.69	0.00	0.00	0.00	0.00	0.00
ENE	0.00	0.00	0.00	0.00	0.00	0.00	}	wsw	6.90	0.00	0.00	0.00	0.00	0.00
E	0.00	0.00	0.00	0.00	0.00	0.00		w	10.34	0.00	0.00	0.00	0.00	0.00
ESE	0.00	0.00	0.00	0.00	0.00	0.00	ţ	WNW	0.00	0.00	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00	}	NW	0.00	0.00	0.00	0.00	0.00	0.00
SSE	0.00	0.00	0.00	0.00	0.00	0.00	ł	NNW	0.00	0.00	0.00	0.00	0.00	0.00

.

]
0	1.3	3.0	5.1	8.2	10.8	. 999
SC	ALE	(M/	'SEC)		

1	WIND SPE	ED (M/SEC	C) PERCI	ENT OCC	URRENCE	2		WIND SPEED (M/SEC) PERCENT OCCURRENCE						
	0-1.3	1.3-3.0	3.0-5.1	5.1-8.2	8.2-10.8	>10.8			0-1.3	1.3-3.0	3.0-5.1	5.1-8.2	8.2-10.8	>10.8
N	6.90	0.00	0.00	0.00	0.00	0.00]]	S	3.45	3.45	0.00	0,00	0.00	0.00
NNE	0.00	0.00	0.00	0.00	0.00	0.00	}	ssw	10.34	10.34	0.00	0.00	0.00	0.00
NE	3.45	0.00	0.00	0.00	0.00	0.00		sw	10.34	13.79	0.00	0.00	0.00	0.00
ENE	0.00	0.00	0.00	0.00	0.00	0.00		wsw	10.34	3.45	0.00	0.00	0.00	0.00
E	0.00	0.00	0.00	0.00	0.00	0.00]]	w	3.45	0.00	0.00	0.00	0.00	0.00
ESE	0.00	0.00	0.00	0.00	0.00	0.00	[]	WNW	13.79	0.00	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00	}	NW	3.45	0.00	0.00	0.00	0.00	0.00
SSE	0.00	0.00	0.00	0.00	0.00	0.00	}	NNW	3.45	0.00	0.00	0.00	0.00	0.00
							11							

·

APPENDIX A-2

O-FIELD TRIP REPORT – BURN 2 (JULY 2000)

.

.

. .

Lockheed Martin Technology Services Group -onmental Services REAC Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679 /ephone 732-321-4200 Facsimile 732-494-4421

LOCKHEED

DATE: July 5, 2000

TO: David Mickunas. U.S. EPA/ERTC Work Assignment Manager

THROUGH: Jeff Bradstreet, REAC Air Group Leader

FROM: Amy DuBois. REAC Task Leader

SUBJECT: AIR MONITORING AND SAMPLING AT THE AIR MONITORING SAMPLING, ANALYSIS, AND MODELING SUPPORT, AND UNDERWATER SURVEY ACTIVITIES SITE, ABERDEEN PROVING GROUND. ABERDEEN, MD. WORK ASSIGNMENT #0-110 - TRIP REPORT -O-FIELD - BURN 2

BACKGROUND

The United States Environmental Frotection Agency/Environmental Response Team Center (U.S. EPA/ERTC) issued Work Assignment Number 0-110 to Lockheed Martin under the Response. Engineering, and Analytical Contract (REAC) to provide air monitoring and air sampling during two controlled burns in the Edgewood Area of Aberdeen Proving Ground (APG). One burn was to be conducted at O-Field and one at J-Field. After problems igniting the marsh area during the O-Field burn, a second controlled burn was scheduled at O-Field.

Ordnance firing, ongoing test activities, and lightning strikes occasionally cause accidental fires in the test range areas at APG. Because of APG's long history of weapons testing and disposal practices, there is concern that contaminants have accumulated in the surface scills and vegetation at these locations and could be transported in the smoke plumes produced by such fires, posing a health risk to exposed individuals on and off the installation.

The scope of work for this work assignment included air sampling for dioxins. metals, polynuclear aromatic hydrocarbons (PAHs), inorganic acids, volatile organic compounds (VOCs) and chemical warfare agents (CWAs). Particulate monitoring was conducted utilizing an MIE DataRAM at each location.

OBSERVATIONS AND ACTIVITIES

REAC personnel mobilized to APG on December 17, 1999. Air sampling and monitoring were conducted at 5 downwind and 2 upwind locations (Figure 1).

VOC sampling and analysis was conducted following EPA Method TO-14A: Determination of Volatile Organic Compounds in Ambient Air Usung SUMMA Passivated Canister Sampling and Gas Chromatographic Mass Spectrometric (GC MS) Analysis. A sampling orifice was connected to each SUMMA canister to control the flow at 15 cubic centimeters per minute (cc/min). A solenoid valve was then connected to the SUMMA orifice. A battery operated timer was attached to each solenoid valve to trigger the solenoid at the anticipated start time for the burn.

PAH sampling and analysis was conducted following National Institute for Occupational Safety and Health (NIOSH) Method # 5515: *Polynuclear Aromatic Hydrocarbons*. Samples were collected utilizing a personal sampling pump

c:\MyFiles\R1a00110\OFIELD1 zr1299.110

(SKC) to draw a measured volume of air (2 Liters per minute (L/min)) through a sampling train containing a teflon prefilter cassette and an XAD-2 sorbent tube. The pumps were programmed for a delayed start with a 4-hour sampling period.

)

ŗ

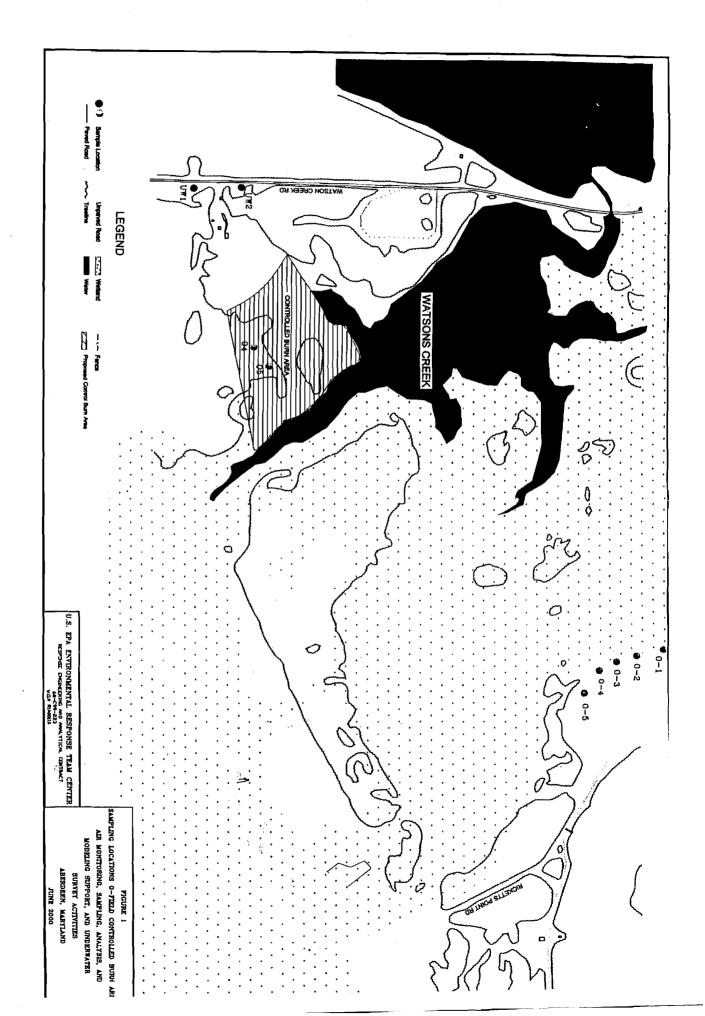
Sampling and analysis for inorganic acids was conducted following NIOSH Method #7903: Acids, Inorganic. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (250 cc/min) through a sampling train containing a silica gel sorbent tube. The pumps were programmed for a delayed start with a 4-hour sampling period.

Sampling and analysis for dioxins was conducted following modified U.S. EPA Method TO9A, *Determination of Polychlorinated*, *Polybrominated* and *Brominated/ChlorinatedDibenzo-p-Dioxins* and *Dibenzofurans* in *AmbientAir*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a polyurethane foam (PUF) plug and quartz filter. The pumps were programmed for a delayed start with a 4-hour sampling period. PUF glassware, plugs, and quartz filters were cleaned and certified by Southwest Research Institute in San Antonio, Texas prior to use.

Sampling and analysis for metals was conducted following modified NIOSH Method #7300: *Elements (ICP)*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a mixed cellulose ester filter cassette. The pumps were programmed for a delayed start with a 4-hour sampling period.

Samples were collected for CWAs utilizing a personal sampling pump (SKC) to draw a measured volume of air (100 cc/min) through a sampling train containing two Depot Area Air Monitoring System (DAAMS) sorbent tubes in a dual-sampling manifold. The pumps were programmed for a delayed start with a 4-hour sampling period. Tubes and analysis were provided by Soldiers Biological and Chemical Command (SBC COM).

Air monitoring for total particulanes was performed utilizing an MIE DataRAM portable real-time aerosol monitor. Concentration data was logged every 10 seconds for the duration of the burn.


APG personnel positioned bridge sanctions at three downwind locations in Watsons Creek, prior to REAC's mobilization to the site. The two other downwind locations were positioned in trees along the edge of the marsh. REAC personnel set the samplers on the bridge sanctions and hoisted them into the trees with all timers set for a delayed start at 1345. When all personnel were out of the area, the APG Fire Department initiated the burn. In an attempt to propagate the burn through the marsh, approximately 8 to 10 gallons of kerosene were sprayed on the marsh vegetation. The fire still did not spread through the marsh and burned itself out after approximately 30 minutes.

RESULTS

Due to the short duration of the burn the decision was made between APG's Directorate of Safety, Health, and the Environment (DSHE) and the U.S. EPA/ERTC not to analyze the samples.

FUTURE ACTIVITIES

There are no future sampling activities planned for O-Field at this time.

·

.

•

.

APPENDIX A-3

J-FIELD TRIP REPORT (JULY 2000)

·

-

)

Lockheed Martin Technology Services Group Environmental Services REAC Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679 "phone 732-321-4200 Facsimile 732-494-4021

CKHEED

DATE: July 5, 2000

TO: David Mickunas, U.S. EPA/ERTC Work Assignment Manager

THROUGH: Jeff Bradstreet, REAC Air Group Leader

FROM: Amy DuBois. REAC Task Leader

SUBJECT: AIR MONITORING AND SAMPLING AT THE AIR MONITORING SAMPLING, ANALYSIS, AND MODELING SUPPORT. AND UNDERWATER SURVEY ACTIVITIES SITE, ABERDEEN PROVING GROUND, ABERDEEN. MD, WORK ASSIGNMENT #0-110 - TRIP REPORT -J-FIELD

BACKGROUND

The United States Environmental Protection Agency/Environmental Response Team Center (U.S. EPA/ERTC) issued Work Assignment Number 0-110 to Lockheed Martin under the Response, Engineering, and Analytical Contract (REAC) to provide air monitoring and air sampling during two controlled burns in the Edgewood Area of Aberdeen Proving Ground (APG). One burn was to be conducted at O-Field and one at J-Field.

Ordnance firing, ongoing test activities, and lightning strikes occasionally cause accidental fires in the test range areas at APG. Because of APG's long history of weapons testing and disposal practices, there is concern that contaminants have accumulated in the surface soils and vegetation at these locations and could be transported in the smoke plumes produced by such fires, posing a health risk to exposed individuals on and off the installation.

The scope of work for this work assignment included air sampling for dioxins, metals, polynuclear aromatic hydrocarbons (PAHs), inorganic acids, volatile organic compounds (VOCs) and chemical warfare agents (CWAs). Particulate monitoring was conducted utilizing an MIE DataRAM at five locations.

OBSERVATIONS AND ACTIVITIES

REAC personnel mobilized to APG on April 6, 2000. Air sampling and monitoring was conducted at 5 downwind and 2 upwind locations (see Figure 1).

VOC sampling and analysis was conducted following EPA Method TO-14A: Determination of Volatile Organic Compounds in Ambient Air Using SUMMA Passivated Canister Sampling and Gas Chromatographic Mass Spectrometric (GC/MS) Analysis. A sampling orifice was connected to each SUMMA canister to control the flow at 15 cubic centimeters per minute cc/min). A solenoid valve was then connected to the SUMMA orifice. A battery operated timer was attached to each solenoid valve to trigger the solenoid at the anticipated start time for the burn.

PAH sampling and analysis was conducted following National Institute for Occupational Safety and Health (NIOSH) Method # 5515: *Polynuclear Arc matic Hydrocarbons*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (2 Liters per minute (L/min)) through a sampling train containing a teflon

c:\MyFiles\R1a00110\JFIELD tr-j0400.110

prefilter cassette and an XAD-2 sorbent tube. The pumps were programmed for a delayed start with a 3-hour sampling period.

J

3

1

Sampling and analysis for inorganic acids was conducted following NIOSH Method # 7903: Acids, Inorganic. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (250 cc/min) through a sampling train containing a silica gel sorbent tube. The pumps were programmed for a delayed start with a 3-hour sampling period.

Sampling and analysis for dioxins was conducted following modified U.S. EPA Method TO9A. Determination of Polychlorinated, Polybrominated and Brominated/Chlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a polyurethane foam (PUF) plug and quartz filter. The pumps were programmed for a delayed start with a 3-hour sampling period. PUF glassware, plugs, and quartz filters were cleaned and certified by Southwest Research Institute in San Antonio. Texas prior to use.

Sampling and analysis for metals was conducted following modified NIOSH Method #7300: *Elements (ICP)*. Samples were collected utilizing a personal sampling pump (SKC) to draw a measured volume of air (3 L/min) through a sampling train containing a mixed cellulose ester filter cassette. The pumps were programmed for a delayed start with a 3-hour sampling period.

Samples were collected for CWAs utilizing a personal sampling pump (SKC) to draw a measured volume of air (100 cc/min) through a sampling train containing two Depot Area Air Monitoring System (DAAMS) sorbent tubes in a dual-sampling manifold. The CWAs analyzed for included: Sarin (GB), Soman (GD), Mustard (HD), and VX. The pumps were programmed for a delayed start with a 3-hour sampling period. Tubes and analysis were provided by Soldiers Biological and Chemical Command (SBC COM).

Air monitoring for total particulates was performed utilizing an MIE DataRAM portable real-time aerosol monitor. Concentration data was logged every 10 seconds for the duration of the burn. DataRAMs were positioned at locations DW1, DW2, DW3, DW4 and UW2.

The sampling devices were suspended 15 feet above the ground from trees and/or support poles, this positioned the samplers in the plume but out of the potential burn path of the fire. The collection of sampling devices was hoisted off the ground after setting the timers on the individual pumps and SUMMA canisters. The timers for the pumps controlled the start time and duration of the sampling period. The SUMMA timers only controlled the start of the sampling period. When all personnel were out of the area, the APG Fire Department initiated the burn.

RESULTS

- <u>VOCs</u>: A summary of VOCs sampling results can be found in Table 1. Benzene and toluene were the only compounds detected above their quantitation limit in any of the samples. Benzene was detected at locations DW3 and DW4, and toluene was detected at locations DW3 and DW5. For complete analytical results for VOCs, see the Analytical Report in Appendix A.
- <u>PAHs</u>: No PAHs were detected above the method detection limit in any of the samples.
- Inorganic Acids: A summary of Enorganic acids sampling results can be found in Table 2. Hydrochloric acid (Hcl) was detected in samples DW1, DW3, DW5, and the Lot Blank. The detected Hcl concentration ranged from 0.0176 to 0.1230 parts per million by volume (ppmv). The Lot Blank contained 0.0031 milligrams (mg) Hcl. Hydrofluoric acid (HF) was detected in samples DW1 through DW5 at concentrations ranging from 0.0292 to 0.1030 ppmv. For complete analytical results for inorganic acids see the Analytical Report in Appendix B.

c:\MyFiles\R1a00110\JFIELD\tr-j0400.110

- <u>Dioxins/Furans</u>: A summary of cioxins/furans results can be found in Table 3. Dioxins/furans were detected at six of the seven sampling locations. The OCDD results for samples DW3, DW5, UW1, and UW2 should be considered not detected because the concentration in the sample was less than five times that detected in the trip blank. The total dioxins/furans detected at each location after adjusting the OCDD results are as follows: DW1(not detected). DW2(1.920 picograms per cubic meter (pg/m³)), DW3(not detected), DW4(1.003 pg/m³). DW5(0.126 pg/m³). UW1(not detected), UW2(not detected). Trip Blank(0.0122 pg), Field Blank(not detected), and Lot Blank(0.070 pg). For complete analytical results for dioxins/furans, see the Analytical Report in Appendix B.
- <u>Metals</u>: A summary of metals results are shown in Table 4. Aluminum was detected in samples DW1, DW2, DW3. DW5. UW1. and UW2 at concentrations ranging from 1.9 to 31.0 micrograms per cubic meter (µg/m³). Copper was detected at DW2 at 0.2 µg/m³. Lead was detected at DW2 at 0.3 µg/m³. Magnesium was detected at locations DW1, DW2. DW3, and UW2 at concentrations ranging from 2.0 to 30.0 µg/m³. Manganese was detected at locations DW2. DW3, and UW2 at concentrations ranging from 0.8 to 1.0 µg/m³. Phosphorous was detected at locations DW1, DW2, DW3, DW4, UW1, and UW2 at concentrations ranging from 0.8 to 2.2 µg/m³. Titanium was detected at locations UW1 and UW2 at 1.0 and 2.1 µg/m³, respectively. Sodium was detected in the method blank and should be regarded as not detected in all of the samples. Calcium, chromium, and zinc were detected in the lot blank and should be regarded as not detected in the rest of the samples because the concentrations DW3 and UW2 both had iron concentrations greater than 5 times the lot blank, iron should be regarded as not detected in the lot blank. Iron was also detected in the lot blank. Locations DW3 and UW2 both had iron concentrations greater than 5 times the lot blank, iron should be regarded as not detected in the trip blank. Location UW1 had a nickel concentration greater than 5 times the trip blank, nickel should be regarded as not detected in the rest of the samples. Site should be regarded as not detected in the rest of the samples. Site should be regarded as not detected in the rest of the samples. For complete analytical results for metals, see the Analytical Report in Appendix B.
- <u>CWAs</u>: No chemical warfare agents were detected in any of the samples. CWA results are provided by SBC COM, see Appendix C.
- <u>Particulates</u>: Particulates results are shown in Figures 2 through 5. The DataRAM at location UW2 did not log data. The overall maximum concentration of 407.574.9 micrograms per cubic meter (μ g/m³) was detected at location DW2 at 17:16 eastern standard time.
- <u>Meteorological data</u>: Windroses representing local wind speed and wind direction during the burn period are provided in Appendix D. The data was collected at H-Field using a 10-meter tower, and at Poverty Island using a 5meter tower. Winds were predominantly out of the west northwest. Times shown are in eastern standard time.

Analysis for VOCs and PAHs were provided by REAC. Edison. NJ. Analysis for dioxins/furans, inorganic acids, and metals were provided by Southwest Research Institute, San Antonio, TX. Analysis for CWAs was provided by SBC COM, APG, MD.

FUTURE ACTIVITIES

There are no future sampling activities planned at this time.

1

* . · · ·

Table 1
Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities
Summary of VOCs Sampling Results - J-Field Controlled Burn - April 6, 2000

,

4

Sample Number	17747	17740	17741	17742	17743	17744	17744 Dup	17745	17746
Sample Location	trip blank	DW3	DW2	DW1	DW4	DW5	DW5	UW1	UW2
concentration	ppbv	ppby	ppbv	ppbv	ppbv	ppbv	ppby	ppby	ppbv
Chloromethane	U	2 J	9]	2 J	<u>3</u>]	<u> </u>	I J	Ū	1 J
Benzene	U	7	U	3 J	5	3 J	3 J	U	U
Toluene	U	4	U	1 J	3 J	6	6	U	U
Ethylbenzene	U	U	U	ប	U U	1 J	1 J	U	U
m & p-Xylenes	U	1 J	U	U	U	4 J	4 1	U	. U
o-Xylene	U	<u>U</u>	U	ប	_ U _	<u> </u>	<u> </u>	U	U

VOCs - Volatile organic compounds ppbv - parts per billion by volume J - Below 1.00 nL Quantitation Limit U - Not Detected

•

.

Table 2
Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities
Summary of Inorganic Acids Sampling Results - J-Field Controlled Burn - April 6, 2000

Sample Number	17734	17732	17733	17700	17701	17702	17703	17704	17705	17706
Sample Location	Lot Blank	Field Blank	Trip Blank	DW3	DW2	_ DW1	DW4	DW5	UW1	UW2
concentration	mg	mg	mg	ppmv	ppmv	ppmv	ppmv	ppmy	ppmv	ppmv
Hydrobromic Acid	υ	U	U	U	U	U	บ	U	U	U
Hydrochloric Acid	0.0031	U	U	0.1230	U	0.0387	·U	0.0188	U U	0.0176
Hydrofluoric Acid	U	U	U	0.0724	0.1030	0.0292	0.0439	0.0389	U	U
Nitric Acid	U	ិប	U	U	U	ົບ	U	U	U	υ
Phosphoric Acid	U	U	U	Ŭ	U	U	U	U	υ	U
Sulfuric Acid ¹	0.0050	<u> </u>	0.0013	0.0225	0.0262	0.0182	0.0161	0.0404	0.0175	0.0217

mg - total milligrams

ppmv - parts per million by volume U - Not detected

¹ Due to the sulfuric acid concentration detected in the Trip Blank, the results for samples 17700 through 17706 are considered not detected.

λ.

Sample Number	17677	17678	17679	17670	17671	17672	17673	17674	17675	17676
Sample Location	Trip Blank	Field Blank	Lot Blank	_DW3	DW2	<u>DW1</u>	DW4	DW5	<u>UW1</u>	UW2
Adjusted concentration ¹	pg	pg	Pg	pg/m^3	pg/m^3	pg/m^3	pg/m^3	pg/m^3	pg/m^3	pg/m^3
2,3,7,8-TCDD	U	U	U	U	U	U -	υ	υ	U	U
1,2,3,7,8-PeCDD	U	U	U	U	1.88	U	U	U	U	U
1,2,3,4,7,8-HxCDD	U	U	U	U	U	U	U	U	U	U
1,2,3,6,7,8-HxCDD	U	U	U	U	U	U	0.42	U	U	U
1,2,3,7,8,9-HxCDD	U	U	0.066	U	U	U	U	U	U	U
1,2,3,4,6,7,8-HpCDD	U	U	U	U	U	U	0.277	0.126	U	U
OCDD ²	0.0122	U	U	0.035	U	U	0.0738	0.094	0.033	0.03
2,3,7,8-TCDF		U	υ	U	Ū	U	U	U	U	U
1,2,3,7,8-PeCDF	U	U	U	U	U	U	U	U	U	U
2,3,4,7,8-PeCDF	U	U	U	U	U	U	U	U	U	U
1,2,3,4,7,8-HxCDF	U	U	U	U	U	U	0.232	់ប	U	U
1,2,3,6,7,8-HxCDF	U	U	U	U	U	U	U	* U	U	U
1,2,3,7,8,9-HxCDF	U	U	U	U	U	U	U	U	U	U
2,3,4,6,7,8-HxCDF	U	U	U	U	U	U	U	U	U	U
1,2,3,4,6,7,8-HpCDF	U	U	U	U	U	U	U	U	U	U
1,2,3,4,7,8,9-HpCDF	U	U	U	U	0.0396	U	U	U	U	U
OCDF ³	U	U	0.00442	_U	U	U	U	<u> </u>	<u> </u>	U
Total	0.0122	U	0.07042	0.035	1.9196	U	1.0028	0.22	0.033	0.03

 Table 3

 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

 Summary of Dioxins/Furans Sampling Results - J-Field Controlled Burn - April 6, 2000

pg - picograms

pg/m^3 - picograms per cubic meter

¹ Adjusted concentration - detected concentration multiplied by the toxicity equivalency factor (TEF) for each compound.

² The OCDD results for samples 17670, 17674, 17675, and 17676 are considered not detected because the concentration in the sample was less than five times that found in the trip blank.

³ The OCDF result for sample 17679 is considered estimated because the method blank contained 13 pg OCDF.

Sample Number	17687	17688	17689	17680	17681	17682	17683	17684	17685	17686
Sample Location	Field Blank	Trip Blank	Lot Blank	DW3	DW2	DW1	DW4	DW5_	UW1	<u>UW2</u>
concentration	ug/filter	ug/filter	ug/filter	ug/m^3	ug/m^3	ug/m^3	ug/m^3	ug/m^3	ug/m^3	ug/m^3
Aluminum	Ū	U	U	3.8	4.0	1.9	U	1.9	4.0	31.0
Calcium ²	6.6	7.6	6.2	34.0	40.0	15.0	11.0	13.0	16.0	22.0
Chromium ²	0.6	0.9	0.5	1.0	1.1	1.0	1.1	1.0	1.1	1.2
Copper	U	U	U	U	0.2	U	U	U	U	U
Iron ³	4.0	2.7	1.6	25.0	9.2	3.6	2.6	2.0	5.7	58.0
Lead	U	Ū į	U	U	0.3	U	U	U	U	U
Magnesium	U	U	U	4.2	5.6	2.0	U	U	U	30.0
Manganese	U	U	U	1.0	1.0	U	U	U	U	0.8
Nickel ⁴	0.4	0.2	U	U	0.8	U	0.4	U	6.9	0.6
Phosphorous	U	U	U	1.3	2.2	1.3	0.8	U	1.0	2.1
Sodium ¹	9.8	9.0	7.3	17.0	18.0	17.0	16.0	11,0	14.0	18.0
Titanium	U	U	U	U	U	U	U	Ŭ	0.6	0.7
Zinc ²	2.1	2.4	1.1	3.4	2.0	0.9	1.1	0.8	1.7	1.2

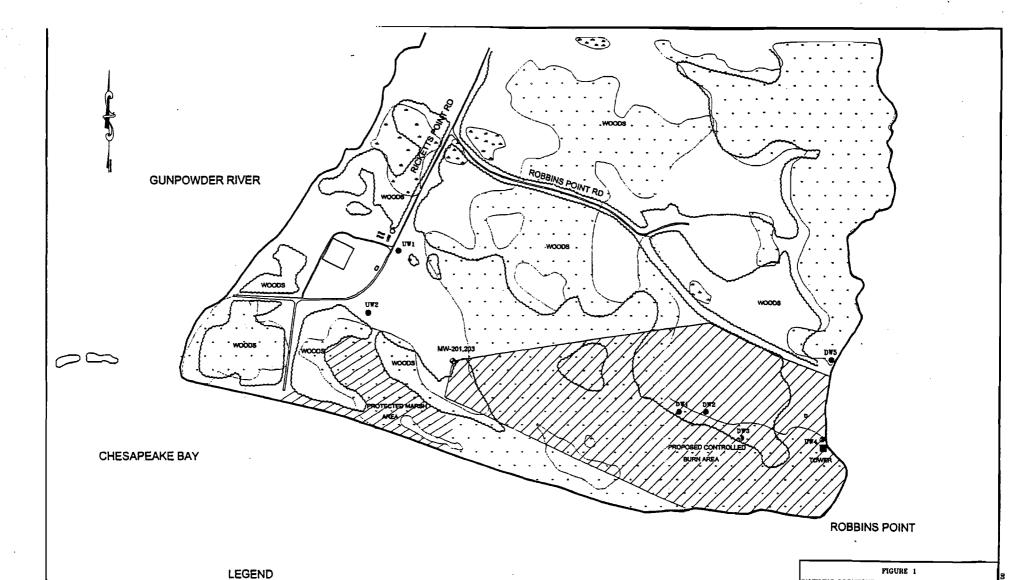
 Table 4

 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

 Summary of Metals Sampling Results - J-Field Controlled Burn - April 6, 2000

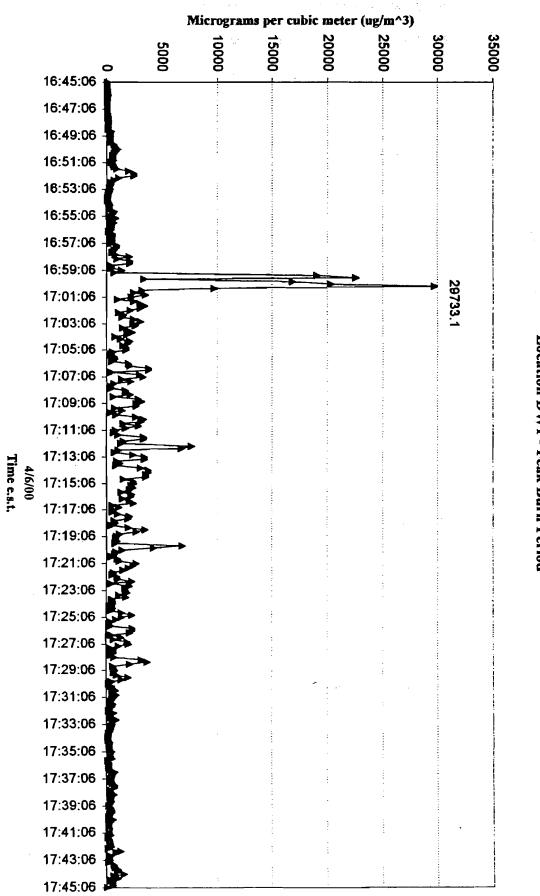
ug/filter - micrograms per filter

ug/m³ - micrograms per cubic meter


U - not detected

¹ The method blank contained 11.81 ug/filter sodium, the sodium results for all samples should be considered not detected.

² The Calcium, Chromium and Zinc results for samples 17680 through 17688 are considered not detected because the concentration in the sample is less than 5 times that of the lot blank.


³ The Iron results for samples 17681 through 17685, 17687 and 17688 are considered not detected because the concentration in the sample is less than 5 times that of the lot blank.

⁴ The Nickel results for samples 17681, 17683, 17686, and 17687 are considered not detected because the concentration in the sample is less than 5 times that of the trip blank.

Sample Locations — Unpaved Road
 Monitoring Well
 ZZ Proposed Control Burn Aree
 Water
 Water
 Treeline

FIGURE 1 SAMPLING LOCATIONS J-FIELD CONTROLLED BURN AREA AIR MONITORING, SAMPLING, ANALYSIS, AND WODELING SUPPORT, AND UNDERWATER SURVEY ACTIVITIES ABERDEEN, WARYLAND JUNE 2000

U.S. EPA ENVIRONMENTAL RESPONSE TEAM CENTER RESPONSE DIGINERATING AND AMALYITCAL CONTRACT 68-C79-223 Viz Rimento

Location DW1 - Peak Burn Period J-Field Burn Data - Particulates **Aberdeen Proving Ground** April 6, 2000

Figure 2

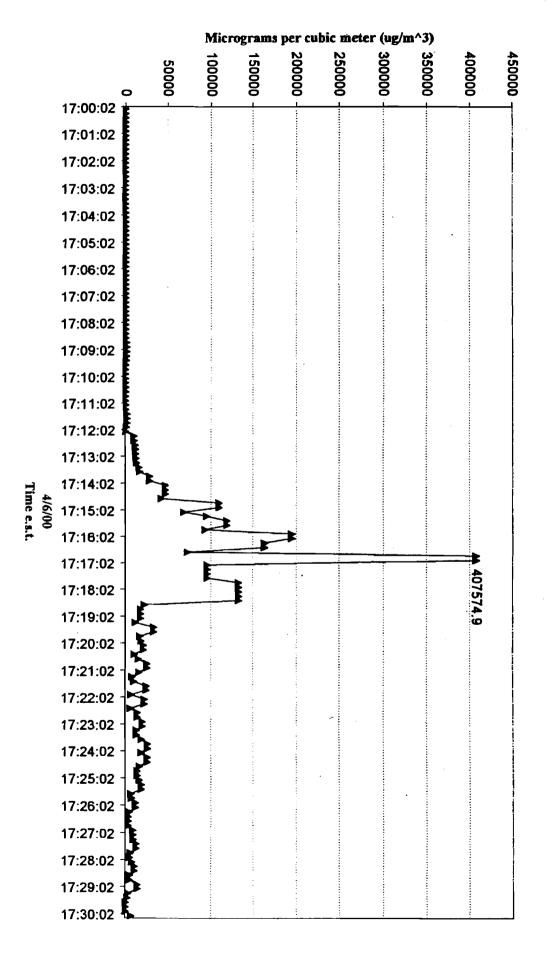
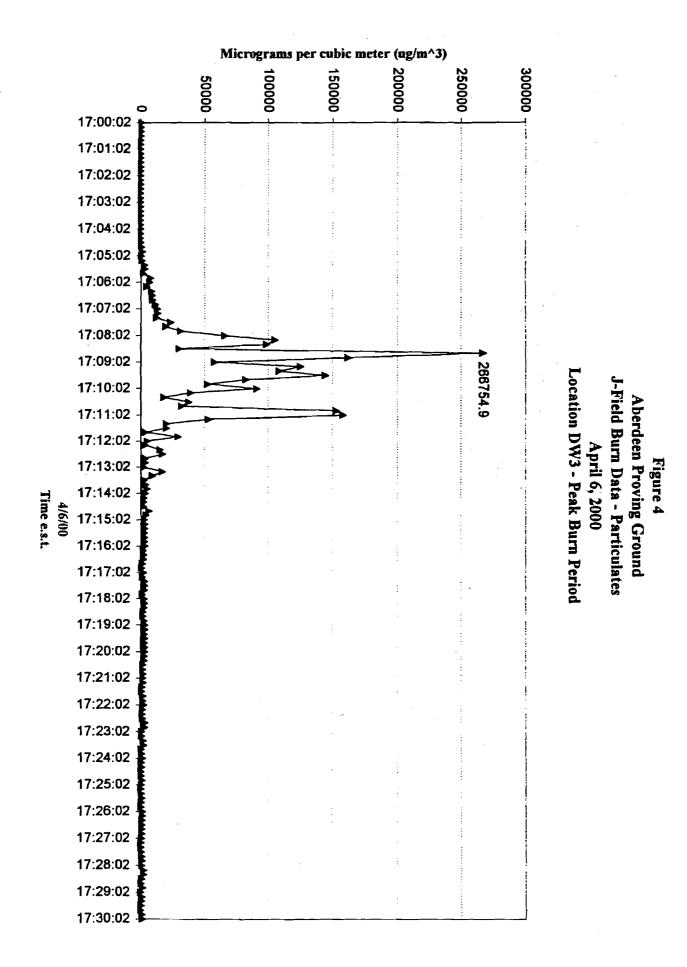



Figure 3 Aberdeen Proving Ground J-Field Burn Data - Particulates April 6, 2000 Location DW2 - Peak Burn Period

1 F

Micrograms per cubic meter (ug/m^3) 18000 10000 14000 12000 16000 2000 6000 8000 4000 15:27:33 15:36:03 15:44:33 15:53:03 16:01:33 16:10:03 16:18:33 16:27:03 16:35:33 16:44:03 16:52:33 17:01:03 17:09:33 17:18:03 16530.8 17:26:33 17:35:03 4/6/00 17:43:33 17:52:03 18:00:33 18:09:03 18:17:33 18:26:03 18:34:33 18:43:03 18:51:33 19:00:03 19:08:33 19:17:03 19:25:33 19:34:03 19:42:33 19:51:03

Time e.s.t.

Figure S Aberdeen Proving Ground J-Field Burn Data - Particulates April 6, 2000 Location DW4 .

J

)

APPENDIX A

Analytical Report (VOCs) Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\JFIELD tr-j0400.110

. .

.

.

ANALYTICAL REPORT

Prepared by Lockheed Martin Technology Services Group

Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities Aberdeen Proving Ground, Aberdeen, MD

May 2000

EPA Work Assignment No. 0-110 Lockheed Martin Work Order No. R1A00110 EPA Contract No. 68-C99-223

> Submitted to David Mickunas EPA-ERTC

> > Date

bois Leader

Dennis Miller

Analytical Section Leader

Steven Clapp

Program Manager

.

Analysis by:

REAC

Prepared by: Mark Bernick JungSug Jang Gerald Ball

Reviewed by:

Vinod Kansal Deborah Killeen

TABLE OF CONTENTS

<u>Topic</u>

Page Number

)

Sec.

1.0 INTRODUCTION 1 2.0 GC/MS CANISTER PROCEDURES 1 2.1 Sample Pressurization 1 2.2 Summa Canister Analysis 1 2.3 Calibration and Sample Spiking 1 2.4 Compound Identification Quantitation 2 2.5 QA/QC 2 3 3.0 RESULTS 3 4.0 DATA ASSESSMENT

LIST OF TABLES

Table 1 - GC/MS Instrument Conditions	4
Table 2 - Air Toxic Standards (Concentrations and Quantitation Ions)	5
Table 3 - Air Toxic Target Compound Results for Summa Canister Samples	6
Table 4 - Air Toxic Non-target Compound Results for Summa Canister Samples	9
Table 5 - Air Toxic MS/MSD Recovery Summary for Summa Canister Samples	20

APPENDIX A - CHAIN-OF-CUSTODY21APPENDIX B - SUMMA CANISTER DATA(J164)23

1.0 INTRODUCTION

Summa canister samples were collected in support of the Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities work assignment at the Aberdeen Proving Ground, Aberdeen, MD on 06 April 2000. A total of seven (7) samples and a field blank were collected in 6-liter passivated Summa canisters. The samples were transported back to the Environmental Response Team Center (ERTC) facility in Edison, New Jersey. These samples were analyzed by the Response Engineering and Analytical Contract (REAC) using gas chromatography/mass spectrometry (GC/MS) on 10 and 11 April 2000.

2.0 GC/MS CANISTER PROCEDURES

2.1 Sample Pressurization

The Summa canisters used for sampling were cleaned by REAC using REAC Standard Operating Procedure (SOP) #1703 and were selected from clean batches certified by REAC. Before analysis, all canisters were pressurized. A pressurizing train was setup with a pressure gauge accurate to \pm 0.1 pounds per square inch absolute (psia). The gauge and train were purged with nitrogen gas (Ultra High Pure grade) for 5 minutes. The train was then connected to the canister, an initial reading was taken. Nitrogen was added to all canister samples as followed:

		<u>Initial</u>	<u>Final</u>
Sample	Location	Pressure (psia)	Pressure (psia)
17740	DW3	14.8	29.6
17741	DW2	2.0	16.0
17742	DWI	15.2	30.4
17743	DW4	8.8	17.6
17744	DW5	14.0	28.0
17745	UWI	8.4	16.8
17746	UW2	8.4	16.8
17747	Trip/Field	0.3	20.0

2.2 <u>Summa Canister Analysis</u>

Samples were analyzed by cryogenic trapping of aliquots from Summa canisters via a canister using a Hewlett-Packard 5890 gas chromatography (GC) and 5971A mass selective detector (MSD) running ChemStation software. Table 1 lists cryogenic trap and GC/MS conditions.

All canisters were attached to the Summa canister autosampler. Sample analysis began by cooling the first cryotrap, module -1 (M-1), to -160 degree Celsius (°C). Once M-1 was cooled, a specified aliquot of sample or standard was cryotrapped. This aliquot was transferred to a Tenax trap, M-2, to eliminate most of the water, and then cryofocussed at a third trap, M-3, before injection by direct heating.

2.3 Calibration and Sample Spiking

Standard mixture containing twenty-five (25) compounds was provided in compressed gas cylinder No ALM009519 by Scott Specialty Gases, Inc. These standard concentrations are .97 to 1.05 parts per million in volume (ppmv) and are listed in Table 2. The standards were diluted to a nominal concentration of 20 parts per billion (ppbv) in a Silco canister. An initial calibration range was obtained by varying the volume of the nominal 20 ppbv standard from 50 to 1250 milliliters (mL), equivalent to 1 nanoliter (nL) to 25 nL. Daily standards were obtained by analyzing the 20 ppbv standard at 500 mL (equivalent to 10 nL).

Bromochloromethane (BCM) and p-bromofluorobenzene (BFB) were added to both samples and standards. Both standards were provided in compressed gas cylinder No. ALM046281 by Scott Specialty Gases. These standard concentrations were 1.06 ppmv. BCM was used as an internal standard and BFB was used as a surrogate standard. This standard was diluted from a nominal concentration of 1 ppmv to 100 ppbv in a Silco canister. An aliquot of 100 mL (equivalent to 10 nL) was added to all standards and samples. To validate the mass spectrometer tuning, an aliquot of 70 mL (equivalent to 50 nanograms of BFB) was analyzed alone. Standard cylinder I.D. numbers, concentrations, and their quantitation ions are listed in Table 2.

∕₿

}

2

2.4 <u>Compound Identification/Quantitation</u>

Target Compounds in samples were identified and quantitated using ChemStation software. This software was used to tentatively identify and quantitate target compounds using reconstructed and extracted ion chromatogram which were matched with retention time windows. The report format includes the identified compound mass spectra (both raw and background subtracted), quantitation, and qualifier ion chromatogram.

Target compound results are originally reported in nL. The limit of quantitation (LOQ) for all the target compounds is estimated to be 1 nL, being the lowest volume of standard on the calibration curve. Any target compound detected at 4 times lower than the LOQ is not reported. The target compound results are calculated in ppbv using the following equation:

Concentration(ppbv) = Quant Result(nL) x 1000 Undiluted Sample Volume(mL)

Non-target compounds were identified by a library search of all peaks in a chromatogram. The library search report prints out the sample spectrum along with the ten best library matches and the three best library match spectra. These matches were used along with mass spectral interpretation techniques to tentatively identify the unknowns. Concentrations were calculated based on the total ion response of bromochloromethane in the daily standard. All compounds appearing in the method blank as well as other background compounds commonly found in Summa canister GC/MS analyses (siloxanes, carbon dioxide, etc.) were deleted from the sample results to provide a true listing of the compounds in the samples.

2.5 <u>QA/QC</u>

The following QA/QC procedures were performed for this analysis:

- The HP 5971A was tuned daily for perfluorotributylamine (PFTBA) to meet abundance criteria for p-bromofluorobenzene as listed in EPA Method 624. Tuning results are included in the QA/QC data section (Appendix B). The tune was adjusted when necessary.
- An initial calibration by automated injection from a Silco canister standard at 20 ppbv was performed on 24 March 2000. All compounds met the acceptance criteria of having relative standard deviations (RSD) of less than 25%.
- Continuing calibrations were performed on 10 and 11 April 2000 to satisfy the 12 hour requirement. All compounds met the acceptance criteria of having relative percent difference (RPD) less than 25%, except chloroethane (43.8%) on 11 April 2000. This compound was not detected in the associated samples; the data are not affected.
- ► A surrogate standard of BFB was added to all standards and samples. Percent recoveries were calculated against the daily standards, and are listed in Table 3. Recoveries should be within 70% to 130% for BFB.

- Method blanks were analyzed after each continuing calibration to ensure that the system was clean.
- A replicate was analyzed on sample 17744 (DW5).
- A set of matrix spike and matrix spike duplicates (MS/MSD) was analyzed on sample 17746 (UW2) by spiking the samples with 500 mL of the 20 ppbv standard. There is no specific recovery range established according to SOP # 1705.

3.0 <u>RESULTS</u>

Summa canister target and non-target results are listed in Tables 3 and 4, respectively. The recoveries for the MS/MSD are presented in Table 5. All results are reported in ppbv for Summa canister samples and blanks. The chain-of-custody is in Appendix A. The Summa canister data are in Appendix B.

In Appendix B, the Analysis Log is followed by the calibration package for each day of analysis. The calibration package includes the daily analysis log, canister pressurization log, BFB tune, and initial or continuing calibration quant report. The quant report lists the retention time, quantitation ion, peak area, and concentration in nL. Concentrations listed on the quant reports are generated by using the average response factors of the initial calibrations.

The following is a list of the QA/QC flags used in qualifying the results:

- A Assumed volume for method blank.
- B Concentration less than 3 times method blank value.
- C Compound calibration relative standard deviation (RSD) >25% (concentrations calculated by average response factor only).
- E Exceeds calibration range.
- J Below 1.0 nL quantitation limit.
- U-Not detected.

4.0 DATA ASSESSMENT

A total of 7 samples and a field blank were collected on 4/6/00 on chain of custody numbers 03310 from the Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities in Aberdeen Proving Ground, Aberdeen, MD under U.S.EPA WA# 0-110. The samples were received on 4/10/00.

The data contained in this report has been validated to two significant figures. Any other interpretation of the data is the responsibility of the user.

The samples were treated with procedures consistent with those described in SOP # 1008.

The reported year on the raw data for the acquisition time is incorrectly reported as "100" and the reported year on the raw data for the quatitation time is incorrectly reported as "19100". This is due to a software problem related to the year 2000.

In the continuing calibration on $\frac{1}{1100}$ the percent difference for chloroethane (44%) exceeded the QC limits. This compound was not detected in the associated samples; the data are not affected.

TABLE 1 - GC/MS Instrument Conditions

A. Preconcentrator Conditions:

M-1 Cryotrap Temperature	:-160°C
Internal Standard Trap Time	: 1.0 minute
Sample flow	: 150 mL/min
M-1 Cryotrap Desorb Temperature	: 20°C
M-2 Cryotrap Temperature	∴-10°C
Transfer (M-1 to M-2) Time	: 4.5 minutes
M-2 Cryotrap Desorb Temperature	: 240°C
M-3 Cryotrap Temperature	:-160°C
Transfer (M-2 to M-3) Time	: 3.5 minutes
Injection Time	: 2.0 minutes

•

Soles-

B. GC/MS Conditions, Sample Analysis:

Initial Temperature	: 40.0°C
Initial Time	: 6.0 minutes
Ramp Rate	: 8.0°C/min
Final Temperature	: 220.0°C
Final Time	: 9.5 minutes
Run Time	: 35.03 minutes
Mass Scan Range:	: 35 to 250 AMU

Column: 0.25 mm x 30 meter Restek RTx-VOA, 3.0 µm film thickness (Restek Corporation)

TABLE 2 - Air Toxic Standards (Concentrations and Quantitation lons)

Compound	Cylinder	Conc. (ppmv)	Quant. Ion
chloromethane	ALM009519	0.98	50
vinyl chloride	ALM009519	0.97	62
chloroethane	ALM009519	1.00	64
trichlorofluoromethane	ALM009519	1.04	101
1,1-dichloroethene	ALM009519	1.02	61
dichloromethane	ALM009519	1.00	49
trans-1,2-dichloroethene	ALM009519	1.00	61
1,1-dichloroethane	ALM009519	1.02	63
trichloromethane	ALM009519	1.02	83
1,1,1-trichloroethane	ALM009519	1.01	97
1,2-dichloroethane	ALM009519	1.02	62
benzene	ALM009519	1.00	78
carbon tetrachloride	ALM009519	0.98	117
trichloroethene	ALM009519	1.00	130
dibromomethane	ALM009519	0.98	174
bromodichloromethane	ALM009519	1.01	83
toluene	ALM009519	1.01	91
1,1,2-trichloroethane	ALM009519	0.98	97
tetrachloroethene	ALM009519	1.00	166
ethylbenzene	ALM009519	1.01	91
meta-xylene	ALM009519	1.02	91
styrene	ALM009519	1.04	104
ortho-xylene	ALM009519	1.04	91
1,1,2,2-tetrachloroethane	ALM009519	1.00	83
1,3,5-trimethylbenzene	ALM009519	1.05	120
Surrogate Standards			
bromochloromethane	ALM046281	1.06	. 49
p-bromofluorobenzene	ALM046281	1.06	95

Table 3 - Air Toxic Target Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities (concentrations in ppbv)

Page 1 of 3

-

Sample Number	Method	17747		17740	17741	17742
Sample Location	Blank	Trip/Field		DW3	DW2	DW1
Date Sampled	N/A	04/06/00		04/06/00	04/06/00	04/06/00
Date Analyzed	04/10/00	04/10/00		04/10/00	04/10/00	04/10/00
Data File	AGS003	AGS004		AGS005	AGS006	AGS007
Chloromethane	4 U		U	2 J	9 J	2 J
Vinyl Chloride	4 U	4	υ	4 U	16 U	4 U
Chloroethane	4 U	4	U	4 U	16 U	4 U
Trichlorofluoromethane	4 U	4	U	<u> </u>	16 U	4 U
1,1-Dichloroethene	4 U	4	U	4 U	16 U	4 U
Methylene Chloride	4 U	4	υ	4 U	16 U	4 U
trans-1,2-Dichloroethylene	4 U	4	U	4 U	16 U	4 U
1,1-Dichloroethane	4 U	4	U	4 U	16 U	4 U
Trichloromethane	4 U	4	U	4 U	16 U	4 U
1,1,1-Trichloroethane	4 U	4	U	4 U	16 U	4 U
Carbon Tetrachloride	4 U	4	U	4 U	16 U	4 U
1,2-Dichlroethane	4 U	4	U	4 U	16 U	- 4 U
Benzene	4 U	4	U	7	16 U	3 J
Trichloroethylene	4 U	4	U	4 U	16 U	4 U
Bromodichloromethane	4 U	4	U	<u>4</u> U	16 U	4 U
Dibromomethane	4 U	4	U	4 U	16_U	<u>4</u> U
Toluene	4 U	4	U	4	16 U	1 J
1,1,2-Trichloroethane	4 U	4	U	4 U	16 U	4 U
Tetrachloroethylene	4 U	4	U	4 U	16 U	4 U
Ethylbenzene	4 U	4	υ	4 U		4 U
m & p-Xylenes	4 U	4	U	1 j	16 U	4 U
o-Xylene	4 U	4	U	4 U		4 U
Styrene	4 U	4	U	1 J	16 U	<u>4</u> U
1,1,2,2-Tetrachloroethane	4 U	4	U	4 U	16 U	4_U
1,3,5-Trimethylbenzene	4_U	4	U	4 U	16 U	4 U
		An international states of the second states of the	ويودينه	and a second strangery to a second strangery and a second strangery and the second	energen and and and a state	
p-Bromofluorobenzene (% Rec)	103	100		107	101	109
Pressurized Sample Volume (mL)	250	250		500	500	500
Initial Pressure (psia)	N/A	N/A		14.8	2.0	15.2
Final Pressure (psia)	N/A	N/A		29.6	16.0	30.4
Quantitation Limit (ppbv)	4	4		4	16	4

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

.

J - Below 1.00 nL Quantitation Limit

U - Not Detected

Table 3 - Air Toxic Target Compound Results for Summa Canister Samples WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities (concentrations in ppbv)

Page 2 of 3

Sample Number	17743	17744	17744 Rep	17745	17746
Sample Location	DW4	DW5	DW5	UW1	UW2
Date Sampled	04/06/00	04/06/00	04/06/00	04/06/00	04/06/00
Date Analyzed	04/10/00	04/10/00	04/11/00	04/10/00	04/10/00
Data File	AGS008	AGS009	AGS016	AGS010	AGS012
Chloromethane	3 J	1 J	1 J	4 U	1 J
Vinyl Chloride	4 U	4 U		4 U	4 U
Chloroethane	<u> </u>	4 U		4 U	4 U
Trichlorofluoromethane	4 U	4 U	4_U	4 U	4 U
1,1-Dichloroethene	4 U	4 U		4 U	4 U
Methylene Chloride	4 U	4 U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 U	4 U
trans-1,2-Dichloroethylene	4 U	4 U	4 U	4 U	4 U
1,1-Dichloroethane	4 U	4 U	4 U	4 U	4 U
Trichloromethane	4 U	4 U	4 U	4 U	4 U
1,1,1-Trichloroethane	4 U	4 U	4 U	4 U	4 U
Carbon Tetrachloride	4 U	4 U	4 U	4 U	4 U
1,2-Dichlroethane	4 U	4 U	4 U	4 U	
Benzene	5	3 J	3 J	4 U	4 U
Trichloroethylene	4 U	4 U	4 U	4 U	4 U
Bromodichloromethane	4 U	4 U	4 U	4 U	4 U
Dibromomethane	4 U	4 U	4 U	4 U	4 U
Toluene	3 J	6	6	· 4 U	4 U
1,1,2-Trichloroethane	4 U	4 U	4 U	4 U	4 U
Tetrachloroethylene	· 4 U	4 U	4 U	4 U	4 U
Ethylbenzene	4 U	1 J	1 J	4 U	4 U
m & p-Xylenes	4 U	4 J	4 J	4 U	4 U
o-Xylene	4 U	1 J		4 U	4 U
Styrene	4 U	4 L	4 U	4 U	4 U
1,1,2,2-Tetrachloroethane	4 U	4 L	I · 4 U	4 U	4 U
1,3,5-Trimethylbenzene	4 U	<u>4 L</u>	4 U	4 Ŭ	4 U
p-Bromofluorobenzene (% Rec:	110	112	112	106	105
Pressurized Sample Volume (mL)	500	500	500	500	500
Initial Pressure (psia)	8.8	14.0	14.0	8.4	8.4
Final Pressure (psia)	17.6	28.0	28.0	• 16.8	16.8
Quantitation Limit (ppbv)	4	4	4	4	4

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

N/A - Not Applicable

Page 3 of 3

Sample Number	Method	
Sample Number	Blank	
Date Sampled	N/A	
-	04/11/00	
Date Analyzed Data File		
	AGS015	
Chloromethane	4	븬
Vinyl Chloride	4	븬
Chloroethane	4	빌
Trichlorofluoromethane	4	<u>U</u>
1,1-Dichloroethene	4	U
Methylene Chloride	. 4	U
trans-1,2-Dichloroethylene	, 4	U
1,1-Dichloroethane	4	U
Trichloromethane	4	U
1,1,1-Trichloroethane	4	U
Carbon Tetrachloride	4	U.
1,2-Dichlroethane	4	U
Benzene	4	U
Trichloroethylene	4	U
Bromodichloromethane	4	U
Dibromomethane	4	υ
Toluene	4	U
1,1,2-Trichloroethane	4	U
Tetrachloroethylene	4	U
Ethylbenzene	4	U
m & p-Xylenes	4	U
o-Xylene	4	U
Styrene	4	U
1,1,2,2-Tetrachloroethane	4	U
1,3,5-Trimethylbenzene	4	υ
p-Bromofluorobenzene (% Rec)	100	
Pressurized Sample Volume (mL)	250	
Initial Pressure (psia)	N/A	
Final Pressure (psia)	N/A	_
Quantitation Limit (ppbv)	4	

A - Assumed volume for Blanks

B - <3 times Method Blank value

C - Compound Calibration >25% RSD

D - Compound Calibration Check >25% RPD

E - Concentration exceeded calibration limit (25nL)

J - Below 1.00 nL Quantitation Limit

U - Not Detected

N/A - Not Applicable

Page 1 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sample Number:	Method	Reference Standard: B	romochloromethane		
Sample Location:	Sample Location: Blank Reference Std Conc. (21.2		
Sample Volume (mL):	250	Reference Std Volume (mL):	500		
Date Sampled:	N/A	Reference Std Area:	13322670		
Date Analyzed:	04/10/00	Initial Pressure (psig):	N/A		
Data File:	AG\$003	Final Pressure (psig):	N/A		
Compound Name	Retention Time	Area	Concentration (ppbv)		
No non-targets were found.					

* - Below 4 ppby Limit of Quantitation N/A - Not Applicable

Page 2 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

S	ample Number:	17747	Reference Standard: B	romochloromethane
Sa	ample Location:	Trip/Field	Reference Std Conc. (ppbv):	21.2
Sampl	e Volume (mL):	250	Reference Std Volume (mL):	500
	Date Sampled:	04/06/00	Reference Std Area:	13322670
	Date Analyzed:	04/10/00	Initial Pressure (psig):	N/A
	Data File:	AGS004	Final Pressure (psig):	N/A
Compound Name		Retention Time	Area	Concentration (ppbv)

No non-targets were found.

* - Below	4 ppbv Limit of Quantitation
N/A - Not	Applicable

Page 3 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sample Number:	17740	40 Reference Standard: Bromochloromet	
Sample Location:	DW3	Reference Std Conc. (ppbv):	21.2
Sample Volume (mL):	500	Reference Std Volume (mL):	500
Date Sampled:	04/06/00	Reference Std Area:	13322670
Date Analyzed:	04/10/00	Initial Pressure (psig):	14.8
Data File:	AGS005	Final Pressure (psig):	29.6
Compound Name	Retention Time	Area	Concentration (ppbv)
cycloalkane/alkene	2.792	2442275	8
cycloalkane/alkene	3.611	962606	3 *
acetealdehyde	3.914	916963	3 *
furan + unknown	6.675	2271909	7
acetone	6.937	1719096	6
2methyl-furan + unknown	10.765	/ 1956463	6
aldehyde	19.271	2398466	8

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Page 4 of 11

J

}

ł

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sar	nple Number:	17741	Reference Standard: B	romochloromethane
San	ple Location:	DW2	Reference Std Conc. (ppbv):	21.2
Sample	Volume (mL):	500	Reference Std Volume (mL):	500
D	ate Sampied:	04/06/00	Reference Std Area:	13322670
Da	ate Analyzed:	04/10/00	Initial Pressure (psig):	2.0
	Data File:	AGS006	Final Pressure (psig):	16.0
Compound Name		Retention Time	Area	Concentration (ppbv)
acetone		6.999	1058843	13 *

* - Below 16 ppbv Limit of Quantitation N/A - Not Applicable

.

. . .

Page 5 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sample Number:	17742	Reference Standard: Bromochlorometha				
Sample Location:	DW1	Reference Std Conc. (ppbv):	21.2			
Sample Volume (mL):	500	Reference Std Volume (mL):	500			
Date Sampled:	04/06/00	Reference Std Area:	13322670			
Date Analyzed:	04/10/00	Initial Pressure (psig):	15.2			
Data File:	AGS007	Final Pressure (psig):	30.4			

Compound Name	Retention Time	Area	Concentration (ppbv)
unknown	8.192	987161	3 *
aldehyde	19.288	940362	3 *

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Page 7.of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sample Number:	17744	Reference Standard: E	Iromochloromethane
Sample Location:	DW5	Reference Std Conc. (ppbv):	21.2
Sample Volume (mL):		Reference Std Volume (mL):	500
Date Sampled:	04/06/00	Reference Std Area:	13322670
Date Analyzed:	04/10/00	Initial Pressure (psig):	14.0
Data File:	AGS009	Final Pressure (psig):	28.0
Compound Name	Retention Time	Area	Concentration (ppbv)
cycloalkane/alkene	2.800	834872	3 *
alkane + alkane	3.238	1004830	3 *
n-butane + alkane	3.628	1397502	4
n-hexane	9.635	1440931	5
toluene + siloxane	16.720	2327997	7
trimethyl-benzene isomer	22.913	939916	3 *

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Page 8 of 11

١

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

	Sample Number:	17745	Reference Standard: E	romochloromethane
	Sample Location:	UW1	Reference Std Conc. (ppbv):	21.2
Sam	ple Volume (mL):	500	Reference Std Volume (mL):	500
	Date Sampled:	04/06/00	Reference Std Area:	13322670
	Date Analyzed:	04/10/00	Initial Pressure (psig):	8.4
	Data File:	AGS010		16.8
Compound Name		Retention Time	Area	Concentration (ppbv)

No non-targets were found.

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Page 9 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

ę	Sample Number:	17746	Reference Standard: B	romochloromethane
S	ample Location:	UW2	Reference Std Conc. (ppbv):	21.2
Samp	e Volume (mL):	500	Reference Std Volume (mL):	500
	Date Sampled:	04/06/00	Reference Std Area:	13322670
	Date Analyzed:	04/10/00	Initial Pressure (psig):	8.4
	Data File:	AGS012	Final Pressure (psig):	16.8
Compound Name		Retention Time	Area	Concentration (ppbv)

No non-targets were found.

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Table 4 - Air Toxic Non-target Compound Results Summa Canister Samples

Page 10 of 11

Ì

}

}

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sample Number:	Method	Reference Standard: B	romochloromethane
Sample Location:	Blank	Reference Std Conc. (ppbv):	21.2
Sample Volume (mL):	250	Reference Std Volume (mL):	500
Date Sampled:	N/A	Reference Std Area:	8543457
Date Analyzed:	04/11/00	Initial Pressure (psig):	N/A
Data File:	AGS015	Final Pressure (psig):	N/A
Compound Name	Retention Time	Area	Concentration (ppbv)
	No non-targets	were found.	

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Page 11 of 11

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

	Sample Number:	17744 Rep	Reference Standard: E	Iromochloromethane
	Sample Location:	DW5	Reference Std Conc. (ppbv):	21.2
Sa	mple Volume (mL):	500	Reference Std Volume (mL):	500
	Date Sampled:	04/06/00	Reference Std Area:	8543457
	Date Analyzed:	04/11/00	Initial Pressure (psig):	14.0
	Data File:	AGS016	Final Pressure (psig):	28.0
mnound Nam	۵	Retention Time	Area	Concentration (ppby)

Concentration (pppv)		Compound Nam
5 4	n + alkane	unknown + alkan
5		alkane
3 3		alkene
4		acetone
/ 8	+ siloxane	toluene + siloxan
3 4	I-benzene isomer	trimethyl-benzen
1	+ siloxane	acetone toluene + siloxan

* - Below 4 ppbv Limit of Quantitation N/A - Not Applicable

Table 5 - Air Toxic MS/MSD Recovery Summary for Summa Canister Samples APG Burn Site, Edgewood, MD WA # 0-110

Ì

Cample Number		17746	17746 MS		17746 MSD	
imple Location		UW2	UW2		UW2	
Date Sampled		04/06/00	04/06/00		04/06/00	
Date Analyzed	Spike	04/10/00	04/10/00	%	04/10/00	%
Data File	Amount	AGS012	AGS013	Recovery	AGS014	Recovery
Chloromethane	9.8	0.19	10.95	110	10.99	110
Vinyl Chloride	9.7	0.00	11.12	115	11.50	119
Chloroethane	10.0	0.00	11.91	119	11.99	120
Trichlorofluoromethane	10.0	0.00	12.87	124	13.33	120
1.1-Dichloroethene	10.4	0.00	10.65	104	10.79	120
	10.2	0.00	10.03	104	10.79	
Vethylene Chloride	10.0	0.00	10.14		10.23	102
rans-1,2-Dichloroethene				103		106
I,1-Dichloroethane	10.2	0.00	10.56	104	10.79	106
Trichloromethane	10.2	0.00	10.22	100	10.54	103
1,1,1-Trichloroethane	10.1	0.00	10.17	101	10.64	105
Carbon Tetrachloride	9.8	0.00	10.40	106	10.68	109
I,2-Dichloroethane	10.2	0.00	10.61	104	10.74	105
Benzene	10.0	0.00	10.06	101	10.19	102
Frichloroethylene	10.0	0.00	9.95	99	10.12	101
Bromodichloromethane	10.1	0.00	10.16	101	10.43	103
Dibromomethane	9.8	0.00	10.10	103	10.23	104
<u>Foluene</u>	10.1	0.00	10.07	100	10.19	101
1,1,2-Trichloroethane	9.8	0.00	10.12	103	10.45	107
Tetrachloroethylene	10.0	0.00	10.35	103	10.49	105
Ethylbenzene	10.1	0.00	10.13	100	10.17	101
reta & para-Xylenes	10.2	0.00	10.20	100	10.25	100
ho-Xylene	10.4	0.00	10.31	99	10.42	100
Styrene	10.4	0.00	10.51	101	10.52	101
1,2,2-Tetrachloroethane	10.0	0.00	10.70	107	10.96	110
,3,5-trimethlybenzene	10.5	0.00	10.67	102	10.82	103
		t				
-Bromofluorobenzene (% Rec.)	N/A	105	105	N/A	103	N/A

I/A - Not Applicable

APPENDIX A

CHAIN-OF-CUSTODY

Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sampled on 06 April 2000

WA#: R1A00110

(1908) 321 EPA Con	-4200 (Jus) tract 68 C4 68 C1 9	Jn, NJ CHA. JF CUSTODY RECORD 4200 Project Name: A A 4200 Project Number: A A 4200 A Project Number: A 4200 A Phone: A					 Z3 ses Reque	033 г NO. <u>/</u> с	310 DF <u>/</u>			
REAC #	Sample No.	Sampling Lo		x Date Collec	ted # of E	ottles Co	ntainer/Preser	vative V		Volume		/
426 427 428 429 430 430 431 432 433	17777777777777777777777777777777777777	DW2 DW1 DW1 DW1 DW1 DW1 DIAIS UW1 TW12 TW12 TW12 TW12 TW12 TW12 TW12 TW							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(2) (3) (2)	Aej	
												0022
DS - Drur	m Solids G m Liquids S	W - Potable W - Ground W - Surface L - Sludge	water W- Water <u>O-</u>	Soil Water Oil Air	Special Instrum VOC CCL by Leferr	, - Vulo nporne Modi	hile Cre Is and ried TO	tysis		UBCONTR CHAIN OF DDY #	 USE O	NLY

Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
KIndusu	(Jac)	410,00	Dand Anneurs!	4/10/00	1410	ALL/Amlysi	Dunding Veny	4/10/00	Jenes Jy	7,5/00	14:00
7	7			· · ·			<u> </u>		000	//	
											·
						JI					

APPENDIX B

Analytical Report (PAH. Inorganic Acids, Metals, and Dioxins/Furans) Air Monitoring, Sampling, Analysis. and Modeling Support, and Underwater Survey Activities Site July 2000

, . .))

• . .

Ĵ

ANALYTICAL REPORT

Prepared by Lockheed Martin

Air Monitoring. Sampling, and Modeling Support, and Underwater Survey Activities Aberdeen Proving Ground, Aberdeen, MD

May 2000

EPA Work Assignment No. 0-110 LOCKHEED MARTIN Work Order No. R1A00110 EPA Contract No. 68-C99-223

> Submitted to D. Mickunas EPA-ERT

Dubois

Task Leader

5/31/00

t:/i

Analysis by: REAC SWRI

D. Miller

Analytical Section Lezder

S. Ćlapp Program Manager

Date

Date

Date

Prepared by: M. Bernick

Reviewed by: D. Killeen

00110\DEL\AR\0005\APGBurnzr

Table of Contents

Topic		Page N	umber	2
• . • •		_		
Introduction		Page	1	
Case Narrative		Page	1	
Summary of Abbreviations		Page	3	
Section I				
Analytical Procedure for PAH in Air (XAD-2 Tubes)		Page	4	an series and
Analytical Procedure for Inorganic Acids in Air		Page	6	
Analytical Procedure for Metals in Air		Page	6	
Analytical Procedure for Polychlorinated Dibenzodioxins and				
Polychlorinated Dibenzofurans in Air		Page	6	
Results of the Analysis for PAH in Air	Table 1.1	Page	7	
Results of the TIC for PAH in Air	Table 1.2	Page	9	
Results of the Analysis for Inorganic Acids in Air	Table 1.3	Page	19	
Results of the Analysis for Metals in Air	Table 1.4	Page	20	
Results of the Analysis for Polychlorinated Dibenzodioxins and		U		
Polychlorinated Dibenzofurans in Air	Table 1.5	Page	22	
Section II				
QA/QC for PAH in Air		Page	28	
Results of the BS/BSD Analysis for PAH in Air	Table 2.1	Page	29	
QA/QC for Inorganic Acids in Air	1 4010 2.1	Page	31	2
Results of the BS/BSD Analysis for Inorganic Acids in Air	Table 2.2	Page	32)
QA/QC for Metals in Air	1 4010 2.2	-	33	
	T-1- 7 7	Page		
Results of the BS/BSD Analysis for Metals in Air	Table 2.3	Page	34	
Results of the Laboratory Control Sample Analysis	T-1-1-2-4	D	25	
for Metals in Air	Table 2.4	Page	35	
QA/QC for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzodiox Results of the Internal Standard Recoveries for Polychlorinated Dibenzodiox		Page	36	
and Polychlorinated Dibenzofurans in Air	Table 2.5	Page	37	
Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxin and	1 40/6 2.5	I age	57	
Polychlorinated Dibenzofurans in Air	Table 2.6	Page	38	
Section III				
Communications		Page	39	
Chains of Custody		Page	41	
		8-		
Appendix A Data for PAH in Air			142 001	
Appendix B Data for Inorganic Acids in Air		Page J	159 001	
Appendix C Data for Dioxins in Air			160 001	
Appendix D Data for Metals in Air			158 001	
Appendices will be furnished on request.				
·				

00110\DEL\AR\0005\APGBurnar

)

Introduction

REAC in response to WA # 0-110, provided analytical support for environmental samples collected from Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities, located in Aberdeen Proving Ground, Aberdeen, MD as described in the following table. The support also included QA/QC, data review, and preparation of an analytical report containing a summary of the analytical methods, the results, and the QA/QC results.

The samples were treated with procedures consistent with those described in SOP # 1008 and are summarized in the following table:

COC #	Number of Samples	Sampling Date	Date Received	Matrix	Analysis	Laboratory
06966	10	4/6/00	4/11/00	Air	Dioxin	SWRI*
05254	10	4/6/00	4/11/00		Metals	
06965	10	4/6/00	4/11/00		Inorganic Acids	
05654	10	4/6/00	4/10/00		РАН	REAC

* SWRI denotes Southwest Research Institute

Case Narrative

The data in this report have been validated to two significant figures. Any other representation of the data is the responsibility of the user.

PAH in Air Package J142

The data were examined and were found to be satisfactory.

Inorganic Acids in Air Package J159

All sample results were lot blank subtracted.

Sample 17733, the trip blank, contained 0.0013 mg of sulfuric acid. The sulfuric acid results for samples 17700 through 17706 are considered not detected.

Metals in Air Package J158

The method blank contained 11.81 μ g/filter sodium (Na). The Na results for samples 17680 through 17689 are considered not detected.

Sample 17689, the lot blank contained 6.2 μ g/filter calcium (Ca), 0.51 μ g/filter chromium (Cr), 1.6 μ g/filter iron (Fe) and 1.1 μ g/filter zinc (Zn). The Ca, Cr and Zn results for samples 17680 through 17688, and the Fe results for samples 17681 through 17685, 17687 and 17688 are considered not detected because the concentration in the

00110\DEL\AR\0005\APGBurnar

sample is less then five times the concentration in the lot blank.

Sample 17688, the trip blank, contained 0.23 μ g/filter nickel (Ni). The Ni results for samples 17681, 17683, 17686 and 17687 are considered not detected because the concentration in the sample is less then five times the concentration in the trip blank.

The LCS percent recovery exceeded the QC limits for tellurium (Te) (6.7%). The BS/BSD percent recovery exceeded the QC limits for Te (BS 8.2%, BSD 8.6%), phosphorus (P) (BS 126%, BSD 127%), tin (Sn) (BS 131%, BSD 132%), and zirconium (Zr) (BS 134%, BSD 131%). The Te results for samples 17680 through 17689 are considered unusable.

Dioxins in Air Package J 160

The method blank contained 13 pg OCDF. The OCDF result for sample 17679 is considered estimated.

Sample 17679, the lot blank, contained 0.660 pg 123789-HxCDD. This compound was not detected in the associated samples; the data are not affected.

Sample 17677, the trip blank, contained 12.2 pg OCDD. The OCDD results for samples 17670, 17675, 17674 and 17676 are considered not detected because the sample concentrations were less than five times that found in the trip blank.

27

Lock mass ion 342 (penta dioxins and furans) exhibited a loss of sensitivity during the calibration verification on 4/17/00 (6:41 am) on instrument H. None of the associated samples exhibited a sensitivity loss for this ion during analysis; the data are not affected.

In the ending calibration verification standard of 4/17/00 (6:41 am), the acceptable percent difference QC limits were exceeded for ¹³C-12378-PeCDD (45%) and ¹³C-OCDD (46%). As required by the method criteria, the subcontracted laboratory used the two continuing calibrations bracketing the samples to calculate average relative response factors for quantitation.. Samples 17673, 17674, 17675, 17676, 17677 and 17678 were quantiated using these average response factors. The percent relative standard deviation of these average response factors exceeded the QC limits for OCDF (21), ¹³C-12378-PeCDD (43) and ¹³C-OCDD (33). The OCDD results for samples 17673, 17674, 17675, 17676, 17675, 17676 and 17677 are considered estimated.

The acceptable QC limits were exceeded for the percent recovery for internal standard ¹³C-12378-PeCDD (138%) for sample 17676. 12378-PeCDD was not detected in this sample; the data are not affected

The acceptable QC limits were exceeded for the percent recovery for internal standard ¹³C-12378-PeCDF (137%) for sample 17676. Pentafurans were not detected in this sample; the data are not affected.

00110\DEL\AR\0005\APGBurnar

Summary of Abbreviations

.

AA		Atomic Absorption	•				
В		The analyte was foun					
BFB		Bromofluorobenzene					
С		Centigrade					
Ď		(Surrogate Table) this	s value is from a	a diluted sample	and was not calcu	lated	
		(Result Table) this re:					
Dioxin		denotes Polychlorinat				zofurans and/or	
		PCDD and PCDF	· · · · · · · ·	,			
CLP		Contract Laboratory	Protocol				
COC		Chain of Custody					
CONC		Concentration					
CRDL		Contract Required De	etection Limit				
CRQL		Contract Required Qu		•			
DFTPP				it.			
DFIT		Decafluorotriphenylp	mosphille				
		Detection Limit		1	1		
E		The value is greater the			nd is estimated		
EMPC		Estimated maximum		uration			
ICAP		Inductively Coupled	Argon Plasma				
ISTD		Internal Standard					
J		The value is below th		tion limit and is	estimated		
LCS		Laboratory Control S					
LCSD		Laboratory Control S		e			
MDL		Method Detection Lin	mit				
MI		Matrix Interference					
MS		Matrix Spike					
MSD		Matrix Spike Duplica	ate				
MW		Molecular Weight					
NA		either Not Applicable	e or Not Availat	ole			
NC		Not Calculated					
NR		Not Requested					
NS		Not Spiked					
% D		Percent Difference					
% REC		Percent Recovery					
PPB		Parts per billion					
PPBV		Parts per billion by volume					
PPMV		Parts per million by volume					
PQL		Practical Quantitation Limit					
QA/QC		Quality Assurance/Qu					
QL		Quantitation Limit	-				
RPD		Relative Percent Diff	erence				
RSD		Relative Standard Deviation					
SIM		Selected Ion Monitoring					
TCLP		Toxic Characteristics Leaching Procedure					
υ		Denotes not detected					
W		Weathered analyte; th	he results should	d be regarded as	estimated		
m³		cubic meter kg		kilogram	μg	microgram	
L		liter g		gram	pg	picogram	
mL		millüiter mg		nilligram	ng	nanogram	
μL		microliter				······································	
*			exceeds the acce	eptable OC limit			
		denotes a value that exceeds the acceptable QC limit Abbreviations that are specific to a particular table are explained in footnotes on that					
		table	- specific to a p				
	Revisio	n 1/5/00					

.

12

00110\DEL\AR\0005\APGBurnar

.

)

Analytical Procedure for PAH in Air (XAD-2 Tubes)

XAD-2 Tube Preparation

The XAD-2 tubes were analyzed for polycyclic aromatic hydrocarbons (PAH) using modified NIOSH Method 5515. The front, back and filter portions of the tubes were analyzed separately by extracting them with 2.0 mL methylene chloride. A preweighed filter was also collected with these tubes and this filter was extracted with 4.0 mL methylene chloride. One mL of extract was spiked with 20 μ L of a 2000 ppm XAD internal standards solution consisting of naphthalene-d₈, acenaphthene-d₁₀, phenanthrene-d₁₀, chrysene-d₁₂, and perylene-d₁₂, resulting in a 40.0 ppm concentration and analyzed.

GC/MS Analysis

An HP 6890 MSD. ecuipped with a 6890 autosampler and controlled by a personal computer equipped with HP-Enviroquant software was used to analyze the samples.

The instrument conditions were:

Column	Restek Rtx-5 (cross bonded SE-54) 30 meter x 0.25 mm ID, 0.50 µm
	film thickness.
Flow Rate	1 mL/min, EPC enabled
Injection Temperature	280° C
Transfer Temperature	280° C
Source Temperature &	
Analyzer Temperature	Controlled by thermal transfer of heat from Transfer Line
Temperature	280° C
Temperature Program	70° C for 0.5 min
	30° C/min to 295° C; hold for 8 minutes
	30° C/min to 315° C; hold for 7 min
Pulsed Splitless Injection	Pressure Pulse = 16 psi for 1.0 min, then normal flow 8:1 Split Ratio
Injection Volume	lμL

The GC/MS was calibrated using 6 PAH standards at 10, 25, 50, 75, 100 and 150 ppm. Before analysis each day the system was tuned with 50-ng decafluorotriphenylphosphine (DFTPP) and passed a continuing calibration check by analyzing a 50µg/mL daily standard. The QC limit for the initial calibration is %RSD less than 30 and %D less than 25 for the daily check. Sample quantification is based on the average response factor of the calibration curve or the response factor of the daily calibration check.

00110\DEL\AR\0005\APGBurt.ar

The XAD-2 tube PAH results are listed in Table 1.1. Tentatively identified compounds are listed in Table 1.2. The following equations were used to calculate the analyte - total μg /sample:

$$\mu g/sample = C_{\mu} x V x D E = \frac{A_{\mu} x C_{\mu} x V x D E}{A_{\mu} x R F}$$

where

C_u

= Concentration of the analyte (µg/mL)

V = Extraction Volume (mL) DE = Desorption Efficiency = 100/(% Recovery)

 A_u = Area of the analyte

 C_{is} = Concentration of the internal standard ($\mu g/mL$)

 A_{is} = Area of the internal standard

The Relative Response Factor, RRF, is calculated from the calibration standard mixture using

$$RRF = \frac{A_{u} x C_{is}}{A_{is} x C_{u}}$$

where

RRF	= Relative Response Factor (unitless)
Au	= Area of Analyte in the standard mixture
C,s	= Concentration of Internal Standard in the standard mixture (µg/mL)
Ais	= Area of Internal Standard in the standard mixture
Cu	= Concentration of Analyte in the standard mixture (µg/mL)

)

The concentration of the analyte in mg/m^3 and ppbv (parts per billion by volume) is calculated using the following:

$$mg/m^3 = \frac{(Total \mu g front + Total \mu g back)}{Liters Sampled}$$

$$ppbv = \frac{mg/m^3 x 24.45 x 1000}{MW}$$

00005

where MW is the molecular weight of the analyte

Revision of 3/6/00

00110\DEL\AR\0005\APGBurr.ar

Analytical Procedure for Inorganic Acids in Air

The subcontract laboratory determined the concentration of inorganic acids in the samples by analyzing them according to NIOSH Method 7903. The results of the analysis for the air samples are listed in Table 1.3.

Analytical Procedure for Metals in Air

The subcontract laboratory determined the concentration of Metals in the samples by analyzing them according to NIOSH Method 7300. The results of the analysis for the air samples are listed in Table 1.4.

Analytical Procedure for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

The subcontract laboratory determined the concentration of polychlorinated dibenzodioxins and polychlorinated dibenzofurans in the samples by analyzing them according to USEPA SW-846 Method 8290. The results of the analysis are listed in Table 1.5.

00110\DEL\AR\0005\APGBurtar

Table 1.1 Results of the Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sample No. Sampling Location		7699 Eliank	0	7690 DW3	D	691 W2	Ē	7692 DW1	C	7693)W4	
Volume (L)	•	0		360		51		360		369	
	Conc.	MDL	Conc.	MDL	Conc.	MDL	Conc.	MDL	Conc.	MDL	
Compound Name	<u> </u>	<u> </u>	ppbv	ppbv	ppbv	ppbv	ppbv	ррри	ppbv	ppbv	
Naphthalene	U	11	U	5.6	1.7 J	5.7	U	5.6	Ú	5.4	
2-Methylnaphthalene	υ	11	U	5.3	υ	5.4	U	5.3	υ	5.2	
1-Methylnaphthalene	U	11	U	5.2	υ	5.3	υ	5.2	υ	5.0	
Biphenyl	U	11	U	5.0	U	5.1	U	5.0	U	4.8	
2,6-Dimethylnaphthalene	U	11	U	4.9	U	5.0	U	4.9	U	4.7	
Acenaphthyiene	U	12	U	5.2	υ	5.3	υ	5.2	U	5.1	
Acenaphthene	υ	11	υ	4.7	υ	4.9	U	4.7	U	4.6	
Dibenzofuran	U	11	U	4.6	U	4.7	ບ	4.6	υ	4.5	
Fluorene	U	11	υ	4.7	U	4.8	U	4.7	U	4.6	
Phenanthrene	U	11	U	4.1	U	4.2	U	4.1	U	4.0	
Anthracene	U	10	U	3.9	U	4.0	U	3.9	U	3.8	
Carbazole	U	12	υ	4.8	υ	4.9	υ	4.8	U	4.6	
Fluoranthene	U	12	U	4.0	U	4.1	υ	4.0	υ	3. 9	
Pyrene	U	12	U	4.0	U	4.1	U	4.0	υ	3.9	
Benzo(a)anthracene	U	12	U	3.5	U	3.6	U	3.5	υ	3.4	
Chrysene	U	14	υ	4.3	U	4.4	U	4.3	υ	4.2	
Benzo(b)fluoranthene	U	11	U	2.9	ບ	3.0	ບ	2.9	U	2.8	
Benzo(k)fluoranthene	U	11	U	3.1	U	3.2	์ บ	3.1	U	3.0	
Benzo(e)pyrene	U	12	U	3.2	U	3.3	U	3.2	U	3.1	
Benzo(a)pyrene	U	12	U	3.3	U	3.4	U	3.3	U	3.2	
Indeno(1,2,3-cd)pyrene	υ	13	υ	3.1	U	3.2	U	3.1	U	3.0	
Dibenzo(a,h)anthracene	U	12	U	3.0	U	3.1	ບ	3.0	ບ	2.9	
Benzo(g.h.i)perylene	<u> </u>	12	U	3.1	<u> </u>	3.1	<u> </u>	3.1	U	3.0	

00007

)

j.

Table 1.1 (cont.) Results of the Analysis for PAH in Air

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sample No. Sampling Location Volume (L)	C	7694)\\\5 360	Ĺ	7695 JW1 332	i	7696 JW2 360		7697 J Blank 0		7698 Blank
	Conc.	MDL	Conc.	MDL	Conc.	MDL	Conc	MDL	Conc.	0 MDL
Compound Name	ppbv	ppbv	ppbv	ppbv	ppbv	ppbv	hā	hð	ha	
Naphthalene	U	5.6	U	6.1	Ū	5.6	U	11	U	11
2-Methylnaphthalene	U	5.3	U	5.8	U	5.3	U	11	U	11
1-Methylnaphthalene	υ	5.2	υ	5.6	U	5.2	Ū	11	U	11
Biphenyl	U	5.0	U	5.4	U.	5.0	U	11	U	11
2,6-DimethyInaphthalene	U	4.9	U	5.3	U	4.9	U	11	U	11
Acenaphthylene	υ	5.2	υ	5.6	υ	5.2	U	12	U	12
Acenaphthene	U	4.7	U	5.1	U	4.7	Ū	11	U	11
Dibenzofuran	U	4.6	U	5.0	U	4.6	U	11	U	11
Fluorene	υ	4.7	U	5.1	U	4.7	ບໍ	11	U	11
Phenanthrene	U	4.1	U	4.4	U	4.1	U	11	υ	11
Anthracene	U	3.9	U	4.2	υ	3.9	U	10	U	10
Carbazole	U	4.8	υ	5.2	· U	4.8	U	12	U	12
Fluoranthene	U	4.0	U	4.3	່້ບໍ	4.0	U	12	υ	12
Pyrene	U	4.0	U	4.3	U	4.0	U	12	U	12
Benzo(a)anthracene	U	3.5	υ	3.8	U	3.5	υ	12	U	12
Chrysene	U	4.3	U	4.6	U	4.3	υ	14	ບິ	14
Benzo(b)fluoranthene	U	2.9	U	3.1	U	2.9	U	11	U	11
Benzo(k)fluoranthene	U	3.1	U	3.4	U	3.1	U	11	U	11
Benzo(e)pyrene	U	3.2	U	3.5	U	3.2	υ	12	υ	12
Benzo(a)pyrene	U	3.3	U	3.6	U	3.3	U	12	U	12
ndeno(1,2,3-cd)pyrene	U	3.1	U	3.4	· U	3.1	U	13	U	13
Dibenzo(a,h)anthracene	U	3.0	U	3.2	U	3.0	υ	12	ບ	12
Benzo(g.h.i)perylene	U	3.1	υ	3.3	U	3.1	U	12	U	12

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

)

)

Number of

Sam	ple #	17699 Lot Blank			
LabF	ile #	APG059	Con. F	actor	2.0
					Conc **
	CAS#	Compound	Q	RT	Total µg
1	85-68-7	Butyl benzyl phthalate	95	9.73	28
2		Unknown		15.14	13
3					
4					
5					
6					
7					
8					
9					
10					
11					· · · · · · · · · · · · · · · · · · ·
12					
13					
14					
15					
16					
17					
18					
19					
20					

**Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sam	pie #	17690				
LabF	ile #	APG062	Con. Fa	ctor		5.6
			 		Conc **	
	CAS#	Compound	 Q	RT	µg/m3	
1	85-68-7	Butyl benzyl phthalate	 91	9.73		97
2		Unknown	 	15.15		48
3						
4			 			
5	<u></u>					
6			 			
7			 		i	
8			 		·	
9			 ·		=·	
10			 			
11			 			
12		· · · · · · · · · · · · · · · · · · ·				
13			 			
14			 		. <u></u>	
15					<u></u>	
16					·····	
17			 			
18			 			
19			 			
20						

**Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sam	ple #	17691			
LabF	ile #	APG065	Con. Fa	actor	5.7
					Conc **
	CAS#	Compound	Q	RT	µg/m3
1		Unknown phenol		4.96	28
2	85-68-7	Butyl benzyl phthalate	91	7.93	100
3		Unknown		15.15	45
4					
5					•
6					
7					
8					
9					
10					
11					
12					
13					
14	I				
15					
16					
17					
18					
19					
20					

)

**Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sam	ple #	17692				•	
LabF	ile#	APG068	(Con. Fa	ctor		5.6
		· · · · · · · · · · · · · · · · · · ·				Conc **	
	CAS#	Compound		Q	RT	µg/m3	
1	85-68-7	Butyl benzyl phthalate		70	9.73		93
_ 2							
3							
4							<u> </u>
5							
6							
7							
8	_						
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

**Estimated Concentration (Response Factor = 1.0)

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sam	ple #	17693		-	
LabF	ile #	APG071	Con. Fa	actor	5.4
					Conc **
	CAS#	Compound	Q	RT	µg/m3
1	85-68-7	Butyi benzyl phthalate	95	9.73	92
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

**Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

.

Ť.

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sam	ple#	17694				
Lab	File #	APG074	Con. Fa	actor		5.6
					Conc **	
	CAS#	Compound	Q	RT	µg/m3	
1	85-68-7	Butyl benzyl phthalate	91	9.73		91
2	the second se					
3						
4						
5						
6		-				
7						
8	· · · · · · · · · · · · · · · · · · ·				·	
9						
10	<u> </u>				·	
11						
12	ļ					
13						
14						
15					·	
16						
17						
18						
19				_		
20						

**Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

A A A A

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sam	ple #	17695				•
LabF	ile #	APG077		Con. Fa	actor	6.0
						Conc **
	CAS#	Compound		Q	RT	µg/m3
1	85-68-7	Butyl benzyl phthalate		94	9.73	95
_2						
3	, 					
4	· · · · · · · · · · · · · · · · · · ·					
5		·				
6						
7		·				
8			·			
9						
10	 				·	
11						
. 12						
13						
14						
15						
16						
17						
18						
19						
20						

}

-

**Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

.

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Sam	ple #	17696			•
LabF	ile #	APG080	Con. Fa	actor	5.6
e					Conc **
	CAS#	Compound	Q	RT	µg/m3
1	85-68-7	Butyl benzyl phthalate	70	9.73	
2					
3					
4					
5					
6					
7					
8	·				
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

**Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

.

1

ļ

į

Sam	pie #	17697			
LabF	ile #	APG083	Con. Fa	actor	2.0
·					Conc **
	CAS#	Compound	Q	RT	Total µg
1	85-68-7	Butyl benzyl phthalate	94	9.73	30
2		Unknown		15.13	12
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20			· .		

**Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

00017

.

.

WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

.

Sam	ple #	17698				
LabF	ile #	APG086	Con	. Fa	ctor _	2.0
						Conc **
	CAS#	Compound	Q		RT	Total µg
1	85-68-7	Butyl benzyl phthalate		94	9.73	33
2	: 	Unknown			15.14	14
3						
4						
5						
6						
7						
8						
9		· · · · · · · · · · · · · · · · · · ·				
10						
11						
12						
13						
14				_		
15						
16						
17						
18						
19						
20						

...

**Estimated Concentration (Response Factor = 1.0)

00110/del/ar/0005/APGBurnres

Table 1.3 Results of the Analysis for Inorganic Acids in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID Location Air Volume (L):	Lot E	734 Blank D	177 Field (Тгір	733 blank D				17700 DW-3 45.9		
Analyte	Conc mg	MDL mg	Conc mg	MDL mg	Conc mg	MDL. mg			Conc mg/m ³	MDL mg/m ³	Conc ppmv	MDL. ppmv
Hydrobromic acid Hydrochloric acid Hydrofluoric acid Nitric acid Phosphoric acid Sulfuric acid	U 0.0031 U U U 0.0050	0.0010 0.0010 0.0011 0.0045 0.0032 0.0010	บ บ บ บ บ	0.0010 0.0010 0.0011 D.0045 0.0032 0.0010	U U U U U 0.0013	0.0010 0.0010 0.0011 0.0045 0.0032 0.0010			U 0.184 0.0592 U U 0.0901	0.0220 0.0224 0.0229 0.0980 0.0689 0.0222	U 0.123 0.0724 U U 0.0225	0.0067 0.0150 0.0280 0.0380 0.0172 0.0055
Sample ID Location Air Volume (L):		177 DV 45	•••			D	702 N1 5.9			DV	703 N4 5.5	
Analyte	Conc mg/m ³	MDL mg/ m.³	Conc ppmv	MDL ppmv	Conc mg/m ³	MDL mg/m ³	Conc ppmv	MDL ppmv	Conc mg/m ³	MDL mg/m ³	Conc ppmv	MDL ppmv
Hydrobromic acid Hydrochloric acid Hydrofluoric acid Nitric acid Phosphoric acid Sulfuric acid	U U 0.0842 U U 0.105	0.0225 0.0223 0.0234 0.1000 0.0702 0.0227	ປ ປ 0.103 ປ ປ 0.0262	0.0068 0.0153 0.0286 0.0388 0.0175 0.0057	U 0.0578 0.0239 U U 0.0732	0.0220 0.0224 0.0229 0.0980 0.0689 0.0222	U 0.0387 0.0292 U U 0.0182	0.0067 0.0150 0.0280 0.0380 0.0172 0.0055	U U 0.0359 U U 0.0644	0.0222 0.0226 0.0231 0.0989 0.0695 0.0224	U U 0.0439 U U 0.0161	0.0067 0.0152 0.0283 0.0384 0.0173 0.0056
Sample ID Location Air Volume (L):		D\	704 N5 5.0			U	705 W1 1.8			Ű	706 N/2 5.5	
Analyte	Conc mg/m ³	MDL mg/m ⁻³	Conc ppmv	MDL ppmv	Conc mg/m ³	MDL mg/m ³	Conc ppmv	MDL ppmv	Conc mg/m ³	MDL mg/m ³	Conc ppmv	MDL ppmv
Hydrobromic acid Hydrochloric acid Hydrofluoric acid Nitric acid Phosphoric acid Sulfuric acid	U 0.0281 0.0318 U U 0.162	0.0225 0.0223 0.0234 0.10CO 0.07C2 0.0227	U 0.0188 0.0389 U U 0.0404	0.0068 0.0153 0.0286 0.0388 0.0175 0.0057	U U U U 0.0703	0.0242 0.0246 0.0252 0.1077 0.0756 0.0244	ບ ບ ບ ບ ບ 0.0175	0.0073 0.0165 0.0308 0.0418 0.0189 0.0061	U 0.0262 U U U 0.087	0.0222 0.0226 0.0231 0.0989 0.0695 0.0224	U 0.0176 U U U 0.0217	0.0067 0.0152 0.0283 0.0384 0.0173 0.0056

ţ

. .

All sample results are lot blank subtracted.

00110\DEL\AR\0005\APGBumSWRires

Table 1.4 Results of the Analysis for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Client ID .ocation Air Volume (L)	Method - 0		176 DV 54	V 3	176 DV 54	V2	176 DV 54	V1	176 DV 54	V4	176 DV 54	V5
Parameter	Conc µg	MDL µg	Conc µg/m³	MDL µg/m³								
Aluminum	U	1.0	3.8	1.9	4.0	1.9	· 1.9	1.9		1.9	1.9	1.9
Arsenic	U	0.10	U	0.19								
Beryllium	U	0.10	U	0.19								
Cadmium	U	0.10	U	0.19	U	0.19	U	0.19	U	0.19	U,	0.19
Calcium	U	2.0	34	3.7	40	3.7	15	3.7	11	3.7	13	3.7
Chromium	U	0.10	1.0	0.19	1.1	0.19	1.0	0.19	. 1.1	0.19	0.98	0.19
Cobalt	U	0.10	U	0.19								
Copper	U	0.10	U	0.19	0.22	0.19	U	0.19	U	0.19	U	0.19
Iron	U	1.0	25	1.9	9.2	1.9	3.6	1.9	2.6	1.9	2.0	1.9
Lead	U	0.10	U	0.19	0.33	0.19	U	0.19	U	0.19	U	0.19
Lithium	U	0.10	U	0.19								
Magnesium	U	1.0	4.2	1.9	5.6	1.9	2.0	1.9	U	1.9	U	1.9
Manganese	U	0.10	1.0	0.19	1.0	0.19	U	0.19	U	0.19	U	0.19
Molybdenum	U	0.10	U	0.19								
Nickel	U	0.20	U	0.37	0.81	0.37	U	0.37	0.38	0.37	U	0.37
Phosphorus	υ	0.40	1.3	0.74	2.2	0.74	1.3	0.74	0.81	0.74	U	0.74
Platinum	U	1.0	U	1.9								
Selenium	U	0.20	U	0.37								
Silver	U	0.10	U	0.19								
Sodium	11.8	6.C	17	11	18	11	17	11	16	11	11	11
Tellurium	U	1.G	U	1.9	U	1.9	U	1.9	υ	1.9	U	1.9
nallium	U	0.40	U	0.74	U	0.74	U	0.74	U	0.74	υ	0.74
Fin	U	0.4C	U	0.74								
Titanium	U	0.10	U	0.19								
Vanadium	U	0.10	U	0.19								
Yttrium	U	0.20	U	0.37								
Zinc	U	0.30	3.4	0.56	2.0	0.56	0.93	0.56	1.1	0.56	0.81	0.56
Zirconium	U	0.20	U	0.37								
Tungsten	U	0.40	<u>U</u>	0.74	<u> </u>	0.74						

Table 1.4 (cont.) Results of the Analysis for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Client ID Location Air Volume (L)	176 UV 49	V1	176 UV 54	V2	176 Field I C	Blank	17688 Trip Blank 0		176 Lot B 0	lank
Parameter	Conc µg/m³	MDL µg/m³	Conc µg/m³	MDL µg/m³	Conc µg/filter	MDL µg/filter	Conc µg/filter	MDL µg/filter	Conc µg/filter	MDL µg/filter
Aluminum	4.0	2.0	31	1.9	บ	1.0	υ	1.0	υ	1.0
Arsenic	U	0.20	U	0.19	U	0.10	U	0.10	U	0.10
Beryllium	Ų	0.20	·U	0.19	U	0.10	U	0.10	U	0.10
Cadmium	U	0.20	Ů	0.19	U	0.10	U	0.10	U	0.10
Calcium	16	4.0	[°] 22	3.7	6.6	2.0	7.6	2.0	6.2	2.0
Chromium	1.1	0.20	1.2	0.19	0.62	0.10	0.88	0.10	0.51	0.10
Cobalt	U	0.20	U	0.19	U	0.10	U	0.10	υ	0.10
Copper	U	0.20	U	0.19	U	0.10	U	0.10	U	
Iron	5.7	2.0	58	1.9	4.0	1.0	2.7	1.0	1.6	1.0
Lead	U	0.20	U	0.19	U	0.10	U	0.10	U	0.10
Lithium	υ	0.20	U	0.19	U	0.10	U	0.10	U	0.10
Magnesium	U	2.0	30	1.9	υ	1.0	U	1.0	U	1.0
Manganese	U	0.20	0.77	0.19	U	0.10	U	0.10	υ	0.10
Molybdenum	U	0.20	U	0.19	·U	0.10	U	0.10	U	0.10
Nickel	6.9	0.40	0.55	0.37	0.44	0.20	0.23	0.20	U	0.20
Phosphorus	1.0	0.80	2.1	0.74	U	0.40	. U	0.40	U	0.40
Platinum	ບ	2.0	ບ	1.9	U	1.0	U	1.0	U	1.0
Selenium	U	0.40	U	0.37	U	0.20	υ	0.20	υ	0.20
Silver	U	0.20	U	0.19	U	0.10	U	0.10	U	0.10
Sodium	14	12	18	11	9.8	6.0	9.0	6.0	7.3	6.0
Tellurium	U	2.0	U	1.9	· U	1.0	U	1.0	U	1.0
Thallium	U	0.80	U	0.74	U	0.40	U	0.40	U	0.40
Tin	U	0.80	υ	0.74	υ	0.40	υ	0.40	U	0.40
Titanium	0.62	0.20	0.71	0.19	U	0.10	U	0.10	υ	0.10
Vanadium	U	0.20	U	0.19	U	0.10	U	0.10	U	0.10
Yttrium	U	0.40	U	0.37	U	0.20	U	0.20	U	0.20
Zinc	1.7	0.60	1.2	0.56	2.1	0.30	2.4	0.30	1.1	0.30
Zirconium	υ	0.40	υ	0.37	U	0.20	U	0.20	U	0.20
Tungsten	<u> </u>	0.80	<u> </u>	0.74	<u> </u>	0.40	U	0.40	<u> </u>	0.40

. . |

Table 1.5 Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

Sample ID Location Volume of Air (L)			ank 12/00 0			17670 DW3 540	•	
Analyte	Result P⊊	EMPC Pg	MDL Pg	Adjusted Conc (pg)	Result pg/m ³	EMPC MDL pg/m ³ pg/m ³	Adjusted Conc (pg/m ³)	TEF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	U	0.72 1.40 3.16 2.20 4.66 16.7	10.0 10.0 25.0 25.0 25.0 25.0 25.0 50.0		35.7 Ј	3.8918.52.9218.54.8546.31.2246.33.3746.32.6346.392.5	U U U U U 0.035	1 0.5 0.1 0.1 0.1 0.1 0.01 0.001
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	บ บ บ				บ บ บ บ			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	U U U U 13.0 J	1.38	10.0 10.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0	U U U U U U U 0.0130	U	2.04 18.5 18.5 1.44 18.5 0.259 46.3 0.592 46.3 1.41 46.3 1.41 46.3 7.33 46.3 46.3 5.11 92.5		0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.1 0.01 0.0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans Total	บ บ บ			0.0130		46.3 92.5	0.035	

00022

.*

.

 Table 1.5 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

 WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities

Sample ID Location Volume of Air (L)			673 W4 0			E	7674)W5 540		
Analyte	Result Pg	EMPC Pg	MDL Pg	Adjusted Conc (pg)	Result pg/m ³	EMPC pg/m ³	MDL pg/m ³	Adjusted Conc (pg/m³)	TEF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	4.20 J 27.7 73.8	0.400 0.440 3.72 3.12	10.0 10.0 25.0 25.0 25.0 25.0 25.0 50.0	U U 0.420 U 0.277 0.0738	U 12.6 J 94.6	0.888 1.96 6.66 2.48	18.5 18.5 46.3 46.3 46.3 46.3 92.5	U U U U 0.126 0.094	1 0.5 0.1 0.1 0.1 0.01 0.001
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	U U 4.20 27.7			·	U U U 12.6			•	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	2.32 J	2.10 0.980 0.700 1.76 1.56 2.58 9.64 6.36 21.3	10.0 10.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0	ບ ບ 0.232 ບ ບ ບ ບ ບ ບ	U U U	0.629 0.851 0.207 0.666 2.04 14.5 6.11 14.0	18.5 18.5 18.5 46.3 46.3 46.3 46.3 46.3 46.3 92.5		0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.1 0.01 0.0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans Total	U U 2.32 U			1.00	U 3.18 U U			0.221	

00024

ł

Table 1.5 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID Location Volume of Air (L)		U	675 W1 198			ι	7676 JW2 540		
Analyte	Resuit pg/m ³	EMPC pg/m ³	MDL pg/m ³	Adjusted Conc (pg/m³)	Result pg/m ³	EMPC pg/m ³	MDL pg/m ³	Adjusted Conc (pg/m ³)	TEF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	U 33.0 J	1.73 1.53 3.01 3.14 10.0	20.1 20.1 50.2 50.2 50.2 50.2 50.2 100	U U U U U 0.033	U U U 30.9 J	2.04 1.48 4.18	18.5 18.5 46.3 46.3 46.3 46.3 92.5	U U U U U 0.030	1 0.5 0.1 0.1 0.1 0.01 0.001
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	บ บ บ บ				U U U U			•	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	U U	1.33 1.65 0.804 1.81 1.85 2.17 28.9 12.0	50.2 50.2		υ	1.11 0.481 0.888 1.37 1.44 0.925 7.84 0.703 9.47	46.3 46.3 46.3 46.3 46.3		0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.1 0.01 0.0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans Total	ບ ບ ບ ບ			0.033				0.030	

•

Table 1.5 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID Location Volume of Air (L)			7677 Blank 0				7678 d Blank 0		•
Analyte	Result P9	EMPC Pg	MDL pg	Adjusted Conc (pg)	Result pg	EMPC P9	MDL Pg	Adjusted Conc (pg)	TEF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	U U 12.2 J	0.720 0.280 0.920 1.84	10.0 10.0 25.0 25.0 25.0 25.0 50.0	U U U U U 0.0122	U	0.840 0.880 1.80 0.840 2.16 21.3	10.0 10.0 25.0 25.0 25.0 25.0 50.0		1 0.5 0.1 0.1 0.1 0.01 0.001
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	U U U U				บ บ บ บ			U U U U U	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ບ ບ ບ	0.780 0.680 0.520 0.600 0.520 3.38 2.82	10.0 10.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0		U U U	1.00 0.240 0.260 1.04 2.64 0.720 6.70	10.0 10.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0		0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans Total	ບ ນ ບ ບ			0.0122	U 1.96 U U			U	

Table 1.5 (cont.) Results of the Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Sample ID Location Volume of Air (L)			679 Blank O			
Analyte	Result Pg	EMPC Pg	MDL Pg	Adjusted Conc (pg)	L	TEF
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	0.660 J	1.70 1.02 1.06 0.500 0.330 20.9	25.0	U U U 0.0660 U U		1 0.5 0.1 0.1 0.1 0.01 0.001
Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	U U 0.660 U					
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF)CDF	U U U U 4.22 J	1.20 0.440 5.64		U U U U U U U 0.00442		0.1 0.05 0.5 0.1 0.1 0.1 0.1 0.1 0.01 0.0
Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans Total	U U U U			0.0702		

.

·

1

.

Results of the BS/BSD Analysis for PAH in Air

An XAD lot blank and a lot blank filter were chosen for the blank spike/blank spike duplicate (BS/BSD) analyses. The percent recoveries, for the XAD lot blank, ranging from 95 to 132, are listed in Table 2.1. The relative percent differences, also listed in Table 2.1, ranged from zero (0) to 6. The percent recoveries, for the lot blank filter. ranging from 82 to 96, are also listed in Table 2.1. The relative percent differences, also listed from zero (0) to 4. The relative percent differences also listed from zero (0) to 4. QC limits are not available for either the percent recoveries or the relative percent differences for this analysis.

Table 2.1 Results of BS/BSD Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

Ĵ

Sample ID: XAD Spike

	Spike Added	BS Rec.		BSD Rec.		
Compound	μg	μg	% Rec.	μg	% Rec.	RPD
Naphthalene	50	50.02	100	50.73	101	1
2-Methylnaphthalene	50	50.11	100	50.87	102	2
1-Methylnaphthalene	50	52.95	106	53.81	108	2
Biphenyl	50	50.63	101	51.75	103	2
2,6-Dimethylnaphthalene	50	49.41	99	50.51	101	2
Acenaphthylene	50	49.07	98	49.70	99	1
Acenaphthene	50	49.56	99	49.02	98	1
Dibenzofuran	50	50.37	101	50.47	101	0
Fluorene	50	50.12	100	49.76	100	1
Phenanthrene	50	47.69	95	47.58	95	0
Anthracene	50	47.56	95	48.93	98	3
Carbazole	50	49.10	98	48.48	97	1
Fluoranthene	50	50.81	102	51.52	103	1
Pyrene	50	50.59	101	50.28	101	1
Benzo(a)anthracene	50	51.55	103	51.53	103	0
Chrysene	50	65.94	132	66.08	132	0
Benzo(b)fluoranthene	50	51.85	104	51.52	103	1
Benzo(k)fluoranthene	50	51.71	103	54.93	110	6
Benzo(e)pyrene	50	52.94	106	53.19	106	1
Benzo(a)pyrene	50	55.93	112	52.47	105	6
Indeno(1,2,3-cd)pyrene	50	53.51	107	53.66	107	0
Dibenzo(a,h)anthracene	50	54.32	109	53.84	108	1
Benzo(g,h,i)perylene	50	53.69	107	53.45	107	1

Table 2.1 (cont.) Results of BS/BSD Analysis for PAH in Air WA # 0-110 Air Monitoring, Sampling, and Modeling Support, and Underwater Survey Activities

.

.

Sample ID: Filter Spike

	Spike Added	BS Rec.		BSD Rec.		
Compound	μg	μg	% Rec.	μg	% Rec.	RPD
Naphthalene	50	46.32	93	45.88	92	1
2-Methylnaphthalene	50	45.10	90	44.80	90	0.7
1-MethyInaphthalene	50	48.10	96	48.24	96	0
Biphenyl	50	45.90	92	45.20	90	2
2,6-Dimethylnaphthalene	50	44.46	89	44.94	90	1
Acenaphthylene	50	44.10	88	44.40	8 9	1
Acenaphthene	50	46.78	94	. 44.98	90	4
Dibenzofuran	50	45.64	91	44.70	89	2
Fluorene	50	45.00	90	44.88	90	0
Phenanthrene	50	45.10	90	45.50	91	1
Anthracene	50	47.32	95	47.26	95	0
Carbazole	50	45.02	90	44.36	89	1
Fluoranthene	50	44.94	90	44.38	89	1
Pyrene	50	45.80	92	44.82	90	2
Benzo(a)anthracene	50	44.36	89	43.46	87	2
Chrysene	50	46.96	94	46.74	93	1
Benzo(b)fluoranthene	50	42.18	84	40.78	82	3
Benzo(k)fluoranthene	50	43.64	87	45.02	90	3
Benzo(e)pyrene	50	43.28	87	42.50	85	2
Benzo(a)pyrene	50	44.12	88	42.68	85	3
Indeno(1,2,3-cd)pyrene	50	43.02	86	41.78	84	3
Dibenzo(a,h)anthracene	50	43.04	86	41.74	83	3
Benzo(g,h,i)perylene	50	42.92	86	42.88	86	0

.

Results of the BS/BSD Analysis for Inorganic Acids in Air

A blank spike/blank spike duplicate analysis (BS/BSD) was run. The percent recoveries, listed in Table 2.2, ranged from 83 to 105. All twelve values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.2, ranged from 0 (zero) to 9. QC limits are not available for the RPD.

00110\DEL\AR\0005\APGBurrar

Table 2.2 Results of the BS/BSD Analysis for Inorganic Acids in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Analyte	Original Conc Spike Dup mg mg		Recovered Conc Spike Dup mg mg		% Recovery Spike Dup		RPD	Recommended QC Limits % Rec		
Hydrobromic acid	0.0808	0.0808	0.0843	0.0845		105	0	75-125		
Hydrochloric acid	0.0413	0.0413	0.0423	0.0414	104	100	2	75-125		
Hydrofluoric acid	0.0211	0.0211	0.0191	0.0175	91	83	9	75-125		
Nitric acid	0.0812	0.0812	0.0808	0.0808	100	100	Ō	75-125		
Phosphoric acid	0.118	0.118	0.110	0.115	93	97	4	75-125		
Sulfuric acid	0.0817	0.0817	0.0846	0,0852	104	104	1	75-125		
							<u>.</u>			

Results of the BS/BSD Analysis for Metals in Air

A blank spike/blank spike duplicate analysis (BS/BSD) was run. The percent recoveries, listed in Table 2.3, ranged from 8 to 134. Fifty out of fifty-eight values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.3, ranged from 0 (zero) to 20. QC limits are not available for the RPD.

Results of the Analysis of the Laboratory Control Sample for Metals in Air

A laboratory control samples was also analyzed. The percent recoveries ranged from 7 to 116 and are listed in Table 2.4. Twenty-eight out of twenty-nine concentrations were within the acceptable QC limits.

00110\DEL\AR\0005\APGBurnar

Table 2.3 Results of the BS/BSD Analysis for Metals in Air

					•				
Metal	Lot Blank Onginal Conc			Recover	ad Conc	% P.	ecovery	RPD	Doormaadaa
MELA	Conc			Recovered Conc				KF U	Recommended
•		Spike	Dup	Spike	Dup	Spike	Dup		QC Limit
	µg/filter	µg/filter	µg/filter	µg/filter	µg/mter				% Rec
Aluminum	U	40.00	40.00	44.49	44.56	111	111	0	75-125
Arsenic	U	40.00	40.00	43.98	44.17	110	110	0	75-125
Beryllium	U	1.00	1.00	1.04	1.05	104	105	0	75-125
Cadmium	U	1.00	1.00	1.09	1.09	109	109	0	75-125
Calcium	6.2	1000	1000	1058	1062	105	106	0	75-125
Chromium	0.51	4.00	4.00	5.07	5.29	114	120	5	75-125
Cobalt	U	10.00	10.00	10.29	10.37	103	104	1	75-125
Copper	U	5.00	5.00	5.40	5.43	108	109	1	75-125
Iron	1.6	20.00	20.00	21.29	21.99	98	102	3	75-125
Lead	U	10.00	10.00	10.69	10.74	107	107	0	75-125
Lithium	U	40.00	40.00	43.52	44.06	109	110	1	75-125
Magnesium	U	10 00	1000	1069	1072	107	107	0	75-125
Manganese	U	10.C [.] D	10.00	10.65	10.72	107	107	1	75-125
Molybdenum	U	40.00	40.00	44.04	44.30	110	111	1	75-125
Nickel	U	10.00	10.00	10.52	10.50	105	105	0	75-125
Phosphorus	U	40.00	40.00	50.42	50.81	126	• 1 <u>2</u> 7	* 1	75-125
Platinum	U	40.00	40.00	42.03	41.60	105	104	1	75-125
Selenium	U.	40.00	40.00	42.56	42.44	106	106	0	75-125
Silver	U	1.00	1.00	1.10	1.11	110	111	0	75-125
Sodium	7.3	100 [,] 0	1000	974	983	97	98	1	75-125
fellurium	U	40.00	40.00	3.29	3.44	8	• 9	• 4	75-125
Thallium	U	40.CD	40.00	44.27	44.02	111	110	1	75-125
Tin	U	40 00	40.00	52.36	52.70	131	• 132	* 1	75-125
Titanium	U	40.00	40.00	42.70	42.51	107	106	0	75-125
Vanadium	U	10.00	10.00	10.50	10.56	105	106	1	75-125

43.51

11.43

53.59

42.05

حر

43.31

11.41

52.21

34.50

109

103

105

134 *

108

103

86

131 *

0

0

3

20

75-125

75-125

75-125

75-125

WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

U

1.1

U U

Yttrium

Zirconium

Tungsten

Zinc

40.00

10.00

40.00

40.00

40.00

10.00

40.00

40.00

Table 2.4 Results of the Analysis of the Laboratory Control Sample for Metals in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activites

Metal	Analyzed	Accepted	%	QC Limits		
	Value µg/L	Value µg/L	Rec	% Rec		
Aluminum	4301.16	4000	108	80-120		
Arsenic	4299.25	4000	108	80-120		
Beryllium	103.75	100	104	80-120		
Cadmium	107.18	100	107	80-120		
Calcium	52777.01	50000	106	80-120		
Chromium	430.77	400	108	80-120		
Cobalt	1025.19	1000	103	80-120		
Соррег	528.69	500	106	80-120		
iron	2038.85	2000	102	80-120		
Lead	1058.99	1000	106	80-120		
Lithium	2162.79	2000	108	80-120		
Magnesium	53539.27	50000	107	80-120		
Manganese	1055.69	1000	106	80-120		
Molybdenum	2202.15	2000	່ 110	80-120		
Nickel	1024.3	1000	102	80-120		
Phosphoru s	2197.74	2000	110	80-120		
Platinum	2123 [°]	2000	106	80-120		
Selenium	4167.54	4000	104	80-120		
Silver	107.28	100	107	80-120		
Sodium	48612.46	50000	97	80-120		
Tellurium	133.3	2000	7	* 80-120		
Thallium	4446.75	4000	111	80-120		
Tin	2324.71	2000	116	80-120		
Titanium	2122.45	2000	106	80-120		
Vanadium	1047.41	1000	105	80-120		
Yttrium	2178.35	2000	109	80-120		
Zinc	1061.42	1000	106	80-120		
Zirconium	2269.74	2000	113	80-120		
Tungsten	2035.00	2000	102	80-120		

)

QA/QC for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

Results of the Internal Standard Recoveries for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in Air

The internal standard percent recoveries, listed in Table 2.5, ranged from 70 to 138, One hundred and fifteen out of one hundred and seventeen values were within the acceptable QC limits.

<u>Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans in</u> <u>Air</u>

A blank was spiked in duplicate and analyzed. The percent recoveries, listed in Table 2.6, ranged from 76 to 114. All thirty-four values were within the acceptable QC limits. The relative percent differences (RPDs), also listed in Table 2.6, ranged from 0 (zero) to 16. All 17 RPDs were within the acceptable QC limits.

00110\DEL\AR\0005\APGBurnar

Table 2.5 Results of the Internal Standard Recoveries for Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support and Underwater Survey Activites

Sample ID	Method Blank	17670	17671	17672	17673	17674		QC Limits
Units Internal Standard	%	%	%	%	%	%		
13C-2,3,7,8-TCDD	90	94	102	98	92			40-135
13C-1,2,3,6,7,8-HxCDD	107	109	116,	117	116	117		40-135
13C-2,3,7,8-TCDF	91	103	103	108	108	112		40-135
13C-1,2,3,4,7,8-HxCDF	111	114	104	100	121	122		40-135
13C-1,2,3,7,8-PeCDD	98	121	118	118	. 135	133		40-135
13C-1,2,3,4,6,7,8-HpCDD	94	107	98	102	101	90		40-135
13C-1,2,3,7,8-PeCDF	104	106	109	112	127	137	*	40-135
13C-1,2,3,4,6,7,8-HpCDF	84	105	92	90	108	108		40-135
13C-OCDD	99	103	111	88	128	128		40-135

Sample ID	17675	17676	17677	17678	1767 9	Blank	Blank	QC Limits
Units Internal Standard	%	%	%	%	%	Spike %	Spike Duplicate %	
13C-2,3,7,8-TCDD	97	94	85	83	88	86	98	40-135
13C-1,2,3,6,7,8-HxCDD	113	114	114	115	122	126	119	40-135
13C-2,3,7,8-TCDF	112	110	100	96	91	95	109	40-135
13C-1,2,3,4,7,8-HxCDF	117	127	118	118	109	105	101	40-135
13C-1,2,3,7,8-PeCDD	126	138 *	' 114	113	110	111	115	40-135
13C-1,2,3,4,6,7,8-HpCDD	87	90	70	107	- 116	104	114	40-135
13C-1,2,3,7,8-PeCDF	132	132	110	111	102	102	105	40-135
13C-1,2,3,4,6,7,8-HpCDF	110	11 9	104	104	. 108	109	113	40-135
13C-OCDD	127	121	130	110	116	128	123	40-135

Table 2.6 Results of the BS/BSD Analysis for Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofurans in Air WA # 0-110 Air Monitoring, Sampling, Analysis, and Modeling Support and Underwater Survey Activites

Sample ID Blank Parameter	Spike	Blank Conc	BS Conc	Rec	BSD Conc	Rec	RPD	Q(Lim	its
Units	pg	Pg	pg	%	pg	%		% Rec	RPD
2378-TCDD	200		221	111	227	114	3	60-140	50
12378-PeCDD	200	Ŭ	204	102	203	102	Ō	60-140	50
123478-HxCDD	500 .	Ū	542	108	553	111	2	60-140	50
123678-HxCDD	500	Ū	447	89	452	90	1	60-140	50
123789-HxCDD	500	0.66	385	77	385	. 77	0	60-140	50
1234678-HpCDD	500	U	555	111	513	103	8	60-140	50
OCDD	1000	U	940	94	873	87	7	[`] 60-140	50
2378-TCDF	200	U	173	87	166	83	4	60- 140	50
12378-PeCDF	200	U	190	95	179	90	6	60-140	50
23478-PeCDF	200	U	198	99	204	102	3	60-140	50
123478-HxCDF	500	U	499	100	- 521	104	4	60-140	50
123678-HxCDF	500	U	444	89	450	90	1	60-140	50
123789-HxCDF	500	U	427	85	465	93	9	60-140	50
234678-HxCDF	500	U	486	97	512	102	5	60-140	50
1234678-HpCDF	500	U	468	94	459	92	2	60-140	50
1234789-HpCDF	500	U	520	104	445	89	16	60-140	50
OCDF	1000	4.22	767	76	815	81	6	60-140	50

.

· · ·

Lockheed Martin Technology Services Group Invironmental Services REAC 890 Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679 Telephone 732-321-4200 Facsimile 732-494-4821

LOCKHEED MARTIN

Southwest Research Institute PO Box 28510, 6220 Culebra Road San Antonio, TX 78228-0510

Attn: Jo Ann Boyd

19 November 1999

Project # RIA-00011 APG Burn Support

As per Lockheed Martin / REAC Purchase Order GA91969J73, please analyze samples according to the following parameters:

Analysis Method	Matrix	# of samples
Dioxin/ Furans / Modified TO9	Air	20
Inorganic Acids / NIOSH 7903	Air	20
Metals/ NIOSH 7300	Air	20
Data package: Package with Diskette Deliverable		

Samples are expected to arrive at your laboratory between November 23-December 31, 1999. All applicable QA/QC BS/BSD) analysis as per method, will be performed on our sample matrix. <u>Preliminary sample and QC result</u> <u>ables plus a signed copy of our Chain of Custody must be faxed to REAC 10 business days after receipt of the last</u> <u>samples</u>. The complete data package is due 21 business days after receipt of the last samples. The complete data package must include all items on the deliverables checklist. Expect all samples to be difficult matrix and all raw data must be included in final analytical report.

All sample and QC results(ie: BS/BSD, LCS, Duplicates, and Blanks) must be summarized in a ExCel diskette deliverable.

Please submit all reports and technical questions concerning this project to John Johnson at (732) 321-4248 or fax to (732) 494-4020.

Sincerely,

Deborah Killeen/ Data Validation and Report Writing Group Leader Lockheed Martin / REAC Project

DK:jj Attachments

cc. R. Singhvi D. Michunas 0011/non/mem/9911/sub²/0011Con D. Miller Subcontracting File D. Angwenyi C. Lentini A. DuBois D. Killeen

1

00039

Nov 09 99 03:56p

John Johnson

136-434-4060

r · ~

)

)

000010

APG Burn Compound List NIOSH 7300 Metals Aluminum Arsenic Beryllum Cadmium Calcium Chromium Cobuit Copper hou Lead Linium Magnesium Manganese Molybdenum Nickel Phosphorus Platinum Selenium Silver Sodium Tellurium Tungsten Thalium Titanium Vanadium Ythium Zinc Zirconium

Inorganic Acids Hydrofluoric Acids Hydrochloric Acids Phosophoric acid Hydrobromic acid Nitric acid Suffuric acid

	· .	Sample Ide	entifica	ation	•		Ana	lyses Reque	SHEET N sted	001
REAC #	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/Preservative	Wumal	- TI &	Ν	
<u> </u>	17670	DW3	A	4/6/02	1	AMBERJAR/KE		1 00 21-13	\uparrow	·
~	17671	DINIZ	1				540			
V	17672	DIN1					540			
	7673	SWY					Ø			
	17674	DWS					540			
- v	, i7675	1001					498			
	17626	INZ _					540	~		
/	12622	TRIP BLANK					Ø			
v	17678	FIBLD BLAN	-				0 D	V		$(a\Lambda)$
V	17679	LOTBLANK			4				(Rev /
		BS/BSD	V	¥	2_	<u>↓</u>	&		·/	7
						_			<u> </u>	
							\leq	<u>. </u>	<u> </u>	
					K e0				<u> /_</u>	
									/	
									<u>↓ </u>	<i>f</i>
		·							⊢/	<u> </u>
			-		,				↓/	
									₩	
					al Instructions:				. <u>/</u>	
Aatrix:				Specia						
D- Sec		W · Potable Water	S .	Soil 'N	al manucions.	dund	r			
D- Sec S- Dru	m Solids G	W - Groundwater	W -	Soll Water	N. Downl	Jind	FOR	SUBCONTR		
50 - Sec 05 - Dru 01 Dru 01 Oth	m Solids G m Liquids S er S	W - Groundwater W - Surface Water		Soll Water Oil Air	N. Downl W-12PW/	und VD		SUBCONTR		SE ONL
SD - Sec DS - Dru DL - Dru C - Oth	m Solids G m Liquids S er S	W - Groundwater W - Surface Water	Wo.A	Soil Water Oil Air (L	N. Downl W - UPWII _) -Lite	νS	FRO	M CHAIN OF		SE ONL
DS - Dru DL - Dru	m Solids G m Liquids S er S	W - Groundwater W - Surface Water	Wo.A	Soil Water Oil Air (L	N. Downl W - UPWII _) -Lite	νS	FRO			SE ONL
50 - Sec 05 - Dru 01 Dru 01 Oth	m Solids G m Liquids S er S	W - Groundwater W - Surface Water	Wo.A	Soll Water Du Oil U	N. Downl W - UPWII _) -Lite	νS	FRO	M CHAIN OF		SE ONL
50 - Sec 18 - Dru 11 - Dru 11 - Dru	m Solids G m Liquids S er S 2SF Research	W - Groundwater W - Surface Water	W. A. G.	Soil Water Oil Air (L	N. Downl w - UPWH _) -Lite r Dioxins	/furans	FRO	M CHAIN OF		SE ONL

HI130 194.3 Domit

* < < < <

. .

2	REAC, E	ے . in, NJ				<u>CH/</u>		F CUSTOD	Y REC	ORD						
27	(908) 321	-4200	,		Project Nan	ne: P	VG	BURN								
197	EPA Con	tract 68-64- 68-09	0022		Project Nun	nber:	LAC	10110					No:	069	965	
		68-09	9-223	(MRFW Conta	ict: Am	u Di	1BOIS	Phone	: 732-4	194-4	613		1)	
		:			2		1	5A . •		•	_	-		по. <u>1</u> с	DF <u>/</u>	
			Sample Ide	entific	ation 2120	1gam	CINT					Reque				
	REAC #	/ Sample No.	Sampling Location	Matrix	Date, Collected			Container/Pres		Volume (1	<u>-) Ni</u>	·7403	<u> </u>		·/	
		17700	DW3	A	4/4/00			when pak.	lice	45.9			$ \downarrow _$	<u> </u>		
	/	17701	DW2	1	l!					45.0		V				l
	V	17702	DWJ	"-						45.9		<u> </u>				l I
		17703	DW4						·,	45.5			<u> </u>			l
	/	17704	DWS		 	<u></u>				45.0		<u> </u>	<u> </u>	<u></u>	/	l
		1 P PO5	LIW1_	┝╼┟╼╸	{ <u></u>					41.8	╺┈┼┈╼	<u> </u>		_ _/		
		17706	UW2-		┟──┤╧───	╶╁╼╾┼╾				45.5			<u> </u>	╘┼┼		N
•		17732	FIELD BLANKE		┠	+				0				+/-		00042
		17733	LOT BLANCE	└-┠	┝━━-{-──-	<u> </u>				0		$\frac{v}{v}$	<u>├</u>	- HE	デーー	2
2		17704				+				- 0		$\frac{1}{2}$		× R ≝	2	Z
~	V		BS BSP		·····								<u> </u>	/-}		
													/	-+-+		
					<u>}</u>	1.0	3							+	<u></u>	
						1 P	54								<u>+</u>	l I
							-						/			
													$\top/$		-+	
													-/			
									·				/			l
																I
	Matrix: SD - Sed	iment P	W - Potable Water	<u>s</u> -	Soil 🗘	cial Instructi	ons:	C T	11							
	DS - Dru	m Solids G	W - Groundwater	w-	Water UL	wally.	15.9	or Inniga 7803	Live Ife			CONTR	ACTING	HEE (l
	DL - Drui X - Oth		W - Surface Water L - Sludge	0	Oil	Wy NI	osH	1903					ACTING	0320		
•		51 U			- 0	ιύ-Do	wni	SING		FRC	М СН	AIN OF				
					Ĺ	10 - 0	you	nd .			TOD					1
					(1W-1 L)-1	L.+	ers								
Г					·					labord D .	Data				Time	
	Item\$/Reas		ished By Date	Kece	ived By Da	ite Tim	e 1	tems/Reason	Keiinqu	lished By	Date	Receiv	rea By	Date		
	11/andl	454 00	47/00				_∦									
	1	·													<u></u>	
					<u> </u>		-#-									
	. <u> </u>			omo	and the	00 09:0	70			<u>+</u>						
				Mar Charles	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1024										

PA Con	dison, NJ -4200 tract 68-64 Ø <i>S</i> -C9	0022 ¹¹⁹⁷ 19-223	j T	Project Numb	t: <u>RIA</u> t: <u>Amy D</u> i	100110 Mois Phone:	732-494	-4013	No: SHEET N	0565 10. <u>/</u> 0f
1000	· ·	Sample Id	entifica	ation		· ·		ses Reques	sted	1
REAC #	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/Preservative	PAH	Volume	<u>\</u>	
415	17690	DW3	Ą	4/4/00		WHURLPAK/KE/DARK	V	360_		_
416	17691	DW2			<u> </u>		<u> </u>	351		
417	17692:	DUI					V	360	1/	
418	17693	DW4					ن ر	369	H	K _
419	17694	_DW5					V	360	×	í
420	17695	UWI					V	332		
421	17696	UW2					\checkmark	360		<u> </u>
422	17697	FIGIOBANK					V	Ø		
423	17698	TRIPBLANK						Ø		
424	17699	LOT BLANG			V.		ν.	Ø		
		BS/BSD		1	2		1	Ø	/	
						/				
					$\langle \rangle$					
										· .
		APR.) Ar			
					mat		- ADA			
				/						
					$V = \nabla$					
		·								
atrix:			0	Specia	al Instructions:					
		W - Potable Water SW - Groundwater	Տ W	Soil Water (Lu	alucis to	r PAHs by NICSH				
	n Liquids S	W - Surface Water	0-	Oil	5515	,	FORS	UBCONTR	ACTING U	JSE ON
- Othe		L - Sludge	CA-	Air						

Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinguished By	Date	Received By	Date	Time
Allanaluses	Thefall	ylioloù	Downal Aminery,	Ahoico	0450	MelAnalii	Dir dAnnery	y 10/0	Unar yeres	Alita	1015
σ	7	7 7		۲L –							

							\sim	N.				د .		
•	REAC, Ed	nison, NJ	•				CHAL	JF CUSTO	DY REC	ORD				
32	(008) 321	-4200	\sim		Project I	Name:	APG	BURN SUF	porer				_	
P	EPA Con	tract 68-C4	-0022 (ROT)		Project I	Numbe	r. RIAC	00110	•			No	e 05	5254
		-4200 tract 68-04 - 68-09	9-223	L	MRENCO	ontact:_	Amy T	001/0 DuBUS	Phone	: 732-4	194-4	eV3		
			-		ATU		· /					SH	EET NO	<u></u>
			Sample Id	entific	ation /	NET	HLS			An	alyses	s Requested		,
	REAC #	Sample No.	Sampling Location	Matrix	Date Collec	ted	# of Bottles	Container/Pre	servative	Volume(L) NI	OS H 7300		
		17680	DW3	A	4-6-0	Ó	1	Whirlpak,	Ice	540		×		
		17681	DWZ	1						540				
	V	17682	DWA							540				
		17683	DW4			_				540		V		
		17684	DWS							540		/		/
		17685	UWL							498			$\mathbf{\Lambda}\mathbf{T}$	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17686	UW2							.540		V	$\sum$	/
		17687	FIELD BLANK							Ø		1		$\hat{\mathbf{a}}$
		17688	TRIP BLANK	-						Ø		V		\$
		17689	LUT BLANK				-V-			Ø		V		
2	~	<u>مسالد وتنامینی</u> جسری	BS BSD		¥		2			Ø			-7/1	
-				<u>†</u> -▼——				······································					-/+\	
				1								<u> </u>	<u> </u>	<u> </u>
				$\overline{\nabla}$	·		10	<u>}</u>					/	
													/	- <del>\</del>
1										··				
			[		>						— <del> </del> —	<u> </u>		+{
		··							$\sim$					
								<u> </u>						
				┼───-				<b> </b>	<u> </u>			/		
l	Matrix:		<u> </u>		L	Special I	nstructions:							Y
			W - Potuble Water	S -	Soll	•		SUN VINI	١	<u>г</u>				
			W - Groundwater	W- 0-	Water Oil		$L^{\prime}$	P WIND	•	FO	R SUB	CONTRACTI	NG USE	ONLY
	K - Othe		SL - Sludge	A.	Air		1 - 1	1 Les C						
							 n 1		- 1. <del></del>			IAIN OF		
				Anal	4 sister	Meh	ils hay	NIOSH F:	500	CU	STOD	Y #		
				LOT	# 5	17	1	NIOSH 73		· · · · ·				
Г	Iterns/Reas		ished By Daye	Bacal	ved By	Date	Time	Items/Reason	Relingu	ished By	Date	Received By	Date	Time
ļ														Time
ļ	11/2 not	SIL GUL	2 4710				┼╾╌╢╴							191
Ļ	í 						╀╌╌╌╟╸							
ļ							┼╼╼┛╟─					— — — —		1000
						<del>.11</del>								60
- 1		1	I 4	sok /Nor	inter 1	+////00	07% OI		L					

APPENDIX C SBC COM Clearances for GB, GD, VX, and HD Air Monitoring. Sampling, Analysis, and Modeling Support. and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\JFIELD ::-j0400.110

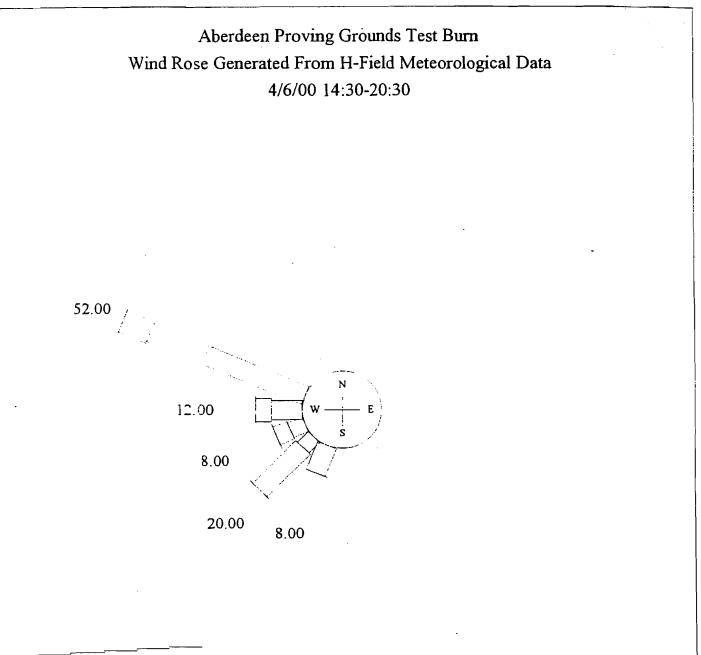
ົ <b>ເມ:</b>	Snyder Juanita A SBCCOM [juanita.snyder@SBCCOM.APGEA.ARMY.MIL]
	Wednesday, April 12, 2000 12:55 PM
	DUBOIS_AMY@EPAMAIL.EPA.GOV; salford@genphysics.com
)c:	axdean@CBDCOM-EMH1.APGEA.ARMY.MIL; dghall@CBDCOM-
	EMH1.APGEA.ARMY.MIL; fglattin@CBDCOM-EMH1.APGEA.ARMY.MIL;
	jasnyder@CBDCOM-EMH1.APGEA.ARMY.MIL; jefranch@CBDCOM-
	EMH1.APGEA.ARMY.MIL; rdmoore@CBDCOM-EMH1.APGEA.ARMY.MIL;
	sdsmith@CBDCOM-EMH1.APGEA.ARMY.MIL; tablades@CBDCOM-
	EMH1.APGEA.ARMY.MIL; thomas.rosso@SBCCOM.APGEA.ARMY.MIL
Subject:	J-field Clearances

.

.

1

'OC: Duboi	ls, x (732)494-40	13 J-Field		
tem		GVH		background monitoring
14/06/00				
EW(	0004070050-M01	Clear for GB	GD VX	& HD
)W2	0004070051-MO1	Clear for GB	GD VX	& HD
)W1	0004070052-M01	Clear for GB	GD VX	& HD
)W4	0004070053-M01	Clear for GB	GD VX	& HD
W5	0004070054-M01	Clear for GB	GD VX	& HD
™3	0004070055-M01	Clear for GB	GD VX	& HD
'W4	0004070056-M01	Clear for GB	GD VX	& HD
PA	0004070057-M01	Clear for GB	GD VX	& HD
Pl	0004070058-M01	Clear for GB	gd vx	& HD


ita Snyder ample Team

#### APPENDIX D Windroses

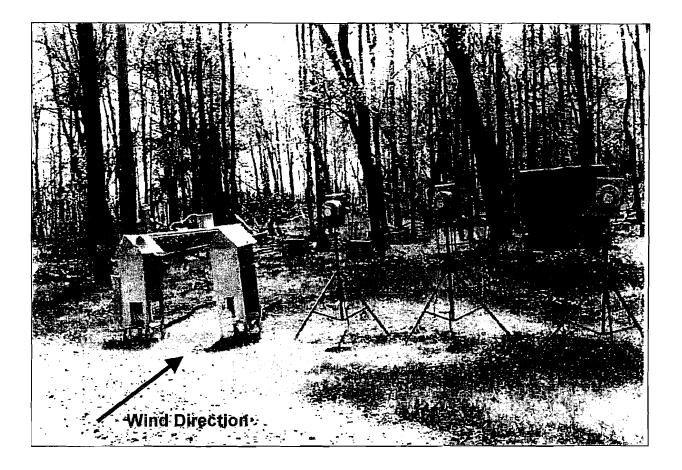
Air Monitoring, Sampling, Analysis, and Modeling Support, and Underwater Survey Activities Site July 2000

c:\MyFiles\R1a00110\JFIELD tr-j0400.110

.



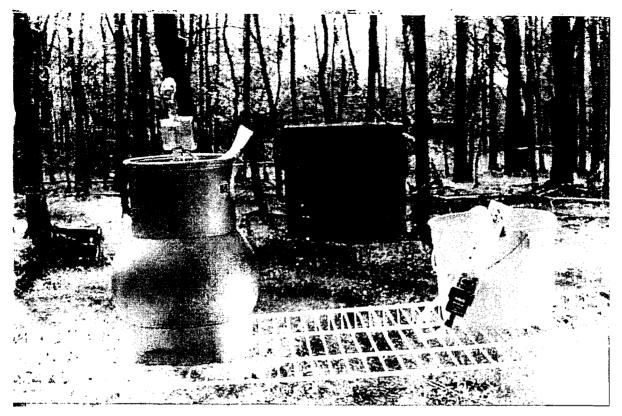
		-	1			
0	1.3	3.0	5.1	8.2	10.5	
SC	ALE	. (M/	'SEC	.)		


W	IND SPEE	ED (M/SEC	) PERCE	NT 000	URRENCE	;	w	IND SPEI	ED (M/SEC	C) PERCI	ENT OCC	URRENCE	:
	0-1.3	1.3-3.0	3.0-5.1	±.1-8.2	8.2-10.8	10.8		0-1.3	1.3-3.0	3.0-5.1	5.1-8.2	8.2-10.8	··10.8
N	0.00	0.00	0.00	0. <b>00</b>	0.00	0.00	S	0.00	0.00	0.00	0.00	0.00	0. <b>00</b>
NNE	0.00	0.00	0.00	0 <b>.00</b>	0.00	0.00	SSW	0.00	0.00	0.00	8.00	0.00	0.00
NE	0.00	0.00	0.00	0 <b>.00</b>	0.00	0.00	sw	0. <b>00</b>	0.00	4.00	16.00	0.00	0.00
ENE	0.00	0.00	0.00	0. <b>00</b>	0.00	0.00	wsw	0.00	0.00	4.00	4.00	0.00	0.00
Ε	0.00	0.00	0 <b>.00</b>	0.0 <b>0</b>	0.00	0.00	w	0.00	0.00	0.00	8.00	4.00	0.00
ESE	0.00	0.00	0.00	D.00	0.00	0.00	WNW	0.00	0.00	0.00	44.00	8.00	0.00
SE	0.00	0.00	0.00	D.00	0.00	0.00	NW	0.00	0.00	0.00	0.00	0.00	0.00
SSE	0.00	0.00	0.00	0.C	0.00	0.00	NNW	0.00	0.00	0.00	0.00	0.00	0.00

# AIR SAMPLING EQUIPMENT

**VDDENDIX B** 

.


### **Arrangement of Air Sampling Equipment**



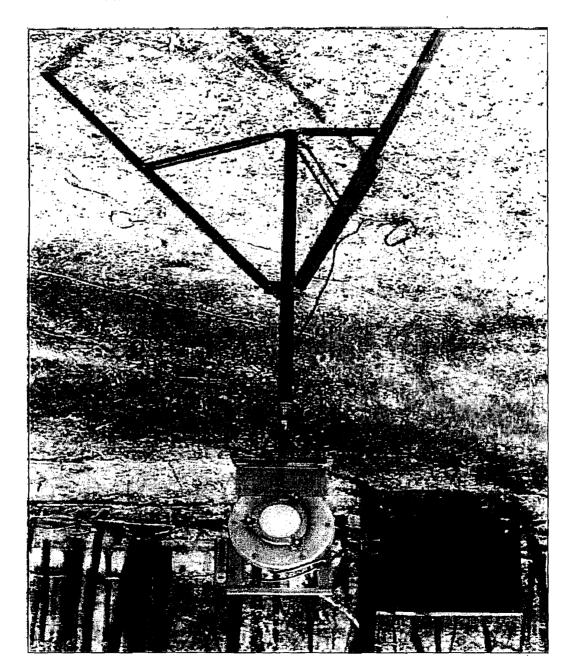
#### APG Controlled Burn Project – Analytes of Interest:

- Volatile Organic Compounds (VOCs)
- Pesticides and Polychlorinated Biphenyls (PCBs)
- Explosives
- Inorganics
- Radiologicals
- Chemical Agents

### Summa Canister (left) and DAAMS Tube (right)



Summa canister for collection of air samples for volatile organic analysis. DAAMS tubes used for collection of samples for chemical agent analysis.


### High Volume PUF Sampler



Sampler for collection of air samples for Pesticides, PCBs, and Explosives.

PUF – Polyurethane foam PCB – Polychlorinated biphenyls

### (loV-ibnsH) rolqmsZ ampler (Handi-Vol)



Sampler for collection of air samples for Inorganics and Radionuclides analyses

#### APPENDIX C

.

#### LIST OF ANALYTES FOR THE ABERDEEN PROVING GROUND CONTROLLED BURN PROJECT

#### Table C-1. TARGET ANALYTES FOR EACH ANALYSIS PERFORMED ON AIR SAMPLES FROM THE MAIN FRONT, NEW O-FIELD, AND J-FIELD CONTROLLED BURNS

Volatiles ¹	Pesticides/PCBs ²	Explosives ²	Metals (Total)	Radiologicals	Gamma Spectroscopy	Chemical Agents
Freon 12	4,4'-DDD	1,3,5- Trinitrobenzene	Aluminum	Gross Alpha	Actinium-228	Mustard (HD)
Chloromethane	4,4'-DDE	1,3-Dinitrobenzene	Antimony	Gross Beta	Bismuth-212	Sarin (GB)
Freon 114	4,4'-DDT	2,4,6- Trinitrotoluene	Arsenic		Bismuth-214	Soman (GD)
Chloroethene	Aldrin	2,4-Dinitrotoluene	Barium		Cesium-137	VX
Bromomethane	Dieldrin	2,6-Dinitrotoluene	Beryllium	<b></b>	Cobalt-60	
Chloroethane	Endosulfan I	2-Amino-4,6- dinitrotoluene	Cadmium		Lead-210	
Freon 11	Endosulfan II	2-Nitrotoluene	Calcium	<u> </u>	Lead-212	
1,1-Dichloroethene	Endosulfan Sulfate	3-Nitrotoluene	Chromium		Lead-214	
Methylene chloride	Endrin	4-Amino-2,6- dinitrotoluene	Cobalt		Potassium-40	
Freon 113	Endrin Aldehyde	4-Nitrotoluene	Copper	· · · ·	Protactinium-231	
1,1,-Dichloroethane	Endrin Ketone	HMX	Iron		Protactinium-234	
cis-1,2-Dichloroethylene	Heptachlor	Nitrobenzene	Lead	· · ·	Radium-223	· · · · · · · · · · · · · · · · · · ·
Chloroform	Heptachlor Epoxide	RDX	Magnesium	·	Radium-224	
1,2-Dichloroethane	Lindane (gamma-BHC)	Tetryl	Manganese		Radium-226	····
1,1,1-Trichloroethane		Jeuyi				
	Methoxychlor		Mercury		Uranium-235	
Benzene	Toxaphene		Nickel		Uranium-233/234	
Carbon tetrachloride	alpha-BHC		Potassium		Uranium-235/236	
1,2-Dichloropropane	alpha-Chlordane		Selenium		Uranium-238 4	
Trichloroethene	beta-BHC		Silver			
cis-1,3-Dichloropropene	delta-BHC		Sodium			
trans-1,3- Dichloropropene	gamma-Chlordane		Thallium			
1,1,2-Trichloroethane	2-Chlorobiphenyl		Uranium ³		······································	
Toluene	2,3-Dichlorobiphenyl		Vanadium			
1,2-Dibromoethane	2,2'5-Trichlorobiphenyl		Zinc			
Tetrachloroethene	2,4'5-Trichlorobiphenyl					
Chlorobenzene	2,2'5,5'- Tetrachlorobiphenyl					
Ethylbenzene	2,2'3,5'-	<u> </u>				
Eurybenzene	Z,Z 3,5 - Tetrachlorobiphenyl					
m-/p- Zylenes	2,3'4,4'-					
	Tetrachlorobiphenyl					
Styrene	2,2'4,5,5'- Pentachlorobiphenyl					
o-Xylene	2,2',3,4,5'- Pentachlorobiphenyl					
1,1,2,2-	2,3,3',4',6-					
Tetrachloroethane	Pentachlorobiphenyl					
1,3,5-Trimethylbenzene	2,2',4,4',5,5',6- Hexachlorobiphenyl					
1,2,4-Trimethylbenzene	2,2',4,4',5,5'- Hexachlorobiphenyl					
1.3-Dichlorobenzene	2,2',3,4,5,5'- Hexachlorobiphenyl					
1,4-Dichlorobenzene	2,2',3,4,4'- Hexachlorobiphenyl					
1,2-Dichlorobenzene	2,2',3,4',5,5',6- Heptachlorobiphenyl					
1,2,4-Trichlorobenzene	2,2',3,4,4',5',6-					
Hexachlorobutadiene	Heptachlorobiphenyl 2,2',3,4,4',5,5'-	L				
	Heptachlorobiphenyl 2,2',3,3',4,4',5-					
	Heptachlorobiphenyl					
	2,2'3,3'4,4',5,5'6- Nonchlorobiphenyl				od for the purper of	

Volatiles analysis on air samples collected during New O-Field and Main Front controlled burns was performed for the purposes of identifying only non-target peaks (a.k.a., Tentatively Identified Compounds (TICs)) and not the full range of TO-14 compounds. ² Analysis for these analytes was performed on PUF and filter samples from the Main Front controlled burn; analysis for these analytes on the air

samples from the New O-Field and J-Field controlled burns was performed only on filter samples.

³Analysis for Total Uranium was performed only on the air samples from the Main Front and New O-Field controlled burns.

⁴Analysis for these radionuclides was performed only on the air samples from the J-Field controlled burn.

Compound	Method Detection Limit (MDL)* ppb	Compound	Method Detection Limit (MDL) * ppb
Freon 12	~ 0.2	Cis-1,3-Dichloropropene	~ 0.2
Chloromethane	~ 0.2	Trans-1,3-Dichloropropene	~ 0.2
Freon 114	~ 0.2	1,1,2-Trichloroethane	~ 0.2
Chloroethene	~ 0.2	Toluene	~ 0.2
Bromomethane	~ 0.2	1,2-Dibromoethane	~ 0.2
Chloroethane	~ 0.2	Tetrachloroethene	~ 0.2
Freon 11	~ 0.2	Chlorobenzene	~ 0.2
1,1-Dichloroethene	~ 0.2	Ethylbenzene	~ 0.2
Methylene chloride	~ 0.2	m-/p-Xylenes	~ 0.2
Freon 113	~ 0.2	Styrene	~ 0.2
1,1-Dichloroethane	~ 0.2	o-Xylene	~ 0.2
Cis-1,2-Dichloroethylene	~ 0.2	1,1,2,2-Tetrachloroethane	~ 0.2
Chloroform	~ 0.2	1,3,5-Trimethylbenzene	~ 0.2
1,2-Dichloroethane	~ 0.2	1,2,4-Trimethylbenzene	~ 0.2
1,1,1-Trichloroethane	~ 0.2	1,3-Dichlorobenzene	~ 0.2
Benzene	~ 0.2	1,4-Dichlorobenzene	~ 0.2
Carbon tetrachloride	~ 0.2	1,2-Dichlorobenzene	~ 0.2
1,2-Dichloropropane	~ 0.2	1,2,4-Trichlorobenzene	~ 0.2
Trichloroethene	~ 0.2	Hexachlorobutadiene	~ 0.2

Table C-2. Volatile Organic Compound Detection Limits

.

• Laboratory reports MDL of approximately 0.2 ppb for all compounds as adjusted for flow and sample volume.

Table C-3.	<b>Explosive Detection Limits</b>	
------------	-----------------------------------	--

Compound	Method Detection Limit (MDL) ug/L *	Compound	Method Detection Limit (MDL) ug/L *
1,3,5-Trinitrobenzene	0.11	3-Nitrotoluene	0.16
2-Nitrotoluene	0.09	HMX	0.23
4-Nitrotoluene	0.21	Tetryl	0.22
RDX	0.23	2,4,6-Trinitrotoluene	0.10
2,4-Dinitrotoluene	0.10	2-Amino-4,6-Dinitrotoluene	0.09
1,3-Dinitrobenzene	0.09	4-Amino-2,6-Dinitrotoluene	0.11
2,6-Dinitrotoluene	0.13	Nitrobenzene	0.08

* The sample being analyzed is in a liquid matrix; therefore, the analytical MDL is expressed as ug/L.

Compound	Method Detection Limit (MDL) ug/L *	Compound	Method Detection Limit (MDL) ug/L *		
4,4'-DDD	0.016	Methoxychlor	0.0096		
4,4'-DDE	0.0076	Toxaphene	0.39		
4,4'-DDT	0.0069	2,3-Dichlorobiphenyl	0.021		
Aldrin	0.010	2,2',5-	0.015		
		Trichlorobiphenyl			
alpha-BCH	0.0085	2,4',5-	0.0080		
-		Trichlorobiphenyl			
alpha-Chlordane	0.0084	2,2'5,5'-	0.0084		
1		Tetrachlorobiphenyl			
beta-BHC	0.012	2,2'3,5'-	0.012		
		Tetrachlorobiphenyl			
delta-BHC	0.0073	2,3'4,4'-	0.0070		
		Tetrachlorobiphenyl			
Dieldrin	0.012	2,2',4,5,5'-	0.0030		
		Pentachlorobiphenyl			
Endosulfan I	0.038	2,2',3,4,5'-	0.0036		
(		Pentachlorobiphenyl			
Endosulfan II	0.0097	2,3,3',4',6-	0.0046		
		Pentachlorobiphenyl			
Endosulfan Sulfate	0.012	2,2',3,5,5',6-			
		Hexachlorobiphenyl			
Endrin	0.0068	2,2',4,4',5,5'-	0.0045		
•		Hexachlorobiphenyl			
Endrin Aldehyde	0.024	2,2',3,4,5,5'-	0.0067		
-		Hexachlorobiphenyl			
Endrin Ketone	0.0089	2,2'3,4,4',5'-	0.0081		
		Hexachlorobiphenyl			
gamma-BHC (Lindane)	0.0065	2,2',3,4',5,5',6-	0.014		
		Heptachlorobiphenyl			
gamma-Chlordane	0.020	2,2',3,4,4',5',6-	0.012		
		Heptachlorobipnenyl			
Heptachlor	0.017	2,2',3,4,4',5,5'-	0.0033		
-		Heptachlorobiphenyl			
Heptachlor Epoxide	0.0065	2,2',3,3',4,4',5-	0.9992		
		Heptachlorobiphenyl			
		2,2',3,3',4,4',5,5',6-	0.0031		
		Nonachlorobiphenyl			

#### Table C-4. Pesticides/Polychlorinated Biphenyls Detection Limits

* The sample being analyzed is in a liquid matrix; therefore, the analytical MDL is expressed as ug/L.

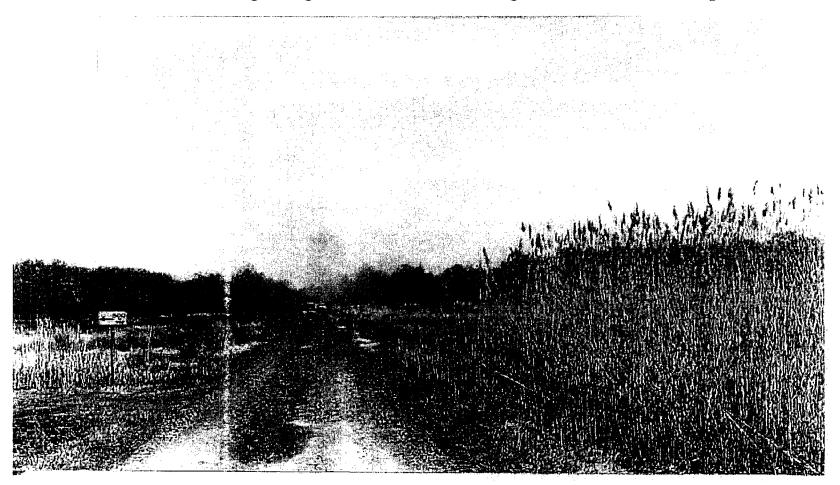
Compound	Method Detection Limit (MDL) ug/L *	Compound	Method Detection Limit (MDL) ug/L *
Aluminum	176.0	Magnesium	82.4
Antimony	3.7	Manganese	3.5
Arsenic	1.5	Mercury	0.2
Barium	17.9	Nickel	6.4
Beryllium	0.7	Potassium	68.3
Cadmium	0.5	Selenium	2.0
Calcium	86.4	Silver	1.4
Chromium	11.9	Sodium	281.0
Cobalt	4.4	Thallium	3.0
Copper	1.9	Vanadium	4.5
Iron	114.0	Zinc	3.0
Lead	1.1		

#### **Table C-5. Metals Detection Limits**

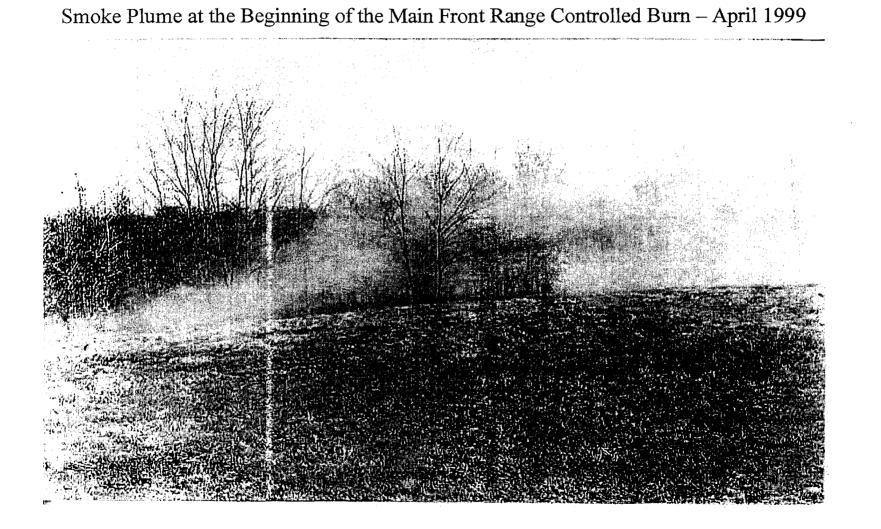
* The sample being analyzed is in a liquid matrix; therefore, the analytical MDL is expressed as ug/L.

Table C-6.	Chemical	Agents	Detection	Limits
------------	----------	--------	-----------	--------

Compound	Method Detection Limit (MDL) (mg/m ³ )*
Sarin (GB)	0.0003
Soman (GD)	0.0003
O-ethyl-S-(2-diisopropylaminoethyl)- methylphosphonothiolate (VX)	0.0003
Mustard (HD)	0.003


* MDL/sensitivity is not uniformly defined or reported. The above MDL/sensitivity is based on a 2 – 3 hour sampling time and represents the information currently available. (Reference: Site Monitoring Concept Plan, U.S. Army Chemical Materiel Destruction Agency, 15 September 1993).

#### APPENDIX D


### BURN EVENT PHOTOGRAPHS

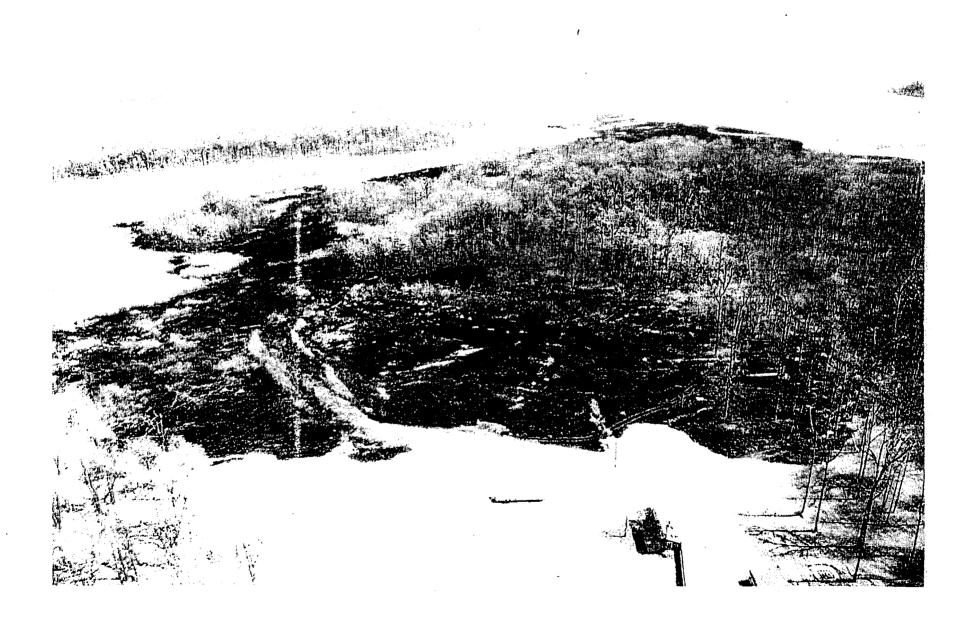
### APPENDIX D-1

### MAIN FRONT – 1999



### Smoke Plume at the Beginning of the Main Front Range Controlled Burn – April 1999

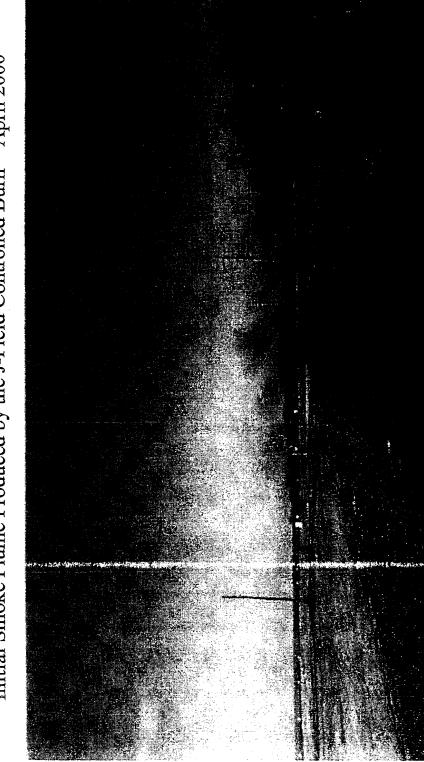



### APPENDIX D-2

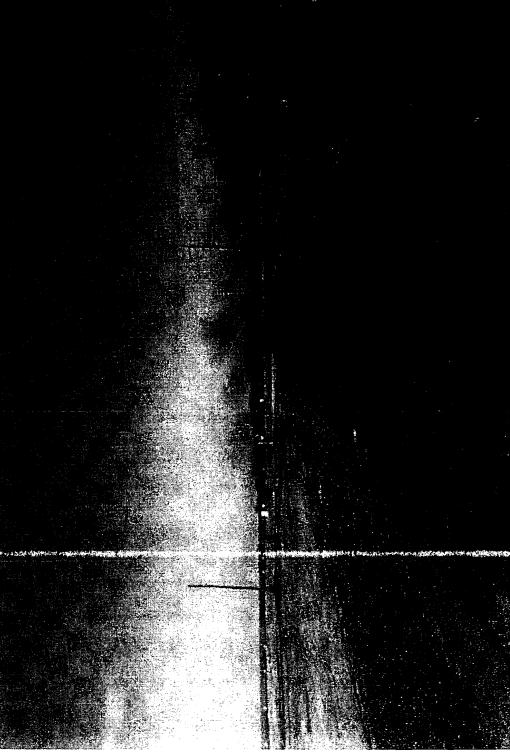
.

### NEW O-FIELD – 1999

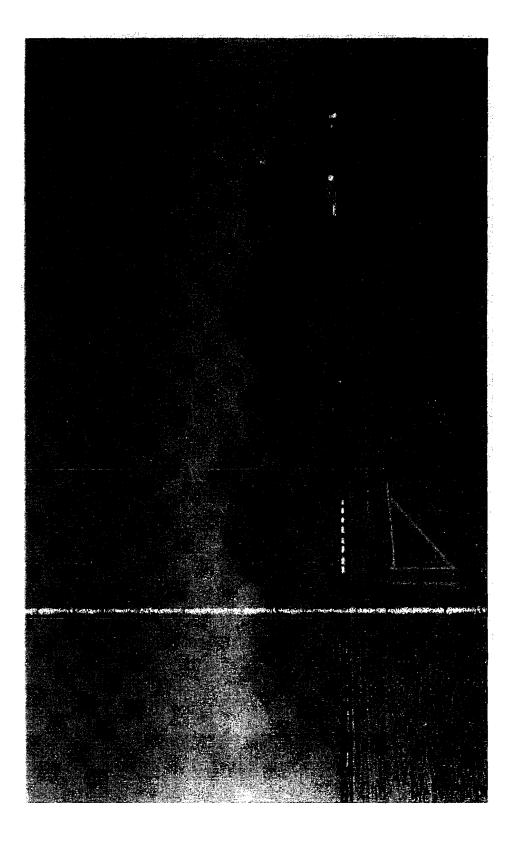
### New O-Field Burn Area – Facing Watson Creek (Northeast)







Aerial View – New O-Field Controlled Burn Area – December 1999

## APPENDIX D-3


J-FIELD - 2000




Initial Smoke Plume Produced by the J-Field Controlled Burn – April 2000







Aerial View of Area Burned During J-Field Controlled Burn – April 2000



#### APPENDIX E

#### CONTROLLED BURN DATA TABLES

#### **APPENDIX E-1**

#### DATA TABLES FOR THE MAIN FRONT CONTROLLED BURN – APRIL 1999

#### Table E-1. Main Front Controlled Burn Air Samples - April 1999

#### Volatile Organic Compound Analysis Results from Summa Canisters

Analytes *			Carry and a second state of a state of the second state of the sec	Sec. S	<b>用1彩金子和44</b> 40	Si Penda Si	2. 2	5 SI	13	Sec. S	94.940.011 (S.S.
Analytes	Concentration (up/m ¹ )	Concentration (ug/m ¹ )	OSHA PELs Concentration	Concentration (opb)	Concentralion	Concentration (ppb)	Concentration	Concentration (ppb)	Concentration :: lug/m ¹	Concentration (ppb)	Concentration
Acetone	17,820	37	2,400,000	3.04	7.22	3.01	7.15	5.16	12.26	3.08	7.32
Methylene chloride	NA	3.8	86.843	ND	ND	ND	ND	1.69	5.87	1.85	6.43
Toluene	NA	42	753,703	0.91	3.42	2.31	8.71	42.83	161.4	8.56	32.26
Octane	17500	NA	2,350,000		ND	ND	ND	2.94	13.7	ND	ND
Nonane	NA	NA	NA	ND	ND	4.1	21.5	20.2	106	4.05	21.25
 Decane	NA	NA	NA	ND	ND	4.22	24.56	4.08	23.7	2.75	16
m-/p-xylene	6,510	730	435,000	1.77	-	7.12	-	32.13	-	30.8	_ ·
o-xylene	6.510	730	435.000	ND	ND	ND	ND	3.89	16.9	3.83	16.63
Unknown hydrocarbon	*	-	-	ND	ND	24.59	-	18.05	-	4.37	
Unknown hydrocarbon		-		ND	ND	2.71	•	3.48	-	18.75	-
Unknown hydrocarbon	-	-		ND	ND	2.11	-	3.76	-	2.23	-
Unknown hydrocarbon	-	-	•	ND	ND	1.61	-	3.13	-	6.13	-
Unknown hydrocarbon	-		<u> </u>	ND	ND	1.54		2.56	-	8.08	-
Unknown hydrocarbon	-	-	<u> </u>	ND	ND	ND	ND	3.25	-	ND	ND
Benzaldehyde	NA	73	NA	1.01	4.38	ND	ND	ND	ND	ND	ND
Ethylhexanol	NA	NA	NA	4.86	·	ND	ND	ND	ND	ND	ND
Methylheptanone	NA	NA	NA	0.87	4.56	ND	ND	ND	ND	ND	ND
Methylbutane	NA	NA	NA	ND	ND	ND	ND	ND	ND	19.92	58.78
Hexamethylcyclotrisiloxane	NA	NA	NA	ND	ND	ND	ND	ND	ND	7.49	68.01
Trimethylbenzene	NA	0.62	NA	ND	ND	ND	ND	ND	ND	2.55	12:54
Dichlorobenzene	60.12	0.28	300,000	ND	ND	ND	ND	ND	ND	1.56	9:40
Total VOC				12.46		53.32		147.15		126	

* The detected analytes were reported as Tentatively Identified Compounds (TICs) NA - Screening criteria not available or does not apply

ND - nondetected

Shadowed cells indicate detected concentrations above screening criteria

#### Table E-2. Main Front Controlled Burn Air Samples - April 1999

	S S	20,	See Section SI	2	- Single	P30 .	Same S	94
Chemical Agent	Concentration . (ppb)	Concentration : (uɑ/m³)	Concentration (ppb)	Concentration (ug/m ³ )	Concentration- (ppb)	Concentration (ug/m ³ )	Concentration (ppb)	Concentration (ug/m ³ )
Sarin (GB)	ND	ND	ND	ND	ND	ND	ND	ND
Soman (GD)	ND	ND	ND	ND	ND	ND	ND	ND
VX	ND	ND	ND	ND	ND	ND	ND	ND
Mustard (HD)	ND	. ND	ND	ND	ND	ND	ND	ND

#### Chemical Agent Analysis Results

ND - nondetected

Analysis provided by Edgewood Chemical Biological Center.

#### Table E-3. Main Front Controlled Burn Air Samples - April 1999

#### Radiological Analysis Results

	Toxic All Pollutent	Ambient All RBCs		1. 30°	SP IF		SP2		SP3	SP4	(Upwind)	Blank
Analytes	Concentration (ug/m ³ )	Concentration (ug/m ² )	OSHA PELs Concentration (ug/m3)	Results (pCl/filter)	Concentrations (pCi/m ³ )	Results (pCi/filter)	Concentrations (pC)/m ³ )	Results (pCi/filter)	Concentrations (pCI/m ³ )	Results (pCi/filter)	Concentrations (pCI/m [*] )	Results (pCl/filter)
Gross Alpha	NA	NA	NA	6.8	0.0231	6.2	0.0210	1	0.0122	1.4	0.0133	5.6
Gross Beta	NA	NA	NA	37	0.1257	42	0.1424	0.6	0.0073	1.6	0.0152	32
Actinum-228	NA	NA	NA	-2.1	-0.0071	1.6	0.0054	15	0.1833	2.1	0.0199	13
Bismuth-212	NA	NA	NA	43	0.1461	42	0.1424	-72	-0.8797	13	0.1233	21
Bismuth-214	NA	NA	NA	-8.5	-0.0289	3.7	0.0125	0.64	0.0078	-7.4	-0.0702	-6.1
Cesium-137	NA	NA	NA	-0.72	-0.0024	-3.8	-0.0129	3.6	0.0440	1.3	0.0123	3.7
Coball-60	NA	NA	NA	0.88	0.0030	1.2	0.0041	-0.41	-0.0050	1.3	0.0123	0.71
Lead-210	NA	NA	NA	-46	-0.1563	-14	-0.0475	-70	-0.8552	-95	-0.9012	10
Lead-212	NA	NA	NA	0.37	0.0013	16	0.0543	-2.5	-0.0305	-1.4	-0.0133	5.6
Lead-214	· NA	NA	NA	-3.6	-0.0122	7.4	0.0251	-5.3	-0.0648	-0.18	-0.0017	-3.6
Potassium-40	NA	NA	NA	52	0.1767	4.1	0.0139	-47	-0.5742	22	0.2087	11
Protactinium-231	NA	NA	NA	-7.8	-0.0265	20	0.0678	120	1.4661	97	0.9202	4.6
Protactinium-234	NA	NA	NA	3.5	0.0119	-23	-0.0780	6.3	0.0770	-3.4	-0.0323	-4.9
Radium-223	NA	NA	NA	-5.4	-0.0184	1,4	0.0047	-6.9	-0.0843	-1.4	-0.0133	4.6
Radium-224	NA	NA	NA	9	0.0306	180	0.6104	120	1.4661	-53	-0.5028	160
Radium-226	NA	NA	NA	-8.3	-0.0282	3.6	0.0122	0.62	0.0076	-7.2	-0.0683	-5.9
Uranium-235	NA	NA	NA	-5.6	-0.0190	•3.3	-0.0112	-14	-0.1710	4.4	0.0417	12
			and the second	Results (ug/filter)	<ul> <li>Concentration</li> <li>(un/m³)</li> </ul>	., Results (ua/filter)	Concentration . (up/m ³ )	Results (ua/fiiter)	Concentration	Results (ua/filter)	Concentration	
Total Uranium by Mass Spectrometry	6	11	50	2	0.0068	2	0.0068	NÐ	ND	ND	ND	2.2

Location	SamplariDist	m) whitenal Alt-Flower
SP1	TSP3	294.26
SP2	TSP6	294.87
SP3	Handi Vol 6	81.85
SP4 (Upwind)	Handi Vol 7	105.41

NA - Screening criteria not available or does not apply ND - Nondetected

#### Table E-4. Main Front Controlled Burn Air Samples - April 1999

#### Inorganics Analysis Results

(+ 2)	and the second				SPJ		SP2		SP3	SP-		ik Blank
Analytes	Toxic Alt Pollutant 1-Hour Screening Level Concentration (ug/m ³ )	'EPA Region II Amblent Air RBCs Concentration (ug/m ³ )	OSHA PELs (15) Concentration (ug/m3)	Results (ug/filter)	Concentrations (ug/m ³ )	Results (ug/filter)	Concentrations (ug/m ³ )	AResults (ug/filter)	Concentrations (ug/m³)	Results (ug/filter)	Concentrations (ug/m ³ )	Results (ug/filter)
Mercury	0.3	0.031	100 (acceptable ceilion)	0.01	0.00003	0.01	0.00003	BQL	-	BQL	-	BQL
Silver	NA	1.8	10	2	0.0068	1.7	0.0058	BQL	-	BQL	3	3.1
Aluminum	NA	0.37	5.000	15000	51.1910	11800	40,0489	43.7	0.5955	53.5	0.4598	21700
Arsenic	NA	0.00041	500	4.3	0.0147	3.6	0.0122	BQL	-	BQL	-	6.5
Barium	NA	0.051	500	36900	125.9300	29000	98.4252	2.5	0.0341	2.7	0.0232	48900
Beryllium	0.1	0.00075	2	0.14	0.0005	0,11	0.0004	BQL	-	BQL	-	0.17
Calcium	NA	NA	NA	10400	35.4925	8340	28.3057	67.5	0.9199	71.5	0.6145	13800
Cadmium	NA	0.00099	5	BQL	· ·	BQL	•	0.04	0.0005	BQL	~	BQL
Cobalt	NA	22	100	BQL	-	BQL	•	BQL	-	0.06	0.0005	BQL
Chromium	NA	0.00015	500	11.4	0.0389	9,1	0.0309	0.59	0.0080	0.52	2.1 0.0045	18.3
Copper	NA	15	100	16.2	0.0553	11.9	0.0404	22.8	0.3107	4.9	0.0421	BQL
Iron	NA	110	NA	274	0.9351	230	0.7806	38.3	0.5219	42.1	0.3618	315
Potassium	NA	NA	NA	22200	75.7627	17100	58.0369	23.8	0.3243	30.8	0.2647	28800
Magnesium	NA	NA	NA	991	3.3820	799	2.7118	15.2	0.2071	19.4	0.1667	1300
Manganese	NA	0.0052	5000	10.3	0.0352	9.2	0.0312	1.4	0.0191	1,7	· 0.0146	11.3
Sodium	NA	NA	NA	66600	227.2882	48500	164.6077	186	2.5348	166	1.4267	81400
Nickel	NA	7.3	1,000	1.7	0.0058	1,4	0.0048	0.45	0.0061	0.41	0.0035	1,7
Lead	NA	NA	50	5	0.0171	3.9	0.0132	0.45	0.0061	0.44	0.0038	4.9
Antimony	NA	0.15	500	BQL	-	BQL		BQL	-	BQL	-	BQL
Selenium	NA	1.8	200	BQL	-	BQL	-	BQL		BOL	-	BQL
Thallium	NA	0.026	100	1.5000	0.0051	1.3	0.0044	BQL	-	BQL	•	2.5
Vanadium	NA	2.6	500	0.6900	0.0024	0.68	0.0023	0.29	0.0040	0.33	0.0028	0.58
Zinc	100	110	NA	29300.0000	99.9932	22500	76.3644	3.5	0.0477	4.1	0.0352	38100

Sampling	Sampler ID	SUST OTAL AIL FLOW	
SP1	TSP1	293.02	
SP1	TSP2	297.77	Mercury
SP2	TSP4	294.64	
SP2	TSP5	294.64	Mercury
SP3	Handi Vol 1	73.38	
SP3	Handi Vol 4	88.92	Mercury
SP4 (Upwind)	Handi Vol 2	116.35	1
SP4 (Upwind)	Handi Vol 5	114.11	Mercury

NA - Screening criteria not available or does not apply

BQL - Below Quantitation Limit

Shadowed cells Indicate detected concentrations above screening criteria.

## Table E-5. Main Front Controlled Burn Air Samples - April 1999PCBs Analysis Results from Filters

		SP1		SP2		SP3	SP4	(Upwind) &	Blank
Analytes	Results (ug/filter)	Concentrations (ug/m ³ )	Results (ug/filter)	Concentrations (ug/m ³ )	Results (ug/filter)	Concentrations (ug/m ³ )	Results (ug/filter)	Concentrations (ug/m ³ )	Results (ug/filter)
2,2',3,5'-Tetrachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,2,',5,5'-Tetrachlorobiphenyl	BQL	-	BQL	-	BQL *	-	BQL	-	BQL
2,2',5-Trichlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,2'3,4,4'5-Hexachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,2'3,4,5'-Pentachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,2'3,4,5,5'Hexachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,2'3,5,5'6-Hexachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,2'4,4'5,5'Hexachlorobiphenyl	BQL	•	BQL	-	BQL		BQL	-	BQL
2,2'4,5,5'-Pentachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,3',4,4'-Tetrachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2.3,3'4'6-Pentachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,3-Dichlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,4',5-Trichlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2-Chlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
22'33'44'5-Heptachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
22'33'44'55'6-Nonachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL		BQL
22'34'55'6-Heptachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
22'344'5'6-Heptachlorobiphenyl	BQL	-	BQL	-	BQL	-	BQL	-	BQL
22'344'55'-Heptachlorobiphenyl	BQL		BQL	-	BQL	-	BQL	-	BQL

-

Sampling 43 Control Location	Sampler ID2	
SP1	Filter7	53.39
SP2	Filter6	46.95
SP3	Filter1	37.78
SP4 (Upwind)	Filter3	61.1

#### Table E-6. Main Front Controlled Burn Air Samples - April 1999

#### PCBs Analysis Results from PUF Samplers

Analytes	+ Toxic Air Pollutant. 1-Hour Screening Level (ug/m ³ )	Andien An KBCS	LOSHA PELS Concentration (ug/m3)	Results (ug/PUF)	SP1 Concentrations (ug/m³)	Results: (ug/PUF)	*Concentrations	98.9	Concentrations (ug/m ⁻ )	Results	4 (Upwind) Concentrations (ug/m ² )	Blank Results (ug/PUF)
2,2',3,5'-Tetrachlorobiphenyl	NA	<b>{ug/m²;</b> } 0.0031	500	BQL		BQL	-	BQL	- (CBRING	BOL	- (08111)	BQL
2.2, 5,5'-Tetrachlorobipheny	NA	0.0031	500	BQL		BQL	-	BQL	~	BQL		BQL
2,2',5-Trichlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL		BQL
2,2'3,4,4'5-Hexachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	· ·	BQL
2,2'3,4,5'-Pentachlorobiphenył	NA	0.0031	500	BQL	-	BQL	-	0.03	0.0008	BQL	-	BQL
2,2'3,4,5,5'Hexachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,2'3,5,5'6-Hexachlorobiphenyl	NA	0.0031	500	BQL		BQL	-	BQL	-	BQL	-	BQL
2,2'4,4'5,5'Hexachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,2'4,5,5'-Pentachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,3',4,4'-Tetrachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	•	BQL
2,3,3'4'6-Pentachlorobiphenyl	NA	0.0031	500	BQL		BQL	-	BQL	-	BQL	-	BQL
2,3-Dichlorobiphenyl	NA	0.0031	500	BOL		BQL	-	BQL	-	BQL	-	BQL
2,4',5-Trichlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	0.43	0.0110	0.073	0.0012	BQL
2-Chlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	-	BQL
22'33'44'5-Heptachtorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	•	BQL
22'33'44'55'6-Nonachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	-	BQL
22'34'55'6-Heptachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	-	BQL
22'344'5'6-Heptachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	-	BQL
22'344'55'-Heptachlorobiphenyl	NA	0.0031	500	BQL	-	BQL		BQL	-	BQL		BQL

Sampling Sampling		Total Air <b>Fisw</b> (m ¹ )
SP1	PUF7	53.39
SP2	PUF6	46.95
SP3	PUF1	37.78
SP4 (Upwind)	PUF3	61.1

NA - Screening criteria not available or does not apply BQL - Below Quantitation Limit

Shadowed cells indicated detected concentrations above screening criteria

### Table E-7. Main Front Controlled Burn Air Samples - April 1999

#### Pesticides Analysis Results from Filters

		SP1		SP2		SP3	SP4	l (Upwind)	Blank
Analytes	Results (ug/filter)	Concentrations (ug/m ³ )	Results (ug/filter)	Concentrations (ug/m ³ )	Results (ug/filter)	Concentrations ( (ug/m ³ )	Results (ug/filter)	Concentrations (ug/m ³ )	> Results (ug/filter)
alpha-BHC	BQL	-	BQL	-	BQL	-	BQL	-	BQL
beta-BHC	BQL	-	BQL	-	BQL	-	BQL	-	BQL
delta-BHC	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Lindane (gamma-BHC)	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Heptachlor	BQL		BQL	-	BQL	-	BQL	-	BQL
Aldrin	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Heptachlor epoxide	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Endosulfan I	BQL	-	BQL	-	BQL	•	BQL	-	BQL
Dieldrin	BQL	-	BQL	-	BQL	-	BQL	-	BQL
4,4'-DDE	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Endrin	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Endosulfan II	BQL		BQL	-	BQL	-	BQL	-	BQL
4,4'-DDD	BQL		BQL	-	BQL	-	BQL	-	BQL
Endosulfan sulfate	BQL	-	BQL	-	BQL	-	BQL	-	BQL
4,4'-DDT	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Methoxychlor	BQL		BQL	-	BQL	-	BQL	-	BQL
Endrin ketone	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Endrin aldehyde	BQL	-	BQL	-	BQL	-	BQL	-	BQL
alpha-Chlordane	BQL	-	BQL	-	BQL	-	BQL	-	BQL
gamma-Chlordane	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Toxaphene	BQL		BQL	-	BQL	-	BQL	-	BQL

.

Sampling Sampling	Sampler [D]	
SP1	Filter9	60.17
SP2	Filter8	41.09
SP3	Filter2	33.16
SP4 (Upwind)	Filter4	45.89

#### Table E-8. Main Front Controlled Burn Air Samples - April 1999

Pesticides Analysis Results from PUF Samplers

esticides Analysis	Results from PUF S	ampiers			SP1		SP2		SPATION	SP2	(Unwind)	Blank
Analytes	1-Hour Screening Level (ug/m ³ )	Amblent Air RBCs (ug/m²)	OSHA PEL's Concentration (ug/m3)	Results (ug/PUF)	Concentration (ug/m³)	Results (ug/PUF)	Concentration (ug/m ³ )	Results (ug/PUF)	Concentration** (ug/m ² )	Results (ug/PUF)	Concentration (ug/m ² )	Results (ug/PUF)
alpha-BHC	NA	NA	NA	BQL	•	BQL	-	BQL		BOL		BQL
beta-BHC	NA	NA	NA	BQL	-	BQL	-	BQL	-	BOL		BQL
della-BHC	NA	NA	NA	BOL	-	BQL	-	BQL	•	BQL	-	BQL
Lindane (gamma-BHC)	NA	NA	500	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Heptachlor	NA	0.0014	500	BOL	-	BOL		BQL	-	BQL	-	BQL
Aldrin	NA	0.00037	250	BQL	-	BQL	•	BQL	•	BQL		BQL
Heptachlor epoxide	NA	0.00069	NA	BQL	-	BQL		BQL	•	BQL		BQL
Endosulfan I	NA	2.2	NA	BQL	•	BQL	-	BQL	•	BQL		BQL
Dieldrin	NA	0.00039	250	0.032	0.0005	0.02	0.0005	0,1	0.0030	BQL	-	BQL
4,4'-DDE	NA	0.018	NA	BQL		BQL	•	BQL		BQL	•	BQL
Endrin	NA	0.11	NÅ	BQL	•	BQL	-	BQL	-	BQL		BQL
Endosulfan II	NA	2.2	NA	BOL	-	BQL	· 1	BQL	•	BQL	· ·	BQL
4,4'-DDD	NA	0.026	NA	BQL	-	BQL	-	BQL	•	BQL		BQL
Endosulfan sulfate	NA	NA	NA	BOL		BQL	-	BQL	-	BQL		BQL
4,4'-DDT	NA	0.018	1.000	BQL		BQL	· ·	BQL	-	BQL	· ·	BQL
Methoxychlor	NA	1.8	1,500	BQL		BQL	-	BOL	-	BQL		BQL
Endrin ketone	NA	NA	NA	BQL	-	BQL	•	BQL		BQL		BQL
Endrin aldehyde	NA	NA	NA	BQL	•	BQL	-	BQL	•	BQL	-	BQL
alpha-Chlordane	NA	NA	500	BQL	-	BQL	· ·	BQL	-	BQL		BQL
gamma-Chlordane	NA	NA	500	BQL	•	BQL	-	BQL	-	BQL	· ·	BQL
Toxaphene	NA	0.0057	500	BQL		BQL	-	BQL		BQL		BQL

•

Samplings.	Sampler ID	
SP1	PUF9	60.17
SP2	PUF8	41.09
SP3	PUF2	33.16
SP4 (Upwind)	PUF4	45.89

-

NA - Screening criteria not available or does not apply

BQL - Below Quantitation Limit

Shadowed cells indicate detected concentrations above screening criteria

			P4	an a	20.35 Tre- 0.40		SP2	and the second second		and the second	P3	
Analytes	Results (pCi/filter)	Error +/-	MDA (pCi/filter)	Validation Qualifier	Results (pCi/filter)	Error +/-	MDA (pCi/filter)	Validation Qualifier	Results (pCi/filter)	Error +/-	MDA (pCl/filter)	Validation Qualifier
Gross Alpha	6.8	2.4	1.8	U3, J6	6.2	2.3	2	U3, <b>J</b> 6	1	0.8	1	U1, U3, J6
Gross Beta	37	3.2	1.9	D	42	3.4	2	D	0.6	0.9	1.5	U1, U2, U3
Bismuth-212	43	43	85	U1, U2 *	42	75	130	U1, U2 *	-72	73	110	U1, U2 *
Lead-212	0.37	7.5	7.3	U1, U2 D	16	16	14	U1, U2 D	-2.5	9.2	15	U1, U2 *
Potassium-40	52	48	51	U1, J6 D	4.1	83	180	U1, U2 *	-47	<b>7</b> 5	160	U1, U2 *
Radium-223	-5.4	6.5	11	U1, U2 *	1.4	10	17	U1, U2 D	-6.9	11	17	U1, U2 *
Uranium-235	-5.6	14	23	U1, J6 *	-3.3	30	50	U1, U2 *	-14	30	49	U1, U2 *

	10 Constant	SP4 (I	Jpwind)		a and the state	B	lank	
Analytes	Results (pCi/filter)	and the second	the second se	Validation. Qualifier	Results (pCI/filter)	201 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MDA (pCi/filter)	Validation Qualifier
Gross Alpha	1.4	0.8	1	U3, J6	5.6	2.1	1.7	J6
Gross Beta	1.6	1	1.5	U3, J6	32	2.9	1.6	D
Bismuth-212	13	42	79	U1, U2 *	21	69	120	U1, U2
Lead-212	-1.4	4.9	9	U1, U2 *	5.6	9	15	U1, U2 *
Potassium-40	22	57	65	U1, U2 D	11	120	80	U1, U2
Radium-223	-1,4	6.4	11	U1, U2 *	4.6	12	18	U1, U2 *
Uranium-235	4.4	4.2	24	U1, U2 D	12	29	50	U1, U2 *

* reported nondetected in 8 results

MDA - minimum detectable amount

D reported detected in 8 results

#### <u>Qualifier</u>

U1 - results less than MDA

U2 - results less than error

U3 - results less than blank

J6 - error greater than 20%

Table E-9.	Main Front Controlled Burn Air Samples - April 1999
Explosives	Analysis Results from PUF Samplers

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SPIC - South Control	S	2.5.5	station Si	3 ⁻⁴⁻⁶ 11 - 21	SP4	(Upwind)	Blank
Analytes	Results (ug/PUF)	Concentration** (ug/m ³ )	Results (ug/PUF)	Concentration (ug/m ³ )	Results (ug/PUF)	Concentration (ug/m ³ )	Results (ug/PUF)	Concentration ** (ug/m ³ )	Results (ug/PUF)
1,3,5-Trinitrobenzene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
1,3-Dinitrobezene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,4,6-Trinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,4-Dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,6-Dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2-Amino-4.6-dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2-Nitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
3-Nitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
4-Amino-2.6-dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
4-Nitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
НМХ	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Nitrobenzene	BQL	<u> </u>	BQL		BQL	-	BQL	-	BQL
RDX	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Tetryl	BQL	-	BQL	-	BQL	-	BQL	-	BQL

## Table E-10Main Front Controlled Burn Air Samples - April 1999Explosives Analysis Results from Filters

<u>xpreerree maryere</u>		SP1 ***		SP2-balless	and Stranger and and	SP3	SP4	(Upwind), and a set	S. Blanks
Analytes	Results (ug/filter)	Concentration (ug/m ³ )	Results (ug/filter)						
1,3,5-Trinitrobenzene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
1,3-Dinitrobezene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,4,6-Trinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,4-Dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,6-Dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2-Amino-4,6-dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2-Nitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
3-Nitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
4-Amino-2,6-dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
4-Nitrotoluene	BQL		BQL		BQL	-	BQL	-	BQL
HMX	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Nitrobenzene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
RDX	BQL	-	BQL	-	BQL	÷	BQL	-	BQL
Tetryl	BQL	-	BQL	-	BQL	-	BQL	-	BQL

### APPENDIX E-2

### DATA TABLES FOR THE NEW O-FIELD CONTROLLED BURN – DECEMBER 1999

### Table E-11. New O-Field Controlled Burn Air Samples - December 1999 Volatile Organic Compound Analysis Results from Summa Canisters

Volatile Organic Compound Analys	Lando Air Politikant 17 m	EPA Region III Ambient : An RB Cer	CONIA PELS CONTRACT	S Street Street	P1 - 2 - 7	Sa Sa S	P2		P3/MAY WAT	SP4-A (Ba	ickground) 🐲	*#SP4-B (Be	ickground)32
Analytes *	Concentration (up/m ³ )	Concentration (ug/m ² )		Concentration (ppb)	Concentration (ug/m ³ )	Concentration (ppb)	Concentration (ug/m²)	Concentration (pob)	(ug/m ² )	Concentration (ppb)	Concentration (ug/m ² )	Consentration (ppb)	Concentration (up/m [*] )
Acetone	.17,820	37	2,400,000	1.68	3.99	27.6	65,56	1,11	2.64	ND	· ·	1.51	3.59
Benzene	80	0.22	3,195	0.806	2.58	6.23	19.9	0.727	2.32	1.42	4.54	1.54	4.92
Benzonifrie	NA	NA	NA	0.609	2.57	ND		ND	ND	ND	ND	ND	ND
Carbon Dioxide	2,088,000	NA	9,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	NA	73	62,275	ND	ND_	5.94	18.5	ND	ND		ND	ND	ND
Dodecene _	NA	NA	NA	2.9	19.96	ND	ND	ND	ND	ND	ND	ND_	ND
Нехале	NA	21	1,800,000	ND	ND	11.3	39.83	ND	ND	ND	ND	ND	ND
Methylene Chloride	NA	3.8	86,843	ND	ND	7.27	25.25	ND	ND	ND		ND	ND
Pinene Isomer	NA	NA	NA	ND	ND	ND	ND	ND	ND	1.49	<u> </u>	ND	ND
Toluene	NA	42	753703	1.48	5.58	23.6	88.94	1.6	6.03	3.58	13.49	1.21	4.56
Xylene Isomer	6,510	730	NA	0.796		81.94	-	0.797	-	1.6		0.831	
Unknown C11 Hydrocarbon	-		-	ND	ND	ND	ND	ND	ND	1.33	-	ND	ND
Unknown C12 Hydrocarbon	-	-	-	ND	ND	ND	ND	ND	ND	1.97	-	ND	ND
Unknown Chloroflurohydrocarbon	-	-	-	ND	ND	ND	ND	ND	ND	1.85	-	ND	ND
Unknown	-	•		ND	ND	ND	ND	ND	ND	3.26	-	ND	ND
Unknown	-		-	ND	ND	ND	ND	ND	ND	1.83		ND	ND
Unknown	-	-	-	ND	ND	ND	ND	ND	ND	1.89	-	ND	ND
Total VOC				8.271	- X.C.	81.940		4.2340		20.220		5.091	a start

.

٠

* The detected analytes were reported as Tentatively Identified Compounds (TICs) NA - Screening criteria not available or does not apply

ND - nondetected

Shadowed cells indicated detected concentrations above criteria

#### Table E-12. New O-Field Controlled Burn Air Samples - December 1999

Pesticide Analysis Results from PUF Samplers

	ticide Analysis Results from POF Samplers							ackground)	Blank
Analytes	Results (ug/PUF)	Concentrations (ug/m ³ )	Results (ug/PUF)	Concentrations (ug/m ³ )	Results (ug/PUF)	Concentrations (ug/m ³ )	Results (ug/PUF)	Concentrations (ug/m ³ )	Results (ug/PUF)
alpha-BHC	BQL	-	BQL	-	BQL	-	BQL	-	BQL
beta-BHC	BQL	-	BQL	-	BQL	-	BQL	-	BQL
delta-BHC	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Lindane (gamma-BHC)	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Heptachlor	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Aldrin	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Heptachlor epoxide	BQL	-	BQL		BQL	-	BQL	-	BQL
Endosulfan i	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Dieldrin	BQL	-	BQL	-	BQL	-	BQL	-	BQL
4,4'-DDE	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Endrin	BQL	-	BQL	•	BQL	-	BQL	-	BQL
Endosulfan II	BQL	-	BQL	•	BQL	-	BQL		BQL
4,4'-DDD	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Endosulfan sulfate	BQL	-	BQL	-	BQL	-	BQL	-	BQL
4,4'-DDT	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Methoxychlor	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Endrin ketone	BQL	-	BQL	-	BQL	-	BQL		BQL
Endrin aldehyde	BQL	-	BQL	-	BQL	-	BQL		BQL
alpha-Chlordane	BQL		BQL	-	BQL		BQL		BQL
gamma-Chlordane	BQL		BQL	-	BQL	-	BQL	-	BQL
Toxaphene	BQL	-	BQL	-	BQL	-	BQL		BQL

.

Sampling Location	Samplepita	TOUR AFTEROWN
SP1	PUF9	36.59
SP2	PUF8	42.36
SP3	PUF2	34.4
SP4 (Background)	PUF4	46.37

### Table E-13 New O-Field Controlled Burn Air Samples - December 1999 PCBs Analysis Results from PUF Samplers

and the second second second	Toxic Air Pollutant	ERA, Region III	and a second design of the second	and the second second	SP1	etter Si	P2		P3		ackground)	Construction of the second second
Analyles	1-Hour Screening Level (og/m ¹ )	Amblent Air RBCs (ug/m³)	03H&PELs Concentration (ug/m3)	Results (ug/PUF)	Concentrations (ug/m ³ )	Results (ug/PUF)	Concentrations (ug/m ³ )	'Results (ug/PUF)	Concentrations. (ug/m³) *	Results (ug/PUF)	Concentrations (ug/m ³ )	Results (ug/PUF)
2.2'.3.5'-Tetrachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL	-	BQL	-	BOL
2.2,1.5.5'-Tetrachlorobiphenyl	NA	0.0031	500	BOL		BQL		BQL	-	BQL	-	0.017
2,2',5-Tnchlorobiphenyl	NA	0.0031	500	BQL	-	BQL		BQL		BQL	-	BQL
2,2'3,4,4'5-Hexachlorobiphenyl	NA NA	0.0031	500	BQL	-	BQL		BQL		BQL		BQL
2,2'3,4,5'-Pentachlorobiphenyl		0.0031	500	0.042	0.0010	0.0160	0.0004	0.0130	0.0004	BQL	^	BQL
2.2'3.4.5.5'Hexachlorobiphenyl	NA	0.0031	500	BQL		BQL		BOL	-	BQL	-	BQL
2.2'3,5,5'6-Hexachlorobiphenyl	NA	0.0031	500	BQL		0.0050	0.0001	0.0200	0.0006	0.009	0.0002	BQL
2.2'4.4'5.5'Hexachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BOL	· ·	BQL	-	BQL
2.2'4,5,5'-Pentachlorobiphenyl	NA	0.0031	500	BOL	-	BOL	-	BQL		BQL	•	BQL
2,3',4,4'-Tetrachlorobiphenyl	NA	0.0031	500	BQL	-	BQL		BQL	-	0.091		0.004
2,3.3'4'6-Pentachlorobiphenyl	NA	0.0031	500	BQL		BOL	-	BQL	-	BQL	-	BQL
2,3-Dichlorobiphenyt	N.A	0.0031	500	BQL	-	BQL		BQL		BQL		0.11
2,4',5-Trichlorobiphenyl	NA	0.0031	500	BQL		BOL	•	BQL		BQL		BOL
2-Chlorobiphenyl	NA	0.0031	500	BQL	-	BQL	· ·	BQL		BQL		BQL
22'33'44'5-Heptachlorobiphenyl	NA	0.0031	500	BOL	-	BQL		BQL	· · ·	BQL		BQL
22'33'44'55'6-Nonachlorobiphenyl	NA	0.0031	500	BOL	-	BQL	-	BQL	·	BQL	•	BQL
22'34'55'6-Heptachlorobiphenyl	NA	0.0031	500	BQL		BQL		BQL		BQL	-	BQL
22'344'5'6-Heptachlorobiphenyl		0.0031	500	BQL	-	BQL		BQL		BQL	· ·	BQL
22'344'55'-Heptachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL		BQL	· ·	BQL

Sampling Location	Sampler ID 24	Total Air Flows
SP1	PUF9	36.59
SP2	PUF6	42.36
SP3	PUF2	34.4
SP4 (Background)	PUF4	46.37

NA - Screening criteria not available or does not apply BQL - Below Quantitation Limit

#### Table E-14 New O-Field Controlled Burn Alr Samples - December 1999 Explosives Analysis Results from PUF Samplers

Explosives Analysis Result			Salar Salar Salar Salar S	9 <b>2</b>	S S	B. State of the second state	SP4 (	Blank	
Analytes	Results (ug/PUF)	Concentrations. (ug/m ³ )	Results (ug/PUF)	Concentrations (ug/m³)	Results (ug/PUF)	Concentrations, (ug/m ³ )	Results (ug/PUF)	Concentrations (ug/m ³ )	Results (ug/PUF)
1,3,5-Trinitrobenzene	BQL		BQL	-	BQL	-	BQL	-	BQL
1,3-Dinitrobezene	BQL	~	BQL		BQL		BQL	-	BQL
2,4,6-Trinitrotoluene	BQL	-	BQL	-	BQL	-	BQL		BQL
2,4-Dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
2,6-Dinitrotoluene	BQL		BQL	-	BQL	-	BQL	-	BQL
2-Amino-4,6-dinitrotoluene	BQL		BQL	-	BQL	-	BQL	-	BQL
2-Nitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
3-Nitrotoluene	BQL	-	BQL	-	BQL		BQL	-	BQL
4-Amino-2,6-dinitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
4-Nitrotoluene	BQL	-	BQL	-	BQL	-	BQL	-	BQL
НМХ	BQL	-	BQL	-	BQL	-	BQL	-	BQL
Nitrobenzene	BQL	-	BQL	-	BQL		BQL	-	BQL
RDX	BQL		BQL	-	BQL	· •	BQL	-	BQL
Tetryl	BQL	-	BQL	-	BQL	-	BQL	-	BQL

1.04

Sampling 2 Sampling	Sampler (De	
SP1	PUF7	36.15
SP2	PUF6	42.95
SP3	PUF1	38.14
SP4 (Background)	PUF3	54.08

#### Table E-15 New O-Field Controlled Burn Air Samples - December 1999

Inorganics Analysis Results

norganics Analysi		EPA Region HL		22.0	SPI		P2	- S	P3.2 10 10 10 10 10 10 10 10 10 10 10 10 10		Background)		
Analytes	1-Hour Screening Level	Amblent Alr RBCs (ug/m ² )	OBHA PELy Consermation (up/m3)	Results (ug/filter)	Concentrations (ug/m³)	Results (ug/filter)	Concentrations (ug/m³)	Results #453 (ug/filter)	Concentrations (ug/m²)	Results (ug/filter)	Concentrations )	Results (ug/filter) TSP	(ug/filter) HANDIVOL
Mercury	0.3	0 03	100 (acceptable ceiling)	BOL	•	BQL	·	BQL	÷	BOL	· · ·	BQL	BOL
Silver	NA	1.8	10	BOL		BOL	· ·	BQL		BOL		BQL	BOL
Aluminum	NA	0.37	5,000	119	0.5200	55.7	0.2000	44.9	0.3600	39.9	0.3100	24.6	BOL
Arsenic	NA	0.00041	500	3.2	00100	BQL		BQL	-	BOL		BQL	BOL
Barium	NA	0.051	500	24.7	9.1100	18.4	0.0700	2.3	0.0200	2.2	0.0200	20.1	1,4
Beryllium	0.1	0.00075	2	BQL	-	BOL	-	BQL		BOL		BQL	BOL
Calcium	NA	NA	NA	595	2.5900	362.0	1,3300	89.2	0.7200	77.2	0.6000	373	BQL
Cadmlum	NA	0.00099	5	BQL		BQL	-	BQL	-	BQL		BOL	BQL
Cobalt	NA	22	100	BQL		BQL	- 1	BOL	•	BQL	•	BQL	BOL
Chromium	NA	0.00015	500	2.1	20,0100	1.4	0.0010	BQL	-	BQL	-	1.3	BOL
Copper	NA	15	100	87.7	0.3800	31,4	0.1200	6.4	0.0500	10.3	0.0800	0.68	BQL
iron	NA	110	NA	188	0.8100	68.1	0.2500	49.6	0.4000	55	0.4300	13.2	BQL
Potassium	NA	NA	NA	197	0.8600	BOL		BQL	-	BQL	•	BQL	BQL
Magnesium	NA	NA	NA	80	0.3500	44.5	0.1600	BOL		BQL		35.3	BQL
Manganese	NA	0.0052	5000	4.5	0.0200 -	1.6	0.0100	1.0	0.0080	1	0.0080	BQL	BOL
Sodium	NA	NA	NA	1270	5.5300	993.0	3.6400	230.0	1.8500	225	1.7600	1150	213
Nickel	NA	7.3	1,000	3	0.0100	1.0	0.0040	BQL	•	BQL	-	BOL	BQL
Lead	NA	NA	50	171	0.0700	6.0	0.0220	5.5	0.0400	12.5	0.1000	BQL	BQL
Antimony	NA	0.15	500	BQL		BOL	· ·	BQL	-	BQL		BOL	BQL
Selenium	NA	1.8	200	1.80	0.0100	D.5	0.0020	0.6	0.0050	0.52	0.0040	BQL	BQL
Thallium	NA	0.026	100	BQL	·	BOL	•	BQL	-	BQL	·	BQL	BQL
Vanadium	NA	2.6	500	6.9	0.0300	1.4	0.0050	1.4	0.0110	1.6	0.0100	BOL	BQL
Zinc	100	110	NA	33.9	0.1500	12.2	0.0450	6.5	0.0500	6.2	0.0500	2.1	BOL

•

~

Sempling	Sampler ID - 24	Total AIRFION	
SP1	TSP3	222.12	Mercury
SP1	TSP2	229.68	1 .
SP2	TSP6	271.98	Mercury
SP2	TSP5	272.62	· ·
SP3	Handi Vol 6	138.96	Marcury
SP3	Handi Vol 4	124.06	1
SP4 (Background)	Handi Vol 5	118,58	Mercury
SP4 (Background)	Handi Vol 7	127.94	1 .

NA - Scheening criteria not evallable or does not epply BQL - Selow Quantitation Limit

Shadowed cells indicate detected concentrations above acreening criteria

## Table E-16. New O-Field Controlled Burn Air Samples - December 1999 Chemical Agent Analysis Results

<u>Chemical Agent Analysis R</u>	SP1 SP1 SP1 SP2 SP2								
Chemical Agent	Concentration (ppb)	Concentration (ug/m ² )	Concentration (ppb)	Concentration	Concentration (ppb)	Concentration* (ug/m ³ )	Concentration (ppb)	Concentration	
Sarin (GB)	ND	ND	ND	ND	ND	ND	ND	ND	
Soman (GD)	ND	ND	ND	ND	ND	ND	ND	ND	
VX	ND	ND	ND	ND	ND	ND	ND	ND	
Mustard (HD)	ND	ND	ND	ND	ND	ND	ND	ND	

ND - nondetected

Analysis provided by Edgewood Chemical Biological Center

### Table E-17. New O-Field Controlled Burn Air Samples - December 1999 Radiological Analysis Results

Analytes	EPA Region III X Ambient Air RBCs (ug/m ³ )	Toxic Air Pollulant 1-Hour Screening Level (ug/m [*] )	OSHA PELs Concentration (Ug/m3)	Results (pCl/filter)	Concentrations (pCl/m³)	Results (pCl/filter)	Concentrations (pCl/m ³ )	Results (pCl/filter)	Concentrations (pCl/m ³ )	Results (pCl/filter)	Concentrations (pCl/m ³ )
Gross Alpha	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	
Gross Beta	NA	NA	NA	23	0.1013	ND	ND	3.4	0.0255	4.3	0.0363
Actinium-228	NA	NA	NA	ND	ND	ND	ND	ND	ND		ND
Bismuth-212	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Bismuth-214	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Cesium-137	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Coball-60	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Lead-210	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Lead-212	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Lead-214	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Potassium-40	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Protactinium-231	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Protactinium-234	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Radium-223	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Radium-224	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Radium-226	NA	NA	NA	ND	ND	ND	ND	ND	םא	ND	ND
Uranium-235	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
			2. 2 - 3 - <del>1</del> - 1	Results	Concentration	Results (ug/filter)	Concentration (ug/m ³ )	Results (ug/filter)	Concentration (ug/m ³ )	Results (ug/filter)	Concentration
Total Uranium by Mass Spectrometry	6	11	50	ND	ND	ND	ND	ND	ND	ND	ND

Sampling	Danie Danie	ALCELOW ALCELOW SET
SP1	TSP1	226.98
SP2	TSP4	267.89
SP3	Handi Vol 1	133.45
SP4 (Background)	Handi Vol 2	118.58

NA - Screening criteria not available or does not apply ND - nondetected

### **VbbENDIX E**-3

# DATA TABLES FOR THE J-FIELD CONTROLLED BURN –

Table E-18. J-Field Controlled Burn Air Samples - April 2000

Volatile Organic	Compound	Analysis Result	ts from	Summa Canisters

atile Organic Compound Analy	sis Results from Sumn	na Caniste <u>rs</u> VEPARegioniliambient				CRA CRA	<u></u>
Analytes	Les fiele 4/ Polytant 2014 four Scheening Level 2015 concenuetion (Up/m ² )	AIT RECOMPTO	Concentration (Lig/m3)	Concentration (ppb)		Concentration (Upb)	Transit with committee second
Acetaldehyde *	450	0.81	360,000	2.21	3 98	ND	
Acetic Acid *	370	NA	25,000	ND	ND	1.07	2.63
Acetone *	17,820	37	2,400,000	6.05	14.37	3.29	7.82
Acetonitrile *	1,010	62	70,000	1.73	2.9	ND	ND
Benzene	80	0.22	3,195	6.44	900-920-572 mag	0.746 J	2.88
Chloroethene	NA	0.21	2,556	0.332 J	0.249	ND	ND
Chloromethane	525	1.80	NA	1.65		0.757	1.56
Ethylbenzene	5,430	110	435,000	5.91_	25.66	1.62	7.03
Ethylhexanol *	NA	NA	NA	1.88_	10.01	ND	ND
Freon 12	NA	NA	NA	ND	ND	0.385 J	1.90
Furan *	NA	0.37	NA	3.08		ND	ND
Furfural *	NA	3.70	20,000	6.56	215.7/5 Sec.	ND	ND
m-/p-Xylenes	6,510	730	435,000	3.43	14.89	0.967 J	4.2
Methylester Acetic Acid *	7,570	NA	NA	1.21	3.67	ND	ND
Methylfuran *	NA	NA	NA	2.49	8.36	ND	ND
Methylpropene *	NA	NA	NA	1.89	4.34	ND	ND
o-Xylene	6,510	730	435,000	0.335 J	1.45	ND	ND
Styrene	1,700	100	42,598	9.01	38.38	2.54	10.82
Toluene	NA	42	753,703	5.93	22.35	1.42	5.35
Unknown C8 Hydrocarbon *	-	-	-	1.92	-	0.973	-
Unknown C4 Alkene *	-	-	-	0.922		ND	ND
Unknown *	-	-		0.855	· _	ND	ND
Unknown *	•			1.52	•	ND	ND
Total VOC				62.477		11	

* Analyte identified as a Tentatively Identified Compound (TIC)

NA - Screening criteria not available or does not apply

ND - nondetected

J - Estimate concentration. Target detected at greater than the detection limit, but less than the quatitation limit (I.e., detection limit x5) Shadowed cells indicate detected concentrations above screening criteria

## Table E-19. J-Field Controlled Burn Air Samples - April 2000 Pesticide Analysis Results from PUF Samplers

.

Testicide Analysis Resolts from	Toxic Air Pollutant	EPA Region III			SP1	2000 SP4 (B	ackground) *** 25	Blank
Analytes	1-Hour Screening Level (ug/m ³ )	Amblent Air RBCs (ug/m ³ )	OSHA PELs Concentration (ug/m3)	Results (ug/PUF)	Concentrations . (ug/m ³ ) +	Results (ug/PUF);	Concentrations (ug/m ³ )	Results (ug/PUF)
alpha-BHC	NA	NA	NA	BQL	-	BQL	-	BQL
beta-BHC	NA	NA	NA	BQL		BQL	-	BQL
delta-BHC	NA	NA	NA	BQL	-	BQL	-	BQL
Lindane (gamma-BHC)	NA	NA	500	BQL	-	BQL		BQL
Heptachlor	NA	0.0014	500	BQL	-	0.078	0.0020	BQL
Aldrin	NA	0.00037	250	BQL	-	BQL	-	BQL
Heptachlor epoxide	NA	0.00069	NA	BQL		BQL	-	BQL
Endosulfan I	NA	2.2	NA	BQL	-	BQL	-	BQL
Dieldrin	NA	0.00039	250	BQL	-	BQL	-	BQL
4,4'-DDE	NA	0.018	NA	BQL		BQL		BQL
Endrin	NA	0.11	NA	BQL		BQL		BQL
Endosulfan II	NA	2.2	NA	BQL	-	BQL	-	BQL
4,4'-DDD	NA	0.026	NA	BQL	-	BQL	-	BQL
Endosulfan sulfate	NA	NA	NA	BQL	•	BQL	-	BQL
4,4'-DDT	NA	0.018	1,000	BQL	-	BQL		BQL
Methoxychlor	NA	1.8	1,500	BQL	-	BQL.	-	BQL
Endrin ketone	NA	NA	NA	BQL	•	BQL	-	BQL
Endrin aldehyde	. NA	NA	NA	BQL		BQL	-	BQL
alpha-Chlordane	NA	NA	500	BQL	-	BQL	-	BQL
gamma-Chlordane	NA	NA	500	BQL	-	BQL	-	BQL
Toxaphene	NA	0.0057	500	BQL	-	BQL	-	BQL

.

Sampling Subscription	ann a Sampler≀lD	Constant And Flow
SP1	PUF9	47.59
SP4 (Background)	PUF4	39.52

NA - Screening criteria not available or does not apply BQL - Below Quantitation Limit

Shadowed cells indicate detected concentrations above screening criteria

#### Table E-20. J-Field Controlled Burn Air Samples - April 2000

#### PCBs Analysis Results from PUF Samplers

PCBS Analysis Results nom Por	. Toxic Air/Pollutant	sə 🚽 🔤 EPA Region III 🖓 🛶 o	State of State			SP4 (Bac		And the second
Analytes	1-Hour Screening Level	Ambient Air RBCs	OSHA PELs Concentration (ug/m3)	Results (ug/PUF)	Concentrations (ug/m ³ )	Results (ug/PUF)	-Concentrations (ug/m ³ )	Results
		(ug/m³)	500	BQL		BQL	and the second second	BQL
2.2',3,5'-Tetrachlorobiphenyi	NA	0.0031	500				<u>}</u>	
2,2,',5,5'-Tetrachlorobiphenyl	NA	0.0031	500	BQL		BQL		BQL
2.2',5-Trichlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL
2,2'3,4,4'5-Hexachlorobiphenyl	NA	0.0031	500	BQL	-	BQL		BQL
2,2'3,4,5'-Pentachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL
2.2'3,4,5.5'Hexachlorobiphenyl	NA	0.0031	500	BQL	-	BQL		BQL
2,2'3,5,5'6-Hexachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL
2,2'4,4'5.5'Hexachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL
2,2'4,5,5'-Pentachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL
2.3'.4,4'-Tetrachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL
2.3,3'4'6-Pentachlorobiphenyl	NA	0.0031	500	BQL		BQL	•	BQL
2.3-Dichlorobiphenyl	NA	0.0031	500	BQL	-	BQL		BQL
2,4',5-Trichlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL
2-Chlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL
22'33'44'5-Heptachlorobiphenyl	NA	0.0031	500	BQL	-	BQL	-	BQL
22'33'44'55'6-Nonachlorobiphenyl	NA	0.0031	500	BQL		BQL	-	BQL
22'34'55'6-Heptachlorobiphenyl	NA	0.0031	500	BQL		BQL	-	BQL
22'344'5'6-Heptachlorobiphenyl	NA	0.0031	500	BQL	-	BQL		BQL
22'344'55'-Heptachlorobiphenyl	NA	0.0031	500	BQL		BQL	-	BQL

Sampling	Sampler D ^a . Sampler D	Contract Air Flower
SP1	PUF9	47.86
SP4 (Background)	PUF4	39.52

NA - Screening criteria not available or does not apply

#### Table E-21, J-Field Controlled Burn Air Samples - April 2000 Explosives Analysis Results from PUF Samplers

Analytes	Toxic Alt Pollutant	EPA Region III	OSHA PELs Concentration	Results	SP1 Concentrations	Results	Background)	Blank Results
riidiytas	the second s	(ug/m ³ )	(ug/m3)	(ug/PUF)	(ug/m³)	(ug/PUF)	(ug/m³)	(ug/PUF).
1,3,5-Trinitrobenzene	NA	11	NA	BQL	-	BQL	•	BQL
1,3-Dinitrobezene	NA	0.037	1,000	BQL		BQL	-	BQL
2,4,6-Trinitrotoluene	NA	0.21	1,500	BQL	-	BQL	-	BQL
2,4-Dinitrotoluene	50	0.73	1,500	BQL	-	BQL	-	BQL
2,6-Dinitrotoluene	NA	0.37	1,500	BQL		BQL	-	BQL
2-Amino-4,6-dinitrotoluene	NA	NA	NA	21.3	0.4570	BQL	-	BQL
2-Nitrotoluene	NA	NA	30,000	BQL	-	BQL	•	BQL
3-Nitrotoluene	NA	NA	30,000	BQL	-	BQL	•	BQL
4-Amino-2,6-dinitrotoluene	NA	NA	NA	5.9	0.1266	BQL	-	BQL
4-Nitrotoluene	NA	NA	30,000	BQL	-	BQL	-	BQL
HMX	NA	18	NA	BQL		BQL		BQL
Nitrobenzene	NA	0.22	5,000	BQL	-	BQL	-	BQL
RDX	NA	0.0057	NA	BQL	•	BQL	-	BQL
Tetryl	NA	3.7	1,500	BQL	•	BQL	-	BQL

Location	Samplar ID	Total Air Flow act of (m) Provide the
SP1	PUF7	46.61
SP4 (Background)	PUF3	47.27

NA - Screening criteria not available or does not apply

BQL - Below Quantitation Limit

Shadowed cells indicated detected concentrations above screening criteria

#### Table E-22. J-Field Controlled Burn Air Samples - April 2000

#### Inorganics Analysis Results

Analytes	Toxic Air Pollutant	Ambient Air RBCs	OSHA PELs Concentration	Results	SP1 Concentrations	Results	Background)#	Results	Results
Analytes	(ug/m³)	(ug/m³)	(ug/m3)	(ug/filter)	(ug/m ³ )	(ug/filter)	(ug/m³)	(ug/filter) TSP	(ug/filter) HANDIVOL
Mercury	0.3	0.03	100 (acceptable ceiling)	0.1	0.00043	BQL		BQL	BQL
Silver	NA	1.8	10	0.1	0.0004	0.08	0.0009	BQL	BQL
Aluminum	NA NA	0.37	5,000	159	0,6802	80.8	0.8831	6.8	2.3
Arsenic	NA	0.00041	500	0.59	0.0025	BQL	-	BQL	BQL
Barium	NA	0.051	500	18.3	0.0783	2.6	0.0284	3.6	1.2
Beryllium	0.1	0.00075	2	BQL	-	BQL		BQL	BQL
Calcium	NA	NA	NA	1910	8.1711	187	2.0437	161	43.4
Cadmium	NA	0.00099	5	0.84	0.0036	0.05	0.0005	BQL	BQL
Cobalt	NA	22	100	0.21	0.0009	BQL	-	BQL	BQL
Chromium	NA	0.00015	500	0.82	* 0.0035	0.51	0.0056	0.52	0.13
Copper	NA	15	100	16.2	0.0693	11	0.1202	0.22	0.23
Iron	NA	110	NA	148	0.6332	63.7	0.6962	5.5	3.2
Potassium		NA	NA	740	3.1658	26.1	0.2852	14.4	8.5
Magnesium	NA	NA	NA	321	1.3733	35.3	0.3858	17.1	6.2
Manganese	NA	0.0052	5000	128	0.5476	2.4	0,0262,	0.19	0.1
Sodium	NA	NA	NA	618	2.6439	158	1.7268	413	131
Nickel	NA	7.3	1,000	0.95	0.0041	0.35	0.0038	BQL	BQL
Lead	NA	NA	50	7.6	0.0325	0.7	0.0077	BQL	BQL
Aritimoriy	NA	0.15	500	BQL		BQL	-	BQL	BQL
Selenium	NA	1.8	200	0.52	0.0022	BQL	-	BQL	BQL
Thallium	NA	0.026	100	BQL	-	BQL	· _	BQL	BQL
Vanadium	NA	2.6	500	0.6	0.0026	0.29	0.0032	BQL	BQL
Zinc	100	110	NA	30.9	0.1322	4	0.0437	0.48	0.61

Sampling Location	SamplerID	(m)	
SP1	TSP2	233.75	]
SP1	TSP3	230.2	Mercury
SP4 (Background)	Handi Vol 5	91.5	1
SP4 (Background)	Handi Vol 7	107.26	Mercury

NA - Screening criteria not available or does not apply

BQL - Below Quantitation Limit

Shadowed cells indicate detected concentrations above screening criteria

## Table E-23. J-Field Controlled Burn Air Samples - April 2000Chemical Agent Analysis Results

	S S S	2147 - 044 - 4	See See S	SP4 SP4		
	Concentration (cpb)	Concentration (up/m	Concentration (ppb):	Soncentration (rig(n)		
Sarin (GB)	ND	ND	ND	ND		
Soman (GD)	ND	ND	ND	ND		
VX	ND	ND	ND	ND		
Mustard (HD)	ND	ND	ND	ND		

-

ND - nondetected

Analysis provided by Edgewood Chemical Biological Center

#### Table E-24. J-Field Controlled Burn Air Samples - April 2000

Radiological Analysis Results

Pollutants	1-Hour Screening Level	EPA Region III Ambient Air RBCs (ug/m ³ )	OSHA PELs Concentration (ug/m3)	Results (pCl/filter)	Concentrations (pCi/m ³ )	Results (pCi/filter)	kground) Concentrations (pCi/m ³ )
Gross Alpha	NA	NA	NA	ND	ND	ND	ND
Gross Beta	NA	NA	NA	ND	ND	ND	ND
Actinium-228	NA	NA	NA	ND	ND	ND	ND
Bismuth-212	NA	NA	NA	ND	ND	ND	ND
Bismuth-214	NA	NA	NA	ND	ND	ND	ND
Cesium-137	NA	NA	NA	ND	ND	ND	ND
Cobalt-60	NA	NA	NA	ND	ND	ND	ND
Lead-210	NA	NA	NA	ND	ND	ND	ND
Lead-212	NA	NA	NA	ND	ND	ND	ND
Lead-214	NA	NA	NA	ND	ND	ND	ND
Potassium-40	NA	NA	NA	ND	ND	ND	ND
Protactinium-231	NA	NA	NA	ND	ND	ND	ND
Protactinium-234	NA	NA	NA	ND	ND	ND	ND
Radium-223	NA	NA	NA	ND	ND	ND	ND
Radium-224	NA	NA	NA	ND	ND	ND	ND
Radium-226	NA	NA	NA	ND	ND	ND	ND
Uranium-235	NA	NA	NA	ND	ND	ND	ND
U-233/234	NA	NA	NA	ND	ND	ND	ND
U-235/236	NA	NA	NA	0.12	0.0005	ND	ND
U-238	NA	NA	NA	ND	ND	ND	ND

Sampling State	Samplerdic	ioteli Alectera Si successione
SP1	TSP1	230.95
SP4 (Background)	Handi Vol 2	83.84

NA - Screening criteria not available or does not apply

ND - nondetected