Book 6 of 13

Final Status Survey Final Report Phase V

Appendix A5 Survey Unit Release Record 9520-0005, Southwest Site Storage Area

December 2006

CYAPCO FINAL STATUS SURVEY RELEASE RECORD SOUTHWEST SITE STORAGE AREA SURVEY UNIT 9520-0005

Prepared By: JACK Micharten FSS Engineer Reviewed By: FSS Enginee Approved By: Clycle T. He Technical Support Manager

Date: 11/1>/0C

Date: 11/20/06 Date: 11/2-6/06

Revision 0

RELEASE RECORD

TABLE OF CONTENTS

1.	SURVEY UNIT DESCRIPTION	3
2.	CLASSIFICATION BASIS	3
3.	DATA QUALITY OBJECTIVES (DQO)	5
4.	SURVEY DESIGN	8
5.	SURVEY IMPLEMENTATION	11
6.	SURVEY RESULTS	12
7.	QUALITY CONTROL	16
8.	INVESTIGATIONS AND RESULTS	17
9.	REMEDIATION AND RESULTS	18
10.	CHANGES FROM THE FINAL STATUS SURVEY PLAN	18
11.	DATA QUALITY ASSESSMENT (DQA)	19
12.	ANOMALIES	19
13.	CONCLUSION	19
14.	ATTACHMENTS	20
14	.1 Attachment 1 – Figures (6 pages including cover)	
14	.2 Attachment 2 – Scan Results (8 pages including cover)	
14	.3 Attachment 3 – Laboratory Data (230 pages including cover)	
14	.4 Attachment 4 – DQA Results (13 pages including covers)	

TOTAL 277

RELEASE RECORD

1. SURVEY UNIT DESCRIPTION

Survey Unit 9520-0005 (Southwest Site Storage Area) is designated as Final Status Survey (FSS) Class 1 and consists of 1,887 m² (0.5 acres) of uninhabited open land located approximately 1,661 feet from the reference coordinate system benchmark used at Haddam Neck Plant (HNP) (see Attachment 1). The survey unit is bounded by Survey Unit 9520-0003. The survey unit is relatively level open space in the middle of the peninsula. The restoration of the peninsula for FSS has removed most of the surface interference in the survey unit.

The reference coordinates associated with this survey unit are E005 through E010 by S086 through S093 (refer to License Termination Plan (LTP) Section 5.4.4). The reference coordinates provide the maximum dimensions of a rectangle containing this survey unit. Some areas contained in this rectangle may not be part of this survey unit. The boundary of the survey unit was defined using a Global Positioning System (GPS) based on the Connecticut State Plane System North American Datum (NAD) 1927.

2. CLASSIFICATION BASIS

The survey unit was classified in accordance with Procedure RPM 5.1-10, "Survey Unit Classification."

The "Classification Basis Summary" conducted for Survey Unit 9520-0005 consisted of:

- a) A review of the 10CFR50.75 (g) (1) database,
- b) A review of the "Initial Characterization Report" and the "Historic Site Assessment Supplement,"
- c) Historic and current survey records review,
- d) Visual inspections and a "walkdown."

A review of the 10CFR50.75(g)(1) database report and historical files shows a documented history of the use of this survey unit (which was originally part of Survey Unit 9520-0003) as a radioactive materials storage area. Additionally, at least one (1) case of contamination to underlying soil has been recorded (refer to survey performed 3/23/1985). Examples of some of the major events are provided below.

a) Plant Incident Report (PIR) 80-37 reported the discovery of three (3) discrete sources of elevated activity on the Southeast Site Storage area in March 1980, along with other areas around the site. Two (2) of the discrete sources were identified within nearby Survey Unit 9520-0001. Based on a review of the 1980 survey maps, the likely location of the third discrete source, identified as 3-24-2, was in adjacent Survey Unit 9520-0002 based on a review of the documentation.

Revision 0

RELEASE RECORD

- b) Health Physics surveys performed in 1983 and 1985 document the discovery of radioactive material (strainers, bolts, wood pallets, sections of pipe, etc.) on the peninsula. The 1985 survey documents the discovery of contaminated dirt under a pallet.
- c) Condition Report (CR) 05-0314: Documents the discovery of excavation spoils, intended for backfill, above the radiological criteria for use as backfill. These spoils were likely located in Survey Units 9520-0003 and 9520-0004 based on review of the documentation. According to the CR closure documentation, the affected spoils were removed and packaged for disposal. Follow-up survey and sampling was performed and the results were below established action levels.

A review of the "Initial and Supplemental Characterization Reports" as well as the previous "Classification Basis Summaries" was performed. Survey Unit 9520-0005 was originally part of Survey Unit 9520-0003, which was initially designated as Class 2 during the development of the LTP. The source documents, the "Connecticut Yankee Haddam Neck Characterization Report" and "Initial Classification for Survey Areas at Connecticut Yankee", were incorporated by reference in LTP revision 0 (references 2-2 and 2-7 respectively). The second source document justified a Class 2 designation for those areas for which there was historical evidence of contamination above the Derived Concentration Guideline Levels (DCGLs - refer to Section 2 for definition and description of DCGL), but for which recent surveys had shown that decontamination efforts had occurred and that the radiological conditions were expected to be below the DCGLs. Additional justification for a Class 2 designation based on survey and sampling data was provided as another reference to the LTP by the "Haddam Neck Plant Historical Site Assessment Supplement".

In October of 2006, Co-60 was identified in soil in sufficient concentrations to warrant a Class 1 designation for a new Survey Unit, 9520-0005 within the original boundaries of 9520-0003. A small area of elevated activity was identified during scanning of Survey Unit 9520-0003. Scan levels following sampling were at ambient radiation levels which showed that the activity was contained within the sample. Further evaluation of the sample showed that the activity was not uniform throughout the sample. Scanning was performed in nearby areas; however, no other areas of elevated activity were identified. While the source of the elevated activity cannot be determined with certainty, the type of activity, that is a small discrete source of Co-60, is believed to be isolated to this location.

The characterization results for the original survey unit, 9520-0003, were used to determine the baseline radiological status of Survey Unit 9520-0005 since the new survey unit was within the boundaries sampled during characterization. Statistical quantities (mean, median and standard deviation)

Revision 0

RELEASE RECORD

Table 1 = Basic Statistical Quantities for C Characterization S		rom the 2006
	Cs-137	Co-60
Minimum Observed Concentration (pCi/g) :	7.39E-04	-9.79E-03
Maximum Observed Concentration (pCi/g) :	1.03E-01	1.41E-01
Mean (pCi/g):	6.63E-02	1.96E-02
Median (pCi/g):	6.86E-02	-2.93E-03
Standard Deviation (pCi/g):	3.74E-02	5.96E-02

from the 2006 characterization survey conducted under SSWP 06-07-006 are provided in Table 1.

The FSS Engineer performed a visual inspection and walk-down during September 2006 to assess the physical condition of the survey unit, evaluate access points and travel paths and identify potentially hazardous conditions.

This survey area is affected by existing groundwater (reference CY memo ISC 06-024) which will be a source of dose from residual radioactivity, as discussed in Section 3 under the Data Quality Objectives.

Based upon the results of radiological surveys performed over six years of restoration and the 2006 characterization survey, it was concluded that there was a probability for residual radioactivity in concentrations greater than the DCGLs, justifying a final survey unit classification of Class 1 (refer to Section 3).

3. DATA QUALITY OBJECTIVES (DQO)

FSS design and planning used the Data Quality Objective (DQO) process as described by the LTP, Procedure RPM 5.1-11, "*Preparation of Final Status Survey Plan*," and the "*Multi-Agency Radiation Survey and Site Investigation Manual*" (MARSSIM). A summary of the main features of the DQO process are provided herein.

The DQO process incorporated hypothesis testing and probabilistic sampling distributions to control decision errors during data analysis. Hypothesis testing is a process based on the scientific method that compares a baseline condition to an alternate condition. The baseline condition is technically known as the null hypothesis. Hypothesis testing rests on the premise that the null hypothesis is true and that sufficient evidence must be provided for rejection. In designing the survey plan, the underlying assumption, or null hypothesis was that residual activity in the survey unit exceeded the release criteria. Rejection of the null hypothesis would indicate that residual activity within the survey unit does not exceed the release criteria. Therefore, the survey unit does satisfy the primary objective of the FSS plan.

RELEASE RECORD

The primary objective of the FSS plan was to demonstrate that the level of residual radioactivity in Survey Unit 9520-0005 did not exceed the release criteria specified in the LTP and that the potential dose from residual radioactivity is As Low As Reasonably Achievable (ALARA).

A fundamental precursor to survey design is to establish a relationship between the release criteria and some measurable quantity. This is done through the development of DCGLs. The DCGLs represent average levels of radioactivity above background levels and are presented in terms of surface or mass activity concentrations. Chapter 6 of the LTP describes in detail the modeling used to develop the DCGLs for soil (called Base Case Soil DCGL), existing groundwater radioactivity and future groundwater radioactivity that will be contributed by building basements and footings.

The DCGLs presented in Chapter 6 of the LTP were developed for exposures from three (3) components, that is, residual radioactivity in soil, existing groundwater radioactivity, and future groundwater radioactivity from the burial of concrete foundations or footings from site buildings containing residual radioactivity. Equation 1 shows the mathematical relationship between the three (3) components and the total dose.

Equation 1

$H_{Total} = H_{Soil} + H_{ExistingGW} + H_{FutureGW}$

The total dose under the LTP criteria is twenty-five (25) mrem/yr TEDE from all three (3) components. The allowable total dose under the Connecticut Department of Environmental Protection (CTDEP) radiological remediation standard for CY is nineteen (19) mrem/yr TEDE. To satisfy both the LTP and CY CTDEP criteria, the dose from soil must be reduced when using the existing and future groundwater dose values discussed above.

This survey area is affected by existing groundwater (reference CY memo ISC 06-024). Therefore, the dose contribution from existing groundwater is bounded by two (2) mrem/yr TEDE.

This survey unit is not considered impacted by future groundwater radioactive contamination, as there are no buried concrete foundations or footings containing residual radioactive material within the groundwater saturated zone in the area (reference CY memo ISC 06-024). The dose contribution from future groundwater, the third dose component is, therefore, zero (0) mrem/yr TEDE.

Equation 2

19 mrem/yr_{Total} = 17 mrem/yr_{Soil} + 2 mrem/yr_{Existing GW}+ 0 mrem/yr_{FutureGW}

RELEASE RECORD

The allowable dose for soil in this survey unit is seventeen (17) mrem/yr TEDE as shown by Equation 2 above. The concentration of residual radioactivity resulting in seventeen (17) mrem/yr TEDE is designated as the Operational DCGL, and has been established for the radionuclides of concern as provided in Table 2.

	Table 2 – Radionuclide Specific Base Case Soil DCGL, Operational DCGLs and Required Minimum Detectable Concentrations			
Radionuclide	Base Case Soil	Operational DCGL		
H-3	4.12E+02	2.80E+02	1.65E+01	
C-14	5.66E+00	3.85E+00	2.26E-01	
Mn-54	1.74E+01	1.18E+01	6.96E-01	
Fe-55	2.74E+04	1.86E+04	1.10E+03	
Co-60	3.81E+00	2.59E+00	1.52E-01	
Ni-63	7.23E+02	4.92E+02	2.89E+01	
Sr-90	1.55E+00	1.05E+00	6.20E-02	
Nb-94	7.12E+00	4.84E+00	2.85E-01	
Tc-99	1.26E+01	8.57E+00	5.04E-01	
Ag-108m	7.14E+00	4.86E+00	2.86E-01	
Cs-134	4.67E+00	3.18E+00	1.87E-01	
Cs-137	7.91E+00	5.38E+00	3.16E-01	
Eu-152	1.01E+01	6.87E+00	4.04E-01	
Eu-154	9.29E+00	6.32E+00	3.72E-01	
Eu-155	3.92E+02	2.67E+02	1.57E+01	
Pu-238	2.96E+01	2.01E+01	1.18E+00	
Pu-239/240	2.67E+01	1.82E+01	1.07E+00	
Pu-241	8.70E+02	5.92E+02	3.48E+01	
Am-241 ⁽⁵⁾	2.58E+01	1.75E+01	1.03E+00	
Cm-243/244	2.90E+01	1.97E+01	1.16E+00	

(1) Bold indicates those radionuclides considered to be Hard-to-Detect (HTD)

(2) The Base Case Soil DCGLs for soil are specified by the LTP in Chapter 6 and are equivalent to 25 mrem/yr TEDE

(3) The Operational DCGL is equivalent to 17 mrem/yr TEDE

(4) The required MDC is equivalent to 1 mrem/yr TEDE

(5) Americium-241 can be analyzed by gamma and alpha spectroscopy and is considered to be Easy to Detect (ETD); the preferred result is the alpha spectroscopy's when both analyses are performed

Another important facet of the DQO process is to identify the radionuclides of concern and determine the concentration variability. Soil samples were collected in 2006 to establish the radiological condition of Survey Unit 9520-

Revision 0

RELEASE RECORD

0003 for FSS. The characterization results for Survey Unit 9520-0003 were used to determine the baseline radiological status of Survey Unit 9520-0005 since the new survey unit was within the boundaries sampled during characterization. Cs-137 and Co-60 are the only gamma emitting radionuclides reported in concentrations with the potential for exceeding the screening criteria. The characterization data were used for the survey design and are provided in Table 1.

Instrument DQOs included a verification of the ability of the survey instrument to detect the radiation(s) of interest relative to the DCGL. Survey instrument response checks were required prior to issue and after the instrument had been used. Control and accountability of survey instruments was required to assure the quality and prevent the loss of data.

As part of the DQOs applied to laboratory processes, analysis results were reported as actual calculated results. Results reported as less than Minimum Detectable Concentration (MDC) were not accepted for FSS. Sample report summaries included unique sample identification, analytical method, radionuclide, result, and uncertainty to two (2) standard deviations, laboratory data qualifiers, units, and the required and observed MDC.

4. SURVEY DESIGN

The level of effort associated with planning a survey is based on the complexity of the survey and nature of the hazards. Guidance for preparing FSS plans is provided in Procedure RPM 5.1-11, "*Preparation of Final Status Survey Plans*". The FSS plan uses an integrated sample design that combines scanning surveys and sampling which can be either random or biased.

The DQO process determined that Cs-137 and Co-60 would be the radionuclides of concern in Survey Unit 9520-0005 (refer to Section 3). Other radionuclides identified during this FSS would be evaluated to ensure adequate survey design.

Surrogate DCGLs were not required for this survey unit via screening under LTP Section 5.4.7.2, "Gross Activity DCGLs". Radionuclide screening or deselection is a process where an individual radionuclide or aggregates may be considered insignificant and eliminated from the FSS. The criteria for deselection are concentrations less than 5% for individual radionuclides and less than 10% for aggregates.

The Elevated Measurement Comparison (EMC) did apply to this survey unit since it is a Class 1 area and discrete, elevated areas of contamination were expected.

The Sign Test was selected as the non-parametric statistical test. The use of the Sign Test did not require the selection or use of a background reference area, which simplified survey design and implementation. This approach was conservative since it included background Cs-137 as part of the sample set.

RELEASE RECORD

The number of soil samples for FSS was determined in accordance with Procedure RPM 5.1-12, "Determination of the Number of Surface Samples for Final Status Survey." The Lower Bound of the Gray Region (LBGR) was set in accordance with Procedure RPM 5.1-11 to 0.95 to maintain the relative shift (Δ/σ) in the range of 1 and 3. The resulting Adjusted Relative Shift was 2.0. A Prospective Power Curve was generated using COMPASS, a software package developed under the sponsorship of the United States Nuclear Regulatory Commission (USNRC) for implementation of the MARSSIM in support of the decommissioning license termination rule (10 CFR 20, Subpart E). The result of the COMPASS computer run showed adequate power for the survey design. The survey design specified fifteen (15) surface soil samples for non-parametric statistical testing and two (2) samples at biased locations.

The grid pattern and locations of the soil samples were determined using Visual Sample Plan (VSP) in accordance with Procedure RPM 5.1-14, "*Identifying, and Marking Surface Sample Locations for Final Status Survey.*" Visual Sample Plan was created by Pacific Northwest National Laboratory (PNNL) for the United States Department of Energy. A systematic triangular grid pattern with a random starting point was selected for sample design, which is appropriate for a Class 1 area.

Judgmental sampling was included as a feature of this survey design to account for any anomalies potentially identified in the field.

Sample locations were identified using AutoCAD-LT, a commercially available plotting software package with coordinates consistent with the Connecticut State Plane System. These coordinates were integrated with a GPS to locate sample locations in the field. Sample Measurement Locations for the design are listed with the GPS coordinates in Table 3.

Table 3 - Sample Measurement Locations with Associated GPS Coordinates					
Designation	Northing	Easting			
9520-0005-001F	235733.05	669559.32			
9520-0005-002F	235733.05	669598.71			
9520-0005-003F	235733.05	669638.11			
9520-0005-004F	235698.93	669539.62			
9520-0005-005F	235698.93	669579.01			
9520-0005-006F	235698.93	669618.41			
9520-0005-007F	235664.81	669559.32			
9520-0005-008F	235664.81	669598.71			
9520-0005-009F	235664.81	669638.11			

Table 3-Sample Measuren	nent Locations with Asso	ciated GPS Coordinates
Designation	Northing	Easting
9520-0005-010F	235630.69	669539.62
9520-0005-011F	235630.69	669579.01
9520-0005-012F	235630.69	669618.41
9520-0005-013F	235596.57	669519.92
9520-0005-014F	235596.57	669559.32
9520-0005-015F	235596.57	669598.71
9520-0005-016F	235754.08	669579.67
9520-0005-017F	235738.16	669613.53

RELEASE RECORD

Procedure RPM 5.1-11 specifies that 5% of the samples are required to be selected for HTD analysis. Two (2) soil samples, or about 10% of the number of samples that would be used for non-parametric statistical testing were randomly selected for HTD radionuclide analysis using the Microsoft Excel "RANDBETWEEN" function. Each sample was sent off-site for a full suite analysis of the HTD radionuclides specified in the LTP, Table 2-12, "*Radionuclides Potentially Present at Haddam Neck Plant*" and as provided in Table 2.

The implementation of quality control measures as referenced by Procedure RPM 5.1-24, "*Split Sample Assessment for Final Status Survey*," included the collection of two (2) soil samples for "split sample" analysis by the off-site laboratory. These locations were selected randomly using the Microsoft Excel "RANDBETWEEN" function. The number of quality control soil samples was about 10% of fifteen (15) samples.

The LTP specifies a required scanning coverage of 100% for outdoor Class 1 areas. Almost 40% of this survey unit was scanned during the FSS of Survey Unit 9520-0003. These areas were not required to be scanned during the FSS of Survey Unit 9520-0005. The total surface area to be scanned was approximately 100% of the survey unit.

For this Class 1 survey unit, the "Investigation Level" for area scanning and soil sample measurement results are those levels specified in LTP, Table 5-8. Table 4 provides a synopsis of the survey design.

Table 4—Synopsis of the Survey Design				
Feature	Design Criteria	Basis		
Survey Unit Land Area	1,887 m ²	Based on AutoCAD-LT		
	. 17	Type 1 and Type 2 errors were 0.05, sigma was 0.024 pCi/g,		
Number of Measurements	(15 systematic grid) (2 biased)	the LBGR was adjusted to 0.95 to maintain Relative Shift in the range of 1 and 3		
Grid Spacing	12.1 m	Based on triangular grid		
Operational DCGL	5.38 ρCi/g Cs-137 2.59 pCi/g Co-60	Administratively set to achieve 17 mrem/yr TEDE ⁽¹⁾		
Soil Investigation Level	5.38 ρCi/g Cs-137 2.59 pCi/g Co-60	The Operational DCGL conservatively meets the LTP criteria for a Class 1 survey unit		
Scan Survey Area Coverage	Approximately 100% of the area	The LTP requires 100% area coverage for Class 1 survey units		
Scan Investigation Level	An instrument response greater than 2,700 cpm ⁽²⁾ above background	Based upon a Minimum Detectable Count Rate (MDCR) of 1,195 cpm and a corresponding DCGL _{EMC} of 13.3 pCi/g for Cs-137 and a corresponding DCGL _{EMC} of 1.78 pCi/g for Co-60 ⁽³⁾		

RELEASE RECORD

(1) The allowable dose for soil in this survey unit is 17 mrem/yr TEDE as the bounding dose from existing and future groundwater has been established based on field data (reference CY memo ISC 06-024)

(2) The FSS plan had a slightly higher value due to a typographical error; however, a review of the scan data shows that investigations were performed at a much lower threshold value (3) The radionuclide fraction is 0.77, the Area Factor is 2.54, and the instrument conversion factor is 228 cpm/pCi/g for Cs-137; the radionuclide fraction is 0.23, the Area Factor is 1.30, and the instrument conversion factor is 873 cpm/pCi/g for Co-60

5. SURVEY IMPLEMENTATION

 e^{it}

FSS field activities were conducted under Work Plan and Inspection Record (WP&IR) 2006-0038. The WP&IR package included a detailed FSS plan, job safety analysis, job planning checklist and related procedures for reference. Daily briefings were conducted to discuss the expectations for job performance and the safety aspects of the survey. The "Daily Survey Journal" was used to document field activities and other information pertaining to the FSS.

Almost 40% of this survey unit was scanned during the FSS of Survey Unit 9520-0003. These areas were not required to be scanned during the FSS of Survey Unit 9520-0005. Three (3) scan areas were established that constituted the remaining surface area of Survey Unit 9520-0005. Grid lines, one meter wide, were painted on the ground of the scan area. A background survey was performed around the survey unit and it was determined that, using an Eberline

RELEASE RECORD

E-600 with a SPA-3 sodium iodide detector, background ranged from 5,860 counts per minute (cpm) up to 9,330 cpm.

The scan areas were established and scanned for elevated readings (see Attachment 2 for all scan results). Scanning was performed with an Eberline E-600 using a SPA-3 sodium iodide detector. The E-600 was operated in the ratemeter mode and used with audio response. The probe was positioned as close to the ground as possible and was moved at a scan speed of about 0.5 meters per second. Approximately 60% of the survey unit was scanned.

Measurement locations were identified in North American Datum (NAD) 1927 coordinates using GPS coordinates; sample locations were identified and marked with a surveyor's flag or paint for identification. At each sample location, a one (1) meter radius around the sample flag or paint mark was scanned for elevated radiation levels.

Thirty-two (32) surface soil samples were collected and packaged in accordance with Haddam Neck Plant (HNP) Procedure RPM 5.1-3, "*Collection of Sample Media for Final Status Survey*" and FSS design. Samples were controlled, transported, stored, and transferred to the off-site laboratory using Chain-of-Custody (COC) protocol in accordance with Procedure RPM 5.1-5, "*Chain of Custody for Final Status Survey Samples*."

Two (2) samples (9520-0005-012F and 9520-0005-013F) were randomly selected for HTD radionuclide analysis.

The implementation of survey specific quality control measures included the collection of two (2) samples (9520-0005-001F and 9520-0005-013F) for "split sample" analysis.

6. SURVEY RESULTS

All field survey activities were conducted between September 25, 2006 and October 23, 2006.

The sample locations identified in the FSS plan were scanned over approximately a one (1) meter radius for elevated radiation levels. Table 5 provides an overview of the scan results for sample measurement locations. Scan results are provided in Attachment 2.

Table 5	- Scan Results for S	ample Measureme	nt Locations
Sample Measurement Location	Highest Logged Reading (kcpm)	Action Level ⁽¹⁾ (kcpm)	> Action Level ²⁽²⁾
1	8.32	8.17	YES
2	8.08	7.77	YES
3	6.85	6.94	NO
4	6.51	7.59	NO

Revision 0

Sample Measurement Location	Highest Logged Reading (kcpm)	Action Leyel ⁽¹⁾ (kcpm):	> Action Level ⁽²⁾
5	8.01	8.97	NO
.6	6.53	7.35	NO
7	7.88	8.49	NO
8	6.15	7.81	NO
9	6.31	7.34	NO
10	6.88	7.24	NO
11	6.11	6.71	NO
12	5.87	6.44	NO
13	8.34	8.18	YES
14	6.54	6.93	NO
15	7.34	6.89	YES
16	6.46	7.51	NO
17	5.80	6.76	NO
18 ⁽³⁾	8.98	6.89	YES

RELEASE RECORD

(1) The action level is based on a measurement above ambient background in accordance with the FSS plan

(2) The FSS plan requires movement of the sample measurement location to the area within the 1 meter radius yielding the response above the action level

(3) Sample location 18 was added as a biased sample during the FSS by direction of the FSS Engineer; the sample location was the area of localized remediation

The scan areas, that comprised approximately 100% of the total surface area for the survey unit, were scanned for elevated radiation levels. The areas were scanned in accordance with the FSS plan on September 26, 2006 through October 23, 2006. Almost 40% of this survey unit was scanned during the FSS of Survey Unit 9520-0003. These areas were not required to be scanned during the FSS of Survey Unit 9520-0005. Several elevated measurement locations were identified during scanning. Soil samples were collected from all the elevated areas. Table 6 provides an overview of the scan area survey. Scan results are provided in Attachment 2.

RELEASE RECORD

	Table 6 - Scan Area Results				
Scan Area	Highest Logged Reading (kcpm)	Action Level ⁽¹⁾ (kcpm).	Elevated Reading Identification ⁽²⁾	Investigation Sample	
<u>i na prive se en aj la de s</u>			9520-05-ER-01- 01-1	9520-0005-021F	
			9520-05-ER-01- 01-2	9520-0005-022F	
			9520-05-ER-01- 01-3	9520-0005-023F	
			9520-05-ER-01- 03-1	9520-0005-024F	
			9520-05-ER-01- 04-1	9520-0005-025F	
			9520-05-ER-01- 04-2	9520-0005 -0 26F	
. I	9.73	7.12	9520-05-ER-01- 04-3	9520-0005-027F	
			9520-05-ER-01- 04-4	9520-0005 -028 F	
			9520-05-ER-01- 04-5	9520-0005-029F	
				9520-05-ER-01- 05-1	9520-0005-030F
			99520-05-ER-01- 06-1	9520-0005-031F	
				9520-05-ER-01- 06-2	9520-0005-032F
			9520-05-ER-01- 06-3	9520-0005-033F	
2	7.90	9.17	None – no elevated areas identified	None	
3	8.96	10.1	None – no elevated areas identified	None	
4	6.71	8.41	None – no elevated areas identified	None	
5	9.17	7.12	9520-05-ER-05- 36-1	9520-0005-019F	

(1) The action level is based on a measurement above ambient background

(2) ER is an abbreviation associated with the barcodes used in the field where ER stands for Elevated Reading

RELEASE RECORD

The off-site laboratory employed for the radiological analyses of samples was General Engineering Laboratories, LLC. The laboratory analyzed the fifteen (15) samples collected for non-parametric statistical testing, the associated field splits, the three (3) biased samples, and the fourteen (14) confirmatory samples using gamma spectroscopy. Gamma spectroscopy analysis was performed to the required MDCs. Gamma spectroscopy results identified some radionuclides meeting the accepted criteria for detection (i.e., a result greater than two standard deviations uncertainty). However, Cs-137 and Co-60 were the only radionuclides reported in concentrations exceeding the de-selection criteria.

Cs-137 was identified in fourteen (14) of the fifteen (15) samples collected for non-parametric statistical testing. Cs-137 was the primary radionuclide confirming the DQOs. The mean of the gamma spectroscopic analysis results for the sample population indicated that Cs-137 was present at levels lower than the concentrations of Cs-137 found in soil at off-site locations within the vicinity of the HNP as presented in the Health Physics TSD BCY-HP-0063. Co-60 was identified in four (4) of the fifteen (15) samples collected for nonparametric statistical testing.

A summary of the fifteen (15) samples collected for non-parametric statistical testing results is provided in Table 7.

Table 7 - Summary of Soil Sample Results for the Statistical Sample Population					
Sample Number	Cs-137 pCi/g	Co-60 pCi/g	Fraction of the Operational DCGL ⁽¹⁾		
9520-0005-001F	4.10E-02	4.13E-02	0.024		
9520-0005-002F	4.59E-02	-1.37E-04	0.009		
9520-0005-003F	1.35E-01	1.28E-04	0.025		
9520-0005-004F	6.47E-02	1.34E-03	0.013		
9520-0005-005F	1.93E-01	4.83E-01	0.222		
9520-0005-006F	9.03E-02	5.91E-02	0.040		
9520-0005-007F	4.91E-02	2.31E-03	0.010		
9520-0005-008F	2.93E-02	-1.20E-02	0.005		
9520-0005-009F	6.79E-02	1.40E-02	0.018		
9520-0005-010F	1.27E-01	2.14E-02	0.032		
9520-0005-011F	6.07E-02	7.15E-02	0.039		
9520-0005-012F	1.52E-01	1.57E-02	0.034		

Revision 0

Table,7 - Summ	ary of Soil Sample 1 Popula		stical Sample
Sample Number	Cs-137 pCi/g	Go-60 pCi/g	Fraction of the Operational DCGL ⁽¹⁾
9520-0005-013F	-5.14E-03	-9.84E-05	0.000
9520-0005-014F	1.16E-01	8.07E-04	0.022
9520-0005-015F	4.54E-02	9.99E-04	0.009

RELEASE RECORD

(1) The Operational DCGL from Table 2 is 5.38 pCi/g for Cs-137 and 2.59 pCi/g for Co-60 used in conjunction with the unity rule to achieve 17 mrem/yr TEDE

The off-site laboratory also processed two (2) samples for HTD analysis as required by the sample plan. The requested analyses included alpha spectroscopy, gas proportional counting, and liquid scintillation depending on the radionuclide and the measurement method. All analyses met the required MDC.

As previously stated in Section 4 of this report, the criteria for de-selection of a radionuclide is a concentration that is less than 5% of the Operational DCGL for individual radionuclides and less than 10% of the Operational DCGLs for aggregates. Sr-90 was the only HTD, which by analysis, met the criteria for detection (i.e., a result greater than two standard deviations uncertainty). The highest result for Sr-90 was at 3% of the Operational DCGL.

	Table 8 - Hard-to-Detect Sample Resu	
Sample	Sr-90 (ρ€i/g)	Fraction of Operational DCGL
9520-0005-012F	1.49E-02	0.014
9520-0005-013F	2.73E-02	0.026

(1) The Operational DCGL from Table 2 is 1.05 ρ Ci/g for Sr-90 to achieve 17 mrem/yr TEDE

Three (3) biased samples were collected at locations selected by FSS Supervision based on professional judgment and observation. Gamma spectroscopy analysis was performed by the off-site laboratory to the required MDC.

Tabl	e 9 - Judgmental or	Biased Sample Resu	lts
	Cs-137	Co-60	Fraction of the
Sample Number	pCi/g	ρCi/g	Operational DCGL ⁽¹⁾
9520-0005-016F	1.62E-01	2.28E-02	0.039
9520-0005-017F	5.27E-01	9.89E-02	0.136
9520-0005-018F	2.39E-01	1.93E-01	0.119

Revision 0

RELEASE RECORD

Tab	e 9Judgmental or E	Biased Sample Resu	lts
Sample Number	Cs-137	Co-60	Fraction of the Operational
	p Ci/g	pCv/g	DCGL ⁽¹⁾

(1) The Operational DCGL from Table 2 is 5.38 pCi/g for Cs-137 and 2.59 pCi/g for Co-60 used in conjunction with the unity rule to achieve 17 mrem/yr TEDE

7. QUALITY CONTROL

The off-site laboratory processed the split samples and performed gamma spectroscopy analysis. Ten percent (10%) of the samples were selected for analysis, which exceeds the 5% minimum required by the LTP. The data were evaluated using USNRC acceptance criteria specified in Inspection Procedure 84750 as detailed in HNP Procedure RPM 5.1-24, "Split Sample Assessment for Final Status Survey". Cs-137 was not detected in sufficient quantities in the field split results at location 9520-0005-001 to evaluate in accordance with procedure. Evaluation using the reported results for K-40 resulted in acceptable agreement between the field split results at this location. Cs-137 was not detected in either of the field split results at location 9520-0005-013.

Evaluation using the reported results for K-40 resulted in acceptable agreement between the field split results at this location. The sample analysis vendor, General Engineering Laboratories, LLC, maintains quality control and quality assurance plans as part of normal operation. Refer to Attachment 4 for data and data quality analysis results.

INVESTIGATIONS AND RESULTS

8.

Fourteen confirmatory samples were collected from scan area 1 and scan area 5 at locations exhibiting elevated scan readings. The samples are denoted as shown in Table 6, with the sample results shown in Table 10 below.

Table 10 - Confirmatory Sample Results										
Sample Number ^{(1):}	Gs-137 pCi/g	Co=60 pCi/g	Fraction of the Operational DCGL ⁽²⁾							
9520-0005-019F	1.28E-01	1.43E-01	0.029							
9520-0005-021F	8.68E-02	9.80E-03	0.020							
9520-0005-022F	7.52E-02	-2.09E-03	0.014							
9520-0005-023F	1.94E-01	1.18E-02	0.041							
9520-0005-024F	3.93E-02	6.72E-03	0.010							
9520-0005-025F	5.68E-02	-1.40E-03	0.011							
9520-0005-026F	6.54E-02	-8.00E-03	0.012							
9520-0005-027F	7.72E-02	2.56E-03	0.015							

T	able 10-Confirmat	ory Sample Results	
Sample Number ⁽¹⁾	Cs-137 pCi/g	-Co-60 ρCi/g	Fraction of the Operational DCGL ⁽²⁾
9520-0005-028F	5.96E-02	5.03E-03	0.013
9520-0005-029F	8.04E-02	1.03E-02	0.019
9520-0005-030F	4.58E-02	3.48E-03	0.010
9520-0005-031F	4.61E-02	-1.86E-03	0.009
9520-0005-032F	4.61E-02	-1.22E-02	0.009
9520-0005-033F	4.57E-02	-8.48E-03	0.008

RELEASE RECORD

(1) Sample location 9520-0005-020F was not used; sample locations 9520-0005-021F through 9520-0005-034F were reassigned to Survey Unit 9520-0005 from Survey Unit 9520-0003

(2) The Operational DCGL from Table 2 is 5.38 pCi/g for Cs-137 and 2.59 pCi/g for Co-60 used in conjunction with the unity rule to achieve 17 mrem/yr TEDE

9. **REMEDIATION AND RESULTS**

In October of 2006, Co-60 was identified in soil in sufficient concentrations to warrant a Class 1 designation for a new Survey Unit, 9520-0005 within the original boundaries of 9520-0003. A small area of elevated activity was identified during scanning of Survey Unit 9520-0003. Additional scan surveys were performed around the sample location out to an approximate radial distance of 10 meters east. No elevated areas were identified indicating a localized area which was effectively remediated by sample collection.

Further evaluation of the sample showed that the activity was not uniform throughout the sample. While the source of the elevated activity cannot be determined with certainty, the type of activity, that is a small discrete source of Co-60, is believed to be isolated to this location. Health Physics TSD BCY-HP-0078, "ALARA Evaluation of Soil Remediation in Support of Final Status Survey," has determined that remediation beyond that required to meet the release criteria is unnecessary and that the remaining residual radioactivity in soil was ALARA.

10. CHANGES FROM THE FINAL STATUS SURVEY PLAN

No changes were made to the FSS plan.

RELEASE RECORD

11. DATA QUALITY ASSESSMENT (DQA)

The DQO sample design and data were reviewed in accordance with Procedure RPM 5.1-23, "Data Quality Assessment," for completeness and consistency. The sampling design had adequate power as indicated by the Retrospective Power Curve. The Sign Test was performed on the data and compared to the original assumptions of the DQOs. The evaluation of the Sign Test results demonstrates that the survey unit passes the unrestricted release criteria, thus, the null hypothesis is rejected.

Documentation was complete and legible. Surveys and sample collection were consistent with the DQOs and were sufficient to ensure that the survey unit was properly designated as Class 1.

The preliminary data review consisted of calculating basic statistical quantities (e.g., mean, median, standard deviation). The mean and median values are well below the Operational DCGL. Also, the retrospective power curve shows that a sufficient number of samples were collected to achieve the desired power. Therefore, the survey unit meets the unrestricted release criteria with adequate power as required by the DQOs.

For Cs-137, the range of the data, about four (4) standard deviations, was not a particularly large variation considering that the levels were essentially at existing environmental levels where such variation is to be expected. The difference between the mean and median was about 30% of the standard deviation which indicates some skewness in the data. The data was represented graphically through posting plots, a frequency plot, and a quantile plot. The frequency plot indicates positive skewness as confirmed by the calculated skew of 0.60.

Co-60, although included in the FSS plan for compliance purposes, was identified in only four (4) of the fifteen (15) samples collected for non-parametric statistical testing. Data assessment and graphical representation of Co-60 was not considered useful given the limited number of data points to represent the distribution.

All data, assessments, and graphical representations are provided in Attachment 4.

12. ANOMALIES

No anomalies were noted.

13. CONCLUSION

Survey Unit 9520-0005 has met the final DQOs of the FSS plan. The ALARA criteria for soils as specified in Chapter 4 of the LTP were achieved. Elevated Measurement Comparison was not required.

Revision 0

RELEASE RECORD

Cs-137 and Co-60 were used for statistical testing to determine the adequacy of the survey unit for FSS.

The sample data passed the Sign Test. The null hypothesis was rejected. The Retrospective Power Curve generated using COMPASS shows adequate power was achieved. The survey unit is properly designated as Class 1.

The dose contribution from soil is less than 1 mrem/yr TEDE based on the average concentration of the samples used for non-parametric statistical sampling.

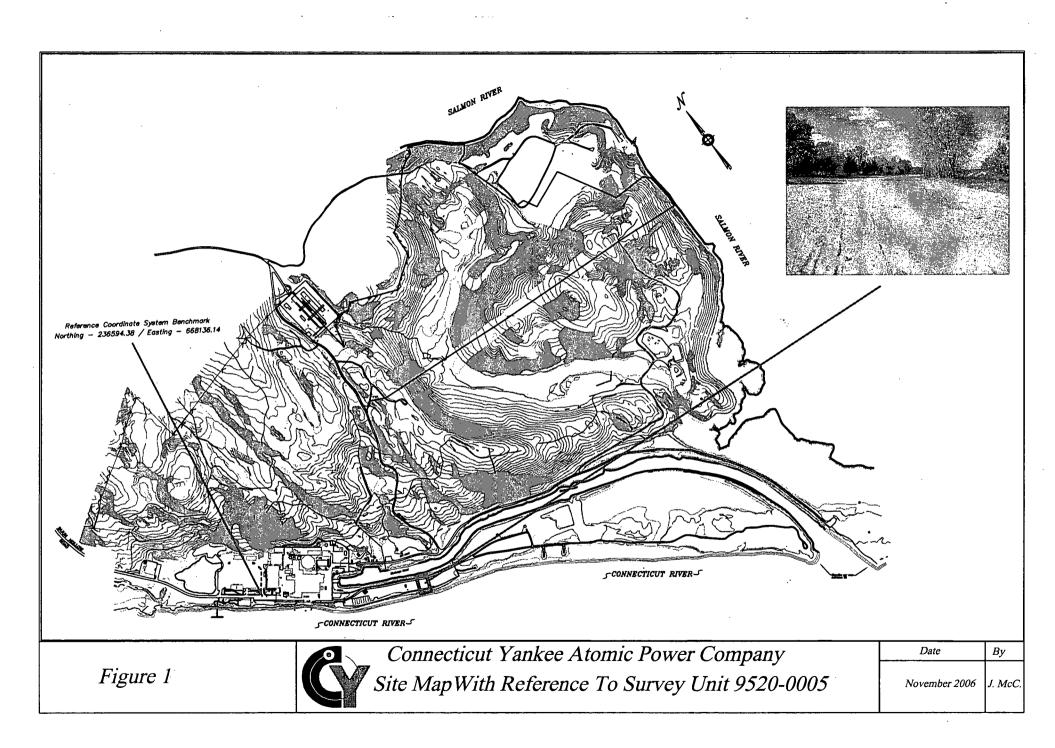
This survey area is affected by existing groundwater (reference CY memo ISC 06-024); therefore the dose contribution from existing groundwater is bounded at two (2) mrem/yr TEDE.

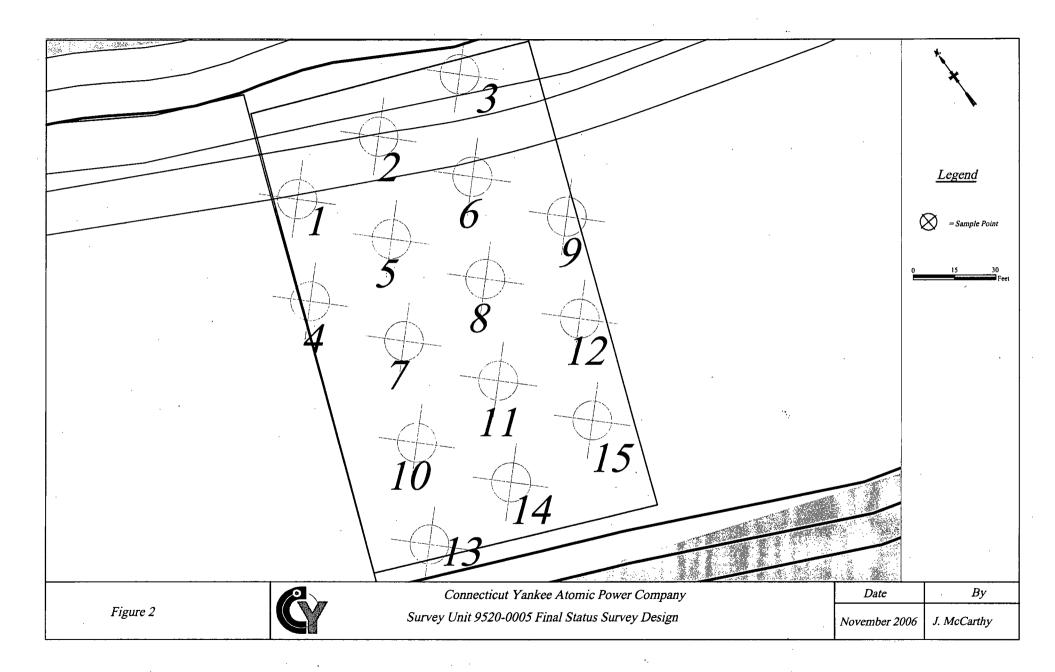
This survey unit is not considered impacted by future groundwater radioactive contamination, as there are no underground structures, systems or components containing residual radioactive material within the groundwater saturated zone in the area (reference CY memo ISC 06-024); therefore, the dose contribution from future groundwater is zero (0) mrem/yr TEDE.

The average total dose from residual radioactivity in this survey unit, including exposures from the three (3) components as described in Section 3, that is, residual radioactivity in soil, existing groundwater radioactivity, and future groundwater radioactivity from the burial of concrete foundations or footings from site buildings containing residual radioactivity, will not exceed 3 mrem/yr TEDE. Therefore, Survey Unit 9520-0005 is acceptable for unrestricted release.

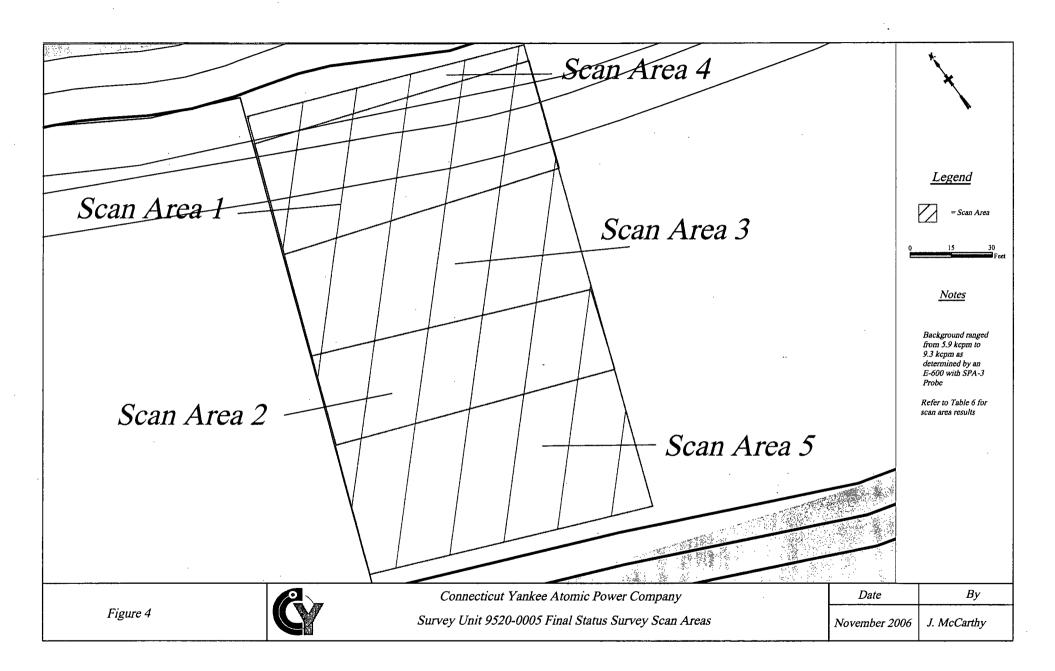
14. ATTACHMENTS

14.1 Attachment 1 – Figures

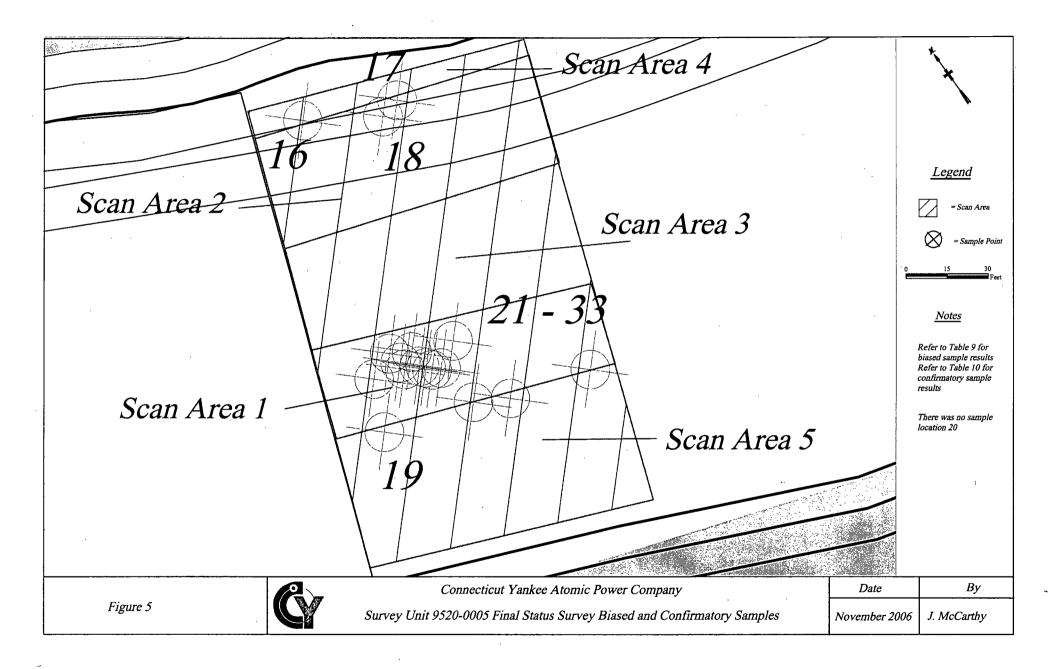

14.2 Attachment 2 – Scan Results


14.3 Attachment 3 – Laboratory Results

14.4 Attachment 4 – DQA Results


RELEASE RECORD

ATTACHMENT 1 (FIGURES)



0.14 9.05 0.09 Legend Q.O 0.0715 0.19 Notes 0.03 Reported 0\06 Concentrations in pCi/g 0.15 0.05 0.06 0.05 0.13 0.12 0.00 By Connecticut Yankee Atomic Power Company Date Figure 3 Survey Unit 9520-0005 Final Status Survey Cs-137 Posting Plot November 2006 J. McCarthy

•

RELEASE RECORD

ATTACHMENT 2 (SCAN RESULTS)

Survey Release Record Sample Location Scan Results Survey Unit 9520-0005

Sample Name	Background <u>(cpm)</u>	Action Level (cpm)	Results <u>(cpm)</u>	Above <u>AL</u>	Log Date	Log Time	<u>E600 S/N</u>	<u>Probe S/N</u>
9520-05-SL-00-01-0	6.98E+03	8.17E+03	8.32E+03	+	10/16/2006	9:47:00	1105	1012
9520-05-SL-00-02-0	6.61E+03	7.77E+03	8.08E+03	+	10/16/2006	10:32:00	1105	1012
9520-05-SL-00-03-0	5.85E+03	6.94E+03	6.85E+03		10/16/2006	10:42:00	1105	1012
9520-05-SL-00-04-0	6.44E+03	7.59E+03	6.51E+03		10/16/2006	10:53:00	1105	1012
9520-05-SL-00-05-0	7.72E+03	8.97E+03	8.01E+03		10/16/2006	11:01:00	1105	1012
9520-05-SL-00-06-0	6.22E+03	7.35E+03	6.53E+03		10/16/2006	11:21:00	1105	1012
9520-05-SL-00-07-0	7.27E+03	8.49E+03	7.88E+03		10/16/2006	13:40:00	1105	1012
9520-05-SL-00-08-0	6.65E+03	7.81E+03	6.15E+03		10/16/2006	13:52:00	1105	1012
9520-05-SL-00-09-0	6.21E+03	7.34E+03	6.31E+03		10/16/2006	14:09:00	1105	1012
9520-05-SL-00-10-0	6.12E+03	7.24E+03	6.88E+03		10/16/2006	14:20:00	1105	1012
9520-05-SL-00-11-0	5.64E+03	6.71E+03	6.11E+03		10/16/2006	14:31:00	1 105	1012
9520-05-SL-00-12-0	5.39E+03	6.44E+03	5.87E+03		10/16/2006	15:07:00	1105	1012
9520-05-SL-00-13-0	6.99E+03	8.18E+03	8.34E+03	+ '	10/16/2006	14:51:00	1105	1012
9520-05-SL-00-14-0	5.84E+03	6.93E+03	6.54E+03		10/17/2006	7:59:00	1112	1013
9520-05-SL-00-15-0	5.80E+03	6.89E+03	7.34E+03	+	10/17/2006	8:14:00	1112	1013
9520-05-SL-00-16-0	6.37E+03	7.51E+03	6.46E+03		10/17/2006	8:36:00	1112	1013
9520-05-SL-00-17-0	5.68E+03	6.76E+03	5.80E+03		10/17/2006	10:04:00	1112	1013
9520-05-SL-00-18-0	5.80E+03	6.89E+03	8.98E+03	+ ·	10/17/2006	10:23:00	1112	1013

Errata

Page 1 of 2

The following change is made to scan nomenclature to acknowledge the reassignment of scan locations from Survey Unit 9520-0003 to Survey Unit 9520-0005:

Original Barcode Designation	Revised Barcode Designation
9520-03-SC-01-01-0	9520-05-SC-01-01-0
9520-03-ER-01-01-1	9520-05-ER-01-01-1
9520-03-ER-01-01-2	9520-05-ER-01-01-2
9520-03-ER-01-01-3	9520-05-ER-01-01-3
9520-03-SC-01-02-0	9520-05-SC-01-02-0
9520-03-SC-01-03-0	9520-05-SC-01-03-0
9520-03-ER-01-03-1	9520-05-ER-01-03-1
9520-03-SC-01-04-0	9520-05-SC-01-04-0
9520-03-ER-01-04-1	9520-05-ER-01-04-1
9520-03-ER-01-04-2	9520-05-ER-01-04-2
9520-03-ER-01-04-3	9520-05-ER-01-04-3
9520-03-ER-01-04-4	9520-05-ER-01-04-4
9520-03-ER-01-04-5	9520-05-ER-01-04-5
9520-03-SC-01-05-0	9520-05-SC-01-05-0
9520-03-ER-01-05-1	9520-05-ER-01-05-1
9520-03-SC-01-06-0	9520-05-SC-01-06-0
9520-03-ER-01-06-1	9520-05-ER-01-06-1
9520-03-ER-01-06-2	9520-05-ER-01-06-2
9520-03-ER-01-06-3	9520-05-ER-01-06-3
9520-03-SC-01-07-0	9520-05-SC-01-07-0
9520-03-SC-01-08-0	9520-05-SC-01-08-0
9520-03-SC-01-09-0	9520-05-SC-01-09-0
9520-03-SC-02-01-0	9520-05-SC-02-01-0
9520-03-SC-02-02-0	9520-05-SC-02-02-0
9520-03-SC-02-03-0	9520-05-SC-02-03-0
9520-03-SC-02-04-0	9520-05-SC-02-04-0
9520-03-SC-02-05-0	9520-05-SC-02-05-0
9520-03-SC-02-06-0	9520-05-SC-02-06-0
9520-03-SC-02-07-0	9520-05-SC-02-07-0

Errata

Page 2 of 2

9520-03-SC-02-08-0	9520-05-SC-02-08-0
9520-03-SC-02-09-0	9520-05-SC-02-09-0
9520-03-SC-02-10-0	9520-05-SC-02-10-0
9520-03-SC-02-11-0	9520-05-SC-02-11-0
9520-03-SC-02-12-0	9520-05-SC-02-12-0
9520-03-SC-02-13-0	9520-05-SC-02-13-0
9520-03-SC-02-14-0	9520-05-SC-02-14-0
9520-03-SC-02-15-0	9520-05-SC-02-15-0
9520-03-SC-02-16-0	9520-05-SC-02-16-0
9520-03-SC-02-17-0	9520-05-SC-02-17-0
9520-03-SC-02-18-0	9520-05-SC-02-18-0
9520-03-SC-02-19-0	9520-05-SC-02-19-0
9520-03-SC-02-20-0	• 9520-05-SC-02-20-0
9520-03-SC-02-21-0	9520-05-SC-02-21-0
9520-03-SC-02-22-0	9520-05-SC-02-22-0

Completed by: Jack McCarthy 3/3/07

.

9520-0005 SCAN AREA 1

Sample Name	Background <u>(cpm)</u>	Action Level (cpm)	Results (cpm)	Above <u>AL</u>	Log Date	Log Time	<u>E600 S/N</u>	Probe S/N
9520-01-SC-01-01-0	5.86E+03	6.95E+03	5.98E+03		9/26/2006	10:16:00	1114	1014
9520-01-ER-01-01-1	5.86E+03	6.95E+03	7.60E+03	+	9/26/2006	13:17:00	1114	1014
9520-01-ER-01-01-2	5.86E+03	6.95E+03	8.02E+03	+	9/26/2006	13:06:00	1114	1014
9520-01-ER-01-01-3	5.86E+03	6.95E+03	9.44E+03	+	9/26/2006	13:06:00	1114	1014
9520-01-SC-01-02-0	6.11E+03	7.23E+03	6.26E+03		9/26/2006	10:22:00	1114	1014
9520-01-SC-01-03-0	6.37E+03	7.51E+03	5.66E+03		9/26/2006	10:32:00	1114	1014
9520-01-ER-01-03-1	6.37E+03	7.51E+03	9.09E+03	+,	9/26/2006	13:07:00	1114	1014
9520-01-SC-01-04-0	6.01E+03	7.12E+03	6.48E+03		9/26/2006	10:40:00	1114	1014
9520-01-ER-01-04-1	6.01E+03	7.12E+03	9.73E+03	+	9/26/2006	13:08:00	1114	1014
9520-01-ER-01-04-2	6.01E+03	7.12E+03	8.59E+03	+	9/26/2006	13:09:00	1114	1014
9520-01-ER-01-04-3	6.01E+03	7.12E+03	9.28E+03	+	9/26/2006	13:10:00	1114	1014
9520-01-ER-01-04-4	6.01E+03	7.12E+03	8.54E+03	+	9/26/2006	13:11:00	1114	1014
9520-01-ER-01-04-5	6.01E+03	7.12E+03	8.55E+03	+	9/26/2006	13:11:00	1114	1014
9520-01-SC-01-05-0	7.04E+03	8.24E+03	6.38E+03		9/26/2006	10:48:00	1114	1014
9520-01-ER-01-05-1	7.04E+03	8.24E+03	9.07E+03	+	9/26/2006	13:12:00	1114	1014
9520-01-SC-01-06-0	6.03E+03	7.14E+03	6.57E+03		9/26/2006	11:04:00	1114	1014
9520-01-ER-01-06-1	6.03E+03	7.14E+03	7.54E+03	+	9/26/2006	13:15:00	1114	1014
9520-01-ER-01-06-2	6.03E+03	7.14E+03	8.68E+03	+	9/26/2006	13:16:00	1114	1014
9520-01-ER-01-06-3	6.03E+03	7.14E+03	8.17E+03	+	9/26/2006	13:16:00	1114	1014
9520-01-SC-01-07-0	7.41E+03	8.64E+03	5.42E+03		9/26/2006	11:11:00	1114	1014
9520-01-SC-01-08-0	7.58E+03	8.82E+03	6.97E+03		9/26/2006	11:16:00	1114	1014
9520-01-SC-01-09-0	7.89E+03	9.16E+03	6.35E+03		9/26/2006	11:20:00	1114	1014

9520-0005 SCAN A	REA 2							
Sample Name	Background (cpm)	Action Level (cpm)	Results <u>(cpm)</u>	Above <u>AL</u>	Log Date	<u>Log Time</u>	<u>E600 S/N</u>	<u>Probe S/N</u>
9520-02-SC-02-01	-0 8.10E+03	9.39E+03	7.27E+03		9/27/2006	11:20:00	1114	1014
9520-02-SC-02-02	-0 7.51E+03	8.75E+03	7.20E+03		9/27/2006	11:15:00	1114	1014
9520-02-SC-02-03	-0 7.85E+03	9.12E+03	7.68E+03		9/27/2006	11:07:00	1114	1014

AL - Action Level

9520-02-SC-02-04-0	8.26E+03	9.56E+03	7.27E+03	9/27/2006	10:58:00	1114	1014
9520-02-SC-02-05-0	7.90E+03	9.17E+03	7.72E+03	9/27/2006	10:51:00	1114	1014
9520-02-SC-02-06-0	8.39E+03	9.70E+03	7.62E+03	9/27/2006	10:26:00	1114	1014
9520-02-SC-02-07-0	8.02E+03	9.30E+03	7.87E+03	9/27/2006	10:21:00	1114	1014
9520-02-SC-02-08-0	7.90E+03	9.17E+03	7.90E+03	9/27/2006	10:16:00	1114	1014
9520-02-SC-02-09-0	8.70E+03	1.00E+04	7.10E+03	9/27/2006	10:10:00	1114	1014
9520-02-SC-02-10-0	9.33E+03	1.07E+04	7.13E+03	9/27/2006	10:03:00	1114	1014
9520-02-SC-02-11-0	9.05E+03	1.04E+04	7.36E+03	9/27/2006	9:57:00	1114	1014
9520-02-SC-02-12-0	5.95E+03	7.05E+03	5.81E+03	9/27/2006	13:35:00	1114	1014
9520-02-SC-02-13-0	6.60E+03	7.76E+03	6.98E+03	9/27/2006	13:43:00	1114	1014
9520-02-SC-02-14-0	6.91E+03	8.10E+03	6.89E+03	9/27/2006	13:51:00	1114	1014
9520-02-SC-02-15-0	7.57E+03	8.81E+03	7.15E+03	9/27/2006	13:58:00	1114	1014
9520-02-SC-02-16-0	6.86E+03	8.04E+03	6.81E+03	9/27/2006	14:03:00	1114	1014
9520-02-SC-02-17-0	7.43E+03	8.66E+03	7.21E+03	9/27/2006	14:09:00	1114	1014
9520-02-SC-02-18-0	6.77E+03	7.94E+03	6.38E+03	9/27/2006	14:17:00	1114	1014
9520-02-SC-02-19-0	6.52E+03	7.67E+03	7.05E+03	9/27/2006	14:22:00	1114	1014
9520-02-SC-02-20-0	6.55E+03	7.71E+03	7.10E+03	9/27/2006	14:28:00	1114	1014
9520-02-SC-02-21-0	6.55E+03	7.71E+03	6.60E+03	9/27/2006	14:35:00	1114	1014
9520-02-SC-02-22-0	6.35E+03	7.49E+03	6.71E+03	9/27/2006	14:40:00	1114	1014

9520-0005 SCAN AREA 3

Sample Name	Background (cpm)	Action Level (cpm)	Results <u>(cpm)</u>	Above <u>AL</u>	Log Date	<u>Log Time</u>	<u>E600 S/N</u>	<u>Probe S/N</u>
9520-05-SC-03-01-0	8.61E+03	9.94E+03	7.97E+03		10/19/2006	9:24:00	1105	101Ż
9520-05-SC-03-02-0	8.04E+03	9.32E+03	8.67E+03		10/19/2006	9:26:00	1105	1012
9520-05-SC-03-03-0	8.86E+03	1.02E+04	8.36E+03		10/19/2006	9:30:00	1105	1012
9520-05-SC-03-04-0	8.22E+03	9.51E+03	8.53E+03		10/19/2006	9:33:00	1105	1012
9520-05-SC-03-05-0	8.37E+03	9.68E+03	8.00E+03		10/19/2006	9:35:00	1105	1012
9520-05-SC-03-06-0	8.30E+03	9.60E+03	8.52E+03		10/19/2006	9:38:00	1105	1012
9520-05-SC-03-07-0	8.76E+03	1.01E+04	8.96E+03		10/19/2006	9:40:00	1105	1012

9520-05-SC-03-08-0	8.39E+03	9.70E+03	8.62E+03	10/19/2006	9:42:00	1105	1012
9520-05-SC-03-09-0	9.06E+03	1.04E+04	7.80E+03	10/19/2006	9:46:00	1105	1012
9520-05-SC-03-10-0	8.02E+03	9.30E+03	8.38E+03	10/19/2006	9:48:00	1105	1012
9520-05-SC-03-11-0	7.39E+03	8.62E+03	7.98E+03	10/19/2006	9:51:00	1105	1012
9520-05-SC-03-12-0	8.03E+03	9.31E+03	8.91E+03	10/19/2006	9:53:00	1105	1012
9520-05-SC-03-13-0	6.92E+03	8.11E+03	7.22E+03	10/19/2006	10:01:00	1105	1012
9520-05-SC-03-14-0	7.65E+03	8.90E+03	8.11E+03	10/19/2006	10:02:00	1105	1012
9520-05-SC-03-15-0	7.68E+03	8.93E+03	7.51E+03	10/19/2006	10:05:00	1105	1012
9520-05-SC-03-16-0	6.74E+03	7.91E+03	7.65E+03	10/19/2006	10:09:00	1105	1012
9520-05-SC-03-17-0	7.71E+03	8.96E+03	7.69E+03	10/19/2006	10:11:00	1105	1012
9520-05-SC-03-18-0	7.60E+03	8.84E+03	7.78E+03	10/19/2006	10:13:00	1105	1012
9520-05-SC-03-19-0	7.55E+03	8.79E+03	7.12E+03	10/19/2006	10:16:00	1105	1012
9520-05-SC-03-20-0	7.68E+03	8.93E+03	7.62E+03	10/19/2006	10:18:00	1105	1012
9520-05-SC-03-21-0	7.04E+03	8.24E+03	6.94E+03	10/19/2006	10:22:00	1105	1012
9520-05-SC-03-22-0	7.14E+03	8.35E+03	6.39E+03	10/19/2006	10:25:00	1105	1012
9520-05-SC-03-23-0	6.58E+03	7.74E+03	7.14E+03	10/19/2006	10:27:00	1105	1012
9520-05-SC-03-24-0	7.35E+03	8.57E+03	6.44E+03	10/19/2006	10:29:00	1105	1012
9520-05-SC-03-25-0	6.72E+03	7.89E+03	6.47E+03	10/19/2006	10:32:00	1105	1012
9520-05-SC-03-26-0	6.76E+03	7.93E+03	5.96E+03	10/19/2006	10:34:00	1105	1012
9520-05-SC-03-27-0	6.34E+03	7.48E+03	6.15E+03	10/19/2006	10:37:00	1105	1012
9520-05-SC-03-28-0	6.73E+03	7.90E+03	5.82E+03	10/19/2006	10:39:00	1105	1012
9520-05-SC-03 - 29-0	6.10E+03	7.22E+03	6.72E+03	10/19/2006	10:43:00	1105	1012
9520-05-SC-03-30-0	6.11E+03	7.23E+03	5.88E+03	10/19/2006	10:45:00	1105	1012
9520-05-SC-03-31-0	6.48E+03	7.63E+03	6.37E+03	10/19/2006	10:47:00	1105	1012
9520-05-SC-03-32-0	6.15E+03	7.27E+03	6.57E+03	10/19/2006	10:49:00	1105	1012
9520-05-SC-03-33-0	6.40E+03	7.54E+03	6.42E+03	10/19/2006	10:52:00	1105	1012
1							

9520-0005 SCAN AREA 4

Sample Name	Background <u>(cpm)</u>	Action Level (cpm)	Results <u>(cpm)</u>	Above <u>AL</u>	Log Date	<u>Loq Time</u>	<u>E600 S/N</u>	<u>Probe S/N</u>
9520-05-SC-04-34-0	7.21E+03	8.42E+03	6.23E+03		10/19/2006	11:12:00	1105	1012
9520-05-SC-04-35-0	7.20E+03	8.41E+03	6.71E+03		10/19/2006	11:02:00	1105	1012

9520-0005 SCAN AREA 5

Sample Name	Background <u>(cpm)</u>	Action Level (cpm)	Results (cpm)	Above <u>AL</u>	Log Date	<u>Log Time</u>	<u>E600 S/N</u>	<u>Probe S/N</u>
9520-05-SC-05-36-0	5.98E+03	7.08E+03	6.40E+03		10/23/2006	9:38:00	1117	1001
9520-05-ER-05-36-1	5.98E+03	7.12E+03	9.17E+03	+	10/23/2006	10:27:00	1117	1001
9520-05-SC-05-37-0	6.87E+03	8.05E+03	6.44E+03		10/23/2006	9:41:00	1117	1001
9520-05-SC-05-38-0	6.39E+03	7.53E+03	6.66E+03		10/23/2006	9:43:00	1117	1001
9520-05-SC-05-39-0	6.56E+03	7.72E+03	6.43E+03		10/23/2006	9:47:00	1117	1001
9520-05-SC-05-40-0	5.89E+03	6.99E+03	6.29E+03		10/23/2006	9:50:00	1117	1001
9520-05-SC-05-41-0	6.28E+03	7.41E+03	6.70E+03		10/23/2006	9:53:00	1117	1001
9520-05-SC-05-42-0	6.01E+03	7.12E+03	6.39E+03		10/23/2006	9:56:00	1117	1001

RELEASE RECORD

ATTACHMENT 3 (LABORATORY DATA)

General Narrative

General Narrative for Connecticut Yankee Atomic Power Co. Work Order: 174484 SDG: MSR#06-1381

October 24, 2006

Laboratory Identification:

General Engineering Laboratories, LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary

Sample receipt

The samples arrived at General Engineering Laboratories, LLC, Charleston, South Carolina on October 19, 2006 for analysis. Shipping container temperatures were checked, documented, and within specifications. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage.

Sample Identification The laboratory received the following samples:

Laboratory	Sample
Identification	Description
174484001	9520-0005-001F
174484002	9520-0005-001FS
174484003	9520-0005-002F
174484004	9520-0005-003F
174484005	9520-0005-004F
174484006	9520-0005-005F
174484007	9520-0005-006F
174484008	9520-0005-007F
174484009	9520-0005-008F
174484010	9520-0005-009F
174484011	9520-0005-010F
174484012	9520-0005-014F
174484013	9520-0005-015F
174484014	9520-0005-016F
174484015	9520-0005-017F
174484016	9520-0005-018F
174484017	9520-0005-011F
174484018	9520-0005-012F
174484019	9520-0005-013F
174484020	9520-0005-013FS

Items of Note

There are no items to note.

GENERAL ENGINEERING LABORATORIES, LLC a Member of THE GEL GROUP, INC. P.O. BOX 30712 Charleston, SC 29417 • 2040 Savage Road (29407) Phone (843) 556-8171 • Fax 43) 766-1178 www.gel.com

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Analytical Request

Seventeen soil samples were analyzed for FSSGAM. Three soil samples were analyzed for FSSALL.

Data Package

The enclosed data package contains the following sections: General Narrative, Chain of Custody and Supporting Documentation, Data Review Qualifier Definitions, and data from the following fractions: Radiochemistry.

I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

Cheryl Jones ^U Project Manager

GENERAL ENGINEERING LABORATORIES, LLC a Member of THE GEL GROUP, INC. P.O. BOX 30712 Charleston, SC 29417 • 2040 Savage Road (29407) Phone (843) 556-8171 • Fax 343) 766-1178 www.gel.com

State	Certification
Alaska	UST-062
Arizona	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California	01151CA
Colorado	GenEngLabs
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA	WG-15J
Florida/NELAP	E87156
Georgia	E87156 (FL/NELAP)
Hawaii	N/A
Idaho	N/A
Illinois	200029
Indiana	C-SC-01
Kansas	E-10332
Kentucky	90129
Louisiana	03046
Maryland	270
Massachusetts	M-SC012
Michigan	9903
Nevada	SC12
New Jersey	SC002
New Mexico	FL NELAP E87156
New York	11501
North Carolina	233
North Carolina Drinking W	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania	68-00485
South Carolina	10120001/10585001/10120002
Tennessee	02934
Texas	TX213-2006A
Texas NELAP	T104704235-06-TX
U.S. Dept. of Agriculture	S-52597
US Army Corps of Engineer	N/A
Utah	8037697376 GEL
Vermont	VT87156
Virginia	00151
Washington	C1641

List of current GEL Certifications as of 24 October 2006

c.

4

Chain of Custody and Supporting Documentation

Health Physics Procedure

.

.

...

ρ

Connecticut Y 362 Injun F	ankee A Hollow Road, 1 860-26	East Hampton			ıy			Ch	ain	of Cu	stod	y Form	No. 2006-00633
Project Name: Haddam N	eck Decom	missioning				1	An	alyses l	Reque	sted		Lab Use Only	
Contact Name & Phone: Jack McCarthy 860-267-	-3924	X.									2	Comments:	
Analytical Lab (Name, City, State) General Engineering Laboratories 2040 Savage Road. Charleston SC. 29407 843 556 8171. Attn. Cheryl Jones					FSSGAM	SSALL							
Priority: 🗌 30 D. 🗌 14 D). 🖾 7 D. [] 3 D.			Container							1744	1x4
Sample Designation	Date	Time	Media Code	Sample Type Code	Size- &Type Code							Comment, Preservation	Lab Sample ID
9520-0005-001F	10/16/06	0950	TS	G	BP	X						·····	
9520-0005-001FS	10/16/06	0950	TS	G	BP	X						<u> </u>	
9520-0005-002F	10/16/06	1037	TS	G	BP	X							
9520-0005-003F	10/16/06	1045	TS	G	BP	X						······································	
9520-0005-004F	10/16/06	1057	TS	G	BP	X							
9520-0005-005F	10/16/06	1108	TS	G	BP	X							
9520-0005-006F	10/16/06	1124	TS	G	BP	X						· .	
9520-0005-007F	10/16/06	1343	TS	G	BP	X							
9520-0005-008F	10/16/06	1355	TS	G	BP	X							
9520-0005-009F	10/16/06	1420	TS	G	BP	X	·						
9520-0005-010F\$ (10/18/06	10/16/06	1425	TS	G	BP	X							
Image: Section of the								Internal Container Temp.:Deg. Custody Sealed? Y D N D					
1) Relinquished By 3) Relinquished By	l	Date/Tim <i>10/18/04</i> Date/Tim	1400	2) Resei 4) Recei	anse		101	9 0	۵	/Time 9:15 /Time		☐ Other 7995 2187 1630	Custody Seal Intact? Y I N D
	··· _ • · · · · · · · · · · · · · · · ·	191										Bill of Lading #	

٠.

•

.•

Health Physics Procedure

.

~

;	Connecticut Y 362 Injun	Ankee At Hollow Road, E 860-26	East Hampton			y		<u></u>	Ch	ain o	of Cust	ody Form	No. 2006-00636		
	Project Name: Haddam N			<u> </u>	1			Ar	alyses	Reques	sted	Lab Use Only	n tean an an an tha tha tha an		
	Contact Name & Phone: Jack McCarthy 860-267											Comments:			
	Analytical Lab (Name, City, State) General Engineering Laboratories 2040 Savage Road. Charleston SC. 29407 843 556 8171. Attn. Cheryl Jones		General Engineering Laboratories 2040 Savage Road. Charleston SC. 29407		eneral Engineering Laboratories 40 Savage Road. Charleston SC. 29407				FSSGAM	FSSALL					
	Priority: 30 D. 14 D. 7 D. 3 D.					Container	F	Ц Ц			-				
	Sample Designation	Date	Time	Media Code	Sample Type Code	Size- &Type Code						Comment, Preservation	Lab Sample ID		
	9520-0005-014F	10/17/06	0757	TS	G	BP	X								
Z	9520-0005-015F	10/17/06	0813	TS	G	BP	X								
	9520-0005-016F	10/17/06	0833	TS	G	BP	X								
	9520-0005-017F	10/17/06	1002	TS	G	BP	X								
	9520-0005-018F	10/17/06	1021	TS	G	BP	X								
				<u> </u>			ļ						an an ann an Arrainn an Arrainn An Arrainn an Arrainn an Arrainn		
			· · · · ·												
				<u> </u>]							
	NOTES: PO #: 002332	MSR #:	06-1381	SSW	P#NA [🛛 LTP Q	A [] Rad	waste (QA (Non Q	A Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp.:Deg. C Custody Sealed? Y B N D		
	1) Relinquished By 3) Relinquished By	e <i>1402</i> e	2) Recei 4) Recei	ause		1	10/1	9/06	Time Time	Other <u>7995 2187 1441</u> Bill of Lading #	Custody Seal Intact? Y 🗍 N 🗆				

×.

Health Physics Procedure

. .

 \mathcal{A}

GPP-GGGR-R5104-003-Attachment B-CY-001 Major

· · · · · · · · · · · · · · · · · · ·	•.								*	•		信意到了。	
Connecticut 362 Injur	Yankee At hollow Road, F 860-26	East Hampton			ıy			Ch	ain o	of Cus	stod	y Form	No. 2006-00634
Project Name: Haddam 1	Neck Decomr	nissioning]				An	alyses	Reques	ted		Lab Use Only	
Contact Name & Phone: Jack McCarthy 860-26	7-3924											Comments:	
Analytical Lab (Name, City, State) General Engineering Laboratories 2040 Savage Road. Charleston SC. 29407 843 556 8171. Attn. Cheryl Jones						SSGAM	SSALL						
Priority: 🗌 30 D. 🗍 14	D. 🛛 7 D. 🗌] 3 D.			Container	Ľ.							
Sample Designation	Date	Time	Media Code	Sample Type Code	Size- &Type Code							Comment, Preservation	Lab Sample ID
9520-0005-011F	10/16/06	1434	TS	G	BP	X							
9520-0005-012F	10/16/06	1511	TS	G	BP		X						n seann an the seannaire A de graeger seanna an the seannaire
9520-0005-013F	10/16/06	1455	TS	G	BP		X	1				· · · · · · · · · · · · · · · · · · ·	
9520-0005-013FS	10/16/06	1455	TS	G	BP		X						
													de la companya de la companya Regeleradore de la companya de la co
· · · · · · · · · · · · · · · · · · ·												· · · · ·	
·						<u> </u>	ļ	ļ	ļ			·	were of a constant of White Automatic Automatic Constants
NOTES: PO #: 002332	SSW	P# NA	🛛 LTP Q	<u>י</u> A [] Rad	waste ()A [] Non	QA	Samples Shipped Via: Fed Ex UPS Hand	Internal Container. Temp.:Deg. C Custody Sealed? Y ⊟- N □		
1) Relinquished By Date/Time Date/Time 10/18/06 1460				Jame 10/10/106 7.15 -					Other	Custody Seal Intact? Y			
3) Relinquished By	<u></u>	Date/Tim	e	4) Kece						'Time'		Bill of Lading #	

	Connecticut Yankee Statement of Work for Analytical Lab Services CY-ISC-SOW-00	1
•	Figure 1. Sample Check-in List	-
•	Date/Time Received: 9:15 10/9/06	
	SDG#:MSR # 06-1381	
· ·	Work Order Number: 17484	
·	Shipping Container ID: <u>1995 2187 1630</u> Chain of Custody # 2006 - 00633	••••
	1. Custody Seals on shipping container intact? Yes X No []	
	2. Custody Seals dated and signed? Yes [X] No []	
	3. Chain-of-Custody record present? Yes [X] No []	
	4. Cooler temperature 23.	
•	5. Vermiculite/packing materials is: Wet [] Dry [X	.
	6. Number of samples in shipping container:	
	7. Sample holding times exceeded? Yes [] No [X	
	8. Samples have:	
	Lanpis have. <u>Lanpe</u> hazard labels	
		· · · ·
•	custody sealsappropriate sample labels	
	9. Samples are:	· · ·
•	brokenhave air bubbles	
Į		
-	10. Were any anomalies identified in sample receipt? Yes [] No []	
·	11. Description of anomalies (include sample numbers):	
-		
	Sample Custodian/Laboratory	
	Colorborates	
	On By	

1.

	necticut Yankee ment of Work for Analytical Lab Services CY-ISC-SOW-001
• •	Figure 1. Sample Check-in List
Date	Time Received: 101 19 106 . 9:45
SDG	#:MSR # 06-1381
Worl	c Order Number: [74484
Ship	ping Container ID: 1995 2 87 164 Chain of Custody # 2006 00634
1.	Custody Seals on shipping container intact? Yes [N No []
2.	Custody Seals dated and signed? Yes [X] No []
3.	Chain-of-Custody record present? Yes [V No []
4.	Cooler temperature 22
5.	Vermiculite/packing materials is: Wet [] Dry
6.	Number of samples in shipping container:9
7.	Sample holding times exceeded? Yes [] No (]
	custody sealsappropriate sample labels
9.	Samples are:
	in good conditionleaking
	brokenhave air bubbles
Ľ	
10.	Were any anomalies identified in sample receipt? Yes [] No []
11.	Description of anomalies (include sample numbers):/
•.	Custodian/Laboratory: Date: 10/19/06
Teleph	oned to:OnBy
	그는 것 같은 것 같
• •	

Data Review Qualifier Definitions

11

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL</p>
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit .
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

GENERAL ENGINEERING LABORATORIES, LLC a Member of THE GEL GROUP, INC. P.O. BOX 30712 Charleston, SC 29417 • 2040 Sevage Road (29407) Phone (843) 556-8171 • Fa

RADIOLOGICAL ANALYSIS

Radiochemistry Case Narrative Connecticut Yankee Atomic Power Co. (YANK) Work Order 174484

Method/Analysis Information

Product:	Alphaspec Am241, Cm, Solid ALL FSS
Analytical Method:	DOE EML HASL-300, Am-05-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	581362
Prep Batch Number:	581196
Dry Soil Prep GL-RAD-A-021 Batch Number:	581177

Sample ID	Client ID
174484018	9520-0005-012F
174484019	9520-0005-013F
174484020	9520-0005-013FS
1201212423	Method Blank (MB)
1201212424	174484018(9520-0005-012F) Sample Duplicate (DUP)
1201212425	174484018(9520-0005-012F) Matrix Spike (MS)
1201212426	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484018 (9520-0005-012F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Alphaspec Pu, Solid-ALL FSS
Analytical Method:	DOE EML HASL-300, Pu-11-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	581363
Prep Batch Number:	581196
Dry Soil Prep GL-RAD-A-021 Batch Number:	581177

Sample ID	Client ID
174484018	9520-0005-012F
174484019	9520-0005-013F
174484020	9520-0005-013FS
1201212427	Method Blank (MB)
1201212428	174484018(9520-0005-012F) Sample Duplicate (DUP)
1201212429	174484018(9520-0005-012F) Matrix Spike (MS)
1201212430	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (OC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484018 (9520-0005-012F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Pu241, Solid-ALL FSS
Analytical Method:	DOE EML HASL-300, Pu-11-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	581364
Prep Batch Number:	581196
Dry Soil Prep GL-RAD-A-021 Batch Number:	581177

Sample ID Client ID 174484018 9520-0005-012F 174484019 9520-0005-013F 174484020 9520-0005-013FS 1201212431 Method Blank (MB) 1201212432 174484018(9520-0005-012F) Sample Duplicate (DUP) 1201212433 174484018(9520-0005-012F) Matrix Spike (MS) 1201212434 Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-035 REV# 8.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

<u>Ouality Control (OC) Information:</u>

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484018 (9520-0005-012F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

18

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Gamma,Solid-FSS GAM & ALL FSS 226 Ingrowth Waived
Analytical Method:	EMIL HASL 300, 4.5.2.3
Prep Method:	Dry Soil Prep
Analytical Batch Number:	581676
Prep Batch Number:	581177

Sample ID	Client ID
174484001	9520-0005-001F
174484002	9520-0005-001FS
174484003	9520-0005-002F
174484004	9520-0005-003F
174484005	9520-0005-004F
174484006	9520-0005-005F
174484007	9520-0005-006F
174484008	9520-0005-007F
174484009	9520-0005-008F
. 174484010	9520-0005-009F
174484011	9520-0005-010F
174484012	9520-0005-014F
174484013	9520-0005-015F
174484014	9520-0005-016F
174484015	9520-0005-017F
174484016	9520-0005-018F
174484017	9520-0005-011F
174484018	9520-0005-012F
174484019	9520-0005-013F
174484020	9520-0005-013FS
1201213160	Method Blank (MB)
1201213161	174484001(9520-0005-001F) Sample Duplicate (DUP)
1201213162	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 13.

<u>Calibration Information:</u>

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484001 (9520-0005-001F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Sample 174484011 (9520-0005-010F) was recounted due to high MDA.

₽,

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to interference.	Europium-155	174484007
			174484008
UI	Data rejected due to low abundance.	Cesium-134	174484003
I			174484004
,			174484006
			174484007
			174484008
	· · ·		174484012
			174484013
			174484016
			174484018

1201213161

Method/Analysis Information

Product:	GFPC, Sr90, solid-ALL FSS
Analytical Method:	EPA 905.0 Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	581340
Prep Batch Number:	581196
Dry Soil Prep GL-RAD-A-021 Batch Number:	581177

Sample ID	Client ID
174484018	9520-0005-012F
174484019	9520-0005-013F
174484020	9520-0005-013FS
1201212369	Method Blank (MB)
1201212370	174484018(9520-0005-012F) Sample Duplicate (DUP)
1201212371	174484018(9520-0005-012F) Matrix Spike (MS)
1201212372	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-004 REV# 10.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484018 (9520-0005-012F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Oualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:

Liquid Scint Tc99, Solid-ALL FSS

Analytical Method: DOE EML HASL-300, Tc-02-RC Modified

Analytical Batch Number: 581330

Sample ID Client ID 174484018 9520-0005-012F 174484019 9520-0005-013F 9520-0005-013FS 174484020 1201212324 Method Blank (MB) 1201212325 174484018(9520-0005-012F) Sample Duplicate (DUP) 174484018(9520-0005-012F) Matrix Spike (MS) 1201212326 Laboratory Control² Sample (LCS) 1201212327

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-005 REV# 13.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

<u>Quality Control (QC) Information:</u>

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484018 (9520-0005-012F).

OC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Fe55, Solid-ALL FSS
Analytical Method:	DOE RESL Fe-1, Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	581333
Prep Batch Number:	581196
Dry Soil Prep GL-RAD-A-021 Batch Number:	581177

Sample ID	Client ID
174484018	9520-0005-012F
174484019	9520-0005-013F
174484020	9520-0005-013FS
1201212328	Method Blank (MB)
1201212329	174484019(9520-0005-013F) Sample Duplicate (DUP)
1201212330	174484019(9520-0005-013F) Matrix Spike (MS)
1201212331	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-040 REV# 3.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484019 (9520-0005-013F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Ni63, Solid-ALL FSS
Analytical Method:	DOE RESL Ni-1, Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	581334
Prep Batch Number:	581196
Dry Soil Prep GL-RAD-A-021 Batch Number:	581177

Sample ID	Client ID
174484018	9520-0005-012F
174484019	9520-0005-013F
174484020	9520-0005-013FS
1201212336	Method Blank (MB)
1201212337	174484020(9520-0005-013FS) Sample Duplicate (DUP)
1201212338	174484020(9520-0005-013FS) Matrix Spike (MS)
1201212339	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-022 REV# 8.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484020 (9520-0005-013FS).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	LSC, Tritium Dist, Solid-HTD2,ALL FSS
Analytical Method:	EPA 906.0 Modified

Analytical Batch Number: 581335

Sample ID	Client ID
174484018	9520-0005-012F
174484019	9520-0005-013F
174484020	9520-0005-013FS
1201212345	Method Blank (MB)
1201212346	174484018(9520-0005-012F) Sample Duplicate (DUP)
1201212347	174484018(9520-0005-012F) Matrix Spike (MS)
1201212348	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-002 REV# 13.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (OC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484018 (9520-0005-012F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Sample 174484020 (9520-0005-013FS) was recounted due to high MDA.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. The following NCR was generated for this SDG: NCR 375389 was generated due to Container scanning event for custody missed. 1. Samples 174484018, 174484019, and 174484020 were scanned into the batch prior to analysis. The event was not saved due to a network error. Custody of the samples was maintained at all times. 1. Reporting results.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint C14, Solid All,FSS
Analytical Method:	EPA EERF C-01 Modified
Analytical Batch Number:	581337

Sample ID **Client ID** 174484018 9520-0005-012F 174484019 9520-0005-013F 174484020 9520-0005-013FS 1201212351 Method Blank (MB) 1201212352 174484019(9520-0005-013F) Sample Duplicate (DUP) 1201212353 174484019(9520-0005-013F) Matrix Spike (MS) 1201212354 Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-003 REV# 8.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174484019 (9520-0005-013F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

<u>Certification Statement</u>

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

10/27/06

The following data validator verified the information presented in this case narrative:

amuto Mil

Reviewer/Date:__

General Engineering Laboratories Form GEL-NCR Rev. 06/05

COMPANY - WIDE NONCONFORMANCE REPORT			
Mo.Day Yr. 24-OCT-06	Division: Radiochemistry	Quality Criteria: Specifications	Type: Process
Instrument Type: LSC	Test / Method: EPA 906.0 Modified	Matrix Type: Solid	Client Code: YANK
Batch ID: 581335	Sample Numbers: See Below		
Potentially affected work order(s)(SDG): 174484(MSR#06-1381) Application Issues: Container scanning event for custody missed			
Specification and Requirements Nonconformance Description:		NRG Disposition:	
1. Samples 174484018, 174484019, and 174484020 were scanned into the batch prior to analysis. The event was not saved due to a network error. Custody of the samples was maintained at all times.		1. Reporting results.	· ·
			· .
		· .	
			• .

.

Originator's Name:

John Parker 24-OCT-06

Data Validator/Group Leader:

Lesley Anderson 25-OCT-06

Quality Review:

Director:

Page 1

SAMPLE DATA SUMMARY

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

YANK001 Connecticut Yankee Atomic Power Co.

Client SDG: MSR#06-1381 GEL Work Order: 174484

The Qualifiers in this report are defined as follows:

* A quality control analyte recovery is outside of specified acceptance criteria

- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification

ND The analyte concentration is not detected above the detection limit.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure. Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones.

MM

Reviewed by

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Connecticut Yankee Atomic Power 362 Injun Hollow Rd Address : East Hampton, Connecticut 06424 Report Date: October 27, 2006 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 9520-0005-001F Project: Client ID: Vol. Recv.: YANK01204 Client Sample ID: Sample ID: 174484001 YANK001 Matrix: ΤS Collect Date: 16-OCT-06 19-OCT-06 Receive Date: Collector: Client Moisture: 6.1% Parameter Qualifier Result LC Uncertainty TPU MDA Units **DF** Analyst Date Time Batch Mtd **Rad Gamma Spec Analysis** Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 0.834 +/-0.1720.0559 +/-0.1720.123 pCi/g MJH1 10/25/06 1734 581676 1 +/--0.0281 . pCi/g Americium-241 0.0271 +/~0.0281 0.056 U -0.0109 Bismuth-212 0.439 +/-0.196 +/-0.196 0.298 pCi/g 0.138 Bismuth-214 0.521 +/-0.0929 0.0313 +/-0.0929 0.0674 pCi/g Cesium-134 U 0.0453 +/-0.03570.0252 +/-0.0357 0.0537 pCi/g Cesium-137 U 0.041 +/-0.0286 0.0224 +/-0.0286 0.0476 pCi/g Cobalt-60 υ 0.0413 +/--0.027 0.0223 +/-0.027 0.0489 pCi/g Europium-152 U 0.0149 +/-0.0506 0.0477 +/-0.0506 0.100 pCi/g Europium-154 . pCi/g U -0.00379 +/-0.0737 0.0547 +/-0.0737 0.121 Europium-155 U 0.0341 +/-0.0557 0.046 +/-0.0557 0.0952 pCi/g Lead-212 +/-0.0636 0.0268 +/--0.0636 0.0559 pCi/g 0.751 Lead-214 0.535 +/-0.0812 0.0323 +/-0.0812 0.0682 pCi/g Manganese-54 0.0393 U 0.0193 +/-0.0215 0.0182 +/-0.0215 pCi/g Niobium-94 0.0348 U -0.0146+/-0.0199 0.0161 +/--0.0199 pCi/g Potassium-40 12.4 +/-0.978 0.154 +/--0.978 0.350 pCi/g Radium-226 0.521 +/--0.0929 0.0313 +/-0.0929 0.0674 pCi/g Silver-108m U -0.0131 +/-0.0181 0.0156 +/-0.0181 0.0332 pCi/g Thallium-208 0.267 +/--0.0418 0.0205 +/-0.0418 0.0435 pCi/g The following Prep Methods were performed Method Description Analyst Date Time **Prep Batch** . Dry Soil Prep Dry Soil Prep GL-RAD-A-021 JMB1 10/19/06 1652 581177 The following Analytical Methods were performed Method Description 1 EML HASL 300, 4.5.2.3

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Connecticut Yankee Atomic Power Company : 362 Injun Hollow Rd Address : East Hampton, Connecticut 06424 Report Date: October 27, 2006 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Project: Client ID: Client Sample ID: 9520-0005-001F YANK01204 Sample ID: 174484001 YANK001 Vol. Recv.: Parameter Qualifier Result Uncertainty LC TPU MDA Units **DF** Analyst Date Time Batch Mtd

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut 362 Injun Ho		omic Power							
·	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				R	eport Date: Oct	ober 27	, 2006
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	: te:		9520-00 1744840 TS 16-OCT 19-OCT Client 6.18%	-06		Project: Client ID: Vol. Recv.:	YANK01204 YANK001	·	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time Batch Mto
Rad Gamma	Spec Analy	sis									· · · · · · · · · · · · · · · · · · ·
Gamma,So	lid-FSS GAI	M & ALL FSS	226 Ingro	wth							
Waived											
Actinium-	-228		1.11	+/-0.221	0.0844	+/-0.221	0.182	pCi/g	MJH1	10/25/0	06 1734 581676 1
Americiu	n-241	υ	0.00514	+/-0.0376	0.0338	+/-0.0376	0.0698	pCi/g			
Bismuth-	212	Ū	0.143	+/0.348	0.190	+/0.348	0.405	pCi/g			
Bismuth	214		0.669	+/-0.127	0.0447	+/-0.127	0.0949	pCi/g			
Cesium-1	34	U	0.0489	+/-0.0452	0.0302	+/0.0452	.0.064	pCi/g			
Cesium-1	37		0.188	+/-0.045	0.0281	+/-0.045	0.0593	pCi/g			
Cobalt-60)	· . U	0.0209	+/-0.0341	0.0304	+/-0.0341	0.0655	pCi/g			
Europium	-152	U	-0.00746	+/-0.0709	0.0603	+/0.0709	0.127	pCi/g			
Europium	-154	U	0.00976	+/-0.0908	0.0775	+/0.0908	0.168	pCi/g			
Europium	-155	U	0.0196	+/-0.0822	0.0543	+/-0.0822	0.112	pCi/g			
Lead-212			0.750	+/0.0893	0.046	+/-0.0893	0.0946	pCi/g			
Lead-214			0.688	+/-0.112	0.0426	+/-0.112	0.0894	pCi/g			
Manganes	se-54	U	-0.00448	+/0.0288	0.0238	+/0.0288	0.0509	pCi/g			
	-94	U	-0.00398	+/-0.0266	0.0225	+/0.0266	0.0478	pCi/g			
Niobium-			13.5	+/1.08	0.224	+/-1.08	0.496	pCi/g			
Potassium					0.0447	+/-0.127	0.0949	pCi/g			
			0.669	+/0.127	0.0447	+1-0.127	0.02	PC1/6			
Potassium	226	U		+/0.127 +/0.0238		+/-0.0238	0.0435	pCi/g			

Method	Description	Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	10/19/06	1652	581177	

The following Analytical Methods were performed

Method Description

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		•
	Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Report Date: October 27, 2006
		Client Sample ID: Sample ID:	9520-0005-001FS 174484002	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut 362 Injun H		omic Power							
·	Contact: Project:	East Hampto Mr. Jack Mo Soils PO# 0	Carthy	ticut 06424				Re	eport Date: Oct	ober 27	, 2006
		Client San Sample ID Matrix: Collect Da Receive D Collector: Moisture:); ite:	•	9520-00 1744840 TS 16-OCT 19-OCT Client 7.05%	~–06		Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001		
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst	Date	Time Batch M
ad Gamm	a Spec Analy	sis				,					
Gamma,S Waived	olid–FSS GA	M & ALL FSS	226 Ingro	wth	·						
Actinium	-228		0.617	+/0.111	0.0523	+/-0.111	0.111	pCi/g	MJH1	10/25/0	06 1735 581676
Americiu	ım–241	U	0.000176	+/-0.0966	0.0794	+/-0.0966	0.165	pCi/g			
Bismuth-			0.444	+/-0.184	0.094	+/0.184	0.201	pCi/g			
Bismuth-	-214		0.409	+/-0.062	0.0256	+/0.062	0.054	pCi/g			
Cesium-	134	UI	0.00	+/-0.0298	0.0167	+/0.0298	0.0353	pCi/g			
Cesium-	137		0.0459	+/-0.022	0.0145	+/-0.022	0.0307	pCi/g			
Cobalt-6		U-	-0.000137	+/-0.0156	0.0135	+/-0.0156	0.0294	pCi/g			
Europiun	n-152	U	0.00642	+/-0.0373	0.0345	+/-0.0373	0.0724	pCi/g			
Europiun		U	-0.0428	+/-0.0475	0.038	+/-0.0475	0.0825	pCi/g			
Europiun		U	0.0278	+/-0.0525		+/0.0525	0.100	pCi/g	•		
Lead-21	2		0.596	+/-0.0473	0.021	+/0.0473	0.0437	pCi/g			
Lead-21	4		0.544	+/-0.0625	0.0239	+/-0.0625	0.0502	pCi/g			
Mangane	ese54	ប	0.0027	+/-0.0152	0.0136	+/-0.0152	0.0288	pCi/g			
Niobium		U	0.0135	, +/-0.0141		+/-0.0141	0.0282	pCi/g			
Potassiur	m-40		11.8	+/-0.701	0.113	+/-0.701	0.251	pCi/g			
Radium-	-226		0.409	+/-0.062	0.0256	+/-0.062	0.054	pCi/g			
Silver-1	08m	U	-0.0101	+/-0.0131	0.0111	+/-0.0131	0.0235	pCi/g			
Thallium	-208		0.209	+/-0.029	0.0127	+/-0.029	0.0269	· pCi/g			
		41 1									
The follow Method		thods were p ription	erformed			Analyst	Date	Tim	e Prep Batcl		<u> </u>
Dry Soil Pr		Soil Prep GL-		21		JMB1	10/19/0	06 1652	2 581177		

The following Analytical Methods were performed

Description Method

EML HASL 300, 4.5.2.3 J

Notes:

The Qualifiers in this report are defined as follows :

A quality control analyte recovery is outside of specified acceptance criteria Result is less than value reported *

<

'n

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		
	Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy		Report Date: October 27, 2006
	Project:	Soils PO# 002332		
		Client Sample ID: Sample ID:	9520-0005-002F 174484003	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

3

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	npany : fress :	Connecticut 362 Injun Ho		omic Power						
					•				· ·	
Con	tact:	East Hampto Mr. Jack Mc		icut 06424	Υ.			R	eport Date: Octobe	r 27, 2006
Ргој	ject:	Soils PO# 00	02332							
		Client Sam Sample ID Matrix: Collect Dai Receive Da Collector: Moisture:	: te:		9520–00 1744840 TS 16–OC1 19–OC1 Client 18.7%	-06		Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Da	te Time Batch Mt
Rad Gamma Spe	ec Analy	/sis								
Gamma,Solid Waived	FSS GA	M & ALL FSS	226 Ingro	vth				•		
Actinium-228			0.768	+/-0.141	0.0492	+/0.141	0.106	pCi/g	MJH1 10/	25/06 1735 581676
Americium-24	\$1	υ	0.0286	+/-0.0696	0.0587	+/-0.0696	0.121	pCi/g		
Bismuth-212			0.470	+/-0.225	0.094	+/-0.225	0.202	pCi/g		
Bismuth-214			0.451	+/0.0708	0.0309	+/-0.0708	0.0649	pCi/g		
Cesium-134		ប	0.00	+/0.026	0.0176	+/0.026	0.0373	pCi/g		
Cesium-137			0.135	+/-0.0313		+/-0.0313	0.0308	pCi/g		
Cobalt-60		II.	0.000128	+/-0.0182		+/-0.0182	0.0328	pCi/g		
Europium-152	,	Ŭ	0.0326	+/-0.0434		+/-0.0434	0.0836	pCi/g		
Europium-154		. Ŭ	0.0237	+/0.0535		+/-0.0535	0.0897	pCi/g	· · · · · · · · · · · · · · · · · · ·	
Europium-15		Ŭ	0.0175	+/-0.0528		+/-0.0528	0.0985	pCi/g		
Lead-212	,	U	0.586	+/-0.0531		+/-0.0531	0.0465	pCi/g		
Lead-214			0.483	+/-0.0776		+/-0.0776	0.0553	pCi/g		
Manganese-54	1	11_	0.000192	+/-0.0147		+/-0.0147	0.0273	pCi/g		
Niobium-94	7		0.000899	+/-0.0147		+/-0.0147	0.0275	pCi/g		
Potassium-40		0	11.1	+/-0.765	0.111	+/-0.765	0.248	pCi/g		
Radium-226			0.451	+/-0.0708		+/-0.0708	0.248	pCi/g pCi/g		
Silver-108m		U	-0.0101	+/-0.014	0.0115	+/-0.014	0.0049	pCi/g pCi/g		
Thallium-208		U	0.186	+/-0.0334		+/-0.0334	0.0245	pCi/g		
		41 1								
The following P Method		thods were pe	eriormed			Analyst	Date	Tim	e Prep Batch	
Dry Soil Prep		Soil Prep GL-I	RAD-A-0	21		JMB1	10/19/	06 1652		
The following A	-	•					10,177			
Method		ription	ere perior				· · · ·			
	Th C		600			·				
1	ENIL	HASL 300, 4.								

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria
 < Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Connecticut Yankee Atomic Power 362 Injun Hollow Rd Address : East Hampton, Connecticut 06424 Report Date: October 27, 2006 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Project: Client ID: Client Sample ID: 9520-0005-003F YANK01204 174484004 Sample ID: YANK001 Vol. Recv.: Parameter Oualifier Result Uncertainty LC MDA TPU Units **DF** Analyst Date Time Batch Mtd

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 – (843) 556–8171 – www.gel.com

Certificate of Analysis

Addre	oany : ess :	Connecticut 362 Injun Ho		omic Power						
Conta Proje		East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				Rep	ort Date: October 27	, 2006
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	ple ID: : te:		9520-00 1744840 TS 16-OCT 19-OCT Client 10.9%	r06	(ZANK01204 ZANK001	·
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
Rad Gamma Spec	Analy	sis						•••		
Gamma,Solid-F. Waived			226 Ingro	wth						
Actinium-228 Americium-241	1	U	0.914 0.0509	+/-0.261 +/-0.0433	0.0936	+/-0.261 +/-0.0433	0.187 0.0721	pCi/g	MJH1 10/25/0	6 1751 581676
Bismuth-212	L	U	0.0309	+/-0.433	0.0301	+/-0.435	0.0721	pCi/g pCi/g		
Bismuth-214			0.542	+/-0.128	0.0508	+/-0.128	0.101	pCi/g		
Cesium-134		U	0.0463	+/-0.0389		+/-0.0389	0.0737	pCi/g		
Cesium-137		0	0.0403	+/-0.0559		+/-0.0559	0.0503	pCi/g		
Cobalt-60		U	0.00134	+/0.0422		+/-0.0333	0.0706	pCi/g		
Europium-152		U U	0.00134	+/-0.077	0.0613	+/-0.0422	0.123	pCi/g pCi/g		
Europium-154		U	-0.0248	+/-0.108	0.0875	+/-0.108	0.125	pCi/g		
Europium-155		ບ ບ	0.0121	+/-0.063	0.0559	+/-0.103	0.175	pCi/g		
Lead-212		U	0.731	+/-0.0941		+/-0.003	0.0674	pCi/g		
Lead-212			0.684	+/-0.133	0.0451	+/-0.133	0.0902	pCi/g	•	
Manganese-54		. U	0.0105	+/-0.0348		+/-0.0348	0.0902	pCi/g pCi/g		
Niobium-94		. U	0.0291	+/-0.0306		+/-0.0348	0.0516	pCi/g pCi/g		
Potassium-40		U	12.7	+/-1.28	0.0238	+/-1.28	0.554	pCi/g pCi/g		
Radium-226			0.542	+/-0.128	0.0508	+/0.128	0.334	pCi/g		
Silver–108m		U	0.00114	+/-0.0248		+/-0.0248	0.0429	pCi/g pCi/g		
Thallium-208		0	0.225	+/-0.0704		+/-0.0704	0.0477	pCi/g		
The following Pr	en Met	hads were no	erformed							
Method	<u> </u>	iption	. ioi mcu			Analyst	Date	Time	Prep Batch	<u></u>
Dry Soil Prep	Dry S	oil Prep GL-I	RAD-A-C	21		JMBi	10/19/0	6 1652	581177	
The following An			ere perfor	med						
Method	Descri	iption								
	EMI I	HASL 300, 4	523	•						

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch M	tđ
	Client Sample ID: Sample ID:	9520-0005-004F 174484005	Project: YANK01204 Client ID: YANK001 Vol. Recv.:	
Project:	Soils PO# 002332			
Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy		Report Date: October 27, 2006	:
Company Address :				

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Method	Desc	ription				Analyst	Date	Time	Prep Batch	
	ng Prep Me	thods were pe	rformed							
Thallium-	-208		0.238	+/-0.0388	0.0126	+/-0.0388	0.0263	pCi/g		
Silver-10		U -	-0.00617	+/-0.013	0.0113	+/-0.013	0.0236	pCi/g		
Radium-2			0.659	+/-0.077	0.0239	+/0.077	0.0499	pCi/g		
Potassium			12.1	+/0.675	0.106	+/0.675	0.232	pCi/g		
Niobium-		U.	0.0214	+/-0.0149	0.0136	+/-0.0149	0.0284	pCi/g		
Manganes		U	0.0103	+/-0.0152		+/-0.0152	0.0267	pCi/g		
Lead-214			0.707	+/-0.0753		+/-0.0753	0.0506	pCi/g		
Lead-212			0.765	+/-0.0444		+/-0.0444	0.0413	pCi/g		
Europium		Ū	0.0192	+/-0.0416		+/-0.0416	0.079	pCi/g		
Europium		Ū	0.0461	+/-0.0465		+/-0.0465	0.0917	pCi/g		
Europium		U	-0.0146	+/-0.0412		+/-0.0412	0.0706	pCi/g		
Cobalt-60			0.483	+/0.0459		+/-0.0459	0.0273	pCi/g		
Cesium-1		01	0.193	+/-0.0333		+/-0.0333	0.0316	pCi/g		
Cesium-1		UI	0.00	+/-0.0218		+/-0.0218	0.0352	pCi/g		
Bismuth-2			0.659	+/-0.077	0.0239	+/0.077	0.0499	pCi/g		
Bismuth-2		0	0.522	+/0.251	0.103	+/-0.251	0.217	pCi/g		
Actinium- Americium	-	U	0.816 0.00994	+/-0.117 +/-0.0736	0.0497	+/-0.117 +/-0.0736	0.105 0.119	pCi/g pCi/g	MJH1 10/25	06 2018 581676
Waived		M & ALL FSS	0							
	Spec Analy									
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch M
<u> </u>		Moisture:			5.6 <u></u> 1%					
		Collector:			Client	00				
	·	Collect Dat Receive Da			16-OCT 19-OCT					
		Matrix:			TS			Vol. Recv.:		
		Sample ID:			1744840			Client ID:	YANK001	
		Client Sam	nle ID:		9520-00	05-005F		Project:	YANK01204	
	Project:	Soils PO# 00	2332							
	Contact:	Mr. Jack Mc								,,
		East Hampto	n. Connect	icut 06424				Re	oort Date: October 2	7. 2006
		362 Injun Ho				·			:	• •
	Address :									

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

·.	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		
	Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Report Date: October 27, 2006
		Client Sample ID: Sample ID:	9520-0005-005F 174484006	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Parameter	r	Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

<u>Certificate of Analysis</u>

Company Address	•		omic Power						
Contact:	East Hampto Mr. Jack Mo		ticut 06424				Repo	ort Date: Octol	per 27, 2006
Project:	Soils PO# 0	02332							
	Client Sam Sample ID Matrix: Collect Da Receive D Collector: Moisture:): ite:		9520–00 1744840 TS 16–OC1 19–OC1 Client 2.97%	-06	F		ANK01204 ANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst I	Date Time Batch Mt
Rad Gamma Spec Ar	alysis								
Gamma,SolidFSS (Waived	GAM & ALL FSS	226 Ingro	wth						
Actinium-228		1.04	+/0.115	0.0434	+/-0.115	0.0917	pCi/g	MJH1 1	0/25/06 2027 581676
Americium-241	U	0.0115	+/0.0193	0.0172	+/-0.0193	0.0352	pCi/g		
Bismuth-212		0.730	+/-0.229	0.0944	+/-0.229	0.198	pCi/g		
Bismuth-214		0.750	+/0.0658	0.0229	+/-0.0658	0.0477	pCi/g		
Cesium-134	UI	0.00	+/-0.0295	0.0187	+/0.0295	0.0388	pCi/g		
Cesium-137		0.0903	+/-0.025	0.014	+/0.025	0.0291	pCi/g		
Cobalt-60		0.0591	+/-0.0328	0.0143	+/0.0328	0.0304	pCi/g		1
Europium-152	U	-0.021	+/-0.0374	0.0309	+/-0.0374	0.0639	pCi/g		
Europium-154		-0.00897	+/-0.0514		+/-0.0514	0.0904	pCi/g		
Europium-155	บเ	0.00	+/-0.0372		+/-0.0372	0.0552	pCi/g		
Lead-212		0.937	+/-0.0438		+/0.0438	0.0348	pCi/g		
Lead-214		0.858	+/0.0649		+/-0.0649	0.0471	pCi/g		
Manganese-54	11	-0.00588	+/-0.0183		+/-0.0183	0.0271	pCi/g		
Niobium–94	Ŭ	0.00836	+/-0.0142		+/-0.0142	0.0259	pCi/g		
Potassium-40	U	13.3	+/-0.690	0.117		0.254	pCi/g		
Radium-226		0.750	+/0.0658		+/-0.0658	0.0477	pCi/g		
Silver-108m	Ū	-0.00127	+/-0.0123		+/-0.0123	0.0227	pCi/g		
Thallium-208		0.300	+/-0.0383		+/0.0383	0.026	pCi/g		
The following Prep		erformed							
	escription				Analyst	Date	Time	Prep Batch	
Dry Soil Prep Di	ry Soil Prep GL–	RAD-A-(21		JMB1	10/19/0	6 1652	581177	
The following Analy Method De	tical Methods w	ere perfor	med						
		507					·	<u> </u>	
1 El	ML HASL 300, 4	.5.2.3						·	
Notes:									

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Connecticut Yankee Atomic Power Address : 362 Injun Hollow Rd

East Hampton, Connecticut 06424 Report Date: October 27, 2006 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Project: Client ID: Client Sample ID: 9520-0005-006F YANK01204 174484007 YANK001 Sample ID: Vol. Recv.: Parameter Qualifier Result MDA LC TPU Units **DF** Analyst Date **Time Batch Mtd** Uncertainty

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

.

	Company : Address :	Connecticut 362 Injun H		omic Power							
	Contact:	East Hampto Mr. Jack Mo		ticut 06424	·		<u>.</u>	Rep	port Date: Oc	tober 27	, 2006
	Project:	Soils PO# 0	-								· · ·
		Client Sam Sample ID Matrix: Collect Da Receive D Collector: Moisture:	te:		9520-00 1744840 TS 16-OCT 19-OCT Client 10.9%	r06			YANK01204 YANK001		
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time Batch M
Rad Gamm	a Spec Anal	ysis									
Gamma,So Waived	olid–FSS GA	M & ALL FSS	226 Ingro	wth			•				
Actinium			0.710	+/-0.127	0.0348	+/-0.127	0.0735	pCi/g	MJHI	10/25/0	06 2028 581676
Americiu	m-241	υ	0.0386	+/-0.0364	0.034	+/-0.0364	0.0696	pCi/g			
Bismuth-	-212		0.512	+/0.189	0.0744	+/-0.189	0.156	pCi/g			
Bismuth-	-214		0.559	+/-0.0797	0.0176	+/-0.0797	0.0368	pCi/g			
Cesium-	134	ហ	0.00	+/-0.0201	0.0138	+/0.0201	· 0.0287	pCi/g			
Cesium-	137		0.0491	+/-0.0172	0.00926	+/-0.0172	0.0195	pCi/g			
Cobalt-6	0.	U	0.00231	+/-0.0118	0.0103	+/0.0118	0.0221	pCi/g			
Europium		Ũ	-0.0125	+/-0.0278		+/-0.0278	0.0495	pCi/g			
Europium		Ŭ	0.0228	+/0.0348		+/-0.0348	0.0671	pCi/g			
Europium		Ŭ	0.00	+/-0.0389		+/-0.0389	0.0541	pCi/g			
Lead-212			0.731	+/-0.0652		+/-0.0652	0.032	pCi/g			
Lead-214			0.594	+/-0.069	0.0186	+/0.069	0.0385	pCi/g			
Mangane		U	0.00316	+/0.0117		+/-0.0117	0.0215	pCi/g			
Niobium-		Ű	0.00649	+/0.00974		+/-0.00974	0.0186	pCi/g			
Potassiun		U	12.5	+/-0.944	0.0785	+/0.944	0.172	pCi/g			
Radium-			0.559	+/-0.0797		+/0.0797	0.0368	pCi/g			
Silver-10		U	0.00101	+/-0.00963		+/-0.00963	0.0173	pCi/g			
Thallium		. 0	0.237	+/-0.0328		+/-0.0328	0.0195	pCi/g			
		thods were p	erformed			·					
Method	Desc	ription		•		Analyst	Date	Time	Prep Bate	h	
Dry Soil Pre	ep Dry S	Soil Prep GL-	RAD-A-C	21		JMB1	10/19/0	06 1652	581177		
The followi Method	<u> </u>	al Methods w ription	ere perfor	med							
		•			-						
	EML	. HASL 300, 4	.5.2.3								

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

<u>Certificate of Analysis</u>

	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		
	Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332	ŕ	Report Date: October 27, 2006
	· ·	Client Sample ID: Sample ID:	9520-0005-007F 174484008	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 – (843) 556–8171 – www.gel.com

Certificate of Analysis

	Company : Address :			Yankee At ollow Rd	omic Power							
•	: Contact:	East Ha Mr. Jaci	mpto k Mo	on, Connec	ticut 06424				Re	port Date: Oct	ober 27, 200)6
	Project:	Soils PO		-								
		Client Sampl Matrix Collec Receiv Collec Moistu	e ID t: t Da /e Da tor:	te:		9520-00 1744840 TS 16-OCT 19-OCT Client 8.01%	Г—06			YANK01204 YANK001		
arameter		Qualif	lier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst	Date Ti	me Batch M
ad Gamma	a Spec Analy	ysis										
Gamma,So Waived	olid–FSS GA	M & ALL	FSS	226 Ingro	wth							
Actinium- Americium Bismuth- Bismuth- Cesium-1 Cesium-1 Cobalt-60	m-24] 212 214 134 137 0		บ บ บ	0.700 0.0207 0.339 0.513 0.00971 0.0293 -0.012	+/-0.127 +/-0.0694 +/-0.182 +/-0.0828 +/-0.0251 +/-0.0202 +/-0.0195	0.099 0.0236 0.0169 0.0131 0.0137	+/-0.127 +/-0.0694 +/-0.182 +/-0.0828 +/-0.0251 +/-0.0202 +/-0.0195	0.0904 0.109 0.198 0.0471 0.0339 0.0261 0.0274	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJH]	10/25/06 20	044 581676
Europium Europium Lead-212 Lead-214 Manganes	1		บ บ บ	-0.0201 0.0417 0.0476 0.651 0.602 0.00502	+/-0.0511 +/-0.0553 +/-0.0453 +/-0.0697 +/-0.0844 +/-0.0204	0.0463 0.0421 0.0211 0.024	+/-0.0511 +/-0.0553 +/-0.0453 +/-0.0697 +/-0.0844 +/-0.0204	0.0673 0.0926 0.0842 0.0421 0.048 0.0243	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	•	· •	 •
Niobium– Potassium Radium–2 Silver–10 Thallium–	-94 140 226 98m		บ บ	0.0123 11.2 0.513 -0.0084 0.219	+/-0.0149 +/-0.934 +/-0.0828 +/-0.0136 +/-0.037	0.0133 0.128 0.0236	+/-0.0149 +/-0.934 +/-0.0828 +/-0.0136	0.0265 0.255 0.0471 0.0233 0.0257	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g			
The followi	ing Prep Me	thods we	re n	erformed	`							
Method		ription	<u> </u>		······		Analyst	Date	Тіте	Prep Batch) ·	
Dry Soil Pre				RAD-A-0			JMB1	10/19/0	06 1652	581177		
The followi Method	ng Analytics	al Metho ription	ds w	ere perfor	med			1				
	Desci	intron										

The Qualifiers in this report are defined as follows :

A quality control analyte recovery is outside of specified acceptance criteria Result is less than value reported *

<

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst Date	Time Batch Mtd
		Client Sam Sample ID	nple ID:):		9520–000 17448400			Project: Client ID: Vol. Recv.:	YAN	K01204 K001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 0	Carthy	ticut 06424				R	leport Di	ate: October 27	7, 2006
	Company : Address :	Connecticut 362 Injun Ho	ollow Rd	:						1. gr	

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy---Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 – (843) 556–8171 – www.gel.com

Certificate of Analysis

Analys SS GAM	1 & ALL FSS	Carthy)2332 ple ID: te: te: te: te:	ticut 06424 Uncertainty	9520–00 1744840 TS 16–OCT 19–OCT Client 9.86% LC	r–06	(Project:	eport Date: Oct YANK01204 YANK001	ober 27	, 2006
Analys SS GAM	Client Sam Sample ID: Matrix: Collect Dat Receive Da Collector: Moisture: Qualifier Sis A & ALL FSS	ple ID: te: tte: Result	Uncertainty	1744840 TS 16-OCT 19-OCT Client 9.86%)10 Г-06	(Client ID:			
SS GAM	Sample ID: Matrix: Collect Dat Receive Da Collector: Moisture: Qualifier Sis A & ALL FSS	te: ate: Result	Uncertainty	1744840 TS 16-OCT 19-OCT Client 9.86%)10 Г-06	(Client ID:			
SS GAM	sis 1 & ALL FSS		Uncertainty	LC						
SS GAM	1 & ALL FSS	226 Ingro			TPU	MDA	Units	DF Analyst	Date	Time Batch Mt
		226 Ingro								
			wth							
		0.642	+/-0.168	0.0672	+/-0.168	0.134	pCi/g	MJH1	10/25/0	6 2026 581676
	U	0.0262	+/0.0283	0.0235	+/-0.0283	0.0469	pCi/g			
		0.301	+/-0.250	0.140	+/-0.250	0.280	pCi/g			•
		0.485	+/-0.0883	0.0298	+/-0.0883	0.0597	pCi/g			
	υ	0.0291	+/-0.0319	0.0213	+/-0.0319	0.0425	pCi/g			
	-	0.0679	+/0.0273		+/-0.0273	0.0353	pCi/g			
	U	0.014	+/-0.0251		+/-0.0251	0.0442	pCi/g			
	Ŭ	0.0125	+/-0.0577		+/-0.0577	0.0787	pCi/g			
	Ŭ	0.0397	+/-0.0681		+/0.0681	0.120	pCi/g			
	Ŭ	0.0159	+/0.0396		+/-0.0396	0.0717	pCi/g			
	0	0.602	+/-0.0683		+/-0.0683	0.0424	pCi/g			
		0.545	+/0.0836		+/-0.0836	0.0568	pCi/g			
	U	0.0105	+/-0.0204		+/0.0204	0.0367	pCi/g			
	-	-0.00724	+/-0.0177		+/-0.0177	0.0304	pCi/g			
	0	10.4	+/-0.859	0.168	+/0.859	0.335	pCi/g			
						-				
	11									
	U	0.218	+/-0.0452			0.0323	pCi/g			
on Mad	hode were	rformed								
		atorned			Analyst	Date	Tim	e Prep Batc	h	. <u>,</u>
Dry So	oil Prep GL-H	RAD-A-0	21		JMB1	10/19/0	6 1652	2 581177		
		ere perfor	med				<u></u>			
Descri	ption					_	_			
EMI	HASL 300, 4.	5.2.3								
]]]	Descri Dry So lytica Descri	Description Dry Soil Prep GL lytical Methods we Description	0.485 U -0.0175 0.218 p Methods were performed Description Dry Soil Prep GL-RAD-A-0 dytical Methods were perfor	0.485 +/-0.0883 U -0.0175 +/-0.0163 0.218 +/-0.0452 p Methods were performed Description Dry Soil Prep GL-RAD-A-021 alytical Methods were performed Description	0.485 +/-0.0883 0.0298 U -0.0175 +/-0.0163 0.0133 0.218 +/-0.0452 0.0162 p Methods were performed Description Dry Soil Prep GL-RAD-A-021 alytical Methods were performed Description	0.485 +/-0.0883 0.0298 +/-0.0883 U -0.0175 +/-0.0163 0.0133 +/-0.0163 0.218 +/-0.0452 0.0162 +/-0.0452 p Methods were performed	0.485 +/-0.0883 0.0298 +/-0.0883 0.0597 U -0.0175 +/-0.0163 0.0133 +/-0.0163 0.0267 0.218 +/-0.0452 0.0162 +/-0.0452 0.0323 p Methods were performed Date Dry Soil Prep GL-RAD-A-021 JMB1 10/19/0 Introduction Interformed Interformed Description Analyst Date Dry Soil Prep GL-RAD-A-021 JMB1 10/19/0 Introduction Interformed Interformed Description Interformed Interformed Interformed Interformed Interformed	0.485 +/-0.0883 0.0298 +/-0.0883 0.0597 pCi/g U -0.0175 +/-0.0163 0.0133 +/-0.0163 0.0267 pCi/g 0.218 +/-0.0452 0.0162 +/-0.0452 0.0323 pCi/g p Methods were performed	0.485 +/-0.0883 0.0298 +/-0.0883 0.0597 pCi/g U -0.0175 +/-0.0163 0.0133 +/-0.0163 0.0267 pCi/g 0.218 +/-0.0452 0.0162 +/-0.0452 0.0323 pCi/g p Methods were performed	0.485 +/-0.0883 0.0298 +/-0.0883 0.0597 p Ci/g U -0.0175 +/-0.0163 0.0133 +/-0.0163 0.0267 p Ci/g 0.218 +/-0.0452 0.0162 +/-0.0452 0.0323 p Ci/g p Methods were performed

The Qualifiers in this report are defined as follows :

A quality control analyte recovery is outside of specified acceptance criteria Result is less than value reported *

<

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	e Time Batch Mtd
		Client Sam Sample ID:			9520–000 17448401			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				· R	Report Date: October	27, 2006
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Comp Addre		Connecticut 362 Injun Ho		omic Power						
Conta	ct:	East Hampto Mr. Jack Mo		ticut 06424				Rep	ort Date: October 2	7, 2006 ·
Projec		Soils PO# 00	•							
-		Client Sam Sample ID Matrix: Collect Da	te:		1744840 TS 160C7	7-06			ANK01204 ANK001	· .
÷		Receive Da Collector: Moisture:	ate:		19–OCT Client 9.91%	-06				
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
Rad Gamma Spec	Analy	sis								
Gamma,Solid–FS Waived	SS GAN	M & ALL FSS	226 Ingro	wth						
Actinium-228			0.813	+/~0.206	0.102	+/-0.206	0.223	pCi/g	MJH1 10/26	/06 1409 581676
Americium-241		U	0.0107	+/-0.0399	0.0377	+/-0.0399	0.0784	pCi/g		
Bismuth-212			0.727	+/-0.339	0.229	+/-0.339	0.495	pCi/g		
Bismuth-214			0.627	+/0.145	0.0492	+/0.145	0.107	pCi/g		
Cesium-134		U	0.0418	+/0.0379	0.0356	+/0.0379	0.077	pCi/g		
Cesium-137			0.127	+/-0.0661	0.0295	+/-0.0661	0.0638	pCi/g		
Cobalt-60		U	0.0214	+/-0.0338	0.0313	+/-0.0338	0.0701	pCi/g		
Europium-152		υ	-0.032	+/0.0718	0.0625	+/-0.0718	0.133	pCi/g		
Europium-154		U	-0.0304	+/0.100	0.0811	+/-0.100	0.183	pCi/g		
Europium-155		U	0.0423	+/-0.0698	0.0652	+/-0.0698	0.136	pCi/g		4
Lead-212			0.845	+/0.0794	0.0345	+/-0.0794	0.0728	pCi/g		
Lead-214			0.725	+/-0.129	0.0491	+/-0.129	0.105	pCi/g		
Manganese-54		U	0.00946	+/-0.0317	0.0244	+/-0.0317	0.0541	pCi/g		· .
Niobium-94		U	0.0104	+/-0.0321	0.0281	+/-0.0321	0.0605	pCi/g		
Potassium-40			11.5	+/1.26	0.260	+/-1.26	0.597	pCi/g		
Radium-226			0.627	+/0.145	0.0492	+/-0.145	0.107	pCi/g		
Silver–108m Thallium–208		U	-0.0158 0.246	+/0.0265 +/0.0593		+/0.0265 +/0.0593	0.0478 0.0543	pCi/g pCi/g		
The following Pro		thods were po iption	erformed	···.		Analyst	Date	Time	Prep Batch	·····
Dry Soil Prep		oil Prep GL-	RAD-A-0	21		JMB1	10/19/	·····	581177	
The following An	-	-								
Method		iption	cie perior							
1	EML	HASL 300, 4	.5.2.3						•	
2		HASL 300, 4								

Notes:

The Qualifiers in this report are defined as follows :

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

<u>Certificate of Analysis</u>

Connecticut Yankee Atomic Power Company : Address : 362 Injun Hollow Rd East Hampton, Connecticut 06424 Report Date: October 27, 2006 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Project: Client ID: Client Sample ID: 9520-0005-010F YANK01204 Sample ID: 174484011 YANK001 Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
······································									

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

۰.

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Connecticut Yankee Atomic Power Company : Address : 362 Injun Hollow Rd

Parameter	Qualifier Result Uncertainty	Y LC TPU N	ADA Units DF Analyst Date Time Batch Mtd				
	Collector: Moisture:	Client 10.5%					
	Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date:	9520-0005-014F 174484012 TS 17-OCT-06 19-OCT-06	Project: YANK01204 Client ID: YANK001 Vol. Recv.:				
Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Report Date: October 27, 2006				

Rad Gamma Spec Analysis

1

Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth

Waived	_							
Actinium-228	0.789	+/-0.164	0.0549 +/-0.164	0.110	pCi/g	MJH1	10/26/06 0621 581676	1
Americium-241	U 0.0763	+/-0.0835	0.0571 +/-0.0835	0.114	pCi/g			
Bismuth-212	0.320	+/-0.233	0.103 +/0.233	0.206	pCi/g			
Bismuth-214	0.445	+/-0.0914	0.0301 +/-0.0914	0.0602	pCi/g			
Cesium-134	UI 0.00	+/-0.0283	0.0222 +/-0.0283	0.0445	pCi/g			
Cesium-137	0.116	+/-0.0373	0.0159 +/-0.0373	0.0319	pCi/g			
Cobalt-60	U 0.000807	+/-0.0205	0.0172 +/-0.0205	0.0344	pCi/g			
Europium-152	U -0.0129	+/-0.0707	0.0461 +/-0.0707	0.0921	pCi/g			
Europium-154	U -0.0365	+/-0.0685	0.054 +/-0.0685	0.108	pCi/g			
Europium-155	U 0.00373	+/0.054	0.0478 +/-0.054	0.0955	pCi/g			
Lead-212	0.628	+/0.0753	0.0272 +/-0.0753	0.0544	pCi/g			
Lead-214	0.607	+/-0.0826	0.034 +/-0.0826	0.0681	pCi/g			
Manganese-54	U 0.000414	+/0.0219	0.019 +/-0.0219	0.038	pCi/g			
Niobium-94	U 0.0117	+/-0.0171	0.0157 +/-0.0171	0.0315	pCi/g			
Potassium-40	10.5	+/-0.972	0.133 +/0.972	0.265	pCi/g			
Radium-226	0.445	+/-0.0914	0.0301 +/-0.0914	0.0602	pCi/g		•	
Silver-108m	U -0.00674	+/-0.0171	0.0144 +/-0.0171	0.0288	pCi/g			
Thallium-208	0.239	+/-0.0446	0.0142 +/-0.0446	0.0283	pCi/g			

The following Prep Methods were performed Method Description Analyst Date Time **Prep Batch** JMBI 10/19/06 581177 Dry Soil Prep Dry Soil Prep GL-RAD-A-021 1652 The following Analytical Methods were performed Method Description

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd
		Client Sample ID: Sample ID:	9520–0005–014F 174484012	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
	Project:	Soils PO# 002332		
	Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy		Report Date: October 27, 2006
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 – (843) 556–8171 – www.gel.com

Certificate of Analysis

ep Diy:	1							•	
ep Dry S	Soil Prep GL-	RAD-A-0	21		JMB1	10/19/0	06 1652	581177	
Desc	ription				Analyst	Date	Time	Prep Batch	
ing Prep Me	thods were p	erformed							
208		0.204	+/-0.031	0.011	+/-0.031	0.0232	pC1/g		
	U								
	U								
	U								
	-			•					
	-								
	-								
-	UI								
	U								
228		0.690	+/-0.111	0.0354	+/-0.111	0.0756	pCi/g	MJH1 10/26	5/06 0604 581676
olid–FSS GA.	M & ALL FSS	226 Ingro	wth						
_									
	· · · · · · · · · · · · · · · · · · ·	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch M
	Moisture:			10.5%				÷	
		ate:			-06				
	Matrix:	•		TS			Vol. Recv.:		
	Client Sam Sample ID	nple ID:):				(Client ID: N		
Project:	Soils PO# 0	02332							
Contact:		-					r.c.		., 2000
	Fast Hampie	on Connec	ticut 06424	•			Rer	•. ort Date: October 2	27 2006
	Project: a Spec Analy olid – FSS GA -228 m-241 -212 -214 134 137 0 n-152 n-155 2 4 sse-54 -94 n-40 226 08m -208 m-208	Contact: Mr. Jack Mc Project: Soils PO# 0 Client San Sample ID Matrix: Collect Da Receive D Collector: Moisture: Qualifier a Spec Analysis olidFSS GAM & ALL FSS -228 m-241 U -212 -214 134 UI 137 0 U n-152 U n-154 U n-155 U 2 4 se-54 U -94 U n-40 -228 m U -208	Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture: Moisture: Qualifier Result a Spec Analysis 0.690 ohid-FSS GAM & ALL FSS 226 Ingrov -228 -228 0.690 m-241 U 0.0556 -212 0.539 -214 0.526 134 UI 0.00 137 0.0454 0 U 0.000999 n-152 U 0.0134 n-154 U -0.0167 n-155 U 0.0335 2 0.699 4 -208 0.204	Project: Soils PO# 002332 Client Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture: Vatrix: Collector: Moisture: Qualifier Result Uncertainty a Spec Analysis 0.690 +/-0.111 onder FSS GAM & ALL FSS 226 Ingrowth -228 0.690 228 0.690 +/-0.111 m-241 U 0.0556 +/-0.086 -212 0.539 +/-0.180 -214 0.526 +/-0.0189 137 0.0454 +/-0.0183 00 U 0.000999 +/-0.0183 010 U 0.000999 +/-0.0146 n-152 U 0.0134 +/-0.0339 n-154 U -0.0167 +/-0.0412 n-155 U 0.0335 +/-0.0442 2 0.699 +/-0.0142 n=154 U -0.0167 +/-0.0142 n=40 11.7 +/-0.0154 -0.014 -94 U 0.0035 +/-0.0131 n=40 11.7 +/-0.0131 -208 <t< td=""><td>East Hampton, Connecticut 06424 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 9520-00 Sample ID: 1744840 Matrix: TS Collect Date: 17-OCT Receive Date: 19-OCT Collector: Client Moisture: 10.5% Qualifier Result Uncertainty LC a Spec Analysis olidFSS GAM & ALL FSS 226 Ingrowth 228 0.690 +/-0.111 0.0354 rm-241 U 0.0556 +/-0.086 0.0752 -212 0.539 +/-0.180 0.0841 -214 0.526 +/-0.0584 0.0214 134 UI 0.00 +/-0.0189 0.0144 137 0.0454 +/-0.0183 0.0135 0 U 0.000999 +/-0.0146 0.0111 n-152 U 0.0134 +/-0.0183 0.0135 0 U 0.000999 +/-0.0146 0.0111 n-154 U -0.0167 +/-0.0412 0.035 n-155 U 0.0335 +/-0.0434 0.0433 2 0.699 +/-0.0428 0.0178 4 0.600 +/-0.017 0.0214 se-54 U 0.00787 +/-0.014 0.0124 -94 U 0.0103 +/-0.0115 0.0109 n-40 11.7 +/-0.615 0.0853 226 0.526 +/-0.0584 0.0214 jag Prep Methods were performed Description</br></br></br></br></br></br></br></td><td>East Hampton, Connecticut 06424 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 174484013 Matrix: TS Collect Date: 17-OCT-06 Receive Date: 19-OCT-06 Collector: Client Moisture: 10.5% Qualifier Result Uncertainty LC TPU a Spec Analysis 0.690 +/-0.111 0.0354 +/-0.111 m-241 U 0.0556 +/-0.086 0.0752 +/-0.086 212 0.539 +/-0.180 0.0841 +/-0.180 214 0.526 +/-0.0189 0.0144 +/-0.0183 0414 UI 0.00 +/-0.0183 0.0135 +/-0.0183 0137 0.0454 +/-0.0146 0.0111 +/-0.0319 0141 U 0.0134 +/-0.0319 0.0321 +/-0.0339 0155 U 0.0135 +/-0.0146 0.0111 +/-0.0428 017 0.0454 +/-0.0142 0.035 +/-0.0428</td><td>East Hampton, Connecticut 06424 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 174484013 Matrix: TS Collect Date: 17-OCT-06 Receive Date: 19-OCT-06 Collector: Client Moisture: 10.5% Qualifier Result Uncertainty LC TPU MDA a Spec Analysis olid-FSS GAM & ALL FSS 226 Ingrowth -228 0.690 +/-0.111 0.0354 +/-0.111 0.0756 m-241 U 0.0556 +/-0.086 0.0752 +/-0.086 0.155 -212 0.539 +/-0.180 0.0841 +/-0.180 0.178 -214 0.526 +/-0.084 0.0214 +/-0.084 0.0449 134 UI 0.00 +/-0.0189 0.0144 +/-0.0189 0.0301 137 0.0454 +/-0.0189 0.0144 +/-0.0183 0.0282 0 U 0.00099 +/-0.0146 0.0111 +/-0.0146 0.0239 n-152 U 0.0134 +/-0.0183 0.0135 +/-0.0430 0.075 a-155 U 0.0134 +/-0.0424 0.01178 +/-0.0430 0.075 a-155 U 0.0134 +/-0.0424 0.01178 +/-0.0434 50.891 2 0.699 +/-0.0424 0.01178 +/-0.0428 0.037 4 0.600 +/-0.0677 0.0214 +/-0.0428 0.037 4 0.600 +/-0.015 0.0109 +/-0.0126 0.0239 n-40 11.7 +/-0.615 0.0109 +/-0.0126 0.0231 n-40 11.7 +/-0.615 0.0109 +/-0.012 0.075 an-40 11.7 +/-0.011 0.0124 +/-0.0128 0.037 4 0.000787 +/-0.014 0.0124 +/-0.0128 0.037 4 0.0003 +/-0.015 0.0109 +/-0.0115 0.023 n-40 11.7 +/-0.615 0.0109 +/-0.0112 0.026 -94 U 0.0003 +/-0.0112 0.0105 +/-0.0112 0.023 m-40 11.7 +/-0.615 0.0109 +/-0.0112 0.023 m-40 11.7 +/-0.0113 0.0105 +/-0.0112 0.0219 -208 0.204 +/-0.031 0.011 +/-0.031 0.0232</td><td>East Hampton, Connecticut 06424 Rep Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 174484013 Client ID: Yol. Recv.: Sample ID: 174484013 Client ID: Yol. Recv.: Collect Date: 17-OCT-06 Client ID: Yol. Recv.: Collect Date: 19-OCT-06 Collector: Client Moisture: Noisture: 228 0.690 +/-0.111 0.0354 +/-0.086 0.155 pCi/g -228 0.690 +/-0.180 0.0752 +/-0.086 0.155 pCi/g -212 0.539 +/-0.180 0.0841 +/-0.0180 0.178 pCi/g 214 0.526 +/-0.0189 0.0144 +/-0.0180 0.0214 +/-0.0180 0.0222 pCi/g 0 U 0.00099 +/-0.0146 0.0231 +/-0.0339 0.0668 pCi/g -137 0.0454 +/-0.0339 0.031 +/-0.0329 pCi/g 0 U 0.00099</td><td>Report Date: October 2 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 174484013 Matrix: TS Collect Date: 17-OCT-06 Receive Date: 19-OCT-06 Collect Date: 10.5% Qualifier Result Uncertainty LC TPU MDA Units DF Analyst Date MDA Office Formation of the system of the syste</td></t<>	East Hampton, Connecticut 06424 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 9520-00 Sample ID: 1744840 Matrix: TS Collect Date: 17-OCT Receive Date: 19-OCT Collector: Client Moisture: 10.5% Qualifier Result Uncertainty LC a Spec Analysis olidFSS GAM & ALL FSS 226 Ingrowth 228 0.690 +/-0.111 0.0354 rm-241 U 0.0556 +/-0.086 0.0752 	East Hampton, Connecticut 06424 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 174484013 Matrix: TS Collect Date: 17-OCT-06 Receive Date: 19-OCT-06 Collector: Client Moisture: 10.5% Qualifier Result Uncertainty LC TPU a Spec Analysis 0.690 +/-0.111 0.0354 +/-0.111 m-241 U 0.0556 +/-0.086 0.0752 +/-0.086 212 0.539 +/-0.180 0.0841 +/-0.180 214 0.526 +/-0.0189 0.0144 +/-0.0183 0414 UI 0.00 +/-0.0183 0.0135 +/-0.0183 0137 0.0454 +/-0.0146 0.0111 +/-0.0319 0141 U 0.0134 +/-0.0319 0.0321 +/-0.0339 0155 U 0.0135 +/-0.0146 0.0111 +/-0.0428 017 0.0454 +/-0.0142 0.035 +/-0.0428	East Hampton, Connecticut 06424 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 174484013 Matrix: TS Collect Date: 17-OCT-06 Receive Date: 19-OCT-06 Collector: Client Moisture: 10.5% Qualifier Result Uncertainty LC TPU MDA a Spec Analysis olid-FSS GAM & ALL FSS 226 Ingrowth -228 0.690 +/-0.111 0.0354 +/-0.111 0.0756 m-241 U 0.0556 +/-0.086 0.0752 +/-0.086 0.155 -212 0.539 +/-0.180 0.0841 +/-0.180 0.178 -214 0.526 +/-0.084 0.0214 +/-0.084 0.0449 134 UI 0.00 +/-0.0189 0.0144 +/-0.0189 0.0301 137 0.0454 +/-0.0189 0.0144 +/-0.0183 0.0282 0 U 0.00099 +/-0.0146 0.0111 +/-0.0146 0.0239 n-152 U 0.0134 +/-0.0183 0.0135 +/-0.0430 0.075 a-155 U 0.0134 +/-0.0424 0.01178 +/-0.0430 0.075 a-155 U 0.0134 +/-0.0424 0.01178 +/-0.0434 50.891 2 0.699 +/-0.0424 0.01178 +/-0.0428 0.037 4 0.600 +/-0.0677 0.0214 +/-0.0428 0.037 4 0.600 +/-0.015 0.0109 +/-0.0126 0.0239 n-40 11.7 +/-0.615 0.0109 +/-0.0126 0.0231 n-40 11.7 +/-0.615 0.0109 +/-0.012 0.075 an-40 11.7 +/-0.011 0.0124 +/-0.0128 0.037 4 0.000787 +/-0.014 0.0124 +/-0.0128 0.037 4 0.0003 +/-0.015 0.0109 +/-0.0115 0.023 n-40 11.7 +/-0.615 0.0109 +/-0.0112 0.026 -94 U 0.0003 +/-0.0112 0.0105 +/-0.0112 0.023 m-40 11.7 +/-0.615 0.0109 +/-0.0112 0.023 m-40 11.7 +/-0.0113 0.0105 +/-0.0112 0.0219 -208 0.204 +/-0.031 0.011 +/-0.031 0.0232	East Hampton, Connecticut 06424 Rep Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 174484013 Client ID: Yol. Recv.: Sample ID: 174484013 Client ID: Yol. Recv.: Collect Date: 17-OCT-06 Client ID: Yol. Recv.: Collect Date: 19-OCT-06 Collector: Client Moisture: Noisture: 228 0.690 +/-0.111 0.0354 +/-0.086 0.155 pCi/g -228 0.690 +/-0.180 0.0752 +/-0.086 0.155 pCi/g -212 0.539 +/-0.180 0.0841 +/-0.0180 0.178 pCi/g 214 0.526 +/-0.0189 0.0144 +/-0.0180 0.0214 +/-0.0180 0.0222 pCi/g 0 U 0.00099 +/-0.0146 0.0231 +/-0.0339 0.0668 pCi/g -137 0.0454 +/-0.0339 0.031 +/-0.0329 pCi/g 0 U 0.00099	Report Date: October 2 Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 174484013 Matrix: TS Collect Date: 17-OCT-06 Receive Date: 19-OCT-06 Collect Date: 10.5% Qualifier Result Uncertainty LC TPU MDA Units DF Analyst Date MDA Office Formation of the system of the syste

Notes: ·

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		
	· Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Report Date: October 27, 2006
		Client Sample ID: Sample ID:	9520-0005-015F 174484013	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy---Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Connecticut 362 Injun Ho		omic Power						·
Contact:	East Hampto Mr. Jack Mc		ticut 06424				R	eport Date: October	27, 2006
Project:	Soils PO# 00	02332							
	Client Sam Sample ID Matrix: Collect Da Receive Da Collector:	: te:		9520-00 1744840 TS 17-OCT 19-OCT Client	14 06		Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Moisture:			15.4%			•		
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA-	Units	DF Analyst Date	Time Batch Mtd
Rad Gamma Spec Anal	ysis								
Gamma,Solid–FSS GA Waived	M & ALL FSS	226 Ingro	with						
Actinium-228		0.844	+/-0.211	0.0947		0.189	pCi/g	MJH1 10/20	5/06 0621 581676 1
Americium-241	U	0.0484	+/-0.0442		+/-0.0442	0.0714	pCi/g		
Bismuth-212	U	0.438	+/-0.455	0.219	+/-0.455	0.438	pCi/g		
Bismuth-214		0.660	+/-0.136	0.0423	+/-0.136	0.0845	pCi/g		
Cesium-134	U	0.00866	+/-0.033	0.029	+/-0.033	0.058	pCi/g		
Cesium-137		0.162	+/-0.0611		+/-0.0611	0.0631	pCi/g		
Cobalt-60	U	0.0228	+/-0.0348		+/0.0348	0.0627	pCi/g		
Europium-152	U	0.00972	+/-0.0889		+/-0.0889	0.118	pCi/g		
Europium-154	U	-0.108	+/-0.101	0.0718	+/-0.101	0.144	pCi/g		
Europium-155	·U	0.0264	+/-0.072	0.0554	+/-0.072	0.111	pCi/g		
Lead–212 Lead–214		0.789	+/-0.0969		+/-0.0969	0.0633	pCi/g		
	* 1	0.694	+/-0.123	0.043	+/-0.123	0.086	pCi/g		
Manganese-54		-0.00518	+/-0.0331		+/0.0331	0.056	pCi/g		
Niobium-94	U	0.0226	+/0.0269		+/0.0269	0.0495	pCi/g		
Potassium–40 Radium–226		11.8 0.660	+/-1.20 +/-0.136	0.185 0.0423	+/-1.20	0.369	pCi/g		
	* 1				+/-0.136		pCi/g		
Silver–108m Thallium–208	U	-0.00506 0.309	+/-0.0257 +/-0.0638		+/-0.0257 +/-0.0638	0.0434 0.0501	pCi/g pCi/g		

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	10/19/06	1652	581177

The following Analytical Methods were performed

Method Description

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

2040 Savage Road Charleston SC 29407 - (843) 556--8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		
	Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332	:	Report Date: October 27, 2006
		Client Sample ID: Sample ID:	9520–0005–016F 174484014	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Parameter	•	Qualifier Result Uncertaint	y LC TPU	MDA Units DF Analyst Date Time Batch Mtd

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

'UI Gamma Spectroscopy---Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Address :	362 Injun H		ionite i ower									
Contact: Project:	East Hampto Mr. Jack Mo Soils PO# 0	Carthy	ticut 06424				R	leport D	ate: October 2	.7, 2006		
	Client Sam Sample ID Matrix: Collect Da Receive D Collector: Moisture:); ite:		9520-0005-017F 174484015 TS 17-OCT-06 19-OCT-06 Client 17.7%			Project: YANK01204 Client ID: YANK001 Vol. Recv.:			· · · ·		
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst Date	Time Batch Mtd		
Rad Gamma Spec Analy	sis											
Gamma,Solid–FSS GAM Waived	M & ALL FSS	226 Ingro	wth									
Actinium-228		0.646	+/-0.150	0.0601	+/0.150	0.120	pCi/g		МЈН1 10/26	/06 0652 581676 1		
Americium-241	U	0.0734	+/-0.0911	0.0727	+/-0.0911	0.145	pCi/g					
Bismuth-212		0.630	+/-0.295	0.117	+/-0.295	0.234	pCi/g					
Bismuth-214		0.494	+/0.0929		+/0.0929	0.0688	pCi/g	•				
Cesium-134	U	0.0428	+/-0.0286		+/0.0286	0.0456	pCi/g					
Cesium-137		0.527	+/0.0594		+/-0.0594	0.0365	pCi/g					
Cobalt-60	•	0.0989	+/-0.0585		+/-0.0585	0.0307	pCi/g					
Europium-152	U	0.0498	+/-0.0916		+/-0.0916	0.102	pCi/g					
Europium-154	U	0.00131	+/-0.0637		+/-0.0637	0.108	pCi/g					
Europium-155	U	0.0414	+/-0.0622		+/-0.0622	0.113	pCi/g					
Lead-212		0.640	+/-0.0805		+/-0.0805	0.0567	pCi/g					
Lead-214		0.537	+/-0.0975		+/-0.0975	0.0721	pCi/g					
Manganese-54		-0.00236	+/-0.0213		+/-0.0213	0.0368	pCi/g					
Niobium–94	U	0.0192	+/-0.0194		+/-0.0194	0.0352	pCi/g					
Potassium-40		10.9	+/-1.06	0.137	+/1.06	0.274	pCi/g					
Radium-226		0.494	+/-0.0929		+/-0.0929	0.0688	pCi/g					
Silver-108m	U	-0.0228	+/-0.0208	0.0168	+/0.0208	0.05.10	pCi/g					

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	10/19/06	1652	581177

The following Analytical Methods were performed

Method Description

1 , EML HASL 300, 4.5.2.3

Notes:

The Qualifiers in this report are defined as follows :

Company : Connecticut Yankee Atomic Power

* A quality control analyte recovery is outside of specified acceptance criteria

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Sample ID: Oualifier Re			17448401:	5 <u>.</u>		Client ID: Vol. Recv.:	YANK001	·
		Client Sample I	D:		9520000			Project:	YANK01204	
Proj	ect:	Soils PO# 002332	2							
Cont		East Hampton, Co Mr. Jack McCarth	06424				· F	Report Date: October 27	, 2006	
		Connecticut Yank 362 Injun Hollow		Power			· .			

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y OC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	<u> </u>								
Address :	Connecticut 362 Injun Ho		omic Power						
Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				R	Report Date: Octobe	er 27, 2006
	Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	: te: ate:		9520–00 1744840 TS 17–OCT 19–OCT Client 10.6%	16 06		Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst D	ate Time Batch M
, arameter									
Rad Gamma Spec Anal	ysis	· · · ·							
Rad Gamma Spec Analy Gamma,Solid-FSS GA	•	226 Ingrov	wth						
Rad Gamma Spec Anal Gamma,Solid–FSS GA Waived	•	5							
Rad Gamma Spec Analy Gamma,Solid–FSS GA Waived Actinium–228	.M & ALL FSS	0.790	+/-0.188	0.0689	+/-0.188	0.151	pCi/g	MJHI 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma,Solid–FSS GA Waived Actinium–228 Americium–241	•	0.790 -0.0223	+/-0.188 +/-0.0879	0.0783	+/-0.0879	0.163	pCi/g	МЈНІ 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma,Solid–FSS GA Waived Actinium–228 Americium–241 Bismuth–212	.M & ALL FSS	0.790 -0.0223 0.605	+/-0.188 +/-0.0879 +/-0.258	0.0783 0.139	+/-0.0879 +/-0.258	0.163 0.302	pCi/g pCi/g	MJH1 10	/26/06 0840 581676
Rad Gamma Spec Analy Ganima,Solid–FSS GA Waived Actinium–228 Americium–241 Bismuth–212 Bismuth–214	M & ALL FSS	0.790 -0.0223 0.605 0.580	+/-0.188 +/-0.0879 +/-0.258 +/-0.110	0.0783 0.139 0.0341	+/-0.0879 +/-0.258 +/-0.110	0.163 0.302 0.0735	pCi/g pCi/g pCi/g	MJH1 10	/26/06 0840 581676
Rad Gamma Spec Analy Ganima,Solid–FSS GA Waived Actinium–228 Americium–241 Bismuth–212 Bismuth–214 Cesium–134	.M & ALL FSS	0.790 -0.0223 0.605 0.580 0.00	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443	0.0783 0.139 0.0341 0.0261	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443	0.163 0.302 0.0735 0.0558	pCi/g pCi/g pCi/g pCi/g	MJH1 10	/26/06 0840 581676
Rad Gamma Spec Analy Ganima, Solid–FSS GA Waived Actinium–228 Americium–241 Bismuth–212 Bismuth–214 Cesium–134 Cesium–137	M & ALL FSS	0.790 -0.0223 0.605 0.580 0.00 0.239	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471	0.0783 0.139 0.0341 0.0261 0.0211	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471	0.163 0.302 0.0735 0.0558 0.0454	pCi/g pCi/g pCi/g pCi/g pCi/g	MJH1 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma,Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60	M & ALL FSS U U	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668	0.0783 0.139 0.0341 0.0261 0.0211 0.0248	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668	0.163 0.302 0.0735 0.0558 0.0454 0.0546	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJH1 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma, Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152	M & ALL FSS U U U U	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193 0.0184	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611	0.0783 0.139 0.0341 0.0261 0.0211 0.0248 0.0516	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611	0.163 0.302 0.0735 0.0558 0.0454 0.0546 0.109	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJH1 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma,Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154	M & ALL FSS U U U U U	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193 0.0184 0.0304	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611 +/-0.0624	0.0783 0.139 0.0341 0.0261 0.0211 0.0248 0.0516 0.0569	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611 +/-0.0624	0.163 0.302 0.0735 0.0558 0.0454 0.0546 0.109 0.127	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJH1 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma,Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155	M & ALL FSS U U U U	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193 0.0184 0.0304 0.0598	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611 +/-0.0624 +/-0.0578	0.0783 0.139 0.0341 0.0261 0.0211 0.0248 0.0516 0.0569 0.0533	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611 +/-0.0624 +/-0.0578	0.163 0.302 0.0735 0.0558 0.0454 0.0546 0.109 0.127 0.111	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJH1 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma,Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212	M & ALL FSS U U U U U	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193 0.0184 0.0304 0.0598 0.736	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611 +/-0.0624 +/-0.0578 +/-0.0599	0.0783 0.139 0.0341 0.0261 0.0211 0.0248 0.0516 0.0569 0.0533 0.029	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611 +/-0.0624 +/-0.0578 +/-0.0599	0.163 0.302 0.0735 0.0558 0.0454 0.0546 0.109 0.127 0.111 0.0606	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJH1 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma,Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214	ת & ALL FSS U U U U U U U U U U U	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193 0.0184 0.0304 0.0598 0.736 0.627	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0431 +/-0.0471 +/-0.0611 +/-0.0624 +/-0.0578 +/-0.0699 +/-0.0931	0.0783 0.139 0.0341 0.0261 0.0211 0.0248 0.0516 0.0569 0.0533 0.029 0.035	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611 +/-0.0624 +/-0.0578 +/-0.0599 +/-0.0931	0.163 0.302 0.0735 0.0558 0.0454 0.0546 0.109 0.127 0.111 0.0606 0.0742	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		/26/06 0840 581676
Rad Gamma Spec Analy Gamma,Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54	ັ <i>M & ALL FSS</i> ປ ບາ ບາ ບ ບ ບ ບ	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193 0.0184 0.0304 0.0598 0.736 0.627 0.0158	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.06611 +/-0.0624 +/-0.0578 +/-0.0699 +/-0.0931 +/-0.0252	0.0783 0.139 0.0341 0.0261 0.0211 0.0248 0.0516 0.0569 0.0533 0.029 0.035 0.0223	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611 +/-0.0624 +/-0.0578 +/-0.0578 +/-0.0931 +/-0.0252	0.163 0.302 0.0735 0.0558 0.0454 0.0546 0.109 0.127 0.111 0.0606 0.0742 0.0479	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	МІНІ 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma,Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94	ת & ALL FSS U U U U U U U U U U U	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193 0.0184 0.0304 0.0598 0.736 0.627 0.0158 0.0184	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0611 +/-0.0611 +/-0.0578 +/-0.0578 +/-0.0599 +/-0.0931 +/-0.0252 +/-0.0228	0.0783 0.139 0.0341 0.0261 0.0211 0.0248 0.0516 0.0569 0.0533 0.029 0.035 0.0223 0.0206	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0661 +/-0.0624 +/-0.0578 +/-0.0578 +/-0.0931 +/-0.0252 +/-0.0228	0.163 0.302 0.0735 0.0558 0.0454 0.0546 0.109 0.127 0.111 0.0606 0.0742 0.0479 0.0439	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	МЈНІ 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma, Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94 Potassium-40	ັ <i>M & ALL FSS</i> ປ ບາ ບາ ບ ບ ບ ບ	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193 0.0184 0.0304 0.0598 0.736 0.627 0.0158 0.0184 13.7	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0611 +/-0.0611 +/-0.0624 +/-0.0678 +/-0.0699 +/-0.0931 +/-0.0252 +/-0.0228 +/-1.05	0.0783 0.139 0.0341 0.0261 0.0211 0.0248 0.0516 0.0569 0.0533 0.029 0.035 0.0223 0.0206 0.154	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0668 +/-0.0611 +/-0.0578 +/-0.0578 +/-0.0578 +/-0.0252 +/-0.0228 +/-1.05	0.163 0.302 0.0735 0.0558 0.0454 0.0546 0.109 0.127 0.111 0.0606 0.0742 0.0479 0.0439 0.359	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	МЈНІ 10	/26/06 0840 581676
Rad Gamma Spec Analy Gamma, Solid-FSS GA Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94	M & ALL FSS U U U U U U U U U U U	0.790 -0.0223 0.605 0.580 0.00 0.239 0.193 0.0184 0.0304 0.0598 0.736 0.627 0.0158 0.0184	+/-0.188 +/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0611 +/-0.0611 +/-0.0578 +/-0.0578 +/-0.0599 +/-0.0931 +/-0.0252 +/-0.0228	0.0783 0.139 0.0341 0.0261 0.0211 0.0248 0.0516 0.0569 0.0533 0.029 0.035 0.0223 0.0206 0.154 0.0341	+/-0.0879 +/-0.258 +/-0.110 +/-0.0443 +/-0.0471 +/-0.0661 +/-0.0624 +/-0.0578 +/-0.0578 +/-0.0931 +/-0.0252 +/-0.0228	0.163 0.302 0.0735 0.0558 0.0454 0.0546 0.109 0.127 0.111 0.0606 0.0742 0.0479 0.0439	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	МЈН1 10	/26/06 0840 581676

The following l	Prep Methods were performed					
Method	Description	Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	10/19/06	1652	581177	

The following Analytical Methods were performed

Description Method

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

- * A quality control analyte recovery is outside of specified acceptance criteria
- Result is less than value reported <

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd
		Client Sample ID: Sample ID:	9520–0005–018F 174484016	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
	Project:	Soils PO# 002332		
,	Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy	•.	Report Date: October 27, 2006
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy---Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Connecticut 362 Injun Ho		omic Power						
Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				Re	port Date: October 2	7, 2006
noject.	Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	ple ID: : te:		9520–00 1744840 TS 16–OCT 19–OCT Client 6.26%	-06			YANK01204 YANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
Rad Gamma Spec Analy	sis								
Gamma,Solid–FSS GAI Waived	M & ALL FSS	226 Ingro	with						
Actinium-228		0.516	+/-0.141	0.0474	+/-0.141	0.104	pCi/g	MJH1 10/26	/06 0841 581676
Americium-241	.U	0.0286	+/0.0766	0.0716	+/-0.0766	0.149	pCi/g		
Bismuth-212		0.431	+/-0.219	0.0991	+/0.219	0.215	pCi/g		
Bismuth-214		0.448	+/0.0748	0.0257	+/0.0748	0.0551	pCi/g		
Cesium-134	U	0.023	+/-0.0226	0.0178	+/-0.0226	0.0382	pCi/g		
Cesium-137		0.0607	+/0.0248		+/0.0248	0.0327	pCi/g		
Cobalt-60		0.0715	+/-0.0294		+/0.0294	0.0375	pCi/g		
Europium-152	U	0.0222	+/0.0409		+/-0.0409	0.0785	pCi/g		
Europium-154	U	0.00337	+/-0.0513		+/-0.0513	0.0981	pCi/g		
Europium-155	U	0.00628	+/0.0434		+/-0.0434	0.0881	pCi/g		
Lead-212		0.469	+/0.0485		+/0.0485	0.0455	pCi/g	•	
Lead-214		0.386	+/-0.0738		+/-0.0738	0.055	pCi/g		
Manganese–54	U	-0.0101	+/-0.0158		+/0.0158	0.0273	pCi/g		
Niobium-94	U	0.00224	+/-0.0151		+/0.0151	0.0285	pCi/g		
Potassium-40		7.84	+/0.665	0.135	+/-0.665	0.304	pCi/g		
Radium-226		0.448	+/-0.0748		+/-0.0748	0.0551	pCi/g		
Silver-108m Thallium-208	U	-0.00874 0.127	+/-0.0161 +/-0:0402		+/-0.0161 +/-0.0402	0.0264 0.0265	pCi/g pCi/g		
Thallium-208 The following Prep Me	thods were po	0.127			+/-0.0402	0.0265	pCi/g		
	ription				Analyst	Date	Time		
Dry Soil Prep Dry S	Soil Prep GL-	RAD-A-(21		JMB I	10/19/	06 1652	581177	

The following Analytical Methods were performed

Method Description

EMIL HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

A quality control analyte recovery is outside of specified acceptance criteria *

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Quali	ier Resul	t Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
	Client Sampl	Sample ID: e ID:	:	9520–000 17448401			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Proje	ct: Soils P	O# 002332							
Contz		mpton, Conn k McCarthy	necticut 06424	: ²¹			I	Report Date: October 27	7, 2006
Comp Addre	-	ticut Yankee in Hollow Ro	Atomic Power 1						·

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Addr	oany : ess :	Connecticut 362 Injun He		omic Power									•
Conta	act:	East Hampto Mr. Jack Mo		ticut 06424			;	F	Report Date: Oc	tober 27	, 2006		•
Proje	ct:	Soils PO# 0	02332										
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	te:		9520-00 1744840 TS 16-OC 19-OC Client 6.1%	Г06		Project: Client ID: Vol. Recv.:	YANK01204 YANK001			·	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time	Batch 1	Mtd
Rad Alpha Spec A	nalysi	6											
Alphaspec Am24	1, Cm,	Solid ALL FS	S										
Americium-241		U	0.00479	+/0:155	0.128	+/-0.155	0.363	pCi/g	MXA 1	10/24/)6 1256	581362	1
Curium-242		υ	~0.0295	+/-0.087	0.0637	+/-0.087	0.239	pCi/g	· .				
Curium-243/24	4	U	-0.168	+/0.145	0.181	+/-0.147	0.469	pCi/g				•	
Alphaspec Pu, So	olid–Al	L FSS											
Plutonium-238		U	-0.023	+/-0.0679	0.0497	+/0.0679	0.186	pCi/g	MXA	10/23/	36 22 48	581363	2
Plutonium-239/	240	U	0.0998	+/-0.0829	0.103	+/-0.0832	0.294	pCi/g	I				
Liquid Scint Pu2	41, Sol	d-ALL FSS											
Plutonium-241		ູບ	-1.4	+/6.29	5.34	+/-6.29	11.2	pCi/g	MXA	10/24/	06 1630	581364	3
Rad Gamma Spec	: Analy	sis							I				
Gamma,Solid–F Waived	SS GAI	A & ALL FSS	226 Ingro	with									
Actinium-228			0.453	+/-0.154	0.0565	+/-0.154	0.121	pCi/g	· MJH1	10/26/	06 0842	581676	4
Americium-241	l	U	0.041	+/-0.0746		+/-0.0746	0.136	pCi/g					
Bismuth-212			0.388	+/-0.208	0.133	+/~0.208	0.281	pCi/g					
Bismuth-214			0.395	+/-0.0681	0.0309	+/-0.0681	0.0653	pCi/g					•
Cesium-134		UI	0.00	+/0.0326	0.0212	+/-0.0326	0.0447	pCi/g					
Cesium-137			0.152	+/-0.0458	0.0162	+/-0.0458	0.0344	pCi/g					
Cobalt-60		U	0.0157	+/-0.0246	0.019	+/0.0246	0.0412	pCi/g					·
Europium-152		υ	0.0268	+/-0.0505	0.0455	+/0.0505	0.0949	pCi/g	•				
Europium-154		U	-0.0269	+/0.0595		+/-0.0595	0.107	pCi/g					
Europium-155		U	0.0552	+/0.049	0.0468	+/-0.049	0.0965	pCi/g					
Lead-212			0.503	+/-0.0529		+/-0.0529	0.0498	pCi/g					
Lead-214			0.410	+/-0.0672		+/-0.0672	0.0659	pCi/g					
Manganese-54		U	0.00257	+/-0.0186		+/-0.0186	0.0351	pCi/g					
Niobium–94 Potassium–40		U	0.0328 [.] 8 71	+/-0.0346		+/-0.0346 +/-0.698	0.0333	pCi/g					
Radium-226			8.71 0.395	+/-0.698 +/-0.0681		+/-0.098	0.315 0.0653	pCi/g pCi/g					
Silver-108m		. H	0.00666	+/-0.0081		+/-0.0081	0.0033	pCi/g pCi/g					
Thallium-208		0	0.00000	+/0.0342		+/-0.0342	0.0336	pCi/g pCi/g					
Rad Gas Flow Pro	portio	nal Counting		., <u>5.05</u> 42	5.0137	., 0.03-12	0.0000	PC18					
GFPC, Sr90, sol	-	•	5										
Strontium-90	u -/1Ll	. <i>r</i> U	0.0149	+/0.0178	0.0124	+/-0.0178	0.030	pCi/g	וחפא	10/24/	06 1726	581340	. 5
Rad Liquid Scinti	llation		0.0149	T/-0.0178	0.0124	-1-0.0170	0.050	hend	1001	10/24/	50 1720	J0134U	<u> </u>
המע בוקשם סכווום	มลเบบก	പപ്പുട്ട											

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: October 27, 2006

Certificate of Analysis

- <u>·</u>

~ ~

Company : Connecticut Yankee Atomic Power 362 Injun Hollow Rd Address :

Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy	
Project:	Soils PO# 002332	

	Client Sam Sample ID		9520–0005–012F 174484018			Project: Client ID: Vol. Recv.:	YANK01204 YANK001		
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
Rad Liquid Scintillati	on Analysis								
LSC, Tritium Dist, Sc	olid-HTD2,ALL	FSS							
Tritium	U	0.597	+/-6.10	5.07	+/-6.10	11.0	pCi/g	DFA1 10/21/	06 1202 581335 6
Liquid Scint C14, Sol	lid All,FSS								
Carbon-14	U	0.00	+/-0.108	0.0909	+/-0.108	0.185	pCi/g	AXD2 10/24/	06 0303 581337 7
Liquid Scint Fe55, Sc	olid–ALL FSS								
Iron-55	U	16.2	+/-27.6	19.5	+/-27.7	41.1	pCi/g	MXP1 10/25/	06 2033 581333 8
Liquid Scint Ni63, So	olid–ALL FSS				· .				
Nickel-63	. U	6.65	+/-7.53	6.10	+/-7.53	12.6	pCi/g	MXP1 10/26/	06 0624 581334 9
Liquid Scint Tc99, Sc	olid–ALL FSS								
Technetium-99	U	0.108	+/-0.246	0.203	+/-0.246	0.420	pCi/g	KXR1 10/25/	06 0957 581330 10

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
/ Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	10/19/06	1652	581177

The following Analytical Methods were performed

Surrogate/Tracer recovery	Test	Recovery %	Acceptable Limits	
Americium-243	Alphaspec Am241, Cm, Solid ALL	68	(15%-125%)	· · ·
Plutonium-242	Alphaspec Pu, Solid-ALL FSS	82	(15%-125%)	
Plutonium-241	Liquid Scint Pu241, Solid-ALL FS	99	(25%-125%)	
Strontium-90	GFPC, Sr90, solid-ALL FSS	90	(25%-125%)	
Carrier/Tracer Recovery	GFPC, Sr90, solid-ALL FSS	90	(25%-125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Connecticut Yankee Atomic Power Address : 362 Injun Hollow Rd

Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Rej	Report Date: October 27, 2006					
	Client Sample ID: Sample ID:	9520-000 1744840			YANK01204 YANK001				
Parameter	Qualifier Result Uncertaint	, LC	TPU	MDA Units	DF Analyst Date	Time Batch Mtd			
Iron-55	Liquid Scint Fe55, Solid-AL	L FS	58	(15%–125%)					
Nickel-63	Liquid Scint Ni63, Solid-AL	LFS .	70	(25%-125%)					
Carrier/Tracer Recovery	Liquid Scint Ni63, Solid-AL	L FS	70	(25%-125%)					
Technetium-99	Liquid Scint Tc99, Solid-AL	L FS	80	(15%-125%)					
Carrier/Tracer Recovery	Liquid Scint Tc99, Solid-AL	L FS	80	(15%–125%)					

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

Result is greater than value reported >

The TIC is a suspected aldol-condensation product А

В Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

Н Analytical holding time was exceeded

Value is estimated J

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

Sample results are rejected R

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier Х

Y QC Samples were not spiked with this compound

Λ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company				omic Power										
Address :	362 Injun	Holl	low Rd											
Contact: Project:	East Harr Mr. Jack Soils POi	ĥсС	arthy	ticut 06424				F	leport Da	te: Oct	ober 27.	2006		
	Client S Sample Matrix: Collect Receive Collecto Moistur	ID: Date Date or:	:		9520-00 174484(TS 16-OC 19-OC Client 7.36%	r 06		Project: Client ID: Vol. Recv.:	YANK YANK			· ·		
Parameter	Qualifie	r	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst	Date	Time	Batch	Mtd
Rad Alpha Spec Anal	ysis													
Alphaspec Am241, C														
Americium-241		U	0.0165	+/-0.0811	0.0552	+/-0.0811	0.207	pCi/g		MXA	10/24/0	6 1256	581362	2 1
Curium–242 Curium–243/244		U U -	0.0368 -0.0242	+/-0.0722 +/-0.0825		+/0.0723 +/0.0825	0.0998 0.265	pCi/g pCi/g						
Alphaspec Pu, Solid- Plutonium-238		U	0.0245	+/-0.0908	0.0614	+/-0.0908	0.206	pCi/g		MXA	10/23/0	16 2248	581363	32
Plutonium-239/240	ł	U	-0.011	+/0.117	0.103	+/-0.117	0.289	pCi/g						
Liquid Scint Pu241,	Solid-ALL FS	55												
Plutonium-241		U	-3.7	+/-5.67	4.93	+/-5.67	10.3	pCi/g			10/24/0	6 1646	581364	43
Rad Gamma Spec An	alvsis									1				
Gamma,Solid–FSS (Waived		FSS 2	26 Ingro	wth										
Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60		U U -(0.531 -0.0179 0.264 0.453 0.0182 0.00514 9.840E-	+/-0.120 +/-0.0924 +/-0.189 +/-0.0135 +/-0.0192 +/-0.0172 +/-0.0166	0.107 0.028 0.0179 0.0146	+/-0.0924	0.101 0.173 0.231 0.0595 0.0381 0.0313 0.0316	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		MJH1		б 0843	581676	54
Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94 Potassium-40 Radium-226 Silver-108m		บั- บั- บั-	05 -0.0109 -0.0621 0.0739 0.594 0.452 0.00992 0.00524 9.74 0.453 0.0177	+/-0.0438 +/-0.0558 +/-0.0474 +/-0.0492 +/-0.0656 +/-0.017 +/-0.0148 +/-0.772 +/-0.0635 +/-0.0269	0.0413 0.0487 0.0215 0.026 0.0153 0.0132 0.138 0.028 0.0123	+/-0.0148 +/-0.772 +/-0.0635 +/-0.0269	0.0789 0.0916 0.101 0.0448 0.0548 0.0327 0.0283 0.310 0.0595 0.0262	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g						
Thallium-208 Rad Gas Flow Propo	rtional Count	inø	0.167	+/-0.0318	0.0137	+/0.0318	0.0293	pCi/g						
GFPC, Sr90, solid-		ung												
Strontium-90		U	0.0273	+/-0.019	0.0126	+/-0.019	0.029	pCi/g		KSDI	[,] 10/24/()6 1726	581340	05

Report Date: October 27, 2006

Certificate of Analysis

Company : Connecticut Yankee Atomic Power 362 Injun Hollow Rd Address :

	East Hampton, Connecticut 06424
Contact:	Mr. Jack McCarthy
	0. 11. 10.01.0000000

Project: Soils PO# 002332

	Client Sar Sample II			9520–00 1744840	1484019		Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
Rad Liquid Scintillati	on Analysis							·····	
LSC, Tritium Dist, Sc	olid-HTD2,ALL	FSS							
Tritium	υ	4.19	+/-7.20	5.73	+/-7.20	12.4	pCi/g	DFA1 10/21/	06 1218 581335 6
Liguid Scint C14, Sol	lid All,FSS								
Carbon-14	U	0.00644	+/-0.116	0.0976	+/-0.116	0.199	pCi/g	AXD2 10/24/	06 0407 581337 7
Liquid Scint Fe55, Sc	olid-ALL FSS								
Iron-55	U	5.85	+/-29.2	20.9	+/-29.2	44.1	pCi/g	MXP1 10/25/	06 2049 581333 8
Liquid Scint Ni63, So	olid-ALL FSS								
Nickel-63	U	3.53	+/-7.65	6.31	+/7.65	13.1	pCi/g	MXP1 10/26/	06 0656 581334 9
Liquid Scint Tc99, Sc	olid–ALL FSS				· ·				
Technetium-99	υ	0.154	+/-0.256	0.210	+/-0.256	0.435	pCi/g	KXR1 10/25/	06 1013 581330 10

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	10/19/06	1652	581177

The following Analytical Methods were performed

Method	Description	
1	DOE EML HASL-300, Am-05-RC Modified	-
2	DOE EML HASL-300, Pu-11-RC Modified	
3	DOE EML HASL-300, Pu-11-RC Modified	
4	EML HASL 300, 4.5.2.3	
•5	EPA 905.0 Modified	
6	EPA 906.0 Modified	
7	EPA EERF C-01 Modified	
. 8	DOE RESL Fe-1, Modified	
9	DOE RESL Ni-1, Modified	
10	DOE EML HASL-300, Tc-02-RC Modified	

Surrogate/Tracer recovery	Test	Recovery%	Acceptable Limits	
Americium-243	Alphaspec Am241, Cm, Solid ALL	71	(15%-125%)	
Plutonium-242	Alphaspec Pu, Solid–ALL FSS	94	(15%-125%)	
Plutonium-241	Liquid Scint Pu241, Solid-ALL FS	108	(25%–125%)	
Strontium–90	GFPC, Sr90, solid-ALL FSS	89	(25%-125%)	
Carrier/Tracer Recovery	GFPC, Sr90, solid-ALL FSS	89	(25%-125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Con Add	tomic Power										
Contact: Project:		East Hampto Mr. Jack Mc Soils PO# 00	Carthy	eticut 06424		Report Date: October 27, 2006					, 2006
		Client Sample ID: Sample ID:			9520-0005-013F 174484019		Project: YANK01204 Client ID: YANK001 Vol. Recv.:				
Parameter	·······	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF An	alyst Date	Time Batch Mtd
Iron-55		Liqui	d Scint Fe	55, Solid-ALL	FS	61		(15%–125%)		
Nickel-63		. · Liqui	d Scint Ni	63, Solid-ALL	FS	70		(25%-125%)		
Carrier/Tracer Re	ecovery	Liqui	d Scint Ni	63, Solid-ALL	FS	70		(25%-125%)		
Technetium-99		Liqui	d Scint To	99, Solid-ALL	FS	77		(15%-125%)		
Carrier/Tracer Re	ecoverv	Liqui	d Scint To	99, Solid-ALL	FS	77		(15%-125%	١		

Notes:

The Qualifiers in this report are defined as follows :

- * A quality control analyte recovery is outside of specified acceptance criteria
- < Result is less than value reported
- Result is greater than value reported >
- A The TIC is a suspected aldol-condensation product
- Target analyte was detected in the associated blank В
- BD Results are either below the MDC or tracer recovery is low
- Analyte has been confirmed by GC/MS analysis С
- D Results are reported from a diluted aliquot of the sample
- Н Analytical holding time was exceeded
- Value is estimated J

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. U

- UI Gamma Spectroscopy---Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier х
- Υ QC Samples were not spiked with this compound
- Λ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded h

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Connecticut 362 Injun Ho		omic Power									
Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				Report Date: October 27, 2006					
	Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	: te:		9520-00 1744840 TS 16-OC 19-OC Client 7.42%	r06		Project: Client ID: Vol. Recv.:	YANK01204 YANK001				
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time	Batch 1	Mtd
Rad Alpha Spec Analysi	s											
Alphaspec Am241, Cm,	Solid ALL FS											
Americium-241	U	0.0167	+/-0.141	0.110	+/-0.141	0.336	pCi/g	MXA 1	10/24/06	5 1256	581362	1
Curium-242	U	-0.0197	+/-0.102	0.0983	+/-0.102	0.318	pCi/g					
Curium-243/244	U	-0.255	+/-0.167	0.222	+/0.170	0.562	pCi/g					
Alphaspec Pu, Solid-A												_
Plutonium-238	U ·	-0.00418	+/-0.132	0.113	+/-0.132	0.320	pCi/g	MXA 1	10/23/00	5 2248	581363	2
Plutonium-239/240		-0.00697	+/-0.0775	0.0699	+/-0.0775	0.234	pCi/g					
Liquid Scint Pu241, Sol Plutonium–241	id-ALL FSS U	-1.41	+/-6.32	5.37	+/-6.32	11.3	oC:/r	N/V A	10/24/0	6 1700	501264	2
Flutomulti-241	U .	-1.41	+/-0.52	5.57	+/-0.32	11.5	pCi/g	1	10/24/0	51702	201204	2
Rad Gamma Spec Analy	sis											
Gamma,Solid–FSS GA Waived	M & ALL FSS	226 Ingro	wth						·			
Actinium-228		0.603	+/-0.167	0.0562	+/0.167	0.124	pCi/g	MJHI	10/26/0	5 0844	581676	4
Americium-241	U	0.0104	+/-0.0302	0.0256	+/-0.0302	0.0529	pCi/g					
Bismuth-212		0.376	+/-0.281	0.140		0.303	pCi/g					
Bismuth-214		0.513	+/0.0917		+/-0.0917	0.0685	pCi/g					
Cesium-134	U	0.0306	+/-0.0241		+/-0.0241	0.0484	pCi/g					
Cesium–137		-0.00627	+/-0.0217		+/-0.0217	0.0389	pCi/g					
Cobalt–60		-0.00391	+/-0.023	0.019	+/-0.023	0.0425	pCi/g					
Europium-152	U	-0.0186	+/-0.0497		+/0.0497	0.0922	pCi/g					
Europium-154	U	-0.0166	+/-0.0608		+/-0.0608	0.112	pCi/g					
Europium–155	U	0.0182	+/-0.0461		+/-0.0461	0.0878	pCi/g					
Lead-212 Lead-214		0.645 0.550	+/-0.0607 +/-0.086	0.0238	+/-0.0607 +/-0.086	0.0499	pCi/g					
Manganese–54	U	0.0203	+/-0.0215		+/-0.0215	0.0688 0.0424	pCi/g pCi/g					
		-0.00793	+/-0.0213		+/0.0213		·					
Niobium–94 Potassium–40	0	10.1	+/-0.910	0.192		0.0342 0.428	pCi/g pCi/g					
Radium–226		0.513	+/-0.0917		+/-0.0917	0.0685	pCi/g					
Silver-108m	U	-0.0261	+/-0.0203		+/-0.0203	0.0291	pCi/g					
Thallium-208	5	0.155	+/-0.0441		+/-0.0441	0.0367	pCi/g					
Rad Gas Flow Proportio	onal Counting						r 8					
GFPC, Sr90, solid-AL												
Strontium-90	U	0.00461	+/-0.0203	0.0165	+/-0.0203	0.0376	pCi/g	KSDI	10/24/0	6 1737	581340	5
Rad Liquid Scintillation		0.00-101	0.0200	0.0100	.1 0.0203	0.0370	hcn B	1.001	1012-110		2012-0	5
Kau Erguna Schimation	, , , , , , , , , , , , , , , , , , , ,											

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	Connecticut Yankee Atomic Power
Address :	362 Injun Hollow Rd

Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				F	Report Date: October 27	, 2006
	Client Sam Sample ID			9520–0005–013FS 174484020			Project: Client ID: Vol. Recv.:		
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
Rad Liquid Scintillatio	n Analysis								
LSC, Tritium Dist, Sol	id-HTD2,ALL	FSS					÷		
Tritium	U	9.86	+/7.17	5.55	+/-7.17	11.7	pCi/g	DFA1 10/23/0	06 2107 581335 6
Liquid Scint C14, Soli	d All,FSS								
Carbon-14	U	-0.0967	+/-0.113	0.0963	+/-0.113	0.196	pCi/g	AXD2 10/24/0	06 0637 581337 8
Liquid Scint Fe55, Sol Iron-55	id–ALL FSS	51.3	+/-32.4	21.8	+/32.7	45.9	pCi/g	MXP1 10/25/	06 2106 581333 9

<i>Liguid Scint Ni63, Solid–AL</i> Nickel–63	L FSS U	7.15	+/-8.84	. 7.19	+/-8.84	14.9	pCi/g	MXP1 10/26/06 0727 581334 10
<i>Liquid Scint Tc99, Solid–AL</i> Technetium–99	L FSS. U	0.188	+/-0.263	0.214	+/0.263	0.444	pCi/g	KXR1 10/25/06 1030 581330 11

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch 581177	
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	10/19/06	1652		

The following Analytical Methods were performed Method

Method ·	Description	
1	DOE EML HASL-300, Am-05-RC Modified	_
2	DOE EML HASL-300, Pu-11-RC Modified	
3	DOE EML HASL-300, Pu-11-RC Modified	
4	EML HASL 300, 4.5.2.3	
5	EPA 905.0 Modified	
6	EPA 906.0 Modified	
7	EPA 906.0 Modified	
8	EPA EERF C01 Modified	
9	DOE RESL Fe-1, Modified	
10	DOE RESL Ni-1, Modified	
11	DOE EML HASL-300, Tc-02-RC Modified	

Surrogate/Tracer recovery	Test	Recovery %	Acceptable Limits	
Americium-243	Alphaspec Am241, Cm, Solid ALL	69	(15%-125%)	
Plutonium-242	Alphaspec Pu, Solid-ALL FSS	83	(15%-125%)	
Plutonium-241	Liquid Scint Pu241, Solid-ALL FS	99	(25%-125%)	
Strontium-90	GFPC, Sr90, solid-ALL FSS	77	(25%-125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

<u>Certificate of Analysis</u>

t: Mr. Jack	McCarthy	cticut 06424	r ⁱⁿ			R	eport Date: October 27	7, 2006
						Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Qualifie	r Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
very G	FPC, Sr90, s	olid-ALL FSS		77		(25%-125%)		
Li	quid Scint F	e55, Solid-ALL I	FS	57		(15%–125%)		
Li	quid Scint N	i63, Solid-ALL	FS	65		(25%–125%)		
very Li	quid Scint N	i63, Solid-ALL	FS	65		(25%–125%)		
Li	quid Scint T	c99, Solid-ALL	FS	74		(15%–125%)		
very Li	quid Scint T	c99, Solid-ALL	FS	74		(15%–125%)		
	ct: Mr. Jack i t: Soils PO# Client S Sample Qualifie ivery Gi Li ivery Li Li	ct: Mr. Jack McCarthy t: Soils PO# 002332 Client Sample ID: Sample ID: Qualifier Result very GFPC, Sr90, s Liquid Scint N Liquid Scint N Liquid Scint T	t: Soils PO# 002332 Client Sample ID: Sample ID: Qualifier Result Uncertainty very GFPC, Sr90, solid-ALL FSS Liquid Scint Fe55, Solid-ALL Liquid Scint Ni63, Solid-ALL Liquid Scint Ni63, Solid-ALL Liquid Scint Tc99, Solid-ALL	ct: Mr. Jack McCarthy tt: Soils PO# 002332 Client Sample ID: 9520-000 Sample ID: 17448402 Qualifier Result Uncertainty LC very GFPC, Sr90, solid-ALL FSS Liquid Scint Fe55, Solid-ALL FS Liquid Scint Ni63, Solid-ALL FS Liquid Scint Tc99, Solid-ALL FS	ct: Mr. Jack McCarthy soils PO# 002332 Client Sample ID: 9520-0005-013FS Sample ID: 174484020 Qualifier Result Uncertainty LC TPU very GFPC, Sr90, solid-ALL FS 77 Liquid Scint Fe55, Solid-ALL FS 57 Liquid Scint Ni63, Solid-ALL FS 65 very Liquid Scint Ni63, Solid-ALL FS 65 Liquid Scint Tc99, Solid-ALL FS 74	ct: Mr. Jack McCarthy Soils PO# 002332 Client Sample ID: 9520-0005-013FS Sample ID: 174484020 Qualifier Result Uncertainty LC TPU MDA very GFPC, Sr90, solid-ALL FSS 77 Liquid Scint Fe55, Solid-ALL FS 57 Liquid Scint Ni63, Solid-ALL FS 65 very Liquid Scint Ni63, Solid-ALL FS 65 Liquid Scint Tc99, Solid-ALL FS 74	ct: Mr. Jack McCarthy Soils PO# 002332 Client Sample ID: 9520-0005-013FS Sample ID: 9520-0005-013FS 174484020 Project: Client ID: Vol. Recv.: Qualifier Result Uncertainty LC TPU MDA Units very GFPC, Sr90, solid-ALL FS 77 (25%-125%) Liquid Scint Fe55, Solid-ALL FS 57 (15%-125%) Liquid Scint Ni63, Solid-ALL FS 65 (25%-125%) Liquid Scint Ni63, Solid-ALL FS 65 (25%-125%) Liquid Scint Tc99, Solid-ALL FS 74 (15%-125%)	ct: Mr. Jack McCarthy Soils PO# 002332 Client Sample ID: 9520–0005–013FS Sample ID: 9520–0005–013FS 174484020 Project: YANK01204 Client ID: Vol. Recv.: YANK001 Vol. Recv.: VANK001 Vol. Recv.: DF Analyst Date Very GFPC, Sr90, solid–ALL FS 77 (25%–125%) Liquid Scint Fe55, Solid–ALL FS 65 (25%–125%) Liquid Scint Ni63, Solid–ALL FS 65 (25%–125%) Liquid Scint Ni63, Solid–ALL FS 74 (15%–125%)

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

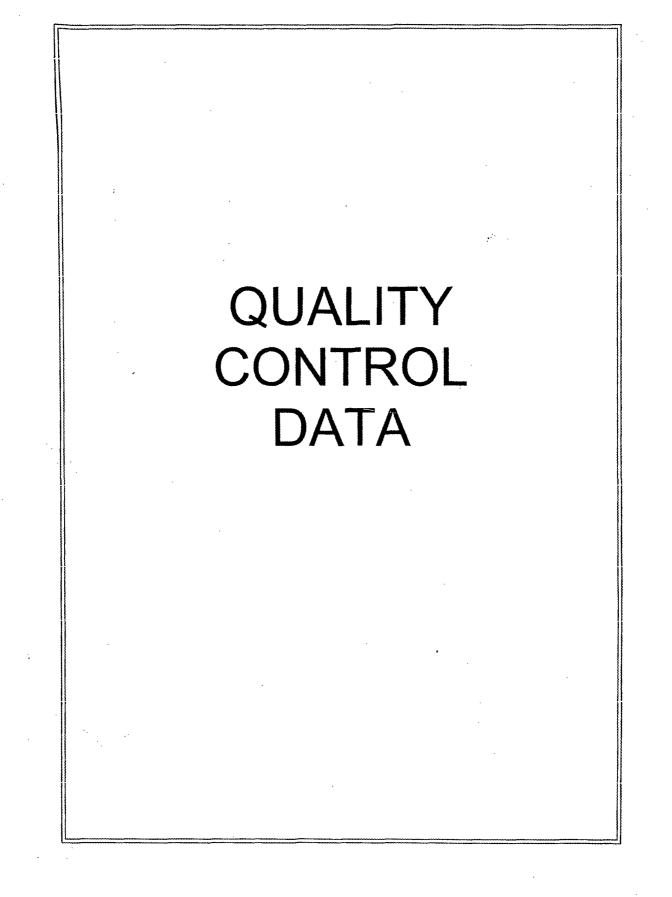
J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification


X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

			QC	Sur	nmary			D4 D	- 4 () - 4-1 27 200	
Client :	Connecticut Yankee 362 Injun Hollow Rd			,				Kedori D	ate: October 27, 200 Page 1 of 9)
Contact:	East Hampton, Conn Mr. Jack McCarthy	ecticut						·		
Workorder:	174484									
 Parmname		NOM	Sample (Dual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Alpha Spec										
	581362									
OC12012124	24 174484018 DUP				÷					
Americium-241		U	0.00479	U	-0.198	pÇi/g	210		(0% - 100%) AXA1	10/24/06 12:56
		Uncert:	+/-0.155	,	+/-0.112	1.0				
		TPU:	+/-0.155		+/-0.115					
Curium-242		U	-0.0295	U	0.0528	pCi/g	706		(0% - 100%)	
		Uncert:	+/-0.087		+/-0.178	1 0			. ,	
		TPU:	+/-0.087		+/-0.178					
Curium-243/24	4	U	-0.168	U	-0.194	pCi/g	14		(0% - 100%)	
		Uncert:	+/-0.145		+/-0.248					
		TPU:	+/-0.147		+/-0.249					
QC12012124	26 LCS									
Americium-241	l	13.3			15.1	pCi/g		114	(75%-125%)	10/24/06 12:56
		Uncert:			+/-1.48					
		TPU:			+/-2.42					
Curium-242				U	0.0121	pCi/g				
		Uncert:			+/-0.115					
		TPU:			+/-0.115					
Curium-243/24	4 .	16.0			14.9	pCi/g		93	(75%-125%)	
		Uncert:			+/-1.48					
		TPU:			+/-2.39	· .				
QC12012124										
Americium-241	L			U	-0.0135	pCi/g				- 10/24/06 12:56
·		Uncert:			+/-0.145					
		TPU:			+/-0.145					
Curium-242				U	-0.125	pCi/g				
		Uncert:			+/-0.111					
		TPU:			+/-0.112					
Curium-243/24	4	••		U	0.0154	pCi/g				
		Uncert:			+/-0.280					
0.010010104	05 174404010 340	TPU:			+/-0.280					
QC12012124 Americium-241		13.5 11	0.00479		14.7	-Cila		109	(75%-125%)	10/24/06 12:56
Americam-24		13.5 U Uncert:	+/-0.155		+/-1.63	pCi/g		109	(7570-12570)	10/24/00 12:50
		TPU:	+/-0.155		+/-2.56					
Curium-242		U	-0.0295	U	0.0735	pCi/g				
241411-272		Uncert:	+/-0.087	0	+/-0.138	hend				
		TPU:	+/-0.087		+/-0.138					
Curium-243/24	4 .	16.3 U	-0.168		15.2	pCi/g		63	(75%-125%)	
	•	Uncert:	+/-0.145		+/-1.66	PCDB			(1010 200)	
		TPU:	+/-0.147		+/-2.63					
Batch	581363		17 0.177		11-2.00					
,										
QC12012124 Plutonium-238	28 174484018 DUP		-0.023	U	0.023	-Cila	0		(0% - 100%) <i>I</i> IXA1	10/23/06 22:45
1 1010110111-230		U	-0.023	U	0.043	pCi/g	0		(070 - 10070) VIAAI	10123100 22:40

		<u> </u>	~	<u>iiiiiiai y</u>					
Workorder: 174484								Page 2 of 9	
Рагтлате	NOM	Sample (Jual	QC	Units	RPD%	REC %	Range Anlst	Date Time
Rad Alpha Spec									
Batch 581363									
	Uncert:	+/-0.0679		+/-0.101					
	TPU:	+/-0.0679		+/-0.101	:				
Plutonium-239/240	110. U	-0.0998	U	0.0284	pCi/j	g O		(0% - 100%)	
	Uncert:	+/-0.0829	U	+/-0.0801	pen	5 0		(070 10070)	
	TPU:	+/-0.0832		+/-0.0801					
QC1201212430 LCS	110.	+7-0.005L		47-0.0001					
Plutonium-238			U	-0.0729	pCi/	g		(75%-125%)	
	Uncert:			+/-0.0692	• •				
	TPU:			+/-0.0693					
Plutonium-239/240	12.3			12.4	pCi/	g	101	(75%-125%)	
	Uncert:			+/-1.15		6		· · ·	•
	TPU:			+/-1.68					
QC1201212427 MB		•							
Plutonium-238			U	-0.0753	pCi/	g			10/23/06 22:4
	Uncert:			+/-0.134		-			
	TPU:			+/-0.134					
Plutonium-239/240			U	-0.0357	pCi/	g		·	
	Uncert:			+/-0.129		-			
	TPU:			+/-0.129					•
QC1201212429 174484018 MS									
Plutonium-238	U	-0.023	U	0.0382	pCi/	g		(75%-125%)	10/23/06 22:4
	Uncert:	+/-0.0679		+/-0.167					
	TPU:	+/-0.0679		+/-0.167					
Plutonium-239/240	12.5 U	-0.0998		13.2	pCi/	g	106	(75%-125%)	
	Uncert:	+/-0.0829		+/-1.28					
	TPU:	+/-0.0832		+/-1.87					
Batch 581364	·								
QC1201212432 174484018 DUP									
Plutonium-241	U	-1.4	U	-3.46	pCi/	g 0		(0% - 100%) AXA i	10/24/06 17:3
	Uncert:	+/-6.29		+/-6.87	•	0		. ,	
	TPU:	+/-6.29		+/-6.87					
QC1201212434 LCS									
Plutonium-241	144			121	pCi/	g	84	(75%-125%)	10/24/06 18:0
	Uncert:			+/-11.3				•	
	TPU:			+/-15.7					
QC1201212431 MB									
Plutonium-241			U	0.00	pCi/	g			10/24/06 17:1
	Uncert:			+/-6.73					
	TPU:			+/-6.73					
QC1201212433 174484018 MS					_				
Plutonium-241	145 · U	-1.4	·	123	pCi/	g	85	(75%-125%)	10/24/06 17:5
	Uncert:	+/-6.29		+/-11.4					
	TPU:	+/-6.29		+/-17.1					
Rad Gamma Spec									
Batch 581676									
QC1201213161 174484001 DUP									
Actinium-228		0.834		0.842	pCi/	'g 1		(0% - 100%) MJH1	10/26/06 08:4
	Uncert:	+/-0.172		+/-0.142		_			

		$\underline{\mathbf{v}}$	· DU	<u>mmar y</u>							
Workorder: 174484								Page 3	of 9		
Parmname	NOM	Sample (Qual	QC	Units F	RPD%	REC%	Range	Anlst	Date	Time
Rad Gamma Spec											
Batch 581676											
•	TPU:	+/-0.172									
Americium-241	U	-0.0109	U	-0.0378	pCi/g	111		(0% - 100%))		
、	Uncert:	+/-0.0281		+/-0.0921					•		
	TPU:	+/-0.0281		+/-0.0921							
Bismuth-212	• .	0.439		0.558	pCi/g	24		(0% - 100%))		
	Uncert:	+/-0.196		+/-0.253							
	TPU:	+/-0.196		+/-0.253							
Bismuth-214		0.521		0.557	pCi/g	7		(0% - 100%)		
	Uncert:	+/-0.0929	•	+/-0.0936							
	TPU:	+/-0.0929		+/-0.0936							
Cesium-134	U	0.0453	UI	0.00	pCi/g	39		(0% - 100%)		
	Uncert:	+/-0.0357		+/-0.0275							
	TPU:	+/-0.0357		+/-0.0275							
Cesium-137	U	0.041	U	0.0279	pCi/g	38		(0% - 100%)		
	Uncert:	+/-0.0286		+/-0.0268							
	TPU:	+/-0.0286		+/-0.0268							
Cobalt-60	U	0.0413	U	0.0171	pCi/g	83		(0% - 100%)		
	Uncert:	+/-0.027		+/-0.0198							
	TPU:	+/-0.027		+/-0.0198							
Europium-152	υ	0.0149	U	-0.0108	pCi/g	1260		(0% - 100%) .		
	Uncert:	+/-0.0506		+/-0.0452							
	TPU:	+/-0.0506		+/-0.0452							
Europium-154	U	-0.00379	U	-0.00947	pCi/g	86		(0% - 100%)	•	
	Uncert:	+/-0.0737		+/-0.0618							
	TPU:	+/-0.0737		+/-0.0618	_						
Europium-155	U	0.0341	U	0.050	pCi/g	38		(0% - 100%)		
	Uncert:	+/-0.0557		+/-0.0485		•					
	TPU:	+/-0.0557		+/-0.0485	~	_					
Lead-212		0.751		0.702	pCi/g	7		(0% - 20%)		•
	Uncert:	+/-0.0636		+/-0.052							
	TPU:	+/-0.0636		+/-0.052	~						
Lead-214		0.535		0.546	pCi/g	2		(0% - 20%)		
	Uncert:	+/-0.0812		+/-0.0622							
	TPU:	+/-0.0812		+/-0.0622	C			.00 1000	, ,		
Manganese-54	U	0.0193	υ	-0.00223	pCi/g	252		(0% - 100%)		
	Uncert:	+/-0.0215		+/-0.0201							
N'-1' 04	TPU:	+/-0.0215		+/-0.0201	0.1	(24		1001 1000	、		
Niobium-94	U	-0.0146	U	0.00759	. pCi/g	634		(0% - 100%	9		
	Uncert:	+/-0.0199		+/-0.0156							
Detracium 40	TPU:	+/-0.0199		+/-0.0156	-0:1-	7		1001 0001	、		
Potassium-40	11	12.4		11.6	pCi/g	7		(0% - 20%)		· .
	Uncert:	+/-0.978		+/-0.835							
Radium-226	TPU:	+/-0.978		+/-0.835	-0:/-	7		1007 1000	· ·		
Nadium-220	Linco	0.521		0.557	pCi/g	7		(0% - 100%	<i>y</i>		
	Uncert:	+/-0.0929		+/-0.0936							
Silver 108m	TPU:	+/-0.0929	11	+/-0.0936	-0:/-	E A		1007. 1000			
Silver-108m	U	-0.0131	U	-0.00672	pCi/g	64		(0% - 100%	ッ		
	Uncert:	+/-0.0181		+/-0.0143							

		<u>veb</u>	JIIIIII J						
Workorder: 174484							Page 4	of 9	
Parmname	NOM	Sample Qual	QC	Units RI	PD%	REC%	Range	Anlst	Date Time
Rad Gamma Spec									
Batch 581676									
· .	TPU:	+/-0.0181	+/-0.0143						
Thallium-208		0.267	0.240	pCi/g	11		(0% - 100%)		:
	Uncert:	+/-0.0418	+/-0.0424						
	TPU:	+/-0.0418	+/-0.0424						
QC1201213162 LCS									
Actinium-228		U	0.00574	pCi/g					10/26/06 08:46
	Uncert:		+/-0.327						
	TPU:		+/-0.327						
Americium-241	23.4		25.2	· pCi/g		108	(75%-125%)		
	Uncert:		+/-0.898						
	TPU:		+/-0.898						
Bismuth-212		U	-0.58	pCi/g					
÷	Uncert:		+/-0.578						
	TPU:		+/-0.578						
Bismuth-214		U	0.0386	pCi/g					
	Uncert:		+/-0.154						
	TPU:		· +/-0.154						
Cesium-134		υ	0.0123	pCi/g					•
	Uncert:		+/-0.0848						
	TPU:		+/-0.0848						
Cesium-137	9.55		9.92	pCi/g		104	(75%-125%)		
	Uncert:		+/-0.286		_				
	TPU:		+/-0.286						
Cobalt-60	14.2		14.6	pCi/g		103	(75%-125%)	ł.	
	Uncert:		+/-0.394						
	TPU:		+/-0.394						
Europium-152		U	-0.11	pCi/g					
	Uncert:		+/-0.165						
	TPU:		+/-0.165						
Europium-154		U	-0.028	pCi/g					
-	Uncert:		+/-0.157	-					
	TPU:		+/-0.157						•
Europium-155		U	-0.11	pCi/g					
•	Uncert:		+/-0.175						
	TPU:		+/-0.175						
Lead-212		U	0.0836	pCi/g					
	Uncert:		+/-0.0947						
	TPU:		+/-0.0947						
Lead-214		U		pCi/g					
	Uncert:		+/-0.120	1 0					
	TPU:		+/-0.120						
Manganese-54		U	0.0143	pCi/g					
2	Uncert:	-	+/-0.0764	- · · · ·					
	TPU:		+/-0.0764						•
Niobium-94		U	-0.0245	pCi/g					
	Uncert:		+/-0.0752	P0					
	TPU:		+/-0.0752						
Potassium-40	11.0.	U	0.0561	pCi/g					
, substant to		Ŭ	5.0501	PC26					

		QC Su	mmary			•	
Workorder: 174484						Page 5 of 9	
Parmname	NOM	Sample Qual	QC	Units RPD%	REC%	Range Anlst	Date Time
Rad Gamma Spec							
Batch 581676							
	Uncert:		+/-0.611				
	TPU:		+/-0.611				
Radium-226		υ	0.0386	pCi/g	(75%-125%)	
	Uncert:		+/-0.154				
	TPU:		+/-0.154				
Silver-108m		U	-0.0273	pCi/g			
	Uncert:		+/-0.0636				
	TPU:		+/-0.0636				
Thallium-208		U	-0.012	pCi/g			
	Uncert:		+/-0.0724				
	TPU:		+/-0.0724				
QC1201213160 MB							
Actinium-228		U	0.0124	pCi/g			10/26/06 08:44
	Uncert:		+/-0.0585				
	TPU:		+/-0.0585				
Americium-241		U	0.0068	pCi/g			
	Uncert:		+/-0.0438				
	TPU:		+/-0.0438				
Bismuth-212		U	0.0195	pCi/g			
	Uncert:		+/-0.0909				
	TPU:		+/-0.0909				
Bismuth-214		U	0.00809	pCi/g			
	Uncert:		+/-0.0394				
	TPU:		+/-0.0394				
Cesium-134		U	0.0041	pCi/g			
	Uncert:		+/-0.0129				
	TPU:		+/-0.0129				
Cesium-137		U	0.00315	pCi/g			
	Uncert:		+/-0.0121				
	TPU:		+/-0.0121				
Cobalt-60		U	-0.00153	pCi/g			
	Uncert:		+/-0.0124				
	TPU:		+/-0.0124				
Europium-152		υ	-0.0203	pCi/g			
	Uncert:		+/-0.0361				
	TPU:		+/-0.0361				
Europium-154		U	0.00513	pCi/g			
	Uncert:		+/-0.037				
	TPU:		+/-0.037				
Europium-155		U	-0.0163	pCi/g			
-	Uncert:		+/-0.0276				
	TPU:		+/-0.0276	•			
Lead-212		υ	0.00479	pCi/g			
	Uncert:		+/-0.0255	. –			
	TPU:		+/-0.0255				
Lead-214		Ū	0.0131	pCi/g			
	Uncert:		+/-0.0428				
	TPU:		+/-0.0428				

OC Summary

83

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 174484 Page 6 of 9 Parmname NOM Sample Qual OC Units RPD% REC% Range Anlst Date Time Rad Gamma Spec 581676 Manganese-54 υ 0.014 pCi/g Uncert: +/-0.0175 . TPU: +/-0.0175 Niobium-94 U 0.00738 pCi/g +/-0.0114 Uncert: +/-0.0114 TPU: Potassium-40 υ 0.210 pCi/g Uncert: +/-0.298 TPU: +/-0.298 Radium-226 υ 0.00809 pCi/g Uncert: +/-0.0394 TPU: +/-0.0394 Silver-108m υ -0.00377 pCi/g +/-0.0128 Uncert: TPU: +/-0.0128 Thallium-208 บ 0.00746 pCi/g Uncert: +/-0.0278 +/-0.0278 TPU: **Rad Gas Flow** 581340 QC1201212370 174484018 DUP 0.0149 U -0.00127 Strontium-90 pCi/g 0 (0% - 100%). KSD1 10/24/06 17:32 υ Uncert: +/-0.0178 +/-0.0172 +/-0.0178 +/-0.0172 TPU: QC1201212372 LCS Strontium-90 1.23 1.08 pCi/g 88 (75%-125%) 10/24/06 17:33 +/-0.113 Uncert: TPU: +/-0.117 QC1201212369 MB Strontium-90 υ 0.0135 pCi/g 10/24/06 17:32 Uncert: +/-0.0165 TPU: +/-0.0165 QC1201212371 174484018 MS Strontium-90 2.91 U 0.0149 2.76 pCi/g 95 (75%-125%) 10/24/06 17:32 Uncert: +/-0.0178 +/-0.283 TPU: +/-0.0178 +/-0.294 **Rad Liquid Scintillation** 581330 OC1201212325 174484018 DUP Technetium-99 0.108 υ 0.0992 pCi/g 0 (0% - 100%) KXR1 10/25/06 11:02 υ Uncert: +/-0.246 +/-0.247 +/-0.246 +/-0.247 TPU: QC1201212327 LCS 12.8 Technetium-99 95 (75%-125%) 10/25/06 11:34 12.1 pCi/g

QC Summary

Batch

Batch

Batch

QC1201212324

Technetium-99

MB

84

υ

+/-0.501

+/-0.587

0.00777

pCi/g

10/25/06 10:46

Uncert:

TPU:

Wonkondon 174484		<u>v</u>	<u> </u>					
Workorder: 174484	······						Page 7 of 9	
Parmname	NOM	Sample Qu	al QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Liquid Scintillation								
Batch 581330	•							
	Uncert:		+/-0.195					
	TPU		+/-0.195		•	·. ·		
QC1201212326 174484018 MS								
Technetium-99	13.0 U	0.108	12.4	pCi/g	g	95	(75%-125%)	10/25/06 11:18
	Uncert:	+/-0.246	+/-0.546					
Batch 581333	TPU:	+/-0.246	+/-0.629					
	_							
QC1201212329 174484019 DU		5 0 5	11 100	0.1			(00 1000 \ \ ()	10/25/06 21.20
Iron-55	U Uncert:		U 1.82	pCi/g	g 0		(0% - 100%) MXP1	10/25/06 21:39
	TPU:	+/-29.2 +/-29.2	+/-26.0					
QC1201212331 LCS	IPU:	+/-29.2	+/-26.0					
Iron-55	591		578	pCi/g	, .	98	(75%-125%)	10/25/06 22:13
	Uncert:		+/-45.6	pene	>		(7570 12570)	10/25/00 22.15
	TPU:		+/-64.4					
QC1201212328 MB			.,					
Iron-55			U 20.5	pCi/g	2			10/25/06 21:23
	Uncert:		+/-27.5					
	TPU:		+/-27.6					
QC1201212330 174484019 MS								
Iron-55	594 U	5.85	559	pCi/į	3	94	(75%-125%)	10/25/06 21:56
	Uncert:	+/-29.2	+/-42.2					
Detab 501221	TPU:	+/-29.2	+/-60.6					
Batch 581334								
QC1201212337 174484020 DU	Р							
Nickel-63	υ		U 5.42	pCi/g	g 0		(0% - 100%) MXPI	10/26/06 08:31
	Uncert:	+/-8.84	+/-7.80					
	TPU:	+/-8.84	+/-7.80					
QC1201212339 LCS Nickel-63	530		517	-0:4	_	00	(75%-125%)	10/26/06 09:34
NIEKEI-05	Uncert:		+/-18.5	pCi/į	5	90	(75%-125%)	10/20/00 09:54
	TPU:		+/-18.5					
QC1201212336 MB	IFU.		+7-23.9					
Nickel-63			U 3.51	pCi/{	2			10/26/06 07:59
	Uncert:		+/-7.07	1	-			
	TPU:		+/-7.07					
QC1201212338 174484020 MS								
Nickel-63	541 U	7.15	524	pCi/g	3	· 97	(75%-125%)	10/26/06 09:02
	Uncert:	+/-8.84	+/-18.7					
	TPU:	+/-8.84	+/-26.3					
Batch 581335								
QC1201212346 174484018 DU	Р							
Tritium	U	0.597		pCi/g	g O		(0% - 100%) DFA1	10/21/06 13:07
	Uncert:	+/-6.10	+/-6.97					
	TPU:	+/-6.10	+/-6.97					
QC1201212348 LCS	10.0							
Tritium	47.0		58.6	pCi/į	3	125	(75%-125%)	10/21/06 13:40
	Uncert:		+/-9.91					
	TPU:		+/-9.96					

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

			<u>, 9n</u>	mmary					
Workorder: 174484		•						Page 8 of 9	
Рагтпате	NOM	Sample (Qual	QC	Units I	RPD%	REC%	Range Anlst	Date Time
Rad Liquid Scintillation Batch 581335									
QC1201212345 MB									
Tritium			U	. 8.18	pCi/g				10/21/06 12:51
	Uncert:			+/-6.68					
	TPU:			+/-6.68					
QC1201212347 174484018 MS									
Tritium	59.5 U	0.597		57.4	pCi/g		97	(75%-125%)	10/21/06 13:23
	Uncert:	+/-6.10		+/-11.5					
	TPU:	+/-6.10		+/-11.5					
Batch 581337					•				
QC1201212352 174484019 DUP								•	
Carbon-14	υ	-0.00644	U	-0.0842	pCi/g	0		(0% - 100%) AXD2	10/24/06 08:45
	Uncert:	+/-0.116		+/-0.110					
	TPU:	+/-0.116		+/-0.110				:	
QC1201212354 LCS									
Carbon-14	7.27			7.51	pCi/g		103	(75%-125%)	10/24/06 10:03
•	Uncert:			+/-0.419					
	TPU:			+/-0.435					
QC1201212351 MB								•	
Carbon-14			U	-0.0366	pCi/g				10/24/06 07:41
	Uncert:			+/-0.118					
	TPU:			+/-0.118					
QC1201212353 174484019 MS									
Carbon-14	7.25 U	-0.00644		7.32	pCi/g		101	(75%-125%)	10/24/06 09:47
•	Uncert:	+/-0.116		+/-0.415					
	TPU:	+/-0.116		+/-0.430					

QC Summary

Notes:

The Qualifiers in this report are defined as follows:

* A quality control analyte recovery is outside of specified acceptance criteria

- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

workorder: 174484							Page 9	of 9		
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Λ		•								

h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more. ** Indicates analyte is a surrogate compound.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result. For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

General Narrative

General Narrative for Connecticut Yankee Atomic Power Co. Work Order: 174936 SDG: MSR#06-1407

October 30, 2006

Laboratory Identification:

General Engineering Laboratories, LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary

Sample receipt

The samples arrived at General Engineering Laboratories, LLC, Charleston, South Carolina on October 26, 2006 for analysis. Shipping container temperatures were checked, documented, and within specifications. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage.

Sample Identification The laboratory received the following samples:

Laboratory	Sample
Identification	Description
174936001	9522-01-005C
174936002	9522-01-007C
174936003	9520-0004-016F
174936004	9520-0004-017F
174936005	9504-0-010C
174936006	9504-0-013C
174936007	9520-0005-019F

Items of Note

There are no items to note.

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Analytical Request

Four soil samples were analyzed for CHALL. Three soil samples were analyzed for FSSGAM.

Data Package

The enclosed data package contains the following sections: General Narrative, Chain of Custody and Supporting Documentation, Data Review Qualifier Definitions, and data from the following fractions: Radiochemistry.

GENERAL ENGINEERING LABORATORIES, LLC a Member of THE GEL GROUP, INC. P.O. BOX 30712 Charleston, SC 29417 • 2040 Savage Road (29407) Phone (843) 556-8171 • Fax 343) 766-1178 www.gel.com I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

Cheryl Jones

Project Manager

GENERAL ENGINEERING LABORATORIES, LLC a Member of THE GEL GROUP, INC. P.O. BOX 30712 Charleston, SC 29417 • 2040 Savage Road (29407) Phone (843) 556-8171 • Fax 343) 766-1178 www.gel.com

State	Certification
Alaska	UST-062
Агізопа	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California	01151CA
Colorado	GenEngLabs
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA	WG-15J
Florida/NELAP	E87156
Georgia	E87156 (FL/NELAP)
Hawaii	N/A
Idaho	N/A
Illinois	200029
Indiana	C-SC-01
Kansas	E-10332
Kentucky	90129
Louisiana	03046
Maryland	270
Massachusetts	M-SC012
Michigan	9903
Nevada	SC12
New Jersey	SC002
New Mexico	FL NELAP E87156
New York	11501
North Carolina	233
North Carolina Drinking W	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania	68-00485
South Carolina	10120001/10585001/10120002
Tennessee	02934
Texas	TX213-2006A
Texas NELAP	T104704235-06-TX
U.S. Dept. of Agriculture	S-52597
US Army Corps of Engineer	N/A
Utah	8037697376 GEL
Vermont	VT87156
Virginia	• 00151
Washington	C1641

List of current GEL Certifications as of 30 October 2006

Chain of Custody and Supporting Documentation

Health Physics Procedure

 $\hat{}$

.GPP-GGGR-R5104-003-Attachment B-CY-001 Major

Connecticut Y 362 Injun	Y ankee A Hollow Road, J 860-26	East Hamptor			ıy			Ch	ain o	of Cus	stody	7 Form	No. 2006-00637				
Project Name: Haddam N	eck Decomn	nissioning	•				Α	nalyses	Reque	sted		Lab Use Only					
Contact Name & Phone: Jack McCarthy 860-267-3	924				McCarthy 860-267-3024 Mec		Media Code		Container Size-							Comments:	
Analytical Lab (Name, City, State): General Engineering Laboratories 2040 Savage Road Charleston, SC 29407 ATT: Cheryl Jones (843-556-8171) Priority: 30 D. 14 D. 7 D. Other:			Type Code	&Type Code	CHALL						1749361.						
Sample Designation	Date	Time				CH			•			Comment, Preservation	Lab Sample ID				
9522-01-005C	10-18 0C	1355	TS	G	BP	X			<u> </u>		· · · ·	Commont, Treservation					
9522-01-0030	10-18-06	1333		6	BP BP												
MAN OF ON IC	10-10-06	1925	15	6-	88	K		· · · · · ·	· · ·			······································	-				
· · · · · · · · · · · · · · · · · · ·			<u> </u>						· · ·								
				1				· · ·									
				·													
	· · · · ·			L													
				· .	. ·			• • • •			· · · ·						
• .				<u> </u>		· . 		<u>.</u>		<u> </u>							
					<u> </u>						······		:				
NOTES: PO #: 002332		{#: 0G-14	107	X L	ΓΡ QA] Radw	aste QA	A [] Non	QA	Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp.: <u>V</u> Deg. C Custody Sealed?				
1) Relinquished By	L	Date/Tim		2) Receiv	ved By	·	10/2	<u>a</u> 6 / r	Date/7			Other	YY → N□ Custody Seal Intact?				
3) Refinquished By		Date/Tim		4) Receiv		•		1-	Date/1			79802834 3252 Bill of Lading #	Y NO				
5) Relinquished By	<u></u>	Date/Tim	e	6) Receiv	ved By	<u>.</u>			Date/1	ſime							

۰.

GPP-GGGR-R5104-003-Attachment B-CY-001 Major

Connecticut Y 362 Injun	ankee At Holiow Road, E 860-265	East Hampton			ıy			Ch	ain o	f Cu	stod	ly Form	No. 2006-00638
Project Name: Haddam N	eck Decomm	nissioning					An	alyses	Request	ed		Lab Use Only	
Contact Name & Phone: Jack McCarthy 860-267	-3924											Comments:	
Analytical Lab (Name, City, State) General Engineering Laboratories 2040 Savage Road. Charleston SC. 29407 843 556 8171. Attn. Cheryl Jones Priority: 30 D. 14 D. 7 D. 3 D.					SSGAM	FSSAM			- I				
			Sample	Container.								1749361.	
Sample Designation	Date	Time	Media Code	Type Code	Size- &Type Code							Comment, Preservation	Lab Sample ID
9520-0004-016F	10/19/06	0742	TS	G.	BP	·X	14. 14. 14. 14.				1.1		
9520-0004-017F	10119/06	0743	TS	G	BP	X							
						: 							
······		· .		· · · · ·	 					·			
		<u></u>				·							
				<u> </u>									
· · · · · · · · · · · · · · · · · · ·		····								<u>.</u>			
										······································			
····=	<u> </u>												
NOTES: PO #: 002332	MSR #: (06- 1 407 (SSWP# `	NA 🛛	LTP QA		Radwas	te QA	י ז (ם י	Non Q/	A	Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp:: <u>8</u> _ Deg. C Custody Sealed? Y EX _ N IT
1) Relinquished By 3) Relinquished By	4	Date/Time	1430		JUDO	101	Bref		Date/1	00		0ther 7980 2834 3252	Custody Seal Intact?
		Date/Time	3	4) Receiv	ved By		•		Date/T	ime		Bill of Lading #	YNU

Health Physics Procedure

9

GPP-GGGR-R5104-003-Attachment B-CY-001	14.
(iPP-CiCiCiR-R5104-001-Affachment B-C Y-001)	NIAIOr
	major

Connecticut 362 Inju	in Hollow Road,	East Hampto	ower (n, CT 064	Compa 24	ny		:	Ch	lain o	of Cus	tody	y Form	No. 2006-00639
Project Name: Haddam Decommissioning	Neck						Ā	nalyse	s Reques	sted		Lab Use Only	· · · · · · · · · · · · · · · · · · ·
Contact Name & Phone Jack McCarthy 860-267			Media Code	Sample Type	Container Size-							Comments:	· · · · · · · · · · · · · · · · · · ·
Analytical Lab (Name, City, State): General Engineering Laboratories 2040 Savage Road Charleston, SC 29407 ATT: Cheryl Jones (843-556-8171)			Code	&Type Code									
Priority: 30 D. 14 Other:	4 D. 🛛 7 D.					CHALL							1749361
Sample Designation	Date	Time	· · ·			с С			[···]			Comment, Preservation	Lab Sample ID
9504-0-010C	10/10/06	1035	TS	G	BP	X							
9504-0-013C	10/10/06	0820	TS	G	BP	X							
·····			ļ				20.00			· .			
			ļ	ļ							.		
· · · · · · · · · · · · · · · · · · ·		······		·					· ·				
	+		ļ			· .				:			
······································		 		i		<u>.</u>		<u> </u>			<u></u>		
	+									,			
	+										<u> </u>		
· · · · · · · · · · · · · · · · · · ·	+												
NOTES: PO #: 002332	MS	GR #: 0G - 1	107		P QA		Radw:	uste QA] Non (QA	Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp.: -18 Deg. C Custody Sealed?
	Junt .	Date/Tim 20/25/00	1430	2) Recaiv	ed By		<i>i</i> o b	600	Date/T		· · ·	Other	Custody Seal Intact?
3) Reinquished By		Date/Tim		4) Receiv	ed By		1	-1-04	Date/Ti			798-0 2834 3252 Bill of Lading #	X G-NO
5) Relinquished By .		Date/Tim	e	6) Receiv	ed By			······	Date/T	ime			

Health Physics Procedure

Ø

GPP-GGGR-R5104-003-Attachment B-CY-001 Major

,				,	•								
Connecticut Y 362 Injun J-	ankee At Iollow Road, I 860-26	East Hampton,			y	-		Ch	ain o	f Cus	tod	y Form	No. 2006-00640
Project Name: Haddam Ne	and the second difference of the second s						An	alyses l	Request	ied		Lab Use Only	
Contact Name & Phone: Jack McCarthy 860-267-	3924										:	Comments:	
Analytical Lab (Name, City, State) General Engineering Laboratories 2040 Savage Road. Charleston SC. 29407 843 556 8171. Attn. Cheryl Jones						FSSGAM	FSSALL	· · ·					
Priority: 🗌 30 D. 🗌 14 D	0. 🖾 7 D. 🗋] 3 D.			Container). [<u>1</u>	} }]	••		749361.
Sample Designation	Date	Time	Media Code	Sample Type Code	Size- &Type Code							Comment, Preservation	Lab Sample ID
9520-0005-019F	10/23/06	1028	TS	G	BP	X							
	ļ						ļ		<u> </u>				
	{				ļ				<u> </u>		ļ.,	· · · · · · · · · · · · · · · · · · ·	<u></u>
	<u> </u>	1	<u> </u>			1.							
						ļ			·			· · · · · · · · · · · · · · · · · · ·	
		<u>}</u>	┼╾╍╍╼	·	<u> </u>	┼──	+	·					
······································				1					<u> </u>				
					<u> </u>				· · · · · · · · · · · · · · · · · · ·		· ·		
[C 101551	<u> </u>	<u> </u>		1	[<u> </u>		<u> </u>	[
NOTES: PO #: 002332 MSR #: 06-1384 SSWP# NA 🛛 LTP QA 🗋 Radwaste QA 🗍 Non QA Samples Shipped Via: Internal Containe 1907 G UPS C Hand Custody Sealed?									Temp.: <u>8</u> Deg.				
forman of forman of the second s	not.	Date/Tim 18/25/00	1430		anoe		10	lau		9.0	00	Other	Custody Seal Intact?
3) Refinquished By		Date/Tim		4) Recei	ved By			•	Date/	Time		7980 2834 3252 Bill of Lading #	Y NU

.

•

Connecticut Yankee Statement of Work for Analytical Lab Services CY-ISC-SOW-	001
Figure 1. Sample Check-in List	
Date/Time Received: 9100 $10 26 06$ SDG#: $MSR^{\pm}06-1407$	
Work Order Number: 1749361 00640 -	75000
Shipping Container ID: <u>1980 2834 3252</u> Chain of Custody # <u>2006</u> 00 639 1. Custody Seals on shipping container intact? Yes [] No []	
2. Custody Seals dated and signed? Yes X No []	
 Chain-of-Custody record present? Yes X No [] Cooler temperature 	
5. Vermiculite/packing materials is: Wet [] Dry [X]	
 6. Number of samples in shipping container: 7. Sample holding times exceeded? Yes [] No [) 	
8. Samples have: <u>Lape</u> hazard labels custody sealsappropriate sample labels	
9. Samples are: 	
10. Were any anomalies identified in sample receipt? Yes [] No X	
11. Description of anomalies (include sample numbers):	
Sample Custodian/Laboratory: Clouse Date: 10 26 06	
Telephoned to:OnBy	

Data Review Qualifier Definitions

11

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < POL</p>

BD Results are either below the MDC or tracer recovery is low

- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

GENERAL ENGINEERING LABORATORIES, LLC a Member of THE GEL GROUP, INC. P.O. BOX 30712 Charleston, SC 29417 • 2040 Savage Road (29407) Phone (843) 556-8171 • Fate (23) 766-1178 www.gel.com

RADIOLOGICAL ANALYSIS

Radiochemistry Case Narrative Connecticut Yankee Atomic Power Co. (YANK) Work Order 174936

Method/Analysis Information

Product:	Alphaspec Am241, Cm, Solid ALL FSS
Analytical Method:	DOE EML HASL-300, Am-05-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	583311
Prep Batch Number:	583211
Dry Soil Prep GL-RAD-A-021 Batch Number:	583196

Sample ID	Client ID
174936001	9522-01-005C
174936002	9522-01-007C
174936005	9504-0-010C
174936006	9504-0-013C
1201216888	Method Blank (MB)
1201216890	174936001(9522-01-005C) Matrix Spike (MS)
1201216891	Laboratory Control Sample (LCS)
1201217370	174936001(9522-01-005C) Sample Duplicate (DUP)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

<u>Ouality Control (OC) Information:</u>

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174936001 (9522-01-005C).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

The blank, 1201216888 (MB), did not meet the detection limit due to keeping the blank volume consistent with the other sample aliquots. All other samples met the detection limits.

<u>Oualifier information</u>

Manual qualifiers were not required.

Method/Analysis Information

Product:	Alphaspec Pu, Solid-ALL FSS
Analytical Method:	DOE EML HASL-300, Pu-11-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	583312
Prep Batch Number:	583211
Dry Soil Prep GL-RAD-A-021 Batch Number:	583196

Sample ID	Client ID
174936001	9522-01-005C
174936002	9522-01-007C
174936005	9504-0-010C
174936006	9504-0-013C
1201216892	Method Blank (MB)
1201216893	174936001(9522-01-005C) Sample Duplicate (DUP)
1201216894	174936001(9522-01-005C) Matrix Spike (MS)
1201216895	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174936001 (9522-01-005C).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Pu241, Solid-ALL FSS
Analytical Method:	DOE EML HASL-300, Pu-11-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	583313
Prep Batch Number:	583211
Dry Soil Prep GL-RAD-A-021 Batch Number:	583196

Sample ID	Client ID
174936001	9522-01-005C
174936002	9522-01-007C
174936005	9504-0-010C
174936006	9504-0-013C
1201216896	Method Blank (MB)
1201216897	174936001(9522-01-005C) Sample Duplicate (DUP)
1201216898	174936001(9522-01-005C) Matrix Spike (MS)
1201216899	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-035 REV# 8.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (OC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated OC

The following sample was used for QC: 174936001 (9522-01-005C).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

The batch was recounted due to a low LCS recovery.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

e.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Gamma,Solid-FSS GAM & ALL FSS 226 Ingrowth Waived		
Analytical Method:	EML HASL 300, 4.5.2.3		
Prep Method:	Dry Soil Prep		
Analytical Batch Number:	583389		
Prep Batch Number:	583196		

Sample ID	Client ID
174936001	9522-01-005C
174936002	9522-01-007C
174936003	9520-0004-016F
174936004	9520-0004-017F
174936005	9504-0-010C
174936006	9504-0-013C
174936007	9520-0005-019F
1201217095	Method Blank (MB)
1201217096	174911001(9801-0-R101-SFCC-01-C1 (0-2in)) Sample Duplicate (DUP)
1201217097	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 13.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174911001 (9801-0-R101-SFCC-01-C1 (0-2in)).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

<u>Oualifier information</u>

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to high counting uncertainty.	Bismuth-212	1201217096
UI	Data rejected due to high peak-width.	Cesium-134	1201217095
UI	Data rejected due to interference.	Europium-155	174936002
	: 	Manganese-54	174936002
			174936005
UI	Data rejected due to low abundance.	Cesium-134	174936001
			174936002
			174936005
•			174936007
			1201217096
		Lead-214	1201217095

Method/Analysis Information

Product:	GFPC, Sr90, solid-ALL FSS	
Analytical Method:	EPA 905.0 Modified	
Prep Method:	Ash Soil Prep	
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep	
Analytical Batch Number:	583243	
Prep Batch Number:	583211	
Dry Soil Prep GL-RAD-A-021 Batch Number:	583196	

Sample ID	Client ID
174936001	9522-01-005C
174936002	9522-01-007C
174936005	9504-0-010C
174936006	9504-0-013C
1201216717	Method Blank (MB)
1201216718	174936001(9522-01-005C) Sample Duplicate (DUP)
1201216719	174936001(9522-01-005C) Matrix Spike (MS)
1201216720	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-004 REV# 10.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volumes in this batch.

Designated QC

The following sample was used for QC: 174936001 (9522-01-005C).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples were recounted due to being originally counted on detectors with expired calibrations.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

The blank result for 1201216717 (MB) is greater than the MDA but less than the detection limit.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Pr	od	13	e	۴	•
	υu	u		L	•

Liquid Scint Tc99, Solid-ALL FSS

Analytical Method: DOE EML HASL-300, Tc-02-RC Modified

Analytical Batch Number: 583233

Sample ID **Client ID** 174936001 9522-01-005C 9522-01-007C 174936002 174936005 9504-0-010C 9504-0-013C 174936006 1201216689 Method Blank (MB) 174936001(9522-01-005C) Sample Duplicate (DUP) 1201216690 174936001(9522-01-005C) Matrix Spike (MS) 1201216691 1201216692 Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-005 REV# 13.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174936001 (9522-01-005C).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples 174936001 (9522-01-005C) and 174936002 (9522-01-007C) were recounted due to spectral interference.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

The result for sample 174936006 (9504-0-013C) is biased high due to spectral interference.

Qualifier information

Qualifier	Reason	Analyte	Sample
х	Sample result biased high due to spectral interference.	Technetium-99	174936006

Method/Analysis Information

Product:	Liquid Scint Fe55, Solid-ALL FSS
Analytical Method:	DOE RESL Fe-1, Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	583239
Prep Batch Number:	583211
Dry Soil Prep GL-RAD-A-021 Batch Number:	583196

Sample ID	Client ID
174936001	9522-01-005C
174936002	9522-01-007C
174936005	9504-0-010C
174936006	9504-0-013C
1201216709	Method Blank (MB)
1201216710	174936001(9522-01-005C) Sample Duplicate (DUP)
1201216711	174936001(9522-01-005C) Matrix Spike (MS)
1201216712	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-040 REV# 3.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174936001 (9522-01-005C).

OC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

e.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Ni63, Solid-ALL FSS
Analytical Method:	DOE RESL Ni-1, Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	583241
Prep Batch Number:	583211
Dry Soil Prep GL-RAD-A-021 Batch Number:	583196

Sample ID	Client ID
174936001	9522-01-005C
174936002	9522-01-007C
174936005	9504-0-010C
174936006	9504-0-013C
1201216713	Method Blank (MB)
1201216714	174936001(9522-01-005C) Sample Duplicate (DUP)
1201216715	174936001(9522-01-005C) Matrix Spike (MS)
1201216716	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-022 REV# 8.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

<u>Ouality Control (QC) Information:</u>

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174936001 (9522-01-005C).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:

LSC, Tritium Dist, Solid-HTD2, ALL FSS

Analytical Method: EPA 906.0 Modified

Analytical Batch Number: 583234

Sample ID	Client ID
174936001	9522-01-005C
174936002	9522-01-007C
174936005	9504-0-010C
174936006	9504-0-013C
1201216693	Method Blank (MB)
1201216694	174936001(9522-01-005C) Sample Duplicate (DUP)
1201216695	174936001(9522-01-005C) Matrix Spike (MS)
1201216696	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-002 REV# 13.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174936001 (9522-01-005C).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Sample 174936005 (9504-0-010C) was recounted due to high MDA.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Oualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint C14, Solid All,FSS
Analytical Method:	EPA EERF C-01 Modified
Analytical Batch Number:	583236

Sample ID	Client ID
174936001	9522-01-005C
174936002	9522-01-007C
174936005	9504-0-010C
174936006	9504-0-013C
1201216701	Method Blank (MB)
1201216702	174936001(9522-01-005C) Sample Duplicate (DUP)
1201216703	174936001(9522-01-005C) Matrix Spike (MS)
1201216704	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-003 REV# 8.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 174936001 (9522-01-005C).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

11/2/04 MAR Reviewer/Date:_

31

SAMPLE DATA SUMMARY

32

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

101

YANK001 Connecticut Yankee Atomic Power Co.

Client SDG: MSR#06-1407 GEL Work Order: 174936

The Qualifiers in this report are defined as follows:

* A quality control analyte recovery is outside of specified acceptance criteria

** Analyte is a surrogate compound

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

ND The analyte concentration is not detected above the detection limit.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure. Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones.

Reviewed by

Certificate of Analysis

Company : Address :		cut Yankee A Hollow Rd	tomic Power								
Contact: Project:		pton, Connec McCarthy # 002332	cticut 06424				· R	eport Date: No	vember :	2, 2006	
	Client S Sample Matrix: Collect : Receive Collecto Moistur	Date: Date: or:		9522-01 1749360 TS 18-OCT 26-OCT Client 37.8%)01 Г06		Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001			
Parameter	Qualifie	er Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time I	Batch Mt
Rad Alpha Spec Analys	is		· · · · · · · · · · · · · · · · · · ·								
Alphaspec Am241, Cm,				_							
Americium-241		U 0.00136	+/-0.138	0.115	+/-0.138	0.327	pCi/g	MXA 1	10/30/0	6 1058 5	583311
Curium-242		U 0.0391	+/-0.110	0.0674	+/-0.110	0.237	pCi/g	I			
Curium-243/244		U -0.0385	+/-0.139	0.132		0.361	pCi/g				
Alphaspec Pu, Solid-A		• • • • • • •		•			1 6				
Plutonium-238		U -0.104	+/0.112	0.133	+/-0.113	0.352	pCi/g	MXA	10/30/()6 1058 5	583312
							1.6	1			
Plutonium-239/240		U -0.137	+/-0.0631	0.120	+/0.0652	0.326	pCi/g				•
Liquid Scint Pu241, So	lid–ALL F	55									
Plutonium-241		U -5.01	+/-7.31	6.36	+/-7.31	13.4	pCi/g		11/02/()6 0824 :	583313
Rad Gamma Spec Anal	vsis							1			
Gamma, Solid-FSS GA	-		owth .								
Waived											
Actinium-228		0.942	+/-0.216	0.0684	+/0.216	0.148	pCi/g	MJH1	10/31/0	06 0910 2	583389
Americium-241		0.232	+/0.147	0.0857	+/-0.147	0.177	pCi/g				
Bismuth-212		1.25	+/0.452	0.152	+/0.452	0.326	pCi/g				
Bismuth-214		1.01	+/-0.155	0.0431	+/0.155	0.091	pCi/g				
Cesium-134	. I	л 0.00		0.0289	+/-0.0505	0.061	pCi/g				
Cesium-137		1.58		0.0221		0.0469	pCi/g				
Cobalt-60		U 0.0278			+/-0.0308	0.0585	pCi/g				
Europium-152		U -0.0437			+/-0.0735	0.123	pCi/g				
Europium-154		U 0.0164			+/-0.0885	0.139	pCi/g				
Europium-155		U 0.0621			+/-0.0836	0.143	pCi/g				
Lead-212 Lead-214		. 1.10 0.962			+/-0.0891	0.0838 0.0921	pCi/g				
Manganese-54		U -0.00466			+/-0.132 +/0.0271	0.0921	pCi/g pCi/g				
Niobium-94		U -0.00488			+/-0.0271	0.0474	pCl/g pCi/g				
Potassium-40		12.1		0.191		0.423	pCi/g				
Radium-226		1.01		0.0431		0.091	pCi/g				
Silver-108m		U3.670E-05		0.0213		0.0446	pCi/g				•
Thallium-208		0.306			+/-0.0549	0.0461	pCi/g				
Rad Gas Flow Proport	ional Coun										
GFPC, Sr90, solid-Al	LL FSS										•
Strontium-90		0.0263	+/-0.0109	0.00825	+/-0.011	0.0172	pCi/g	KSD1	11/01/	06 21 00	583243

Certificate of Analysis

Company :	Connecticut Yankee Atomic Power
Address :	362 Injun Hollow Rd

	East Hampton, Connecticut 06424	Report Date:	November 2, 2006
Contact:	Mr. Jack McCarthy		
Project:	Soils PO# 002332		

Sample ID:			1749360	-005C 01		Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mte
Analysis								
-HTD2,ALL	FSS						•	
U	3.72	+/-5.94	4.71	+/5.94	10.2	pCi/g	. DFA1 10/28/0	6 0650 583234 7
AU, FSS								
Ū	0.179	+/-0.112	0.0898	+/-0.112	0.184	pCi/g	AXD2 10/27/0	6 2110 583236 8
-ALL FSS								
U	14.2	+/-19.7	12.8	+/-19.7	27.0	pCi/g	MXP1 11/01/	06 1809 583239 9
-ALL FSS								
U	-0.799	+/-7.83	6.60	+/-7.83	13.8	pCi/g	MXP1 11/01/	06 1536 583241 1
-ALL FSS								
U	0.320	+/-0.221	0.181	+/-0.221	0.367	pCi/g	KXR1 10/31/	06 2145 583233 1
	Qualifier Analysis -HTD2,ALL. U All,FSS U -ALL FSS U -ALL FSS U -ALL FSS	Qualifier Result Analysis -HTD2,ALL FSS U 3.72 All,FSS U 0.179 -ALL FSS U 14.2 -ALL FSS U -0.799 -ALL FSS	Qualifier Result Uncertainty Analysis - - -HTD2,ALL FSS 0 3.72 +/-5.94 All, FSS 0 0.179 +/-0.112 -ALL FSS 0 14.2 +/-19.7 -ALL FSS 0 -0.799 +/-7.83 -ALL FSS -ALL FSS	Qualifier Result Uncertainty LC Analysis - <	Qualifier Result Uncertainty LC TPU Analysis -HTD2,ALL FSS U 3.72 +/-5.94 4.71 +/-5.94 All, FSS U 0.179 +/-0.112 0.0898 +/-0.112 -ALL FSS U 14.2 +/-19.7 12.8 +/-19.7 -ALL FSS U -0.799 +/-7.83 6.60 +/-7.83 -ALL FSS U -0.799 +/-7.83 6.60 +/-7.83	Qualifier Result Uncertainty LC TPU MDA Analysis -HTD2,ALL FSS U 3.72 +/-5.94 4.71 +/-5.94 10.2 All, FSS U 0.179 +/-0.112 0.0898 +/-0.112 0.184 -ALL FSS U 14.2 +/-19.7 12.8 +/-19.7 27.0 -ALL FSS U -0.799 +/-7.83 6.60 +/-7.83 13.8 -ALL FSS U -0.799 +/-7.83 13.8 -	Qualifier Result Uncertainty LC TPU MDA Units Analysis -	Qualifier Result Uncertainty LC TPU MDA Units DF Analyst Date Analysis -

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	WXL1	10/26/06	1442	583196

The following Analytical Methods were performed

Metbod	Description
1	DOE EML HASL-300, Am-05-RC Modified
2	DOE EML HASL-300, Pu-11-RC Modified
3	DOE EML HASL-300, Pu-11-RC Modified
4	DOE EML HASL-300, Pu-11-RC Modified
5	EML HASL 300, 4.5.2.3
6	EPA 905.0 Modified
7	EPA 906.0 Modified
8	EPA EERF C-01 Modified
9	. DOE RESL Fe-1, Modified
10	DOE RESL Ni-1, Modified
11	DOE EML HASL-300, Tc-02-RC Modified
12	DOE EML HASL-300, Tc-02-RC Modified
13	DOE EML HASL-300, Tc-02-RC Modified

Surrogate/Tracer recovery	Test	Recovery %	Acceptable Limits	
Americium-243	Alphaspec Am241, Cm, Solid ALL	92	(15%-125%)	
Plutonium-242	Alphaspec Pu, Solid-ALL FSS	93	(15%-125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Comp Addre	pany : ess :	Connecticut 7 362 Injun Ho		omic Power						
Conta Proje		East Hampton Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				R	eport Date: November	2, 2006
		Client Sam Sample ID:	ple ID:		9522–01 1749360			Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mte
Plutonium-241		Liqui	d Scint Pu	241, Solid-ALI	L FS	88		(25%-125%)	<u> </u>	······································
Strontium-90		GFPC	C, Sr90, so	lid-ALL FSS		76		(25%–125%)		
Carrier/Tracer Rec	overy	GFPC	C, Sr90, so	lid-ALL FSS		76		(25%–125%)		
Iron-55		Liqui	d Scint Fe	55, Solid-ALL	FS	83		(15%-125%)		
Nickel-63		Liqui	d Scint Ni	63, Solid-ALL	FS	88		(25%–125%)		
Carrier/Tracer Rec	covery	Liqui	d Scint Ni	63, Solid-ALL	FS	88		(25%–125%)		
Technetium-99		Liqui	d Scint To	99, Solid-ALL	FS	50		(15%–125%)		
Carrier/Tracer Rec	overy	Liqui	d Scint To	99, Solid-ALL	FS	50		(15%–125%)		
Notes: The Qualifiers	in this	report are de	efined as	follows :						

- Result is greater than value reported **`>** `
- The TIC is a suspected aldol-condensation product Α
- Target analyte was detected in the associated blank В
- BD Results are either below the MDC or tracer recovery is low
- Analyte has been confirmed by GC/MS analysis С
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- Value is estimated J

- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- R .Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy-Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier х
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL ۸
- h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

Certificate of Analysis

Company : Address :	Connecticut 362 Injun Ho		omic Power									
Contact:	East Hampto Mr. Jack Mc		ticut 06424				R	Report Date: No	vember	2, 2006		
Project:	Soils PO# 00	-										
	Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	te:		9522-0 1749360 TS 18-OC 26-OC Client 18%)02 F06		Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001	·.			
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time	Batch]	Mte
Rad Alpha Spec Analys	sis	<u> </u>										
Alphaspec Am241, Cm	, Solid ALL FS	S										
Americium-241	U	0.0547	+/-0.122	0.0789	+/0.123	0.237	pCi/g	MXA ·I	10/30/	06 1058	583311	1
Curium-242 Curium-243/244	U U	0.0395 0.0258	+/0.0893 +/0.0943		+/-0.0894 +/-0.0944	0.180 0.262	pCi/g pCi/g					
Alphaspec Pu, Solid-A	-						r8					
Plutonium–238	U	-0.0671	+/0.0439	· 0.0837	+/-0.0444	0.252	pCi/g	MXA 1	10/30/	06 1058	583312	2
Plutonium-239/240	υ	0.0733	+/-0.145	0.0925	+/-0.145	0.269	pCi/g	-				
Liquid Scint Pu241, Se	olid–ALL FSS											
Plutonium-241	U	4.10	+/-7.32	5.96	+/-7.33	12.5	pCi/g	MXA	11/02/	06.0840	583313	3
Rad Gamma Spec Ana	lysis											
Gamma,Solid–FSS G Waived	AM & ALL FSS	226 Ingro	wth		·							
Actinium-228		4.39	+/-0.204	0.0457	+/-0.204	0.0959	pCi/g	МЛН1	10/31/	06 0925	583389	1
Americium-241	U	-0.147	+/0.0988	0.0841	+/-0.0988	0.170	pCi/g					
Bismuth-212		2.99	+/-0.322	0.128		0.264	pCi/g					
Bismuth-214		1.41	+/-0.0972		+/-0.0972	0.0611	pCi/g					
Cesium-134	UI	0.00	+/-0.0358		+/-0.0358	0.0564	pCi/g	•				
Cesium-137 Cobalt-60	TI	2.55 0.0262	+/-0.0752 +/-0.0175		+/0.0752 +/0.0175	0.0386 0.0351	pCi/g pCi/g					
Europium-152	U U	-0.03	+/-0.0173	0.0503		0.103	pCl/g pCi/g					
Europium-154	Ŭ	0.0248	+/0.0468		+/-0.0468	0.0893	pCi/g					
Europium-155	บ้	0.00	+/-0.0881		+/-0.0881	0.114	pCi/g					
Lead-212		4.38	+/0.0865	0.0288	+/-0.0865	0.0585	pCi/g					
Lead-214		1.56	+/-0.100	0.0346		0.0707	pCi/g					
Manganese-54	ហ	0.00	+/0.0272		+/0.0272	0.0331	pCi/g					
Niobium-94	U	0.0109	+/-0.0182		+/-0.0182	0.0335	pCi/g					
Potassium-40		2.51	+/-0.375	0.124		0.266	pCi/g					
Radium–226 Silver–108m	וו	1.41 -0.00514	+/-0.0972 +/0.0191		+/-0.0972 +/-0.0191	0.0611 0.0353	pCi/g pCi/g					
Thallium-208	U	1.40	+/0.0595		+/-0.0595	0.0359	pCl/g pCi/g					
Rad Gas Flow Propert	ional Counting			0.01/4	0.0070	5.5557	PC. 6					
GFPC, Sr90, solid-A.		0										
Strontium-90 Rad Liquid Scintillatio		0.0327	+/-0.00864	0.00613	+/-0.00866	0.0128	pCi/g	KSDI	11/01/	/06 21 00	583243	3

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: November 2, 2006

Certificate of Analysis

Company : Connecticut Yankee Atomic Power Address : 362 Injun Hollow Rd

East Hampton, Connecticut 06424 Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

	Client Sam Sample ID:			9522–01 1749360			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
Rad Liquid Scintilla	ation Analysis								
LSC, Tritium Dist,	Solid-HTD2,ALL	FSS							
Tritium	U	3.14	+/-7.71	6.23	+/-7.71	13.5	pCi/g	DFA1 10/28/0	6 0706 583234 7
Liquid Scint C14, S	Solid All,FSS								
Carbon-14	U	0.0254	+/-0.113	0.0944	+/0.113	0.194	pCi/g	AXD2 10/27/(6 2158 583236 8
Liquid Scint Fe55,	Solid-ALL FSS								
Iron-55	U	8.48	+/-18.0	11.8	+/18.0	24.9	. pCi/g	MXP1 11/01/0	6 1825 583239 🖇
Liquid Scint Ni63,	Solid–ALL FSS								
Nickel-63	U	2.80	+/-7.02	5.78	+/-7.02	12.1	pCi/g	MXP1 11/01/0	06 1558 583241 1
Liquid Scint Tc99,	Solid–ALL FSS								
Technetium-99		0.321	+/-0.163	0.126	+/0.163	0.262	pCi/g	KXR1 10/31/0	06 2246 583233 1

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	WXL1	10/26/06	1442	583196	

The following Analytical Methods were performed Method Description

Method	Description		•
1	DOE EML HASL-300, Am-05-RC Modified		
2	DOE EML HASL-300, Pu-11-RC Modified		
3	DOE EML HASL-300, Pu-11-RC Modified		
4	DOE EML HASL-300, Pu-11-RC Modified		
5 .	EML HASL 300, 4.5.2.3		
6	EPA 905.0 Modified		
7	EPA 906.0 Modified	·	
8	EPA EERF C-01 Modified		
9	DOE RESL Fe-1, Modified		
10	DOE RESL Ni-1, Modified		
11	DOE EML HASL-300, Tc-02-RC Modified		
12	DOE EML HASL-300, Tc-02-RC Modified		
13	DOE EML HASL-300, Tc-02-RC Modified		

Surrogate/Tracer recovery	Test	Recovery %	Acceptable Limits	
Americium-243	Alphaspec Am241, Cm, Solid ALL	93	(15%-125%)	
Plutonium-242	Alphaspec Pu, Solid-ALL FSS	91	(15%–125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power Address: 362 Injun Hollow Rd

Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy
Project:	Soils PO# 002332

Client Sample ID:

Report Date: November 2, 2006

YANK01204

Project:

	Sample ID:	174936002	74936002 Client ID: YANKO Vol. Recv.:			
Parameter	Qualifier Result Uncertainty	LC TPU	MDA	Units D	F Analyst Date	Time Batch Mtc
Plutonium-241	Liquid Scint Pu241, Solid-AL	L FS	94 (2	25%-125%)		
Strontium-90	GFPC, Sr90, solid-ALL FSS	1	0 (2	25%—125%)		
Carrier/Tracer Recovery	GFPC, Sr90, solid-ALL FSS	1	0 (2	25%–125%)		
Iron-55	Liquid Scint Fe55, Solid-ALL	FS	6 (1	15%–125%)		
Nickel-63	Liquid Scint Ni63, Solid-ALL	FS	0 (2	25%-125%)	•	
Carrier/Tracer Recovery	Liquid Scint Ni63, Solid-ALL	FS	0 (2	25%–125%)		
Technetium-99	Liquid Scint Tc99, Solid-ALL	FS 1	.3 ()	15%–125%)		
Carrier/Tracer Recovery	Liquid Scint Tc99, Solid-ALL	FS 1	.3 (1	15%–125%)		

9522-01-007C

Notes:

The Qualifiers in this report are defined as follows :

- * A quality control analyte recovery is outside of specified acceptance criteria
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Addr	ress :	362 Injun H	ollow Rd							
Cont		East Hampte Mr. Jack Me	on, Connect cCarthy	icut 06424				Rej	port Date: Nov	ember 2, 2006
Proje	ect:	Soils PO# 0	02332							
•		Client San Sample ID Matrix: Collect Da Receive D Collector: Moisture:): ate: Pate:		9520-00 1749360 TS 19-OCT 26-OCT Client 15.4%	ſ—06			YANK01204 YANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst	Date Time Batch M
Rad Gamma Spe	c Analys	is		· · · · · · · · · · · · · · · · · · ·				·····		
Gamma,Solid–F Waived	TSS GAM	& ALL FSS	5 226 Ingro	wth						
Actinium-228			0.747	+/-0.134	0.0498	+/-0.134	0.105	pCi/g	MJHI	10/31/06 0927 583389
Americium-24	1	υ	0.0504	+/-0.105	0.0823	+/-0.105	0.169	pCi/g		
Bismuth-212			0.654	+/-0.242	0.105	+/-0.242	0.221	pCi/g		
Bismuth-214			0.970	+/-0.0713	0.026	+/0.0713	0.0544	pCi/g		
Cesium-134		U	0.0184	+/-0.0256	0.0177	+/0.0256	0.0372	pCi/g		
Cesium-137			0.125	+/-0.0228	0.0129	+/0.0228	0.0273	pCi/g		
Cobalt-60		U	-0.00778	+/0.0166	0.0131	+/0.0166	0.0286	pCi/g		
Europium-152		U	0.00444	+/-0.044	0.0366	+/-0.044	0.076	pCi/g		
Europium154		Ū	-0.0216	+/-0.0534		+/0.0534	0.0927	pCi/g		
Europium-155		ū	0.0674	+/-0.0698		+/-0.0698	0.0852	pCi/g		
Lead-212		U	0.838	+/-0.0517		+/-0.0517	0.045	pCi/g		
Lead-214			1.12	+/-0.0838		+/-0.0838	0.0553	pCi/g		
Manganese-54	L	U	0.0154	+/-0.0174		+/0.0174	0.032	pCi/g		
Niobium-94	r.		-0.00323	+/-0.015	0.0132	+/-0.015	0.032	pCi/g		
Potassium-40		0	12.1	+/0.758	0.140		0.303	pCi/g		
Radium-226			0.970	+/-0.0713		+/-0.0713	0.0544	pCl/g pCi/g		
Silver-108m		11	-0.00181	+/-0.0713 +/-0.0344		+/-0.0114	0.0261	pCi/g pCi/g		
Thallium-208			0.238	+/0.0369		+/-0.0369	0.0273	pCi/g		
The following P	rep Metl	ods were p	performed					·······	<u></u>	
Method	Descri	ption				Analyst	Date	Time	Prep Batch	1
Dry Soil Prep	Dry Sc	il Prep GL-	-RAD-A0	21		WXLI	10/26/0	6 1443	583196	
The following A			vere_perfor	med		<u> </u>				<u> </u>
Method	Descri	ption							· ·	
1		IASL 300, 4								

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria
 < Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

<u>Certificate of Analysis</u>

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mto
					-		Vol. Recv.:	·	
	Client San Sample ID			9520-000 17493600			Project: Client ID:	YANK01204 YANK001	
Project:	Soils PO# 0	02332							
Contact	East Hampto Mr. Jack Mo		ticut 06424				F	Report Date: November	2, 2006
Compan Address			tomic Power						

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy—Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

Certificate of Analysis

Company Address :								
• ²⁰	East Hampton, Con		· .			Par	oort Date: Novembe	+ 2 2006
Contact:	Mr. Jack McCarthy	16CLICUL 00424				Rej		1 2, 2000
Project:	Soils PO# 002332							
1105001,	501131 0# 002552							
	Client Sample ID Sample ID: Matrix: Collect Date: Receive Date: Collector:	:	9520-000 17493600 TS 19-OCT- 26-OCT- Client)4 -06	(YANK01204 YANK001	
Parameter	Moisture: Oualifier Resu	1 4 T 1	18.7%			Units		Time Detail B
		It Uncertainty	LC	TPU	MDA		DF Analyst Date	Time Batch N
Rad Gamma Spec An								
Gamma,Solid–FSS C Waived	GAM & ALL FSS 226 In	growth						
Actinium-228	0.4	92 +/0.157	0.0658	+/0.157	0.140	pCi/g	MJH1 10/31	/06 0927 583389
Americium-241	U -0.02	22 +/-0.0995	0.0726 ·	+/-0.0995	0.149	pCi/g		
Bismuth-212	0.4	24 +/0.289	0.143	+/-0.289	0.303	pCi/g		
Bismuth-214	0.7	78 +/-0.115	0.0326	+/-0.115	0.0688	pCi/g		
Cesium-134	U 0.002	06 +/-0.0338	0.0207	+/0.0338	0.0438	pCi/g		
Cesium-137	0.1	58 +/0.0358	0.0171	+/-0.0358	0.0363	pCi/g		
Cobalt-60	U -0.01	83 +/-0.024	0.0187	+/-0.024	0.0408	pCi/g		
Europium–152	U -0.001	47 +/0.061	0.0498	+/-0.061	0.103	pCi/g		
Europium-154	U -0.02	13 +/-0.0645	0.0528	+/0.0645	0.115	pCi/g		
Europium-155	U 0.005			+/0.0551	0.0986	pCi/g		· · · ·
Lead-212	0.6			+/0.0645	0.0603	pCi/g		
Lead-214	0.9		0.0374	+/0.0913	0.0776	pCi/g		
Manganese-54	U 0.02			+/-0.0229	0.0426	pCi/g		
Niobium-94	U 0.007		0.0179	+/0.0209	0.0376	pCi/g		
Potassium-40	• •	31 +/0.909	0.166	+/-0.909	0.366	pCi/g		
Radium-226	0.7		0.0326	+/-0.115	0.0688	pCi/g		
Silver-108m	U -0.001			+/0.0211	0.0352	pCi/g		
Thallium-208	0.2	22 +/-0.0438	0.0192	+/0.0438	0.0402	pCi/g		
			•				· .	
	Methods were perform escription	ed		Analyst	Date	Time	Prep Batch	
Dry Soil Prep Dr	y Soil Prep GL-RAD-A	A021		WXL1	10/26/0	6 1444	583196	
The following Analy	tical Methods were per	formed						
	scription			······································				
1 EN	AL HASL 300, 4.5.2.3							
Notes: The Qualifiers in t	this report are defined	as follows :						

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria
 < Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut 362 Injun Ho		tomic Power							
	Contact: Project:	East Hampto Mr. Jack Mo Soils PO# 00	Carthy	ticut Ø6424				A.	leport Da	ate: November	2, 2006
		Client Sam Sample ID			9520–000 17493600			Project: Client ID: Vol. Recv.:	YANK YANK	(01204 (001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst Date	Time Batch Mt
			·								
A Th B Tai	Result is greater than value reported The TIC is a suspected aldol-condensation product Target analyte was detected in the associated blank D Results are either below the MDC or tracer recovery is low										

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

Certificate of Analysis

	Company : Address :	Connecticut 1 362 Injun Ho		omic Power								
:	Contact: Project:	East Hampton Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424		* ^{1*}		R	eport Date: No	vember	2, 2006	
		Client Sam Sample ID: Matrix: Collect Dat Receive Da Collector: Moisture:	e:		95040- 1749360 TS 10OCT 26OCT Client 43.4%)05 Г—06		Project: Client ID: Vol. Recv.:	YANK01204 YANK001			
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time	Batch Mte
Rad Alpha S	Spec Analysi	s										
Alphaspec	Am241, Cm,	Solid ALL FSS	5									
Americiu	m-241	υ	0.0682	+/-0.103	0.0315	+/-0.103	0.158	pCi/g	_	10/30/	06 1058	583311 1
Curium-2	042	U	0.046	+/0.0403	0 0769	+/-0.0408	0.258	pCi/g	1.			
Curium-2		Ŭ	-0.10	+/-0.0956		+/-0.0966	0.348	pCi/g				
Alphaspec	Pu, Solid-A	LL FSS		•								
Plutoniun	n-238	U	0.0235	+/-0.087	0.0589	+/-0.087	0.197	pCi/g		10/30/	06 1058	583312 2
Plutoniun	n-239/240	U	0.0235	+/-0.0869	0.0588	+/-0.087	0.197	pCi/g	1			
-		lid–ALL FSS _.										
Plutoniun	n-241	U	0.00	+/-6.56	. 5.51	+/6.56	11.6	pCi/g	MXA	11/02/	06 0856	583313 2
Rad Gamm	a Spec Analy	ysis							1			
Gamma,So Waived	olid–FSS GA	M & ALL FSS	226 Ingro	wth								
Actinium	-228		0.635	+/-0.167	0.0577	+/-0.167	0.129	pCi/g	MJH1	10/31/	06 0928	583389 :
Americiu		U	0.0432	+/-0.109	0.0836		0.174	pCi/g				
Bismuth-	-212		0.532	+/-0.302	0.151	+/-0.302	0.329	pCi/g				
Bismuth-	-214		0.566	+/-0.113	0.0405	+/-0.113	0.0866	pCi/g				
Cesium-	134	UI	0.00	+/0.0454	0.0264	+/-0.0454	0.0566	pCi/g				
Cesium-	137		0.402	+/0.057	0.0194	+/-0.057	0.042	pCi/g				
Cobalt-6	0	. U	0.00339	+/-0.0231	0.0198	+/-0.0231	0.0448	pCi/g				
Europiun	n—152	υ	0.00635	+/0.0624	0.0514	+/0.0624	0.109	pCi/g				
Europium	n–154	υ·	0.00961	+/-0.0889		+/-0.0889	0.141	pCi/g				
Europiun	n–155	U	0.0463	+/-0.0667		+/-0.0667	0.125	pCi/g				
Lead-212			0.655	+/-0.0666		+/-0.0666	0.0584	pCi/g				•
Lead-214			0.611	+/0.108	0.038		0.0804	pCi/g				
Mangane		ហ	0.00	+/-0.0682		+/-0.0682	0.0405	pCi/g				
Niobium-		Ŭ	-0.0145	+/-0.0248		+/-0.0248	0.0421	pCi/g				
Potassiun			10.0	+/-1.01	0.181	+/-1.01	0.414	pCi/g				
Radium-			0.566	+/-0.113	0.0405		0.0866	pCi/g				
Silver-1(U	-0.0205	+/-0.0201		+/-0.0201	0.0342	pCi/g	,			
Thallium Red Cas Fl	-	anal Countin	0.223	+/-0.0488	0.0181	+/0.0488	0.0392	pCi/g				
	-	onal Counting	5									
	90, solid–AL	L F35					0.0407	~		11/0-		0. 5000 40
Strontiun			0.0342	+/0.00877	0.00599	+/-0.0088	0.0126	pCi/g	KSD1	11/01.	106 2100	0 583243
Kad Liquid	Scintillation	i Analysis										

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Connecticut Yankee Atomic Power Address : 362 Injun Hollow Rd

East Hampton, Connecticut 06424 Contact: Mr. Jack McCarthy Project: Soils PO# 002332

Report Date: November 2, 2006

	Client Sam Sample ID			95040- 1749360		·	Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mto
Rad Liquid Scintillation	n Analysis								
LSC, Tritium Dist, Soli	d-HTD2,ALL	FSS							
Tritium	U	-0.632	+/-6.79	5.72	+/-6.79	11.9	pCi/g	DFA1 11/01/0	06 0800 583234 8
Liquid Scint C14, Solia	I AU,FSS		-						
Carbon-14	U	0.0868	+/-0.115	0.0942	+/-0.115	0.193	pCi/g	AXD2 10/27/	06 2245 583236 9
Liquid Scint Fe55, Soli	d–ALL FSS					•			
Iron-55	U	2.22	+/-18.6	12.4	+/-18.6	26.3	pCi/g	MXP1 11/01/	06 1842 583239 10
Liquid Scint Ni63, Soli	d–ALL FSS								
Nickel-63	U	-4.66	+/6.33	5.51	+/6.33	11.5	pCi/g	MXP1 11/01/	06 1619 583241 1
Liquid Scint Tc99, Soli	d–ALL FSS								
Technetium-99	U	0.475	+/0.296	0.236	+/0.296	0.486	pCi/g	KXR1 10/31/	06 0310 583233 1:

The following Prep Methods were performed

MethodDescriptionAnalystDateTimePrep BatchDry Soil PrepDry Soil Prep GL-RAD-A-021WXL110/26/061444583196

The following Analytical Methods were performed

Method	Description
1	DOE EML HASL-300, Am-05-RC Modified
2	DOE EML HASL-300, Pu-11-RC Modified
3	DOE EML HASL-300, Pu-11-RC Modified
4	DOE EML HASL-300, Pu-11-RC Modified
5	EML HASL 300, 4.5.2.3
6	EPA 905.0 Modified
7	EPA 905.0 Modified
8	EPA 906.0 Modified
9	EPA EERF C-01 Modified
10	DOE RESL Fe-1, Modified
11	DOE RESL Ni-1, Modified
12	DOE EML HASL-300, Tc-02-RC Modified
13	DOE EML HASL-300, Tc-02-RC Modified

Surrogate/Tracer recovery	Test	Recovery %	Acceptable Limits	
Americium-243	Alphaspec Am241, Cm, Solid ALL	85	(15%–125%)	
Plutonium-242	Alphaspec Pu, Solid–ALL FSS	. 95	(15%-125%)	

45

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Connecticut Yankee Atomic Power Address : 362 Injun Hollow Rd

	East Hampton, Connecticut 06424
Contact:	Mr. Jack McCarthy
Project:	Soils PO# 002332

Report Date: November 2, 2006

	Client Sample ID: Sample ID:		9504-0-010C 174936005					
Parameter	Qualifier Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mto
Plutonium-241	Liquid Scint Pu2	41, Solid-ALL F	5	102		(25%–125%)		
Strontium-90	GFPC, Sr90, soli	d-ALL FSS		84	I	(25%–125%)		
Carrier/Tracer Recovery	GFPC, Sr90, soli	d-ALL FSS		84		(25%-125%)		
Iron-55	Liquid Scint Fe5:	5, Solid-ALL FS		82		(15%-125%)		
Nickel-63	Liquid Scint Ni6	3, Solid–ALL FS		93		(25%-125%)		
Carrier/Tracer Recovery	Liquid Scint Ni6	3, Solid-ALL FS		93		(25%–125%)		
Technetium-99	Liquid Scint Tc9	9, Solid-ALL FS		78		(15%-125%)		
Carrier/Tracer Recovery	Liquid Scint Tc9	9, Solid-ALL FS		78		(15%–125%)		

Notes:

The Qualifiers in this report are defined as follows :

- * A quality control analyte recovery is outside of specified acceptance criteria
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y OC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

Certificate of Analysis

Comp Addre	-	Connecticut 362 Injun H		omic Power									
Conta Projec		East Hampt Mr. Jack M Soils PO# 0	cCarthy	ticut 06424				R	eport Date: No	vember 2	, 2006		
		Client San Sample II Matrix: Collect Da Receive D Collector: Moisture:): ate: ate:		95040- 1749360 TS 10OCT 26OCT Client 48.5%)06 Г06		Project: Client ID: Vol. Recv.:	YANK01204 YANK001				
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time	Batch M	Atc
Rad Alpha Spec A	nalysi	s											
Alphaspec Am24	l, Cm,	Solid ALL FS											
Americium-241		U	-0.0277	+/-0.0621	0.0513	+/-0.0621	0.180	pCi/g	MXA 1	10/30/06	5 1058	583311	1
Curium-242 Curium-243/244		บ บ	0.0786 0.109	+/0.108 +/0.0823	0.0396 0.115	+/-0.108 +/-0.0836	0.164 0.307	pCi/g pCi/g					
Alphaspec Pu, So Plutonium–238	lid–A.		-0.00331	+/0.105	0.0892	+/-0.105	0.253	pCi/g	MXA 1	10/30/00	5 1058	583312	2
Plutonium-239/		U	0.120	+/-0.149	0.082	+/0.150	0.239	pCi/g					
Liquid Scint Pu24 Plutonium-241	41, 501	u-ALL FSS	0.741	+/-6.61		+/-6.61	11.7	pCi/g	MXA	11/02/0	5 0913	583313	3
Rad Gamma Spec	Analy	vsis							1				
Gamma,Solid-F. Waived		·	S 226 Ingro	wth									
Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94 Potassium-40 Radium-226 Silver-108m Thallium-208	oportic	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	0.684 -0.00581 -0.0282 0.0313 0.0397 0.596 0.676 0.0203 -0.00724 5.95 0.717 0.00332 0.180	+/-0.193 +/-0.113 +/-0.319 +/-0.029 +/-0.0261 +/-0.0261 +/-0.076 +/-0.0774 +/-0.0656 +/-0.0774 +/-0.0251 +/-0.0293 +/-0.804 +/-0.116 +/-0.0405 +/-0.0485	0.0534 0.0646 0.0508 0.0366 0.0383 0.0222 0.0199 0.187 0.0427 0.0182	+/-0.0774 +/-0.0656 +/-0.107 +/-0.0251 +/-0.0293 +/-0.804	$\begin{array}{c} 0.151\\ 0.169\\ 0.322\\ 0.0896\\ 0.0493\\ 0.044\\ 0.0462\\ 0.111\\ 0.140\\ 0.105\\ 0.0753\\ 0.0799\\ 0.047\\ 0.042\\ 0.412\\ 0.0896\\ 0.0383\\ 0.0439\\ \end{array}$	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	I'HI	10/31/0	6 0929	583389	
GFPC, Sr90, soli Strontium-90 Rad Liquid Scinti			0.178	+/-0.0136	0.00626	+/0.0145	0.0131	pCi/g	KSD1	11/01/0	6 21 00	583243	1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Connecticut Yankee Atomic Power Address : 362 Injun Hollow Rd

	East Hampton, Connecticut 06424
Contact:	Mr. Jack McCarthy
Project:	Soils PO# 002332

Report Date: November 2, 2006

	Client Sam Sample ID			95040- 1749360			Project: Client ID: Vol. Recv.:	YANI YANI	K01204 K001				
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst D	ate	Time	Batch	Mt
Rad Liquid Scintillatio	on Analysis												
LSC, Tritium Dist, So	lid-HTD2,ALL	FSS											
Tritium	U	-1.43	+/-6.02	5.17	+/6.02	11.2	pCi/g		DFA1 10)/28/06	0738	583234	4 E
Liquid Scint C14, Soli	id All,FSS												
Carbon-14	U	0.190	+/-0.121	0.0969	+/-0.121	0.199	pCi/g		AXD2 10)/27/06	i 2332	583236	5 <u>5</u>
Liquid Scint Fe55, So	lid–ALL FSS						•						
Iron-55	υ	4.58	+/-18.8	12.4	+/-18.8	26.2	pCi/g		MXP1 11	. /01/0€	i 1858	583239	€ 1
Liquid Scint Ni63, So.	lid–ALL FSS												
Nickel-63	· U	-3.51	+/7.96	6.83	+/-7.96	14.3	pCi/g		MXP1 11	1/01/06	5 1641	583241	11
Liquid Scint Tc99, So	lid–ALL FSS												
Technetium-99	, X	1.20	+/0.319	0.237	+/0.320	0.489	pCi/g		KXR1 10)/31/06	5 0327	583233	31

The following Prep Methods were performed

Method	Description	 Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	WXL1	10/26/06	1445	583196

The following Analytical Methods were performed

Method	Description			
1	DOE EML HASL-300, Am-05-RC Modified			· · · · · · · · · · · · · · · · · · ·
2	DOE EML HASL-300, Pu-11-RC Modified			
3	DOE EML HASL-300, Pu-11-RC Modified			
4	DOE EML HASL-300, Pu-11-RC Modified			
5	EML HASL 300, 4.5.2.3			
6	EPA 905.0 Modified			
7	EPA 905.0 Modified			
8	EPA 906.0 Modified			
9	EPA EERF C-01 Modified			
10	DOE RESL Fe-1, Modified			
11	DOE RESL Ni-1, Modified			
12	DOE EML HASL-300, Tc-02-RC Modified			
13	DOE EML HASL-300, Tc-02-RC Modified			1
14	DOE EML HASL-300, Tc02RC Modified		·	
Surrogate/T	racer recovery Test	Recovery%	Acceptable Limits	·

Americium-243	Alphaspec Am241, Cm, Solid ALL	98	(15%–125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Connecticut Yankee Atomic Power Address : 362 Injun Hollow Rd

East Hampton, Connecticut 06424 Contact: Mr. Jack McCarthy Project: Soils PO# 002332

9504-0-013C Client Sample ID: Sample ID:

174936006

Project: Client ID: Vol. Recv.:

YANK01204 YANK001

Report Date: November 2, 2006

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF A	Analyst Date	Time Batch Mtc
Plutonium-242	Alph	aspec Pu, S	Solid–ALL FSS		99		(15%-125%)			
Plutonium-241	Liqui	d Scint Pu	241, Solid-ALL FS		101		(25%–125%)			
Strontium-90	GFP	C, Sr90, so	lid-ALL FSS		95		(25%-125%)			
Carrier/Tracer Recovery	GFP	C, Sr90, so	lid-ALL FSS		95		(25%-125%)			
lron-55	Liqui	id Scint Fe	55, Solid–ALL FS		88		(15%–125%)			
Nickel-63	Liqui	id Scint Ni	63, Solid–ALL FS		86		(25%–125%)			
Carrier/Tracer Recovery	Liqu	id Scint Ni	63, Solid-ALL FS		86		(25%-125%)			
Technetium-99	Liqu	id Scint To	99, Solid-ALL FS		79		(15%–125%)			
Carrier/Tracer Recovery	Liqu	id Scint To	99, Solid-ALL FS		79		(15%-125%)			

Notes:

The Qualifiers in this report are defined as follows :

. * A quality control analyte recovery is outside of specified acceptance criteria

Result is less than value reported <

Result is greater than value reported >

The TIC is a suspected aldol-condensation product Α

Target analyte was detected in the associated blank B

BD Results are either below the MDC or tracer recovery is low

Analyte has been confirmed by GC/MS analysis C

D Results are reported from a diluted aliquot of the sample

Н Analytical holding time was exceeded

Value is estimated J

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

Sample results are rejected R

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X·

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

Preparation or preservation holding time was exceeded h

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Addre		Hollow Rd							
Conta		oton, Connec AcCarthy	ticut 06424				Re	port Date: November	2, 2006
Projec	et: Soils PO#	002332							
	Client Sa Sample I Matrix: Collect I Receive Collector Moisture	Date: Date: r:		9520-00 1749360 TS 23-OCT 26-OCT Client 8.59%	-06			YANK01204 YANK001	
Parameter	Qualifier	r Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
Rad Gamma Spec	-							·	
	SS GAM & ALL F.	SS 226 Ingro	wth						
Waived		0.054	1/ 0 140	0.0577	1/ 0 1/0	0.125	-Ci/a	MILLI 10/21/	06 0930 583389
Actinium-228 Americium-241	τ	0.956 J0.0344	+/0.140 +/0.0932	0.0577	+/0.140 +/0.0932	0.123	pCi/g pCi/g		00 0930 203209
Bismuth-212	Ĺ	0.469	+/0.323	0.0855	+/0.323	0.320	pCi/g pCi/g		
Bismuth-212		0.547	+/-0.0937		+/0.0937	0.0717	pCi/g		
Cesium-134	U		+/0.0287		+/-0.0287	0.0518	pCi/g		
Cesium-137	0	0.128	+/0.041	0.0183	+/0.041	0.0391	pCi/g		
Cobalt-60	ι		+/-0.0233		+/-0.0233	0.0426	pCi/g		
Europium-152	i		+/-0.0562		+/-0.0562	0.0979	pCi/g		
Europium-154		J -0.0349	+/-0.0722		+/-0.0722	0.123	pCi/g		
Europium-155		J 0.0307	+/-0.0645		+/0.0645	0.122	pCi/g		
Lead-212		0.754	+/-0.0632		+/-0.0632	0.0601	pCi/g		
Lead-214		0.623	+/~0.085	0.0372	+/0.085	0.0779	pCi/g		
Manganese–54	. เ	J 0.0044	+/-0.0225	0.0196	+/0.0225	0.0417	pCi/g		
Niobium-94	Į	J 0.00264	+/-0.0188	0.0164	+/0.0188	0.0351	pCi/g		
Potassium-40		11.2	+/0.971	0.126	+/-0.971	0.290	pCi/g		
Radium-226		0.547	+/-0.0937	0.0337	+/-0.0937	0.0717	pCi/g		
Silver-108m	ı	J 0.0078	+/0.0199	0.0172	+/-0.0199	0.0363	pCi/g		
Thallium-208		0.265	+/-0.044	0.0179	+/-0.044	0.038	pCi/g		
The following Pr Method	ep Methods were Description	performed			Analyst	Date	Tim	e Prep Batch	
Dry Soil Prep	Dry Soil Prep GI	-RAD-A-	121		WXL1	10/26	<u> </u>		
					17 AL-1	10/20	, 144.	5 565176	
The following An Method	alytical Methods Description	were perfo	med	<u>-</u>				· · · · · · · · · · · · · · · · · · ·	
Meniloa	Description								

1 EML HASL 300, 4.5.2.3

Notes:

The Qualifiers in this report are defined as follows :

Company : Connecticut Yankee Atomic Power

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
	Client San Sample ID			9520000 17493600			Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001	
Project:	Soils PO# 0			,	• .				
Contact:	East Hampto Mr. Jack Mo		ticut 06424				R	eport Date: November	2, 2006
Company : Address :	Connecticut 362 Injun He		tomic Power						

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

QUALITY CONTROL DATA

Client :	Connecticut Yankee A 362 Injun Hollow Rd	tomic Power	QC	Su	mmary			Report Da	ate: Novembe Page 1		16	
Contact:	East Hampton, Conne Mr. Jack McCarthy	cticut										
Workorder:	174936											•
Parmname		NOM	Sample (mal	QC	Units	RPD%	REC%	Dongo	Aplat	Data	Time
		NOM	sample (ŲC	Cints	<u>KID 70</u>	REC 70	Range	Anlst	Date	<u>1 me</u>
Rad Alpha Spec Batch	583311											
QC12012173	70 174936001 DUP											
Americium-241		U	0.00136	υ	-0.0141	pCi/g	243		(0% - 100%)	IAXN	10/30/0	6 10:58
		Uncert:	+/-0.138		+/-0.0635							
		TPU:	+/-0.138		+/-0.0635						· .	
Curium-242		U	0.0391	υ	-0.0144	pCi/g	433		(0% - 100%)			
		Uncert:	+/-0.110		+/-0.020							
		TPU:	+/-0.110		+/-0.020		_				-	
Curium-243/24	4	U	-0.0385	บ	0.0308	pCi/g	1800		(0% - 100%)			
		Uncert:	+/-0.139		+/-0.104							
0.0100101.00		TPU:	+/-0.140		+/-0.104							
QC12012168 Americium-241		2.69			2.51	pCi/g		93	(75%-125%)		10/30/0	6 10.50
AILICI ICIULI-241	L	Uncert:			+/-0.236	peng		95	(1376-12370)		10/30/0	0 10:56
		TPU:			+/-0.250						•	
Curium-242		IFU:		υ	-0.00394	pCi/g						
Cu /uni-242		Uncert:		U	+/-0.0135	p c #E	•					
		TPU:			+/-0.0135							
Curium-243/24	4	3.24			2.95	pCi/g	r	91	(75%-125%)			
		Uncert:			+/-0.256	P 2	>	<i>.</i>	(1010 11010)			
		TPU:			+/-0.422							
QC12012168	888 MB											
Americium-241	lin i i i i			U	-0.0169	pCi/g	5			· ·	10/30/0	6 10:58
		Uncert:			+/-0.0283							
		TPU:			+/-0.0284							
Curium-242				U	0.0056	pCi/g	S					
		Uncert:			+/-0.030							
		TPU:			+/-0.030							
Curium-243/24	4			U	0.0146	pCi/g	S					
		Uncert:			+/-0.0557							
		TPU:			+/-0.0557							
QC12012168		10 7	0.00100		10.4	<i></i>						
Americium-24	1	13.7 U	0.00136		13.4	pCi/g	5	98	(75%-125%))	10/30/0	6 10:58
		Uncert:	+/-0.138		+/-1.31							
Curium 242		TPU:	+/-0.138	11	+/-2.08	-0:4	_					
Curium-242		U	0.0391	U	0.0528	pCi/g	5					
		Uncert:	+/-0.110		+/-0.0991 +/-0.0993							
Curium-243/24	и	TPU: 16.5 U	+/-0.110 -0.0385		+/-0.0993	pCi/g		07	(75%-125%)	`		
Carian1-240/24		Uncert:	+/-0.139		+/-1.43	րշոչ	5.	91	(15/0-125%)	,		
		TPU:	+/-0.139		+/-1.43							
Batch	583312	IFU.	77-0.140		-77 -2.4 1							
QC12012168 Plutonium-238	393 174936001 DUP	••	-0.104	υ	-0.0623	pCi/g	g 50		(0% - 100%	1./TV A 1	10/20//	6 10.5
* ************************************		υ	-0.104	U	-0.0023	pcut	5 50		(070 - 10070	mn	10/00/1	0.0.0

,

		QC	Su	<u>mmary</u>					
Workorder: 174936								Page 2 of 9	
Parmname	NOM	Sample Q	ual	QC	Units	RPD	% REC%	Range Anlst	Date Time
Rad Alpha Spec Batch 583312									
	Uncert:	+/-0.112		+/-0.114					
	TPU:	+/-0.113		+/-0.114			_		
Plutonium-239/240	U	-0.137	U	-0.0217	pCi/	g 14	45	(0% - 100%)	
	Uncert:	+/-0.0631		+/-0.108					
	TPU:	+/-0.0652		+/-0.108					
QC1201216895 LCS		·	11	0.00501	-03			(750 1950)	10/20/06 10-55
Plutonium-238	11		υ	0.00501	pCi/	g		(75%-125%)	10/30/06 10:58
	Uncert:			+/-0.0185					
	TPU:			+/-0.0186	- 03	-	05	(750 1050)	
Plutonium-239/240	2.49			2.37	pCi/	g	. 95	(75%-125%)	
	Uncert:			+/-0.239					
	TPU:			+/-0.334					
QC1201216892 MB Plutonium-238			υ	-0.0011	pCi/	(a			10/30/06 10:58
F10(0)11001-258	Uncert:		0	+/-0.0122	pen	В.,			10/30/00 10.36
	· ·			+/-0.0122					
Plutonium-239/240	TPU:		U	0.000219	pCi/	1~			
F1000000-259/240	Uncert:		U	+/-0.0119	pcu	в			
	TPU:			+/-0.0119					
QC1201216894 174936001 MS	IFU:			±/-0.0119					
Plutonium-238	U	-0.104	υ	0.0643	pCi	lø		(75%-125%)	10/30/06 10:58
	Uncert:	+/-0.112	0	+/-0.142	P	8		((**********	10,00,00 10,00
	TPU:	+/-0.113		+/-0.142					
Plutonium-239/240	12.6 U	-0.137		12.8	pCi	/o	102	(75%-125%)	
	Uncert:	+/-0.0631		+/-1.22	per	Б	102	(1010 12510)	
	TPU:	+/-0.0652		+/-1.79					
Batch 583313									·
QC1201216897 174936001 DUP									
Plutonium-241	U	-5.01	U	1.93	pCi	/p	0	(0% - 100%) AXA 1	11/02/06 09:45
2 2	Uncert:	+/-7.31		+/-8.93		6	-	(c <i>n</i> 100 <i>n</i>),2211	
	TPU:	+/-7.31		+/-8.93					
QC1201216899 LCS				., .,					
Plutonium-241	35.9			27.9	pCi	/g	78	(75%-125%)	11/02/06 10:18
	Uncert:			+/-2.66	-	-			
	TPU:			+/-3.77					
QC1201216896 MB									
Plutonium-241			U	4.08	pCi	/g			11/02/06 09:29
	Uncert:			+/-8.97					
·	TPU:			+/-9.01					
QC1201216898 174936001 MS									
Plutonium-241	141 U	-5.01		124	pCi	/g	88	(75%-125%)	11/02/06 10:0
	Uncert:	+/-7.31		+/-11.4					
	TPU:	+/-7.31		+/-16.5					
Rad Gamma Spec Batch 583389									
QC1201217096 174911001 DUP									
Actinium-228		0.325		0.320	pCi	/g	2	(0% - 100%) MJH1	10/31/06 10:3
	Uncert:	+/-0.119		+/-0.135	-				

54

QC Summary

Workorder:	174936				•/				Deen	0.3-1		
Parmname		NOM	Sample	Oual	QC	Units	RPD%	REC%	Page 3 Range	Anist	Date	Time
Rad Gamma Spec		110114		, Quui	<u>v</u> c	Cinto		<u>ILC N</u>		7 6 6 6 6 7 6	<u> </u>	
-	583389											
		:		-								
		TPU			0.0100				1000 1000	、		
Americium-241			U 0.01		0.0192	· pCi/	g 6		(0% - 100%)		
		Uncert			+/-0.058							
		TPU			+/-0.058	-01	- 26		1000 10000	、		
Bismuth-212		Magaz	0.27		0.00	pCi	g 36		(0% - 100%)		
		Uncert			+/-0.192							
icouth 014		TPI): +/-0.15 0.42		+/-0.192 0.448	-0	′g 6		(0% - 100%	、		
Bismuth-214		Lincor			+/-0.0781	pCi	g U		(0% - 100%	,		
		Uncer										
Tanium 174		TPI			+/-0.0781 0.00	-0	′g 16		100 1000	`		
Cesium-134		lincor			+/-0.0327	pCi	g 10		(0% - 100%)		
		Uncer										
Dealer 177		TP			+/-0.0327 -0.00065	-0	'g 208		1000-	、		
Cesium-137		llacor				pCi	'g 206		(0% - 100%	9		
		Uncer			+/-0.0206							
John H 60		TP			+/-0.0206 0.00792	-0:	'g 827		(0% - 100%			
Cobalt-60		Uncer			+/-0.0186	pCi	g 027		(0% - 100%	9		
					+/-0.0186							
Europium-152		TP			0.0167		/g 36		(0% - 100%			
smobhmi-125		Uncer	-		+/-0.0509	pCi	g 30		(0% - 100%	<i>'</i>		
		TP			+/-0.0509							
Europium-154		11			-0.0485	pCi	/g 216		(0% - 100%			
suropium-134		Uncer			+/-0.0647	per	g 210		(070 - 100%	<i>'</i>	•	
		TP			+/-0.0647							
Europium-155		11				pCi	/g 612		(0% - 100%	.).		
Sulopium-155		Uncer	U 0.065 t: +/-0.043		+/-0.0473		5 012		(0 // - 100 //	··· ·		
		TP			+/-0.0473							
Lead-212		11	0.28		0.346	pCi	/g 19	· .	(0% - 100%			
JCAU-212		Uncer			+/-0.0549	per	5 1)		(0 % - 100 %	"		
		TP			+/-0.0549							
Lead-214		Ir	0.4(0.419	pCi	/g 4		(0% - 100%			
Scau-214		Uncer			+/-0.0777	per	е ч		(070 - 10070	<i>'</i>)		
		TP			+/-0.0777							
Manganese-54		11	υ 0.00030			pCi	/g 191		(0% - 100%			
vianganese-94		Uncer	•		+/-0.0173	per	6 171		(070 - 1007	"		
		TP			+/-0.0173							
Niobium-94		· 1F	U 0.007			pCi	/g 21		(0% - 100%			
1001um-24		Uncer	-		+/-0.0158	per	5 21		(070 - 1007	~		
		TP			+/-0.0158							
Potassium-40		11	7.0		7.61	pCi	/g 8		(0% - 20%	-)		
0.00000000-40		Uncer			+/-0.836	per	ъ 0		010-2010	~/		
		TP			+/-0.836							
Radium-226		IF	0: +7-0.07		0.448	pCi	/g 6		(0% - 100%	5)		
1.2010HI-220		Unce			+/-0.0781	per	Б		1070 - 1007			
		TP			+/-0.0781							
Silver-108m		11				-Ci	/g 1360		(0% - 100%	6)		
CHACI-10011		Unce	-			pCi	/5 1300		1070 - 100%	·) .		
		Uncer	t: +/-0.013	94	+/-0.0162							

QC Summary

.

Workorder: 174936									
								Page 4 of 9)
Parmname	NOM	Sample Qu	al	QC	Units	RPD%	REC%	Range Anl	st Date Time
Rad Gamma Spec		·							
Batch 583389									
	TPU:	+/-0.0134		+/-0.0162					۱
Thallium-208		0.107		0.108	pCi/g	g 2	,	(0% - 100%)	
	Uncert:	+/-0.031		+/-0.036					
	TPU:	+/-0.031		+/-0.036					
QC1201217097 LCS									
Actinium-228			υ	0.166	pCi/g	<u>r</u>		•	10/31/06 10:50
	Uncert:			+/-0.579					
	TPU:			+/-0.579					
Americium-241	23.4			25.2	pCi/g	5	108	(75%-125%)	
	Uncert:			+/-1.33					
	TPU:			+/-1.33					
Bismuth-212			υ	0.169	pCi/Į	5			
	Uncert:			+/-0.989					
-	TPU:			+/-0.989	~				
Bismuth-214	•		U	0.208	pCi/g	5			
	Uncert:			+/-0.235	•				
a	TPU:			+/-0.235	<u> </u>				
Cesium-134			U	0.0196	pCi/g	3			
	Uncert:			+/-0.149					
a 1 10a -	TPU:			+/-0.149	<u>.</u>				
Cesium-137	9.54			10.1	pCi/į	2	106	(75%-125%)	
	Uncert:			+/-0.474					
Coholt 60	TPU:			+/-0.474	-034	_	101	(750) 10501)	
Cobalt-60	14.2			14.4	pCi/g	5	101	(75%-125%)	
	Uncert:			+/-0.640					
Europium-152	TPU:		11.	+/-0.640		.			
Europiani-152	Uncert:		U	+/-0.301	pCi/j	5			
Europium-154	TPU:		U	+/-0.301 -0.0891	pCi/	~			
Europiun-154	Uncert:		U	+/-0.300	pent	5			
				+/-0.300					
Europium-155	TPU:		U	+7-0.300 0.246	-C:/				
Earohun-122	Uncert:		U	+/-0.296	pCi/	B			
·				+/-0.296					
Lead-212	TPU:		υ	0.0927	pCi/	m			
LCau-212	Uncert:		U	+/-0.160	pen ;	5			
	TPU:	· .		+/-0.160		·			
Lead-214	110.		υ	-0.0668	pCi/	σ			•
	Uncert:		U	+/-0.216	POD	5			
	TPU:			+/-0.216					
Manganese-54			U	0.0637	pCi/	a			
······································	Uncert:		•	+/-0.141	P				
	TPU:			+/-0.141				•	
Niobium-94			υ	-0.0941	pCi/j	g			
· · · ·	Uncert:		-	+/-0.131	P - 4	0			
	Q11001C.								
	TPU:			+/-0.131					

Workorder: 174936		<u>QC Su</u>	<u>mmary</u>			-			
	NOM			N. L. DDD.		Page 5			
Parmname Rad Gamma Spec	NOM	Sample Qual	QC	Units RPD%	REC%	Range	Anlst	Date	Time
Rad Gamma Spec Batch 583389									
	Uncert:		+/-1.01						
	TPU:		+/-1.01						
Radium-226	110.	U	0.208	pCi/g		(75%-125%	`		
	Uncert:	e	+/-0.235	PC#8		(15/0-125/0	,		
	TPU:		+/-0.235						
Silver-108m		U	0.00145	pCi/g					
	Uncert:		+/-0.116	, ,					
	TPU:		+/-0.116						
Thallium-208		U	0.109	pCi/g					
	Uncert:		+/-0.124						
	TPU:		+/-0.124						
QC1201217095 MB									
Actinium-228		U	0.017	pCi/g				10/31/0	6 09:3
	Uncert:		+/-0.0424						
A	TPU:		+/-0.0424	C 11					
Americium-241	11	υ	0.00734	pCi/g					
	Uncert:		+/-0.0106						
Bismuth-212	TPU:		+/-0.0106	-0:/-					
BISINUUI-212	Uncert:	U	0.000324	pCi/g					
	TPU:		+/-0.0883 +/-0.0883						
Bismuth-214	IPU:	U	0.0233	pCi/g					
Distilian 214	Uncert:	0	+/-0.033	peng					
	TPU:		+/-0.033						
Cesium-134	110.	บเ	0.00	pCi/g					
	Uncert:		+/-0.0377	PULE					
	TPU:		+/-0.0377						
Cesium-137		υ	-0.00239	pCi/g					
	Uncert:		+/-0.0102						
	TPU:		+/-0.0102						
Cobalt-60		U	0.0115	pCi/g					
	Uncert:		+/-0.0112						
	TPU:		+/-0.0112						
Europium-152		U	-0.00208	pCi/g					
	Uncert:		+/-0.0274						
	TPU:		+/-0.0274						
Europium-154		U٠	0.0176	pCi/g					
	Uncert:		+/-0.030						
	TPU:		+/-0.030	-					
Europium-155		U	0.00314	pCi/g					
· ·	Uncert:		+/-0.0186						
Lead-212	TPU:	11	+/-0.0186						
LCau-212	Uncert:	U	0.0227	pCi/g					
			+/-0.0166 +/-0.0166		•				
Lead-214	TPU:	ហ	+/-0.0166 0.00	pCi/g	•				
LOUD LAT	Uncert:	01	+/-0.0396	heng					
	TPU:		+/-0.0396						

57

:

				\underline{QC}	Su	mmary							
Workorder: 174	4936									Page 6	of 9		
Parmname			NOM	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Rad Gamma Spec Batch 5833	89												
Manganese-54	•.				U	-0.00543	pCi/	g					
	•		Uncert:			+/-0.0113							
			TPU:			+/-0.0113							
Niobium-94					U	0.00493	pCi/	g					
			Uncert:			+/-0.0109							
Potassium-40	•		TPU:			+/-0.0109 0.356	-01	-					
Potassium-40			Uncort		U	0.356 +/-0.179	pCi/	g					
•			Uncert: TPU:			+/-0.179							
Radium-226			IFU.		U	0.0233	pCi/	'p					
			Uncert:		U	+/-0.033	per	ь					
	÷		TPU:			+/-0.033							
Silver-108m					U	-0.00346	pCi/	'g					
			Uncert:			+/-0.00831		-					
			TPU:			+/-0.00831							
Thallium-208					υ	0.0108	pCi/	'g					
			Uncert:			+/-0.0183							
			TPU:			+/-0.0183							
Rad Gas Flow Batch 5832	43												
QC1201216718	174936001	DUP											
Strontium-90				0.0263		0.0557	pCi	g 72		(0% - 100%)	KSD1	11/02/0	6 09:35
			Uncert:	+/-0.0109		+/-0.019					·		
001001010700			TPU:	+/-0.011		+/-0.019							
QC1201216720 Strontium-90	LCS		1.64			1.34	pCi	10	82	(75%-125%)	`	11/02/0	06 09:3:
Submitum yo	-		Uncert;			+/-0.0863	per	5		(13/0-125/0	,	11/02/0	0 0
			TPU:			+/-0.0946							
QC1201216717	MB												
Strontium-90						0.0333	pCi	/g				11/02/0	06 09:3:
	•		Uncert:			+/-0.0137							
			TPU:			+/-0.0137							
QC1201216719 Strontium-90	174936001	MS	£ 10	0.0062		A 66	-0:	1	00	17501 1750	、	11/00/	00.0
Stronuum-90			5.18 Uncert:	0.0263 +/-0.0109		4.66 +/-0.304	pCi	g	89	(75%-125%))	11/02/0	06 09:35
			TPU:	+/-0.0109		+/-0.330							
Rad Liquid Scintillati	On		110.	+-0.011		+7-0.550		-		•			
Batch 5832						• •							
QC1201216690	174936001	DUP											
Technetium-99			U	0.320	U	0.321	pCi	/g 0		(0% - 100%) KXR1	10/31/0	06 04:00
			Uncert:	+/-0.221		+/-0.291							
00120126602	1.05		TPU:	+/-0.221		+/-0.291							
QC1201216692 Technetium-99	LCS		13.0			12.9	pCi	/9	99	(75%-125%	1	10/31/0	06 04:3
			Uncert:			+/-0.501	per	. 0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		,		
			TPU:			+/-0.601						-	
QC1201216689	MB												
Technetium-99		•			υ	0.047	pCi	/g				10/31/0	06 03:4

OC Summary

٥

QC Summary

				$\underline{\mathbf{v}}$	Du	<u>iiiiai y</u>						
Workorder: 1	74936									Page		
Parmname	··		NOM	Sample ()naj	QC	Units 1	RPD%	REC%	Range	Anlst	Date Time
Rad Liquid Scintillat Batch 583	tion 233											
	·		Uncert: TPU:			+/-0.238 +/-0.238						
QC1201216691 Technetium-99	174936001	MS	13.1 U Uncert: TPU:	0.320 +/-0.221 +/-0.221		12.5 +/-0.543 +/-0.631	pCi/g		96	(75%-125%)	10/31/06 04:16
Batch 583	234		110.	+7-0.221		+7-0.001						
QC1201216694 Tritium	174936001	DUP	U Uncert: TPU:	3.72 +/-5.94 +/-5.94	U	-6.31 +/-6.86 +/-6.86	pCi/g	, 0		(0% - 100%) DFA1	10/28/06 08:10
QC1201216696 Tritium	LCS		51.5 Uncert: TPU:	17-5.54		45.3 +/-8.97 +/-9.01	pCi/g		88	(75%-125%	•)	10/28/06 08:42
QC1201216693 Tritium	MB		Uncert:		ບ່	-0.82 +/-5.74 +/-5.74	pCi/g					10/28/06 07:54
QC1201216695 Tritium	174936001	MS	TPU: 60.3 U Uncert:	3.72 +/-5.94		48.1 +/-10.1	pCi/g		80	(75%-125%	,)	10/28/06 08:26
Batch 583	3236		TPU:	+/-5.94		+/-10.1						
QC1201216702 Carbon-14 QC1201216704	174936001	DUP	U Uncert: TPU:	0.179 +/-0.112 +/-0.112	U	0.0712 +/-0.108 +/-0.108	pCi/g		•	(0% - 100%) 4XD 2	10/28/06 01:00
Carbon-14			6.78 Uncert: TPU:			6.63 +/-0.229 +/-0.251	pCi/g		98	(75%-125%)	10/28/06 02:40
QC1201216701 Carbon-14	MB		Uncert: TPU:		U	0.0836 +/-0.109 +/-0.109	pCi/g					10/28/06 00:1
QC1201216703 Carbon-14	174936001	MS	7.17 U Uncert: TPU:	0.179 +/-0.112 +/-0.112		6.59 +/-0.237 +/-0.258	pCi/g		92	(75%-125%)	10/28/06 01:5
Batch 583	3239											
QC1201216710 Iron-55 QC1201216712		DUP	U Uncert: TPU:	14.2 +/-19.7 +/-19.7	υ	-3.35 +/-19.4 +/-19.4	pCi/g	0		(0% - 100%) MXP1	11/01/06 19:1:
Iron-55	LCJ		57.2 Uncert: TPU:			54.5 +/-3.71 +/-5.38	pCi/g		95	(75%-1259	b)	11/01/06 19:4

QC Summary

Workorde		174076												
workorde	r:	174936							<u> </u>		Page	8 of 9		
Parmname				NOM	Sample (Jual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Rad Liquid S														
Batch	58	3239								•				
QC12012	216709	MB												
lron-55						U.		pCi/	g				11/01/0	6 16:5
		•		Uncert:			+/-1.02							
001201	~ 16711	174026001	140	TPU:			+/-1.02							
lron-55	210/11	174936001	MIS	611 U	14.2		593	pCi/	ø	97	(75%-125%	a)	11/01/0	6 19:3
				Uncert:	+/-19.7		+/-37.3	per	6		(10/0 100	.,		
				TPU:	+/-19.7		+/-58.7							
Batch	58	3241												
OC1201	216714	174936001	DUP											
Nickel-63				U	-0.799	U	0.571	pCi/	g 0		(0% - 100%) MXP1	11/01/0	6 17:2
				Uncert:	+/-7.83		+/-7.52							
				TPU:	+/-7.83		+/-7.52							
QC1201 Nickel-63	216716	LCS		179			160	pCi/	a	00	(75%-125%	6)	11/01/0	6 18-0
NICKEI-05				Uncert:			+/-6.78	per	B	50	(1370-1237))	11/01/0	0 16.0
				TPU:			+/-8.10							
QC1201	216713	MB												
Nickel-63						U	1.12	pCi/	g				11/01/0	6 17:0
				Uncert:			+/-2.38							
				TPU:			+/-2.38							
QC1201 Nickel-63	216715	174936001	MS	535 U	-0.799		448	pCi/	σ	84	(75%-125%	6)	11/01/0	6 17.4
110401-05	•			Uncert:	+/-7.83		+/-19.0	per	5	04	(1570 1257	"	11/01/0	, , , , , , , , , , , , ,
				TPU:	+/-7.83		+/-24.7							
NI-A -					· · · ·						•••			
Notes: The Ouali	ifiers ir	this report a	are defined	as follows:										
													•	
* A	A quali	ty control an	alyte recov	ery is outside of sp	ecified accep	tance c	riteria							
< R	Result i	s less than v	alue reporte	ed										
> R	Result i	s greater tha	n value rep	orted										
A T	The TIC	C is a suspec	ted aldol-co	ondensation produc	t									
вт	Farget a	analyte was o	detected in	the associated blan	k									
BD R	Results	are either be	low the MI	DC or tracer recove	ry is low									
C A	Analyte	has been co	nfirmed by	GC/MS analysis										
DR	Results	are reported	from a dilu	ited aliquot of the s	ample									
НA	Analyti	cal holding t	ime was ex	ceeded	-									
JV	/alue is	s estimated												
N/A S	Spike re	ecovery limi	ts do not ap	ply. Sample conce	ntration exce	eds sp	ike concentra	tion by 4X	or more					
		results are r	-											
	-		•	not detected above	the MDL. M	DA, or	LOD.							
				ain identification		, 01								
		Case Name	-						_					

Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier х

Y QC Samples were not spiked with this compound

RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 174936 Page 9 of 9 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more. ** Indicates analyte is a surrogate compound.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

General Narrative

Erratum

Page 1 of 1

The following change is made to sample nomenclature to acknowledge the reassignment of sample locations from Survey Unit 9520-0003 to Survey Unit 9520-0005:

Laboratory Identification	Original Sample Description	Changed Sample Description
173429001	9520-0003-021F	9520-0005-021F
173429002	9530-0003-022F	9530-0005-022F
173429003	9520-0003-023F	9520-0005-023F
173429004	9530-0003-024F	9530-0005-024F
173429005	9520-0003-025F	9520-0005-025F
173429006	9530-0003-026F	9530-0005-026F
173429007	9520-0003-027F	9520-0005-027F
173429008	9530-0003-028F	9530-0005-028F
173429009	9520-0003-029F	9520-0005-029F
173429010	9530-0003-030F	9530-0005-030F
173429011	9520-0003-031F	9520-0005-031F

11/17/16 Completed by: Jack McCarthy

General Narrative for Connecticut Yankee Atomic Power Co. Work Order: 173429 SDG: MSR#06-1334

October 12, 2006

Laboratory Identification:

General Engineering Laboratories, LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary

Sample receipt

The samples arrived at General Engineering Laboratories, LLC, Charleston, South Carolina on October 06, 2006 and October 09, 2006 for analysis. Shipping container temperatures were checked, documented, and within specifications. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. The incorrect MSR was listed on COC 2006-00560, please see attached email for clarification.

2

Sample Identification The laboratory received the following samples:

Laboratory	Sample
Identification	Description
173429001	9520-0003-021F
173429002	9520-0003-022F
173429003	9520-0003-023F
173429004	9520-0003-024F
173429005	9520-0003-025F
173429006	9520-0003-026F
173429007	9520-0003-027F
173429008	9520-0003-028F
173429009	9520-0003-029F
173429010	9520-0003-030F
173429011	9520-0003-031F
173429012	9520-0003-035F
173429013	9520-0003-036F
173429014	9520-0003-037F
173429015	9520-0003-038F

Items of Note

There are no items to note.

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Analytical Request

Fifteen soil samples were analyzed for FSSGAM.

Data Package

The enclosed data package contains the following sections: General Narrative, Chain of Custody and Supporting Documentation, Data Review Qualifier Definitions, and data from the following fractions: Radiochemistry.

I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

Cheryl Jones Project Manager

State	Certification
Alaska	UST-062
Arizona	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California	01151CA
Colorado	GenEngLabs
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA	WG-15J
Florida/NELAP	E87156
Georgia	E87156 (FL/NELAP)
Hawaii	N/A
Idaho	N/A
Illinois	200029
Indiana	C-SC-01
Kansas	E-10332
Kentucky	90129
Louisiana	03046
Maryland	270
Massachusetts	M-SC012
Michigan	9903
Nevada	SC12
New Jersey	SC002
New Mexico	FL NELAP E87156
New York	11501
North Carolina	233
North Carolina Drinking W	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania	68-00485
South Carolina	10120001/10585001/10120002
Tennessee	02934
Texas	TX213-2006A
Texas NELAP	T104704235-06-TX
U.S. Dept. of Agriculture	S-52597
US Army Corps of Engineer	N/A
Utah	8037697376 GEL
Vermont	VT87156
Virginia	00151
Washington	C1641

List of current GEL Certifications as of 12 October 2006

Chain of Custody and Supporting Documentation

Health Physics Procedure

GPP-GGGR-R5104-003-Attachment B-CY-001 Major

٠.,

	Connecticut Y 362 Injun F	ankee A Hollow Road, 1 860-26	East Hampton			ıy			Ch	ain o	f Custod	y Form	No. 2006-00560
	Project Name: Haddam No	eck Decom	missioning				[An	alyses l	Request	ed	Habuse Only	
	Contact Name & Phone: Jack McCarthy 860-267-	3924										Gomments	
	Analytical Lab (Name, City, State) General Engineering Laboratories 2040 Savage Road. Charleston SC. 29407 843 556 8171. Attn. Cheryl Jones					FSSGAM	FSSALL		· · ·				
	Priority: 🗌 30 D. 🛄 14 D	. ⊠ 7 D. L	3 D.		ł	Container						173929	1 2/
	Sample Designation	Date	Time	Media Code	Sample Type Code	Size- &Type Code						Comment, Preservation	Lab Šample ID
	9520-0003-021F	9/26/06	1341	TS	G	BP	х		·				
ē	9520-0003-022F	9/26/06	1345	TS	G	BP	X						
\sim	9520-0003-023F	9/26/06	1348	TS	G	BP	X.					····=	and and a state of the state of
- {	9520-0003-024F	9/26/06	1353	TS	G	BP	X					· · · · · · · · · · · · · · · · · · ·	
- [9520-0003-025F	9/26/06	1400	TS	G	BP	X						and an and a set of the
. [9520-0003-026F	9/26/06	1410	TS	G	BP	X						
	9520-0003-027F	9/26/06	1411	TS	G	BP	X.						
l	9520-0003-028F	9/26/06	1421	TS	G	BP	X						
	9520-0003-029F	9/26/06	1423	TS	G	BP	X						
l	9520-0003-030F	9/26/06	1432	TS	G	BP	X						and a state of the second
1	9520-0003-031F	9/26/06	1434	TS	G	BP	Х						
	NOTES: PO #: 002332 ۵۵-۵۵-۵۵ (ماد 25) م	MSR #:	06-1335 S + See e	SSWP#1	NA 🛛	LTP QA	[]] M ari F	Radwas کلیل کس	te QA Calf	[] N m 10	Non QA 10 06	Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp: <u>Z/</u> Deg. Custody Sealed?
	1) Relinquished By Jack J (Jack Jack Jack Jack Jack Jack Jack Jack	2(Date/Time 0/5/06 Date/Time	1420	2) Recei 4) Recei	ved By Ned By	lito		(Date/1 0 <u>(9</u> /0 Date/1	6 8:30	Other <u>7985-1394 5689</u> Bill of Lading #	Custody Seal: Imact?

Health Physics Procedure

Connecticut Y 362 Injun	Hollow Road, I				ıy			Cha	ain o	f Cus		y Form	No. 2006-00595
Project Name: Haddam N	Jeck Decom	missioning	T				An	alyses I	Request	ed		ana di Use Ofily	
Contact Name & Phone: Jack McCarthy 860-267	/-3924]								Comments.	
Analytical Lab (Name, City, State) General Engineering Laboratories 2040 Savage Road. Charleston SC. 29407 843 556 8171. Attn. Cheryl Jones						FSSGAM	FSSALL						
Priority: 🗌 30 D. 🗌 14 I	D. 🛛 7 D. [] 3 D.			Container	Ϋ́,		-				7343	29%
Sample Designation	Date	Time	Media Code	Sample Type Code	Size- &Type Code			•				Comment, Preservation	LabiSample ID
9520-0003-035F	9/29/06	0724	TS	G	BP	X							
9520-0003-036F	9/29/06	0727	TS	G	BP	X							
9520-0003-037F	9/29/06	0735	TS	G	BP	X							
9520-0003-038F	9/29/06	0740	TS	G	BP	X		· · · · ·	[
			Τ						[and the second
			Τ										
	1					[
		1	1										
		1	1										
· · · · · · · · · · · · · · · · · · ·	1	1											的影响 的第三人称单数
NOTES: PO #: 002332 55wp +6-06-00		06-2334	SSWP#	NA 🛛	LTP QA		Radwas	te QA	1	Non QA	A	Samples Shipped Via: ☑ Fed Ex □ UPS □ Hand	Internal Container Femp: <u>11</u> Beg: Custody Sealed? Yaty N D
1) Relinquished By	th	Date/Tim 20/5/04	1420 2) Received By Date/Time 1420 Jaune 12/6/05 9:45					Other	Gusfòdy Seal - linact?				
3) Relinquished By	ie .	4) Recei	ved By		/	,	Date/	Time		<u>7900 8695 2965</u> Bill of Lading #	X ND		

Subject: RE: Please confirm MSR designation From: "Arthur L. Hammond" <Hammond@CYAPCO.com> Date: Tue, 10 Oct 2006 15:22:42 -0400 To: "Cheryl Jones" <cj@gel.com> CC: "John McCarthy" <McCarthy@CYAPCO.com>

Cheryl,

All information, per your e-mail, is correct.

Sample 9506-0-6C is for CHALL.

MSR#06 1334: includes COCs 2006-00595, 00560, 00561, and 00603 MSR#06-1335: sample 9506-0-6C on COC 2006 00597

Thank you,

Arthur

--- Original Message----From: Cheryl Jones [mailto:cj@gel.com] Sent: Tuesday, October 10, 2006 3:07 PM To: Arthur L. Hammond Cc: John McCarthy; Amanda Rasco Subject: Please confirm MSR designation

Arthur, Please confirm the following MSR designation for samples we received

10/6 and 10/9:

MSR#06-1334: 9520 series on COCs 2006-00595, 00560, 00561, 00603 MSR#06-1335: only sample 9506-0-6C on COC 2006-00597

Please also confirm that sample 9506.0-6C is for CHALL, as the X was not

on the COC under that request column.

Thanks, Cheryl

Cheryl A. Jones Project Manager/PM Team Leader General Engineering Laboratories, LLC 2040 Savage Road Charleston, SC (USA) 29407 Direct: 843.769.7388 Main: 843.556.8171 x 4243 Fax: 843.766.1178 E mail: c.@gol.com Web: www.gol.com

The information contained in this message is confidential and is intended only for the use of the individual or firm of record. If you are not the intended recipient and have received this message in error, you are asked not to copy or distribute any of the pages that follow. Please notify the sender immediately by telephone or email if you have received this communication in error and destroy the contents that do not pertain to your business with The GEL Group, INC.

	Connecticut Yankee CY-ISC-SOW-001	
	Figure I. Sample Check-in List	· ·
	Date/Time Received	: • ::
	SDG#:MSR#06-1334, MSR#06-1335	•, •
	Work Order Number: 173429, 173432, 173434, 173435	<u>7</u> 059
•	Shipping Container ID: 190 8495 296 Schain of Custody # 2006 00 561-/	. • •
	1. Custody Seals on shipping container intact? Yes' [] No []	· · ·-
	2. Custody Seals dated and signed? Yes I No []	•
	3. Chain-of-Custody record present? Yes X No []	• *
	19 ⁰	
	\mathbf{V}	• •
. · ·	6. Number of samples in shipping container:	··· . • .
· .:	7. Sample holding times exceeded? Yes [] No [X	
· · · · · · · · · · · · · · · · · · ·	8. Samples have: 	· · ·
• • • •	9. Samples are:	
. •	j. Samples ale.	
	have air bubbles	
	10. Were any anomalies identified in sample receipt? Yes [] No [V	
	11. Description of anomalies (include sample numbers):	
·.		•••
	$\frac{1}{2}$	
	Sample Custodian/Laboratory: Jan Date: 10/6/6/	
	Telephoned to:OnBy	· • •
		•

	nnecticut Yankee ement of Work for Analytical Lab S	Services	CY-ISC-SO	<u>w-001</u>
	Fi	gure 1. Sample Check-in I	list	Ň
Date		8:30		·
SDC	MSR#p6-1334 MOR#06-13	35 CAY 10/10/06		
Wo	rk Order Number:173429	1		·
Shir	oping Container ID: 79851394	7689 Chain of Cu	stody #_ 2006-00560	<u>></u>
1.	Custody Seals on shipping cont	tainer intact?	Yes [X No []	
2.	Custody Seals dated and signed	17	Yes 🕅 No []	
3.	Chain-of-Custody record preser	nt?	Yes [X] No []	
4.	Cooler temperature 21	0	•	
5.	Vermiculite/packing materials i	is:	Wet [] Dry [] N/	+
6.	Number of samples in shipping	container:	· · · · · · · · · · · · · · · · · · ·	
7.	Sample holding times exceeded	! ?	Yes [] No [7]	
8	Samples have:			
	custody seals	-hazard labels	4	
		appropriate sample l		
9.	Samples are:			
	in good condition	leaking		
	broken	have air bubbles		
10.	Were any anomalies identified i		Yes [] No 🕅	
11.	Description of anomalies (inclus	de sample numbers):		
				· · ·
				-
Samp	le Custodian/Laboratory:	- Volato	Date: 10/9/06	•
Telep	honed to:	On	_By	

١D

Data Review Qualifier Definitions

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL</p>
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL</p>
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

GENERAL ENGINEERING LABORATORIES, LLC a Member of THE GEL GROUP, NC. P.O. BOX 30712 Charleston, SC 29417 • 2040 Savage Road (29407) Phone (843) 555-B171 • Fate (2) 3) 766-1178 www.gel.com

RADIOLOGICAL ANALYSIS

Radiochemistry Case Narrative Connecticut Yankee Atomic Power Co. (YANK) Work Order 173429

Method/Analysis Information

Product:

Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived

Analytical Method:	EML HASL 300, 4.5.2.3
Prep Method:	Dry Soil Prep
Analytical Batch Number:	576803
Prep Batch Number:	576541

Sample ID	Client ID
173429001	9520-0003-021F
173429002	9520-0003-022F
173429003	9520-0003-023F ·
173429004	9520-0003-024F
173429005	9520-0003-025F
173429006	9520-0003-026F
173429007	9520-0003-027F
173429008	9520-0003-028F
173429009	9520-0003-029F
173429010	9520-0003-030F
173429011	9520-0003-031F
173429012	9520-0003-035F
173429013	9520-0003-036F
173429014	9520-0003-037F
173429015	9520-0003-038F
1201201884	Method Blank (MB)
1201201885	173429001(9520-0003-021F) Sample Duplicate (DUP)
1201201886	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 13.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 173429001 (9520-0003-021F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples 1201201885 (9520-0003-021F) and 173429001 (9520-0003-021F) were recounted due to high relative percent difference/relative error ratio.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to high counting uncertainty.	Bismuth-212	173429009
ហ	Data rejected due to high peak-width.		173429015
UI	Data rejected due to interference.	Europium-155	173429010
			173429011
UI	Data rejected due to low abundance.	Bismuth-214	173429009
		Cesium-134	173429001
: ¹¹			173429002
			173429007
			173429011
			173429013

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

of zb **Reviewer/Date:**

SAMPLE DATA SUMMARY

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

101

YANK001 Connecticut Yankee Atomic Power Co.

Client SDG: MSR#06-1334 GEL Work Order: 173429

The Qualifiers in this report are defined as follows:

* A quality control analyte recovery is outside of specified acceptance criteria

** Analyte is a surrogate compound

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

ND The analyte concentration is not detected above the detection limit.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones.

Reviewed by

Certificate of Analysis

Comp Addre	•	Connecticut 362 Injun H		omic Power						
Conta Projec		East Hampto Mr. Jack Mo Soils PO# 0	Carthy	ticut 06424				Rep	ort Date: Octob	er 12, 2006
		Client Sam Sample ID Matrix: Collect Da Receive D Collector: Moisture:): ite:		9520-00 1734290 TS 26-SEP 09-OCI Client 9.25%	-06	· · · (ANK01204 ANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst I	Date Time Batch Mt
Rad Gamma Spec	Analy	sis								
Gamma,Solid–FS Waived	SS GAI	M & ALL FSS	226 Ingro	wth						
Actinium-228 Americium-241 Bismuth-212 Bismuth-214		υ	0.669 0.0158 0.636 0.524	+/-0.167 +/-0.0993 +/-0.338 +/-0.103	0.0804 0.132	+/-0.167 +/-0.0993 +/-0.338 +/-0.103	0.126 0.167 0.287 0.0657	pCi/g pCi/g pCi/g pCi/g	МЈН1 1	0/12/06 1015 576803
Cesium-134 Cesium-137 Cobalt-60 Europium-152		ហ ប ប	0.00 0.0868 0.0098 0.016	+/-0.0401 +/-0.0408 +/-0.0245 +/-0.0604	0.0203 0.0221	+/0.0401 +/0.0408 +/0.0245 +/0.0604	0.0572 0.0434 0.0486 0.111	pCi/g pCi/g pCi/g pCi/g		
Europium-154 Europium-155 Lead-212 Lead-214		U U	0.0853 0.0625 0.665 0.609	+/-0.0845 +/-0.0553 +/-0.0653 +/-0.0981	0.0539 0.0283	+/-0.0845 +/0.0553 +/0.0653 +/0.0981	0.140 0.112 0.059 0.0762	pCi/g pCi/g pCi/g pCi/g		
Manganese–54 Niobium–94 Potassium–40		U U	0.0081 0.00664 11.2	+/-0.0243 +/-0.021 +/-0.949	0.0213 0.0186 0.161	+/0.0243 +/0.021 +/0.949	0.0456 0.0397 0.367	pCi/g pCi/g pCi/g		
Radium–226 Silver–108m Thallium–208		U	0.524 0.0278 0.204	+/-0.103 +/-0.0208 +/-0.053	0.0192	+/-0.103 +/-0.0208 +/-0.053	0.0657 0.0406 0.0378	pCi/g pCi/g pCi/g		
The following Provide the The following Provide the T		thods were p	erformed			Analyst	Date	Time	Prep Batch	
Dry Soil Prep		Soil Prep GL-	-RAD-A-(021		TMB1	10/09/		576541	
The following An	-	•								
Method		iption	CIC PETIOI						<u> </u>	
1	EML	HASL 300, 4	4.5.2.3			· · · · · ·				

Notes:

The Qualifiers in this report are defined as follows :

A quality control analyte recovery is outside of specified acceptance criteria Result is less than value reported *

<

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd
		Client Sample ID: Sample ID:	9520-0003-021F 173429001	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
	Project:	Soils PO# 002332		
	Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy	•	Report Date: October 12, 2006
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded .

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy---Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

Certificate of Analysis

ŀ	Company : Address :	Connecticut 362 Injun Ho		omic Power							
(Contact:	East Hampto Mr. Jack Mc		ticut 06424				: R	leport Date:	October 12	, 2006
]	Project:	Soils PO# 00	02332	·							
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	: te:		952000 1734290 TS 26-SEP 09-OCT Client 13.3%	06		Proiect: Client ID: Vol. Recv.:	YANK012 YANK001		
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF An	alyst Date	Time Batch Mtd
Rad Gamma	Spec Analy	/sis				<u></u>			``		
Gamma,Soli	d–FSS GAI	M & ALL FSS	226 Ingro	wth							
Waived						•					
Actinium-2	228		0.686	+/-0.175	0.0602	+/-0.175	0.131	pCi/g	MJ	H1 10/10/0	06 1409 576803 1
Americium	-241	υ	0.0752	+/-0.139	0.0852	+/-0.139	0.176	pCi/g		·	
Bismuth-2		U	0.275	+/0.317	0.150	+/0.317	0.322	pCi/g			
Bismuth-2	14		0.540	+/0.0998		+/0.0998	0.0713	pCi/g			
Cesium–13		UI	0.00	+/-0.0316		+/-0.0316	0.051	pCi/g			
Cesium-13	17		0.0752	+/0.0338		+/-0.0338	0.0426	pCi/g			
Cobalt-60			0.00209	+/0.0246		+/-0.0246	0.0442	pCi/g			
Europium-		ប	-0.0237	+/-0.0607		+/0.0607	0.105	pCi/g			
Europium-		U	0.0393	+/0.0827		+/-0.0827	0.138	pCi/g			
Europium-	155	U	-0.0528	+/-0.0639		+/-0.0639	0.114	pCi/g			
Lead-212			0.752	+/-0.0629		+/-0.0629	0.0627	pCi/g			
Lead-214			0.549	+/0.0959		+/-0.0959	0.0853	pCi/g			
Manganese		U	0.0209	+/-0.0216		+/-0.0216	0.0427	pCi/g			
Niobium-9		U	-0.00183	+/-0.022	0.0187	+/-0.022	0.0398	pCi/g			
Potassium-			11.6	+/0.943	0.149	+/-0.943	0.340	pCi/g			
Radium-22			0.540	+/-0.0998		+/0.0998	0.0713	pCi/g			
Silver-108		U	-0.00164	+/0.0207		+/-0.0207	0.0363	pCi/g			
Thallium-2	208		0.233	+/0.0423	0.0188	+/0.0423	0.040	pCi/g			

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	TMB1	10/09/06	1211	576541

The following Analytical Methods were performed

Method Description

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

A quality control analyte recovery is outside of specified acceptance criteria
 Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

<u>Certificate of Analysis</u>

Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd
		Client Sample ID: Sample ID:	9520-0003-022F 173429002	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
P	Project:	Soils PO# 002332		
c	Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy		Report Date: October 12, 2006
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL.</p>

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Connecticut 362 Injun Ho		omic Power									
	East Hampto	on, Connec	ticut 06424				R	eport Date: Oct	tober 12	2, 2006		
Contact:	Mr. Jack Mc	Carthy										
Project:	Soils PO# 00	02332										
·	Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	te:		9520-00 1734290 TS 26-SEP 09-OCT Client 4.43%	06	·	Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001		·		
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time	Batch	MI
Gamma,Solid–FSS GA Waived	M & ALL FSS	226 Ingro	wth									
Actinium-228		0.950	+/0.235	0.093	+/0.235	0.198	pCi/g	MIHI	10/10/	06 1409	576803	
Americium-241	U	-0.0193	+/-0.0372	0.0318	+/-0.0372	0.0656	· pCi/g	14,511,	10/10/	50 1 40 5	510005	
Bismuth-212	U	0.533	+/0.331	0.200	+/-0.331	0.424	pCi/g	,				
Bismuth-214		0.618	+/0.119	0.0476	+/-0.119	0.100	pCi/g					
Cesium-134	U	0.0678	+/0.0427		+/-0.0427	0.0692	pCi/g					
Cesium-137	Ũ	0.194	+/-0.0686		+/-0.0686	0.0511	pCi/g				•	
Cobalt-60	U	0.0118	+/-0.0335		+/-0.0335	0.0623	pCi/g					
Europium-152	Ū	-0.00811	+/-0.0711		+/-0.0711	0.124	pCi/g					
Europium-154	Ŭ	-0.00214	+/-0.0919	0.0769	+/0.0919	0.166	pCi/g					
Europium-155	ប	0.0958	+/-0.0892	0.0503	+/-0.0892	0.104	pCi/g					
Lead-212		0.784	+/-0.0871	0.0466	+/0.0871	0.0955	pCi/g					
Lead-214		0.753	+/-0.110	0.0396	+/0.110	0.0832	pCi/g					
Manganese–54	υ	0.00839	+/-0.048	0.0257	+/-0.048	0.0545	pCi/g					
Niobium-94	U	0.012	+/-0.0263	0.023	+/-0.0263	0.0486	pCi/g					
Potassium-40		13.1	+/-1.03	0.168	+/-1.03	0.381	pCi/g					
Radium-226		0.618	+/0.119	0.0476	+/-0.119	0.100	pCi/g					
Silver-108m	U	0.000128	+/~0.0231	0.0205	+/-0.0231	0.0431	pCi/g					
Thallium-208		0.312	+/-0.0526	0.0228	+/0.0526	0.0482	pCi/g					
The following Dress Me	thada war	aufourned										
The following Prep Me Method Desc	ription	entormed		<u> </u>	Analyst	Date	е Тіл	e Prep Bato	:h			

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	TMB1	10/09/06	1211	576541

The following Analytical Methods were performed

Method Description

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
		Client Sam Sample ID:			9520–000 17342900			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Projec	et:	Soils PO# 00	2332							
Conta		East Hampto Mr. Jack Mc	•	ticut 06424				ł	Report Date: October 12	2, 2006
Comp Addre	~	Connecticut 362 Injun Ho		tomic Power						

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 ~ (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Connecticut 362 Injun H		omic Power						
Contact: Project:	East Hampto Mr. Jack Mr Soils PO# 0	cCarthy	ticut 06424		•.		Re	port Date: October 12	2, 2006
	Client San Sample ID Matrix: Collect Da Receive D Collector: Moisture:	nple ID:): ate:`		9520-00 1734290 TS 26-SEP 09-OCI Client 10.5%	06			Y ANK01204 Y ANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
Rad Gamma Spec Ana	lysis			- ** **					
Gamma,Solid–FSS GA Waived	AM & ALL FSS	5 226 Ingro	wth						
Actinium-228		0.749	+/-0.186	0.0629	+/0.186	0.135	pCi/g	MJH1 10/10/	06 1410 576803
Americium-241	U	-0.002	+/-0.0554	0.0477	+/-0.0554	0.0991	pCi/g		
Bismuth-212		0.413	+/-0.237	0.109	+/0.237	0.236	pCi/g		
Bismuth-214		0.422	+/0.0859	0.0362	+/0.0859	0.0763	pCi/g		
Cesium-134	U	0.0255	+/0.0217	0.0202	+/0.0217	0.0431	pCi/g		
Cesium-137		0.0393	+/0.0359	0.0169	+/0.0359	0.0361	pCi/g		
Cobalt-60	. U	0.00672	+/0.0174		+/-0.0174	0.0349	pCi/g		
Europium-152	. U	-0.0479	+/~0.0541		+/0.0541	0.0794	pCi/g		
Europium-154	U	-0.0375	+/0.0602	0.0479	+/-0.0602	0.106	pCi/g		
Europium-155	υ	0.0474	+/0.0486		+/-0.0486	0.0886	pCi/g		
Lead-212		0.655	+/0.0743	0.0205	+/0.0743	0.0431	pCi/g		
Lead-214		0.502	+/0.0823		+/-0.0823	0.0605	pCi/g		
Manganese54		-0.00789	+/0.0172	0.0138	+/-0.0172	0.0301	pCi/g		
Niobium-94	U	-0.00708	+/0.0176		+/0.0176	0.0314	pCi/g		
Potassium-40		12.2	+/-1.16	0.155	+/-1.16	0.346	pCi/g		
Radium-226		0.422	+/0.0859	0.0362	+/-0.0859	0.0763	pCi/g		
Silver-108m	U		+/0.015	0.0131	+/0.015	0.028	pCi/g		
Thallium-208		0.185	+/-0.0363	0.0168	+/-0.0363	0.0357	pCi/g		
The following Prep M	ethods were p	erformed							
Method Des	cription				Analyst	Date	- Time	Pren Batch	

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	TMB1	10/09/06	1211	576541
	·				

The following Analytical Methods were performed

Method Description

1 EML HASL 300, 4.5.2.3

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier Result Uncertainty	LC TPU	Vol. Recv.: MDA Units DF Analyst Date
	5	Client Sample ID: Sample ID:	9520-0003-024F 173429004	Project: YANK01204 Client ID: YANK001
	Contact: Project:	Mr. Jack McCarthy Soils PO# 002332		
· .	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd East Hampton, Connecticut 06424		Report Date: October 12, 2006

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Addres		Connecticut 362 Injun Ho		omic Power			·				
: Contac Project	ct:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424			e ^{le}	R	Report Date: Oc	tober 12,	2006
		Client Sam Sample ID Matrix: Collect Dat Receive Da Collector: Moisture:	: te:		9520–00 1734290 TS 26–SEP- 09–OCT Client 8.44%	-06		Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001		
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	· Units	DF Analys	st Date	Time Batch Mtd
Rad Gamma Spec A	Analys	sis									
Rad Gamma Spec A Gamma,Solid-FS	•		226 Ingrov	wth							
-	•		226 Ingro	wth							
Gamma,Solid-FS	•		226 Ingro 0.706	wth +/-0.223	0.0754	+/-0.223	0.166	pCi/g	MJHI	10/10/0	6 1410 576803 1
Gamma,Solid–FS. Waived	•		0			+/0.223 +/0.0368	0.166 0.0703	pCi/g pCi/g	MJHI	10/10/0	6 1410 576803 1
Gamma,Solid–FS Waived Actinium–228	•	1 & ALL FSS	0.706	+/0.223					MJHI	10/10/0	6 1410 576803 1
Gamma,Solid-FS. Waived Actinium-228 Americium-241	•	1 & ALL FSS	0.706 0.0159	+/-0.223 +/-0.0368	0.0341	+/~0.0368	0.0703	pCi/g	IHLM	10/10/0	6 1410 576803 1
Gamma,Solid-FS. Waived Actinium-228 Americium-241 Bismuth-212	•	1 & ALL FSS	0.706 0.0159 0.523	+/-0.223 +/-0.0368 +/-0.287	0.0341 0.193 0.041	+/0.0368 +/0.287	0.0703 0.413	pCi/g pCi/g	HIM	10/10/0	6 1410 576803 1
Gamma,Solid-FS. Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214	•	1 & ALL FSS U	0.706 0.0159 0.523 0.606	+/-0.223 +/-0.0368 +/-0.287 +/-0.114	0.0341 0.193 0.041 0.0331	+/0.0368 +/0.287 +/0.114	0.0703 0.413 0.0882	pCi/g pCi/g pCi/g	MJHI	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134	•	1 & ALL FSS U	0.706 0.0159 0.523 0.606 0.0408	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408	0.0341 0.193 0.041 0.0331 0.0248	+/0.0368 +/0.287 +/0.114 +/0.0408	0.0703 0.413 0.0882 0.0704	pCi/g pCi/g pCi/g pCi/g	MJHi	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137	•	1 & ALL FSS U U	0.706 0.0159 0.523 0.606 0.0408 0.0568	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427	0.0341 0.193 0.041 0.0331 0.0248	+/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427	0.0703 0.413 0.0882 0.0704 0.0531	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJHi	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60	•	1 & ALL FSS U U U	0.706 0.0159 0.523 0.606 0.0408 0.0568 -0.0014	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307	0.0341 0.193 0.041 0.0331 0.0248 0.0256 0.0622	+/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307	0.0703 0.413 0.0882 0.0704 0.0531 0.0569	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJHi	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152	•	1 & ALL FSS U U U U U	0.706 0.0159 0.523 0.606 0.0408 0.0568 -0.0014 0.0749	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307 +/-0.066	0.0341 0.193 0.041 0.0331 0.0248 0.0256 0.0622 0.0888	+/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307 +/-0.066	0.0703 0.413 0.0882 0.0704 0.0531 0.0569 0.131	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJHi	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154	•	1 & ALL FSS U U U U U U U U U	0.706 0.0159 0.523 0.606 0.0408 0.0568 -0.0014 0.0749 0.0757	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307 +/-0.066 +/-0.0972	0.0341 0.193 0.041 0.0331 0.0248 0.0256 0.0622 0.0888	+/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307 +/-0.066 +/-0.0972	0.0703 0.413 0.0882 0.0704 0.0531 0.0569 0.131 0.193	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJHI	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155	•	1 & ALL FSS U U U U U U U U U	0.706 0.0159 0.523 0.606 0.0408 0.0568 -0.0014 0.0749 0.0757 0.0796	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307 +/-0.066 +/-0.0972 +/-0.0578	0.0341 0.193 0.041 0.0331 0.0248 0.0256 0.0622 0.0888 0.0542	+/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307 +/-0.066 +/-0.0972 +/-0.0578	0.0703 0.413 0.0882 0.0704 0.0531 0.0569 0.131 0.193 0.112	PCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJH1	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212	•	1 & ALL FSS U U U U U U U U U	0.706 0.0159 0.523 0.606 0.0408 0.0568 -0.0014 0.0759 0.0757 0.0796 0.750	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307 +/-0.066 +/-0.0972 +/-0.0578 +/-0.0578 +/-0.0696	0.0341 0.193 0.041 0.0331 0.0248 0.0256 0.0622 0.0888 0.0542 0.0321	+/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0307 +/-0.066 +/-0.0972 +/-0.0578 +/-0.0696	0.0703 0.413 0.0882 0.0704 0.0531 0.0569 0.131 0.193 0.112 0.0669	PCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJH1	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214	•	4 & ALL FSS U U U U U U U U U U U U	0.706 0.0159 0.523 0.606 0.0408 0.0568 -0.0014 0.0759 0.0757 0.0796 0.750 0.750 0.539	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.0507 +/-0.0578 +/-0.0578 +/-0.0696 +/-0.102	0.0341 0.193 0.041 0.0331 0.0248 0.0256 0.0622 0.0888 0.0542 0.0321 0.0398 0.0273	+/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.066 +/-0.0972 +/-0.0578 +/-0.0578 +/-0.102 +/-0.102 +/-0.0321	0.0703 0.413 0.0882 0.0704 0.0531 0.0569 0.131 0.193 0.112 0.0669 0.0841	PCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Ш	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54	•	4 & ALL FSS U U U U U U U U U	0.706 0.0159 0.523 0.606 0.0408 0.0568 -0.0014 0.0749 0.0757 0.0796 0.750 0.750 0.539 0.00981	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.04027 +/-0.066 +/-0.0972 +/-0.0578 +/-0.0596 +/-0.102 +/-0.0321	0.0341 0.193 0.041 0.0331 0.0248 0.0256 0.0622 0.0888 0.0542 0.0321 0.0398 0.0273	+/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.0427 +/-0.066 +/-0.0972 +/-0.0578 +/-0.0578 +/-0.102 +/-0.102 +/-0.0321	0.0703 0.413 0.0882 0.0704 0.0531 0.0569 0.131 0.112 0.0669 0.0841 0.0585	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Ш	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94	•	4 & ALL FSS U U U U U U U U U	0.706 0.0159 0.523 0.606 0.0408 0.0568 -0.0014 0.0749 0.0757 0.0796 0.750 0.539 0.00981 -0.0335	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.04027 +/-0.0307 +/-0.066 +/-0.0972 +/-0.0578 +/-0.0596 +/-0.102 +/-0.0321 +/-0.0284	0.0341 0.193 0.041 0.0331 0.0248 0.0256 0.0622 0.0888 0.0542 0.0321 0.0398 0.0273 0.0213	+/~0.0368 +/~0.287 +/~0.114 +/~0.0408 +/~0.0427 +/~0.0307 +/~0.0972 +/~0.0972 +/~0.0578 +/~0.0596 +/~0.102 +/~0.0321 +/~0.0284	0.0703 0.413 0.0882 0.0704 0.0531 0.0569 0.131 0.193 0.112 0.0669 0.0841 0.0585 0.0458	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Ш	10/10/0	6 1410 576803 1
Gamma,Solid-FS: Waived Actinium-228 Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94 Potassium-40	•	4 & ALL FSS U U U U U U U U U	0.706 0.0159 0.523 0.606 0.0408 0.0568 -0.0014 0.0749 0.0757 0.0796 0.750 0.539 0.00981 -0.0335 13.3	+/-0.223 +/-0.0368 +/-0.287 +/-0.114 +/-0.0408 +/-0.04027 +/-0.0307 +/-0.066 +/-0.0972 +/-0.0578 +/-0.0596 +/-0.102 +/-0.0221 +/-0.0284 +/-1.12	0.0341 0.193 0.041 0.0331 0.0248 0.0256 0.0622 0.0888 0.0542 0.0321 0.0398 0.0273 0.0213 0.206 0.041	+/~0.0368 +/~0.287 +/~0.114 +/~0.0408 +/~0.0427 +/~0.0307 +/~0.0972 +/~0.0578 +/~0.0596 +/~0.102 +/~0.0284 +/~0.0284 +/~1.12	0.0703 0.413 0.0882 0.0704 0.0531 0.0569 0.131 0.193 0.112 0.0669 0.0841 0.0585 0.0458 0.0458	PCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJHI	10/10/0	6 1410 576803 1

	Prep Methods were performed	 			·····
Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	TMB1	10/09/06	1211	576541
The following A	Analytical Methods were performed	 			

Method Description

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
		Client Sam Sample ID			9520-000 17342900			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Project:	Soils PO# 00)2332							
	Contact:	East Hampto Mr. Jack Mc		ticut 06424				ł	Report Date: October 12	, 2006
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Connecticut 362 Injun Ho		omic Power								
Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				R	Report Date: Oct	tober 12	., 2006	
	Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	te:		9520-00 1734290 TS 26-SEP 09-OCT Client 10.9%	06		Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001			
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time	Batch Mtd
Rad Gamma Spec Anal	ysis										
Gamma,Solid–FSS GA	M & ALL FSS	226 Ingro	wth								
Waived				0.0450	1 0 100	0.0005	<u></u>		10/10/		57(000 1
Actinium-228	11	0.764	+/-0.135	0.0458	+/-0.135	0.0985	pCi/g	MJHI	10/10/	00 1411	576803 1
Americium–241 Bismuth–212	U	-0.0873 0.633	+/-0.105 +/-0.243	0.0843 0.108	+/0.105 +/0.243	0.175 0.230	pCi/g				
Bismuth-212 Bismuth-214		0.033	+/0.243	0.0292	+/-0.0821	0.230	pCi/g pCi/g				
Cesium-134	U	0.033	+/-0.0821		+/-0.0219	0.0396	pCi/g				
Cesium-137	U	0.0654	+/-0.0219		+/-0.0289	0.0298	pCi/g				
Cobalt-60	υ	-0.008	+/-0.0178		+/-0.0178	0.0317	pCi/g				
Europium-152	Ŭ	-0.0195	+/-0.0439		+/-0.0439	0.079	pCi/g				
Europium-154	Ū	-0.01	+/-0.0605		+/-0.0605	0.0947	pCi/g	1			
Europium-155	ັບ	0.0341	+/-0.0556	0.051	+/-0.0556	0.106	pCi/g				
Lead-212		0.735	+/0.0563	0.0256	+/-0.0563	0.053	pCi/g				
Lead-214		0.523	+/-0.063	0.0266	+/-0.063	0.0557	pCi/g				
Manganese-54	U	0.0185	+/-0.0178			0.0344	pCi/g				
Niobium-94	U	0.00577	+/0.0165			0.031	pCi/g				
Potassium-40		13.5	+/-0.789	0.128	+/-0.789	0.282	pCi/g				
Radium-226		0.507	+/-0.0821		+/-0.0821	0.0615	pCi/g				
Silver-108m	U	-0.0156	+/-0.0155		+/-0.0155	0.0264	pCi/g				
Thallium-208		0.247	+/-0.0363	0.0147	+/-0.0363	0.031	pCi/g				

The following P	rep Methods were performed					
Method	Description	Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	TMB1	10/09/06	1211	576541	

The following Analytical Methods were performed

Method Description

EMIL HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier Result Uncertainty	LC TPU M	DA Units DF Analyst Date Time Batch Mtd
	Client Sample ID: Sample ID:	95200003 026F 173429006	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Contact: Project:	Mr. Jack McCarthy Soils PO# 002332		
Company Address :	: Connecticut Yankee Atomic Power 362 Injun Hollow Rd East Hampton, Connecticut 06424	:	Report Date: October 12, 2006

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy---Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Connecticut 362 Injun H		tomic Power			·					
Contact: Project:	East Hampt Mr. Jack Mi Soils PO# 0	cCarthy	ticut 06424				· R	Report Date: Oct	ober 12	, 2006	
	Client Sam Sample III Matrix: Collect Da Receive D Collector: Moisture:): ate:		9520-00 1734290 TS 26-SEP 09-OCT Client 12.4%	06		Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001			·
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	Date	Time Batch M	td
Rad Gamma Spec Anal	ysis			<u></u>	<u></u>						
Gamma,Solid-FSS GA	M & ALL FSS	5 226 Ingro	wth								
Waived							•				
Actinium-228		0.732	+/-0.132	0.0418	+/-0.132	0.0905	pCi/g	MJH1	10/10/0	06 1411 576803	1
Americium-241	U	-0.00442	+/-0.0642			0.118	pCi/g				
Bismuth-212		0.476	+/-0.237	0.111	+/-0.237	0.235	pCi/g				
Bismuth-214		0.502	+/-0.0823		+/-0.0823	0.0589	pCi/g				
Cesium-134	UI	0.00	+/0.026	0.0185	+/-0.026	0.039	pCi/g				
Cesium-137		0.0772	+/-0.0253		+/-0.0253	0.0321	pCi/g				
Cobalt-60	U	0.00256	+/-0.0168		+/-0.0168	0.0306	pCi/g				
Europium-152	U	-0.0364	+/-0.0448		+/0.0448	0.0779	pCi/g				
Europium-154	υ	0.035	+/-0.0576		+/0.0576	0.107	pCi/g				
Europium-155	U	0.00602	+/0.0573		+/-0.0573	0.103	pCi/g				
Lead-212 Lead-214		0.748 0.595	+/-0.0555 +/-0.0701		+/-0.0555 +/-0.0701	0.047 0.0571	pCi/g				
	U		+/-0.0701		+/-0.0701 +/-0.0183	0.0371	pCi/g				
Manganese–54 Niobium–94	U U	0.00121	+/-0.0183 +/-0.0163		+/-0.0183 +/-0.0163	0.0317	pCi/g				
Potassium-40	U	13.5	+/-0.0103	0.0144	+/0.799	0.0303	pCi/g				
Radium-226		0.502	+/-0.0823		+/0.0823	0.251	pCi/g pCi/g				
Silver-108m	11	0.000168	+/-0.0823		+/0.0823	0.0389	pCl/g pCi/g				
Thallium-208	U	0.000108	+/-0.0134		+/0.0134	0.0293	pCi/g				

The following 1 Method	Prep Methods were performed Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	TMB1	10/09/06	1211	576541
The following A	Analytical Methods were performed				

Method Description

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd
	Client Sample ID: Sample ID:	9520-0003-027F 173429007	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Project:	Soils PO# 002332		
Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy		Report Date: October 12, 2006
Company Address :	: Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Comp Addre	-		Yankee At ollow Rd	omic Power						
Conta Projec	ct: Mr. J		on, Connec cCarthy 02332	ticut 06424				Re	port Date: Octob	er 12, 2006
	Sam Mat Coll Reco Coll	ple II	ate: ate:		952000 1734290 TS 26SEP 09OCT Client 6.72%	06			YANK01204 YANK001	
Parameter	Qua	alifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst D	ate Time Batch Mt
Rad Gamma Spec	Analysis							· · · · · · · · · · · · · · · · · · ·		· · ·
Gamma,Solid–FS Waived	SS GAM & A	LL FSS	5 226 Ingro	wth						
Actinium-228			0.864	+/-0.178	0.0627	+/-0.178	0.125	pCi/g	MJH1 10	/10/06 1426 576803
Americium-241		U	-0.0233	+/0.0765	0.0585	+/0.0765	0.117	pCi/g		
Bismuth-212			0.445	+/-0.333	0.148	+/-0.333	0.295	pCi/g		
Bismuth-214			0.436	+/-0.0953	0.033	+/-0.0953	0.066	pCi/g		
Cesium-134		υ	0.0341	+/~0.0377		+/-0.0377	0.0477	pCi/g		
Cesium-137			0.0596	+/-0.0297	0.0151	+/-0.0297	0.0302	pCi/g		
Cobalt-60		U	0.00503	+/-0.0226	0.0193	+/-0.0226	0.0385	pCi/g		
Europium-152		U	-0.0127	+/-0.0635	0.0492	+/-0.0635	0.0984	pCi/g		
Europium-154		ប	-0.0266	+/-0.0666	0.0529	+/-0.0666	0.106	pCi/g		
Europium-155		U	0.0468	+/-0.0594		+/-0.0594	0.106	pCi/g		
Lead-212			0.703	+/-0.0826	0.0281	+/0.0826	0.0562	pCi/g		
Lead-214			0.584	+/0.0986	0.0308	+/-0.0986	0.0616	pCi/g	•	
Manganese-54		U	0.0109	+/-0.0212	0.0189	+/-0.0212	0.0379	pCi/g		
Niobium-94		U	-0.00114	+/-0.0202		+/-0.0202	0.035	pCi/g		
Potassium-40			12.4	+/-1.14	0.129	+/-1.14	0.258	pCi/g		
Radium-226		1	0.436	+/-0.0953	0.033	+/0.0953	0.066	pCi/g		
Silver-108m		U	0.00362	+/-0.0194	0.0168	+/-0.0194	0.0336	pCi/g		
Thallium-208			0.205	+/-0.0495	0.0179	+/-0.0495	0.0357	pCi/g		
						· ·				
The following Pr	ep Methods	were g	erformed							
Method	Description					Analyst	Date	Tim	e Prep Batch	
Dry Soil Prep	Dry Soil Pre	ep GL-	-RAD-A-O	21		TMB1	10/09/	121	1 576541	
The following An	alutical Mat	hode -	vere norfor	med						
Method	Description		vere perior	med	<u> </u>				·. · · · · · · · · · · · · · · · · · ·	<u></u>

EML HASL 300, 4.5.2.3

Notes:

1

eⁿ

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

Result is less than value reported <

۰.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Oualifier Result Uncertainty		Vol. Recv.: MDA Units DF Analyst Date Time Batch Mtd
		Client Sample ID: Sample ID:	9520-0003-028F 173429008	Project: YANK01204 Client ID: YANK001
	Project:	Soils PO# 002332		
	Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy		Report Date: October 12, 2006
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		ì

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Address :	Connecticut Y 362 Injun Ho		omic Power					
Contact;	East Hampton Mr. Jack McO		icut 06424			F	Report Date: October 12	2, 2006
Project:	Soils PO# 00	2332						
	Client Samp Sample ID: Matrix: Collect Dat Receive Da Collector: Moisture:	e:		9520-0003-029F 173429009 TS 26-SEP-06 09-OCT-06 Client 12%		Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Parameter	Qualifier	Result	Uncertainty	LC TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
Rad Gamma Spec Analy	vsis							
Gamma,Solid–FSS GA	M & ALL FSS	226 Ingrov	wth					
Waived								
Actinium-228		0.689	+/0.205	0.0745 +/-0.205		pCi/g	· MJH1 10/10/0	06 1426 576803 1
			1 0 00/0					
Americium-241	U	0.00775	+/-0.0963	0.0742 +/-0.0963		pCi/g		
Bismuth-212	ບົ	0.00	+/-0.395	0.157 +/-0.395	0.313	pCi/g		
Bismuth-212 Bismuth-214	បា បា	0.00 0.00	+/-0.395 +/-0.110	0.157 +/-0.395 0.0803 +/-0.110	0.313 0.161	pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134	ບົ	0.00 0.00 0.0388	+/-0.395 +/-0.110 +/-0.0318	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318	0.313 0.161 0.0571	pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137	បា បា	0.00 0.00 0.0388 0.0804	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483	0.313 0.161 0.0571 0.0367	pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134	បា បា	0.00 0.00 0.0388 0.0804 0.0103	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264	0.313 0.161 0.0571 0.0367 0.046	pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137	ហ ហ ប	0.00 0.00 0.0388 0.0804	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483	0.313 0.161 0.0571 0.0367 0.046	pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60	ហ ហ ប ប	0.00 0.00 0.0388 0.0804 0.0103	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264	6 0.313 0 0.161 6 0.0571 6 0.0367 4 0.046 0.108	pCi/g pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152	ហ ហ ប ប ប	0.00 0.00 0.0388 0.0804 0.0103 0.0389	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264 +/-0.101	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264 0.0542 +/-0.101	6 0.313 0 0.161 6 0.0571 6 0.0367 4 0.046 0.108 6 0.132	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154	បា បា ប ប ប	0.00 0.0388 0.0804 0.0103 0.0389 0.0532	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264 +/-0.101 +/-0.0833	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264 0.0542 +/-0.101 0.0661 +/-0.0833	0.313 0.161 0.0571 0.0367 0.046 0.108 0.132 0.120	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155	បា បា ប ប ប	0.00 0.0388 0.0804 0.0103 0.0389 0.0532 0.0361	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264 +/-0.101 +/-0.0833 +/-0.0685	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264 0.0542 +/-0.101 0.0661 +/-0.0833 0.060 +/-0.0685	0.313 0.161 0.0571 0.0367 0.046 0.108 0.132 0.120 0.0597	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212	បា បា ប ប ប	0.00 0.0388 0.0804 0.0103 0.0389 0.0532 0.0361 0.701	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264 +/-0.101 +/-0.0833 +/-0.0685 +/-0.0886	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264 0.0542 +/-0.101 0.0661 +/-0.0833 0.060 +/-0.0685 0.0299 +/-0.0886	0.313 0.161 0.0571 0.0367 0.046 0.108 0.132 0.120 0.0597 0.0597 0.0597 0.0745	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214	ហ ហ ប ប ប ប ប	0.00 0.0388 0.0804 0.0103 0.0389 0.0532 0.0361 0.701 0.633	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264 +/-0.101 +/-0.0833 +/-0.0685 +/-0.0886 +/-0.110	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264 0.0542 +/-0.101 0.0661 +/-0.0835 0.060 +/-0.0685 0.0299 +/-0.0886 0.0373 +/-0.110	0.313 0.161 0.0571 0.0367 0.046 0.108 0.132 0.120 0.0597 0.0597 0.0597 0.0745 0.040	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54	ហ ហ ប ប ប ប ប	0.00 0.0388 0.0804 0.0103 0.0389 0.0532 0.0361 0.701 0.633 0.00795	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264 +/-0.101 +/-0.0833 +/-0.0685 +/-0.0886 +/-0.110 +/-0.026	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264 0.0542 +/-0.101 0.0661 +/-0.0835 0.060 +/-0.0685 0.0299 +/-0.0886 0.0373 +/-0.110 0.020 +/-0.026	0.313 0.161 0.0571 0.0367 0.046 0.108 0.132 0.132 0.0597 0.0745 0.040 0.0377	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94	ហ ហ ប ប ប ប ប	0.00 0.0388 0.0804 0.0103 0.0389 0.0532 0.0361 0.701 0.633 0.00795 -0.0143	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264 +/-0.101 +/-0.0833 +/-0.0885 +/-0.0886 +/-0.110 +/-0.026 +/-0.0431	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264 0.0542 +/-0.0832 0.060 +/-0.0832 0.060 +/-0.0886 0.0299 +/-0.0886 0.0373 +/-0.110 0.020 +/-0.026 0.0189 +/-0.0431	0.313 0.161 0.0571 0.0367 0.046 0.108 0.132 0.132 0.0.597 0.0597 0.0745 0.040 0.0377 2.0280	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		
Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94 Potassium-40	ហ ប ប ប ប ប ប ប	0.00 0.0388 0.0804 0.0103 0.0389 0.0532 0.0361 0.701 0.633 0.00795 -0.0143 11.8	+/-0.395 +/-0.110 +/-0.0318 +/-0.0483 +/-0.0264 +/-0.101 +/-0.0833 +/-0.0885 +/-0.0886 +/-0.110 +/-0.026 +/-0.0431 +/-1.12	0.157 +/-0.395 0.0803 +/-0.110 0.0286 +/-0.0318 0.0184 +/-0.0483 0.023 +/-0.0264 0.0542 +/-0.101 0.0661 +/-0.0835 0.060 +/-0.0886 0.0299 +/-0.0886 0.0373 +/-0.110 0.020 +/-0.026 0.0189 +/-0.0431 0.140 +/-1.12	0.313 0.161 0.0571 0.0367 0.046 0.108 0.132 0.132 0.0597 0.0597 0.0745 0.0367 0.0377 0.0377 0.0377 0.0376 0.0376	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		

The following]	Prep Methods were performed		•			
Method	Description	Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	TMB1	10/09/06	1211	576541	

The following Analytical Methods were performed

Method Description

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut Yankee Ato 362 Injun Hollow Rd	mic Power						
	Contact: Project:	East Hampton, Connection Mr. Jack McCarthy Soils PO# 002332	cut 06424			* ²⁴	F	eport Date: October 12	2, 2006
		Client Sample ID: Sample ID:		9520–000 173429009			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Parameter		Qualifier Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Address :	: Connecticut 362 Injun Ho		omic Power							
Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				R	eport Date:	October 12	2, 2006
	Client Sam Sample ID Matrix: Collect Da Receive D Collector: Moisture:	e:		9520-00 1734290 TS 26-SEP 09-OCT Client 8.37%	06		Project: Client ID: Vol. Recv.:	YANK012 YANK001	04	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Ana	lyst Date	Time Batch Mtc
Rad Gamma Spec Ana	lysis	· • · · · · · · · · · · · · · · · · · ·		<u></u>						·
Gamma,Solid–FSS G	AM & ALL FSS	226 Ingro	wth							
Waived							· .			
Actinium-228		0.906	+/-0.239	0.0933	+/-0.239	0.187	pCi/g	MJ	H1 10/10/	06 1427 576803 1
Actinium-228 Americium-241	U	0.067	+/-0.0425	0.0346	+/0.0425	0.0692	pCi/g	МЛ	H1 10/10/	06 1427 576803 1
	บ บ	0.067 0.386	+/-0.0425 +/-0.254	0.0346 0.242	+/0.0425 +/0.254	0.0692 0.484	pCi/g pCi/g	МЛ	H1 10/10/	06 1427 576803 1
Americium-241		0.067 0.386 0.586	+/-0.0425	0.0346 0.242 0.0531	+/0.0425 +/0.254 +/0.127	0.0692 0.484 0.106	pCi/g pCi/g pCi/g	МЛ	H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212	บ บ	0.067 0.386 0.586 -0.0184	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378	0.0346 0.242 0.0531 0.0309	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378	0.0692 0.484 0.106 0.0618	pCi/g pCi/g pCi/g pCi/g	МЛ	H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137	ប ប ប	0.067 0.386 0.586 -0.0184 0.0458	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342	0.0346 0.242 0.0531 0.0309 0.0322	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342	0.0692 0.484 0.106 0.0618 0.0644	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	МЛ	H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212 Bismuth-214 Cesium-134	บ บ	0.067 0.386 0.586 -0.0184	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378	0.0346 0.242 0.0531 0.0309 0.0322	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376	0.0692 0.484 0.106 0.0618	pCi/g pCi/g pCi/g pCi/g	МЛ	H1 10/10/	06 1427 576803
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137	ប ប ប ប	0.067 0.386 0.586 -0.0184 0.0458	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342	0.0346 0.242 0.0531 0.0309 0.0322	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342	0.0692 0.484 0.106 0.0618 0.0644	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJ	H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60	บ บ บ บ บ บ	0.067 0.386 0.586 -0.0184 0.0458 0.00348	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376	0.0346 0.242 0.0531 0.0309 0.0322 0.0271	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376	0.0692 0.484 0.106 0.0618 0.0644 0.0543	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJ.	H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152	ប ប ប ប ប	0.067 0.386 0.586 -0.0184 0.0458 0.00348 -0.00247 0.0564 0.00	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0376 +/-0.105 +/-0.112 +/-0.0802	0.0346 0.242 0.0531 0.0309 0.0322 0.0271 0.0609 0.0986	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.105	0.0692 0.484 0.106 0.0618 0.0644 0.0543 0.122	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJ.	H1 10/10/	06 1427 576803
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154	บ บ บ บ บ บ	0.067 0.386 0.586 -0.0184 0.0458 0.00348 -0.00247 0.0564	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0376 +/-0.105 +/-0.112	0.0346 0.242 0.0531 0.0309 0.0322 0.0271 0.0609 0.0986	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.105 +/-0.112 +/-0.0802	0.0692 0.484 0.106 0.0618 0.0644 0.0543 0.122 0.197	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJ .	H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155	บ บ บ บ บ บ	0.067 0.386 0.586 -0.0184 0.0458 0.00348 -0.00247 0.0564 0.00	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0376 +/-0.105 +/-0.112 +/-0.0802	0.0346 0.242 0.0531 0.0309 0.0322 0.0271 0.0609 0.0986 0.0538	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.105 +/-0.112 +/-0.0802	0.0692 0.484 0.106 0.0618 0.0644 0.0543 0.122 0.197 0.108	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJ.	H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212	บ บ บ บ บ บ	0.067 0.386 0.586 -0.0184 0.0458 0.00348 -0.00247 0.0564 0.00 0.667	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0376 +/-0.0376 +/-0.112 +/-0.112 +/-0.0802 +/-0.0919	0.0346 0.242 0.0531 0.0309 0.0322 0.0271 0.0609 0.0986 0.0538 0.0321 0.0439	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.112 +/-0.112 +/-0.0802 +/-0.0919	0.0692 0.484 0.106 0.0618 0.0644 0.0543 0.122 0.197 0.108 0.0642	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214	ប ប ប ប ប ឋ	0.067 0.386 0.586 -0.0184 0.0458 0.00348 -0.00247 0.0564 0.00 0.667 0.667	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0376 +/-0.0376 +/-0.112 +/-0.0802 +/-0.0919 +/-0.119	0.0346 0.242 0.0531 0.0309 0.0322 0.0271 0.0609 0.0986 0.0538 0.0321 0.0439 0.0282	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.112 +/-0.0802 +/-0.0919 +/-0.119	0.0692 0.484 0.106 0.0618 0.0644 0.0543 0.122 0.197 0.108 0.0642 0.0878	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	М Ј	H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54	ប ប ប ប ប ប	0.067 0.386 0.586 -0.0184 0.0458 0.00348 -0.00247 0.0564 0.00 0.667 0.0667 0.00647	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.105 +/-0.112 +/-0.0802 +/-0.0919 +/-0.119 +/-0.0324	0.0346 0.242 0.0531 0.0309 0.0322 0.0271 0.0609 0.0986 0.0538 0.0321 0.0439 0.0282	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.112 +/-0.0802 +/-0.0919 +/-0.119 +/-0.0324	0.0692 0.484 0.106 0.0618 0.0644 0.0543 0.122 0.197 0.108 0.0642 0.0878 0.0563	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJ	H1 10/10/	06 1427 576803
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94	ប ប ប ប ប ប	0.067 0.386 0.586 -0.0184 0.0458 0.00348 -0.00247 0.0564 0.00 0.667 0.0667 0.00647 0.00262	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.112 +/-0.112 +/-0.0802 +/-0.0919 +/-0.119 +/-0.0324 +/-0.0295	0.0346 0.242 0.0531 0.0309 0.0322 0.0271 0.0609 0.0986 0.0538 0.0538 0.0321 0.0439 0.0282 0.0256	+/-0.0425 +/-0.254 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.105 +/-0.112 +/-0.0802 +/-0.0919 +/-0.119 +/-0.0324 +/-0.0295	0.0692 0.484 0.106 0.0618 0.0644 0.0543 0.122 0.197 0.108 0.0642 0.0878 0.0563 0.0512	PCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g		H1 10/10/	06 1427 576803 1
Americium-241 Bismuth-212 Bismuth-214 Cesium-134 Cesium-137 Cobalt-60 Europium-152 Europium-154 Europium-155 Lead-212 Lead-214 Manganese-54 Niobium-94 Potassium-40	ប ប ប ប ប ប	0.067 0.386 0.586 -0.0184 0.0458 0.00348 -0.00247 0.0564 0.00 0.667 0.00647 0.00647 0.00262 11.5	+/-0.0425 +/-0.254 +/-0.127 +/-0.0378 +/-0.0376 +/-0.105 +/-0.112 +/-0.0802 +/-0.0919 +/-0.119 +/-0.0324 +/-0.0295 +/-1.35	0.0346 0.242 0.0531 0.0309 0.0322 0.0271 0.0609 0.0986 0.0538 0.0321 0.0439 0.0282 0.0256 0.248	+/-0.0425 +/-0.254 +/-0.0378 +/-0.0342 +/-0.0376 +/-0.105 +/-0.112 +/-0.0802 +/-0.0919 +/-0.0119 +/-0.0324 +/-0.0295 +/-1.35 +/-0.127	0.0692 0.484 0.106 0.0618 0.0644 0.0543 0.122 0.197 0.108 0.0642 0.0878 0.0563 0.0512 0.495	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	MJ.	H1 10/10/	06 1427 576803 1

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	TMB1	10/09/06	1211	576541

The following Analytical Methods were performed

Method Description

EML HASL 300, 4.5.2.3

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtc
		Client Sam Sample ID			9520–000 17342901		·	Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
-	lontact: roject:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	cticut 06424	:		·	I	Report Date: October 12	2, 2006 ····
	ompany : ddress :	Connecticut 362 Injun Ho		tomic Power						

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy—Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/--RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 – (843) 556–8171 – www.gel.com

Certificate of Analysis

Compan Address	-		omic Power						
Contact		cCarthy	ticut 06424			÷	Re	port Date: October	12, 2006
Project:	Soils PO# 0	02332							•
	Client Sar Sample II Matrix: Collect Da Receive D Collector: Moisture:): ate:		9520–00 1734290 TS 26–SEP 09–OCT Client 10.4%	-06	,		YANK01204 YANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	e Time Batch Mt
Rad Gamma Spec A	nalysis	· - ···			· · · · · · · · · · · · · · · · · · ·				
- Gamma,Solid-FSS Waived	-	226 Ingro	wth					•	
Actinium-228		0.771	+/0.161	0.0437	+/0.161	0.0922	pCi/g	МЛН1 10/1	0/06 1413 576803 1
Americium-241	U	-0.00729	+/-0.0882		+/-0.0882	0.155	pCi/g		
Bismuth-212	-	0.434	+/-0.195	0.103	+/-0.195	0.216	pCi/g		
Bismuth-214		0.477	+/-0.078	0.0239	+/0.078	0.0499	pCi/g		
Cesium-134	ហ	0.00	+/-0.0263		+/-0.0263	0.0347	pCi/g		
Cesium-137	01	0.0461	+/-0.0276		+/-0.0276	0.0286	pCi/g		
Cobalt-60	11	-0.00186	+/-0.0157		+/0.0157	0.0285	pCi/g		
Europium-152	Ŭ	-0.0437	+/-0.0398		+/-0.0398	0.0666	pCi/g		
Europium-154		-0.00674	+/-0.0498		+/0.0498	0.0895	pCi/g		
Europium-155	ហ៊	0.00	+/-0.0609		+/-0.0609	0.0729	pCi/g		
Lead-212	01	0.764	+/-0.0761		+/-0.0761	0.0393	pCi/g		
Lead-214		0.539	+/-0.0777		+/-0.0777	0.0498	pCi/g		
Manganese-54	U	0.00846	+/-0.0159		+/-0.0159	0.0289	pCi/g		
Niobium-94	Ũ	0.00588	+/0.0143		+/-0.0143	0.026	pCi/g		
Potassium-40	Ū	12.4	+/-1.06	0.110	+/1.06	0.239	pCi/g		
Radium-226	•	0.477	+/0.078	0.0239		0.0499	pCi/g	,	
Silver-108m	U	-0.000156	+/-0.0134		+/-0.0134	0.0232	pCi/g		
Thallium-208		0.217	+/0.0382		+/-0.0382	0.0254	pCi/g		
The faller - P	B(-4b-0)	·							
The following Prep Method D	Description	ertormed			Analyst	Date	Time	e Prep Batch	
Dry Soil Prep D	ry Soil Prep GL-	RAD-A-()21		TMB1	10/09/	/06 1211	576541	
The following Analy	ytical Methods v	vere perfor	med						
Method D	escription								
1 E	ML HASL 300, 4	15.2.3			·····				

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		
	Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Report Date: October 12, 2006
۰.		Client Sample ID: Sample ID:	9520-0003-031F 173429011	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Parameter	•	Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtc

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

p Dry	Soil Prep GL-	-KAD-A-(121		IMRI	10/08/0	io 1251	570541	
					· · · · · · · · · · · · · · · · · · ·			·	
		erformed			Analyst	Date	Time	Pren Batch	
			-						
-208	Ũ	0.212	+/-0.0467			0.0373	pCi/g	•	
8m	11								
226									
-40	U	11.8	+/-1.18	0.179	+/-1.18	0.397			
-94	-					0.0377	pCi/g		
se-54	U	0.0157	+/0.0269			0.0439			
ļ		0.584	+/-0.108	0.0347	+/-0.108	0.0729	pCi/g		
		0.677	+/-0.0782	0.0279	+/0.0782	0.0581			
-155	Ŭ	-0.0284	+/-0.0608			0.106	pCi/g		
-152		-0.0438							
)	.u								
	Ŭ								
	IJ								
	Ū.								
	U								
		e e		0.0615	+/-0.197	0.133	pCi/g	MJH1 10/10/	06 1413 576803
•	-	226 Ingro	wth						
Spec Ana					no				Ante Daten Mi
	Qualifier	Result	Uncertainty			MDA	Units	DF Analyst Date	Time Batch Mt
	Moisture:								
		ate;			-06				
				29-SEP	06				
	Matrix:			TS					
			i			P			
Project:	Soils PO# 0	02332							
Contact:	Mr. Jack Mo	Carthy					-		
	East Hampto	on, Connec	ticut 06424				Rep	ort Date: October 12	2, 2006
	Project: A Spec Ana <i>lid-FSS G</i> -228 n-241 212 214 34 37) -152 -154 -155 -154 -155 -154 -226 8m -208 ing Prep M Des	Contact: Mr. Jack Mc Project: Soils PO# 0 Client San Sample ID Matrix: Collect Da Receive D Collector: Moisture: Qualifier a Spec Analysis IidFSS GAM & ALL FSS -228 m-241 U 212 214 34 U 37 0 U -152 U -154 U -155 U -154 U -155 U -268 Bm U -208	Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: Sample ID: Matrix: Collect Date: Collect Date: Receive Date: Collect Date: Result Moisture: Moisture: Qualifier Result Spec Analysis Id-FSS GAM & ALL FSS 226 Ingro -228 0.671 m-241 U U -0.129 212 0.320 214 0.512 34 U 0.0269 -152 -152 U -0.0284 0.677 -155 U -0.0284 -155 U -0.0284 -206 0.512 0.512 3m U -0.00882 -40 11.8 226 -208 0.212	Project: Soils PO# 002332 Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture: Variable Qualifier Result Uncertainty Aspec Analysis Variable Variable Id-FSS GAM & ALL FSS 226 Ingrowth Variable Variable -228 0.671 +/-0.197 nn-241 U -0.129 +/-0.0787 212 0.320 +/-0.0383 214 0.512 +/-0.0883 34 U 0.033 +/-0.0329 37 0.0519 +/-0.034 0 U 0.0269 +/-0.0229 -152 U -0.0438 +/-0.0608 0.512 +/-0.0782 0.677 +/-0.0782 -155 U -0.0284 +/-0.0209 -154 U -0.0156 +/-0.0284 -254 U 0.0157 +/-0.0269 -94 U -0.00582 +/-0.0216 -140 11.8 +/-1.18 +/-0.0263 26 0.512 +/-0.00467 -208<	Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 1734290 Matrix: TS Collect Date: $29-SEP$ Receive Date: $06-OCT$ Collect Date: $29-SEP$ Receive Date: $06-OCT$ Collector: Client Moisture: 6.38% Qualifier Result Uncertainty LC A Spec Analysis $1id-FSS$ GAM & ALL FSS 226 Ingrowth -228 0.671 $+/-0.197$ 0.0615 m-241 U -0.129 $+/-0.0787$ 0.0646 214 0.512 $+/-0.0883$ 0.0341 34 U 0.033 $+/-0.0329$ 0.0237 37 0.0519 $+/-0.034$ 0.0178 0 U 0.0269 $+/-0.0718$ 0.0341 34 U 0.033 $+/-0.0718$ 0.0594 -152 U -0.0284 $+/-0.0718$ 0.0347 0 0.0577 $+/-0.0608$ 0.0515 0.059	Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 173429012 Matrix: TS Collect Date: 29–SEP–06 Receive Date: 06–OCT–06 Collector: Client Moisture: 6.38% Qualifier Result Uncertainty LC TPU A Spec Analysis lid-FSS GAM & ALL FSS 226 Ingrowth -228 0.671 +/-0.197 0.0615 +/-0.197 n-241 U -0.129 +/-0.0787 0.0646 +/-0.0787 212 0.320 +/-0.083 0.148 +/-0.0883 214 0.512 +/-0.083 0.0341 +/-0.0349 214 0.512 +/-0.0329 0.0237 +/-0.034 20 U 0.0269 +/-0.0229 0.0217 +/-0.034 21 0.0269 +/-0.0718 0.0594 +/-0.0782 21 0.0269 +/-0.0782 0.0279 +/-0.0782 21 0.0217 +/-0.0782 0.0279 +/-0.0718	Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 173429012 Project Sample ID: 173429012 Project Matrix: TS Collect Date: $29-5EP-06$ Receive Date: $06-OCT-06$ Collector: Client Moisture: 6.38% MDA Spec Analysis Ide FSS GAM & ALL FSS 226 Ingrowth -228 0.671 $+/-0.197$ 0.0615 $+/-0.197$ 0.133 n-241 U -0.129 $+/-0.0787$ 0.0646 $+/-0.0383$ 0.317 214 0.512 $+/-0.0787$ 0.0646 $+/-0.0383$ 0.0317 214 0.320 $+/-0.0383$ 0.0341 $+/-0.0383$ 0.0321 0.0159 $+/-0.034$ 0.0178 $+/-0.0340$ 0.0382 0.0233 0.0269 $+/-0.0229$ 0.0219 $+/-0.0340$ 0.0178 $+/-0.0340$ 0.0178 $+/-0.0340$ 0.0178 0.155 U -0.0284 $+/-0.0676$ 0.0438 $+/-0.0718$ 0.130	Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 173429012 Project: O Matrix: TS Collect Date: $29-SEP-06$ Client ID: Vol. Recv.: Moisture: 6.38% Vol. Recv.: Vol. Recv.: Vol. Recvit Client Moisture: 6.38% Qualifier Result Uncertainty LC TPU MDA Units Spec Analysis $1id - FSS$ GAM & ALL FSS 226 Ingrowth -228 0.671 $+/-0.197$ 0.0615 $+/-0.197$ 0.133 pCi/g 212 0.320 $+/-0.383$ 0.148 $+-0.383$ 0.317 pCi/g 214 0.512 $+/-0.0787$ 0.0645 $+/-0.0329$ 0.0237 $+/0.0329$ 0.033 pCi/g 37 0.0519 $+/-0.034$ 0.0134 $+/-0.0329$ 0.037 $+/-0.0329$ 0.037 pCi/g 0.148 $+/-0.01718$ 0.034 $+/-0.0329$ 0.0229 0.0219 $+/-0.0180$ 0.0341 $+/-0.0329$ 0.0513	Contact: Mr. Jack McCarthy Project: Soils PO# 002332 Client Sample ID: 9520–0003–035F Project: YANK01204 Matrix: TTS Vol. Recv. YANK001 Matrix: TTS Vol. Recv. YANK001 Matrix: TS Vol. Recv. YANK001 Collect Date: Collector: Client Moisture: 6.38% Qualifier Result Uncertainty LC TPU MDA Units DF Analyst Date Spec Analysis Id-FSS GAM & ALL FSS 226 Ingrowth 0.0615 t/-0.197 0.133 pClig MJH1 10/10/n -228 0.671 t/-0.197 0.0615 t/-0.0787 0.133 pClig MJH1 10/10/n n-241 U -0.129 t/-0.0787 0.0320 pClig MJH1 10/10/n 212 0.320 t/-0.037 t/-0.333 0.0725 pClig MJH1 10/10/n 121 0.332 t/-0.0787 0.0615 t/-0.0787 0.0332 pClig 214 0.512 t/-0.0782

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria
 < Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
	Client Sample ID: Sample ID:		9520–000 17342901			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Project:	Soils PO# 002332							
Contact	East Hampton, Conn Mr. Jack McCarthy					F	Report Date: October 12	, 2006
Compan Address				-				

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 ~ (843) 556-8171 - www.gel.com

Certificate of Analysis

Compan Address	-		tomic Power						
Contact:	East Hampto Mr. Jack Mo		ticut 06424		. •.		Re	port Date: October 1	2, 2006
Project:	Soils PO# 0	02332							
	Client San Sample ID Matrix: Collect Da Receive D Collector: Moisture:): ate: ate:		9520-00 1734290 TS 29-SEP 06-OCT Client 8.02%	06			YANK01204 YANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mte
Rad Gamma Spec A	nalysis	<u> </u>				······································			
Gamma,Solid–FSS Waived	GAM & ALL FSS	5 226 Ingro	wth						
Actinium-228		0.678	+/-0.205	0.0563	+/-0.205	0.125	pCi/g	MJH1 10/10	/06 1740 576803 1
Americium-241	U	0.00563	+/0.124	0.0806	+/-0.124	0.167	pCi/g		
Bismuth-212		0.762	+/0.314	0.133	+/-0.314	0.291	pCi/g		
Bismuth-214		0.621	+/-0.0932	0.0298	+/-0.0932	0.0648	pCi/g		
Cesium-134	់ហ	0.00	+/-0.0281	0.0285	+/0.0281	0.0606	pCi/g		
Cesium-137	U	0.0499	+/~0.035	0.0237	+/0.035	0.0505	pCi/g		
Cobalt-60	U	0.0225	+/-0.0241	0.0214	+/-0.0241	0.0477	pCi/g		
Europium-152	U	-0.0084	+/0.0585	0.0478	+/0.0585	0.101	pCi/g		
Europium-154	υ	0.0111	+/-0.0645	0.0564	+/0.0645	0.126	pCi/g		
Europium-155	U	0.0121	+/0.059	0.0525	+/0.059	0.109	pCi/g		
Lead-212		0.741	+/-0.0681	0.0311	+/-0.0681	0.0649	pCi/g		
Lead-214		0.697	+/0.0948		+/-0.0948	0.0724	pCi/g		
Manganese-54	υ	0.0234	+/-0.0302	0.0173	+/-0.0302	0.0379	pCi/g		
Niobium-94	U	0.000568	+/-0.0208		+/-0.0208	0.0381	pCi/g		
Potassium-40		12.8	+/1.04	0.147	+/1.04	0.345	pCi/g		
Radium-226		0.621	+/-0.0932	0.0298	+/-0.0932	0.0648	pCi/g		,
Silver-108m	U	-0.00405	+/0.019	0.0164	+/-0.019	0.035	pCi/g		
Thallium-208		0.243	+/-0.0539	0.0184	+/-0.0539	0.0395	pCi/g	. '	
Min Collegation D	Madh - Januar								
The following PrepMethodD	Methods were p Description	berformed			Analyst	Date	Time	e Prep Batch	
Dry Soil Prep D	ry Soil Prep GL-	RAD-A-()21		JMB1	10/08	/06 1251	576541	
The following Analy	ytical Methods w	vere perfor	med						
Method D	escription								
1 E	ML HASL 300, 4	1.5.2.3					······································		······

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

Result is less than value reported <

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtc
<u>.</u>		Client Sam Sample ID			9520-000 17342901			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	cticut 06424				R	eport Date: October 12	, 2006
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company Address :	Connecticut 362 Injun Ho		omic Power						
Contact:	East Hampto Mr. Jack Mc		ticut 06424		* ¹¹		Rep	ort Date: October 12	2, 2006
Project:	Soils PO# 00	02332							
	Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	: te:		9520-00 1734290 TS 29-SEP 06-OCT Client 10.1%	06			ZANK01204 ZANK001	· · · · · · · · · · · · · · · · · · ·
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
Rad Gamma Spec Ana	-								
Gamma,Solid–FSS G Waived	AM & ALL FSS	226 Ingro	wth					·	
Actinium-228		0.872	+/-0.210	0.0673	+/-0.210	0.148	pCi/g	MJH1 10/10/	06 1740 576803
Americium-241	U	0.08	+/-0.125	0.0919	+/-0.125	0.192	pCi/g		
Bismuth-212		0.496	+/-0.327	0.153	+/-0.327	0.331	pCi/g		
Bismuth-214		0.646	+/-0.101	0.0311	+/0.101	0.0675	pCi/g		
Cesium-134	U	0.0427	+/-0.0431	-	+/-0.0431	0.0575	pCi/g		
Cesium-137		0.125	+/0.0497		+/0.0497	0.0451	pCi/g		
Cobalt-60	U	0.0369	+/-0.0315		+/-0.0315	0.0504	pCi/g		
Europium-152	U	-0.0142	+/0.063	0.0512		0.108	pCi/g		
Europium-154	Ū	0.048	+/-0.079	0.0711	+/0.079	0.156	pCi/g		
Europium-155	U	0.0285	+/0.062	0.0566	+/0.062	0.118	pCi/g		
Lead-212		0.726	+/-0.0686		+/-0.0686	0.0583	pCi/g		
Lead-214		0.621	+/-0.0991		+/0.0991	0.0785	pCi/g		
Manganese-54		-0.00503	+/-0.0232		+/-0.0232	0.0407	pCi/g		
Niobium-94	U-	-0.000164	+/-0.0222		+/-0.0222	0.0401	pCi/g		
Potassium-40		11.4	+/-0.986	0.205	+/0.986	0.461	pCi/g		
Radium-226		0.646	+/-0.101	0.0311	+/0.101	0.0675	pCi/g		
Silver-108m	U	0.000684	+/-0.0194		+/-0.0194	0.0363	pCi/g		
Thallium-208		0.191	+/0.0524	0.0183	+/-0.0524	0.0394	pCi/g		
The following Prep N	Lathods wars n	erformed					-		
	scription				Analyst	Date	Time	Prep Batch	
Dry Soil Prep Dr	y Soil Prep GL-	RAD-A-(21		JMB1	10/08/	06 1251	576541	
The following Analyt	ical Methods w	ere perfor	med						
Method Des	scription								
1 EM	IL HASL 300, 4	.5.2.3		<u></u> .					

Notes:

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mtd
	·							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		Sample ID:			17342901	4		Client ID: Vol. Recv.:	YANK001	
		Client Sam	ple ID:		9520000	3–037F		Project:	YANK01204	
F	Project:	Soils PO# 00	2332							
(Contact:	East Hampton Mr. Jack Mc	•	ticut 06424				ł	Report Date: October 12	, 2006
	Company : Address :	Connecticut 3 362 Injun Ho		omic Power						

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy---Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Compa Addres	-		iomic Power						
Contac	East Hampt t: Mr. Jack M		ticut 06424	:			R	eport Date: Octo	ber 12, 2006
Project	:: Soils PO# (02332							
	Client Sar Sample II Matrix: Collect D Receive D Collector: Moisture:	D: ate: Date:		952000 1734290 TS 29-SEP- 06OCT Client 7.52%	-06		Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst	Date Time Batch Mt
ad Gamma Spec A	Analysis							1 <u></u>	
Gamma,Solid-FS	S GAM & ALL FS	S 226 Ingro	wth						
Waived									
Actinium-228		0.734	+/0.155	0.070	+/-0.155	0.152	pCi/g	MJH1	10/10/06 1741 576803
Americium-241	U	-0.119	+/-0.108	0.0809	+/-0.108	0.167	pCi/g		
Bismuth-212	ហ	0.00	+/0.577	0.137	+/0.577	0.296	· pCi/g		
Bismuth-214		0.565	+/-0.105	0.0391	+/-0.105	0.0831	pCi/g		
Cesium-134	U	0.0465	+/-0.0297		+/0.0297	0.0549	pCi/g		
Cesium-137		0.124	+/-0.0474		+/0.0474	0.0479	pCi/g		
Cobalt-60	U	0.00888	+/-0.0243	0.0213	+/-0.0243	0.0472	pCi/g		
Europium-152	υ	0.0475	+/0.067	0.0533	+/-0.067	0.112	pCi/g		
Europium-154	U		+/-0.0783		+/0.0783	0.138	pCi/g		
Europium-155	U	0.0289	+/-0.0645		+/-0.0645	0.117	pCi/g		
Lead-212		0.716	+/-0.0773	0.0296	+/-0.0773	0.0617	pCi/g		
Lead-214		0.538	+/0.0987	0.0366	+/-0.0987	0.0772	pCi/g		
Manganese-54	U	-0.0138	+/0.0249	0.0198	+/-0.0249	0.0427	pCi/g		
Niobium-94	U	-0.00995	+/-0.0225	0.0185	+/-0.0225	0.0394	pCi/g		
Potassium-40		10.1	+/-0.944	0.155	+/-0.944	0.356	pCi/g		
Radium-226		0.565	+/-0.105	0.0391	+/-0.105	0.0831	pCi/g		
Silver-108m	. U	0.00639	+/-0.0219		+/-0.0219	0.0395	pCi/g		
Thallium-208		0.198	+/0.0509	0.0174	+/-0.0509	0.0374	pCi/g		
The following Pre	n Methods were 1	performed							
	Description				Analyst	Date	Tim	e Prep Batch	L
Dry Soil Prep	Dry Soil Prep GL-	DAD A			JMB1	10/08/	/06 125	1 576541	······································

Method Description

EML HASL 300, 4.5.2.3

 \mathbf{c}

cticut Vankae Atomic Power

Notes:

1

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtc
		Client Sample ID: Sample ID:	9520–0003–038F 173429015	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
	Project:	Soils PO# 002332		
	Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy		Report Date: October 12, 2006
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

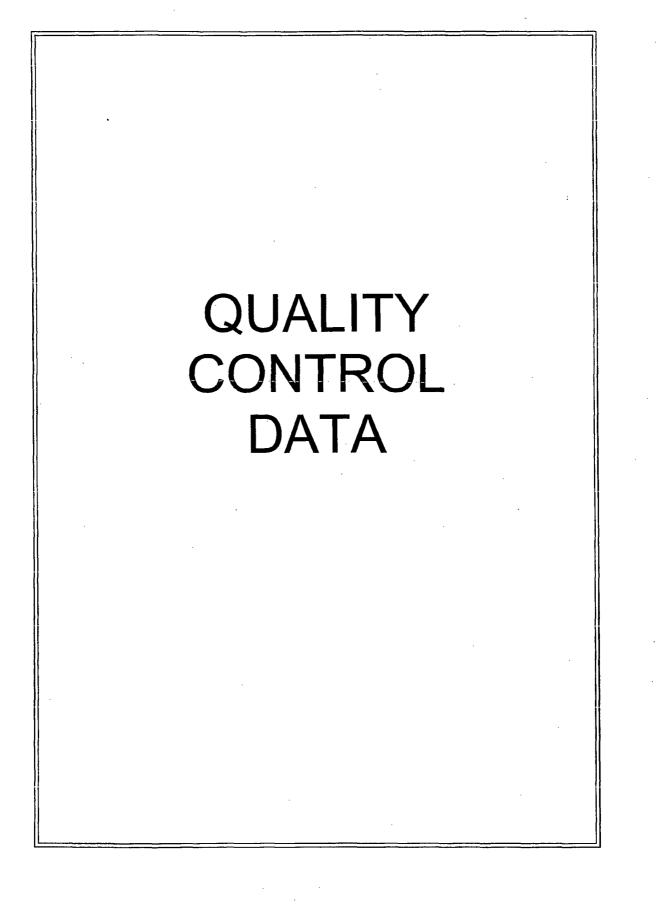
H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.


UI Gamma Spectroscopy—Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Client :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd			Su	mmary		:	Report Date: October 12, 2006 Page 1 of 5	
Contact:	East Hampton, Conne Mr. Jack McCarthy	cticut							
Workorder:	173429								
Parmname		NOM	Sample Q	ual	QC	Units F	RPD%	REC% Range Anlst	Date Time
Rad Gamma Spe Batch	e 576803								
QC12012018	85 173429001 DUP		•						
Actinium-228			0.669		0.684	pCi/g	2	(0% - 100%) MJH1	10/12/06 10:16
		Uncert:	+/-0.167		+/-0.171				
		TPU:	+/-0.167		+/-0.171				
Americium-241	!	U	0.0158	υ	-0.0698	pCi/g	317	(0% - 100%)	
		Uncert:	+/-0.0993		+/-0.0944				
	· ·	TPU:	+/-0.0993		+/-0.0944	0.1		(07 1007)	
Bismuth-212			0.636		0.398	pCi/g	46	(0% - 100%)	
		Uncert:	+/-0.338		+/-0.249				
D:		TPU:	+/-0.338		+/-0.249	-0:1-	ć	(0.07 10007)	
Bismuth-214		13	0.524		0.557	pCi/g	6	(0% - 100%)	
		Uncert:	+/-0.103		+/-0.109				
Cesium-134		TPU:	+/-0.103	U	+/-0.109 0.0301	-C:/a	70	(0% - 100%)	
Cesium-154		Ul Uncont:	0.00	U	+/-0.0326	pCi/g	70	(0% - 100%)	
		Uncert:	+/-0.0401 +/-0.0401		+/-0.0326				
Cesium-137		TPU:	0.0868		0.0709	pCi/g	20	(0% - 100%)	
CC31001-157		Uncert:	+/-0.0408		+/-0.0374	pene	20	(070 - 10070)	
		TPU:	+/-0.0408		+/-0.0374				
Cobalt-60			0.0098	U	-0.01	nCi/a	17900	(0% - 100%)	
cobalt-00		U Uncert:	+/-0.0245	0	+/-0.0223	pene	1,500	(070 - 10070)	
		TPU:	+/-0.0245		+/-0.0223				
Europium-152		U	0.016	υ	0.0225	pCi/g	58	(0% - 100%)	
Bulopium 152		Uncert:	+/-0.0604	Ũ	+/-0.0523	POPP		(0,0 100,0)	
		TPU:	+/-0.0604		+/-0.0523				
Europium-154		110. U	0.0853	U	0.0471	pCi/g	58	(0% - 100%)	
Durophum 197		Uncert:	+/-0.0845	Ŭ	+/-0.0679	Peng	50	(070 10070)	
		TPU:	+/-0.0845		+/-0.0679			•	
Europium-155		U	0.0625	U	0.0477	pCi/g	27	(0% - 100%)	
F		Uncert:	+/-0.0553	-	+/-0.055	F - · O			
		TPU:	+/-0.0553		+/-0.055	•			
Lead-212	•		0.665		0.731	pCi/g	9	(0% - 20%)	
		Uncert:	+/-0.0653		+/-0.0652			· · · · ·	
		TPU:	+/-0.0653		+/-0.0652				
Lead-214			0.609		0.693	pCi/g	13	(0% - 20%)	
		Uncert:	+/-0.0981		+/-0.099			· · ·	
		TPU:	+/-0.0981		+/-0.099				
Manganese-54		U	0.0081	U	0.000224	pCi/g	189	(0% - 100%)	
		Uncert:	+/-0.0243		+/-0.0218				
		TPU:	+/-0.0243		+/-0.0218				
Niobium-94		U	0.00664	U	-0.00917	pCi/g	1250	(0% - 100%)	
		Uncert:	+/-0.021		+/-0.0191				•
		TPU:	+/-0.021		+/-0.0191			~	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 173429 Page 2 of 5 Parmname NOM QC Units RPD% REC% Range Anlst Date Time Sample Qual **Rad Gamma Spec** 576803 Batch Potașsium-40 11.2 10.9 pCi/g 3 (0% - 20%) +/-0.949 +/-0.876 Uncert: TPU: +/-0.949 +/-0.876 Radium-226 pCi/g 6 (0% - 100%) 0.524 0.557 Uncert: +/-0.103 +/-0.109 +/-0.103 +/-0.109 TPU: Silver-108m 0.0278 U -0.0087 382 (0% - 100%)pCi/g υ Uncert: +/-0.0208 +/-0.0167 TPU: +/-0.0208 +/-0.0167 Thallium-208 pCi/g 14 0.204 (0% - 100%) 0.236 Uncert: +/-0.053 +/-0.0418 TPU: +/-0.053 +/-0.0418 QC1201201886 LCS Actinium-228 υ pCi/g 10/10/06 16:25 0.0901 +/-0.586 Uncert: +/-0.586 TPU: Americium-241 23.4 23.8 pCi/g 102 (75%-125%) Uncert: +/-0.543 +/-0.543 TPU: Bismuth-212 υ 0.891 pCi/g Uncert: +/-1.14 TPU: +/-1.14 Bismuth-214 U -0.087 pCi/g +/-0.223 Uncert: TPU: +/-0.223 Cesium-134 υ 0.103 pCi/g Uncert: +/-0.148 TPU: +/-0.148 Cesium-137 9.55 10.6 pCi/g 111 (75%-125%) +/-0.517 Uncert: TPU: +/-0.517 Cobalt-60 14.3 pCi/g 105 (75%-125%) 14.9 +/-0.677 Uncert: TPU: +/-0.677 Europium-152 υ 0.0502 pCi/g Uncert: +/-0.259 +/-0.259 TPU: Europium-154 -0.0216 υ pCi/g Uncert: +/-0.295 TPU: +/-0.295 Europium-155 U 0.111 pCi/g Uncert: +/-0.244 TPU: +/-0.244 Lead-212 -0.0772 pCi/g υ Uncert: +/-0.155 TPU: +/-0.155 Lead-214 υ 0.103 pCi/g Uncert: +/-0.193

QC Summary

51

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

		$\underline{\mathbf{v}}\underline{\mathbf{v}}$ Su	mmary							
Workorder: 173429							Page 3	of 5		
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Rad Gamma Spec										
Batch 576803										
	TPU:		+/-0.193	·.						
Manganese-54		U	-0.0122	pCi/g	g					
	Uncert:		+/-0.140							
	TPU:		+/-0.140				•			
Niobium-94		U	-0.0052	pCi/g	g.					
	Uncert:		+/-0.120							
	TPU:		+/-0.120	•						
Potassium-40		U	0.806	pCi/g	g					
	Uncert:		+/-0.822							
	TPU:		+/-0.822							
Radium-226		U	-0.087	pCi/j	<u>.</u>		(75%-125%)		
	Uncert:		+/-0.223							
	, TPU :		+/-0.223							
Silver-108m	, - -	U	0.0776	pCi/j	g					
	Uncert:		+/-0.110	F						
	TPU:		+/-0.110							
Thallium-208		U	0.0912	pCi/j	p					
	Uncert:		+/-0.117	P • - 1	2					
	TPU:		+/-0.117							
QC1201201884 MB		ι	17-0.117							
Actinium-228		ບ	0.066	pCi/	e				10/10/0	06 17:4
	Uncert:		+/-0.0443	F	5					
	TPU:		+/-0.0443							
Americium-241		υ	-0.0193	pCi/	g					
	Uncert:	ų.	+/-0.0707	P 02.	6					
	TPU:		+/-0.0707							
Bismuth-212		U	-0.0381	pCi/	σ					
	Uncert:	Ũ	+/-0.0917	POL	Þ					
	TPU:		+/-0.0917							
Bismuth-214	110.	U	0.029	pCi/	a					
District 214	Uncert:	0	+/-0.0461	, per	Б		•			
	TPU:		+/-0.0461				•			
Cesium-134	IFU:	. 11	-1.530E-05	pCi/	~					
Costum-154	Uncert:	Ū	+/-0.0129	per	5					
Cesium-137	TPU:	U	+/-0.0129	-0:4	-					
Cesium-137	11	0	-0.00234	pCi/	g					
	Uncert:		+/-0.0115							
Cobalt-60	TPU:	11	+/-0.0115		-					
Coball-00	11	U	0.00601	pCi/	g		,			
	Uncert:		+/-0.0136							
Eu	TPU:		+/-0.0136		-					
Europium-152	••	υ	0.00342	pCi/	g					
	Uncert:		+/-0.0355							
-	TPU:		+/-0.0355							
Europium-154		U	0.0343	pCi/	g					
	Uncert:		+/-0.040		•					
	TPU:		+/-0.040							
Europium-155		· · U	0.0333	pCi	g					

OC Summarv

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 173429						Page	1 of 5		
Parmname	NOM	Sample Qual	QC	Units RPD%	REC%	Range	Anlst	Date	Tim
Rad Gamma Spec									
Batch 576803									
	Uncert:		+/-0.0335			•.			
	TPU:	÷ ²⁵	+/-0.0335			•			
Lead-212		U	0.00562	pCi/g					
	Uncert:		+/-0.0281						
	TPU:		+/-0.0281						
Lead-214		U	0.00442	pCi/g					
	Uncert:		+/-0.0399						
	TPU:		+/-0.0399						
Manganese-54		. U	-0.0059	pCi/g					
	Uncert:		+/-0.0133						
	TPU:		+/-0.0133						
Niobium-94		U	-0.00189	pCi/g					
	Uncert:		+/-0.0107						
	TPU:		+/-0.0107						
Potassium-40		U	0.282	pCi/g					
	Uncert:		+/-0.123						
	TPU:		+/-0.123						
Radium-226		· U	0.029	pCi/g	•				
	Uncert:		+/-0.0461						
	TPU:		+/-0.0461						
Silver-108m		U	-0.00109	pCi/g					
	Uncert:		+/-0.00954						
	TPU:		+/-0.00954						
Thallium-208		U	0.0137	pCi/g					
	Uncert:		+/-0.0159						
	TPU:		+/-0.0159						

QC Summary

Notes:

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

<u> </u>	· · · · · · · · · · · · · · · · · · ·						Page !	·		
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Y QC Samples were not s	piked with this compour	nd			•				•	
 ^ RPD of sample and dup 	plicate evaluated using +	/-RL. Concentrations are	e <5X the H	۲L						
h Preparation or preserva	tion holding time was ex	ceeded					• •			
:	•								. ·	٠.
N/A indicates that spike recovery										

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

General Narrative

1

Erratum

The following change is made to sample nomenclature to acknowledge the reassignment of sample locations from Survey Unit 9520-0003 to Survey Unit 9520-0005:

Laboratory Identification	Original Sample Description	Changed Sample Description
173432001	9520-0003-032F	9520-0005-032F
173432002	9530-0003-033F	9530-0005-033F

11/17/06

Completed by: Jack McCarthy

General Narrative for Connecticut Yankee Atomic Power Co. Work Order: 173432 SDG: MSR#06-1334

October 12, 2006

Laboratory Identification:

General Engineering Laboratories, LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary

Sample receipt

The samples arrived at General Engineering Laboratories, LLC, Charleston, South Carolina on October 06, 2006 for analysis. Shipping container temperatures were checked, documented, and within specifications. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage.

Sample Identification The laboratory received the following samples:

Laboratory	Sample		
Identification	Description		
173432001	9520-0003-032F		
173432002	9520-0003-033F		

Items of Note

There are no items to note.

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Analytical Request

Two soil samples were analyzed for FSSGAM.

Data Package

The enclosed data package contains the following sections: General Narrative, Chain of Custody and Supporting Documentation, Data Review Qualifier Definitions, and data from the following fractions: Radiochemistry.

I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

()) Cheryl Jones

Project Manager

State	Certification
Alaska	UST-062
Arizona	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California	01151CA
Colorado	GenEngLabs
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA	WG-15J
Florida/NELAP	E87156
Georgia	E87156 (FL/NELAP)
Hawaii	N/A
Idaho	N/A
Illinois	200029
Indiana	C-SC-01
Kansas	E-10332
Kentucky	90129
Louisiana	03046
Maryland	270
Massachusetts	M-SC012
Michigan	9903
Nevada	SC12
New Jersey	SC002
New Mexico	FL NELAP E87156
New York	11501
North Carolina	233
North Carolina Drinking W	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania	68-00485
South Carolina	10120001/10585001/10120002
Tennessee	02934
Texas	TX213-2006A
Texas NELAP	T104704235-06-TX
U.S. Dept. of Agriculture	S-52597
US Army Corps of Engineer	N/A
Utah	8037697376 GEL
Vermont	VT87156
Virginia	00151
Washington	C1641

4

List of current GEL Certifications as of 12 October 2006

Chain of Custody and Supporting Documentation

	Connecticut Y 362 Injun F	Hollow Road,	tomic Po East Hampton 57-2556			l y			Ch	ain o	f Custoc	ly Form	No. 2006-00561
	Project Name: Haddam No			[An	alyses I	Request	ed	Lab-Use Only	
ł	Contact Name & Phone: Jack McCarthy 860-267-3924											Comments	
	Analytical Lab (Name, City, State) General Engineering Laboratories 2040 Savage Road. Charleston SC. 29407 843 556 8171. Attn. Cheryl Jones Priority: 30 D. 14 D. 7 D. 3 D.					FSSGAM	FSSALL						
				Sample	Container Size-	F.	Ľ.				173432%		
	Sample Designation	Date	Time	Media Code	Sample Type Code	&Type Code						Comment, Preservation	Lab:Sample ID
5	9520-0003-032F	9/26/06	1438	TS	G	BP	X						
	9520-0003-033F	9/26/06	1445	TS	G	BP	X						
ĺ													
				L		[· .		· · · · · · · · · · · · · · · · · · ·	and the second sec
				l									
	·	ļ				ļ		ļ				· ·	
		ļ											Contraction of the second s
		<u> </u>		 		 		ļ		<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
		ļ			ļ			·		} 			
		<u> </u>									·		
	NOTES: PO #: 002332 MSR #: 06- 133Y SSWP# NA 🖾 LTP QA 🗌 Radwaste QA 🗌 Non QA								Samples Shipped Via:	Internal Container			
	NOTES: PO #: 002332 55wp 66-ol-06(55 W F# .	Switting Eli QA C Rauwasie QA C							⊠ Fed Ex □ UPS □ Hand	Temp: <u>L.9</u> . Deg, C Custody Sealed? X N.D		
	1) Relinquished By	- 10	<u></u>	42		"luse	· 10	6 04)	Date/	F	Other 7900 8695 2965	Custody Seal Intact?
	3) Relinquished By		Date/Time	e	4) Recei	ved Ву			•	Date/1		Bill of Lading #	

	Connecticut Yankee Statement of Work for Analytical Lab Services CY-ISC-SOW-001
	Figure 1. Sample Check-in List Date/Time Received: 9:45 /0/6/06
	SDG#: MSR#06-1334, MSR#06-1335
	Work Order Number: 173429, 173432, 173434, 173435
	Shipping Container ID: $190 8695 2965$ Chain of Custody # $2006 00555$
	1. Custody Seals on shipping container intact? Yes V No []
	2. Custody Seals dated and signed? Yes I No []
	3. Chain-of-Custody record present? Yes X No []
	4. Cooler temperature 9.
	5. Vermiculite/packing materials is: Wet [] Dry []
	6. Number of samples in shipping container:
	7. Sample holding times exceeded? Yes [] No N
арана 1974 ж. – <u>–</u>	8. Samples have:
	hazard labels
	custody sealsappropriate sample labels
	9. Samples are:
	in good conditionleaking
	have air bubbles
	10. Were any anomalies identified in sample receipt? Yes [] No [V]
· · · · ·	11. Description of anomalies (include sample numbers):
-	
-	
S	Sample Custodian/Laboratory: Jan Jan Date: 10/6/17/2
т	Telephoned to:OnBy

Data Review Qualifier Definitions

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL</p>
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

GENERAL ENGINEERING LABORATORIES, LLC a Member of THE GEL GROUP, INC. P.O. BOX 30712 Charleston, SC 29417 • 2040 Savage Road (29407) Phone (B43) 556-8171 • Fax 943) 766-1178 www.gel.com

RADIOLOGICAL ANALYSIS

Radiochemistry Case Narrative Connecticut Yankee Atomic Power Co. (YANK) Work Order 173432

Method/Analysis Information

Product:	Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived				
Analytical Method:	EML HASL 300, 4.5.2.3				
Prep Method:	Dry Soil Prep				
Analytical Batch Number:	576804				
Prep Batch Number:	576546				

Sample ID	Client ID
173432001	9520-0003-032F
173432002	9520-0003-033F
1201201887	Method Blank (MB)
1201201888	173432001(9520-0003-032F) Sample Duplicate (DUP)
1201201889	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 13.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 173432001 (9520-0003-032F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Sample 1201201887 (MB) was recounted due to count room error.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

The sample and duplicate 1201201888 (9520-0003-032F) and 173432001 (9520-0003-032F) for Bi-214 and Tl-208 did not meet the relative percent difference requirement, however when the relative error ratio was calculated, precision was shown at 2.26279 for Bi-214 and 1.66238 for Tl-208.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to low abundance.	Cesium-134	173432001

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

12

Reviewer/Date: Compose Wellian 10/14/06

SAMPLE DATA SUMMARY

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

YANK001 Connecticut Yankee Atomic Power Co.

Client SDG: MSR#06-1334 GEL Work Order: 173432

The Qualifiers in this report are defined as follows:

* A quality control analyte recovery is outside of specified acceptance criteria

** Analyte is a surrogate compound

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

ND The analyte concentration is not detected above the detection limit.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones.

Paninho Willia

Reviewed by

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Comp Addre		Connecticut 362 Injun H		omic Power						
Conta	ict:	East Hampt Mr. Jack Me		ticut 06424	$\vec{r}^{*} = \epsilon$		·	Re	port Date: October 13	3, 2006
Projec	et:	Soils PO# 0	02332				·			
		Client Sam Sample III Matrix: Collect Da Receive D Collector: Moisture:): ate: ate:		952000 1734320 TS 26SEP 06OCT Client 12.1%	-06			YANK01204 YANK001	-
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
Rad Gamma Spec	Analys	sis								
Gamma,Solid-FI Waived	SS GAN	1 & ALL FSS	5 226 Ingro	wth		·				
Actinium-228		•	0.807	+/-0.151	0.0516	+/-0.151	0.111	pCi/g	MJH1 10/12/	06 1702 576804
Americium-241		U	0.0208	+/-0.116	0.0885	+/-0.116	0.184	pCi/g		
Bismuth-212			0.720	+/-0.249	0.117	+/-0.249	0.248	pCi/g		
Bismuth-214			0.554	+/0.0875	0.0297	+/-0.0875	0.0627	pCi/g		
Cesium-134		UI	0.00	+/0.0361	0.0206	+/-0.0361	0.0434	pCi/g		
Cesium-137			0.0461	+/-0.0279	0.0169	+/-0.0279	0.0356	pCi/g		
Cobalt-60		U	-0.0122	+/-0.0193		+/-0.0193	0.0336	pCi/g		
Europium-152		U	-0.0204	+/0.0484		+/-0.0484	0.0862	pCi/g		
Europium-154		Ū	0.0428	+/0.0569	0.0518	+/-0.0569	0.112	pCi/g		
Europium–155		Ū	0.00564	+/~0.0696		+/-0.0696	0.109	pCi/g		
Lead-212			0.798	+/-0.0616		+/-0.0616	0.0527	pCi/g		
Lead-214			0.638	+/0.0749		+/0.0749	0.0623	pCi/g		
Manganese-54		U	-0.0022	+/-0.0198		+/-0.0198	0.0355	pCi/g		
Niobium-94		Ū	0.0143	+/-0.0181		+/-0.0181	0.0345	pCi/g		
Potassium-40			13.8	+/0.824	0.170	+/-0.824	0.368	pCi/g		
Radium-226			0.554	+/0.0875	0.0297	+/-0.0875	0.0627	pCi/g		,
Silver-108m		υ	0.000225	+/-0.0161	0.0137	+/~0.0161	0.0289	pCi/g		
Thallium-208			0.231	+/-0.0401	0.0152	+/0.0401	0.0322	pCi/g		
The following Pr			erformed			A	D-4-	m :	Deen Dotah	
Method		iption				Analyst	Date	Time		
Dry Soil Prep	Dry S	oil Prep GL-	-KAD-A-(121		LXMI	10/07/	06 1057	576546	
The following An Method	alytica Descri		vere perfor	med						· · · · ·
		•	1522			· · · · ·				
1	CIVIL	HASL 300, 4	+.J.Z.3							
Notes:										
The Oualifiers	in this	report are o	defined as	follows :				•		

The Qualifiers in this report are defined as follows :

A quality control analyte recovery is outside of specified acceptance criteria Result is less than value reported *

<

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

· .	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		
	Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Report Date: October 13, 2006
		Client Sample ID: Sample ID:	9520–0003–032F 173432001	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd

Result is greater than value reported >

The TIC is a suspected aldol-condensation product Α

Target analyte was detected in the associated blank В

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

Value is estimated J

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

Sample results are rejected R

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy—Uncertain identification
 X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Υ QC Samples were not spiked with this compound

۸ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut 362 Injun Ho		omic Power						
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				Rep	ort Date: October 13	3, 2006
		Client Sam Sample ID Matrix: Collect Dat Receive Da Collector: Moisture:	: te:		9520-00 1734320 TS 26-SEP 06-OC1 Client 8.12%	-06	(ANK01204 ANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch Mt
ad Gamma	Spec Analy	sis								
Gamma,Sol Waived	lid–FSS GA	M & ALL FSS	226 Ingro	wth						
Actinium-	-228		0.883	+/0.140	0.0452	+/0.140	0.0969	pCi/g	MJH1 10/12/	06 1702 576804
Americiun	n-241	U -	-0.00551	+/-0.0705	0.057	+/0.0705	0.117	pCi/g		
Bismuth-2	212		0.517	+/0.230	0.109	+/-0.230	0.231	pCi/g		
Bismuth-2	214		0.518	+/-0.084	0.0277	+/-0.084	0.0583	pCi/g		
Cesium-1	34	U	0.0343	+/-0.0181	0.0176	+/-0.0181	0.037	pCi/g		
Cesium-1	37		0.0457	+/0.0219	0.0138	+/0.0219	0.0292	pCi/g		
Cobalt-60	1	U-	-0.00848	+/-0.0166	0.0129	+/0.0166	0.0282	pCi/g		
Europium-	-152	U	-0.0512	+/0.0441	0.0362	+/-0.0441	0.0758	pCi/g		
Europium-	-154	U-	-0.00291	+/-0.0498	0.041	+/0.0498	0.0885	pCi/g		
Europium-	-155	U	0.0501	+/0.0618	0.0437	+/0.0618	0.0903	pCi/g		
Lead-212			0.728	+/-0.0536	0.0218	+/0.0536	0.0453	pCi/g		
Lead-214			0.547	+/-0.0634		+/-0.0634	0.0593	pCi/g		
Manganes	e54	U.	0.00145	+/-0.0166		+/-0.0166	0.0305	pCi/g		
Niobjum-		Ŭ	0.0157	+/-0.0146		+/-0.0146	0.0286	pCi/g		
Potassium	-40	-	13.5	+/-0.732	0.116	+/0.732	0.256	pCi/g		
Radium-2			0.518	+/-0.084	0.0277	+/0.084	0.0583	pCi/g		
Silver-108		U	0.00326	+/-0.0144		+/-0.0144	0.0264	pCi/g		
Thallium-		C C	0.263	+/0.0406		+/0.0406	0.0272	pCi/g		
The followin Method	<u> </u>	thods were pe ription	erformed			Analyst	Date	Time	Prep Batch	
Dry Soil Prep	-	Soil Prep GL-I				LXM1	10/07/0	6 1057	576546	
The followin Method		al Methods we ription	ere perfor	med				····:		<i></i>
· · · ·	EMI	HASL 300, 4.	5.2.3						· · · · · · · · · · · · · · · · · · ·	· _ · _ · _ · _ ·

The Qualifiers in this report are defined as follows :

* A quality control analyte recovery is outside of specified acceptance criteria

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gei.com

Certificate of Analysis

Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch Mtd
		Client Sample ID: Sample ID:	9520–0003–033F 173432002	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
	Project:	Soils PO# 002332		
	Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy		Report Date: October 13, 2006
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

> Result is greater than value reported

A The TIC is a suspected aldol-condensation product

B Target analyte was detected in the associated blank

BD Results are either below the MDC or tracer recovery is low

C Analyte has been confirmed by GC/MS analysis

D Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy-Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL

h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

	Connecticut Yankee A 362 Injun Hollow Rd	tomic Power	QC	Su	<u>mmary</u>]	Report Da	ate: October 13, 2006 Page 1 of 5	i .
	East Hampton, Connec Mr. Jack McCarthy	cticut								
	173432									
Рагтлате		NOM	Sample (Jual	QC	Units R	PD%	REC%	Range Anlst	Date Time
Rad Gamma Spec	76804			•						
QC1201201888	173432001 DUP									
Actinium-228			0.807		0.990	pCi/g	20		(0% - 100%) MJH1	10/12/06 17:42
		Uncert:	+/-0.151		+/-0.252		•			
		TPU:	+/-0.151		+/-0.252					
Americium-241		U	0.0208	U	0.0313	pCi/g	40		(0% - 100%)	
		Uncert:	+/-0.116		+/-0.0519					
D:		TPU:	+/-0.116		+/-0.0519		10		(0.00 100.00)	
Bismuth-212		11	0.720		0.872	' pCi∕g	19		(0% - 100%)	
		Uncert:	+/-0.249		+/-0.536					
Disessed 014		TPU:	+/-0.249		+/-0.536	-0:1-	24+		(000 10000)	
Bismuth-214		11	0.554		0.781	pCi/g	34*		(0% - 100%)	
		Uncert:	+/-0.0875		+/-0.176					
Contium 124		TPU:	+/-0.0875	U	+/-0.176 0.0223	-Cila	92		(DØL 1000L)	
Cesium-134		UI Uncert:	0.00 +/-0.0361	0	+/-0.0481	pCi/g	92		(0% - 100%)	
			+/-0.0361							
Cesium-137		TPU:	0.0461	U	+/-0.0481 0.0664	pCi/g	36		(0% - 100%)	
Cesium-157		Uncert:	+/-0.0279	U	+/-0.0774	peng	50		(070 - 10070)	
		TPU:	+/-0.0279		+/-0.0774					
Cobalt-60			-0.0122	U	0.0212	pCi/g	742		(0% - 100%)	
CODall-00		U Uncert:	+/-0.0122	U	+/-0.0343	perg	742		(070 - 10070)	
		TPU:	+/-0.0193		+/-0.0343					
Europium-152			-0.0204	U	-0.0365	pCi/g	57		(0% - 100%)	
Europium-152		U Uncert:	-0.0204 +/-0.0484	0	+/-0.0833	hend	16		(0% - 100%)	
		TPU:	+/-0.0484		+/-0.0833					·
Europium-154			+7-0.0484 0.0428	U	0.062	pCi/g	37		(0% - 100%)	
Europiun-134		U Uncert:	+/-0.0569	0	+/-0.109	peng	57		(070 - 10070)	
		TPU:	+/-0.0569		+/-0.109					
Europium-155		U 110.	0.00564	υ	0.0466	pCi/g	157		(0% - 100%)	
Butopium 199		Uncert:	+/-0.0696	Ũ	+/-0.082	hene	157		(0.00 100.0)	
		TPU:	+/-0.0696		+/-0.082					
Lead-212			0.798		0.788	pCi/g	1		(0% - 20%)	
		Uncert:	+/-0.0616		+/-0.0889	Pore	-		(070 2070)	
		TPU:	+/-0.0616		+/-0.0889					
Lead-214			0.638		0.645	pCi/g	1		(0% - 20%)	
		Uncert:	+/-0.0749		+/-0.122	1.000	-		(
		TPU:	+/-0.0749		+/-0.122					
Manganese-54		U	-0.0022	υ	0.0124	pCi/g	286		(0% - 100%)	
~		Uncert:	+/-0.0198		+/-0.040	. 0			. ,	
		TPU:	+/-0.0198		+/-0.040					
Niobium-94		U U	0.0143	U	0.0259	pCi/g	58		(0% - 100%)	
		Uncert:	+/-0.0181	-	+/-0.035	10				
					+/-0.035					

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Parmname NOM Sample Qual QC Units RPD% REC% Ra	age 2 of 5 nge Anlst Date Time
	ngo Anlet Data Timo
	inge Amst Date inne
Rad Gamma Spec	
Batch 576804	
Potassium-40 13.8 12.2 pCi/g 13 (0% -	20%)
Uncert: +/-0.824 +/-1.36	2010)
TPU: +/-0.824 +/-1.36	
Radium-226 0.554 0.781 pCi/g 34 (0% - 1	100%)
Uncert: +/-0.0875 +/-0.176	
TPU: +/-0.0875 +/-0.176	
Silver-108m U 0.000225 U 0.0115 pCi/g 192 (0% - 1	
Uncert: +/-0.0161 +/-0.0281	
TPU: +/-0.0161 +/-0.0281	
Thallium-208 0.231 0.300 pCi/g 26 (0% - 1)	100%)
Uncert: +/-0.0401 +/-0.0703	
TPU: +/-0.0401 +/-0.0703	
QC1201201889 LCS	
Actinium-228 U 0.0685 pCi/g	10/12/06 19:15
Uncert: +/-0.531	
TPU: +/-0.531	
Americium-241 23.4 24.7 pCi/g 106 (75%-)	125%)
Uncert: +/-2.62	
TPU: +/-2.62	
Bismuth-212 U 0.235 pCi/g	
Uncert: +/-0.989	
TPU: +/-0.989 Bismuth-214 U -0.0375 pCi/g	
Bismuth-214 U -0.0375 pCi/g Uncert: +/-0.233	
TPU: +/-0.233	
Cesium-134 U -0.00479 pCi/g	
Uncert: +/-0.147	
TPU: +/-0.147	
Cesium-137 9.55 9.73 pCi/g 102 (75%-	125%)
Uncert: +/-0.768	
TPU: +/-0.768	
Cobalt-60 14.3 15.1 pCi/g 106 (75%-	125%)
Uncert: +/-1.04	
TPU: +/-1.04	
Europium-152 U -0.287 pCi/g	
Uncert: +/-0.311	
· TPU: +/-0.311	
Europium-154 U 0.112 pCi/g	
Uncert: +/-0.276	
. TPU: +/-0.276	
Europium-155 U -0.0442 pCi/g	
Uncert: +/-0.328	
TPU: +/-0.328	
Lead-212 U -0.125 pCi/g	
Uncert: +/-0.159	
TPU: +/-0.159	
Lead-214 U -0.193 pCi/g	
Uncert: +/-0.224	

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

		$\underline{\mathbf{v}}\mathbf{c}$ su	<u>mmai y</u>				
Workorder: 173432						Page 3 of 5	
Parmname	NOM	Sample Qual	QC	Units RPD	% REC%	Range Anlst	Date Time
Rad Gamma SpecBatch576804							
	TPU:		+/-0.224				
Manganese-54		'. U	0.0482	pCi/g			
	Uncert:		+/-0.133				
	TPU:		+/-0.133				
Niobium-94		υ	0.0277	pCi/g			
	Uncert:		+/-0.116				
	TPU:		+/-0.116				
Potassium-40		U	0.581	pCi/g			
	Uncert:		+/-1.04				
	TPU:		+/-1.04				
Radium-226		υ	-0.0375	pCi/g		(75%-125%)	
	Uncert:		+/-0.233	F8		()	
	· TPU:	•	+/-0.233				
Silver-108m		, U	-0.0727	pCi/g			
Shiteritoni	Uncert:	. 0	+/-0.114	hene			
	TPU:		+/-0.114				
Thallium-208	IFU.	U	-0.0423	DCi/a			
Thantum-208	Uncert:	0		pCi/g			
			+/-0.118				
0.01001001007	TPU:		+/-0.118				
QC1201201887 MB Actinium-228		· U	-0.00601	-Cila			10/13/06 12:27
Actimum-228	Uncert:	0	+/-0.0434	pCi/g			10/15/00 12:27
A	TPU:	17	+/-0.0434				
Americium-241		U	-0.0137	pCi/g			
	Uncert:		+/-0.0533				
D : 1.010	TPU:		+/-0.0533	~			
Bismuth-212		U	0.0252	pCi/g			
	Uncert:		+/-0.0887				
	TPU:		+/-0.0887				
Bismuth-214		U	0.0258	pCi/g			
	Uncert:		+/-0.0337			•	
	TPU:		+/-0.0337				
Cesium-134		U	0.000666	pCi/g			
	Uncert:		+/-0.0118				
	TPU:		+/-0.0118				
Cesium-137		U	-0.00269	pCi/g			
	Uncert:	•	+/-0.0111				
	TPU:		+/-0.0111				
Cobalt-60		υ	-0.000359	pCi/g			
	Uncert:		+/-0.0142				
	TPU:		+/-0.0142				
Europium-152	,	U	-0.00823	pCi/g			
	Uncert:		+/-0.0289	1 0			
	TPU:		+/-0.0289	•			
Europium-154	110.	U	0.0206	pCi/g			
	Uncert:	, 0	+/-0.0308	P.2.8			
	TPU:		+/-0.0308				
Europium-155	IFU:	υ	0.0121	pCi/g			
Salohum 199		0	0.0121	heng			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 173432							Page 4 of 5				
Parmname		NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Tim
Rad Gamma Spec Batch 576804											·
		Uncert:		+/-0.0283							
	<i></i>	TPU:		+/-0.0283							
Lead-212			U	0.000673	pCi/g	5					
		Uncert:		+/-0.0259							
		TPU:		+/-0.0259							
Lead-214			U .	0.0286	pCi/g	5					
		Uncert:		+/-0.045							
		TPU:		+/-0.045							
Manganese-54			υ	0.00755	pCi/g	5					
		Uncert:		+/-0.00957							
		TPU:		+/-0.00957							
Niobium-94			U	-0.000868	pCi/g						
		Uncert:		+/-0.0108							
		TPU:		+/-0.0108							
Potassium-40			U	0.150	pCi/g	S					
		Uncert:		+/-0.137							
		TPU:		+/-0.137							
Radium-226			U	0.0258	pCi/g	2					
		Uncert:		+/-0.0337							
		TPU:		+/-0.0337							
Silver-108m			ប	0.00351	pCi/g	3					
		Uncert:		+/-0.0101							
		TPU:		+/-0.0101							
Thallium-208			U	0.00714	pCi/g	g					
		Uncert:		+/-0.0164					•		
		TPU:		+/-0.0164							

Notes:

-leandan.

172422

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

UI Gamma Spectroscopy--Uncertain identification

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

armname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Y QC Samples were	not spiked with this compour	nd								
 RPD of sample ar 	d duplicate evaluated using +	/-RL. Concentrations are	e <5X the I	RL.		•				
h Preparation or pre	servation holding time was ex	ceeded								
						. •.				

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result. For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

RELEASE RECORD

ATTACHMENT 4 (DQA RESULTS)

RELEASE RECORD

÷,

ATTACHMENT 4A (PRELIMINARY DATA REVIEW)

PRELIMINARY DATA REVIEW FORM

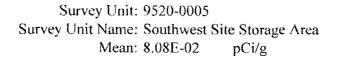
9520-0005
Southwest Site Storage area
1
Soil
Final Status Survey
Radionuclide Specific
15

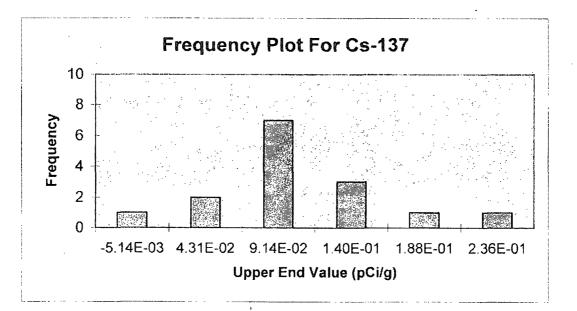
BASIC STATISTICAL QUANTITIES

		•	
	Cs-137	Co-60	
Target Level (pCi/g) :	5.38E+00	2.59E+00	
Minimum Value :	-5.14E-03	-1.20E-02	
Maximum Value :	1.93E-01	4.83E-01	•
Mean :	8.08E-02	4.66E-02	
Median :	6.47E-02	2.31E-03	
Standard Deviation :	5.34E-02	1.23E-01	

Reported	Resul	lts
----------	-------	-----

	Cs-137		Co-60		
	Concentration		Concentration		Fraction of
Sample Identification	(pCi/g)	Detect?	(pCi/g)	Detect?	Target Level
9520-0005-001F	4.10E-02	+	4.13E-02	· +	0.024
9520-0005-002F	4.59E-02	+	-1.37E-04		0.009
9520-0005-003F	1.35E-01	+	1.28E-04		0.025
9520-0005-004F	6.47E-02	+	1.34E-03		0.013
9520-0005-005F	1.93E-01	+	4.83E-01	+	0.222
9520-0005-006F	9.03E-02	+	5.91E-02	+	0.040
9520-0005-007F	4.91E-02	+	2.31E-03		0.010
9520-0005-008F	2.93E-02	+	-1.20E-02		0.005
9520-0005-009F	6.79E-02	+	1.40E-02		0.018
9520-0005-010F	1.27E-01	+	2.14E-02		0.032
9520-0005-011F	6.07E-02	+	7.15E-02	+	0.039
9520-0005-012F	1.52E-01	+	1.57E-02		0.034
9520-0005-013F	-5.14E-03		-9.84E-05		0.000
9520-0005-014F	1.16E-01	÷	8.07E-04		0.022
9520-0005-015F	4.54E-02	+	9.99E-04		0.009

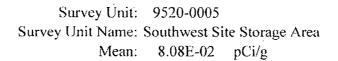

11/15/OC VA.

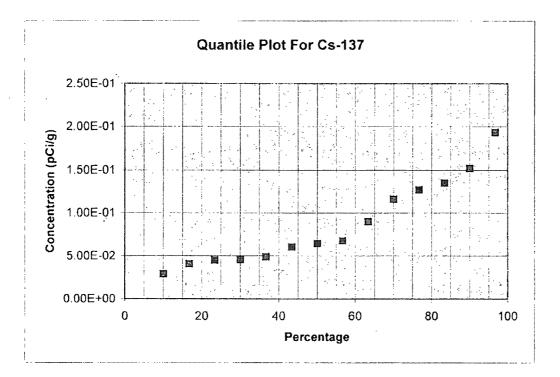

Submitted by/Date

RELEASE RECORD

ATTACHMENT 4B (GRAPHICAL REPRESENTATION OF DATA)

FREQUENCY PLOT FOR CESIUM-137





Upper End	Observation	Observation
Value	Frequency	Frequency
-5.14E-03	1	7%
4.31E-02	2	13%
9.14E-02	7	47%
1.40E-01	3	20%
1.88E-01	1.	7%
2.36E-01	1	7%
Total:	15	100%

Stor Back Submitted by/Date 1 20/06 Reviewed by/Date

QUANTILE PLOT FOR CESIUM-137

Cs-137	Rank	Percentage
-5.14E-03	1	3%
2.93E-02	2	10%
4.10E-02	3	17%
4.54E-02	4	23%
4.59E-02	5	30%
4.91E-02	6	37%
6.07E-02	7	43%
6.47E-02	8	50%
6.79E-02	9	57%
9.03E-02	10	63%
1.16E-01	11	70%
1.27E-01	12	77%
1.35E-01	13	83%
1.52E-01	14	90%
1.93E-01	15	97%

Submitted by/Date 11/20/06 Reviewed by/Date

10/00

RELEASE RECORD

ATTACHMENT 4C (SIGN TEST)

Attachment B

Sign Test Calculation Sheet For Multiple Radionuclides

Survey Area Number: 9520									
Survey Unit Number: 0005									
Survey Area Na	Survey Area Name: Southwest Site Storage area								
WPIR#: 2006-0	WPIR#: 2006-008								
Classification	Classification: 1 TYPE I (α error): 0.05 (N): 15								
Radionuclid	es:		Cs-137	C	o-60 [°]				
DCGL:			5.38 pCi/g	2.59	pCi/g				
Results 1 st Radionuclide (pCi/g)	Resul Radior (pC	nuclide	Weighted Sum (W _s)	1 - W _s	Sign				
4.10E-02	4.13	E-02	2.36E-02	9.76E-01	1				
4.59E-02	-1.37E-04		8.48E-03	9.92E-01	1				
1.35E-01	1.28E-04		2.51E-02	9.75E-01	1				
6.47E-02	1.34E-03		1.25E-02	9.87E-01]				
1.93E-01	4.83E-01		2.22E-01	7.78E-01	1				
9.03E-02	5.91E-02		3.96E-02	9.60E-01	1 .				
4.91E-02	2.31E-03		1.00E-02	9.90E-01	1				
2.93E-02	-1.20)E-02	8.13E-04	9.99E-01	1				
6.79E-02	1.40	E-02	1.80E-02	9.82E-01	1				
1.27E-01	2.14	E-02	3.19E-02	9.68E-01	1				
6.07E-02	7.15E-02		3.89E-02	9.61E-01]				
1.52E-01	1.57E-02		1.57E-02 3.43E-02		3.43E-02	9.66E-01	1		
-5.14E-03	-9.84E-05		-9.93E-04	1.00E+00	1				
1.16E-01	l 8.07E-04		2.19E-02	9.78E-01	1 .				
4.54E-02	4.54E-02 9.99E-04 8.82E-03 9.91E-01 1								
Number of positive differences (S+): 15									

Critical Value: 11 Performed by: Jack donthe Independent Review by:

Survey Unit Meets Acceptance Criterion

Date: 11/15/06

Date: 1/20/06

RELEASE RECORD

1

ATTACHMENT 4D (QC SPLIT RESULTS)

:

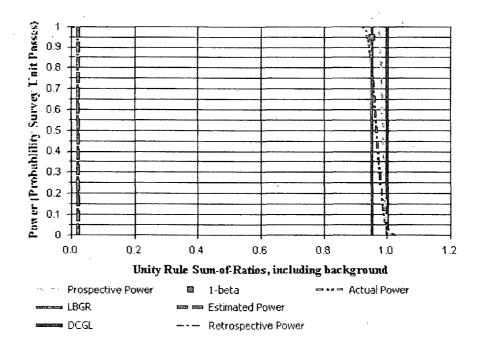
Split Sample Assessment Form

Survey Area#: 9520 Survey Unit #: 0005 Survey Unit name: Southwest Site Storage Area									
Sample Plan or WPIR#: 2005-0038						SML#: 9520-0005-001			
	scopy by o						ocation #1 and a 001F, the comp		
	5	STANDAR	D			COM	IPARISON		
Radionuclide	Activity Value					Comparison Ratio	Acceptable (Y/N)		
K-40	12.4	4.89E-1	25	0.75 - 1.33	13.5	5.40E-1	1.09	Y	
<u> </u>								÷	
Comments/Co yield an accept			t enough Cs-	-137 to		s provided to assess split s	show acceptan amples.	ce criteria	
						<u>Resolution</u> 4 - 7 8 - 15 16 - 50 51 - 200 >200	<u>Agreement R.</u> 0.5 - 2.0 0.6 - 1.66 0.75 - 1.33 0.80 - 1.25 0.85 - 1.18	ange	
Performed By JACK McCon			Date , 11/15/06	Review	ed By: S		Date:	Dís	

Split Sample Assessment Form

Survey Area#: 9520 Survey Unit #: 0005 Survey Unit name: Southwest Site Storage Area									
Sample Plan or WPIR#: 2005-0038 SML#: 9520-0005-013									
	scopy by o							cation #13 and a 013F, the comp	
•		TANDAR	D		COMPARISON				·
Radionuclide	Activity Value	Standard Error	Resolution	Agreement Range	ement Activity Standard Comparison			Comparison	Acceptable (Y/N)
K-40	9.74	3.86E-1	25	0.75 - 1.33	10	.1	4.55E-1	1.04	Y
									· · · ·
Comments/Co			t enough Cs-	-137 to				show acceptan	ce criteria
yield an accer	stable Res	olution			used to assess split samples. <u>Resolution Agreement Range</u>				
				•	$\begin{array}{c} \hline \hline \\ 4 - 7 \\ 8 - 15 \\ \hline \\ 0.6 - 1.66 \\ \hline \end{array}$				<u>auge</u>
							8 - 15 16 - 50 51 - 200 >200	0.85 - 1.88 0.75 - 1.33 0.80 - 1.25 0.85 - 1.18	i
		······			1.0				
Performed By TACK MIC			Date 11/15/06	Review	BBY			Date:	0 06
Cr	\mathcal{G}								

RELEASE RECORD


ATTACHMENT 4E (COMPASS DQA WITH POWER CURVE)

Assessment Summary

Site:	9520-0005					
Planner(s):	McCarthy Con 11/15/cb					
Survey Unit Name:	Southwest Site Storage area					
Report Number:	1					
Survey Unit Samples:	15					
Reference Area Samples:	0					
Test Performed:	Sign	Test Result:	Not Performed			
Judgmental Samples:	0	EMC Result:	Not Performed			
Assessment Conclusion:	Reject Null Hypothesis (S	urvey Unit PASSES	S)			

Retrospective Power Curve

