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Subject: Sandbed Local Thinning and Raising the Fixity Height Analyses (Line

Items | and 2 in Contract # PC-0391407)
Dear Dr. Tumminelli:

The attached letter report documents the results of subject analyses. The original purchase
order called for the analyses to be conducted on a spherical panel model rather than on the
full pie slice model. However, the results are more useful when conducted on the full pie
slice model since in that case no interpretation is required regarding the relationship
between the spherical panel results and the pie slice model results. The pie slice model -we

have used in these studies has the refined mesh in the sandbed region.

3.5 PC Disk cbmaining three ANSYS input files (0.636" case, 0.536" case and 1 foot
wall case) is also enclosed with this letter, The detailed calculations have been filed in -

Chapter 10 of our Design Record File No. 00664.

This transmittal completes the scope of work identified in the subject PO, If you have any

quesnons on the above item, please give me a call.

Smccrcly,

2B

H.S. Mehta, Principal Engineer
Materials Monitoring & Structural Analysis Services
Mail Code 747; Phone (408) 925-5029 :
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Subject: Sandbed Local Thinning and Raising the Fixity Height Analyses (Line

Items 1 and 2 in Contract # PC-0391407)

Dear Dr. Tumminelli:

The attached letter report documents the results of subject analyses. The original purchase
order called for the analyses to be conducted on a spherical panel model rather than on the
full pie slice model. However, the results are more useful when conducted on the full pie
_slice model since in that case no interpretation is required regarding the relationship
" between the spherical panel results and the pie slice model results. The pie slice model we
have used in these studies has the refined mesh in the sandbed region.

A 3.5" PC Disk containing three ANSYS input files (0.636" case, 0.536" case and | foot

wall case) is also enclosed with this letter. The detailed calculations have been filed in .

Chapter 10 of our Design Record File No. 00664.

This transmittal completes the scope of work identified in the subject PO. If you have any

questions on the above item, please give me a call.

Sincerely,

H.S. Mehta, Principal Engineer
Materials Monitoring & Structural Analysis Services
. Mail Code 747; Phone (408) 925-5029

Attachment: Letter Report

cc:  D.K. Hearie (w/o Attach.)
J.M. Miller (w/o Attach.)
S. Ranganath (w/o Attach.)

HSMOC-57.wp

N AN e e



G70-2/1 74

LETTER REPORT ON ADDIT_IONAL SANDBED REGION ANALYSES

1 0 SCOPE AND BACKGROUND

Structural Analyses of the Oyster Creek drywell assuming a degraded thickness of 0.736
inch in the sandbed region (and sand removed) were documented in GENE Report
Numbers 9-3 and 9-4. A separate purchase order was issued (Contract # PC-0391407) to
perform additional analyses. The PO listed the additional analyses under two categories:
Line Item 001 and Line item 002. This letter report documents the results of these

analyses.
The additional analyses are the following:

O Investigate the effect on the buckling behavior of drywell from postulated
local thinning in the sandbed region beyond the uniform projected thickness
of 0.736" used in the above mentioned reports (Line Item 001),

) Determine the change in the drywell buckling margins when the fixity point
at the bottom of the sandbed is moved upwards by = 1 foot to simulate
placement of concrete (Line Item 002).

The original PO calied for the Line Item 001 analyses to be conducted on a spherical
panel. The relative changes in the buckiing load factors were to be assumed to be the’
same for the global pie siice model. However, the mesh refinement activity on the global
pie slice modei and the availability of work station, has given us the capability to conduct
the same analyses on the global pie slice model itself, thus eliminating the uncertainties
regarding the correlation between the panel mode! and the pie slice model.

All of the results reported in this report are based on the pie slice model with a refined
mesh in the sandbed region. ' '

2.0 LINE ITEM 001

-Figure la shows the local thickness reductions modeled in the pie slice model. A locally
thinned region of =~ 6"x12" is modeled. The thickness of this region is 0.636" in one
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case and-0.536" in the other case. The transition to the sandbed projected thickness of
0.736" occurs over a distance of 12" (4 elements). '

The various thicknesses indicated in Figure 1a were incorporated in the pie slice modet by
defining new real constants for the elements involved. The buckling analyses conducted
as a result of mesh refinement indicated that the refueling loading condition is the
governing case from the point of view of ASME Code margins. Therefore, the stress and
buckling analyses were conducted using the refueling condition loadings. The center of
the thinned area was located close to the calculated maximum displacement point in the
refueling condition buckling analyses with uniform thickness of 0.736 inch. Figure lb
shows the location of the thinned area in the pie slice model. '

2.1 .0.536 Inch Thickness Case

Figures 2 through 5 show the membrane meridional and circumferential stress
distributions from the refueling condition loads. As expected, the tensile circurferential
stress (Sx in element coordinate system) and the compressive meridional stress (Sy in
element coordinate system) magnitudes in the thinned region are larger than those at the
other edge of the model where the thickness is 0.736 inch. However, this is a local effect
and the average meridional 'stress and the average circumferential stress is not expected to

- change significantly.

Figures 6 and 7 show the first buckling mode with the symmetric boundary conditions at
both the edges of the model (sym-sym). This mode is clearly associated with the thinned
region. The load factor value is 5.562. The second mode with the same boundary
conditions is also associated with the thinned region. Figure 8 shows the buckled shape.
The load factor value 15 5.872.

Next, buckling analyses were conducted with the symmetric boundary conditions specified
at the thinned edge and the asymmetric boundary conditions at the other edge (sym-asym).
The load factor of the first mode for this case was 5.58. Figure 9 shows the buckling
mode shape. It is clearly associated with the thinned region. Figure 10 shows the buckied
mode shape with asymmetric boundary conditions at the both edges (asym-asym). As
expected, the load factor for this case is considerabiy higher (7.037).

2-
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Thus, the load factor value of 5.562 is the lowest value obtained. The load factor for the
same loading case (refueling condition) with a uniform thickness of 0.736" was 6.141.
Thus, the load factor is predicted to change from 6.141 to 5.562 with the postulated
thinning to 0.536". '

2.2 0.636 Inch Thickness Case

_Figures 11 through 14 show the membrane meridional and circumferential stress
distrit utions from the refueling condition loads. As expected, the tensile circumferential
stress (Sx in element coordinate system) and the compressive meridional siress (Sy in
element coordinate system) magnitudes in the thinned region are larger than those at the
other edge of the model where the thickness is 0.736 inch. However, this is a local effect
and the average meridional stress and the average circumferential stress is not expected to

change significanty.

Figures 15 and 16 show the first buckling mode with the symmetric boundary conditions
at both the edges of the model {sym-sym). This mode is clearly associated with the
thinned region. The load factor value is 5.91. '

Next, buckling analysis was conducted with the symmetric boundary conditions specified
at the thinned edge and the asymmetric boundary conditions at the other edge. The load
factor of the first mode for this case was 5.945. Figure 17 shows the buckling mode
shape. It is clearly associated with the thinned region. Based on the results of 0.536"
case, the load factor for asym-asym case is expected to be considerably higher.

Thus, the load factor value of 5.91 is the lowest value obtained. The load factor for the
same loading case (refueling condition) with a uniform thickness of 0.736" was 6.141.
Thus, the load factor is predicted to change from 6.141 to 5.91 with the postulated
thinning to 0.636". '

2.3 Summary
The load factors for the postulated 0.536" and 0.636" thinning cases are 5.562 and 591,

respectively. These values can be compared to €.141 obtained for the case with a uniform
sandbed thickness of 0.736 inch. '
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3.0 LINE ITEM 0602

The objective of this task was to determine the change in the dryweil buckling margins
when the fixity point at the bottom of the sandbed is moved upwards by =~ | foot to
simulate placement of concrete. The elements in the sandbed region are approximately
3-inch square. Thus the nodes associated with the bottom four row of elements (nodes
1027 through 1271, Figure 18) were fixed in all directions.

The buckling analyses conducted as a result of mesh refinement indica-2d that the
refueling loading condition is the governing case from the point of view of ASME Code
margins. Therefore, the stress and buckling analyses were conducted using the réfue}ing
condition loadings. Figure 19 through 22 show the membrane meridional and
circumferential stress distributions from the refueling condition loads. Figure 23 shows
 the calculated average values of meridional and circumferential stresses that are used in
the buckling margin evaluation.

. Figure 24 shows the first buckling mode with sym-sym boundary conditions. The load
factor for this mode is 6.739. The load factor with asym-sym boundary conditions is
6.887 and the mode shape shown in Figure 25. It is clear that the sym-sym boundary
condition gives the least load factor. Figure 26 shows the buckling margin calculation. It
is seen that the buckling margin is 5.3% compared to 0% margin in the base case

calculation.

To summarize, the load factor changes to 6.739 for the refueling condition when the fixity
point at the bottom of the sandbed is moved upwards by = 1 foot. This results in an excess
margin of 5.3% above that required by the Code.

HSMOC-57.wp
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OVSTER CREEK DW ANALYSIS - OCRFTH1 (NO SAND, REFUELING)

AMSYS 4.4A1
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APPLIZD MERIDIONAL AKD CIRCUMFERERTIAL STRESSES - REFUELING CONDITION
ONE FOOT IKCREASE IN FIXITY CASES; STRESS RUN: QCRFRLSB.OUTY

AYERAGE APPLIED MERIDICNAL STRESS:

The average meridicnal stress is defined as the average stress across

the elevation including nodes 1419 through 1467. Stresses at nodes 1419 and
1447 are weighted only one hatf as much as the ather nodes because they

lie on the edge of the modeled '/10th section of the drywell and thus
represent onty /2 of the ares represented by the other nodes.

# of Nodes
X

# of Meridicnal Meridicnal

Nodes - Nodes  Stress (ksi)  Stress (ksi)
1419- 16467 1 -7.726 -7.726
1423- 1463 2 -7.738 15,476
1427- 1459 2 _-7.760 -15.520
1431- 1455 -2 -7.682 -15.364
5435+ 1451 2 -7.394 14,788
1439~ 3447 2 -7.014 -14.028
1443 1 -6.834 -6.834
Total 12 -89.736
12

Average Meridicnal Stress: ~7.478 (ksid

AVERAGE APPLIED CIRCUMFERENTIAL STRESS:

The circumferential stress is averaged along the vertical line from
node 1223 to node 2058.

# of Nodes
X

# of Circumferential Circumferential

Nodes Nodes  Stress (ksi) Stress (ksi)
1223 g 1.175 0.600
1419 1 0.505 0.505
1615 1 4. 165 4. 185
1811 1 5.846 5.846
2058 1 5.02¢ 5.024
Total: 4 15.54
4

Avergge Circumferential Stress: 3.885 (ksi)

QCRFST06.WKY

FIGURE 22
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CALCULATION OF AIILOWABLE

ONE FOOT INCREASE IN FIXITY CASE; STRESS RUN OCRFRLSB.QUT,

BUCKI.ING

[S2I~ W PURN SO g

10
11
12
13
14

15
16
17

18
19

REFNSND2

RUN OYCRSBBK.OUT

PARAMETER

. > B S e s T e M o A A A o WA ot Ao Sn e e g Meb i S M Sl ek A e o Y - S A S o B B e et e o a

#%% DRYWELL GEOMETRY AND MATERIALS
Sphere Radius, R
Sphere Thickness, t
Material Yield Strength, Sy
Material Modulus of Elasticity, E
Factor of Safety, FS '

*%% BUCKLING ANALYSIS RESULTS
Theoretical Elastic Instability Stress, Ste

*** STRESS ANALYSIS RESULTS _
Applied Meridicnal Compressive Stress, Sm
Applied Circumferential Tensile Stress, Sc

#%% CAPACITY REDUCTION FACTOR CALCULATION
Capacity Reduction Factor, ALPHAi
Circumferential Stress Equivalent Pressure, Peq
'X' Parameter, X= (Peq/4E) (d/t)~2
Delta C (From Figure - )

Modified Capacity Reduction Factor, ALPHA,i,mod
Reduced Elastic Instability Stress, Se

**%x PLASTICITY REDUCTION FACTOR CALCULATION
Yield Stress Ratio, DELTA=Se/Sy
Plasticity Reduction Factor, NUi
Inelastic Instability Stress, Si = NUi x Se

**%% ALLOWABLE COMPRESSIVE STRESS CALCULATION

Allowable Compressive Stress, Sall = Si/FS
Compressive Stress Margin, M=(Sall/Sm ~1) x 100%

. WK1

BUCKLING STRESSES - REFUELING CASE, NO SAND

UNITS

(in.)
(in.)
(ksi)
(ksi)

(ksi)
(ksi)
(ksi)
(psi)
{ksi)

(ksi)

(ksi)
(%)

50.394

7.478
3.885

06.207
13.616
6.075
L.064
0.313
15.7583

0.415
1.000
15.753

LOAD
FACTOR

G.738

2.107

- 2.1407

1.053
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