
APPENDIX A

SUMMARY REPORT OF THE
EXTERNAL REVIEW PANEL MEETING ON

RELIABILITY MODELING OF DIGITAL SYSTEMS
(MAY 23-24, 2007)

A-i

TABLE OF CONTENTS

Page

A.1. INTRODUCTION . A-1

A.2. PRESENTATION OF PRELIMINARY COMMENTS BY EACH PANEL MEMBER
. A-3

A.3. TRADITIONAL METHODS AND THEIR APPLICATIONS A-13
A.3.1 Defining and Identifying “Traditional” Methods . A-13
A.3.2 Conclusions Stated versus Applications of the Criteria Presented in the Report

. A-15
A.3.3 Criteria Applied to Methods or to Models/Applications A-15

A.4. COMMENTS ON REVIEW CRITERIA . A-17
A.4.1 General Comments on Review Criteria . A-17
A.4.2 Category 1: Level of Detail of the Model . A-17
A.4.3 Category 2: Identification of Failure Modes of the Components of Digital Systems

. A-18
A.4.4 Category 3: Software Failures . A-19
A.4.5 Category 4: Modeling of Dependencies . A-20

A.4.5.1 Subcategory 4.1: Communication Networks/Buses . A-21
A.4.5.2 Subcategory 4.3: Support Systems A-21
A.4.5.3 Subcategory 4.4: Sharing Hardware A-22
A.4.5.4 Subcategory 4.5: Interactions of Digital Systems with

Other Systems . A-22
A.4.5.5 Subcategory 4.6: Modeling of Fault Tolerance Features

. A-23
A.4.5.6 Subcategory 4.2: Common Cause Failures A-24

A.4.6 Category 7: Probabilistic Data . A-24
A.4.7 Criteria 8.4 and 8.5: Uncertainty . A-25
A.4.8 Category 6: Ease of Integration with a PRA Model A-26
A.4.9 Category 5: Human Errors . A-27
A.4.10 Criteria 8.1 - 8.3: Documentation and Results . A-27

A.5. CONCLUDING REMARKS . A-28

Attachment A

Agenda of External Review Panel Meeting on Selection of Traditional Methods for
Reliability Modeling of Digital Systems . A-30

A-ii

Attachment B

List of Documents Sent to Panel Members . A-32

Attachment C

Expert Panel Meeting Attendees . A-33

Attachment D

Biographies of Panel Members . A-34

Attachment E

Written Comments Provided by Reviewer A . A-36

Attachment F

Written Comments Provided by Reviewer C . A-46

Attachment G

Written Comments Provided by Reviewer D . A-48

Attachment H

Order for Addressing Review Criteria Categories/Subcategories A-52

A-1

A.1. INTRODUCTION

This summary report documents the discussions that took place at an external review panel meeting
on traditional methods for modeling digital systems as part of a probabilistic risk assessment (PRA).
The meeting was held at Brookhaven National Laboratory (BNL) on May 23 and 24, 2007.

A.1.1 Background

The U.S. Nuclear Regulatory Commission (NRC) is currently performing research on digital system
risk assessment. Their objective is to identify and develop methods, analytical tools, and regulatory
guidance to support (1) using risk information on digital systems in nuclear power plant (NPP)
licensing decisions, and, (2) including models of digital systems into NPPs’ PRAs.

The NRC is exploring, in parallel, both the dynamic and traditional methods of modeling digital-
system reliability. For this research, the latter can be thought of as the more well-established and
commonly used methods of NPP system reliability modeling (e.g., fault tree modeling). Dynamic
methods can be thought of as methods of NPP system-reliability modeling that attempt to explicitly
model the coupling between a digital system and the plant’s physical processes. (Note: The
distinction between traditional and dynamic methods was further discussed during the meeting, as
documented in Section 3.1 of this report.)

Under a contract with the NRC, BNL conducted the following work as part of the research on
traditional methods of modeling digital system reliability:

1. Identified for further exploration two traditional methods that represent a spectrum of
capabilities for modeling and quantitatively assessing the reliability of digital systems.

2. Developed criteria for evaluating reliability models of digital systems, which could
eventually provide input to the technical basis for risk-informed decision-making.

3. Reviewed reliability models developed using traditional methods, such as fault tree and
Markov methods, against the criteria to assist in determining the capabilities and limitations
of the state-of-the-art of traditional reliability models.

The findings of this work are documented in a draft letter report (T. L. Chu, G. Martinez-Guridi, M.
Yue, and J. Lehner, “Probabilistic Modeling of Digital Systems at Nuclear Power Plants: Traditional
Methods Selection,” Brookhaven National Laboratory, Draft Letter Report, April 2007).

A.1.2 External Review Panel Meeting Process

To more fully involve the technical community in identifying the most promising traditional
methods for reliability modeling of digital systems, and in developing criteria for evaluating such
reliability models, an external review panel was established to review the findings from the BNL
activities. The panel was comprised of six members, all of whom have expertise in modeling and

A-2

quantifying digital-system reliability, as well as in PRA. The objectives of the external review panel
were to assess the following:

1. The identification of traditional methods and their application.
2. The draft criteria used to review reliability models of digital systems.
3. The limitations of the state-of-the-art in modeling digital systems.

The responsibilities of the panel members were to (1) study BNL’s draft letter report before the
meeting of the expert panel, and (2) attend the two-day l meeting to satisfy the objectives listed
above. Attachment A of this report contains the agenda for the meeting.

Panel members received a set of background information before the meeting. In addition setting out
the objectives of the meeting and describing the process to be followed during the meeting, the
background information contained the BNL draft letter report, and other related papers and reports.
The materials sent to the panel members are listed in Attachment B. Furthermore, each member was
asked to judge beforehand whether the draft criteria for evaluating reliability models of digital
systems were appropriate and to identify any additions, deletions, or modifications to them.

The meeting took place at BNL on May 23 and 24, 2007. It was conducted with the help of a
facilitator who was responsible for aiding the discussions and keeping them focused. In addition
to the panel members and the facilitator, the meeting was attended by the authors of the BNL report
and the NRC Project Manager. Their role was to provide answers and clarifications in response to
the panel members’ questions. Attachment C of this summary report list the attendees’ names; brief
biographies of the experts are given in Attachment D.

The remaining sections of this report summarize the discussions of the meeting roughly in
chronological order. At the beginning of the meeting, each panel member gave a short presentation
of his preliminary thoughts on the BNL report (documented in Section 2 of this report). The next
major topic for discussion was the identification of traditional methods and their relevant
applications, as summarized in Section 3. Section 4 of this report summarizes the discussions on
the proposed criteria, in the same order that their categories were reviewed. The concluding remarks
are summarized in Section 5.

It should be noted that it was not a goal of the meeting to obtain a consensus among the panel on any
particular aspect of the work under review. Rather, the goal was to receive feedback from a broad
spectrum of individuals who have significant experience in the subject. Accordingly, while the
following sections report any points of general agreement among the panel members, most of the
information is in the form of comments from individual panel members.

1 In addition, to his comments during the panel meeting, reviewer A provided some comments after the meeting that
clarify and expand his points of view. Accordingly, this Appendix includes all his comments.

A-3

A.2. PRESENTATION OF PRELIMINARY COMMENTS BY EACH PANEL
MEMBER

During the morning of May 23, 2007, each member of the external review panel gave a short
presentation of his preliminary thoughts on using traditional methods for reliability modeling of
digital systems, such as suggestions for alternative methods/applications, and on the draft criteria
used for reviewing the digital system reliability models.

Points of general agreement among the panel members include the following:

• The BNL report contains valuable information about traditional methods.

• A substantial amount of probabilistic data of digital components/systems has been generated,
but most of it is not publically available. An important and difficult issue is how to obtain
this data.

• The term “criterion” should be used instead of the term “requirement” in the report due to
the regulatory implications of the word “requirement.”

The comments by individual members of the panel are presented next, in the order in which they
gave their presentations.

Reviewer A1

General comments relative to the approach to be used in the evaluation of modeling methods and
their application to digital systems:

• The term “digital systems” is very broad and covers a whole spectrum of systems with very
different characteristics, therefore:

• Different modeling methods may be needed for different areas of application within
this broad spectrum.

• It may not be possible to apply the same general criteria for evaluation of methods
that are intended to address a specific area of application rather than another. For
example, by and large, one can see a digital system as comprising three basic layers
of components: hardware, operating system, and application software, plus the
“external balance-of-system” with which the digital system interface. Each layer has
different a different type of functionality and is subject to different types of faults
and failures. Thus different types of modeling and model evaluation criteria may
apply to the different layers.

A-4

• There is a big difference between evaluating the suitability of a modeling framework or
method to cover a range of possible applications, and evaluating one specific application of
the method, in light of a set of a criteria that particular application of the method was not set
out to satisfy in the first place. By adopting the latter mode of evaluation it is very difficult
to understand and assess the true strength of a framework or method.

Observations on operating experience of mission-critical digital systems and NPP digital systems
modeling needs:

• National Aeronautics and Space Administration (NASA) operational experience indicates
that a majority of the mission failures that have occurred and in which digital control systems
and associated software were involved occurred due to system and software design errors,
which became failures in mission execution because the digital system and software had to
face unanticipated system conditions. Failures due to other causes (e.g., software coding
errors) have not occurred in mission-critical systems, probably because they can be
identified and eliminated with traditional validation and verification techniques before
mission execution.

• In addressing NPP digital system modeling needs, it is important to have the ability to adapt
the modeling approach to the particular type of system and interactions that need to be
modeled. It is not prudent to suggest, as often is suggested by the industry, that for risk
assessment and safety purposes it is sufficient to address only those systems categorized as
“safety related” (i.e., RPS and ESFAS), whereas “non-safety related” systems are of
secondary importance. There are a number of good reasons why a flexible portfolio of
modeling tools that covers both “safety related” and “non-safety related” systems:

• In a NPP, serious challenges to operational safety may come from systems that are
nominally categorized as “non-safety related.” For example, the Three-Mile Island
accident occurred not because of safety related systems failures, but because of
triggering events in the non-safety related feedwater system, and interactions
between the plant systems and their human operators.

• An RPS is based on open loop logic and in that respect can be probably tested
satisfactorily using traditional validation and verification techniques. The same is
not true of a digital feedwater and level control system, which has logic and timing-
dependent control loops and is also potentially subject to the effect of human errors
introduced by its interface with human operators.

• In general, interconnected control systems are considerably more complex than
safety systems (as defined in the NPP context), because of their combination of logic,
algorithms, and human interfaces.

• In light of all the above, one can conclude that “traditional methods” may be perhaps
adequate to deal with safety systems that are relatively simple (in their logic and degree of
permitted interaction with other systems). However, more advanced dynamic modeling

A-5

methods appear to be definitely needed to address the potential of system failures initiated
by control systems and unnecessary challenges to safety systems that may progress to
unexpected and undesirable consequences.

Comments on the nature and suitability of some of the methods evaluated by BNL:

• Military Handbook 217 (MIL-HDBK-217) is hardly a method for modeling digital systems,
even though it contains information of how to assess the reliability of certain hardware
components of digital system. Since 217 has not been supported by the Government since
the early 1990's, its information is also based on outdated data. The more recent evolution
of 217, 217 Plus, is based on unverified data and is still confined to estimating the reliability
of electronic hardware components.

• “Traditional Markov” models may be a good way of modeling fault interactions within a
digital system, but it doesn’t necessarily address in a satisfactory way the interactions
between the functions of a digital system and the operational behavior of the “balance-of-
system” and controlled equipment.

Comments on the objective of modeling and the establishment of criteria to judge the quality of
modeling approaches and modeling results:

• Basic objectives of digital system risk modeling that appear to be realistically pursuable are:

• Identification of significant digital system failure modes, with particular emphasis
on those that are related to interactions between digital system software and
controlled system functions, since these are often the most difficult to understand and
uncover.

• Identification of the type and degree of testing, explicitly including systematic
software testing, that is needed to “bound” the level of risk contribution that can be
expected from a particular digital system. This may not be as difficult to achieve as
commonly believed to be, because software failures are usually triggered by the
occurrence of specific system conditions, which in turn may occur with a certain
frequency. The condition frequencies are equivalent to unconditional “hazard rate,”
which can be assessed independently from the software test process, whereas the
actual software failure probabilities are conditional probabilities that can be
determined by testing the software within the input space defined by each system
condition of interest. I.e., if an input condition is expected to occur with a frequency
of 10-3 per year, then it may be sufficient to “explore” the software input space
defined by such a condition by means of random, but systematic, testing repeated a
minimum of 1000 times without encountering a failure, in order to “bound” the risk
level associated with the occurrence of that condition at an order of magnitude of 10-
6 per year.

A-6

• With respect to the development of good criteria for evaluation of approaches to digital
systems failure and risk modeling, the following consideration should apply:

• A fundamental distinction needs to be made between establishing criteria to judge
the quality and effectiveness of a modeling method, and criteria to judge whether one
specific application of a method meets certain specific objectives. For example: fault
tree analysis is sometimes used – without cut set quantification – to aid a system
failure investigation process. It would erroneous to pick up one such fault tree
analysis application and conclude that fault tree analysis, as a method in general,
fails to meet a criterion requiring risk quantification.

• Consistent with the above it would be appropriate and advisable for the BNL
study to shift emphasis from evaluating specific past methodology
applications to evaluating the suitability of specific aspects of a methodology
to being applied effectively for the purpose of digital systems failure and risk
modeling, according to foreseeable NRC regulatory evaluation needs.

• Reference in the above to evaluation of potentially useful aspects of a
methodology, rather than a methodology as a whole, is not accidental. In
fact mixing and matching particular features of different approaches to the
needs of a particular type of application may be the best approach with the
use of “traditional methods,” which were not per se created to address the
issue of digital system modeling and therefore cannot individually be
expected to cover in an acceptable way all the many facets of the issue. E.g,
a traditional fault tree analysis may be adequate for the modeling of a
relatively simple digital RPS logic, but a Markov model approach may be
needed to address the fault handling features of a digital system software and
redundant CPU architecture.

• No matter what criteria are used, they should include the evaluation of methods in
terms of whether they are effective at identifying and uncovering types of critical
failure modes that have actually been observed in the operational experience of
safety-critical digital systems.

• In this respect, a categorization of types of systems in use and failures that
have occurred should be adopted and/or developed and the suitability of
methods to address the various categories should then be assessed.

Reviewer A also provided written comments after the meeting (see Attachment E).

Reviewer B

• The problem statement significantly lacks clarity (i.e., stable regulatory environment vs.
trying to become risk-informed vs.). For example, are the criteria for the regulatory

A-7

review of modeling? Hence, the conclusions of the report are not necessarily tied to the
report’s text or the regulatory premise (i.e., they are disjointed ideas).

• Doesn’t necessarily disagree with conclusions, but the text does not support them.
In particular, conclusions about the methods are not supported.

• The report starts by discussing regulatory items, and then moves into technical
discussions.

• Each application reviewed using the report’s criteria had different objectives. Hence,
conclusions cannot be reached by comparing the extent to which the applications met the
criteria.

• There is a confusion between what is meant by traditional and dynamic methods that needs
to be clarified.

• Other methods for reliability modeling of digital systems may exist in other industries, and
modified versions of them might be used for systems in the nuclear industry.

• May want/need to pursue a “blended” approach with the best features of traditional and
dynamic methods (or more “advanced” traditional methods).

• Sophisticated methods may not be necessary because there is no good data, anyway.

Reviewer C

• A link or relationship should be established between the criteria and other standards or
procedures, such as the American Society of Mechanical Engineers (ASME) Level 1 PRA
standard, and various guidelines on common cause failure (CCF).

• It is easy to implement modifications to digital systems, which can complicate modeling and
quantifying data.

• Advanced reactors have many digital systems that perform control functions, as opposed to
the reactor protection system (RPS) and emergency safety features actuation system
(ESFAS) that are actuation systems. The former group needs detailed modeling, including
considering many additional failure modes.

• Some modeling approaches reviewed may meet additional criteria, but it just wasn’t
documented.

• Some methods may only meet some of the criteria, but could play a role as part of the
solution.

• The evaluation against criteria is limited by available information.

2 After the meeting, Reviewer D sent the following statement: “...an explanation within the context of the relevant
statement would be when the sequencing of events lead to different consequences. Then the consequences would
be statistically dependent on the precursor events. For example, if an event B in the precursor sequence cannot
occur before the previous event A occurs, then P(B)=P(B|A)P(A). The standard ET/FT approach will not account
for the conditional in P(B|A) in the quantification process. However, Markov approach is not the only way such a
dependency can be accounted for...”

A-8

• A (quantitative?) method should be used for assessing software reliability. However, the
resulting model does not have to be integrated with the overall PRA.

Reviewer C also sent written comments before the meeting (see Attachment F).

Reviewer D

• Hardware (HW) and software (SW) reliability cannot be evaluated separately, otherwise
HW/SW interactions cannot be captured (philosophical issue).

• Traditional methods and the proposed draft criteria don’t necessarily capture all of the Type
I and Type II interactions.

• Type I - dependencies due to communication through the controlled/monitored
process

• Type II - dependencies due to direct communication (e.g., networking, multiplexing,
or hardware linkages)

• Fault tree/event tree (FT/ET) and Markov as “traditional” methods probably can’t address
all the issues of modeling digital systems

• There probably is a need to add a “twist.”

• Detailed models are needed. There is probably a need for different modeling methods for
different applications. A graded approach should be used depending on system function
(i.e., safety or control).

• Statistical dependencies between failure events may require Markov treatment.2 FT cannot
account for these dependencies. J. Dugan (University of Virginia) proposed a method that

• Uses timed “AND” gates to model conditional occurrence of events given certain
events have occurred

• Doesn’t cover process interactions

• Dynamic methods may be needed to model communication, as well as dynamic methods for
certain portions of the PRA, and then map them back into the PRA.

• However, dynamic methods may not be necessary to model systems such as the RPS
and ESFAS.

A-9

• [Reviewer A]: One can have a general framework using traditional criteria, and identify
areas that require other approaches. Considering the issues related to Type I and Type II
interactions is another way of looking at the different types and levels of digital system
inplementations that can be found in real life applications.

• [Reviewer B]: The complexity/accuracy of modeling may need to be driven by where data
is available.

• The scarcity of probabilistic data is a big concern.

• [Reviewer A]: Developing methods/models will point us to what data is needed,
• [Reviewer A]: ...and also how to test the system, since testing is the only good source

of data (as opposed to generic databases).

• Uncertainties should be propagated through the model.

• Some statements and terms need to be more specific, e.g., what is meant by Markov
modeling.

Reviewer D also provided written comments before the meeting (see Attachment G).

Reviewer E

• Cybersecurity also might be an issue that should be addressed in the criteria.

• Timing can be included in ETs/FTs through a phased-mission analysis.

• Dynamic FT gates can be used to capture dependency and timing.

• Reviewer E showed a book that used Dugan’s method. [M. Sonza Recorda, Z. Peng,
and M. Violante, Editors, “System-Level Test and Validation of Hardware/Software
Systems, Springer Series in Advanced Miicroelectroncs, 2005]

• MIL-HDBK-217 and PRISM have been superseded by 217 Plus.

• Even though an approach for software reliability analysis is included in NASA ‘s PRA
procedures guide, NASA has not agreed yet on an approach for analyzing software
reliability.

• NASA’s approach (dynamic flowgraph methodology [DFM]) may not qualify as a
traditional method.

• Reviewer A disagrees for several reasons: a) the NASA approach is not based on
DFM, but on traditional event-tree / fault-tree modeling where possible, combined
with traditional SW reliability estimation methods; b) the application example in the

A-10

NASA PRA Procedures Guide shows a traditional ET/FT analysis of a DMSP
satellite attitude control system in combination with the Schneidewind SW reliability
estimation method; DFM is used as an example of what can be done when more
detailed dynamic modeling is necessary; c) DFM itself is documented in at least four
NUREGs and two NASA reports, dating back to the mid-nineties.

• Level of detail:

• Needs to be tied to purpose of analysis.
• This is discussed in the report but not listed in the final criteria.
• The level of detail need not capture design features that could affect

unreliability if sufficient data are available to bound unreliability and that is
the output needed for decision-making.

• If system unreliability is dominated by components, such as circuit breakers and
valves, there is no need to go to microprocessor level to ascertain it. .
• System may also include operators who can over-ride failed digital

controllers.
• Controller failure ANDed with operator failure to over-ride.

• This can limit level of detail needed, for example, need for controller FMEA.

• Software failures:

• Cannot understand Criterion 3.2 for software (the reference [Chu, 2006b] is not
available for review).

• May not need logic models for software; depends on purpose of analysis.
• It may be sufficient to bound software contribution.

• Modeling of dependencies:

• Failure of communication network is important consideration.
• Recent “data storm” at Browns Ferry is an example.

• Human errors:

• Human reliability analysis also must consider operator recovery from failure of
hardware/software.

• Probabilistic data:

• Statement that digital hardware data are “scarce or non-existent” is probably too
strong because some data are available.

• Recent discussion with Honeywell (Netherlands) suggests there is a large amount of
(non-nuclear) data on programmable logic controllers (PLCs).

A-11

• HW and SW data, but the latter may not be applicable.
• May need to analyze data for a particular application.
• It is not clear whether these data are publically available.

• Hardware data requirements should specifically address the Bayesian approach.
• Use of “generic” data or allied-industry data as prior distribution.
• Adjustment of data from other applications or environments.
• Dealing with uncertain data (e.g., uncertainty in failure count).

• For software failure, testing data could be appropriately used in one of the software
reliability growth models discussed in ANSI/AIAA Std. R-013-1992 and
implemented in CASRE software.

Reviewer F

• Challenges associated with modeling digital systems:

• software reliability
• common cause failures (including software)
• hardware/software interactions
• failure data
• interfacing digital system models into a PRA
• time dependencies
• diagnostics/fault tolerance/coverage
• failure modes (including unknown or unforeseen failure modes).

• Challenges associated with developing a review process consistent with current
regulations/guidance:

• level of modeling detail
• acceptance guidelines
• PRA quality -attributes for digital system modeling
• open issues - use of PRA with a deterministic defense-in-depth

philosophy/methodology.

• The objective of the criteria is to support regulatory decision-making, e.g., a decision on
giving credit to certain fault-tolerant features.

• It is helpful to link the criteria to standards, such as the ASME PRA standard.

• In establishing evaluation criteria, it is not as easy as saying one needs to be able to
adequately model the unique aspects of digital systems:

• Evaluation criteria must reflect both the characteristics of digital systems and how
they are used in nuclear plants.

• A method must be developed for categorizing digital systems.

A-12

• The community needs to continually be looking at operational experience, for
example:
• EDG load sequencer failure at Turkey Point, and
• Data storm at Browns Ferry.

• Operational experience will affect how the evaluation criteria should be written. For
example, the Category 1 criteria on level of detail currently include the phrases “design
features that affect reliability” and “at the microprocessor level.” System state and cross
system inter-connectivity as failure modes have been observed, and whether they should be
explicitly part of the criteria should be considered.

• A method of categorizing digital systems may need to be developed to help determine the
level of modeling detail needed.

• Consider the need for additional Category 2 criteria for determining the level of
detail to be used in identifying failure modes. .

• In modeling software reliability, the concepts are often stated very differently than in
traditional PRA terminology.

• We should use terms that software people understand, or at least note the analogous
terms (e.g., “operational profile” instead of “context” and “software-centric”).

• The criteria need to be more consistent and/or may need to be applied in a particular order,
for example failure modes (Category 2), before CCF modeling (Category 4), before level of
detail (Category 1).

• In the evaluation criteria for human errors (5.1 and 5.2)

• Criterion 5.1 needs to be reworked to include the way humans introduce faults into
the software.

• Man-machine interface (MMI), or more appropriately human-system interface (HSI),
is outside the scope of the system model.

• Hybrid analysis methods should be considered for developing applications. For example,
NASA’s study of the International Space Station (ISS) used traditional FT/ET modeling for
the most part, but Markov modeling for many digital systems.

• A possible definition of “traditional” method is one that is commonly used, well established,
including large-scale applications.

A-13

A.3. TRADITIONAL METHODS AND THEIR APPLICATIONS

The discussions focused on three main issues:

• What is the definition of “traditional” methods, and therefore, what methods should be
included in identifying and selecting “traditional” methods?

• Are the conclusions stated in the report clearly supported by applying the criteria presented
in the report?

• Should the proposed criteria be applied to the methods, or to the models/applications?

The panel members’ discussions on these three issues, as well as about alternative methods and
applications, are summarized in the sections below.

A.3.1 Defining and Identifying “Traditional” Methods

Points of general agreement among the panel members: “Traditional” methods are difficult to define
precisely. Separating methods based on “dynamic” versus “traditional” does not really help. Some
methods can be considered traditional if they are used for a part of a model, but non-traditional if
they are used for the whole model. Ultimately, binning traditional methods versus non-traditional
methods includes subjective elements. Traditional methods will involve methods commonly used
by the nuclear industry, since the NRC is interested in evaluating licensees’ submittals. Therefore,
traditional methods can be defined as

• Methods that can be used in near-term (or somewhat near-term) to address at least some
aspects of digital system reliability modeling and quantification.

• Methods that have had real-world application in the nuclear industry.
• Methods applicable to the kinds of decisions that the NRC will face.

Individual panel members had the following observations:

Reviewer F

The interactions and dependencies of digital systems may require methods that can overcome some
of the limitations of traditional FT methods. Binary Decision Diagrams (BDDs) can help with
coherence problems. Already, some applications of BDDs are used by the telecommunications and
aerospace industries. In a Norwegian study, Dahll applied the method. Bayesian Belief Networks
(BBNs) also may be helpful. Ali Mosleh developed a technique combining the BBN approach with
BDDs. However, so far there are no large-scale applications of these methods to digital systems.

Reviewer E

Simulation methods, such as discrete event simulation (DES), also could be considered as traditional
methods. In a 2003 Finnish paper, BBN was used to analyze the software of a relay. One could also
question whether DFM qualifies as traditional. While the NRC has traditionally relied on FT/ET

3 This report is: “Risk-informed Safety Assurance and Probabilistic Risk Assessment of Mission-critical Software-
intensive Systems,” AR 07-01, ASCA, June 2007.

A-14

models for reactor safety analysis, a contractor for the Office of Nuclear Material Safety and
Safeguards (NMSS) used discrete event simulation in a medical application.

Reviewer D

Traditional Markov techniques are not really that useful for evaluating digital systems. Depending
on the definition of traditional methods, DES and BBNs could be considered as such. It is not clear
that DES is practical. For simulation methods, the problems are that the sequence of failure modes
cannot be captured, and integrating the results with a PRA is problematic. Dugan tries to capture
data dependencies, employing a method she calls “Dynamic Fault Tree.”

Reviewer C

The difference between traditional and dynamic methods is not clear, and it is hard to differentiate
between them. For example, some methods would qualify as “non-traditional” if used to model an
entire digital system, but would as “traditional” if used for specific aspects of the modeling, such
as BBN or testing or simulation with fault injection. The only method everyone agrees is clearly
traditional is the FT/ET approach.

Reviewer B

EPRI supplies the R&R workstation that could be considered the most widely used software for
reliability analysis. Methods included in the R&R workstation are currently traditional. However,
new capabilities for the R&R workstation, such as BDDs and Declarative Modeling, will be released
by the end of the year, and may include the ability to use phased-mission times. However, EPRI
may not release this capability due to the concern that it may not be used properly, thereby distorting
some plant’s risk profiles.

Reviewer A

It is difficult to distinguish between traditional and dynamic methods. For example, BBN and Petri
net methods can be considered traditional. Another example is using multi-value logic methods
(predecessors of DFM), which have been employed in the chemical industry, but not for digital
systems. It should be noted that reliability prediction methods are not really methods but a source
of data. There is a NASA report3 on an application of the software reliability quantification method
described in the NASA PRA procedures guide. He elaborated on this subject in his written
comments (Attachment E).

A-15

A.3.2 Conclusions Stated versus Applications of the Criteria Presented in the Report

Points of general agreement among the panel members: The report draws, or implies, conclusions
about the models reviewed without knowing what original objectives the models were intended to
satisfy. The report needs to further clarify that the models may not meet many of the criteria
because they were not developed with the intent of doing so, but rather with objectives that may be
quite different. Some models could have met more criteria if they had different objectives. The
conclusions in the report should be more focused on the capabilities of the methods, not the
capability of the models with respect to the criteria.

Individual panel members had the following observations:

Reviewer B

Some of the so-called “conclusions” in the report should be moved to the front to make the flow of
the report more logical. The report reflects the order in which the work was done, but rearrangement
could help with clarity, and produce a better report.

Reviewer A

The report should be portrayed as a demonstration of the criteria, not as judging specific methods
or models. He elaborated on this subject in his written comments (Attachment E).

A.3.3 Criteria Applied to Methods or to Models/Applications

Points of general agreement among the panel members: It would be desirable to have criteria to
evaluate methods. However, since a digital-system model could involve combining methods to
address different aspects of the model, one ultimately needs to apply criteria to the modeling. The
report’s conclusions should be more focused on the methods’ capabilities, not that of the models.
Criteria could be applied against applications and this information used to evaluate methods. In any
case, to proceed with discussing individual criteria, it was generally agreed that criteria should be
viewed as being model/application-oriented.

Individual panel members had the following observations:

Reviewer B

The project is proposing which methods to pursue. It will be seen how well they meet the criteria,
based on the evidence from the two test cases to which they are applied. The next step is
extrapolation, i.e., to extend the conclusions from the test cases to reach general ones that can be
considered generally applicable to analyzing digital systems. It will be necessary to support this
extrapolation unless it is a straightforward inference, i.e., unless it is obvious that a particular
method could meet a particular criterion if applied for that purpose – this requires a judgment about
whether substantial additional work would be necessary for the method to meet the criterion.

A-16

Reviewer C

Some of the criteria presented are overly specific, such as requiring modeling the loss of HVAC ;
they should be more general, not design-specific.

Reviewer E

Ultimately, one needs to apply criteria to “modeling,” because the digital system model could
involve a combination of methods to address its different aspects. .

Reviewer D

If the capabilities/limitations of the methods are extrapolated based on the models, the work may
be criticized as being speculative.

Reviewers A, B, and F

The criteria can be used to evaluate the methods, and the models then used as evidence of the
methods’ capabilities. Reviewer A elaborated on this subject in his written comments
(Attachment E).

A-17

A.4. COMMENTS ON REVIEW CRITERIA

A.4.1 General Comments on Review Criteria

The following general comments were made about the review criteria:

• In general, the panel members felt that the criteria did a good job in covering the desired
characteristics of digital-system reliability modeling.

• The state-of-the-art of reliability modeling cannot support all of the identified criteria, and
additional research is needed, e.g., in reliability data, CCFs, and software reliability.

• It was recognized that the criteria have different levels of detail, degrees of specificity, and
importance, and some criteria include not only review criteria but also background
information. It is recommended that the criteria are made more succinct, and that supporting
rationale, examples, and guidance on how to satisfy them is moved to the background
discussion.

• Some criteria are similar to those in PRA standards, e.g., the ASME Level 1 PRA standard.
Any relationship to the ASME standard should be stated.

• The criteria should be general without specifying the methods that should be used. For
example, failure modes and effects analysis (FMEA) is only one of the methods used for
identifying failure modes (others include hazard analysis, and hazard and operability study
[HAZOPS]).

• A consistent terminology should be developed for all of NRC’s projects dealing with digital
systems.

The rest of this chapter summarizes the discussions on the categories of review criteria, in the same
order they occurred during the panel meeting (Attachment H gives the order in which the review
criteria categories/subcategories were discussed). For each criteria category, there is a brief
description of the category, followed by any general comments agreed-upon by the members of the
expert panel, and the comments from individual experts.

A.4.2 Category 1: Level of Detail of the Model

While the criteria in the other categories represent a collective set of criteria for evaluating digital-
system reliability models, the three criteria in this category are mutually exclusive ones at different
levels of detail (i.e., a model would only be expected to meet one of the three criteria). Criterion 1.1
represents the ideal level of detail of a model, Criterion 1.2 represents the level of detail that the
authors believe is reasonably achievable, and Criterion 1.3 represents the level of detail of the
digital-system models included in the design certification PRAs for new reactors (i.e., AP1000 and
the Economic Simplified Boiling Water Reactor).

The panel thinks that the level of detail of modeling should depend on the study’s objective, , and
recommended that the existing proposed criteria in this category be replaced by the following
alternative criterion: "Modeling should reflect all significant failure modes (functional and

A-18

physical), be developed to the level of detail of supporting information, and provide output needed
for risk-informed decision-making."

The comments of individual panel members are provided below:

• [Reviewer A]: Criterion 1.2 makes an assumption and is problematic. It should instead
indicate that the model should address both the physical and functional characteristics of a
digital system, e.g., the timing of a central processing unit (CPU) failure can affect the type
of impact the failure may have at the plant level.

• [Reviewer B]: Criterion 1.1 is the only criterion; Criterion 1.3 is an exception, and
Criterion 1.2 is a very specific criterion that can conflict with Criterion 1.1. In Criterion 1.3,
“...can adequately support the objective of the modeling” should be replaced with “...capture
all dependencies including software.”

• [Reviewer C]: The final criterion should address “operational and functional characteristics”.
Since a circuit board may perform several functions, physical and functional features cannot
be separated.

• [Unknown]: It is necessary to consider the difference between “functional” and “physical”
failures.

• [Reviewer E]: An alternative criterion should be used, based on the panel discussion:
“Modeling should reflect all significant failure modes (functional and physical), be
developed to the level of detail of supporting information, and provide output needed for
risk-informed decision-making.”

A.4.3 Category 2: Identification of Failure Modes of the Components of Digital Systems

BNL indicated that from their experience it is very difficult to undertake an FMEA of digital
systems and little guidance is available. For example, what is the level of detail at which an FMEA
should/can be performed (subject to limitations on design detail and knowledge)? Are the failure
modes realistic and complete? For example, can an output bit being stuck high be an isolated failure
mode, knowing that the bit is physically connected to other parts of the system?

The panel thinks that a criterion should not advocate a particular method, i.e., FMEA, and that other
methods also can be used, e.g., HAZOPS. The title of the category should be changed to include
“components of” before “digital system.” An alternative to Criterion 2.1 was proposed: “A
technique for identifying failure modes of the basic components of a digital system, and their impact
on the system, should be applied.” The discussion about Criterion 2.3 generated a recommended
new criterion that the “...failure modes that have occurred in operating experience should be
examined.” For example, important software failures have occurred as a result of problems with
requirement specifications. The panel also recommended rewording Criterion 2.3 and including it
as a sub-bullet to the new criterion.

The comments of individual panel members follow :

• [Reviewer D]: By design, FMEA is intended to identify immediate impacts, not to model
fault propagation. In the nuclear field, FMEA is a precursor to fault trees, i.e., it considers

A-19

the immediate impact of component failure, not the systemic impact. Defining failure mode
according to functions might be wrong. Criterion 2.1 may be neither feasible nor necessary.
Arbitrary output as a failure mode should be considered.

• [Reviewer A]: An FMEA (more so when applied in FMECA – Failure Modes, Effects and
Criticality Analysis) normally considers the effects and consequences of a postulated failure.
Military Standard 1629 and Handbook 338b provide guidance on FMEA.

• [Reviewer C]: FMEA should be related to deterministic criteria; other methods can be used
to identify failure modes, e.g., hazard analysis and HAZOPS.

• [Reviewer F]: Standard Review Plan (SRP) Chapter 7 addresses Criterion 2.3. Failure
modes should not be screened at this stage because their effects in combination with other
failures have not been identified. The model should allow the possibility of design errors.

• [Reviewer E]: FMEA usually is done by “designers,” and is a good starting point for system
analysis. Fault trees can be used to model multiple failures.

• [Reviewer B]: The industry performs FMEA routinely, and General Public Utilities has
guidance on FMEA that is not specific for digital systems. Criterion 2.3 should not be here.

• [Reviewer F]: Operational experience suggests that digital systems are vulnerable to faults
associated with diagnostic features.

A.4.4 Category 3: Software Failures

Criterion 3.1 suggests that the contribution of software failures can be considered using either a
“software-centric” or “system-centric” approach, while Criteria 3.2 to 3.4 apply only to the
“software-centric” approach. Criterion 3.2 associates the occurrence of software failures with that
of triggering events, and requires a model of software failures that is consistent with this concept.
Criterion 3.3 suggests separately considering the application software and support software,
including the operating system and platform software. Criterion 3.4 emphasizes the importance of
exploring the context wherein a piece of software is challenged, and states that a quantitative
software reliability model should be able to account for different contexts.

The panel discussed Criterion 3.2 extensively, and agreed that the term “triggering event” must be
explained in the background discussion. The panel also agreed that separating application and
support software, as indicated in Criterion 3.3, is important because of their differing amounts of
operating experience. In addition, the panel recommended listing Criteria 3.2 and 3.4 next to each
other.

The comments of individual panel members are given below:

• [Reviewer B]: Many criteria are overly wordy, i.e., they should simply state the criterion,
and the justification or “how to” should be moved to the background discussion.

• [Reviewer F]: The terminology of “system-centric” and “software-centric” can lead to
misunderstanding.

• [Unknown]: Criterion 3.2 is too specific on “how to.” There are other approaches for
quantifying software reliability, such as parametric and non-parametric methods. The way
Criterion 3.2 is stated suggests there are hidden assumptions pointing at a certain direction,

A-20

and should be removed. Instead, it should state that the model needs to articulate how it
arrives at its failure rates or probabilities.

• [Reviewer A]: Regarding Criterion 3.2, the software of a control system may have a
conditional failure probability that if combined with a rate of occurrence of some condition
becomes a failure rate.

• [Reviewers D and F]: Criterion 3.2 could be worded “...don’t consider software failures in
the abstract, consider them in the context of the system.”

• [Reviewer F]: Regarding Criterion 3.2, there are other ways to get software failure besides
just “triggering events” (e.g., bit drops, specification errors, hardware/software interface
errors).

• [Reviewer F]: Criterion 3.3 should include the interactions between applied software and
support software, and between software and hardware. Due to the potential for CCF, there
may be a need to consider some software development tools that generate application
software. Commercial off-the-shelf (COTS) and communication software should be
considered.

• [Reviewer C]: Backbone (support) software and software development tools should be
considered.

• [Reviewers A and F]: Criterion 3.4 is just an extension of Criterion 3.2.
• [Reviewer B]: Criterion 3.2 is on triggering events, and Criterion 3.4 is on functions; both

are needed.

A.4.5 Category 4: Modeling of Dependencies

The criteria in this category consider different types of dependencies that should be accounted for
in developing a reliability model of digital systems.

The panel agreed that Criterion 4.2 (Common Cause Failures) is a “catch-all” bin for dependencies
that are not explicitly modeled; therefore, it should be moved to the end of this category and will be
discussed last.

The comments of individual panel members are shown below:

• [Reviewer B]: The criteria essentially are a list of dependencies. One doesn’t need to specify
separate criteria for each dependency (that wasn’t done elsewhere, e.g., specifying devices).
Reviewer B recommends including the dependencies as a bulleted list instead of as separate
criteria.

• [Reviewer F]: The subcategories are “uneven.”
• [Reviewer D]: Type I dependencies (interactions with physical processes) are not clearly

captured. They should be added, maybe under Subcategory 4.5. The time constant of the
system changes, and the response times differ. The coupling (with physical processes) may
become much tighter. Uncertainty in discrete sampling times may lead to system failure,
even if the Nyquist criteria are satisfied; this is unique to digital systems.

• [Reviewer C]: Self-testing differs from other fault-tolerant features, and should be modeled
separately (though not necessarily in this category).

A-21

• [Reviewers B and E]: The dependency breakdown may be too fine, and may result in the
summation of a large set of overly conservative (uncertain) values. It may be preferable to
lump more of the individual dependencies into the “catch-all” CCF bin, based on current
state-of-knowledge.

• [Reviewers A, B, and D]: It is only possible to model to the level of the state-of-knowledge.
However, this is an evolving boundary because there even is uncertainty about what is the
current state-of-knowledge.

• [Reviewer F]: It is important to explicitly model aspects of the system that risk-informed
applications are trying to address; therefore, many of these dependencies may need to be
explicitly modeled.

A.4.5.1 Subcategory 4.1: Communication Networks/Buses

Components of digital systems are interconnected through buses, hardwired connections, and
communication networks. Through the connections, information is exchanged and used in
calculations and decision-making. The criteria in this sub-category address modeling of failures
associated with the connections of components of digital systems at different levels (e.g., intra-
channel communications and inter-channel communications).

The panel agreed that the Browns Ferry data storm incident is a good example indicating the
importance of modeling communication-related failures.

The comments of individual panel members are provided below:

• [Unknown]: The lengthy explanation should be eliminated from Criterion 4.1.1 to make it
more succinct.

• [Reviewer B]: The criteria should be kept broad so people do not leave things out.
• [Unknown]: A distinction should be made between the four criteria in this sub-category.
• [Reviewer E]: The meaning of communication network is unclear.
• [Reviewer B]: Any available operating experience should be included in the discussion, but

it must be emphasized that examples and operating experience are not the “end all and be
all.”

• [Reviewer E]: It is not clear what is really meant by “failure of the communication network.”

A.4.5.2 Subcategory 4.3: Support Systems

The criteria in this subcategory are applicable to support systems that are shared by the components
of the digital system and the rest of the plant, as modeled in a PRA. They ensure that the
dependencies are properly accounted for when the model is integrated with the PRA.

There are no general comments on the overall category. The comments of individual panel members
appear below:

• [Reviewer F]: Power quality and power availability issues also should be considered in the
criteria of this subcategory. Other issues in 50.49 or RG 1.97 and the issue of

A-22

radio-frequency interference should also be included. A distinction should be made between
the support systems that should be modeled and the data that capture the impacts of support
systems.

• [Reviewer B]: These criteria are an example of being too specific. They imply that the only
support- system dependencies that need to be addressed are the two specific dependencies
identified in them. It is better to have general criteria and provide examples in the
discussion, making it clear that these are only representative examples.

• [Reviewer D]: The HVAC in Criterion 4.3.2 should be generalized as "operating
environment."

• [Reviewer A]: Developing overly specific criteria makes it very unlikely that any application
can address them all.

A.4.5.3 Subcategory 4.4: Sharing Hardware

This criterion is intended to emphasize that some digital systems may be implemented by running
different software on the same digital hardware, and this dependency has to be modeled.

There are no general comments on the overall category. The comments of individual panel members
follow :

• [Reviewer F]: This subcategory should focus on shared digital components, i.e., chips. There
should be more discussion in the rationale on what is meant by shared hardware (e.g.,
sensors, multiplexers, and voters) that should indicate what types of dependencies are
addressed, and which ones must be modeled explicitly. It is also important to consider
specific possible regulatory decisions about putting RPS and ESFAS on the same hardware
platform, or assuming what systems fail in the diversity and defense-in-depth analysis.

• [Reviewers A, D, and F]: The statement on RPS/ESFAS modeling in Criterion 4.4 should
be removed. The phrase, "e.g., by linking fault trees" is too specific, and should also be
removed from this Criterion.

• [Reviewer D]: Another type of sharing hardware could be the data sharing by processes of
software. Two processes might try to access data in a storage device simultaneously, causing
data race and system lock-up.

A.4.5.4 Subcategory 4.5: Interactions of Digital Systems with Other Systems

The intent of the criteria is to ensure that the interfaces between the digital system and the rest of
the plant are properly accounted for.

There are no general comments on the overall category. The comments of individual panel members
are provided below:

• [Reviewer D]: Type I interactions, i.e., devices communicating through the
controlled/monitored process, are not captured by the criteria in this subcategory. An
additional criterion that reflects this interaction might be needed.

A-23

• [Reviewer F]: Loosely coupled dependencies are also not captured by this subcategory
criteria; an example is a low reactor pressure signal for reactor trip. Definitions of loosely
coupled dependencies and tightly coupled dependencies are given in C. Perrow's book
[Normal Accidents, Living with High-Risk Technologies, Princeton University Press,
Princeton, New Jersey (1999)] or Steven Arndt's paper [“Development of Regulatory
Guidance for Risk-Informing Digital System Reviews,” NPIC&HMIT 2006].

• [Reviewer B]: The meaning of "incorrect sensor input" in Criterion 4.5.1 is not clear.
Generally, the sensor inputs go to digital systems only, not to other components or systems.

• [Unknown]: The meanings of systems and channels are not clear. It may be better to use
systems and sub-systems.

The following comments were made on Criterion 4.5.2 that addresses the modeling of voters and
other logic devices:

• [Reviewer F]: It is too specific and should be either dropped or modified.
• [Reviewer D]: It should be modified to be made more general by removing the reference to

specific devices.
• [Reviewer C]: It has already been covered and can be dropped.
• [Reviewer B]: It should be dropped.
• [Reviewer A]: It should be modified.
• [Reviewer E]: It should either be dropped completely or included in the supporting rationale.

A.4.5.5 Subcategory 4.6: Modeling of Fault Tolerance Features

The criteria are based on known weaknesses of models of digital systems, and intended to ensure
that they are avoided. Criterion 4.6.1 considers identifying the failure modes that can be detected.
Criterion 4.6.2 concerns the potential of doubly crediting fault coverages. Criterion 4.6.3 considers
modeling the dependency on fault tolerant features. Criterion 4.6.4 relates to modeling failures to
properly cope with detected failures.

There are no general comments on the overall category. Individual panel members’s comments are
given below:

• [Reviewer F]: Fault tolerance includes design and tests for fault tolerance. A high-level
criterion should state that fault tolerance design features should be modeled explicitly,
including all ways in which they function, and both their potential positive and negative
impacts. Some specific information can be included in sub-bullets and sub-criteria.

• [Reviewers C and F]: Fault identification features and continuous self-test features should
be distinguished.

A.4.5.6 Subcategory 4.2: Common Cause Failures

The criteria specify that hardware and software CCF should be modeled within a channel if
redundancy exists, between redundant channels, and between digital systems. It also was pointed
out to the panel that some people from industry are claiming that “...digital hardware failures often

A-24

can automatically be detected and possibly alarmed; therefore, it is very unlikely that two hardware
failures take place at exactly the same time.”

The panel recommended that "identical" in Criterion 4.2.2 should be changed to "common," or
"similar," or "very similar." Also, there should be more discussion in this subcategory on its
"residual" nature. An example statement is "The previous criteria in this category addressed
dependencies that should be explicitly included in this model. This criterion is intended to address
other potential dependencies that are not explicitly modeled."

The comments of individual panel members are provided below:

• [Reviewer A]: "Intra-system" and "inter-system" should be combined into the same criterion.
• [Reviewer E]: Consideration of inter-system CCF may be pushing the envelop beyond the

state-of-the-art, since these types of failures are not currently included in other system
models in PRAs.

• [Reviewer B]: It may not be credible for two different digital systems to be subjected to the
same trigger mechanism.

• [Reviewer E]: If someone tries to model inter-system CCF for digital systems, there will be
no data. They will generate a conservative model that might distort the plant’s actual risk
profile, .

• [Reviewer B]: The inclusion of the inter-system CCF criteria could entail spending much
money for analysis and possibly redesign, all for nothing.

• [Reviewer F]:Questionable criteria should be included for now, and can always be
eliminated later.

• [Reviewer A]: The timing aspects of potential common cause failures may preclude the
concern over inter-system CCF.

• [Reviewers A and B]: It makes sense to include exceptions or “wriggle-room” in the criteria,
e.g., including the phrase "...or else demonstrate that it does not have to be included."

• [Reviewer F]: We may want to say "should be considered" instead of “should be modeled.”

A.4.6 Category 7: Probabilistic Data

Probabilistic data for both hardware and software failures are needed to quantify reliability models
of digital systems. While component-specific data are preferred, generic data also can be used if
there are no specific data, and the generic data are properly collected. The same consideration
applies to CCF parameters and estimates of fault coverage.

There are no general comments on the overall category. Individual panel members’ comments
follow:

• [Reviewer A]: Regarding Criterion 7.1, it is very unlikely that truly component-specific data
will ever be available at the desired level of statistical confidence and fidelity, due to the
short design cycles of digital hardware components (i.e., digital systems are upgraded very
quickly).

A-25

• [Reviewer B]: Many of Criteria 7.1 - 7.10 (for hardware data) are good practices, but not
necessarily qualified to be criteria. Thus, Criterion 7.8 about the CCF data is particularly
problematic since generally plant-specific CCF data cannot be obtained.

• [Reviewer F]: Regarding the criteria in this category, referring to the good practices of the
ASME PRA standard or the data handbook is suggested. However, unique practices
specifically related to digital systems should be emphasized. An example is whether the data
for the same card, or similar versions of cards, are used in the reliability model, and whether
the difference in data sources matters.

• [Reviewer E]: Replacing "data" with "information" is suggested. It would be good to provide
some guidance on how to use generic data (e.g., from Military Handbook 217), and on how
to account for uncertainty.

• [Reviewer B]: EPRI can talk with new reactor vendors about starting an effort to build a
digital instrumentation and control (I&C) database.

• [Reviewer D]: Criterion 7.11, "quantifying the software failure probabilities" suggests using
a software-centric model, but this does not necessarily have to be the case.

• [Reviewer F]: Some of the intrinsic issues in Criterion 7.11 associated with software
reliability data, should be highlighted, such as software revisions, software evolvement (e.g.,
conglomerating operational data, test data), and other issues well-known in the software-
reliability community.

• [Reviewer D]: Criterion 7.11 can be reworded to "A method for quantifying the contribution
of software to digital system reliability should be used and documented."

• [Reviewer F]: Since Criterion 7.11 is data-related, the word "contribution" might not be
enough, and this criterion may need re-wording.

• [Reviewer E]: Having to come up with a value for failure probability is a concern. An
alternative choice could be "bounding" the failure probability instead of "quantifying."

• [Reviewer A]: An encouragement to develop quantitative estimates of the failure probability
of digital systems is appropriate, otherwise everyone will stick with the current status quo,
by which arbitrary assumptions of perfect digital system reliability are often made without
justification.

A.4.7 Criteria 8.4 and 8.5: Uncertainty

Uncertainty criteria include both model uncertainty and parameter uncertainty. With the state-of-
the-art in modeling digital systems, it is important to consider uncertainty.

There are no general comments on the overall category. The comments of individual members are
provided below:

• [Reviewer F]: The criteria could refer to some literature on uncertainty in software modeling,
which can be provided after the meeting.

• [Reviewer B]: For Criterion 8.4, it is not clear how many and which alternative assumptions
should be discussed and documented. In some EPRI guidance, only those alternative
assumptions that impact the CDF by a factor of two or more are required to be documented.
Another issue is how to conduct the uncertainty analysis.

A-26

• [Reviewer B]: For Criterion 8.5, the point estimate may be the only value used in many
applications. Therefore, propagation of uncertainties is not necessarily possible in these
instances.

• [Reviewer F]: There is an Office of New Reactors’ (NRO’s) project on using sensitivity
studies for digital system screening criteria that may be available by the end of this summer.

A.4.8 Category 6: Ease of Integration with a PRA Model

Most PRA models are built using the fault tree/event tree method. Thus, it is desirable to build the
reliability model of a digital system in such a way that it can be integrated into the existing PRA
framework.

There are no general comments on the overall category. Below are the comments of individual
panel members:

• [Reviewer D]: There is a procedure for converting Markov model results to cutsets that can
be implemented in a software.

• [Reviewer F]: Criterion 6.1 should be modified. An alternative criterion for it is, "For the
digital system reliability model to be fully effective, it should be possible to integrate it into
the plant PRA model. The process for integrating the model should be relatively
straightforward so that it can be mechanized through software and can be easily verified."

• [Reviewer D]: The title of this category is questionable. The ease of accomplishing
something is subjective and differs from person to person. "Ease" should not be considered
a criterion.

• [Reviewers A and E]: Both suggest removing "ease" from the title and criterion.
• [Reviewer F]: The word "ease" can be removed from the title and criteria, but the concept

of "ease" should be included in the discussion or rationale. The discussion should also
address the issue of the process being "mechanized," as mentioned in his previous comment
above.

• [Unknown]: In the discussion, refer back to all of the modeling features that were previously
described..

• [Reviewer C]: The digital system reliability model should be compatible with the PRA
model, i.e., should avoid other means of arriving at a likelihood of digital system failure that
may not be compatible with the established PRA framework.

• [Reviewer C]: Another aspect of integration is that the failure of a digital system may
generate an initiating event with possible additional failures of mitigation features. This
should also be integrated with the PRA model.

A.4.9 Category 5: Human Errors

Generally, human errors related to digital systems can be treated in the same way as analog systems.
They mainly are due to two factors: errors introduced during upgrading digital systems, and errors
related to the MMI (man-machine interface).

A-27

There are no general comments on the overall category. The comments of individual panel members
are set out next:

• [Reviewer F]: Criterion 5.1 is fine. It is probably worthwhile to add some caveats or
sub-bullets to illustrate it. In Criterion 5.2, MMI should be replaced with HSI (human-
system interface). However, HSI issues are beyond the scope of modeling digital system
reliability, except for the dependency of human reliability analysis (HRA) on the state of the
digital systems.

• [Reviewer D]: You can not model the human errors associated with a digital feedwater
control system in a traditional PRA because there are so many interactions.

• [Reviewer C]: An HRA associated with digital I&C is not simple, especially recovery
actions. Manual actions depend on the design. From an MMI perspective, consideration
should be given to how the operator will recognize the situation with a particular set of
process signals.

A.4.10 Criteria 8.1 - 8.3: Documentation and Results

These criteria consider documentation of key assumptions and results.

There are no general comments on the overall category. The comments of individual panel members
are provided below:

• [Reviewer B]: In Criterion 8.1, a qualifier should be applied to the word "assumptions" as
a condition for needing to be documented, e.g., "key" or "unique" assumptions related to
digital systems. Authors may refer to the ASME PRA standard or RG 1.200 errata, which
will be available soon, on uncertainties and assumptions.

• [Reviewer F]: In Criteria 8.1 and 8.2, the term "logic model" is too specific and should be
replaced with "model."

A-28

A.5. CONCLUDING REMARKS

Two members said that they discussed everything they wanted to at the meeting, and had nothing
more to add. The concluding remarks of other members are summarized below:

Reviewer B

The report is a good product and contains valuable information. Its purpose should be further
clarified. It is necessary to make sure that the terminology and criteria is consistent through the
whole report. Another issue for clarification is whether the criteria were developed to evaluate the
modeling or the methods, as this will affect the conclusions and recommendations on method
selection presented in the report, which are not supported by the text. The report should better
capture the authors’ philosophy and intent, since such knowledge might lead readers directly to the
criteria. Sometimes, this is not always given in the report and the criteria are not easy to follow.
It is also recommended that criteria be consistent with the Level 1 PRA standard. Generally, data
issue and the treatment of software are big challenges, and are not expected to be resolved in this
document; however, they should be considered. A good starting point on the issue of data is to
collect it from other industries or sources named by panel members. Currently, the failure modes
of digital systems are based on FMEA or operational experience. It is desirable to have a means to
systematically identify the failure modes of digital systems.

Reviewer C

Although the report mentioned that the criteria were developed for specific applications, Chapter
4 in this report is trying to evaluate methods. It is not clear how to fix this, but it definitely needs
some clarification. Also, the report clearly suggests that some criteria are mutually exclusive.
However, this is not discussed in rating the individual methods in Chapter 4. It is expected to have
certain impacts on the rating. Rating scores should be downplayed because this information is
misleading. Readers might think something is wrong with digital systems that already have been
used in the nuclear industry since so many criteria cannot be met, as indicated in the report.

Reviewer F

Other potential modeling methods should be articulated somewhere in the report, though it is not
necessary to carry them throughout the report. The inclusion is suggested of a discussion of why
some methods, such as CES, BBN, DFM, and various hybrid methods were selected for assessment
in this report. The report needs restructuring so that model evaluation can be considered as
supporting evidence of method evaluation, as previously suggested. Terminology and assumptions
need to be better standardized for the NRC programs. A convergence of the philosophy and
terminology between the PRA-world and the software-world also is desired; this is a bigger issue
than this project. Operational experience, knowledge of how systems work, and their characteristics
should be highlighted as part of the strategy for developing criteria.

A-29

Reviewer A

The purpose and product of the report should be restated in a different light. After discussion, it is
clear that the real objective is to arrive at criteria that could evolve into regulatory review criteria
and to try to match these to what is judged feasible. This has not been articulated clearly in the
report. Some better words in writing will be provided. There exists the appearance of potential
conflicts between some of the current criteria. While they might not be actual conflicts, in certain
cases some criteria should include a supporting rationale to explain how they complement other
criteria, e.g., that the known CCF mechanisms complement the unknown CCF. It is not clear
whether this applies elsewhere in the report, but a systematic review might identify these cases (e.g.,
using a Venn diagram).

A-30

Attachment A

Agenda of External Review Panel Meeting
on Selection of Traditional Methods for
Reliability Modeling of Digital Systems

Brookhaven National Laboratory
May 23-24, 2007

Day 1
Start
Time

Duration
(minutes)

Topic Speaker

8:30 5 Welcome Lehner, BNL

8:35 45 Background, overview, and objectives Kuritzky/Siu, NRC
9:20 70 Presentation of preliminary comments by each

member of the panel (10 minutes per member)
Members

10:30 15 Break
10:45 75 Discussion on identifying “traditional” methods and

their relevant applications
Panel

12:00 60 Lunch break
1:00 120 Discussion on each review criterion:

1. Modification/deletion/addition
2. Limitations of the state-of-the-art and
recommendations for additional research

Panel

3:00 15 Break
3:15 105 Discussion on each review criterion:

1. Modification/deletion/addition
2. Limitations of the state-of-the-art and
recommendations for additional research

Panel

5:00 Adjourn for the day

A-31

Day 2
Start
Time

Duration
(minutes)

Topic Speaker

8:30 90 Discussion on each review criterion:
1. Modification/deletion/addition
2. Limitations of the state-of-the-art and
recommendations for additional research

Panel

10:00 15 Break
10:15 105 Discussion on each review criterion:

1. Modification/deletion/addition
2. Limitations of the state-of-the-art and
recommendations for additional research

Panel

12:00 60 Lunch break
1:00 60 Discussion on each review criterion:

1. Modification/deletion/addition
2. Limitations of the state-of-the-art and
recommendations for additional research

Panel

2:00 45 Concluding remarks Members
2:45 15 Next steps and action items NRC/BNL
3:00 Adjourn

A-32

Attachment B

List of Documents Sent to Panel Members

1. Brief summary of the USNRC Office of Research’s digital risk research program.

2. External peer review meeting description and agenda.

3. Executive summary and Chapter 6 of the National Research Council report (The full report
is available at http://www.nap.edu/catalog.php?record_id=5432).

4. Paper by Arndt, Siu, and Thornsbury on "What PRA Needs from a Digital System Analysis"
from PSAM6.

5. Draft BNL letter report: T. L. Chu, G. Martinez-Guridi, M. Yue, and J. Lehner,
“Probabilistic Modeling of Digital Systems at Nuclear Power Plant: Traditional Methods
Selection,” Brookhaven National Laboratory, Draft Letter Report, April 2007.

A-33

Attachment C

Expert Panel Meeting Attendees

Expert Panel Members (in alphabetical order):

Tunc Aldemir (Ohio State University)
Steven Arndt (USNRC)
Ken Canavan (Electric Power Research Institute)
Sergio Guarro (ASCA)
Dana Kelly (Idaho National Laboratory)
Taeyong Sung (Canadian Nuclear Safety Commission)

Facilitator:

Nathan Siu (USNRC)

NRC Project Manager:

Alan Kuritzky

BNL Authors:

Tsong-Lun Chu
Gerardo Martinez-Guridi
Meng Yue
John Lehner

A-34

Attachment D

Biographies of Panel Members

Tunc Aldemir

Tunc Aldemir received his PhD in nuclear engineering from the University of Illinois and is a
Professor of Nuclear and Mechanical Engineering at The Ohio State University. His broad area of
specialization is nuclear reactor safety. His research in reliability and probabilistic risk assessment
(PRA) focuses on systems that may be difficult to model using conventional techniques. He has
published more than 80 refereed articles on dynamic methodology development for the reliability
modeling of such systems.

Currently, Dr. Aldemir is involved in developing methodologies that will allow quantifying the risk
impacts of upgrades of the digital I&C system in nuclear power plants and in developing
computational tools to automate Level 2 PRAs and perform seamless Level 1-2-3 PRAs. He is a
Fellow of the American Nuclear Society and on the editorial board of Reliability Engineering and
System Safety.

Ken Canavan

The bulk of Mr. Canavan’s 20 plus years of experience is in application of risk technology with the
utility sector of the nuclear power industry. Mr. Canavan began his nuclear career at Toledo
Edison’s Davis-Besse nuclear power station, where he was involved in all aspects of the
development of the plant specific probabilistic Risk Assessment (PRA). At GPU Nuclear, Mr.
Canavan was a lead risk analysis engineer working on the Three Mile Island and Oyster Creek
nuclear generating station risk management programs.

Following consultant experience as Manager of Risk Analysis for Data, Systems and Solutions
SAIC and a Supervisor at ERIN Engineering, Mr. Canavan joined the Electric Power Research
Institute (EPRI). Mr. Canavan is currently the Program Manager of the Risk and Safety
Management (RSM) and Nuclear Asset Management (NAM) programs.

Mr. Canavan’s experience is primarily in the area of risk technology and safety analysis. Specialty
areas include methodology and tools development and unique applications of risk technology. Over
his 20+ year of service, Mr. Canavan has participated or led the peer reviews of approximately a
dozen large scale applications of risk technology within the nuclear and aerospace industries.

A-35

Taeyong Sung

Taeyong Sung is a PSA and reliability technical specialist in Canadian Nuclear Safety Commission
(CNSC).

He began his PSA career from 1989 in Korea Atomic Energy Institute with B.S. and M.S. degrees
in nuclear engineering from Kyung Hee Universities in Korea. Since then he performed various
areas of Level 1 PSA including digital I&C system reliability analysis.

He performed digital I&C system analysis for CANDU reactors as well as PWRs and leaded
research projects to develop a PSA methodology for digital I&C system in NPPs for years in Korea.

In 2002, he joined Atomic Energy Canada Limited in Canada and he has worked in Canadian
Nuclear Safety Commission (CNSC) since 2003. He is reviewing various risk and reliability
analyses and developing regulatory documents and involving a research project for digital I&C
system quantitative analysis.

Biographies of the other panel members are not available.

A-36

Attachment E

Written Comments Provided by Reviewer A

Review Comments on Brookhaven National Laboratory Draft Letter Report
“PROBABILISTIC MODELING OF DIGITAL SYSTEMS

AT NUCLEAR POWER PLANTS:
TRADITIONAL METHODS SELECTION”

1. Introduction

This document provides comments that address key issues concerning the subjects covered by the
BNL (Brookhaven National Laboratory) cited in the title, as well as related issues that emerged at
the expert panel meeting held at BNL on May 23 and 24, 2007.

The intent of the comments provided is to assist the authors of the BNL report, who are in the
process of completing and improving its content before publishing it in its final version. The
subjects discussed hereinafter are a selected subset of topics that have been addressed verbally at
the above-mentioned expert panel. However, this subset is covered again here in a more in-depth
and organized fashion, primarily because it includes topics that the reviewer believes to have special
relevance and/or have not been fully addressed at the meeting. Specific recommendations have been
formulated and are offered in this review, as a possible solution for the most pressing and critical
issues associated with the reviewed subjects.

The following primary areas of the BNL draft letter report are addressed in the following:

• Report objectives and their reflection in the report contents
• Report review of NASA reliability models
• Report conclusions and recommendations

Comments on the criteria for evaluation of digital systems models are not included in this review,
because they were the more specific target of the expert panel discussions held at BNL on
May 23-24, 2007. As such, they are extensively and more than sufficiently addressed by all the
comments provided by the panel experts, and these comments are well documented on the BNL
written compilation of the comments.

The principal findings of this review and the key recommendations that these findings suggest are
summarized upfront, along with pointers to the sections of the comment text that provide the
supporting rationale. Each section also lists at the end the specific recommendations that pertain
specifically to the subjects discussed in that section.

2. Summary of Findings and Recommendations

A-37

The main findings of this review and related recommendations are summarized in the following.
The section number identified after each finding or recommendation refers to later sections of this
review where the reader can find a more detailed explanation of the finding/recommendation itself.

Findings:

1. A key objective of the BNL study is the identification of criteria for evaluation of future
digital systems risk models and assessments in support of regulatory decision processes
(Section 3).

2. The distinction between “traditional” and “advanced / dynamic” methods is not always clear
(Section 3).

3. The Report objectives that refer to the evaluation of “models” and “methods (2 and 3 in BNL
report Section 1.1) lead to practical contradictions both within the report evaluations and
conclusions and with respect to what emerged in regard during the expert panel discussions
on May 23 and 24, 2007 (Section 3).

4. The BNL reviewers have not unable, for lack of information or other factors, to develop a
good understanding of the NASA “conditional risk method,” both as a framework for digital
systems and software integration into PRA, and in terms of the application examples
contained in the NASA PRA Procedures Guide (Section 4).

5. Some of the conclusions of the BNL report concerning “methods” do not seem to be
supported by the evidence gathered in the course of the evaluations conducted on the
“models.” Other methods appear to have been excluded from consideration primarily
because examples of application (i.e., “models”) were not easily accessible by BNL
(Section 5).

6. The BNL authors appear to be more oriented towards the development of hard to produce
and update generic databases of digital system failure data, than on the development of
component-specific test-oriented assessment methodologies. (This is an indirect deduction
by the reviewer, based in equal measure on what is stated and what is not stated in the report
and its conclusions and recommendations) (Section 5).

Recommendations

1. A better distinction and definition of “traditional” and “advanced / dynamic” methods should
be provided upfront in the report. One such definition is offered in Section 3.

2. The Report objectives that refer to the evaluation of “models” and “methods (2 and 3 in BNL
report Section 1.1) should be reconsidered. More specifically it is recommended that:

a. Objective 2 be reformulated in terms of pursuing the trial application of evaluation

A-38

criteria to available models (Section 3).

b. Objective 3 be reformulated in terms of seeking the identification of key useful
features of existing methods that may be assembled within an overall “hybrid” and
flexible framework (Section 3).

3. The BNL assessment of the NASA PRA Procedures Guide approach and framework should
be revisited in light of the more recent and detailed information that is now available
(Section 4). Particular attention should be given to this approach as an example of “hosting
framework” for a hybrid combination of methods and models (see also discussion in
Section 3).

4. Some of the BNL report conclusions should be adjusted to better reflect: a) the actual
evidence gathered in the report, and b) any modification of aim and emphasis that may be
put in effect as result of the current review process and incorporation of reviewers’
recommendations (Section 5).

3. Report Objectives

The objectives of the BNL report are stated in Section 1.1, as follows:

“1. Develop criteria for evaluating reliability models of digital systems. These draft
criteria could eventually provide input to the technical basis for risk-informed decision-
making.

2. Review reliability models developed using traditional methods, such as fault tree and
Markov methods, against the criteria to determine the capabilities and limitations of
the state-of-the-art of digital system reliability models using traditional methods.

3. Identify traditional methods to further explore that represent a spectrum of
capabilities for modeling and quantitatively assessing the reliability of digital systems.”

Much discussion took place at the May 23-24, 2007 expert panel meeting concerning the correct
interpretation of these objectives and whether the work documented in the body of the letter report
consistently reflected and fulfilled them. With the benefit of that discussion one can add the
following explanatory observations:

• Objective 1 is oriented towards developing criteria that may provide a basis for regulatory
evaluation of analytical models of NPP digital systems that may be developed to produce
risk scenarios and associated risk estimates.

• Objective 2 is oriented towards a trial application of the developed criteria to a set of pre-
existing “models” that were developed by various sources, using a variety of “traditional
methods.”

A-39

• Objective 3 is oriented toward down-selecting, from the initial set of traditional methods
used in the various “models” evaluated and/or initially reviewed, a limited subset to further
explore and evaluate for applications in the regulatory review arena.

Objective 1 is an easy-to-understand objective, which is also fully consistent with the general
context and scope of the work carried out by the BNL team. No further comments are needed,
except that the regulatory perspective of the model evaluation criteria is a key element of the
objective that needs to be made clear to the reader for his/her correct interpretation of the objective.

Objective 2, taken at face value, also appears to be easy to understand and justify. However, when
this objective is considered in combination with its companion Objective 3, several issues come
forward, some of which were discussed at some length at the May 23-24 expert panel meeting:

• One issue concerns the selection of models to evaluate based on the distinction between
“traditional” and “advanced” (and/or “dynamic”) modeling methods, i.e.: what is the
definition of “traditional method” as opposed to “advanced dynamic method”?

This issue cannot be truly resolved in a clear-cut fashion, but one can recognize that it may
be of limited importance in the context of the BNL activity and of the overall NRC research
on digital systems risk and reliability. This is for two reasons:

1. The main drivers in the selection of models to evaluate with the criteria developed
under Objective 1 appear in practice to have been:

a. the availability of a documented “real life” application of a traditional
method (which the report refers to as a “model”) to a relatively large scale
system, and:

b. the perceived relevance of the existing application to the subject of NPP
digital systems risk.

2. Advanced methods are being evaluated in a separate, but coordinated NRC research
project.

• A second, and more serious issue, concerns what appears to be a logical disconnect between
Objective 2 and 3, which has not yet been resolved, even after discussion at the review panel
meeting. At the panel review, the report authors and sponsors clarified that the intent of the
evaluation was to evaluate digital system “models” that were available and accessible,
against the set of initially developed criteria, and not to apply the criteria to evaluate
“methods.”

The logical disconnect occurs because the evaluation conducted under Objective 2 is de-
facto translated, under Objective 3, into a down-selection of methods to further explore.
Thus, although the declared intent of the report is to evaluate models, a de-facto judgment
of goodness and suitability is transferred to the underlying methods, each taken as if it were
a monolithic block, rather than a combination of many features matching or not the spectrum

A-40

of criteria developed under Objective 1.

The undesirable outcome that ensues is that, by following the above reasoning and course
of actions, methods with potential good features and suitability for application in the
regulatory context are excluded from further consideration, ostensibly because a good
example of application fitting the report evaluation criteria was not readily available to the
report authors.

A related outcome, perhaps even more undesirable, is that given the way the two objectives
are stated and applied, outside readers will almost without doubt interpret the report
evaluations to be general judgments passed on the suitability of the methods used in the
various applications examined.

3.1 Recommendations on Statement and Application of the Report Objectives

The good news concerning the above is that the identified issues appear to be addressable in a
reasonable fashion that would not be disruptive with regard to the work already carried out by BNL:

A. Distinction between “traditional” and “advanced” methods

As mentioned above, there are some good reason not to consider this a pressing issue. One
of the experts in the review panel suggested a possible definition of “traditional” method as
“one that is commonly used, well established, including large-scale applications.” This
reviewer’s recommendation is that a definition along those lines be used, perhaps refined to
read as follows:

“A traditional method is one that has been fully demonstrated used, and established,
including production-scale applications.”

This definition tempers the requirements following from the terms “commonly used” and
“large-scale,” mostly in recognition of the need to keep the horizon of methods open across
industries and beyond the NPP world. What is “large scale” in one industry may be not so
large when viewed from another industry’s perspective. Moreover, most digital system
analysis applications, even in production environments, have been at least in part exploratory
and limited for one reason or another to a specific subsystem or set of subsystems.

B. Evaluation of “models” vs. “methods”

The recommendations to address this issue – in this reviewer’s opinion a serious one that
should be corrected with high priority – are two-fold:

a. Objective 2 should be restated to say that the primary purpose of the evaluation of
models against criteria is test the use of the criteria against existing applications, with
an accompanying objective of also better understanding the features of the methods
used in these applications.

A-41

b. Objective 3 should also be restated to say that the results of the evaluations
conducted per Objective 2 are used to identify features of existing methods that can
be further explored and applied within an overall PRA type of framework to model
and quantitatively assess the reliability of digital systems.

Applying Recommendation a) has limited impact on the existing contents of the report,
whereas Recommendation b) would require a shift in the way Objective 3 is intended to lead
to follow-on activities. That is, instead of a selection of a “method” as a whole for follow-on
use and evaluation, the selection would have to identify specific aspects and portions of a
method that can assembled into a PRA implementation.

The selection of what one may call a “hybrid method” (or methods) was suggested by more
than one reviewer at the expert panel sessions, and in fact there is nothing novel or unusual
about this approach since a typical PRA framework is indeed a hybrid model that cobbles
together a number of different modeling and assessment techniques, i.e.:

• event trees (and in some cases, especially in the aerospace industry, event sequence
diagrams)

• fault trees (and in some cases reliability block diagrams)
• a whole assembly of failure rate and failure-on-demand probability quantification

techniques and formulations.

In summary, there is really little reason to select a method on the basis on one “model” that
has been evaluated, assuming all along that such application is a good representation and
illustration of all the features of the method. The two recommendations presented here
substantially reduce the potential “political liabilities” that one may incur in the technical
community by making such a, real or perceived, leap of judgment. This is important, given
the environment and type of audience for the BNL study.

Aside from political considerations, an identification of specific method features that well
match criteria, leading to the trial application of a hybrid method (or methods) using such
features, appears to be the most technically sound, useful and insightful path towards
practical and effective applications of digital system reliability and risk modeling
methodology.

4. Report Review of NASA Reliability Models

The BNL draft letter report contains, in Appendix D, a review and evaluation of the “NASA
Reliability Methods” (concerning digital systems and software). Because of his professional
background and involvement, the reviewer is quite familiar with NASA PRA applications in general
and with digital systems applications in particular. This specifically includes the “conditional risk
model” presented and documented in the NASA PRA Procedures Guide.

This position of familiarity has made it possible for the reviewer to identify some misinterpretations

A-42

and inaccuracies in the BNL review of the NASA methodologies and applications, which it is
appropriate to address here, also in relation to the recommendations made earlier in Section 3.

The main misunderstanding is relative to the concept of “conditional risk model” set forward in the
NASA PRA Procedures Guide, and associated confusion with regard to the use of some specific
analytical technique or other within the conditional risk model framework.

The BNL report states:

 “In the conditional risk model, hardware failure conditions are used to define the boundary
conditions for modeling software failures. For each boundary condition, a software failure
probability, independent of how long the software is running, is estimated using a reliability
growth model. In two examples, a spacecraft attitude control system and a fluid tank control
system, the method was applied. As discussed in [Chu 2006b], for control systems, software
failure rate is a more appropriate parameter because the longer the control system is
operating, the more likely that a triggering event would take place. Therefore, the conditional
risk model of the NASA PRA procedures guide is not consistent with theframework for
probabilistic modeling of software failures. It should be revised to include consideration of the
duration of operation in estimating the software failure probabilities.”

The above interpretation of the NASA model is erroneous, as essentially the framework expressed
the probability of a digital system software failure as:

• an unconditional rate of occurrence per unit time or per mission (i.e., rate per unit
time multiplied by mission time duration) of the system condition / triggering event,

• multiplied by the conditional probability of digital system / software failure, given
the occurrence of the triggering event.

Modeling digital system software failures in the fashion set forward by the NASA PRA procedures
guide is based on the actual NASA and general space system (i.e., including DoD) experience with
software related failures that have led to loss of missions. In addition, modeling a risk scenario via
the frequency of an “initiating event” multiplied by the conditional probability of the event or chain
of events that may follow is standard PRA modeling and quantification practice.

Part of the confusion in the assessment of the NASA method may be ensuing from the NRC and
BNL concern with “digital systems” failures in general, as opposed to the specific emphasis on
“software related failures” in Section 11 of the NASA PRA Procedures Guide. The primary intent
of Section 11 is indeed to address software-related risk modeling, which is seen by NASA as the part
of digital systems modeling with which PRA practitioners are mostly unfamiliar. However, the
section provides a real-life example of modeling and quantification of digital space system risk, in
which some failure scenarios are driven only by the hardware portion of the digital system (i.e.,
sensor interface, CPU, etc.), some only by the software portion, and some by a combination of the
two.

Another important point apparently missed in the BNL review is that the NASA PRA Procedures

A-43

Guide digital system modeling approach is intended to provide not a recipe for one specific
combination of techniques (i.e., DFM or the Schneidewind software reliability growth model, which
are used as individual elements of the application examples provided) but a flexible framework,
tailorable in different types of detailed implementation, but maintaining in general the following
characteristics:

• “upward” (i.e., scenario-level compatibility with the “standard” PRA event-tree /
fault-tree modeling paradigm;

• ability to be “appended” and completed “downward” (i.e., in the direction of more
detailed model development) with either traditional PRA modeling and
quantification methods (e.g., ET / FT, Bayesian failure rate estimation, etc.) or more
“advanced” or specifically software-oriented methods (DFM, Dynamic FT/Markov,
SW reliability growth methods of various nature etc.).

A recently published NASA report (“Risk-Informed Safety Assurance and Probabilistic Risk
Assessment of Mission-Critical Software-Intensive Systems,” AR 07-01, ASCA, June 2007) more
fully illustrates and documents the NASA PRA Procedures Guide Section 11 framework.

4.1 Recommendations Concerning Report Review of NASA Reliability Models

Given the obvious sensitivity carried by evaluations and assessments of methodologies developed
by other parties, and especially in this case by another U.S. Government agency, it seems
appropriate to recommend a more careful review and re-examination of the substance and contents
of the NASA methods and models being assessed, also in light of the more in depth and easily
accessible information provided by the NASA report identified above.

The above may also apply to some of the other models and methods reviewed by BNL, but the
reviewer cannot extend any recommendations in such direction since he is not as specifically
familiar with these models and methods as he is with those developed by NASA.

5. Report Conclusions and Recommendations

In its concluding Section 6.2, the report indirectly indicates a favorable view of “FT/ET” and
Markov methods, by stating:

“ … The identified weaknesses of the FT/ET and Markov methods are not believed to be
inherent weaknesses of these methods themselves, but rather weaknesses in the application of
these methods in the studies reviewed. The FT/ET and Markov methods are very general and
flexible, and it may be possible to use them to develop reasonable digital system reliability
models if the identified weaknesses in the studies are addressed.”

The above statement is probably correct with respect to the use of ET/FT modeling as a “classical”
PRA top level framework, but it is less true for Markov modeling, which is not quite as flexible and
presents a whole array of problems in terms of the “quantification burden” that it carries alongside.

A-44

Markov models have in fact been used in PRA occasionally, and primarily as a complement to FT
techniques, but not as the “hosting” framework. If accepted for Markov modeling, the statement
would also arguably be true, or truer, for other methods that were either not considered (e.g.,
Bayesian Belief Networks, Petri Nets) or given only a summary examination leading to not quite
accurate conclusions (see Section 4 above).

The indirect suggestions concerning FT/ET (perhaps to be better referred to as ET/FT, since that is
the typical logic order of PRA model development) and Markov, or any other conclusions that may
be drawn concerning the selection of methods for further examination (e.g., using the “models” with
the higher scores in Section 6.1.3 of the BNL report as “templates” in future research) lead back to
the issues and contradictions intrinsic to the evaluation of “models” versus “methods.” This has
already been addressed and discussed at some length above in Section 3.

With respect to the recommendations for areas of needed improvement in the state-of-the-art which
are listed in Section 6.2 of the BNL report one can generally agree, with the following caveats:

• It is unclear if the call for the “development of methods for defining and identifying
failure modes and effects of digital systems” is meant to be general, or limited to the
improvement of “traditional methods;” if the latter is the case, the obvious objection
is that a large portion of the research community in this area does not believe this to
be possible without introducing what the BNL reports considers “advanced dynamic
methods.”

• Many in the community, including this reviewer, are skeptical about the feasibility
of developing generic databases for digital systems failure modes and failure rates.
This is because digital system “generational” design and usage-span cycles have
become shorter and shorter, so that any such database becomes obsolete in validity
and applicability for the newest generation of digital hardware and software
components, by the time enough data has been collected from the preceding
generation.

• The above comment leads to one conclusion that this reviewer has been able to draw
from his own experience with modeling and assessing digital system risk, that is, that
perhaps the best hope for realistic quantification of such a risk has to rely on methods
that can utilize direct test results or realistic simulation results for the systems of
interest. Ref. 1 discusses how this can be done, at least for certain scenarios of
especially critical concern.

5.1 Recommendations

It would be inappropriate, besides being also highly logically suspect, to provide here
“recommendations on recommendations.”

The only general and obvious recommendation concerning this portion of the report is that, if some
of the other recommendations previously presented in this review were to be incorporated in the

A-45

final version, the general aim of the concluding sections would have to be adjusted accordingly.

For example, adjustments to the report conclusions would have to be made if the evaluation of
“models” were instead presented more as a means to try out the evaluation criteria contained in
Section 3 of the report, while at the same time developing experience with methods and their
application models.

Similarly, adjustments would be in order if the project moved more towards the idea of trying to
identify the desirable features of a framework to host hybrid combinations of models and method
applications, optimized to address specific types of decisions and assessment, instead of focusing
on monolithic method applications.

A-46

Attachment F

Written Comments Provided by Reviewer C

1. Continuous Control Function

It is mainly depend upon specific plant design nevertheless the report should take into account
possibility.

Digital I&C can be used for safety related continuous control function, which may have different
attributes to be modeled in a quantitative model. For instance, KSNPP's auxiliary feed water
actuation signal controls injection flow according to a SG level measurement. I believe new reactor
designs use digital technology to accomplish the kind of continuous control functions. Different
criteria may be applicable to the function.

2. Test

Test is discussed in a criterion, modeling of fault tolerance features which is a subpart of criterion
of 3.4, modeling of dependencies. Even though it is generally consider that test is a method to
accomplish fault tolerance, modeling the test features in digital I&C should be handled separately
with consideration of the widened test capability in digital technology. For instance, short test
frequency reduce using dedicated test computer reduce failure probability of tested components, but
the model should take into account the test coverage.

3. Capability Evaluation

This study evaluate whether six reviewed approaches satisfy the criteria that capture the design
features of a digital system and can affect the system reliability. Besides the evaluation, it should
be evaluated if the approaches are able to meet the criteria.

4. Mutually Exclusive Requirement

Report (page 31) indicates that some criteria are mutually exclusive or presents alternatives for a
desirable characteristic. The study should describe the mutual exclusion and alternatives in
Chapter 3 and take into account them to evaluate the six approaches in the comparison.

5. Definition of Criterion

Some criteria define specific requirements to model a certain characteristic, but the necessity of the
model is depended upon a detailed design feature. Chapter 3 should define the requirement to take
into account the certain design characteristic. I.e. when an approach explicitly provide a justification
without modeling, the approach is considered to satisfy the criterion. For instance requirement 4.3.2
requires to model loss of HVAC and requirement. If a specific cabinet design has a temperature
switch that initiate an automatic cabinet trip and/or operator actions, the necessity of HVAC
modeling is negligible.

A-47

6. KSNPP Information

General information for KSNPP is provided in a few places in report, but the information is
inconsistent. I will provide more information regarding KSNPP later.

A-48

Attachment G

Written Comments Provided by Reviewer D

Reviewer D provided written comments prior to the external review panel meeting. These
comments were provided as annotations to the text of a pdf version of the BNL report. The context
and essence of these comments are provided below.

1. Section 2.1, “Discussion of Methods,” of BNL’s report states that the FT/ET method can
quantitatively evaluate the detailed failure modes of the plant. He pointed out that an
exception is when the failures are statistically dependent.

2. Section 2.1, “Discussion of Methods,” of BNL’s report states that the FT/ET method does
not explicitly treat the timing of events in accident sequences, but only accounts for them in
an implicit way (i.e., through the specific events included in the ETs and their order of
occurrence). He pointed out that this implicit way may not be able to account for the
competition between top events.

3. Section 2.1, “Discussion of Methods,” of BNL’s report states that the FT/ET method
considers interactions with plant processes only implicitly in an approximate way (primarily
through the system success criteria). He pointed out that in addition, non-coherence due to
diagnostic and recuperative capabilities of digital I&C systems may be a limitation.

4. Criterion 1.2 states “A probabilistic model of a digital system should be modeled at least at
a level of detail for which the microprocessors are separately modeled.” He pointed out that
this criterion is unclear.

5. Section 3.2, “Identification of Failure Modes of the Digital System,” of BNL’s report states
that ideally, the FMEA and these tools would be used in combination to identify more
vulnerabilities of the system in a more reliable way than using FMEA alone. He pointed out
that by design, FMEA is intended to identify immediate impacts, not to model fault
propagation. So while the statement is correct, it should emphasize this intent.

6. Section 3.2, “Identification of Failure Modes of the Digital System,” of BNL’s report states
that failure modes, failure causes, or failure effects are frequently mixed up, defined
ambiguously, and sometimes they overlap or are even contradictory. He pointed out that
these statements should be supported by citations from the literature.

7. Section 3.2, “Identification of Failure Modes of the Digital System,” of BNL’s report states
that in an attempt to address the aforementioned problems with the current software failure
categorization methods, a software failure categorization framework that involves definition
of generic failure modes and failure causes was developed. He asked in which report this
framework is presented.

8. Section 3.2, “Identification of Failure Modes of the Digital System,” of BNL’s report states

A-49

that an obvious way of defining failure modes is in terms of the functions of the system or
components, e.g., an analog input module of a system may fail to convert the input signal
to the correct digital signal for the system to process, and a CPU may fail to generate the
correct output signals. He pointed out that this is not necessarily the case, and mentioned
the example that a controller may generate arbitrary outputs or may undergo Byzantine
failures.

9. Criterion 2.1 states “A technique such as FMEA should be applied at least to a level of detail
corresponding to the basic components of the system, such as microprocessors.” He pointed
out that this level of detail may be neither feasible nor necessary, depending on device
functionality and data availability.

10. Criterion 2.2 states “Supporting analysis should be carried out to determine how specific
features of a design such as communication, voting, and synchronization could affect the
operation of the system. It should determine if the specific design feature could introduce
dependent failures that should be modeled.” He has the same comment as the one for
Criterion 2.1.

11. Criterion 2.3 states “The information associated with the probabilistic model of a digital
system should provide justification that the design requirements of the digital system are
unambiguous, complete and consistent, and that these requirements have been implemented
in the system.” He pointed out that this criterion is unclear.

12. Section 3.3, “Modeling of Software Failures,” of BNL’s report states that hardware fails due
to factors such as wear and tear, while a software failure happens due to the presence of a
fault in the software and the occurrence of a specific set of input data. He asked the question
“Due to specification error?”

13. Section 3.3, “Modeling of Software Failures,” of BNL’s report states that the occurrence of
the input is random and can be modeled in terms of failure rates and failure probabilities.
He pointed out that this statement is debatable.

14. Section 3.3, “Modeling of Software Failures,” of BNL’s report states that for a protection
system, a failure rate can be used to model errors introduced during software updates. He
pointed out that this statement needs substantiation by references.

15. Section 3.3, “Modeling of Software Failures,” of BNL’s report states that one way in which
software failures may be explicitly included in the logic model is by somehow developing
a model of behavior of the software and including it in the logic model of the rest of the
NPP, and that this approach has been named “system-centric.” He does not believe a
software model is necessary for the system-centric approach.

16. In the bottom paragraph of page 12 of BNL’s report, “Thereport” is a typo.

17. He suggests to rephrase Criteria 4.1.3 and 4.1.4 in a more non-device-specific manner.

A-50

18. Criterion 4.4 states that the digital systems of a plant should be examined to determine if
there are dependencies due to sharing digital hardware. Such a dependency should be
modeled, e.g., by linking fault trees. He pointed out that “e.g., by linking fault trees” is
unclear.

19. Criterion 4.4 also states that if RPS and ESFAS are implemented using the same digital
hardware, a conservative approach for accounting for this dependency is assuming that RPS
is failed in those sequences with ESFAS failed due to digital failures, and vice versa. He
pointed out that this statement is unclear.

20. In the discussion on “Modeling of Fault Tolerance Features,” BNL’s report states that the
objective of a fault-tolerant feature is to have a positive impact on the risk metrics of a
system, such as the system’s reliability. On the other hand, a fault-tolerant feature may fail
to detect and/or fix a failure mode that it was designed to catch. He pointed out that if fault-
tolerance relies on self-testing, the system may be vulnerable during the testing process.

21. Section 3.5, “Human Errors,” of BNL’s report states that once a digital system has been
installed and is operational in a nuclear power plant (NPP), an upgrade may introduce new
errors into the system. This type of failure also may happen when upgrading an analog
system. However, it appears that it has a higher probability of occurring when upgrading a
digital system due to the greater complexity of these systems. He pointed out that the last
statement needs to be justified by a reference.

22. Under “Requirements” of the Section 3.5 “Human Errors,” the BNL’s report states that two
types of human errors that are related to a digital system are the introduction of faults when
upgrading its hardware or software, and poorly designed or implemented man-machine
interfaces (MMI). The human reliability analysis of the probabilistic model should take into
account these types of failures. Regarding the last sentence, he would simply say "The
probabilistic model should take into account these types of failures." He pointed out that
there may be data available.

23. Criterion 5.2 requires modeling of human errors due to poor design of MMI. He asked if the
term MMI has been defined earlier.

24. Section 3.6, “Ease of Integration with a PRA Model,” of BNL’s report states that one way
to integrate a model of a digital system with an existing PRA model is by directly integrating
the system model with the PRA model. Since the current PRAs use the FT/ET method, this
approach can only be achieved by using a fault tree model of the digital system. He
recommended to replace the words “fault tree” by “ET/FT” in the last sentence.

25. Section 3.6, “Ease of Integration with a PRA Model,” of BNL’s report states that one way
to integrate a model of a digital system with an existing PRA model is by using the results
from the model of a digital system in a PRA in a consistent way. This approach basically
consists of developing a model of a digital system using a technique such as the Markov
method. He recommended to replace the words “such as the Markov method” with “that can

4 Reviewer D pointed out the following publication for information on these features: J. Kirschenbaum, M.
Stovsky, P. Bucci, T. Aldemir, S.A. Arndt, “Benchmark Development for Comparing Digital Instrumentation and
Control System Reliability Modeling Approaches”, PSA’05, on CD-ROM, American Nuclear Society, LaGrange
Park, IL (September 2005).

A-51

account for the all the relevant features of the digital system.”4

26. Criterion 6.1 states that a fault tree model of a digital system should be easy to integrate with
a PRA model. All other methods require additional efforts in integration. He recommended
to replace the words “fault tree” by “ET/FT.”

27. A paragraph in the middle of page 23 of BNL’s report starts with the sentence “Thereview
of the availability of hardware data for digital components reveals that ...” He pointed out
that “Thereview” is a typo.

28. Point 6 in pages 32 and 76 of BNL’s report states that based on the review of the 6 studies,
and previous research on PRAs of digital systems, it is still believed that the two main types
of “traditional” methods, i.e., fault tree/event tree and Markov, are capable of assessing these
systems. He pointed out that this statement needs substantiation in view of the criteria
formulated, even if the "and" in the part "fault/tree and Markov" is meant as "in conjunction
with". Neither of them will pick up all the Type I or Type II interactions. It is true that
Markov/CCMT is capable of meeting all the requirements, but then Markov/CCMT is not
a traditional method.

29. In Section 5.2, “Application-Specific Observations,” under the heading “Modeling of the AP
1000 using the FT/ET method,” the BNL’s report states that a strength of this modeling is
that software failures were explicitly included in the logic model. He asked where did the
data come from?

30. In the first paragraph of Section 6.2 “Conclusions and Recommendations,” the BNL’s report
states that strengths and weaknesses have been identified for the studies reviewed. The
weaknesses represent limitations of the current state of the art in modeling digital systems.
The identified weaknesses of the FT/ET and Markov methods are not believed to be inherent
weaknesses of these methods themselves, but rather weaknesses in the application of these
methods in the studies reviewed. The FT/ET and Markov methods are very general and
flexible, and it may be possible to use them to develop reasonable digital system reliability
models if the identified weaknesses in the studies are addressed. He pointed out that the last
sentence is debatable.

31. Section 6.2, “Conclusions and Recommendations,” of the BNL’s report identified several
areas of research that would enhance the state of the art. In addition to these areas, he
suggested dependencies arising from Type I and Type II interactions.

A-52

Attachment H

Order for Addressing Review Criteria Categories/Subcategories

1. Category 1. Level of Detail of the Model

2. Category 2. Identification of Failure Modes of the Components of Digital Systems

3. Category 3. Software Failures

4. Category 4. Modeling of Dependencies

Subcategory 4.1 Communication networks/buses
Subcategory 4.3 Support systems
Subcategory 4.4 Sharing hardware
Subcategory 4.5 Interactions of digital systems with other systems
Subcategory 4.6 Modeling of fault tolerance features
Subcategory 4.2 Common cause failures

5. Category 7. Probabilistic Data

Subcategories 7.1-7.10 Hardware failure data
Subcategories 7.11-7.12 Software failure data

6. Criteria 8.4-8.5. Uncertainty

7. Category 6. Ease of Integration with a PRA Model

8. Category 5. Human Errors

9. Criteria 8.1-8.3. Documentation and Results

APPENDIX B

DETAILED FMEA OF THE DFWCS AT DIFFERENT LEVELS1

Appendix B.1: Top-level FMEA of the DFWCS (Page B-1)

Appendix B.2: FMEA at Level of the DFWCS Modules (Page B-2)

Appendix B.3: FMEA at Level of Major-Component-of-Module of the DFWCS (Page B-89)

1 The FMEAs presented here make extensive use of the hazard analyses performed by the plant.

B-1

Appendix B.1: Top-level FMEA of DFWCS

Table B.1-1 Top-level FMEA of DFWCS

Mode of operation of the plant: Power operation
Mode of operation of the MFW: High power

Failure Mode Detection of Failure Mode Failure Effect on Main Feedwater System

No or “low” signal from DFWCS to controlled
components

Indications in control room of low feedwater flow
and low level in steam generator(s) (SGs)

Low level in SGs causes reactor trip

Reduction of level in SG(s) causes steam generator
tube rupture (SGTR)

“High” signal from DFWCS to controlled
components

Indications in control room of high feedwater flow
and high level in SGs

Excessive feedwater to steam generator(s) causes
reactor trip

Abnormal fluctuations of signal from DFWCS
to controlled components

Depending on frequency and severity of
fluctuations, operators in control room may be able
to detect changes in feedwater flow and in level in
SGs

Effect is expected to be similar to the one resulting
from the previous two failure modes

Failure to transfer to low-power mode when
reactor power decreases below 15% and
remains above about 2%

Indications in control room of high level in SGs A mismatch between the power produced by the
reactor and the cooling of the SGs by the DFWCS.
The mismatch may result in excessive feedwater to
SGs causing a reactor trip.

B-2

Appendix B.2 FMEA at Level of DFWCS Modules

The next level of the FMEA includes the modules of DFWCS. The major modules of the DFWCS include Main CPU, Backup CPU, MFV Controller, BFV
Controller, FWP Controller, PDI Controller, and the optical isolator that is related to the WDT signal. The FMEA is performed based on failures of input/output
signals that reflect the failure modes of these modules. Thus, the FMEA of analog and digital backplanes tabulated is actually for the Main and Backup CPUs
because the backplanes contain all input/output signals of the CPU.

Table B.2-1 FMEA of Analog Backplane A (FY1111B/C1)

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

Analog Backplane - Loss of
communications

There is no direct indication of the
loss of communication. Failure of
the CPU would send an alarm to the
Plant Computer.

The application software checks that there are
no errors (UMAC_NO_ERROR). Loss of
communication would result in an error due to
no response from the analog board causing the
analog inputs to be invalid which would result
in a failure of the CPU. A failover to the B/U
CPU will take place.

It is assumed that the loss of
communication to the CPU has no
effect on other functions of the ISA
bus.

Analog Backplane - Loss of
power (5V source)

There is no direct indication of the
loss of 5V source. Failure of the
CPU would send an alarm to the
Plant Computer.

The application software checks that there are
no errors (UMAC_NO_ERROR). Loss of 5V
source would result in an error due to no
response from the analog board causing the
analog inputs to be invalid which would result
in a failure of the CPU. A failover to the B/U
CPU will take place.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-3

Channel 1 - Feedpump A
Demand (Output) Failed Hi
OOR

There is no direct indication of the
failure. The Main CPU deviation
logic will be alarmed at the Plant
Computer.

The Main CPU deviation logic will detect a
large deviation between the CPU demand and
the main FWP track signal and the B/U CPU
will initially track the FWP signal to the failed
value. The Main CPU will then fail,
transferring control to the B/U CPU. When
the B/U CPU assumes control it will retrieve
the pre-failure demand signal to use for its
initial output. Control will be maintained by
the B/U CPU and the Operator will be alerted
by the DFW system trouble alarm on the Plant
Computer. The Lovejoy Control system will
detect a short duration increase in pump
demand and will interpret this as an HIC
failure. Lovejoy will then transfer control to
Diagnostic Manual and maintain the FWP
speed at the pre-failure speed demand.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-4

Channel 1 - Feedpump A
Demand (Output) Failed
Low OOR

There is no direct indication of the
failure. The Main CPU deviation
logic will be alarmed at the Plant
Computer.

The Main CPU deviation logic will detect a
large deviation between the CPU demand and
the FWP tracking signal and the B/U CPU
will initially track the FWP signal to the failed
value. The Main CPU will then fail,
transferring control to the B/U CPU. When
the B/U CPU assumes control, it will retrieve
the pre-failure demand signal to use for its
initial output. Control will be maintained by
the B/U CPU and the Operator will be alerted
by the DFW system trouble alarm on the Plant
Computer. The Lovejoy Control system will
detect a short duration increase in pump
demand and will interpret this as an HIC
failure. Lovejoy will then transfer control to
Diagnostic Manual and maintain the SGFP
speed at the pre-failure speed demand.

Need to confirm how the Lovejoy
controller detects the failure.

Channel 1 - Feedpump A
Demand (Output)- Excess
Drift, or Step Change (in
range)

There is no direct indication of this
failure.

Because rate failures are not detected by the
DFW system, a step change with a magnitude
less than the deviation setpoint may result in a
system flow transient. Because of this, the
deviation setpoint should be set at a value at
which the DFW control system can
compensate for without resulting in a plant
trip.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-5

Channel 2 - Bypass Valve
Demand (Output) Failed Hi
OOR

There is no direct indication of the
failure.

The BFV demand signal is commanded to
zero during high power mode. Should the
BFV demand increase, the MFV demand will
decrease as during a valve transfer, limiting
the induced transient. The CPU deviation
logic for the BFV demand signal is inhibited
during High Power Mode Operations.

Channel 2 - Bypass Valve
Demand (Output) Failed
Low OOR

This is no direct indication of the
failure.

The BFV demand signal is normally at zero
during high power mode. If the BFV demand
signal remains at zero, nothing will happen.

This fault will remain undetected until a valve
transfer occurs. At this time, the Main CPU
deviation logic becomes active and will detect
a large deviation between the CPU demand
and the BFV signal. The B/U CPU will track
the BFV signal to the failed value. The Main
CPU will then fail, transferring control to the
B/U CPU. When the B/U CPU assumes
control, it will use the tracked demand signal
for its initial output. Control will be assumed
by the B/U CPU and the Operator will be
alerted by the DFW system trouble alarm on
the Plant Computer.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-6

Channel 2 - Bypass Valve
Demand (Output) Excess
Drift or Step Change (in
range)

There is no direct indication of the
failure.

Because rate failures are not detected by the
DFW system, a step change with a magnitude
less than the deviation setpoint will result in a
system flow transient. Because of this, the
deviation setpoint should be set to a value at
which the DFW control system can
compensate for without resulting in a plant
trip.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-7

Channel 3 - Main Valve
Demand (Output) Failed Hi
OOR

There is no direct indication of the
failure. The Main CPU deviation
logic will be alarmed at the Plant
Computer.

The failed signal will be sent to the MFV
controller causing the MFRV to open wider.
The Main CPU deviation logic will detect a
large deviation between the CPU demand and
the MFV track signal. The B/U CPU will
initially track the MFV signal to the failed
value. The Main CPU will then fail,
transferring control to the B/U CPU. When
the B/U CPU assumes control, it will retrieve
the pre-failure demand signal to use for its
initial output. Control will be maintained by
the B/U CPU and the operator will be alerted
by the DFW trouble alarm on the Plant
Computer. The FWP speed will be
momentarily affected because the high
auctioneered MFV signal is used to control
the FWP speed. This SGFP demand transient
could cause the Lovejoy Control system to
interpret an HIC failure which would transfer
SGFP control to Diagnostic Manual and
maintain SGPR speed at the pre-failure value.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-8

Channel 3 - Main Valve
Demand (Output) Failed
Low OOR

The PDI controller will display a
“MFV Fail” message.

A deviation message is activated by
the Main CPU, after a settable,
predetermined time delay. (This
message may not be generated,
because the PDI controller is
expected to take over.)

The MFV controller will initially forward the
failed demand signal to the MFRV positioner,
PDI controller, and the CPUs of the other
S/G. The PDI controller will then detect the
signal failure and automatically become the
manual controller for the MFRV using the old
value in the circular buffer. The MFRV must
be manually controlled from the PDI
controller.

The failed signal will be sent to the CPUs of
other SG, and probably will not affect the
FWP speed calculation.

The response specified in plant
analysis probably will not take place,
because the PDI controller has a scan
time of not exceeding 100
milliseconds, while the CPU failover
logic has a 1 second delay.

The MFV demand signal is also sent
to the CPUs of the other S/G and
used in the FWP speed calculation.

Channel 3 - Main Valve
Demand (Output) Excess
Drift, or Step Change (in
range)

There is no direct indication of the
failure.

Because rate failures of the BFV demand
signal are not detected by the DFW system, a
step change with a magnitude less than the
deviation setpoint will result in a system flow
transient. Because of this, the deviation
setpoint should be set at a value at which the
DFW control system can compensate for
without resulting in a plant trip.

Channel 4 - S/G 12 FW
Temp (Input) OOR

A deviation alarm will be sent from
the Main CPU to the Plant
Computer.

The OOR condition and deviation will be
detected by the Main CPU. The signal
becomes invalid and the other signal is used.
There is no effect on control. The signal is
only used during low power operation.

Channel 4 - S/G 12 FW
Temp (Input) Excess Drift or
Step Change (in range)

If the deviation is large enough, an
alarm will be sent from the Main
CPU to the Plant Computer.

The temperature signals are averaged and a
deviation will not significantly affect low
power control.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-9

Channel 5 - S/G 11 FW
Temp (Input) OOR

A deviation alarm will be sent from
the Main CPU to the Plant
Computer.

The OOR condition and deviation will be
detected by the Main CPU. The signal
becomes invalid and the other signal is used.
There is no effect on control. The signal is
only used during low power operation.

Channel 5 - S/G 11 FW
Temp (Input) Excess Drift or
Step Change (in range)

When the deviation is large enough,
an alarm will be sent from the Main
CPU to the Plant Computer.

The temperature signals are averaged and a
deviation will not significantly affect low
power control.

Channel 6 - S/G 11
Feedpump A Bias (Input)
Fails High or Low OOR

A deviation alarm will be sent to the
Plant Computer from the Main
CPU. The FWP controller will
activate a local alarm when the
Main CPU demand signal differs
from the B/U CPU demand signal
by an amount exceeding a setpoint.

The FWP controller will activate a
local deviation alarm when the
Main CPU demand signal differs
from the B/U CPU demand signal
by an amount exceeding a setpoint.

The OOR condition will be detected by the
Main CPU, and a deviation alarm will be sent
to the Plant Computer. The Main CPU will
send the pump demand calculated with the
failed bias signal to the FWP controller.

The effects depend on whether or not
the failed signal at the Main CPU
would also be received by the BFV
controller.

It is assumed the Main CPU will
send the pump demand calculated
with the failed bias signal to the
FWP controller.

Channel 7 - S/G 12 Main
Valve Tracking (Input)
Failed Hi OOR -

There in no direct indication of the
failure. The increase in pump speed
could be alarmed using the future
D/P signals.

This is one of two signals (S/G 12 and S/G
11) used for high select to determine the FWP
speed. A failed high signal will increase the
pump speed which would cause a controllable
disturbance at high power but could result in
loss of control at low power. The Lovejoy
Control System may detect this large change
and transfer to Diagnostic Manual mode.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-10

Channel 7 - S/G 12 Main
Valve Tracking (Input)
Failed Low OOR

There in no direct indication of the
failure.

This is one of two signals used for high select
to determine the FWP speed. A failed low
signal will have minimal effect on system
operation.

Channel 7 - S/G 12 Main
Valve Tracking (Input)
Excess Drift, or Step Change
(in range)

There in no direct indication of the
failure.

A decrease in value would have no effect; an
increase in value would have little effect and
be compensated for by an adjustment in the
controlling valve.

Channel 8 - S/G 11 FWP A
Tracking (Input) Fail High
OOR, Fail Low OOR, and
Excess Drift, or Step Change
(in range)

There in no direct indication of the
failure. The Main CPU failure will
result in an alarm being sent to the
Plant Computer.

The deviation between the CPU and controller
will cause a failover to the B/U CPU as long
as the deviation setpoint is exceeded. If the
deviation setpoint is not exceeded, control
will continue as the controlling demand signal
is valid.

Channels 9-12 are spares

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-11

Channel 13 - MFRV LVDT
#2 Fail High or Fail Low

A MFV Large Deviation alarm will
be activated on the plasma display
unit and the associated CPU
deviation annunciator will activate,
if the deviation between the two
LVDT inputs exceeds the
MFV_Deviation setpoint. If the
Diagnostic Transfer mode is
enabled, then it will transfer to
Lockout.

If the deviation between the two LVDT inputs
exceeds the MFV_DEVIATION setpoint, the
Diagnostic Transfer mode will transfer to
Lockout.

If the MFV_DEVIATION setpoint is not
exceeded and the MFV_DEADBAND
setpoint is exceeded by the Demand-LVDT
deviation, where the LVDT is the average of
the two LVDT signals, the DMD-LVDT
deviation will be accumulated over the
subsequent cycles. If the accumulation
exceeded the MFV_ACCUMULATION
setpoint, and the Diagnostic Transfer control
mode is ENABLED, the opposite positioner
will be put into service and the control mode
will be shifted to LOCKOUT.

It is not known what the CPU
deviation annunciator is. It probably
is a local annunciator on the PDU.
The CPUs do not have direct
connection to the control room
annunciators.

Channel 14 - MFRV LVDT
#1 Fail High or Fail Low

Same as above. Same as above. Same as above.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-12

Channel 15 or 16 - MFRV
Differential Pressure #2 or #1
Fail High

The incorrect gooseneck flow and
accumulated volume will be
displayed on the Analog Inputs
display page of the PDU.

The failed high signal will falsely indicate a
larger than normal differential pressure, which
would result in an incorrectly high
accumulated gooseneck volume and prevent
needed gooseneck purge. It is not clear what
adverse effects would result when the needed
purge is not performed.

The gooseneck is an upward bend
and loop installed down stream of
the feedwater nozzle of replacement
steam generators to prevent flow of
steam generator fluid upstream.
When a gooseneck purge is needed,
as determined by the accumulated
gooseneck volume being less than
the minimum volume setpoint, the
BFRV alarm status becomes
GSNECK PURGE and the
associated CPU deviation
annunciator will activate. The
operator has to manually purge the
Gooseneck. It is not known what the
CPU deviation annunciator is. It
probably is a local annunciator on
the PDU. The CPUs do not have
direct connection to the control room
annunciators.

FMEA of Analog Backplane A (FY1111B/C1)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-13

Channel 15 or 16 - FRV
Differential Pressure #2 or #1
Fail Low

The incorrect gooseneck flow and
accumulated volume will be
displayed on the Analog Inputs
display page of the PDU.

The failed low signal will falsely indicate a
smaller than normal differential pressure,
which would result in an incorrectly low
accumulated gooseneck volume and
premature gooseneck purge. It is not clear
what adverse effect would result when the
premature purge is performed.

The gooseneck is an upward bend
and loop installed down stream of
the feedwater nozzle of replacement
steam generators to prevent flow of
steam generator fluid upstream.
When a goose-neck purge is needed,
as determined by the accumulated
gooseneck volume being less than
the minimum volume setpoint, the
BFRV alarm status becomes
GSNECK PURGE and the
associated CPU deviation
annunciator will activate.

It is not known what the CPU
deviation annunciator is. It probably
is a local annunciator on the PDU.
The CPUs do not have direct
connection to the control room
annunciators.

B-14

Table B.2-2 FMEA of Analog Backplane B

According to plant information, Channels 1 and 2 are reserved for test point output. It is assumed that these are for off-line test of the digital control system.
Channels 3 - 5 are spared. The failures of these analog signals are not considered here.

FMEA of Analog Backplane B

Failure Mode Detection of Failure
Mode

Failure Effects Comments

Analog Backplane - Loss
of Communications

Same as Analog
Backplane A.

Same as Analog Backplane A. Same as Analog Backplane A.

Analog Backplane - Loss
of Power

Same as Analog
Backplane A.

Same as Analog Backplane A. Same as Analog Backplane A.

Channel 6 - S/G 11 Level
#1: Failed Hi OOR,
Failed Low OOR, and
Rate

Main CPU (the
controlling CPU) Fail
alarm status will be
displayed on PDU if the
failover occurs.

The other level input #2 is used and control
continues. After a delay, if the B/U CPU is
healthy, a failover to the B/U CPU will occur.

Channel 6 is an input signal.

Failure effects are the same for both high and
low power control modes.

Channel 6 - S/G 11 Level
#1: Excess Drift or Step
Change (the change is
within the range)

A deviation alarm status
will be actuated in the
plant computer. Main
CPU Fail alarm status
will also be displayed if
failover occurs.

A deviation between S/G 11 Level #1 signal and
S/G 11 Level #2 signal will occur. A small
deviation will result in a deviation alarm to the
plant computer. If the deviation continues, a large
deviation will result and after some delay, a
failover to the B/U CPU will occur if it is healthy.
Otherwise, the control will continue with the
average of the two level inputs.

Channel 6 is an input signal.

Failure effects are the same for both high and
low power control modes.

Channel 7 - S/G 11 Level
#2: Failed Hi OOR,
Failed Low OOR, and
Rate

Main CPU (the
controlling CPU) Fail
alarm status will be
displayed on PDU if the
failover occurs

The other level input #1 is used and control
continues. After a delay, if the B/U CPU is
healthy, a failover to the B/U CPU will occur.

Channel 7 is an input signal.

Failure effects are the same for both high and
low power control modes.

FMEA of Analog Backplane B

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-15

Channel 7 - S/G 11 Level
#2: Excess Drift, or Step
Change (the change is
within the range)

A deviation alarm status
will be actuated in the
plant computer. Main
CPU Fail alarm status
will also be displayed if
failover occurs.

A deviation between S/G 11 Level #1 signal and
S/G 11 Level #2 signal will occur. A small
deviation will result in a deviation alarm to the
plant computer. If the deviation continues, a large
deviation will result and after some delay, a
failover to the B/U CPU will occur if it is healthy.
Otherwise, the control will continue with the
average of the two level inputs.

Channel 7 is an input signal.

Failure effects are the same for both high and
low power control modes.

Channel 8 - S/G 11 FW
Flow #1: Failed Hi OOR,
Failed Low OOR, and
Rate

Main CPU (the
controlling CPU) Fail
alarm status will be
displayed on PDU if the
failover occurs.

The other FW flow input #2 is used and control
continues. After a delay, if the B/U CPU is
healthy, a failover to the B/U CPU will occur.

Channel 8 is an input signal.

Failure effects are the same for both high and
low power control modes.

Channel 8 - S/G 11 FW
Flow #1: Excess Drift, or
Step Change (the change
is within the range)

A deviation alarm will be
actuated in the plant
computer. Main CPU Fail
alarm will also be
displayed if the failover
occurs.

A deviation between S/G 11 FW Flow #1 signal
and S/G 11 FW Flow #2 signal will occur. A small
deviation will result in a deviation alarm to the
plant computer. If the deviation continues, a large
deviation will result. A large deviation will result
in single element mode control.

Channel 8 is an input signal.

At low power control mode, a large deviation
will result in inhibiting a low to high power
transfer and an inhibiting transfer alarm will
be displayed in the plant computer.

Channel 9 - S/G 11 FW
Flow #2: Failed Hi OOR,
Failed Low OOR, and
Rate

Main CPU (the
controlling CPU) Fail
alarm status will be
displayed on PDU if the
failover occurs.

The other FW flow input #1 is used and control
continues. After a delay, if the B/U CPU is
healthy, a failover to the B/U CPU will occur.

Channel 9 is an input signal.

Failure effects are the same for both high and
low power control modes.

FMEA of Analog Backplane B

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-16

Channel 9 - S/G 11 FW
Flow #2: Excess Drift, or
Step Change (the change
is within the range)

A deviation alarm status
will be displayed in the
plant computer. Main
CPU Fail alarm status
will also be displayed if
failover occurs.

A deviation between S/G 11 FW Flow #1 signal
and S/G 11 FW Flow #2 signal will occur. A small
deviation will result in a deviation alarm to the
plant computer. If the deviation continues, a large
deviation will result. A large deviation will result
in single element mode control.

Channel 9 is an input signal.

At low power control mode, a large deviation
will result in inhibiting a low to high power
transfer and an inhibiting transfer alarm will
be displayed in the plant computer.

Channel 10 - S/G 11
Main Steam Flow: Failed
Hi OOR, Failed Low
OOR, and Rate

Main CPU (the
controlling CPU) Fail
alarm status will be
displayed on PDU if the
failover occurs.

The other steam flow input is used and control
continues. After a delay, if the B/U CPU is
healthy, a failover to the B/U CPU will occur.

Channel 10 is an input signal.

Failure effects are the same for both high and
low power control modes.

Channel 10 - S/G 11
Main Steam Flow: Excess
Drift, or Step Change (the
change is within the
range)

A deviation alarm status
will be displayed in the
plant computer. Main
CPU Fail alarm status
will also be displayed if
failover occurs.

A deviation between S/G 11 Main Steam Flow and
S/G 12 Main Steam Flow signals will occur. A
small deviation will result in a deviation alarm to
the plant computer. If the deviation continues, a
large deviation will result. A large deviation will
result in single element model control.

Channel 10 is an input signal.

At low power control mode, a large deviation
will result in inhibiting a low to high power
transfer and an inhibiting transfer alarm will
be displayed in the plant computer. Note the
steam flow small deviation alarms and
messages are disabled when reactor power is
below the low to high power mode transfer
setpoint.

Channel 11 – S/G 12
Main Steam Flow: Failed
Hi OOR, Failed Low
OOR, and Rate

Main CPU (the
controlling CPU) Fail
alarm status will be
displayed on PDU if the
failover occurs.

The other steam flow input is used and control
continues. After a delay, if the B/U CPU is
healthy, a failover to the B/U CPU will occur.

Channel 11 is an input signal.

Failure effects are the same for both high and
low power control modes.

FMEA of Analog Backplane B

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-17

Channel 11 - S/G 12
Main Steam Flow: Excess
Drift, or Step Change (the
change is within the
range)

A deviation alarm status
will be displayed in the
plant computer. Main
CPU Fail alarm status
will also be displayed if
failover occurs.

A deviation between S/G 11 Main Steam Flow and
S/G 12 Main Steam Flow signals will occur. A
small deviation will result in a deviation alarm to
the plant computer. If the deviation continues, a
large deviation will result. A large deviation will
result in single element model control.

Channel 11 is an input signal.

At low power control mode, a large deviation
will result in inhibiting a low to high power
transfer and an inhibiting transfer alarm will
be displayed in the plant computer. Note the
steam flow small deviation alarms and
messages are disabled when reactor power is
below the low to high power mode transfer
setpoint.

Channel 12 - Neutron
Flux #1: Failed Hi OOR,
Failed Low OOR

A deviation alarm status
may be displayed in the
plant computer.

The other flux input (#2) is used and control
continues.

Channel 12 is an input signal.

No deviation logic for CPU failover for
neutron flux inputs.

Channel 12 - Neutron
Flux #1: Excess Drift, or
Step Change (the change
is within the range)

A deviation alarm and an
inhibit transfer alarm will
be displayed in the plant
computer.

Valve transfers are inhibited and control continues
as long as the other flux input (#2) is valid.

Channel 12 is an input signal.

At low power control mode, the last valid flux
signal is frozen to minimize any disturbance.

Channel 13 - Neutron
Flux #2: Failed Hi OOR,
Failed Low OOR

A deviation alarm status
may be displayed in the
plant computer.

The other flux input (#1) is used and control
continues.

Channel 13 is an input signal.

No deviation logic for CPU failover for
neutron flux inputs.

Channel 13 - Neutron
Flux #2: Excess Drift, or
Step Change (the change
is within the range)

A deviation alarm and an
inhibit transfer alarm will
be displayed in the plant
computer.

Valve transfers are inhibited and control continues
as long as the other flux input (#1) is valid.

Channel 13 is an input signal.

At low power control mode, the last valid flux
signal is frozen to minimize any disturbance.

FMEA of Analog Backplane B

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-18

Channel 14 - S/G 11
Level Setpoint: Failed Hi
OOR, Failed Low OOR,
and Excess Drift, or Step
Change (the change is
within the range)

A deviation alarm will be
displayed in the plant
computer.

A deviation between this input and the program
value of the setpoint will occur. If the deviation is
less than a fixed value (LEV_SPT), the control
continues. Otherwise, an internal level setpoint
will be used as the substitute.

Channel 14 is an input signal.

Channel 15 - S/G 11
BFRV Tracking: Failed
Hi OOR, Failed Low
OOR, and Excess Drift,
or Step Change (the
change is within the
range)

No alarms are generated. Control will continue and the CPU or BFV still
sends demand output that will close the BFRV.

Channel 15 is an input signal.

At low power control mode, the deviation
between the CPU and controller will cause a
failover to the B/U CPU some time (deviation
time delay) after the deviation setpoint is
exceeded.

Channel 16 - S/G 11
MFRV Tracking: Failed
Hi OOR, Failed Low
OOR, and Excess Drift,
or Step Change (the
change is within the
range)

A deviation alarm will be
displayed on PDU. Main
CPU (the controlling
CPU) Fail alarm will also
be displayed on PDU if
the failover occurs.

The deviation between the CPU output and
controller output will cause a failover to the B/U
CPU as long as the deviation setpoint is exceeded
after some time delay. If the deviation setpoint is
not exceeded, control will continue as the
controlling demand signal is valid.

For the Fail Hi OOR signal, the FWP speed will
momentarily increase due to high MFV
actioneering, which is used to compute the FWP
pump demand.

Channel 16 is an input signal.

B-19

Table B.2-3 FMEA of Digital Backplane (I/O) of Main CPU

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

Loss of Communications

Loss of communications The three controllers (Main, Bypass
and FW Pump) alarm lights
energize. The BFV controller
transmits to the plant computer that
one CPU has failed. The PDU
shows that the Main microprocessor
is failed.

Loss of communications would result in the
digital signals maintaining their existing state
which would cause a watchdog failure which
would result in a failover to the B/U CPU.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-20

Loss of Power

Loss of Power The three controllers (Main, Bypass
and FW Pump) alarm lights
energize. The BFV controller
transmits to the plant computer that
one CPU has failed. The PDU
shows that the Main microprocessor
is failed.

Loss of power would result in the digital
signals changing to their unpowered state
which would cause a watchdog failure which
would result in a failover to the B/U CPU.

Digital Outputs

Channel 0 - Watchdog Timer
(Output) fails as is

There is no direct indication of this
failure. Indirect indications are
annunciations of failure of the Main
CPU in this CPU’s PDU, and in the
plant computer (from the BFV).

A failure of this output to change state would
result in a Main CPU failover to the B/U
CPU.

Output state: toggling (not failed).
Watchdog Timer failing as is
indicates that the timer identified a
failure of the Main CPU.

Channel 1 - Unuseable Not applicable (NA) NA Need to confirmwhy this channel is
unuseable and whether it could have
some failure mode.

Channel 2 - Power Fail
(Output) fails as is

There is no indication of this
failure.

A failure of this output would have no effect
on control until some other condition caused
the Main CPU to fail, at which time automatic
control would be lost. The severity of the loss
of control would depend on the CPU fault.

This channel indicates power failure
or microprocessor not controlling.
Output state: not energized (OK).
Power Fail failing as is indicates that
the Main CPU is OK.

Channel 2 - Power Fail
(Output) fails to opposite
state

There is no direct indication of this
failure. Indirect indications are
annunciations of failure of the Main
CPU in the PDU of the DFWCS
and in the plant computer (from the
BFV).

A failure of this output would result in a CPU
failover.

This channel indicates power failure
or microprocessor not controlling.
Output state: not energized (OK).
Power Fail failing to opposite state
indicates that the Main CPU is failed.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-21

Channel 3 - Unuseable NA NA An analysis of this channel was not
found in plant information. Need to
confirm why this channel is
unuseable and whether it could have
some failure mode.

Channel 4 - High Power
Indication (Output) fails
closed

There is no indication of this
failure.

There is indication that the DFWCS is in
high-power mode. Operation of DFWCS is
unaffected, but it may be puzzling to the
operators that the DFWCS remains in high-
power mode even if the plant is operating in
conditions corresponding to low-power mode.

Output state: energized (closed =
high power). High Power Indication
failing closed indicates that the
DFWCS is in high-power mode.

Channel 4 - High Power
Indication (Output) fails
open

There is no indication of this
failure.

Operation of DFWCS is unaffected, but it
may be puzzling to the operators that there is
no indication that the DFWCS is in high-
power mode when the plant is operating in
conditions corresponding to this mode.

Output state: energized (closed =
high power). High Power Indication
failing open does not give indication
that the DFWCS is in high-power
mode.

Channel 5 - Transfer
Indication (Output) fails
closed

There is no indication of this
failure.

There is indication that the DFWCS is
transferring between power modes. Operation
of DFWCS is unaffected, but it may be
puzzling to the operators that the DFWCS
remains in a transferring state.

Output state: energized (closed =
transferring). Transfer Indication
failing closed indicates that the
DFWCS is transferring between
power modes.

Channel 5 - Transfer
Indication (Output) fails
open

There is no indication of this
failure.

Operation of DFWCS is unaffected, but it
may be puzzling to the operators that there is
no indication that the DFWCS is transferring
when a transfer is taking place.

Output state: energized (closed =
transferring). Transfer Indication
failing open does not give indication
that the DFWCS is transferring
between power modes.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-22

Channel 6 - Low Power
Indication (Output) fails
closed

There is no indication of this
failure.

There is indication that the DFWCS is in low-
power mode. Operation of DFWCS is
unaffected, but it may be puzzling to the
operators that the DFWCS remains in low-
power mode even if the plant is operating in
conditions corresponding to high-power
mode.

Output state: energized (closed = low
power). Low Power Indication
failing closed indicates that the
DFWCS is in low-power mode.

Channel 6 - Low Power
Indication (Output) fails
open

There is no indication of this
failure.

Operation of DFWCS is unaffected, but it
may be puzzling to the operators that there is
no indication that the DFWCS is in low-
power mode when the plant is operating in
conditions corresponding to this mode.

Output state: energized (closed = low
power). Low Power Indication
failing open does not give indication
that the DFWCS is in low-power
mode.

Channel 7 - Bypass Override
Indication (Output) fails
closed

There is no indication of this
failure.

There is indication that the DFWCS is in
Bypass Override (BPO) mode. Operation of
DFWCS is unaffected, but it may be puzzling
to the operators that the DFWCS is in BPO
mode when they have not set the DFWCS to
operate in this mode.

Output state: energized (closed =
BPO mode). Bypass Override
Indication failing closed indicates
that the DFWCS is in BPO mode.

Channel 7 - Bypass Override
Indication (Output) fails
open

There is no indication of this
failure.

Operation of DFWCS is unaffected, but it
may be puzzling to the operators that there is
no indication that the DFWCS is in BPO
mode when the DFWCS has been set to
operate in this mode.

Output state: energized (closed =
BPO mode). Bypass Override
Indication failing open does not give
indication that the DFWCS is in
BPO mode.

Channel 8 - Deviation Alarm
(Output) fails closed

There is no indication of this
failure. However, there is
indication in the plant computer that
the Main CPU detected a deviation.

Operation of DFWCS is unaffected. Output state: energized (closed =
deviation). Deviation Alarm failing
closed indicates that the Main CPU
detected a deviation.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-23

Channel 8 - Deviation Alarm
(Output) fails open

There is no indication of this
failure.

If the Main CPU detected a deviation, there is
no indication of the detection, but there is a
failover to the B/U CPU. If the Main CPU
did not detect a deviation, the Main CPU
remains in control. In either case, operation
of DFWCS is unaffected.

Output state: energized (closed =
deviation). Deviation Alarm failing
open does not give indication that the
Main CPU detected a deviation.

Channel 9 - Transfer Inhibit
(Output) fails closed

There is no indication of this
failure. However, there is
indication in the plant computer that
the transfer of power modes is
inhibited.

Operation of DFWCS is unaffected. Output state: energized (closed =
transfer inhibited). Transfer Inhibit
failing closed indicates that the
transfer of power modes is inhibited.

Channel 9 - Transfer Inhibit
(Output) fails open

There is no indication of this
failure.

If the transfer of power modes is not inhibited,
there is no need for indication that the transfer
is inhibited. If the transfer of power modes is
inhibited, there is no indication in the plant
computer that the transfer is inhibited.
However, there would be indication that the
transfer is inhibited in the PDU. In either
case, operation of DFWCS is unaffected.

Output state: energized (closed =
transfer inhibited). Transfer Inhibit
failing open does not give indication
that the transfer of power modes is
inhibited.

Channel 10 - Spare Output Not known Not known An analysis of this channel was not
found in plant information. Need to
confirm whether this channel could
have some failure mode.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-24

Channel 11 - Positioner
Selected (Output) fails closed
(fails as is)

There is no indication of this
failure.

The signal from the Main CPU will be that the
active positioner is A. If the accumulated
deviation between the demand from the Main
CPU and the position of the MFRV exceeds a
setpoint value, the Main CPU will try to put
into service the opposite positioner (B).
However, the signal from the Main CPU will
remain that the active positioner is A. If the
accumulated deviation exceeded a setpoint,
the positioner A may not be working properly;
in this case the Main CPU will not be able to
control the MFRV correctly. The impact of
this loss of control of the MFRV can vary
from a slight deviation of the position of the
valve (with respect to the demand from the
Main CPU) to the valve fully closing, leading
to a reactor trip.

Output state: not energized (we
assumed open = B positioner
selected). Positioner Selected failing
closed indicates that the A positioner
is selected as the active positioner.
An analysis of this channel was not
found in plant information.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-25

Channel 11 - Positioner
Selected (Output) fails open
(fails to opposite state)

There is no direct indication of this
failure. An indirect indication is
that the PDU will show that the
active positioner changed from A to
B.

The signal from the Main CPU will be that the
active positioner is B. If the accumulated
deviation between the demand from the Main
CPU and the position of the MFRV exceeds a
setpoint value, the Main CPU will try to put
into service the opposite positioner (A).
However, the signal from the Main CPU will
remain that the active positioner is B. If the
accumulated deviation exceeded a setpoint,
the positioner B may not be working properly;
in this case the Main CPU will not be able to
control the MFRV correctly. The impact of
this loss of control of the MFRV can vary
from a slight deviation of the position of the
valve (with respect to the demand from the
Main CPU) to the valve fully closing, leading
to a reactor trip.

Output state: not energized (we
assumed open = B positioner
selected). Positioner Selected failing
open indicates that the B positioner
is selected as the active positioner.
An analysis of this channel was not
found in plant information.

Channel 12 - No Failures in
Microprocessor (Output)
fails closed

There is no indication of this
failure. However, status of the
Main CPU will change to failed in
PDU.

The Main CPU remains in control. On the
other hand, the B/U CPU will receive signal
from the Main CPU that the Main CPU failed,
but it is expected that the B/U CPU will
receive from the MFV the correct status (OK)
of the Main CPU. We do not know how the
B/U CPU handles this contradictory
information.

Output state: not energized (we
assumed closed = failed). No
Failures in Microprocessor failing
closed indicates that the Main CPU
failed.

This channel is named “Deviation
Alarm Status of Other CPU” in plant
information.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-26

Channel 12 - No Failures in
Microprocessor (Output)
fails open

There is no indication of this
failure. If the Main CPU failed, it
would be annunciated by the PDU
and the plant computer.

If the Main CPU is OK, operation of DFWCS
is unaffected.

If the Main CPU fails, the B/U CPU will
receive signal from the Main CPU that the
Main CPU is OK, but it is expected that the
B/U CPU will receive from the MFV the
correct status (failed) of the Main CPU. We
do not know at this time how the B/U CPU
handles this contradictory information.

Output state: not energized (we
assumed closed = failed). No
Failures in Microprocessor failing
open indicates that the Main CPU is
OK.

This channel is named “Deviation
Alarm Status of Other CPU” in plant
information.

Channel 13 - No Deviations
(from Main CPU to B/U
CPU) (Output) fails closed

There is no indication of this
failure. However, status of the
Main CPU will change to failed in
PDU.

The Main CPU remains in control. The
incorrect signal may negatively influence the
deviation decisions carried out by the B/U
CPU.

On the other hand, the B/U CPU will receive
signal from Main CPU that the Main CPU
failed, but it is expected that the B/U CPU
will receive from the MFV the correct status
(OK) of the Main CPU. We do not know at
this time how the B/U CPU handles this
contradictory information.

Output state: not energized (we
assumed closed = failed). No
Deviations from Main CPU to B/U
CPU failing closed indicates that the
Main CPU failed.

This channel is named “CPU Failure
Status to Other CPU” and stated
unused in plant document.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-27

Channel 13 - No Deviations
(from Main CPU to B/U
CPU) (Output) fails open

There is no indication of this
failure. If the Main CPU had
deviations, it would be annunciated
by the PDU and the plant computer.

If the Main CPU is OK, operation of DFWCS
is unaffected.

If the Main CPU had deviations, the B/U CPU
will receive signal from the Main CPU that
the Main CPU is OK, but it is expected that
the B/U CPU will receive from the MFV the
correct status (failed) of the Main CPU. We
do not know at this time how the B/U CPU
handles this contradictory information.

Output state: not energized (we
assumed closed = failed). No
Deviations from Main CPU to B/U
CPU failing open indicates that the
Main CPU is OK.

This channel is named “CPU Failure
Status to Other CPU” and stated
unused in plant document.

Channel 14 - CPU Level
Status to Other CPU (Output)
fails closed

There is no indication of this
failure.

The Main CPU sends a signal to the B/U CPU
indicating that both S/G level signals are
invalid. If the Main CPU is OK, operation of
DFWCS is unaffected.

Output state: not energized (we
assumed closed = invalid). CPU
Level Status to Other CPU failing
closed indicates that both S/G level
signals from the Main CPU are
invalid.

This channel is stated unused in plant
document.

Channel 14 - CPU Level
Status to Other CPU (Output)
fails open

There is no indication of this
failure.

The Main CPU sends a signal to the B/U CPU
indicating that both S/G level signals are
valid. If the Main CPU is OK, operation of
DFWCS is unaffected.

Output state: not energized (we
assumed closed = invalid). CPU
Level Status to Other CPU failing
open indicates that both S/G level
signals from the Main CPU are valid.

This channel is stated unused in plant
document.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-28

Channel 15 - CPU
Feedflow/Steamflow Status
to Other CPU (Output)

NA NA It appears that this channel is
connected to the other CPU, though
it is not known how the information
transmitted through this channel is
used by the other CPU.

This channel is stated unused in plant
document.

Digital Inputs

Channel 16 - A/M Status
BFV (Input) fails closed
(fails as is)

There is no indication of this
failure.

Operation of DFWCS is unaffected. Input state: open circuit (closed =
auto). A/M Status BFV failing
closed indicates that the BFV is in
auto.

Channel 16 - A/M Status
BFV (Input) fails open (fails
to opposite state)

There is no indication of this
failure. However, there would be a
discrepancy between the A/M status
shown in the PDU and the one
shown by the BFV.

The Main CPU would think the A/M status
was manual and track instead of control. The
valve demand could slowly windup and drift
open. Level would be maintained as the main
valve compensates for level errors.

Input state: open circuit (closed =
auto). A/M Status BFV failing open
indicates that the BFV is in manual.

Channel 17 - A/M Status
MFV (Input) fails closed
(fails as is)

There is no indication of this
failure.

Operation of DFWCS is unaffected.
However, if the MFV is in manual mode, the
Main CPU would “think” that it is controlling
the MFRV, but actually would not be
controlling it. If the deviation is large enough
between the Main CPU’s demand and the
MFV’s demand, the Main CPU would fail,
and the B/U CPU would recognize that the
MFV is in manual.

Input state: open circuit (closed =
auto). A/M Status MFV failing
closed indicates that the MFV is in
auto.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-29

Channel 17 - A/M Status
MFV (Input) fails open (fails
to opposite state)

There is no indication of this
failure. However, there would be a
discrepancy between the A/M status
shown in the PDU and the one
shown by the MFV.

The Main CPU would think the A/M status
was manual and track instead of control. The
MFRV would not be controlled, so the S/G
level would drift from setpoint. Operators can
take manual control based on indications of
incorrect S/G level and the discrepancy
between the A/M status shown in the PDU
and the one shown by the MFV.

Input state: open circuit (closed =
auto). A/M Status MFV failing open
indicates that the MFV is in manual.

Channel 18 - A/M Status
FWP (Input) fails closed
(fails as is)

There is no indication of this
failure.

Operation of DFWCS is unaffected.
However, if the FWP is in manual mode, the
Main CPU would “think” that it is controlling
the FWP, but actually would not be
controlling it. If the deviation is large enough
between the Main CPU’s demand and the
FWP controller’s demand, the Main CPU
would fail, and the B/U CPU would recognize
that the FWP is in manual.

Input state: open circuit (closed =
auto). A/M Status FWP failing
closed indicates that the FWP is in
auto.

Channel 18 - A/M Status
FWP (Input) fails open (fails
to opposite state)

There is no indication of this
failure. However, there would be a
discrepancy between the A/M status
shown in the PDU and the one
shown by the FWP.

The CPU would think the A/M status was
manual and track instead of control. Pump
demand would windup. The main valve
would compensate for the pump speed
change, giving the operators time to take
control as S/G level changed when the main
valve could no longer compensate. Operators
can take manual control based on indications
of incorrect S/G level and the discrepancy
between the A/M status shown in the PDU
and the one shown by the FWP.

Input state: open circuit (closed =
auto). A/M Status FWP failing open
indicates that the FWP is in manual.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-30

Channel 19 - Reactor Trip
(Input) fails closed (fails as
is)

There is no indication of this
failure.

No effect on DFWCS control. The DFWCS
would not be able to detect a reactor trip. If a
reactor trip were to subsequently occur, then
the DFWCS would not ramp the MFRV shut
or run back the FWP demand to minimum
speed. The BFRV would open to its post trip
position as determined by the feedwater
bypass trip set control (1-FC-1211, 1221).
The MFRV would shut after the time delay
positioning relay times out. When this occurs,
the Main CPU will fail due to MFRV
deviation. The B/U CPU will take over the
automatic control of the DFWCS in low-
power mode. The associated FWP demand
signal will run back to minimum speed.

Input state: open circuit (closed = not
tripped). Reactor Trip failing closed
indicates that there is no reactor trip.

Channel 19 - Reactor Trip
(Input) fails open (fails to
opposite state)

A reactor trip will occur. During a programmable validation period, no
alarm messages will be actuated if a non-
validated trip signal is present. After this
period, a Reactor Power Large Deviation
alarm will be activated on the Vuepoint alarm
display alarm and event log entry will result
in activation of all trip functions.

If there is a concurrent invalid Reactor Power
Input, control would be lost. The CPU would
erroneously ramp the main valve shut. This
failure would result in a reactor trip.

Input state: open circuit (closed = not
tripped). Reactor Trip failing open
indicates that there is a reactor trip.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-31

Channel 20 - Main / B/U
CPU Identification (Input)
fails closed (fails as is)

There is no indication of this
failure.

Plant analysis states that “The Main CPU has
no external field connections to fail.” It
appears that plant analysis concludes that this
failure mode cannot occur for the Main CPU.
We do not have enough information to assess
whether this conclusion is correct. The B/U
CPU digital input is grounded. If the external
connection were to fail, the B/U CPU would
think it was the Main CPU and start to control
versus track. As the Main CPU is selected
first by the DFWCS controllers, the DFWCS
would continue to operate normally.
However, the B/U CPU would windup its
outputs causing the B/U CPU to fail due to a
deviation between the demand and controller
output.

Input state: open circuit (closed =
main). Main / B/U CPU
Identification failing closed indicates
that the CPU is the Main CPU.

Channel 20 - Main / B/U
CPU Identification (Input)
fails open (fails to opposite
state)

There is no indication of this
failure.

Plant analysis states that “The Main CPU has
no external field connections to fail.” It
appears that plant analysis concludes that this
failure mode cannot occur for the Main CPU.
We do not have enough information to assess
whether this conclusion is correct. The B/U
CPU is unaffected.

Input state: open circuit (closed =
main). Main / B/U CPU
Identification failing open indicates
that the CPU is the B/U CPU.

Channel 21 - Turbine Trip
(Input) fails closed (fails as
is)

There is no indication of this
failure.

No effect on DFWCS control. The DFWCS
would not be able to detect a turbine trip. If a
turbine trip were to subsequently occur, a
reactor trip would follow, and the DFWCS
would remain in automatic control.

Input state: open circuit (closed = not
tripped). Turbine Trip failing closed
indicates that there is no turbine trip.

Plant document states that this
channel is not used for FW control.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-32

Channel 21 - Turbine Trip
(Input) fails open (fails to
opposite state)

There is no indication of this
failure. However, a reactor trip will
occur. In addition, the turbine and
reactor trips are annunciated in the
PDU.

Plant information states “When the turbine
trip signal is active, a digital signal is sent to
the digital feedwater microprocessors which
process the signal and causes the feedwater
regulating valve to ramp shut. At the same
time, control of the bypass feedwater
regulating valve is changed from the BFV
controller (1-FIC-1105, -1106) to the
feedwater bypass trip set control (1-FC-1211,
-1221). The trip set control provides a
constant output signal to the electro-
pneumatic converter (1-I/P-1105, -1106)
which will position the bypass valve to
provide 5 percent of full load feedwater
flow.”

Accordingly, a reactor trip is expected since
the MFRV will ramp shut. The Main CPU
will automatically control the DFWCS after
the trip.

Input state: open circuit (closed = not
tripped). Turbine Trip failing open
indicates that there is a turbine trip.
Plant information states that this
channel is not used for FW control.

Channel 22 - Main CPU
Failed (Input) fails closed
(fails as is)

A Main CPU failure will be
annunciated in the PDU and in the
plant computer.

A failover from the Main CPU to the B/U
CPU will take place, and the B/U CPU will be
in automatic control.

Input state: open circuit (closed =
failed). Main CPU Failed (from the
MFV) failing closed indicates that
the Main CPU failed.

Channel 22 - Main CPU
Failed (Input) fails open
(fails to opposite state)

There is no indication of this
failure.

The Main CPU would “think” that it is OK,
regardless of its status. If the Main CPU is
OK, operation of DFWCS is unaffected.

If the Main CPU is failed, the MFV controller
will detect this failure, and the B/U CPU will
take control of the DFWCS.

Input state: open circuit (closed =
failed). Main CPU Failed (from the
MFV) failing open indicates that the
Main CPU is OK.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-33

Channel 23 - B/U CPU
Failed (Input) fails closed
(fails as is)

A B/U CPU failure will be
annunciated in the PDU and in the
plant computer.

The Main CPU believes that the B/U CPU
failed. Operation of DFWCS is unaffected. If
the Main CPU fails, the MFV controller will
detect this failure, but this controller knows
that the B/U CPU is OK; hence, the B/U CPU
will take control of the DFWCS.

Input state: open circuit (closed =
failed). B/U CPU Failed (from the
MFV) failing closed indicates that
the B/U CPU failed.

Channel 23 - B/U CPU
Failed (Input) fails open
(fails to opposite state)

There is no indication of this
failure.

The Main CPU would “think” that the B/U
CPU is OK, regardless of the B/U CPU’s
status. If the Main CPU is OK, operation of
DFWCS is unaffected.

If the Main CPU failed, a failover to the B/U
CPU would occur. If the B/U CPU is OK,
this CPU would take automatic control, and
operation of DFWCS is unaffected. If the
B/U CPU fails, the controllers would go to
manual.

Input state: open circuit (closed =
failed). B/U CPU Failed (from the
MFV) failing open indicates that the
B/U CPU is OK.

Channel 24 - Time Sync
(Input)

If the time is reset, it may be shown
in the PDU.

No effect. An external clock synchronization
signal causes the time to reset to a
pre-arranged value defined in the
setpoints. Our understanding is that
the input “Time Sync” is associated
with this signal. It appears that this
input is not used in the control of the
DFWCS.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-34

Channel 25 - Neutron Flux #
1 Bypass (Input) fails closed
(fails as is)

There is no indication of this
failure.

The Main CPU believes the neutron flux # 1
is not bypassed, regardless of the position of
the external keyswitch. If the position of the
keyswitch is “normal,” i.e., not bypassed,
operation of DFWCS is not affected.

If the position of the keyswitch is “bypass,”
the Main CPU still will use the neutron flux #
1, possibly resulting in incorrect control of the
DFWCS.

Input state: open circuit (we assumed
closed = not bypassed). Neutron
Flux # 1 Bypass failing closed
indicates that this flux is not
bypassed.

An external keyswitch is used to
bypass the neutron flux signal.

Channel 25 - Neutron Flux #
1 Bypass (Input) fails open
(fails to opposite state)

It appears that the status of the
neutron flux signal # 1, i.e., normal
or bypass, is not displayed in the
PDU. If this assumption is correct,
there is no indication of this failure.

The Main CPU believes the neutron flux # 1
is bypassed, regardless of the position of the
external keyswitch. The neutron flux signal #
1 will be taken out of service but the other
neutron flux signal will be used.

If the position of the keyswitch is “bypass,”
the Main CPU’s action is appropriate, so
operation of the DFWCS is not affected.

If the position of the keyswitch is “normal,”
i.e., not bypassed, the Main CPU won’t use
the neutron flux # 1, resulting in a degradation
of the input data used by the DFWCS.

Input state: open circuit (we assumed
closed = not bypassed). Neutron
Flux # 1 Bypass failing open
indicates that this flux is bypassed.

An external keyswitch is used to
bypass the neutron flux signal.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-35

Channel 26 - Neutron Flux #
2 Bypass (Input) fails closed
(fails as is)

There is no indication of this
failure.

The Main CPU believes the neutron flux # 2
is not bypassed, regardless of the position of
the external keyswitch. If the position of the
keyswitch is “normal,” i.e., not bypassed,
operation of DFWCS is not affected.

If the position of the keyswitch is “bypass,”
the Main CPU still will use the neutron flux #
2, possibly resulting in incorrect control of the
DFWCS.

Input state: open circuit (we assumed
closed = not bypassed). Neutron
Flux # 2 Bypass failing closed
indicates that this flux is not
bypassed.

An external keyswitch is used to
bypass the neutron flux signal.

Channel 26 - Neutron Flux #
2 Bypass (Input) fails open
(fails to opposite state)

It appears that the status of the
neutron flux signal # 2, i.e., normal
or bypass, is not displayed in the
PDU. If this assumption is correct,
there is no indication of this failure.

The Main CPU believes the neutron flux # 2
is bypassed, regardless of the position of the
external keyswitch. The neutron flux signal #
2 will be taken out of service but the other
neutron flux signal will be used.

If the position of the keyswitch is “bypass,”
the Main CPU’s action is appropriate, so
operation of the DFWCS is not affected.

If the position of the keyswitch is “normal,”
i.e., not bypassed, the Main CPU won’t use
the neutron flux # 2, resulting in a degradation
of the input data used by the DFWCS.

Input state: open circuit (we assumed
closed = not bypassed). Neutron
Flux # 2 Bypass failing open
indicates that this flux is bypassed.

An external keyswitch is used to
bypass the neutron flux signal.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-36

Channel 27 - Positioner
Selected (Input) fails closed
(fails as is)

There is no indication of this
failure.

The Main CPU will keep the A positioner as
the active positioner. If the A positioner is
OK, operation of the DFWCS is unaffected.

If the accumulated deviation between the
MFV demand from the Main CPU and the
position of the MFRV exceeds a setpoint
value, the opposite positioner (B) will be put
into service and the Diagnostic Transfer mode
will be shifted to lockout. Operation of the
DFWCS is unaffected.

Input state: open circuit (we assumed
open = B positioner selected).
Positioner Selected failing closed
indicates that the A positioner is
selected as the active positioner.

An analysis of this channel was not
found in plant information.

Channel 27 - Positioner
Selected (Input) fails open
(fails to opposite state)

There is no direct indication of this
failure. An indirect indication is
that the PDU will show that the
active positioner changed from A to
B.

The Main CPU will select the B positioner as
the active positioner. If the B positioner is
OK, operation of the DFWCS is unaffected.

If the accumulated deviation between the
MFV demand from the Main CPU and the
position of the MFRV exceeds a setpoint
value, the opposite positioner (A) will be put
into service and the Diagnostic Transfer mode
will be shifted to lockout. Operation of the
DFWCS is unaffected.

Input state: open circuit (we assumed
open = B positioner selected).
Positioner Selected failing open
indicates that the B positioner is
selected as the active positioner.

An analysis of this channel was not
found in plant information.

Channel 28 - No Failures in
Other Microprocessor (Input)
fails closed (fails as is)

There is no indication of this
failure.

The Main CPU believes that the B/U CPU is
OK. Operation of the DFWCS is unaffected.

If the Main CPU fails, two cases are possible:
1) If the B/U CPU is OK, a failover to the
B/U CPU occurs, so operation of DFWCS is
unaffected. 2) If the B/U CPU also is failed,
the controllers go to manual, so the operators
will have to take manual control.

Input state: open circuit (we assumed
closed= no failures). No Failures in
Other Microprocessor failing closed
indicates that there are no failures in
the B/U microprocessor.

Plant document names this channel
“Deviation Alarm Status from Other
CPU.”

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-37

Channel 28 - No Failures in
Other Microprocessor (Input)
fails open (fails to opposite
state)

There is no indication of this
failure.

The Main CPU believes that the B/U CPU is
failed. Operation of the DFWCS is
unaffected. However, if the Main CPU fails,
a failover to the B/U CPU will not occur. The
operators will have to take manual control.

Input state: open circuit (we assumed
closed= no failures). No Failures in
Other Microprocessor failing open
indicates that the B/U
microprocessor is failed.

Plant document names this
channel“Deviation Alarm Status
from Other CPU.”

Channel 29 - No Deviations
in Other Microprocessor
(Input) fails closed (fails as
is)

There is no indication of this
failure.

The Main CPU believes that there are no
deviations in the B/U CPU. Operation of the
DFWCS is unaffected.

If the Main CPU fails, two cases are possible:
1) If there are no deviations in the B/U CPU, a
failover to the B/U CPU occurs, so operation
of DFWCS is unaffected. 2) If there are
deviations in the B/U CPU, the controllers go
to manual, so the operators will have to take
manual control.

Input state: open circuit (we assumed
closed= no failures). No Deviations
in Other Microprocessor failing
closed indicates that this status is
OK, i.e., there are no deviations in
the other microprocessor.

Plant document names this channel
“CPU Level Status from Other CPU”
and states that it is not used.

Channel 29 - No Deviations
in Other Microprocessor
(Input) fails open (fails to
opposite state)

There is no indication of this
failure.

The Main CPU believes that there are
deviations in the B/U CPU. Operation of the
DFWCS is unaffected. However, if the Main
CPU fails, a failover to the B/U CPU will not
occur. The operators will have to take manual
control.

Input state: open circuit (we assumed
closed= no failures). No Deviations
in Other Microprocessor failing open
indicates that this status is failed, i.e.,
there are deviations in the other
microprocessor.

Plant document names this channel
“CPU Level Status from Other CPU”
and states that it is not used.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-38

Channel 30 - Both Level
Signals Valid in Other
Microprocessor (Input) fails
closed (fails as is)

There is no indication of this
failure.

The Main CPU believes that both S/G level
signals are invalid in the B/U CPU. The
status of the level signals in the B/U is used
by the Main CPU in its S/G level deviation
logic. It appears that the Main CPU would
fail itself when it only has one valid level
signal and both S/G level signals are invalid
in the B/U CPU. If the Main CPU fails due to
this reason, there are two cases: 1) if both S/G
level signals are valid in the B/U CPU, this
CPU takes control, and 2) if both S/G level
signals are invalid in the B/U CPU, it appears
that the B/U CPU would fail itself, and the
operators would have to take manual control.

Input state: open circuit (we assumed
closed= invalid). Both Level Signals
Valid in Other Microprocessor
failing closed indicates that both S/G
level signals are invalid in the B/U
microprocessor.

Plant document names this channel
“CPU Steam Flow Status from Other
CPU” and states that it is not used.

Channel 30 - Both Level
Signals Valid in Other
Microprocessor (Input) fails
open (fails to opposite state)

There is no indication of this
failure.

The Main CPU believes that both S/G level
signals are valid in the B/U CPU. The status
of the level signals in the B/U is used by the
Main CPU in its S/G level deviation logic. If
the Main CPU and its own S/G level signals
are OK, operation of the DFWCS is
unaffected.

Input state: open circuit (we assumed
closed= invalid). Both Level Signals
Valid in Other Microprocessor
failing open indicates that both S/G
level signals are valid in the B/U
microprocessor.

Plant document names this channel
“CPU Steam Flow Status from Other
CPU” and states that it is not used.

FMEA of Digital Backplane (I/O) of Main CPU

Failure Mode Detection of Failure Mode Failure Effects Comments

B-39

Channel 31 - Both Steam
Flow and Both FW Flow
Signals Valid in Other
Microprocessor (Input)

NA NA Plant document names this
channel“CPU Feedflow Status from
Other CPU,” and states that this
channel is not used. This channel is
connected to the other CPU,
however, it is unknown how the
information transmitted through this
channel is used by the other CPU.

B-40

Table B.2-4 FMEA of MFV Controller (FIC-1111/1121)

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

Loss of analog input (Fail to 0.0 VDC)

ANI0 (S/G level) Fail to
0.0

No alarm or message.
The display will be -
116.5".

The display at the MFV controller will be low. The
failure can affect the operator’s ability to manually
control the MFRV.

The signal is for display only.

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-41

ANI1 (Valve demand
from the main CPU) Fail
to 0.0

A deviation alarm will
be activated by the MFV
controller when the
Main CPU demand
signal differs from the
B/U CPU demand signal
by greater than a
settable, predetermined
setpoint after a settable
predetermined time
delay. The deviation
status will be sent to the
BFV controller via
Microlink. The BFV
controller will activate
an alarm to the Plant
Computer. The PDI
controller will display a
“MFV Fail” message.

The controller will initially forward the failed
demand signal to the MFRV positioner, PDI
controller, and the CPUs of the other S/G. The PDI
controller will then detect the signal failure and
automatically become the manual controller for the
MFV using the old value in its circular buffer. The
MFRV must be manually controlled from the PDI
controller.

The failed signal will be sent to the CPUs of the
other S/G, and probably will not affect the FWP
speed calculation, because the speed calculation
selects the higher of the two flow demand signals,
the flow demand signal calculated by the CPUs and
the flow demand signal back calculated from the
MFV signal received from the other S/G.

The response specified in plant document
probably will not take place, because the PDI
controller has a scan time of not exceeding
100 milliseconds, while the CPU failover
logic has a 1 second delay.

The MFV demand signal is also sent to the
CPUs of the other S/G and used in the FWP
speed calculation of the other S/G.

ANI2 (Valve demand
from the B/U CPU) Fail
to 0.0

A deviation message is
activated, after a
settable, predetermined
time delay. The
deviation message will
be sent to the BFV
controller through
Microlink, and the BFV
controller will activate a
System Trouble alarm at
the Plant Computer.

The MFV controller will continue to forward the
signal from the main CPU to its output. No effect
on system operation is expected.

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-42

Loss of analog output (Fail to 0.0 VDC)

ANO0 (Output to the
MFRV positioner, PDI
controller, and other S/G)
Fail to 0.0

The PDI controller will
display a “MFV Fail”
message.

The demand signal to the MFRV positioner will fail
to 0, and the valve will begin to shut. The PDI
controller will detect the failure and automatically
transfer to the MFV Fail mode. The PDI controller
output will then rise to the pre-failure value of the
MFV controller output and the MFRV will return to
that position. The MFRV must be manually
controlled from the PDI controller.

The failed signal will initially be sent to the CPUs
of the other S/G, and probably will not affect the
FWP speed calculation.

It is not expected that CPU failover would
take place, because the PDI controller would
take over.

ANO2 (S/G level setpoint
output) Fail to 0.0

A system deviation
alarm at the Plant
Computer will be
activated, if a setpoint
deviation is detected.
The setpoint display at
the BFV controller will
be low.

The CPUs may detect a setpoint deviation if the
deviation setpoint limit is exceeded, and revert to a
built-in setpoint.

The operator may use the MFV controller to
manually adjust the SG level setpoint.

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-43

Digital Inputs Fail Open

CCI0 (B/U CPU Power
Fail or in Test) Fails
Open

The controller will
indicate that the B/U
CPU is failed, and the
B/U CPU status will be
sent through Microlink
to the BFV controller
which will activate an
annunciator in the
control room.

The controller will block the B/U CPU demand
signal from its output. System operation will not be
affected. The B/U CPU status is sent to the CPUs
and could affect the deviation logic of the CPUs.

The signal is normally closed indicating the
B/U CPU is OK.

It is not clear what the B/U CPU would do
when it receives the failure status of its own
from the MFV controller. How does the B/U
CPU determine its status to send to the Main
CPU?

CCI1 (B/U CPU Fail)
Fails Open

None. The controller will not be able to determine the
correct status of the B/U CPU. The operation is not
affected unless other failures occur.

The signal is normally open indicating the
B/U CPU is OK.

CCI2 (Main CPU Power
Fail or in Test) Fails
Open

The BFV controller will
actuate an alarm to the
Plant Computer.

Failover from the main CPU to the B/U CPU will
take place. The controller will send a Main CPU
Fail signal to the CPUs and to the BFV controller
through Microlink. The Main CPU Fail signal
affects deviation logic of the B/U CPU.

The signal is normally closed indicating the
Main CPU is OK.

It is not clear what the Main CPU will do
when it receives the Main CPU Fail signal
from the MFV controller. How does the Main
CPU determine its own status to send to the
B/U CPU?

CCI3 (Main CPU Fail)
Fails Open

None. The controller will not be able to determine the
status of the Main CPU. The operation is not
affected unless other failures occur.

The signal is normally open indicating the
main CPU is OK.

Digital Input Fail Closed

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-44

CCI0 (B/U CPU Power
Fail or in Test) Fails
Closed

None. The controller will not be able to determine the
correct status of the B/U CPU. The operation is not
affected unless other failures occur.

The signal is normally closed indicating the
B/U CPU is OK.

CCI1 (B/U CPU Fail)
Fails Closed

The controller will
indicate that the B/U
CPU is failed, and the
B/U CPU status will be
sent through Microlink
to the BFV controller
which will activate an
annunciator in the
control room.

The controller will block the B/U CPU demand
signal from its output. System operation will not be
affected. The B/U CPU status is sent to the CPUs
and could affect the deviation logic of the CPUs.

It is not clear what the B/U CPU would do
when it receives the failure status of its own
from the MFV controller. How does the B/U
CPU determine its status to send to the Main
CPU?

The signal is normally open indicating that the
CPU is OK.

CCI2 (Main CPU Power
Fail or in Test) Fails
Closed

None. The controller will not be able to determine the
correct status of the Main CPU. The operation is
not affected unless other failures occur.

The signal is normally closed.

CCI3 (Main CPU Fail)
Fails Closed

The BFV controller will
actuate an annunciator in
the control room
indicating the Main CPU
Fail.

A failover from the Main CPU to the B/U CPU will
take place. The controller will send a Main CPU
Fail signal to the CPUs and to the BFV controller
through Microlink. The Main CPU Fail signal
affects deviation logic of the B/U CPU.

The signal is normally open indicating the
main CPU is OK.

It is not clear what the B/U CPU would do
when it receives the failure status of its own
from the MFV controller. How does the Main
CPU determine its own status to send to the
B/U CPU?

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-45

Digital Outputs Fail Open

CCO0 (A/M Status to the
Main CPU) Fails Open

The PDU of the Main
CPU will display the
Transfer Inhibit Alarm.
The alarm will also be
sent to the Plant
Computer.

A manual signal will be sent to the Main CPU, and
the Transfer Inhibit Alarm window will be
activated. Assuming the Main CPU is in control,
and the MFV controller is in auto, the Main CPU
will track the MFV controller output. The MFV
controller output will be sent from the Main CPU to
the MFV controller. The automatic control is
effectively lost. This failure may lead to a reactor
trip.

Normally, upon a reactor trip, the MFRV will be
ramped closed and the post trip positioning relay
circuit will ensure the MFV demand signal is
reduced to zero. It is not obvious that the MFRV
will be ramped closed, when the controller is in
Manual. The post trip positioning relay circuit
should ensure the MFRV be closed.

The signal is normally closed when in auto
mode.

The response to a reactor trip needs to be
confirmed through review of the software.

CCO1 (A/M Status to the
B/U CPU) Fails Open

The PDU of the B/U
CPU will display the
Transfer Inhibit Alarm.
The alarm will also be
sent to the Plant
Computer.

Assuming the Main CPU is in control and the
controller is in auto, the operation will not be
affected.

The signal is normally closed when in auto
mode.

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-46

CCO2 (B/U CPU Failed
Status to CPUs) Fails
Open

There is no direct
indication of the failure.

The failed signal will be sent to the Main and B/U
CPUs.

Assuming the Main CPU is in control, and the
controller is in auto, the operation is not affected.

The signal is normally open indicating the
B/U CPU is OK.

If the MFV controller
detects failure of the
B/U CPU, it generates a
local B/U CPU Fail
message and sends the
status through Microlink
to the BFV controller
which will actuate an
annunciator in the
control room.

Assuming the Main CPU is not available, and the
B/U CPU is in control, when the failure occurs, the
MFV controller should know the correct status of
the B/U CPU, and use the MFV demand from the
B/U CPU as the output. The system operation will
not be affected. If, in addition, the B/U CPU fails,
the MFV controller should be able to detect it and
transfer to the manual mode.

We assumed that the failure mode is a local
failure of the output circuitry, not the
controller itself.

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-47

CCO3 (Main CPU Failed
Status to CPUs) Fails
Open

There is no direct
indication of the failure.

The failed signal will be sent to the Main and B/U
CPUs.

Assuming the Main CPU is in control, the operation
is not affected.

This signal is normally open indicating the
Main CPU is OK.

If the MFV controller
detects failure of the
Main CPU, it generates
a local Main CPU Fail
message and sends the
status through Microlink
to the BFV controller
which will actuate an
annunciator in the
control room.

Assuming the Main CPU failed while in control, its
failure should be detected by the MFV controller,
and a failover to the B/U CPU will take place. The
incorrect Main CPU status may affect the deviation
logic of the B/U CPU.

We assumed that the failure mode is a local
failure of the output circuitry, not the
controller itself.

It is not clear how the B/U CPU reconciles the
conflicting information about status of the
Main CPU; that is, the MFV controller
indicates it is good, while the signal directly
from the Main CPU probably indicates it has
failed.

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-48

Digital Outputs Fail Closed

CCO0 (A/M Status to the
Main CPU) Fails Closed

No direct indication of
the failure is available.

The failed signal will be sent to the Main CPU. If
the Main CPU is in control, the system operation is
not affected. If the operator switches the controller
to manual, the Main CPU will not recognize it, and
continues sending its output to the MFV. As a
result, Transfer Inhibit will not be activated. As
long as the operator properly takes control, the
operation continues until the MFV output deviation
from the Main CPU output exceeds the setpoint, in
which case a failover from Main CPU to B/U CPU
takes place. If the operator fails to manually
control MFV, a loss of feedwater control may lead
to a reactor trip. Is it possible that a Transfer is
initiated with the failure? Upon a reactor trip, the
MFRV will be ramped closed and the post trip
positioning relay circuit will ensure the MFV
demand signal is reduced to zero. The pre-existing
failure of the CCO0 does not affect the response to
a reactor trip.

The signal is normally closed when in auto
mode.

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-49

CCO1 (A/M Status to the
B/U CPU) Fails Closed

No direct indication of
the failure is available.

If the Main CPU is in control, and the controller is
in auto, then the system operation is not affected.

The signal is normally closed when the
controller is in auto.

The deviation will
actuate an alarm be sent
to the Plant Computer.

If the B/U CPU is in control, and the operator
changes the controller to manual, the B/U CPU will
not be able to detect it, and the Transfer Inhibit will
not be actuated. The B/U CPU continues sending
its MFV demand to the controller until the
deviation between the MFV demand calculated by
the B/U CPU and the MFV controller output
exceeds the setpoint, when the B/U CPU will fail
and the MFV controller will transfer to manual.

CCO2 (B/U CPU Failed
Status to CPUs) Fails
Closed

No direct indication of
the failure will be
available.

The failed signal will be sent to both CPUs. The
MFV controller itself is aware of the correct status
of the B/U CPU.

If the Main CPU is in control and the controller is
in Auto, system operation will not be affected. The
failed signal may affect the deviation logic of the
Main CPU.

The signal is normally open indicating the
B/U CPU is OK.

It is not clear how the Main CPU reconciles
the conflicting information about status of the
B/U CPU; that is, the MFV controller
indicates it is failed, while the signal directly
from the B/U CPU probably indicates it is
good.

If the B/U CPU is not failed, the Main CPU is
failed, and the controller is in Auto, the failure will
cause the controllers to switch to manual.

It is assumed that the B/U CPU will fail itself.

FMEA of MFV Controller (FIC-1111/1121)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-50

CCO3 (Main CPU Failed
Status to CPUs) Fails
Closed

The Main CPU failure
will be annunciated in
the control room.

The failed signal will be sent to both CPUs. The
MFV controller itself is aware of the correct status
of the B/U CPU.

If the Main CPU is in control, and the controller is
in Auto, a failover to B/U CPU will take place.

The signal is normally open indicating the
Main CPU is OK.

It is assumed that the Main CPU will fail itself
when it receives the failed signal.

Loss of Power to Controller

Loss of power The MFV controller will
be off. The PDI
controller will display a
“MFV Fail” message.

All analog outputs fail to 0.

All digital outputs fail to Open status.

The PDI controller will automatically switch to its
MFV failure mode of operation and its output will
raise to the pre-failure output level of the MFV
controller. The MFRV has to be controlled
manually using the PDI controller.

The CPUs will use the built-in S/G level setpoint
and track PDI controller output.

B-51

 Table B.2-5 FMEA of BFV Controller (FIC-1105/1106)

In conducting the FMEA of the BFV Controller we made the following assumptions:

1. We assumed that initially the DFWCS is in automatic high-power mode with all system modules normally running, and the Main CPU is controlling the
feedwater system. It appears that plant hazards analysis of the BFV controller assuming that the DFWCS is operating in low-power mode.

2. The BFRV is normally closed during high-power mode. A signal of “0.0” to the BFRV positioner is interpreted in this analysis to result in the BFRV
remaining closed.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

Loss of Analog Input (Fail to 0.0 VDC)

ANI0 (Steam generator (S/G)
level) fails to 0.0 VDC

The controller will display a value
and bargraph of S/G level equal to -
116.5". No alarms will be
activated.

The DFWCS will continue its operation in
automatic mode.

The S/G level signal is used for
display only.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-52

ANI1 (Valve demand from
the main CPU) fails to 0.0
VDC

During normal high-power mode
(i.e., not high-power override mode)
the failure is not detected.

The controller will forward the failed demand
signal to the BFRV positioner per automatic
mode of control. Since the signal corresponds
to closure of the BFRV, and the BFRV is
already closed, there is no negative effect on
the operation of the DFWCS.

The failure would manifest when the BFRV
should open, but would receive a signal to
remain closed. The BFRV is required to open
when there is a transfer to 1) low-power
mode, or 2) high-power override mode. A
deviation would be detected by the Main CPU
which will then fail. Subsequently, the
backup (B/U) CPU also will fail due to the
same reason. Hence, there would be a loss of
automatic control of the DFWCS.

The BFRV is normally closed during
high-power mode.

Input signals to BFV controller are
clamped within their range limits.
This appears to mean that a failure to
0.0 VDC of ANI1 will be interpreted
by the controller as a signal to close
the BFRV.

The PDI controller also receives the
failed demand signal which is held in
a circular buffer.

ANI2 (S/G level setpoint)
fails to 0.0 VDC

The controller will display a value
and bargraph of S/G level equal to -
116.5". No alarms will be
activated.

The DFWCS will continue its operation in
automatic mode.

The level setpoint signal is used for
display only.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-53

ANI3 (Valve demand from
the B/U CPU) fails to 0.0
VDC

During high-power mode with no
additional failures, the failure is not
detected (see comments).

Since this signal is not used when the main
CPU is controlling, there is no negative effect
on the operation of the DFWCS.

The failure would manifest when 1) the main
CPU fails, and 2) the BFRV is required to
open, but would receive a signal to remain
closed. The BFRV is required to open when
there is a transfer to 1) low-power mode, or
2) high-power override mode. A deviation
would be detected by the Main CPU which
will then fail. Subsequently, the backup CPU
also will fail due to the same reason. Hence,
there would be a loss of automatic control of
the DFWCS.

Normally, the BFV controller sends
the demand from the main CPU to
the BFRV positioner.

Plant information indicates that the
BFV controller will detect the
deviation between the main and
backup CPU demand signals when
they differ by greater than a settable,
predetermined setpoint after a
settable, predetermined time delay.
However, since both signals demand
the BFRV to be closed, it is not clear
that the failure will be detected.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-54

Loss of Analog Output (Fail to 0.0 mADC)

ANO0 (Output to the BFRV
(positioner)) fails to 0.0
mADC

During normal high-power mode
(i.e., not high-power override mode)
the failure is not detected.

Since the signal corresponds to closure of the
BFRV, and the BFRV is already closed, there
is no negative effect on the operation of the
DFWCS.

The failure would manifest when the BFRV
should open, but would receive a signal to
remain closed. The BFRV is required to open
when there is a transfer to 1) low-power
mode, or 2) high-power override mode. A
deviation would be detected by the Main CPU
which will then fail. Subsequently, the
backup CPU also will fail due to the same
reason. Hence, there would be a loss of
automatic control of the DFWCS.

The BFRV is normally closed during
high-power mode.

The PDI controller also receives the
failed demand signal which is held in
a circular buffer.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-55

Digital Input (Fail Open)

CCI0 (B/U CPU Power Fail
or in Test) fails open

The controller will display the
message “B/U FAIL.” The “Main
or B/U CPU Fail” contact (CCO3)
shall close, so a plant computer
DFWCS Trouble Alarm will
actuate.

The controller will block the B/U CPU BFRV
demand signal from its output. As long as the
Main CPU is available, system operation will
be unaffected and the Main CPU BFRV
demand signal will continue to be forwarded
to the output.

If the Main CPU is not available, the BFV
controller will indicate that both CPUs are
failed and will revert to Manual mode of
operation. The operator will then be required
to take action to control S/G level.

Contact CCI0 open means that the
Power Fail / Test status of the B/U
CPU failed.

CCI1 (B/U CPU Fail) fails
open

This failure cannot be detected. If
the B/U CPU actually fails its
watchdog test, the failure will be
detected by other controllers that, in
turn, will send a “B/U CPU Fail”
signal to the BFV controller. In this
way, a plant computer DFWCS
Trouble Alarm will actuate.

The controller will be unable to determine the
watchdog status of the B/U CPU. The
controller will assume that the watchdog
status is normal.

System operation is unaffected unless the B/U
CPU actually fails its watchdog test (which
will be detected) and the Main CPU becomes
unavailable. When this happens, the BFRV
demand signal from the failed B/U CPU will
be sent to the BFRV positioner. The impact
on the DFWCS will vary depending on the
nature and severity of the B/U CPU fault.

Contact CCI1 open means that the
watchdog status of the B/U CPU is
OK.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-56

CCI2 (Main CPU Power Fail
or in Test) fails open

The controller will display the
message “M FAIL.” The “Main or
B/U CPU Fail” contact (CCO3)
shall close, so a plant computer
DFWCS Trouble Alarm will
actuate.

The controller will block the Main CPU
BFRV demand signal and will forward the
“tracking” B/U CPU BFRV demand signal to
its output. The Main and B/U CPUs will
remain in controlling and tracking modes,
respectively. The controller’s output will drift
upward or downward. This may result in the
BFRV opening to some extent.

Contact CCI2 open means that the
Power Fail / Test status of the Main
CPU failed.

Plant information indicates that if
the output drifts beyond the deviation
limit of the Main CPU, it will fail,
and the B/U CPU will assume
automatic control of the BFRV.
However, it appears that the Main
CPU will not fail because the CPU
deviation logic for the BFRV
demand signal is inhibited during
High Power Mode Operations.

CCI3 (Main CPU Fail) fails
open

This failure cannot be detected. If
the Main CPU actually fails its
watchdog test, the failure will be
detected by other controllers that, in
turn, will send a “Main CPU Fail”
signal to the BFV controller. In this
way, a plant computer DFWCS
Trouble Alarm will actuate.

The controller will be unable to determine the
watchdog status of the Main CPU. The
controller will assume that the watchdog
status is normal.

System operation is unaffected unless the
Main CPU actually fails its watchdog test
(which will be detected). When this failure
occurs, the BFRV demand signal from the
failed Main CPU will be sent to the BFRV
positioner. The impact on the DFWCS will
vary depending on the nature and severity of
the Main CPU fault.

Contact CCI3 open means that the
watchdog status of the Main CPU is
OK.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-57

Digital Input (Fail Closed)

CCI0 (B/U CPU Power Fail
or in Test) fails closed

This failure cannot be detected. If
the B/U CPU actually fails or is
placed in test, the failure will be
detected by other controllers that, in
turn, will send a “B/U CPU Fail”
signal to the BFV controller. In this
way, a plant computer DFWCS
Trouble Alarm will actuate.

The controller will be unable to determine the
Power Fail / Test status of the B/U CPU. The
controller will assume that this status is
normal.

System operation is unaffected unless 1) the
B/U CPU actually fails or is placed in test
(either of these events will be detected by the
MFV controller which will send a failure
signal to B/U CPU), and 2) the Main CPU
becomes unavailable. When this happens, the
BFRV demand signal from the failed B/U
CPU will be sent to the BFRV positioner.
The impact on the DFWCS will vary
depending on the nature and severity of the
B/U CPU fault.

Contact CCI0 closed means that the
Power Fail / Test status of the B/U
CPU is OK.

CCI1 (B/U CPU Fail) fails
closed

The controller will display the
message “B/U FAIL.” The “Main
or B/U CPU Fail” contact (CCO3)
shall close, so a plant computer
DFWCS Trouble Alarm will
actuate.

The controller will block the B/U CPU BFRV
demand signal from its output.

As long as the Main CPU is available, system
operation will be unaffected and the Main
CPU BFRV demand signal will continue to be
forwarded to the output.

If the Main CPU is not available, the BFV
controller will indicate that both CPUs are
failed and will revert to Manual mode of
operation. The operator will then be required
to take action to control S/G level.

Contact CCI1 closed means that the
watchdog status of the B/U CPU is
failed.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-58

CCI2 (Main CPU Power Fail
or in Test) fails closed

This failure cannot be detected. If
the Main CPU actually fails or is
placed in test, the failure will be
detected by other controllers that, in
turn, will send a “Main CPU Fail”
signal to the BFV controller. In this
way, a plant computer DFWCS
Trouble Alarm will actuate.

The controller will be unable to determine the
Power Fail / Test status of the Main CPU.
The controller will assume that this status is
normal.

System operation is unaffected unless the
Main CPU actually fails or is placed in test.
Either of these events will be detected by the
MFV controller which will send a failure
signal to the Main CPU. When either of these
events occurs, the BFRV demand signal from
the failed Main CPU will be sent to the BFRV
positioner. The impact on the DFWCS will
vary depending on the nature and severity of
the Main CPU fault.

Contact CCI2 closed means that the
Power Fail / Test status of the Main
CPU is OK.

CCI3 (Main CPU Fail) fails
closed

The controller will display the
message “M FAIL.” The “Main or
B/U CPU Fail” contact (CCO3)
shall close, so a plant computer
DFWCS Trouble Alarm will
actuate.

The controller will block the Main CPU
BFRV demand signal and will forward the
“tracking” B/U CPU BFRV demand signal to
its output. The Main and B/U CPUs will
remain in controlling and tracking modes,
respectively. The controller’s output will drift
upward or downward. This may result in the
BFRV opening to some extent.

Contact CCI3 closed means that the
watchdog status of the Main CPU is
failed.

Plant information indicates that if the
output drifts beyond the deviation
limit of the Main CPU, it will fail,
and the B/U CPU will assume
automatic control of the BFRV.
However, it appears that the Main
CPU will not fail because the CPU
deviation logic for the BFRV
demand signal is inhibited during
High Power Mode Operations.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-59

Digital Output (Fail Open)

CCO0 (Auto/Manual Status
to the Main CPU) fails open

Plant analysis states that “...the
Transfer Inhibit Alarm window will
be activated.” It appears that this
“window” refers to an annunciator
in the main control room.

The CPUs include a digital output
to provide indication for the plant
computer whenever automatic valve
transfer is inhibited.

A Manual status signal will be sent to the
DFWCS Main CPU regardless of the actual
status of the controller. Thus, the transfer of
high power to low power mode is inhibited.
If the controller is in Manual mode, or the
B/U CPU is controlling S/G level, operation is
unaffected.

If the controller is in Auto mode, and the main
CPU is controlling S/G level, this CPU will
“think” that the controller is in Manual mode,
so it appears that it (and the B/U CPU) will
track the BFRV demand from the controller’s
output. The controller, in turn, will receive
the tracked signal, and forward it to its output.
The controller’s output will drift upward or
downward. This may result in the BFRV
opening to some extent.

Contact CCO0 open means that the
Auto/Manual Status to the Main
CPU indicates Manual.

Plant information states that “Main
CPU Automatic control of S/G level
is lost during this failure.” However,
the Main CPU will keep Automatic
control of the rest of the modules of
the DFWCS, so it appears that this
CPU can remain in control of S/G
level, unless there are additional
failures.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-60

CCO1 (Auto/Manual Status
to the B/U CPU) fails open

Plant analysis states that “...the
Transfer Inhibit Alarm window will
be activated.” It appears that this
“window” refers to an annunciator
in the main control room.

The CPUs include a digital output
to provide indication for the plant
computer whenever automatic valve
transfer is inhibited.

A Manual status signal will be sent to the
DFWCS B/U CPU regardless of the actual
status of the controller. Thus, the transfer of
high power to low power mode is inhibited.
If the controller is in Manual mode, or the
Main CPU is controlling S/G level, operation
is unaffected.

If the controller is in Auto mode, and the B/U
CPU is controlling S/G level, this CPU will
“think” that the controller is in Manual mode,
so it appears that it (and the Main CPU if
available) will track the BFRV demand from
the controller’s output. The controller, in
turn, will receive the tracked signal and
forward it to its output. The controller’s
output will drift upward or downward. This
may result in the BFRV opening to some
extent.

B/U CPU Automatic control of S/G level is
lost during this failure if operating in low
power mode.

Contact CCO1 open means that the
Auto/Manual Status to the B/U CPU
indicates Manual.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-61

CCO2 (Main and B/U CPUs
Failed Status) fails open

A status signal of “Both CPUs OK”
will be sent to the Fail to Manual
Alarm window (annunciator),
regardless of the actual status of
both CPUs. There is no detection
of the contact CCO2 failing open.

If either the Main or the B/U CPU (or both) is
OK, then the signal is correct. The operation
of the DFWCS is unaffected.

If both CPUs failed, the Fail to Manual Alarm
annunciator is incorrect. This annunciation
(“Both CPUs OK”) would fail to alert the
operators to take manual control of the
DFWCS. The DFWCS would not be
controlled neither automatically nor manually.
It is not known at this time the consequences
of this total loss of control.

Contact CCO2 open means that the
Main and B/U CPUs Failed Status is
OK, i.e., at least one CPU is not
failed.

CCO3 (Main or B/U CPU
Failed Status) fails open

A status signal of “CPU OK” will
be sent to the Plant Computer,
regardless of the actual status of
each CPU. There is no detection of
the contact CCO3 failing open.

If both CPUs are OK, the signal is correct.
The operation of the DFWCS is unaffected.

If the main (B/U) CPU is failed, the signal is
incorrect. However, the DFWCS is controlled
by the B/U (main) CPU.

If both CPUs failed, the Fail to Manual Alarm
annunciator (fed from CCO2) would alert the
operators to take manual control of the
DFWCS.

Contact CCO3 open means that the
Main or B/U Failed Status is OK,
i.e., both CPUs are OK (not failed).

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-62

Digital Output (Fail Closed)

CCO0 (Auto/Manual Status
to the Main CPU) fails
closed

This failure mode is not detected. An Auto status signal will be sent to the
DFWCS Main CPU regardless of the actual
status of the controller. Operation is
unaffected if the controller is in Auto mode,
or the B/U CPU is in control.

If the controller is in Manual mode, and the
Main CPU “thinks” it is in control (due to the
erroneous signal), this CPU will attempt to
control the BFRV by keeping it closed, even
though the BFV controller blocks this CPU’s
signal when it’s in manual mode. Operation
of DFWCS is unaffected.

Contact CCO0 closed means that the
Auto/Manual Status to the Main
CPU indicates Automatic.

Plant information indicates that the
Main CPU will fail when the
Deviation Setpoint is reached.
However, it appears that the Main
CPU will not fail because the CPU
deviation logic for the BFRV
demand signal is inhibited during
High Power Mode Operations.

CCO1 (Auto/Manual Status
to the B/U CPU) fails closed

This failure mode is not detected. An Auto status signal will be sent to the
DFWCS B/U CPU regardless of the actual
status of the controller. If the controller is in
Auto mode, or the Main CPU is in control,
operation is unaffected.

If the controller is in Manual mode, and the
Main CPU failed, the B/U CPU “thinks” that
it is in control, so this CPU will attempt to
control the BFRV by keeping it closed, but
the BFV controller blocks this CPU’s signal
when it’s in manual mode. Operation of
DFWCS is unaffected.

Contact CCO1 closed means that the
Auto/Manual Status to the B/U CPU
indicates Automatic.

Plant information indicates that the
B/U CPU will fail when the
Deviation Setpoint is reached.
However, it appears that this CPU
will not fail because the CPU
deviation logic for the BFRV
demand signal is inhibited during
High Power Mode Operations.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-63

CCO2 (Main and B/U CPUs
Failed Status) fails closed

A status signal of “Both CPUs
Failed” will be sent to the Fail to
Manual Alarm window
(annunciator), regardless of the
actual status of both CPUs. This
annunciator will actuate.

If both the Main and B/U CPUs are OK, the
DFWCS is controlled in the Automatic mode.
The incorrect signal may be puzzling to the
operators. However, the “Main or B/U CPU
Failed Status” (from CCO3) indicates that no
CPU failed; this indication, in turn, would
give a clue to the operators that the incorrect
signal is wrong. Nevertheless, the operators
may decide to take manual control of the
DFWCS. In this way, errors may be
executed. If either the Main or the B/U CPU
(but not both) failed, the DFWCS is
controlled in the Automatic mode by the
remaining CPU. Both the “Main and B/U
CPUs Failed Status” and “Main or B/U CPU
Failed Status” indicate failure. The operators
are likely to take manual control of the
DFWCS. In this way, errors may be
executed.

If both CPUs failed, the signal is correct.
Operation of the DFWCS is unaffected,
except for the failure of the CPUs.

Contact CCO2 closed means that the
Main and B/U CPUs Failed Status is
failed, i.e., the Main and B/U CPUs
are failed.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-64

CCO3 (Main or B/U CPU
Failed Status) fails closed

A status signal of “CPU Failed”
will be sent to the Plant Computer,
regardless of the actual status of
each CPU. The Plant Computer
DFWCS Trouble Alarm will
actuate.

If both CPUs are OK, the signal is incorrect.
However, the operation of the DFWCS is
unaffected. The operators are expected to
become aware of the Plant Computer DFWCS
Trouble Alarm, and troubleshoot this
erroneous signal.

If the main or B/U CPU is failed, the signal is
correct. The operation of the DFWCS is
unaffected, except for the failure of one CPU.

Contact CCO3 closed means that the
Main or B/U CPU Failed Status is
failed, i.e., at least one CPU failed.

FMEA of BFV Controller (FIC-1105/1106)

Failure Mode Detection of Failure Mode Failure Effects Comments

B-65

Loss of Power to Controller

Loss of power to controller The display of the controller will be
off.

ANO0 fail to 0.0 mADC: Since the signal
corresponds to closure of the BFRV, and the
BFRV is already closed, there is no negative
effect on the operation of the DFWCS. The
failure would cause a negative impact when
the BFRV should open, but would receive a
signal to remain closed. The BFRV is
required to open when there is a transfer to
other power modes, such as low-power mode.
CCO0 (CCO1) open: A Manual status signal
will be sent to the DFWCS Main (B/U) CPU
regardless of the actual status of the
controller.
CCO2 open: A status signal of “Both CPUs
OK” will be sent to the Fail to Manual Alarm
annunciator, regardless of the actual status of
both CPUs.
CCO3 open: A status signal of “CPU OK”
will be sent to the Plant Computer, regardless
of the actual status of each CPU.
Summary: please continue after * in the
column “Comments”.

The controller’s analog output
ANO0 will fail to 0.0 mADC, and
the controller’s digital outputs will
fail to Open status.

* Summary: Main and B/U CPUs
will receive signals that controller is
in manual. Thus, the automatic
transfer of power modes is inhibited.
The BFRV remains closed due to
closure signal. The operators cannot
take manual control of the BFRV
using its controller. To control the
BFRV using the PDI controller, the
operators have to position the
handswitch HS-4516(17)C in the
“Bypass Fail” position. The
DFWCS is unable to annunciate
failures via BFV controller’s
contacts CCO2 and CCO3.

B-66

Table B.2-6 FMEA of FWP Controller (FIC-4516/4517)

FMEA of FWP Controller (FIC-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

Loss of analog input (Fail to 0.0 VDC)

ANI0 (Main CPU Speed
Demand) Fails to 0.0

The display at the FWP
controller will be low.

A deviation alarm is
activated at the con-
troller when the Main
CPU demand signal
differs from the B/U
CPU demand signal by
greater than a set-point,
after a time delay. The
deviation alarm status
will be sent to the BFV
controller which will
send the alarm to the
Plant Computer (PC).

The CPU failures and
deviation will be
annunciated in the
control room and sent to
the PC.

The failed signal will be sent to the Lovejoy FWP
speed controller which will detect the failure and
maintain the FWP speed at pre-failure value.

The failed signal is sent to the CPUs for tracking,
and after a delay will cause the CPUs to be failed
due to deviation logic. As a result, the MFV, BFV
and FWP controllers will transfer to manual
control. It is not likely that the FWP controller can
be used to manually control the FWP in this
condition.

Need to confirm operation of the Lovejoy
controller.

FMEA of FWP Controller (FIC-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-67

ANI2 (Bias Signal from
Potentialmeter, also sent
to the CPUs) Fails to 0.0

The BFV controller will
send an alarm to the
Plant Computer, upon
receipt of the Bias
Potential Rate Alarm
from the FWP
controller.

The failed signal corresponds to a -100% bias. The
rate of change of the bias is monitored by the FWP
controller, and if a pre-set limit is exceeded, the
FWP controller switches to manual mode with the
pre-failure value, and a Bias Potential Rate Alarm
signal is sent to the BFV controller via the
Microlink connection. The BFV controller will
then send the alarm to the Plant Computer.

The bias signal is also sent to the Main and
B/U CPUs where it is added to the calculated
pump speed. It is assumed that the failure is a
local failure and a correct signal is sent to the
CPUs.

ANI3 (B/U CPU Speed
Demand) Fails to 0.0

A deviation alarm at the
controller is activated
when the main CPU
demand signal differs
from the B/U CPU
demand signal by
greater than a settable,
predetermined setpoint
after a time delay. The
deviation alarm is also
sent to the BFV
controller via Microlink,
and the BFV controller
will send it to the Plant
Computer.

The controller will continue sending the demand
from the Main CPU to its output, and the system
operation is not affected.

FMEA of FWP Controller (FIC-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-68

Loss of analog output (Fail to 0.0 VDC)

ANO0 (Output to the
Lovejoy Control System)
Fails to 0.0

The CPU failures and
deviation will be
detected by the BFV
controller which will
activate an annunciator
in the control room and
send the alarm to the
Plant Computer.

The failed signal will be sent to the Lovejoy FWP
speed controller which will detect the failure and
maintain the FWP speed at pre-failure value.

The failed signal is sent to the CPUs for tracking,
and after a time delay will cause the CPUs to be
failed due to deviation logic. As a result, the MFV,
BFV and FWP controllers will transfer to manual
control. A complete loss of automatic control will
take place. It is not likely that the FWP controller
can be used to manually control the FWP in this
condition. The FWP has to be manually controlled
using the Lovejoy controller.

Need to confirm operation of the Lovejoy
controller.

ANO2 (Bias Potential
Excitation) Fails to 0.0

(This failure mode is also
applicable to failure to 0.0
of the potential meter.)

The BFV controller will
send an alarm to the
Plant Computer, upon
receipt of the Bias
Potential Rate Alarm
from the FWP
controller.

The failed signal corresponds to a -100% bias. The
rate of change of the bias is monitored by the FWP
controller, and if a pre-set limit is exceeded, the
FWP controller switches to manual mode with the
pre-failure value, and a Bias Potential Rate Alarm
signal is sent to the BFV controller via the
Microlink connection. The BFV controller will
then send the alarm to the Plant Computer.

The failed bias signal is also sent to the Main
and B/U CPUs where it is added to the
calculated pump speed. At the CPU, a FWP
bias deviation logic is used to detect out of
range condition of the signal. It is probably
not going to initiate an alarm, because the bias
should be in the expected range. The output
of the CPUs will not be used by the FWP
controller which is in manual.

Digital Inputs Fail Open

FMEA of FWP Controller (FIC-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-69

CCI0 (B/U CPU Power
Fail or in Test) Fails
Open

The controller will
indicate that the B/U
CPU is failed, and the
B/U CPU status will be
sent through Microlink
to the BFV controller
which will activate an
alarm to the Plant
Computer.

The controller will block the B/U CPU demand
signal from its output. System operation will not be
affected.

The signal is normally closed indicating the
B/U CPU is OK.

The B/U CPU status is not sent back to the
CPUs. This is true for the BFV controller
also.

CCI1 (B/U CPU Fail)
Fails Open

None. The operation is not affected unless other failures
occur.

The signal is normally open indicating the
B/U CPU is OK.

CCI2 (Main CPU Power
Fail or in Test) Fails
Open

The BFV controller will
actuate an alarm to the
Plant Computer.

Failover from the main CPU to the B/U CPU will
take place. The controller will send a Main CPU
Fail signal to the BFV controller through Microlink.
The Main CPU status is not sent back to the CPUs
and the CPUs do not know that the controller thinks
the Main CPU has failed. The Main CPU
continues thinking it is in control, and the B/U CPU
continues tracking the output of the controller.
Therefore, the FWP demand may remain
unchanged, i.e., a loss of automatic control, until
the Main CPU detects a deviation and fails itself,
and the B/U CPU takes over. It is probably not
likely that a reactor trip takes place due to loss of
FWP control.

The signal is normally closed indicating the
Main CPU is OK.

It is assumed that the Main CPU status
information to other controllers is correct.

CCI3 (Main CPU Fail)
Fails Open

None. The controller does not have the correct status of
the Main CPU. The operation is not affected unless
other failures occur.

The signal is normally open indicating the
main CPU is OK.

FMEA of FWP Controller (FIC-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-70

Digital Input Fail Closed

CCI0 (B/U CPU Power
Fail or in Test) Fails
Closed

None. The controller does not have the correct status of
the B/U CPU. The operation is not affected unless
other failures occur.

The signal is normally closed indicating the
B/U CPU is OK.

CCI1 (B/U CPU Fail)
Fails Closed

The controller will
indicate that the B/U
CPU is failed, and the
B/U CPU status will be
sent through Microlink
to the BFV controller
which will activate an
alarm to the Plant
Computer.

The controller will block the B/U CPU demand
signal from its output. System operation will not be
affected unless other failures take place.

The signal is normally open indicating that the
CPU is OK.

CCI2 (Main CPU Power
Fail or in Test) Fails
Closed

None. The controller does not have the correct status of
the Main CPU. The operation is not affected unless
other failures occur.

The signal is normally closed.

FMEA of FWP Controller (FIC-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-71

CCI3 (Main CPU Fail)
Fails Closed

The BFV controller will
actuate an annunciator in
the control room
indicating the Main CPU
Fail.

Failover from the main CPU to the B/U CPU will
take place. The controller will send a Main CPU
Fail signal to the BFV controller through Microlink.
The Main CPU status is not sent back to the CPUs
and the CPUs do not know that the controller thinks
the Main CPU has failed. The Main CPU
continues thinking it is in control, and the B/U CPU
continues tracking the output of the controller.
Therefore, the FWP demand may remain
unchanged, i.e., a loss of automatic control, until
the Main CPU detects a deviation and fails itself,
and the B/U CPU takes over. It is probably not
likely that a reactor trip takes place due to loss of
FWP control.

The signal is normally open indicating the
main CPU is OK.

It is assumed that the Main CPU status
information to other controllers is correct.

FMEA of FWP Controller (FIC-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-72

Digital Outputs Fail Open

CCO0 (A/M Status to the
Main CPU) Fails Open

None. A Manual status signal will be sent to the Main
CPU. Assuming the Main CPU is in control, and
the FWP controller is in auto, the Main CPU will
switch to tracking mode and continue sending its
output to the FWP controller, with the controller
remaining in Auto. The B/U CPU will continue its
tracking also. There will be no Transfer Inhibit
Alarm. The automatic control is effectively lost.
The output of the controller may drift with no direct
indication.

The signal is normally closed when in auto
mode.

Need to confirm whether or not there will be a
Transfer Inhibit Alarm.

CCO1 (A/M Status to the
B/U CPU) Fails Open

None. Assuming the Main CPU is in control and the
controller is in auto, the operation will not be
affected. There will be no Transfer Inhibit Alarm.

The signal is normally closed when in auto
mode.

Need to confirm whether or not there will be a
Transfer Inhibit Alarm.

FMEA of FWP Controller (FIC-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-73

Digital Outputs Fail Closed

CCO0 (A/M Status to the
Main CPU) Fails Closed

None. The system operation is not affected unless other
failures occur.

The signal is normally closed when in auto
mode.

CCO1 (A/M Status to the
B/U CPU) Fails Closed

None. If the Main CPU is in control, and the controller is
in auto, then the system operation is not affected.

The signal is normally closed when the
controller is in auto.

If the B/U CPU is in control, and the operator
changes the controller to manual, the B/U CPU will
not be able to detect it. The B/U CPU continues
sending its FWP demand to the controller, until the
deviation between the FWP demand calculated by
the B/U CPU and the FWP controller output
exceeds the setpoint, when the B/U CPU will fail
and the FWP controller will transfer to manual.

FMEA of FWP Controller (FIC-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-74

Loss of Power to Controller

Loss of power The FWP controller will
be off.

All analog outputs fail to 0.
All digital outputs fail to Open status.
The failed signal will be sent to the Lovejoy FWP
speed controller which will detect the failure and
maintain the FWP speed at pre-failure value.

The failed signal is sent to the CPUs for tracking,
and after a delay will cause the CPUs to be failed
due to deviation logic. As a result, the MFV, BFV
and FWP controllers will transfer to manual
control.

Need to confirm operation of the Lovejoy
controller.

B-75

Table B.2-7 FMEA of Pressure Differential Indicating (PDI) Controller (PDI-4516/4517)

The PDI controller is assumed to be in normal mode initially.

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

Loss of analog input (Fail to 0.0 VDC)

ANI0 (Feed Regulating
Valve Differential
Pressure): Fail to 0.0
VDC

No alarms will be
activated. The MFRV
D/P bargraph will
indicate D/P at 0.0
PSID.

MFRV differential pressure fail to 0.0 PSID.
Operation of the DFWCS is not affected.

The signal is for display only.

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-76

ANI1 (Main FRV
Tracking Signal): Fail to
0.0 VDC

High rate deviation flags
will be raised on the PDI
controller and reset after
a preset time period.

A failed MFRV tracking signal is detected either
because the current ANI1 signal is less than -20%
or because its change rate is too high for the 0.0V
DC input of the PDI ANI1. Upon this detection, the
PDI con-troller thinks that the MFV fails although
that ANI1 fails to zero does not mean the failure of
MFV. The PDI controller will automatically take
over by raising its output to the pre-failure value of
the MFV output and enters the manual mode.

If only the PDI ANI1 fails, the outputs of the
normally running MFV and the PDI controllers will
be summed together and should be twice as large as
the output of the MFV controller. This will cause
the MFRV to open more than designated by the
CPU and the problem persists without operator’s
intervention. Plant analysis indicates that it will
likely result in a failed open MFRV and transient.
Without operator’s action, the MFV demand
deviation logic in the CPU software will fail the
main CPU. After the B/U CPU takes over, the B/U
CPU will fail for the same reason. Pump speed
demand on another SG will be affected by the
summed signal.

If the PDI ANI1 is the only failure, the
operator may place the handswitch (HS) in the
MFV Fail position. This will block the MFV
output and only the PDI output will be sent to
the MFRV. MFRV will be manually
controlled by the operator via PDI controller.

If, in addition to the PDI ANI1 failure, the
MFV ANO0 demand output also fails to zero,
the PDI controller will raise its output to the
pre-failure MFV output. It is expected that the
transfer from the MFV controller to the PDI
controller is bumpless in this case.

The MFV demand signal to the MFRV will be
used by another S/G to calculate the pump
speed demand.

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-77

ANI2 (Bypass FRV
Tracking Signal): Fail to
0.0 VDC

No alarms are generated. In high power control mode, the BFV controller
should output linear 0% demand to the BFRV such
that the BFRV is closed. Thus, the ANI2 Fail to
0.0VDC cannot be detected by comparing the failed
ANI2 to the previous value held in the circular
buffer of the PDI controller. The operation of the
DFWCS will not be affected.

In low power control mode, a failed ANI2 is
assumed to be detected by comparing the
current ANI2 signal to the previously sampled
values held in a circular buffer. PDI con-
troller will not take over the BFV controller
unless the manual switch HS-4516C/4517C is
placed in the position of BFV Fail. Thus, the
BFV will be continuously running as normal
(output a linear 0% demand to the BFRV) and
the operation of the DFWCS will not be
affected. However, if the operator mistakenly
decides to switch to the BFV Fail position, the
summed outputs of the normally running BFV
controller and the PDI (pre-failure value of
the BFV controller) will open the BFRV
wider than designated. Without operator’s
further action, the BFV demand deviation
logic in the CPU software might fail the main
CPU depending on the deviation setpoint.
After the B/U CPU takes over, the B/U CPU
might fail for the same reason.

Loss of analog output (Fail to 0.0 VDC)

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-78

ANO0 (Output to the
MFRV or the BFRV):
Fail to 0.0 VDC

During normal operation
of the PDI, there is no
alarm.

If neither the MFV controller nor the BFV
controller fails, this has no effect on the system.

If this failure occurs after the PDI controller takes
over the MFV controller, the MFRV is expected to
fail shut causing a loss of feedwater to the
corresponding S/G.

In high power mode, the BFRV is normally shut.
Thus, if this failure occurs after the operator
switches from the BFV controller to the PDI
controller, no impacts are expected.

In low power mode, if this failure occurs after
the PDI controller takes over the BFV
controller, the BFRV is expected to fail shut
causing a loss of feedwater to the
corresponding S/G.

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-79

Digital Inputs Fail Open

CCI0 (MFV Control
Station Fail Flag - HS):
Fail Open

No alarm is generated
regarding this failure.

The PDI controller will not be able to know
whether HS-4516C/4517C have been placed in the
MFV Fail position. If only CCI0 fails and the HS is
in the normal or BFV Fail position, then the
DFWCS operation is not affected since both MFV
and/or BFV controllers are running as usual.

If, in addition to CCI0 Fail Open, the MFV also
fails, the PDI controller can still detect the MFV
failure by comparing ANI1 signal to its previous
values held in the circular buffer and automatically
takes over the MFV controller.

If, in addition to the CCI0 Fail Open, the operator
thinks that the MFV controller has a problem even
though the MFV demand output does not fail to
zero and the rate change of the MFV demand
output is not high, and decides to manually switch
to the PDI controller, the PDI controller is not able
to take over the MFV controller and the MFRV will
fail shut. It is not certain about the response of the
CPUs.

CCI0 Open=MFV OK and Closed=MFV Fail.

The state of input CCI0 is decided by the
position of HS-4516C/4517C. If the operator
places the HS in the MFV Fail position, the
output of MFV controller will be blocked and
the output of the PDI controller will be sent to
the MFRV.

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-80

CCI0 (MFV Control
Station Fail Flag - HS):
Fail Closed

The PDI controller will
display a message
indicating that the MFV
controller is failed
although the MFV
controller is not.

If only CCI0 fails, then the PDI controller will take
over the MFV controller while the MFV is
normally running. The output from PDI and the
output from the MFV will be added together and
sent to the MFRV, which will cause the MFRV to
open more than designated by the CPU or the MFV
controller. The operator must place HS-
4516C/4517C to the Main Fail position in order to
clear other contacts on the HS so that manual
control of the MFRV using the PDI controller is
obtained.

Transients will be expected and instability may
even be observed without this operator’s action.
Without operator’s action, the MFV demand
deviation logic in the CPU software will fail the
main CPU depending on the deviation setpoint.
After the B/U CPU takes over, the B/U CPU will
fail for the same reason. The summed signal will be
sent to another S/G to calculate the pump speed
demand. The speed demand of the other SG will be
affected. If both CCI0 and the MFV controller fail,
the PDI controller will automatically take over the
MFV controller bumplessly.

CCI0 Open=MFV OK and Closed=MFV Fail.

S/G level can only be maintained by the
operator’s action in this situation.

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-81

CCI1 (BFV Control
Station Fail Flag - HS):
Fail Open

No alarms will be
generated.

The PDI controller will be unable to know whether
HS-4516C/4517C have been placed in the BFV Fail
position. If only CCI1 fails open and the HS is
placed in the Normal or MFV Fail position, then the
DFWCS operation is not affected since both MFV
and/or BFV controllers are running as normal.

If, in addition to the CCI1 Fail Open, the BFV also
fails, and the operator placed the HS in the BFV
Fail position, the output signal to the BFRV is the
sum of the BFV output of linear 0% and the PDI
output of linear -17%. BFRV might slight open.

If, in addition to the CCI1 Fail Open, the BFV also
fails, and the operator does not place the HS in the
BFV Fail position, the operation of the system is
not affected.

If, in addition to the CCI1 Fail Open, the MFV
controller also fails, the operation of the DFWS
system is still not affected since the PDI controller
will still take over the MFV controller
automatically.

CCI1 Open=BFV OK and CCI1 Closed=BFV
Failed

The state of input CCI1 is determined by the
position of HS-4516C/4517C.

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-82

CCI1 (BFV Control
Station Fail Flag - HS):
Fail Closed

The PDI controller will
display a message
indicating that the BFV
controller is failed
although the BFV
controller is not.

The CCI1 Fail Closed will make the PDI believe
that BFV has failed and the PDI controller should
raise the PDI’s output to the pre-failure value of the
BFV output. However, whether the output of the
PDI controller should join the output of the MFV or
the BFV is determined by the HS position, which is
still at Normal position if the operator has not
changed the position of the HS. Therefore, the
output of the PDI controller will add to the output
of the MFV.

Because the BFRV is normally shut in high power
control mode, the pre-failure value of the BFV
controller held in the circular buffer of the PDI
controller should be very small. The impacts of the
summed signal on the MFRV may not be
significant. Operators action that puts the HS at
Bypass Fail position will regain the BFRV control
via PDI.

Without operator’s action, whether the deviation
logic will fail the controlling CPU depends on the
deviation setpoint of the MFV demand although the
deviation is small.

The failure effects in lower power control
mode is discussed in plant analysis. This will
cause the MFRV to move to the open position
and feedwater flow to the affected S/G will
increase rapidly. The operator must place HS-
4516C/4517C to the Bypass Fail position in
order to regain control of the MFRV. This
failure mode creates an overfeed situation for
the affected S/G. Operator action is required
in order to prevent overcooling of the RCS.

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-83

CCI2 (Time Sync Input):
Fail Open

Inconsistent time may be
noticed by comparing
operator’s clock
(independent clock in
the control room or even
the wristwatch), which
was used to define the
time stamp table, to the
controller clocks.

CCI2 will be sampled periodically. If the CCI2 is
closed, the PDI clock will be updated using the pre-
defined time stamp. In case of the CCI2 Fail Open,
the real-time clock of the PDI controller will not be
updated. The clock values of the PDI controller will
be propagated to other device controllers for time
synchronization via the Microlink every minute.

As long as the Microlink is working correctly, a
loss of synchronization between the device
controllers will not happen. However, the times of
device controllers are expected to be inconsistent
with operator’s clock. The synchronized times at
individual controllers are not used in the control
task but for the purpose of display only.

CCI2 Open=OK, do not update the PDI clock
and CCI2 Closed=Sync, i.e., update the PDI
clock.

It is assumed that updating the real-time clock
of the PDI controller is performed when the
system starts running. However, the operator
is able to update the PDI clock at any time.

Updating the clock of the PDI controller can
be either done manually or automatically.
Automatic updating is not discussed in the
available documentation.

CCI2 (Time Sync Input):
Fail Closed

The time associated with
the display does not
change.

Real-time clock of the PDI controller will be
updated using the same user-defined time-stamp
table every cycle after sampling the CCI2.

If the time-stamp is not changed (which is assumed
to be the case here), the time on the PDI (and then
the times on other controllers) will remain the
same.

CCI2 Open=OK, do not update the PDI clock
and CCI2 Closed=Sync, i.e., update the PDI
clock.

Digital Outputs Fail Open

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-84

CCO3 (Loss of
Communication Alarm):
Fail Open

No alarms are generated. When CCO3 fails open, if Microlink is working
properly, there will be no impact. If the Microlink
fails, the loss of communication alarm will not be
sent out and the plant computer will not be able to
actuate the loss of communication alarm.

CCO3 Open=OK, i.e., the communication is
normal.
CCO3 Closed=A loss of communications
alarm is actuated in the plant computer.

Impacts on the operation of the DFWCS are
not expected upon the failure of CCO3.CCO3 (Loss of

Communication Alarm):
Fail Closed

A loss of
communications signal
will be sent to the
DFWCS Trouble Alarm
on the plant computer.

False alarm of a loss of communication will be sent
to the plant computer if the Microlink is working
properly. The alarm will persist until the failure is
fixed.

FMEA of PDI controller (PDI-4516/4517)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-85

Loss of Power to Controller

Loss of power that
causes:

1. ANO0 fails to 0.0
mADC ;
2. CCO3 fails open;
3. Loss of the PDI
controller

No alarms are generated
for ANO0 Fail to 0.0
mADC.

If neither the MFV controller nor the BFV
controller fails, this has no effect on the system.

If this failure occurs after the PDI controller takes
over the MFV controller, the MFRV is expected to
fail closed causing a loss of feedwater to the
corresponding SG.

In high power mode, the BFRV is normally shut.
Thus, if this failure occurs after the operator
switches from the BFV controller to the PDI
controller, no impacts are expected.

No alarms are generated
for CCO3 Fail Open.

When CCO3 fails open, if the Microlink is working
properly, there will be no impact. If the Microlink
fails, the loss of communication alarm will not be
sent out and the plant computer will not be able to
actuate the alarm.

MFRV dP is no longer
displayed on the PDI
controller.

PDI fails its functions (display MFRV dP, detect
failed MFV and BFV and change modes to take
over manually or automatically). If other device
controllers are working, this has no impact on the
operation of DFWCS except for a loss of
communication. Time synchronization will not be
performed over the device controllers and FIX
numbers from other three device controllers cannot
be obtained.

B-86

Table B.2-8 FMEA of Optical Isolator (PB4R)

PB4R is an optical isolator which performs conversions between electrical signal and optical signal and isolates the electrical coupling between inputs and
outputs. Inputs pass through this isolator device and become the outputs. Thus, FMEA of inputs and the corresponding outputs are the same. Failure analysis of
PB4R signals is not considered in plant analysis.

FMEA of Optical Isolator (PB4R)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

Channel 1 (B/U CPU
Watchdog Timer Signal):
Fail Closed

No alarms are generated. The operation of the systems is not affected.

If, in addition to this failure, the B/U CPU truly
fails in a way such that it can not send out this
toggling watchdog timer signal, e.g., it gets hung,
and this signal will remain low (contact fails
closed), the watchdog timer will never timeout. If
the B/U CPU is in control, a failover to the Main
CPU will not occur and the system might lose
automatic control.

The watchdog timer signal from the B/U CPU
toggles every cycle. If the watchdog timer
receives the low signal (contact becomes
closed) within a preset time period, there will
be no timeout, i.e., it is considered that the
B/U CPU is working properly. Otherwise
(contact becomes open), the watchdog timer
will timeout and signal three device
controllers.

Channel 1 (B/U CPU
Watchdog Timer): Fail
Open

Failover alarm will be
displayed on the PDU and
the B/U CPU failure will
be alarmed via
annunciator.

The operation of the system will not be affected
since the Main CPU is in control. Watchdog timer
of the B/U CPU will timeout and initiate a failure
of the B/U CPU. The B/U CPU failure status will
be sent to the controllers from the watchdog timer.

If, in addition to this failure, the Main CPU fails, a
failover to the B/U CPU will not occur and the
system has to be controlled manually.

The watchdog timer signal from the B/U CPU
toggles every cycle. If the watchdog timer
receives the low signal (contact becomes
closed) within a preset time period, there will
be no timeout, i.e., it is considered that the
B/U CPU is working properly. Otherwise
(contact becomes open), the watchdog timer
will timeout and signal three device
controllers.

FMEA of Optical Isolator (PB4R)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-87

Channel 2 (Main CPU
Watchdog Timer): Fail
Closed

No alarms are generated. The operation of the systems is not affected.

If, in addition to this failure, the Main CPU truly
fails in a way such that it cannot send out this
toggling watchdog timer signal, e.g., it gets hung,
this signal will remain low (contact fails closed)
and the watchdog timer will never timeout. A
failover to the B/U CPU will not occur and the
system might lose automatic control.

The watchdog timer signal from the Main
CPU toggles every cycle. If the watchdog
timer receives the low signal (contact
becomes closed) within a preset time period,
there will be no timeout, i.e., it is considered
that the Main CPU is working properly.
Otherwise (contact becomes open), the
watchdog timer will timeout and signal three
device controllers.

Channel 2 (Main CPU
Watchdog Timer): Fail
Open

Failover alarm will be
displayed on the PDU and
the Main CPU failure will
be alarmed via
annunciator.

Watchdog timer of the Main CPU will timeout and
initiate a failure of the Main CPU. The Main CPU
failure status will be sent to the controllers from
the watchdog timer. A failover to the B/U CPU
will occur although the Main CPU is actually
working properly.

The watchdog timer signal from the Main
CPU toggles every cycle. If the watchdog
timer receives the low signal (contact
becomes closed) within a preset time period,
there will be no timeout, i.e., it is considered
that the Main CPU is working properly.
Otherwise (contact becomes open), the
watchdog timer will timeout and signal three
device controllers.

Channel 3 (One
Microprocessor Failed
Signal): Fail Closed

See CCO3 Fail Closed in
BFV FMEA

See CCO3 Fail Closed in BFV FMEA Open=No microprocessor failed
Closed=One microprocessor failed

Channel 3 (One
Microprocessor Failed
Signal): Fail Open

See CCO3 Fail Open in
BFV FMEA

See CCO3 Fail Open in BFV FMEA Open=No microprocessor failed
Closed=One microprocessor failed

Channel 4 (Both
Microprocessor Failed
Signal): Fail Closed

See CCO2 Fail Closed in
BFV FMEA

See CCO2 Fail Closed in BFV FMEA Open=Not both microprocessors failed
Closed=Both microprocessors failed

FMEA of Optical Isolator (PB4R)

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-88

Channel 4 (Both
Microprocessor Failed
Signal): Fail Open

See CCO2 Fail Open in
BFV FMEA

See CCO2 Fail Open in BFV FMEA Open=Not both microprocessors failed
Closed=Both microprocessors failed

B-89

Appendix B.3 FMEA at Level of Major-Component-of-Module of DFWCS

The detailed FMEA at the level of components of the Main CPU module is shown in Table B.3.1. In the FMEA of the Main CPU module, the Main CPU module
was decomposed into individual digital components, which were identified in Chapter 5. FMEA of each component was then conducted to determine the failure
impacts on the component, the detectability of the failure, and the associated effects on the Main CPU module., i.e., failure modes of the Main CPU module.
The failure rates of the components were then estimated using the generic data estimated in Chapter 9. The failure rates of the components were mostly
estimated using a Hierarchical Bayesian method with raw data extracted from PRISM database [RAC]. The failure rates of different component failure modes
were estimated using the failure mode distributions found mainly in two sources [Meeldijk 1996] and [RAC 1997b], as shown below. It should be noted that the
column of “Detection of Failure Mode” in Table B.3-1indicates the detection by the watchdog timer and software only. Table B.3-2 is the FMEA of a controller
at a similar level of detail.

Failure mode distribution [Meeldijk 1996, RAC 1997b] of major components inside the Main CPU module is shown here:
1. Processor of the Main CPU:

The failure mode “wrong data word” accounting for 60% of the total failure and the processor stops updating output upon the rest of the failures [RAC
1997b];

2. Associated components of the processor such as ISA bus, RAM, ROM (BIOS), flash disk, and buffer:
Only one failure mode is assumed, i.e., loss of the components;

3. Address logic:
It is sometimes called decoder and the failure mode distribution is: 40% of stuck high, 40% of stuck low, and 20% loss of logic (failure mode
distribution for a typical digital component [Meeldijk 1996]);

4. Multiplexer and demultiplexer:
Failure modes are defined in [Aeroflex 2005]. Note that each input of multiplexer corresponds to a sensor input and each output of demultiplexer
corresponds to a analog output;

5. A/D and D/A Converter:
Both A/D and D/A converters are linear IC circuits. The failure mode distribution is defined in [Meeldijk 1996]: 50% of degraded/improper output, 41%
of no output, 3% of short circuit, 2% of open circuit, and 2% drift. There is only one A/D converter and one D/A converter. They are shared by all
analog inputs and outputs;

6. Current Loop:
Current loop is a linear device and the failure mode distribution is: 2% of fail-high, 44% of fail-low, and 52% of drifted output [Meeldijk 1996];

7. Digital output module:
Digital signal output is implemented using solid-state switch. Status of output is controlled by opening or closing the switch. It failure mode distribution
is: 66.7% of fail to operate (fail as is) and 33.3% of false operation [RAC 1997b];

8. Digital input module:
Digital signal input is also implemented using solid-state switch. See failure mode distribution for digital output module.

9. Application software:
Data of application software failures are currently unavailable and need to be developed in the future.

B-90

Table B.3-1 FMEA at Level of Components of DFWCS Modules: Main CPU

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

Application Software

The application software on
the main CPU seems to be
normally running but sends
erroneous output

No detection Undetected Failure of Main CPU 1. Failure rate of the application software is the rate
of occurrence of EFC. Further investigation is needed
to determine it.

CPU is hung (CPU stops
updating output)

Can be potentially detected by
WDT if the WDT status is
good.

Main CPU Fails to Send WDT the
Toggling Signal

1. The WDT does not receive toggling signal and will
trip the main CPU if the status of the WDT is normal.

Microprocessor of the Main CPU

The CPU seems to be
normally running but sends
erroneous output (60% of
total failure)

No detection Undetected Failure of Main CPU 1. The CPU failure data is taken from Chapter 9. The
failure rate is 3.3E-08 per hour. 2. The failure mode
distribution used here is from [RAC 1997b]. This
distribution is shows that a failure of “wrong data
word” of a 16-bit CPU accounts for 60% of total
failure. However, the Intel 80586 is a 32-bit
processor.
3. Another failure mode distribution data from
[Meeldijk 1996] can be used to replace the above
failure mode distribution. The failure distribution in
[Meeldijk 1996] shows that: stuck high or low
accounts for 80% of the failure (this may correspond
to the CPU stops updating outputs) and 20% of loss
of logic (this may correspond to seemingly normal
operation of the CPU).

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-91

CPU stops updating output
(40% of the total failure)

Can be potentially detected by
WDT if the WDT status is
good.

Main CPU Fails to Send WDT the
Toggling Signal

1. The WDT does not receive toggling signal and will
trip the main CPU if the WDT is fine. This may
correspond to other failures of CPU

ISA Bus

Loss of ISA bus Can be potentially detected by
both application software and
WDT if the WDT status is
good.

Main CPU Fails to Send WDT the
Toggling Signal

1. Input and output of the CPU rely on the ISA bus
and both the application software and the WDT can
potentially detect this loss of the ISA bus. It is
assumed the CPU is failed by the WDT if its status is
normal.
2. The failure rate of the bus is the sum of failure
rates of line bus driver (4.6E-07 per hour) and
receiver (6.2E-08 per hour) that are shown in Chapter
9. They are considered major components of the bus.

RAM

Loss of RAM Can be potentially detected by
WDT if the WDT status is
good.

Main CPU Fails to Send WDT the
Toggling Signal

1. Application software has to be loaded into RAM to
in order to run it. Thus, the application software can
not run upon a malfunction of RAM. It is assumed
that WDT can detect it because the Main CPU does
not send out toggling signal any more.
2. The failure rate (3.3E-07 per hour) is taken from
Chapter 9.

ROM (BIOS)

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-92

Loss of BIOS Can be potentially detected by
both application software and
WDT if the WDT status is
good.

Main CPU Fails to Send WDT the
Toggling Signal

1. Input and output operation of CPU rely on BIOS
routines. Both the software and the WDT can
potentially detect this failure. It is likely that CPU
will be failed by the WDT.
2. Failure rate (4.0E-08 per hour) is from Chapter 9,
the failure rate of generic ROM.

Flash Disk

Loss of Flash Disk Can be detected by application
software.

Main CPU Failed by Application
Software (Needs further
investigation)

1. Failure data of flash disk are unavailable in
PRISM.

Serial Port

Loss of Serial Port No detection. Main CPU Continues Normal
Operation (Needs further
investigation)

1. Serial port is used for communication between the
Main CPU and PDU. Very likely the serial port is a
RS-232 implementation.
2. The failure data is from PRISM for serial
communication controller, the major component of
serial communication port.

Multiplexer

Loss of all signals Can be detected by application
software.

Main CPU Failed by Application
Software

1. Deviation logic will capture the loss of input
signals. Failure data are from [Aeroflex 2005].
2. Only a brief description of failure effects of
individual input signal though the multiplexer is
shown here. Details of FMEA can be found in
Appendix B.2.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-93

Loss of one of the signals:
S/G 12 Feedwater
Temperature

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 4 of Analog Backplane A and the signal is
only used during low power operation.
2. Invalidity of the signal will be detected by the
Main CPU but the other signal is used and it has no
effects on operation.
3. A deviation alarm will be sent to plant computer
from the Main CPU.

Loss of one of the signals:
S/G 11 Feedwater
Temperature

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 5 of Analog Backplane A and the signal is
only used during low power operation.
2. Invalidity of the signal will be detected by the
Main CPU but the other signal is used and it has no
effects on operation.
3. A deviation alarm will be sent to plant computer
from the Main CPU.

Loss of one of the signals:
S/G 11 FWP A Bias

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 6 of Analog Backplane A.
2. It will be detected by the Main CPU. The pump
demand will be sent to the FWP regardless.
3. A deviation alarm will be sent to the plant
computer from the Main CPU.

Loss of one of the signals:
S/G 12 MFV Tracking

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 7 of Analog Backplane A.
2. Higher MFV tracking signals from both S/Gs will
be used to calculate FWP demand. Therefore, this
loss of the signal does not affect the FWP demand
calculation.
3. There is no direct indication of the failure.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-94

Loss of one of the signals:
S/G 12 FWP A Tracking

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 8 of Analog Backplane A.
2. A deviation larger than the setpoint between the
CPU and the controller will cause a failover. If the
deviation is not large enough, there is no effect. Here,
we assume that the deviation is large.
3. There is no direct indication of failure. If the Main
CPU is failed, there will be an alarm to the plant
computer.

Loss of one of the signals:
MFRV LVDT #2

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 13 of Analog Backplane A.
2. If the accumulation exceeded the MFV-
ACCUMULATION setpoint and the Diagnostic
Transfer mode is enabled, the opposite positioner will
be put in service and the control mode will be shifted
to LOCKOUT.
3. PDU and the associated CPU deviation
annunciator will be activated.

Loss of one of the signals:
MFRV LVDT #1

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 14 of Analog Backplane A.
2. If the accumulation exceeded the MFV-
ACCUMULATION setpoint and the Diagnostic
Transfer mode is enabled, the opposite positioner will
be put in service and the control mode will be shifted
to LOCKOUT.
3. PDU and the associated CPU deviation
annunciator will be activated.

Loss of one of the signals:
MFRV Differential Pressure
#2

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 16 of Analog Backplane A. It appears that
a loss of this signal does not affect the Main CPU’s
operation.
2. Gooseneck purge related.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-95

Loss of one of the signals:
MFRV Differential Pressure
#1

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 16 of Analog Backplane A. It appears that
a loss of this signal does not affect the Main CPU’s
operation.
2. Gooseneck purge related.

Loss of one of the signals:
S/G 11 Level #1

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 6 of Analog Backplane B.
2. The other input is used for control.
3. Failover will be displayed on PDU.
4. If both S/G 11 Level signals are lost, there will be
a loss of auto control.
5. A deviation alarm and failover (if any) will be
displayed on PDU.

Loss of one of the signals:
S/G 11 Level #2

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 7 of Analog Backplane B.
2. The other input is used for control.
3. Failover will be displayed on PDU.
4. If both S/G 11 Level signals are lost, there will be
a loss of auto control.
5. A deviation alarm and failover (if any) will be
displayed on PDU.

Loss of one of the signals:
S/G 11 FW Flow #1

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 8 of Analog Backplane B.
2. The other input is used for control.
3. Failover will be displayed on PDU.
4. If both S/G 11 FW flow signals are lost, a single
element control (high power mode) is adopted. Note
that the Main CPU is conducting the single element
control. If it is in low power mode, Low to High
transfer is inhibited.
5. A deviation alarm and failover (if any) will be
displayed on PDU.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-96

Loss of one of the signals:
S/G 11 FW Flow #2

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 9 of Analog Backplane B.
2. The other input is used for control.
3. Failover will be displayed on PDU.
4. If both S/G 11 FW flow signals are lost, a single
element control (in high power mode) is adopted.
Note that the Main CPU is conducting the single
element control. If it is in low power mode, Low to
High transfer is inhibited.
5. A deviation alarm and failover (if any) will be
displayed on PDU.

Loss of one of the signals:
S/G 11 Main Steam Flow

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 10 of Analog Backplane B.
2. The other input is used for control.
3. Failover will be displayed on PDU.
4. If both S/G 11 main steam flow signals are lost, a
single element control (in high power mode) is
adopted. Note that the Main CPU is conducting the
single element control. If it is in low power mode,
Low to High transfer is inhibited.
5. A deviation alarm and failover (if any) will be
displayed on PDU.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-97

Loss of one of the signals:
S/G 12 Main Steam Flow

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 11 of Analog Backplane B.
2. The other input is used for control.
3. Failover will be displayed on PDU.
4. If both S/G 11 main steam flow signals are lost, a
single element control (in high power mode) is
adopted. Note that the Main CPU is conducting the
single element control. If it is in low power mode,
Low to High transfer is inhibited.
5. A deviation alarm and failover (if any) will be
displayed on PDU.

Loss of one of the signals:
Neutron Flux #1

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 12 of Analog Backplane B.
2. The other input will be used and control continues.
3. If both inputs are lost, mode transfer is inhibited.
4. A deviation alarm will be sent to plant computer.

Loss of one of the signals:
Neutron Flux #2

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 13 of Analog Backplane B.
2. The other input will be used and control continues.
3. If both inputs are lost, mode transfer is inhibited.
4. A deviation alarm will be sent to plant computer.

Loss of one of the signals:
S/G 11 Level Setpoint

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 14 of Analog Backplane B.
2. A deviation between this signal and the setpoint
inside the program will occur. If it is larger than a
fixed value, the internal level setpoint will be used.
Otherwise, there is not impact.
3. A deviation alarm will be sent to plant computer.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-98

Loss of one of the signals:
S/G 11 BFRV Tracking

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 15 of Analog Backplane B.
2. Control continues and BFRV will be closed. There
is no impact when it is in high power mode. If it is in
low power mode, a failover will occur.
3. There is no alarm.

Loss of one of the signals:
S/G 11 MFRV Tracking

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 16 of Analog Backplane B.
2. The deviation between the Main CPU output and
controller feedback will cause a failover for a large
deviation. The large deviation is assumed to be the
case here. If the deviation is small, the control
continues.
3. A deviation alarm and the failover (if any) will be
displayed on PDU.

A/D Converter

All 16 bits stuck at zeros or
ones (48% of the total
failure)

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Both A/D and D/A converters are linear ICs.
2. Failure data (2.44E-09 per hour) are PRISM raw
data of 16-bit A/D or D/A converter. Therefore a
Bayesian update might be necessary.
3. The failure mode distribution is from [Meeldijk
1996]. The failure mode distribution of a linear IC is:
50% of degraded/improper output, 41% of no output,
3% of short circuit, 2% of open circuit, and 2% drift.
4. Since the A/D shared by all inputs, loss of A/D
results in a loss of all inputs.

Random bit failure (52% of
the total failure)

No detection. Undetected Failure of Main CPU 1. Although some of random failures might be
detected by the application software, the failures are
conservatively assumed to be undetectable.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-99

D/A Converter

Output fails high (2% of the
total failure)

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Main CPU will detect this failure via controller
feedback if the status of the controller is normal..
2. Failure data (2.44E-09 per hour) are from PRISM
raw data.
3. Failure mode distribution is from [Meeldijk 1996]
(refer to comment 3 of A/D converter).
4. Since the D/A shared by all inputs, loss of D/A
results in a loss of all inputs.

Output fails low (44% of
total failure)

Can be detected by application
software.

Main CPU Failed by Application
Software

1. In addition to failure of the main CPU, PDI
controller will take over the MFV controller

Drifted output (52% of the
total failure)

No detection. Main CPU Continues Normal
Operation

1. Output drifted within certain range can be coped
with

Demultiplexer

Loss of all output signals Can be detected by application
software.

Main CPU Failed by Application
Software

1. The Main CPU has three analog outputs: the
controller demands.
2. DEMUX is considered similar to MUX and the
failure data are also from [Aeroflex 2005]. (also refer
to MUX above).
3. In addition to the failure of the Main CPU, PDI
controller will take over the MFV controller for this
failure mode.
4. Only a brief description of failure effects of
individual input signal though the multiplexer is
shown here. Details of FMEA can be found in
Appendix B.2.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-100

Loss of one of the output
signals: Feed Pump Demand

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 1 of Analog Backplane A.
2. There is no direct indication of this failure. Main
CPU deviation (between its demand output and FWP
tracking signal) will be sent to plant computer.
3. It seems Lovejoy controller will detect this failure
and takes over but details are not available (Appendix
B.2).

Loss of one of the output
signals: Bypass Valve
Demand

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 2 of Analog Backplane A.
2. The BFV demand signal is normally zero in high
power mode. Nothing will happen for loss of the
signal.
3. There is no direct indication of this.

Loss of one of the output
signals: Main Valve
Demand

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 3 of Analog backplane A.
2. In addition to the failure of the Main CPU, PDI
controller will take over the MFV controller for this
failure mode.
2. The PDI controller will display a “MFV fail”
message. Main CPU will also activate a deviation
message.

Current Loop

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-101

Output current fails high
(2% of the total failure):
Feed Pump Demand

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 1 of Analog Backplane A.
2. A failover will occur due to the large deviation
between the CPU demand and the FWP tracking
signal.
3. There is no direct indication of this failure. Main
CPU deviation (between its demand output and FWP
tracking signal) will be sent to plant computer.
4. It seems Lovejoy controller will detect this failure
and takes over but details are not available (Appendix
B.2).
5. Current loop is a linear device. The failure rate is
2.43E-09 per hour from PRISM raw data of IC,
Linear, Transmitter/receiver. The failure mode
distribution is shown in [Meeldijk 1996].
6. It is assumed there is a separate current loop for
each output.

Output current fails low
(44% of the total failure):
Feed Pump Demand

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 1 of Analog Backplane A.
2. A failover will occur due to the large deviation
between the CPU demand and the FWP tracking
signal.
3. There is no direct indication of this failure. Main
CPU deviation (between its demand output and FWP
tracking signal) will be sent to plant computer.
4. It seems Lovejoy controller will detect this failure
and takes over but details are not available (Appendix
B.2).

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-102

Drifted output current (52%
of the total failure): Feed
Pump Demand

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 1 of Analog Backplane A.
2. According to Appendix B.2, this failure can be
compensated by the control algorithm.
3. There is not direction indication of this failure.

Output current fails high
(2% of the total failure):
Bypass Valve Demand

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 2 of Analog Backplane A.
2. According to Appendix B.2, the CPU deviation
logic for the BFV demand signal is inhibited in high
power mode. However, if the BFV demand increases,
the MFV demand will decrease to cope with this.
Therefore, there is at most a transient.
3. There is no direct indication of this failure.

Output current fails low
(44% of the total failure):
Bypass Valve Demand

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 2 of Analog Backplane A.
2. The BFV demand signal is normally zero in high
power mode. Nothing will happen for loss of the
signal.
3. There is no direct indication of this.

Drifted output current (52%
of the total failure): Bypass
Valve Demand

Can be detected by application
software.

Main CPU Continues Normal
Operation

1. Channel 2 of Analog Backplane A.
2. According to Appendix B.2, a proper setpoint can
cope with this.
3. There is no direct indication of this failure.

Output current fails high
(2% of the total failure):
Main Valve Demand

Can be detected by application
software.

Main CPU Failed by Application
Software

1. Channel 3 of Analog Backplane A
2. Main CPU will detect this failure via MFV
controller feedback if the MFV controller status is
normal.
3. There is no direct indication of this failure. A
deviation alarm will be sent to the plant computer
from the Main CPU.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-103

Output current fails low
(44% of the total failure):
Main Valve Demand

Can be detected by application
software.

Main CPU Failed by Application
Software

1. PDI controller will take over the MFV controller.
2. According to Appendix B.2, PDI will take over
before the failure of the Main CPU.
3. The PDI controller will display a “MFV fail”
message. The Main CPU will give a deviation
message.

Drifted output current (52%
of the total failure): Main
Valve Demand

No detection. Main CPU Continues Normal
Operation

1. According to Appendix B.2, output drifted within
certain range can be compensated.
2. There is no direct indication of this failure.

VREF

Loss of VREF No detection Main CPU Continues Normal
Operation

1. According to plant information, VREF is only used
to correct for voltage offsets in the input signal path
when the system is initialized.

Analog Address Logic

Unintended address sent out
and wrong component
selected (20% of the total
failure)

Not likely to be detected by the
application software and not
detectable by the WDT.

Undetected Failure of Main CPU 1. Although some of address logic failures might be
detected by the application software, it is
conservatively assumed to be undetectable.
2. Address logic is usually called decoder in current
digital systems. Failure data (7.0E-08 per hour) is
from Chapter 9.
3. An analog address logic is a digital device and the
failure mode distribution is from [Meeldijk 1996]:
40% of stuck high, 40% of stuck low, and 20% loss
of logic.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-104

Completely loss of analog
address logic (80% of the
total failure)

Can be potentially detected by
both application software and
WDT if the WDT status is
good.

Main CPU Fails to Send WDT the
Toggling Signal

1. CPU should be able to detect the status of analog
address logic but can not send out output properly.

Buffer

Loss of buffer Can be potentially detected by
WDT if the WDT status is
good.

Main CPU Fails to Send WDT the
Toggling Signal

1. All digital input and output require the buffer.
2. The failure rate is from Chapter 9.

Digital Address Logic

Unintended address sent out
and wrong component
selected

Not likely to be detected by the
application software and not
detectable by the WDT.

Undetected Failure of Main CPU 1. Although some of failures might be detected by the
WDT, it is conservatively assumed to be
undetectable.
2. Failure data and failure mode distribution are the
same to analog address logic.

Complete loss of digital
address logic

Can be detected by WDT if the
WDT status is good.

Main CPU Fails to Send WDT the
Toggling Signal

1. CPU should be able to detect the status of analog
address logic but can not send digital output properly

Digital Output Module

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-105

Failure to operate of the
solid-state switch (Watchdog
Timer fails as is)

Can be detected by WDT if the
WDT status is good.

Main CPU Fails to Send WDT the
Toggling Signal

1. Channel 0 of Digital Backplane: output to WDT.
2. Failure data is from PRISM and failure mode
distribution is from [RAC 1997b].
3. PDU and the plant computer should indicate the
failure of the Main CPU.
4. The main component of the digital output module
is the solid-state switch. The failure mode
distribution, according to [RAC 1997b], is 66.7% for
Failure to Operate, and 33.3% for False Operation.
The failure rate of digital switch from PRISM is
2.43E-09 per hour.

Failure to operate of the
solid-state switch (Power
Fail as is)

No detection. Main CPU Continues Normal
Operation

1.Channel 2 of Digital Backplane: power failure or
the CPU is not controlling. Power failure fails as
(normally not energized) it is indicates that the Main
CPU is OK. Therefore, this failure does not affect the
operation of the Main CPU or the system until there
is a power failure of the Main CPU. In that case, there
will be a undetected Main CPU failure and a loss of
auto control.
2. There is no direct indication or detection of this
failure.

False operation of the solid-
state switch (Power Fail fails
to opposite state)

No detection. Main CPU Failed by Application
Software

1. False operation of this switch will indicate that the
Main CPU power failure and a fail-over should occur.
2. There is no direct indication or detection of this
failure. There should be indirect indication from the
PDU and the plant computer.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-106

Failure to operate of the
solid-state switch (High
Power Indication fails
closed)

No detection. Main CPU Continues Normal
Operation

1. Channel 4 of Digital Backplane: high power
indication. It is normally closed indicating the high
power mode.
2. This failure does not affect the Main CPU or the
system operation. It might, however, affect operator
since this failure indicates the high power mode but it
is actually the low power mode.
3. There is no direct indication of this failure.

False operation of the solid-
state switch (High Power
Indication fails open)

No detection. Main CPU Continues Normal
Operation

1. There is no direct indication of this failure.
2. This failure does not affect the Main CPU or the
system operation. It might, however, affect operator
since this failure indicates the low power mode but it
is actually the high power mode.

False operation of the solid-
state switch (Transfer
Indication fails closed)

No detection. Main CPU Continues Normal
Operation

1. Channel 5 of Digital Backplane: transfer
indication. It is normally open indicating there is no
mode transfer.
2. There is no direct indication of this failure. This
failure indicates that the system is transferring
between power modes.
3. This failure does not affect the Main CPU or the
system operation. It might, however, affect operator
since this failure indicates a undergoing transfer but
there is actually no transfer.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-107

Failure to operate of the
solid-state switch (Transfer
Indication fails open)

No detection. Main CPU Continues Normal
Operation

1. There is no direct indication of this failure. This
failure indicates there is no power mode transfer even
a transfer is undergoing.
2. This failure does not affect the Main CPU or the
system operation. It might, however, affect operator
since this failure indicates no transfer but there is
actually one.

False operation of the solid-
state switch (Low Power
Indication fails closed)

No detection. Main CPU Continues Normal
Operation

1. Channel 6 of Digital Backplane: low power
indication. It is normally open (high power mode).
This failure indicate that the system is operating in
high power mode.
2. There is no direct indication of this failure.
3. This failure does not affect the Main CPU or the
system operation. It might, however, affect operator.

Failure to operate of the
solid-state switch (Low
Power Indication fails open)

No detection. Main CPU Continues Normal
Operation

1. There is no direct indication of this failure.
2. This failure does not affect the Main CPU or the
system operation. It might, however, affect operator.

False operation of the solid-
state switch (Bypass
Override Indication fails
closed)

No detection. Main CPU Continues Normal
Operation

1. Channel 7 of Digital Backplane: bypass override
(BPO) indication. It is normally open (not in BPO
mode). This failure indicates that the system is in a
BPO mode.
2. There is no direct indication of this failure.
3. This failure does not affect the Main CPU or the
system operation. It might, however, affect operator.

Failure to operate of the
solid-state switch (Bypass
Override fails open)

No detection. Main CPU Continues Normal
Operation

1. There is no direct indication of this failure.
2. This failure does not affect the Main CPU or the
system operation. It might, however, affect operator.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-108

 False operation of the solid-
state switch (Deviation
Alarm fails closed)

No detection. Main CPU Continues Normal
Operation

1. Channel 8 of Digital Backplane: deviation alarm
and it is normally open, i.e., there is no deviation.
This failure indicates that there is a deviation. If this
output is closed then there is a deviation.
2. It seems that a fail-over will occur regardless of the
state of this output.
3. There is no direct indication. However, the plant
computer will indicate that the Main CPU detects a
deviation.

Failure to operate of the
solid-state switch (Deviation
Alarm fails open)

No detection. Main CPU Continues Normal
Operation

1. This failure indicates there is no deviation even
there is. It does not affect operation of the CPUs or
the system.
2. There is no direct indication.

Failure to operate of the
solid-state switch (Transfer
Inhibit fails open)

No detection. Main CPU Continues Normal
Operation

1. Channel 9 of Digital Backplane: transfer inhibit. It
is normally open, i.e., transfer is not inhibited.
2. This fails-open failure indicates that the transfer is
not inhibited.
3. Transfer is not considered in this study.
4. There is no direct indication.

 False operation of the solid-
state switch (Transfer Inhibit
fails closed)

No detection. Main CPU Continues Normal
Operation

1. This fail-closed indicates that control mode transfer
is inhibited.
2. There is no direct indication. However, the plant
computer will indicate that power modes transfer is
inhibited.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-109

Failure to operate of the
solid-state switch (Positioner
Selected fails closed)

No detection. Main CPU Continues Normal
Operation

1. Channel 11 of Digital Backplane: positioner
selected. Output to positioner.
2. It is assumed here that position A is normally used,
i.e., output is closed.
3. This fail closed (fail as is) will not affect the
operation of the Main CPU. However, if the
accumulated deviation between the demand from the
Main CPU and the position of the MFRV exceeds a
setpoint value, e.g., the positioner A fails, the Main
CPU can not switch to positioner B. It might lead to
reactor trip.

False operation of the solid-
state switch (Positioner
Selected fails open)

No detection. Main CPU Continues Normal
Operation

1. This fail open will not affect the operation of the
Main CPU if the positioner B is in a good state.
However, if the accumulated deviation between the
demand from the Main CPU and the position of the
MFRV exceeds a setpoint value, e.g., the positioner B
fails, the Main CPU can not switch to positioner A. It
might lead to reactor trip.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-110

Failure to operate of the
solid-state switch (No
Failures in Microprocessor
fails open)

No detection. Main CPU Continues Normal
Operation

1. Channel 13 of Digital Backplane: no failures in
microprocessor. It is assumed to be normally open,
i.e., the Main CPU does not failure. This output goes
to the other microprocessor.
2. The failure indicates that the Main CPU is in a
good state. This will not affect the operation of the
Main CPU and the system. If the Main CPU truly
fails, the Backup CPU will be able obtain the Main
CPU’s status directly from the Main CPU instead
from this output. Thus, it seems that the failure of the
Main CPU will not cause problems.
3. PDU and plant computer will show the status of
the Main CPU.
4. There is no direct indication of this failure.

False operation of the solid-
state switch (No Failure in
Microprocessor fails closed)

No detection. Main CPU Failed by Application
Software

1. The failure signals that the Main CPU fails and
effectively, the MFV controller will block the
demand from the Main CPU. The control demand
will be from the Backup CPU. Thus, if the Backup
CPU is in a good state, it causes a fail-over only and
will not affect the operation of the system.
2. If, in addition to the Main CPU failure, the Backup
CPU also fails, there will be a loss of auto control.
3. PDU will show the status of the Main CPU.
4. There is no direct indication of this failure. Failure
status of the Main CPU will be displayed by the
PDU.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-111

Failure to operate of the
solid-state switch (No
Deviation fails open)

No detection. Main CPU Continues Normal
Operation

1. Channel 14 of Digital Backplane: no deviations.
Thus, it is normally open, i.e., there is no deviation.
This output goes to the other CPU (the Backup CPU).
2. The failure of fail-open (fails as is) indicates that
there is no deviation. Thus, this failure does not affect
the operation of the Main CPU or the system.
However, if there is truly a deviation, the Backup
CPU will not know due to this failure.
3. Even though, the Backup CPU can receive the
Main CPU failure (due to deviation) status from the
MFV controller. Thus, it is still likely that the
deviation will cause a fail-over.
4. This is not indication of this failure. If there is a
deviation, the PDU and the plant computer will show
the message.

False operation of the solid-
state switch (No Deviation
fails closed)

No detection. Main CPU Continues Normal
Operation

1. The failure of fail-closed indicates that the Main
CPU has a deviation. However, this failure does not
cause the Main CPU to fail and thus, the Main CPU
remains in control.
2. Further investigation is needed.
3. This is not indication of this failure. The status of
the Main CPU will be “Failure” in the PDU display.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-112

Failure to operate of the
solid-state switch (CPU
Level Status to the Other
CPU fails open)

No detection. Main CPU Continues Normal
Operation

1. Channel 15 of Digital Backplane: CPU level status.
It is normally open indicating that both SG level
signals are valid. This signal goes to the Backup
CPU. Thus, the failure of fail-open (fail as is)
indicates the validity of signals and will not cause any
problem with the operation of the Main CPU and the
system.
2. If, in addition to this failure, both the signal level
are invalid, the Main and the Backup CPUs will fail
and there will be a loss of auto control.
3. If, in addition to this failure, the Main CPU fails, it
will inform the Backup CPU its status and the
Backup CPU will takes over.
4. There is no direct indication of this failure.

False operation of the solid-
state switch (CPU Level
Status to the Other CPU fails
closed)

No detection. Main CPU Continues Normal
Operation

1. The failure of fail-closed indicates that both SG
level signals are invalid. Since the Main CPU is in a
good state and the Backup CPU can validate the
signals, it should not cause any problem.
2. There is no direct indication of this failure.

Failure to operate of the
solid-state switch

N/A This is the signal of feedflow/steamflow status to the
Backup CPU.

False operation of the solid-
state switch

N/A

Digital Input Module

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-113

A/M Status BFV fails closed No detection. Main CPU Continues Normal
Operation

1. Channel 16 of Digital Backplane: A/M Status
BFV. It is normally closed, i.e., the BFV is in auto
status. It is an input from the BFV controller.
2. It does not cause any problem with the Main CPU
or the system.
3. If, in addition to this failure, the BFV controller is
in manual mode (actually, this is already the failure
of system because of a loss of auto control), the Main
CPU would still think it is controlling. When the
deviation is large, there will be a failover. However,
the Backup CPU knows the BFV is in manual mode.
4. The major component of digital input is again a
solid-state switch [Eurotherm 2000]. Therefore, the
failure rate and failure mode distribution are 2.43E-09
per hour and 66.7% of fail to operate and 33.3% for
false operation.
5. There is not direct indication of this failure.

A/M Status BFV fails open No detection. Main CPU Tracking 1. The failure indicates that the BFV is in manual
status. The Main CPU would track instead of control
and the BFRV may drift open. However, it will be
compensated by the MFV.
2. There is no indication of this failure. MFV status
displayed on the PDU and the FWP controller is
different.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-114

A/M Status MFV fails
closed

No detection. Main CPU Continues Normal
Operation

1. Channel 17 of Digital Backplane: A/M Status
MFV. It is normally closed, i.e., the MFV is in auto
status. It is an input from the MFV controller.
2. It does not affect the operation.
3. If, in addition to this failure, the MFV controller is
in manual mode (actually, this is already the failure
of system because of a loss of auto control), the Main
CPU would still think it is controlling. When the
deviation is large, there will be a failover. However,
the Backup CPU knows the MFV is in manual mode.
4. There is not direct indication of this failure.

A/M Status MFV fails open No detection. Main CPU Tracking 1. The failure indicates that the MFV is in manual
status and the Main CPU will track instead of control.
The MFRV will drift from setpoint. Eventually, the
system will fail without operator’s actions.
2. There is no indication of this failure. MFV status
displayed on the PDU and the FWP controller is
different.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-115

A/M Status FWP fails
closed

No detection. Main CPU Continues Normal
Operation

1. Channel 18 of Digital Backplane: A/M Status
FWP. It is normally closed, i.e., the FWP is in auto
status. It is an input from the FWP controller.
2. This failure indicates that the FWP is auto.
Operation of the Main CPU or the system is not
affected.
3. If, in addition to this failure, the FWP controller is
actually in manual status (actually, this situation is
already a system failure due to loss of auto control),
the Main CPU is still thinking it is controlling the
FWP. When the deviation is large enough, there will
be a failover. After the failover, the Backup CPU will
know the correct status of the FWP controller.
4. There is no direct indication of this failure.

A/M Status FWP fails open No detection. Main CPU Tracking 1. This failure indicates that the FWP controller is in
manual status. The Main CPU will track instead of
control. The pump demand may windup but it is
expected to be compensated by the MFV controller.
2. There is no direct indication of this failure.
However, the FWP controller status displayed by the
PDU and the FWP controller is different.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-116

Reactor Trip fails closed No detection. Main CPU Continues Normal
Operation

1. Channel 19 of Digital Backplane: Reactor Trip. It
is normally closed, i.e., there is no reactor trip. It is an
input from post reactor trip position relay.
2. This failure does not affect the system. However,
the Main CPU can not detect whether there is a
reactor trip.
3. If, in addition to this failure, there is a reactor trip,
the Main CPU will fail and a failover will occur
(Appendix B.2).
4. There is no direct indication of this failure.

Reactor Trip fails open No detection. Main CPU Continues Normal
Operation

1. This failure indicates that there is a reactor trip.
Trip functions will be activated after certain time
period (Appendix B.2).
2. A reactor trip will occur.

Main/Backup CPU
Identification fails closed

No detection. Main CPU Continues Normal
Operation

1. Channel 20 of Digital Backplane: Main/Backup
CPU Identification. It is normally closed, i.e., the pre-
selected CPU is the Main CPU. This failure mode can
not occur to the Main CPU (Appendix B.2). It is a
pre-selected input.
2. However, the failure will make the Backup CPU
think that it is the Main CPU and starting controlling.
The Backup CPU will fail due to deviation.
3. There is no indication of this failure.

Main/Backup CPU
Identification fails open

No detection. Main CPU Continues Normal
Operation

1. This failure can not occur to the Main CPU
(Appendix B.2).
2. It does not affect the Backup CPU.
3. There is no indication of this failure.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-117

Turbine Trip fails closed No detection. Main CPU Continues Normal
Operation

1. Channel 21 of Digital Backplane: Turbine Trip. It
is normally closed, i.e., there is no turbine trip. It is
an input from the turbine relay.
2. This failure does not affect the operation. The
system can not detect the occurrence of turbine trip.
3. If, in addition to this failure, there is a turbine trip,
a reactor trip will follow and the system remains in
automatic control.
4. There is no indication of this failure.

Turbine Trip fails open No detection. Main CPU Continues Normal
Operation

1. This indicates that there is a turbine trip.
2. The MFRV will be shut down but the Main CPU
remains in automatic control.
3. There is not indication of this failure except a
reactor trip. PDU will display the trip events.

Main CPU Failed fails
closed

No detection. Main CPU Failed by Application
Software

1. Channel 22 of Digital Backplane: Main CPU
Failed. It is normally open, i.e., the Main CPU is not
failed. It is an input from the MFV controller.
2. This failure indicates that the Main CPU is failed, a
failover is expected.
3. Main CPU failure will be displayed by the PDU
and the plant computer.

Main CPU Failed fails open No detection. Main CPU Continues Normal
Operation

1. This failure indicates that the Main CPU is OK
even it is not. Thus, it does not affect the operation.
2. If, in addition to this failure, the Main CPU fails,
its true status can be detected by the MFV controller
and it will be failed. The Backup CPU will take over.
3. There is no indication of this failure.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-118

Backup CPU Failed fails
closed

No detection. Main CPU Continues Normal
Operation

1. Channel 23 of Digital Backplane: Backup CPU
Failed. It is normally open, i.e., the Backup CPU is
OK. It is an input from the MFV controller.
2. This failure indicates that the Backup CPU failed.
It does not affect the operation.
3. If, in addition to this failure, the Backup CPU fails,
it is still OK since the Main CPU is controlling.
4. If, in addition to this failure, the Main CPU failed,
there will be a failover because the MFV knows the
true status of the Backup CPU.
5. The PDU and the plant computer will show the
failure status of the Backup CPU.

Backup CPU Failed fails
open

No detection. Main CPU Continues Normal
Operation

1. This failure indicates that the Backup CPU is OK.
It does not affect the operation.
2. If, in addition to this failure, the Backup CPU
failed, it is still OK.
3. If, in addition to this failure, the Main CPU fails,
there will be a failover to the Backup CPU.
4. There is no indication of this failure.

Time Sync N/A N/A Not used. It is an input from the external clock.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-119

Neutron Flux #1 Bypass
fails close

No detection. Main CPU Continues Normal
Operation

1. Channel 25 of Digital Backplane: Neutron Flux #1
Bypass. It is normally closed, i.e., the flux signal is
not bypassed. It is an input from the keyswitch.
2. This failure indicates that the flux #1 is not
bypassed. If the external keyswitch is “normal”, it
does not affect the operation.
3. However, even if the external keyswitch is
“bypass”, it does not seem that the operation will be
affected (Appendix B.2).
4. There is no indication of this failure.

Neutron Flux #1 Bypass
fails open

No detection. Main CPU Continues Normal
Operation

1. This failure indicates that the flux #1 is bypassed
even if the external keyswitch is “normal”. It does not
affect the operation of the system.
2. There is no indication of this failure.

Neutron Flux #2 Bypass
fails closed

No detection. Main CPU Continues Normal
Operation

1. Channel 26 of Digital Backplane: Neutron Flux #2
Bypass. It is normally closed, i.e., the flux signal is
not bypassed. It is an input from the keyswitch.
2. This failure indicates that the flux #2 is not
bypassed. If the external keyswitch is “normal”, it
does not affect the operation.
3. However, even if the external keyswitch is
“bypass”, it does not seem that the operation will be
affected (Appendix B.2).
4. There is no indication of this failure

Neutron Flux #2 Bypass
fails open

No detection. Main CPU Continues Normal
Operation

1. This failure indicates that the flux #2 is bypassed
even if the external keyswitch is “normal”. It does not
affect the operation of the system.
2. There is no indication of this failure.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-120

Positioner Selected fails
closed

No detection. Main CPU Continues Normal
Operation

1. Channel 27 of Digital Backplane: Positioner
Selected. It is normally closed, i.e., positioner A is
selected. It is an input from the positioner.
2. This failure indicates that the positioner A is
selected as the active positioner. It does not affect the
operation.
3. There is no indication of this failure.

Positioner Selected fails
open

No detection. Main CPU Continues Normal
Operation

1. This failure indicates that positioner B is the active
positioner. It does not affect the operation.
2. There is no direct indication of this failure. PDU
will show the active positioner.

No Failures in Other
Microprocessor fails closed

No detection. Main CPU Continues Normal
Operation

1. Channel 28 of Digital Backplane: No Failures in
Other Microprocessor. It is normally closed, i.e., the
other microprocessor is not failed. It is an input from
the other microprocessor.
2. This failure indicates that the other microprocessor
is OK. It does not affect the operation of the Main
CPU.
3. There is no indication of this failure.

No Failures in Other
Microprocessor fails open

No detection. Main CPU Continues Normal
Operation

1. This failure indicates that the other microprocessor
is failed. It does not affect the operation of the Main
CPU.
2. If, in addition to this failure, the Backup CPU
failed, there will be no failover. A loss of automatic
control occurs.
3. There is no indication of this failure.

FMEA of Major Components of Main CPU Module

Failure Mode Detection of Failure Mode Failure Effects (In Terms of States
of Main CPU)

Comments

B-121

No Deviation in Other
Microprocessor fails closed

No detection. Main CPU Continues Normal
Operation

1. Channel 29 of Digital Backplane: No Deviations in
Other Microprocessor. It is normally closed, i.e.,
there is no deviation in the other microprocessor. It is
an input from the other CPU.
2. This failure indicates that the other CPU is OK. It
does not affect the operation.
3. There is no indication of this failure.

No Deviation in Other
Microprocessor fails open

No detection. Main CPU Continues Normal
Operation

1. This failure indicates that the other CPU has a
deviation. It does not affect the operation.
2. If, in addition to this failure, the Main CPU failed,
the failover will not occur and there will be a loss of
automatic control.
3. There is no indication of this failure.

Both Level Signals Valid in
Other Microprocessor fails
closed

No detection. Main CPU Continues Normal
Operation

1. Channel 30 of Digital Backplane: Both level
signals are valid in the other microprocessor. It is
normally open, i.e., both signals are valid.
2. This failure indicates that level signals in the
Backup CPU are invalid. It does not affect the
operation of the Main CPU.
3. There is no indication of this failure.

Both Level Signals Valid in
Other Microprocessor fails
open

No detection. Main CPU Continues Normal
Operation

1. This failure indicates that both level signals in the
Backup CPU are valid. It does not affect the
operation.
2. There is no indication of this.

Both Steam Flow and Both
FW Flow Signals Valid in
Other Microprocessor

N/A N/A Not used.

B-122

Table B.3-2 FMEA of F&P 53MC5000 Controller

FMEA of F&P 53MC5000

Failure Mode Detection of Failure
Mode

Failure Effects Comments

Loss of Power Supplies

Loss of +15V Supply Display goes blank Loss of analog input and output channels due to
loss of D/A and analog comparator powered by
+15V. The RS-232 serial communication link is
lost. Loss of power supply to a level shifter (from
5V to 12V digital signals) in the display circuit.

Loss of D/A has the same effects on the
analog input and output channels.

Loss of -15V Supply No indication of failure
unless the configuration
port is in use.

Loss of RS-232 serial communication link. This failure has no effect on the controlled
application (unless the port is used to receive
control information which is usually not the
case).

Loss of +26V Not detectable unless the
analog output is
monitored using extra
circuits.

Loss of analog outputs. If analog outputs are monitored, then the
failure of the monitoring circuits and/or the
sampling and holding circuits has the same
failure effects.

Loss of +5V The display probably
goes blank

Most of functions will be lost. The drive lines to the
display will be lost. The display was designed to
blank if the input data stream stops to protect the
display. Analog outputs will drift.

Display interface design is not tested yet for
this situation.

Loss of +80V Display goes blank Only display is affected.

Loss of -110V Display goes blank Only display is affected.

FMEA of F&P 53MC5000

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-123

ROM Error The processor performs
a checksum test of ROM
at startup or reset. If the
ROM fails at this time, it
will be detected.
Otherwise, it is not
detectable.

When the processor is running, the failure effects of
a ROM error is not predictable.

ROM is usually used to store programs and
constants used in the programs developed by
vendors.

There is no continuously executing memory
error detection algorithm.

RAM Error The processor performs
a test of RAM at startup.
If the RAM fails at this
time, it will be detected.
Otherwise, it is not
detectable.

When the processor is running, the failure effects of
a RAM error is not predictable.

For 53MC5000, there is no background
running process that performs read/write test
(however, 53MC2000 does) and there is no
continuously executing memory error
detection algorithm.

PAL (Programmable
Array Logic) Error

Unknown Some functions provided possibly by user-written
F-TRAN software stored in RAM will not be
available.

Computational Errors Unknown Unknown except that CPU outputs will be
incorrect.

Plant information indicates that the risk of
computational problems caused by the math
library is low.

Initialized Data Errors Unknown If the presence of wrong data is noticed before the
operation, there will be no impacts. Otherwise,
severity of impacts on the DFWCS depends on
individual errors of data.

Re-initialization of the software should fix the
non-default data errors since all non-default
database values are hardcoded into the various
software modules used in the controllers.

FMEA of F&P 53MC5000

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-124

Loss of Lithium Battery Error will be obvious
only after the external
power supply is also
lost.

Loss of all functions of the processor due to a loss
of program and database if the external power
supply is unavailable. Otherwise, the processor
continue to run.

Loss of RS-485 Serial
Communications
Interface

N/A 53MC5000 will not be able to receive data upon
problem with the receive circuit.
53MC5000 will not be able to transmit data upon
problem with the transmit circuit.

From available documentation, RS-485 serial
communication is not used in the DFWCS
(RS-232 is used for development only).

Loss of RS-485 Jabber A DFWCS trouble alarm
will be actuated.

53MC5000 does not use the communication
network to transmit control related information. The
failure effects could be losses of warning messages
or time.

It is assumed that RS-485 Jabber indicates the
Microlink communication link.

Loss of PWR_ON Signal Flashing display. Watchdog time out due to loss of reset signal from
PWR_ON. The processor will halt. The control task
stops updating outputs and the display task stops
updating display memory. All the contact outputs
will be at “Open” state. Analog outputs will go to
zero mA.

Run-time Error: FIX
(Function Index) 0

The F & P logo appears
on the display.

The control program stops and the inputs are still
measured. The processor continues to run but the
control outputs will not be updated. The display
memory is no longer updated. The contact and the
analog outputs stay the same.

The FIX number determines the functionality
of the controller by selecting various control
strategies and operations once the FIX
number is entered into the database System
Module Function Index data point B000.

Failure of Display or
Display Circuitry

Blank or weird display. The processor continues to run. Both control task
and display task continues to operate. The contact
outputs and the analog outputs are set by control.

FMEA of F&P 53MC5000

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-125

Failure of Digital
Input/Output

Generally not detectable. There could be a generic failure mode of IC, where
an IC fails and causes a momentary short across the
+5V supply. This generic failure mode will cause a
reset of the processor. The total reset time of a
53MC5000 unit is around 1.2 to 1.5 seconds.
During this time period, the analog and digital
outputs of the controller will go to off state
(typically ground). The failures effects on the
actuators are difficult to estimate and depend on
individual designs.

The failures effects on the actuators are
difficult to estimate and depend on individual
designs.

FMEA of F&P 53MC5000

Failure Mode Detection of Failure
Mode

Failure Effects Comments

B-126

ASIC Failure Failure of the DISP-
controller or the DISP-
memory is visible in the
display.

Loss of display.

Failure of the core
block, the processor,
will cause flashing
display.

The ASIC design is hierarchical and partitioned
into different blocks. If the processor fails, the
watchdog timer, the DISP-controller and the DISP-
memory are still working properly, which will
produce a flashing display.

Failure of the
processor’s display
interface or the DISP-
memory (1K dual-ported
RAM) is detected if the
heartbeat pixel does not
flash.

Loss of display.

Clock Reference The display will freeze
and the display is
possibly destroyed.

All functions of the ASIC will stop. The core block
(8051 processor) will fail to execute software. Both
the watchdog timer and display will freeze. Analog
outputs will drift because the watchdog timer has
not expired.

Analog Output Drift Very difficult to detect. Under certain conditions, e.g., a total ASIC failure,
the output sample and hold circuits will no longer
be refreshed but the watchdog timer will not act to
pull the outputs to zero. Analog outputs will drift to
unknown values in unknown directions.

In critical applications, analog outputs should
be monitored using input channels and a
bypass circuit should be used in case of the
analog output failure.

APPENDIX C

MODELING OF SOFTWARE FAILURES

C-i

TABLE OF CONTENTS

Page

C.1 A Unique Feature of Digital Systems: Software . C-1

C.2 Special Characteristics of Software . C-1
C.2.1 Software Life Cycle (SLC) . C-2
C.2.2 A Software Failure and Software Fault . C-3
C.2.3 Software Testing: Differences with Hardware . C-4
C.2.4 Does Software Age? . C-4
C.2.5 Software Updating . C-5
C.2.6 “Software-centric” and “System-centric” View of Software Failure C-5

C.3 Software Failure in the Context of Digital-System Failure . C-5
C.3.1 Interactions Between Software and Hardware of a Digital System C-6
C.3.2 Software Failure in an Operating Environment . C-6
C.3.3 Error Forcing Context (EFC) . C-6
C.3.4 Internal and External Causes of Software Failure . C-7
C.3.5 Propagation of Software Failure . C-9
C.3.6 Detection of Software Failure . C-11
C.3.7 Recovery of Software Failure . C-11
C.3.8 Common-Cause Software Failures . C-11

C.4 Characterization of Software Failures . C-12
C.4.1 Software Failure Modes . C-12
C.4.2 Causes of Software Failure . C-17

C.5 A Model Representation of Software Failures . C-22

C.6 Basis for Developing a Probabilistic Failure Model of Software C-26
C.6.1 Considerations in a Probabilistic Failure Model of Software C-26
C.6.2 Software Failure Modeling for Different Digital Systems in Nuclear Power Plants

. C-28
C.6.3 Desirable Modeling Attributes of Software Failure Models C-32
C.6.4 Review of Available Software Models in Terms of Desirable Attributes C-32

C.6.4.1 Review of Software Modeling Methods C-33
C.6.4.2 Review of Software Failure Quantification Methods C-35
C.6.4.3 Review of Methods Currently Used in PRAs C-37

C.6.5 Summary of the Basis for Developing a Software Failure Model C-39

C.7 Review and Analyses of Software Failures . C-40
C.7.1 US Nuclear Power Plant (NPP) Experience . C-40

C.7.1.1 Approach for Experience Data Collection C-40

C-ii

C.7.1.2 Summary of Results and Insights . C-42
C.7.2 Foreign Nuclear and Non-Nuclear Industry Experience C-44

C.7.2.1 Approach . C-44
C.7.2.2 Summary of Results and Insights . C-45

C.7.3 Insights on Modeling Software Failures in Digital Systems for NPPs C-47

C.8 Software Failures: Detailed Data . C-49
C.8.1 Software Failures in U. S. Commercial Nuclear Power Plants (NPPs) C-49
C.8.2 Software Failures in Foreign Nuclear and Non-Nuclear Industries C-58
C.8.3 Detailed Analyses of Selected Software Failure Events C-58

C.8.3.1 Overdose of Radiation Therapy Machine THERAC-25 [Leveson 1993,
Peterson 1995] - 1985-1987 . C-64
C.8.3.1.1 Summary . C-64
C.8.3.1.2 Software Failures . C-64
C.8.3.1.3 Consequence . C-64
C.8.3.1.4 Likelihood of Error Forcing Context C-64
C.8.3.1.5 Failure Categorization . C-65
C.8.3.1.6 Dependent Failure and CCF . C-65
C.8.3.1.7 Discussion . C-66

C.8.3.2 London Ambulance Dispatch System [South 1993, Finkelstein 1996] -
October 1992 . C-66
C.8.3.2.1 Summary . C-66
C.8.3.2.2 Software Failures . C-66
C.8.3.2.3 Consequence . C-67
C.8.3.2.4 Likelihood of Error Forcing Context C-67
C.8.3.2.5 Failure Categorization . C-67
C.8.3.2.6 Dependent Failure and CCF . C-68
C.8.3.2.7 Discussion . C-68

C.8.3.3 China Airline Flight B1816 Crash at Nagoya [Ladkin, CSE] - 4/26/1994
. C-68

C.8.3.3.1 Summary . C-68
C.8.3.3.2 Software Failures . C-68
C.8.3.3.3 Consequences . C-69
C.8.3.3.4 Likelihood of Error Forcing Context C-69
C.8.3.3.5 Failure Categorization . C-69
C.8.3.3.6 Dependent Failure or CCF . C-70
C.8.3.3.7 Discussion . C-70

C.8.3.4 Turkey Point Diesel Generator Sequencer - November 4, 1994 C-70
C.8.3.4.1 Summary . C-70
C.8.3.4.2 Software Failures . C-71
C.8.3.4.3 Consequence . C-71
C.8.3.4.4 Likelihood of Error Forcing Context C-72
C.8.3.4.5 Failure Categorization . C-74
C.8.3.4.6 Dependent Failure and CCF . C-75

C-iii

C.8.3.4.7 Discussion . C-75
C.8.3.5 Common Cause Failure of Voltage Regulating Transformers and Vital

AC Buses at Pilgrim - 4/1/1997 . C-75
C.8.3.5.1 Summary . C-75
C.8.3.5.2 Software Failures . C-76
C.8.3.5.3 Consequence . C-76
C.8.3.5.4 Likelihood of Error Forcing Context C-78
C.8.3.5.5 Failure Categorization . C-78
C.8.3.5.6 Dependent Failure and CCF . C-79
C.8.3.5.7 Discussion . C-79

C.8.3.6 Core Protection Calculators Inoperable at Palo Verde 2 C-79
C.8.3.6.1 Summary . C-79
C.8.3.6.2 Software Failures . C-80
C.8.3.6.3 Consequence . C-80
C.8.3.6.4 Likelihood of Error Forcing Context C-81
C.8.3.6.5 Failure Categorization . C-81
C.8.3.6.6 Dependent Failure and CCF . C-82
C.8.3.6.7 Discussion . C-82

C.8.3.7 Slammer Virus in Davis-Besse Nuclear Power Plant [Schulin, Poulsen] -
1/25/2003 . C-82
C.8.3.7.1 Summary . C-82
C.8.3.7.2 Software Failures . C-83
C.8.3.7.3 Consequences . C-83
C.8.3.7.4 Likelihood of Error Forcing Context C-83
C.8.3.7.5 Failure Categorization . C-83
C.8.3.7.6 Dependent Failure or CCF . C-84
C.8.3.7.7 Discussion . C-84

C.8.3.8 Natural Gas Pipeline Explosion in Soviet Union [Reed 2004, Detroit
2004, Loney 2004] - Summer 1982 . C-84
C.8.3.8.1 Summary . C-84
C.8.3.8.2 Software Failures . C-85
C.8.3.8.3 Consequences . C-85
C.8.3.8.4 Likelihood of Error Forcing Context C-85
C.8.3.8.5 Failure Categorization . C-85
C.8.3.8.6 Dependent Failure or CCF . C-86
C.8.3.8.7 Discussion . C-86

C.8.3.9 Maroochy Water Treatment Plant Accident [Age 2003, Red 2003,
Datz 2004] - 2000 . C-86

C.8.3.9.1 Summary . C-86
C.8.3.9.2 Software Failures . C-86
C.8.3.9.3 Consequences . C-86
C.8.3.9.4 Likelihood of Error Forcing Context C-87
C.8.3.9.5 Failure Categorization . C-87
C.8.3.9.6 Dependent Failure or CCF . C-87

C-iv

C.8.3.9.7 Discussion . C-87
C.8.3.10 Blackout of North America [US 2004, Jesdanun 2004] - August

14, 2003 . C-88
C.8.3.10.1 Summary . C-88
C.8.3.10.2 Software Failures . C-88
C.8.3.10.3 Consequence . C-90
C.8.3.10.4 Likelihood of Error Forcing Context C-90
C.8.3.10.5 Failure Categorization . C-90
C.8.3.10.6 Dependent Failure and CCF . C-91
C.8.3.10.7 Discussion . C-91

C.8.3.11 Common Cause Failure of Security Computers at San Onofre Unit
1 - 1998 . C-91

C.8.3.11.1 Summary . C-91
C.8.3.11.2 Software Failures . C-92
C.8.3.11.3 Consequence . C-92
C.8.3.11.4 Likelihood of Error Forcing Context C-92
C.8.3.11.5 Failure Categorization . C-93
C.8.3.11.6 Dependent Failure and CCF . C-93
C.8.3.11.7 Discussion . C-94

C-1

C.1 A Unique Feature of Digital Systems: Software

Nuclear power plants (NPPs) are replacing their obsolete analog instrumentation and control (I&C)
systems with the more reliable digital I&Cs. Digital I&Cs differ from their analog counterparts and
contain many unique features that may include diagnostics, self-correction, signal validation,
synchronization, and unique communication means, e.g., buses, local area networks (LAN), and
fiber optic connections. Another unique feature of digital systems is the use of software.

In this Appendix, software and software failures associated with digital equipment are discussed.
Often digital systems fail due to software failures, the characteristics of which may differ, requiring
different approaches for preventing them and modeling for their inclusion in the plant’s risk models.
Recognizing the implications of shifting to a digital technology, the U.S. Nuclear Regulatory
Commission (USNRC) requested the National Research Council form a committee to study the
application of digital I&C technology to commercial NPP operations [National Research Council,
1977]. Among their other recommendations, the committee recommended including the relative
influence of software failure on system reliability in the probabilistic risk assessment (PRA) of
systems containing digital components.

The special characteristics of software failures and their influence on the failure of the digital system
are discussed. Using published information, software failures are characterized in terms of software
failure modes and causes, and also common-cause failures that may be associated with software.
Operating experience in the nuclear industry and the experiences of other industries are reviewed
to obtain further insights, that, together with the characteristics of software failures, are used to
develop a model representation of software failures. This model forms the basis for software-failure
modeling. A structure for addressing software failures in digital systems for NPPs is presented,
along with recommendations.

C.2 Special Characteristics of Software

What is Software Failure?

Some experts opine that software is deterministic, i.e., given the same input, it will always produce
the same output, and argue that it may not be meaningful to try to model software [Leveson, 1991;
Singpurwalla, 1995]. Some even suggest that software does not fail because it invariably does what
it is programmed to do. However, it is undeniable that software does fail and has been the cause of
many accidents. Also, the potential variability of the input to a software and the number of paths
of execution within the software often is so large that it is impossible to exhaustively test the
software. Software design faults are an important cause of software failures.

A software failure can be defined in terms of its functions and/or implied functions. A narrowly
defined function of software may lead to the conclusion that the software never fails because it
always does the narrowly defined function. It can be considered that any deviation from the
expected behavior, e.g., a violation of one of the functions, is a failure. In a digital system consisting
of hardware and software, software failures manifest themselves via the behavior of hardware.

C-2

Various issues related to software failures and their different causes, characteristics, and types are
discussed in the remainder of this Appendix, and are summarized in Table C-1.

Table C-1 Characteristics of Software Failure

Software Development and Operation Software Failure Concerns

Software development errors Errors may be introduced at different stages of
software development. Efforts are made to
eliminate them through testing. However,
eliminating all errors for all feasible conditions is
essentially impossible.

Software testing Software testing identifies and corrects any errors.
The process itself may introduce errors. The
potential variability of the input to a software and
the number of paths of execution within software
often is so large that exhaustive testing is
prohibitive.

Software upgrading Software needs upgrading considering changes in
the environment in which it operates. During the
upgrading process, errors may be introduced
resulting in software failure.

Software aging Software does not age in the conventional sense.
Certain problems, e.g., accumulation of errors
over time, a memory overload, may develop over
time.

Software in operational environment The operational environment in which the
software is performing may create conditions for
which its design and development may not have
been sufficient, resulting in its failure.

C.2.1 Software Life Cycle (SLC)

Software is developed in several stages that transform it from a concept into a code that is executed
by a computer processor. This development, usually called a software life cycle (SLC), is generally
characterized in terms of six main stages: system engineering and modeling, software requirements
analysis, software analysis and design, code generation, testing, and, operation and maintenance.
Figure C.1 pictorially represents the SLC. The life cycle and each of its stages also are discussed
in Section C.6 and as part of the discussion of the causes of software failure in Section C.4.

C-3

At each stage of development, errors may be introduced into the software. Thus, the requirements
analysis may be incomplete, such that a requirement of the software is omitted. The earlier in the
SLC an error is introduced into the software, the more severe and costly its impact is likely to be
because the error is expanded in subsequent stages of development. For example, if an error is
introduced during the stage of “Requirements Analysis,” the following stages will implement the
error, and most likely testing will not reveal it; fixing it would require revising the entire activities
of the SLC.

During “Testing,” attempts are made to discover and fix errors. However, in practice, it is difficult
to discover all of them. Accordingly, some undiscovered ones may, and in many cases do, remain
in the software when it becomes operational. This is particularly true for large software that can
contain tens or hundreds of thousands of source code, and whose logic is complex.

Testing each possible path of execution would require large resources of time and money, so, in
practice, it may be prohibitive. In addition, testing detects errors by observing that the results from
certain inputs are inconsistent with the requirements of the software; if the requirements are not
correct, testing will not uncover the associated errors.

C.2.2 A Software Failure and Software Fault

Developing software according to high-quality standards in each stage of the SLC is expected to
produce software that operates correctly during most of its operation, i.e., according to its
specifications. Accordingly, in general, an undiscovered error is in a “dormant” or inactive state
since the software started operating. A dormant error becomes “active” when it is triggered by a
specific set of conditions. Thus, software fails when a dormant error is activated. In other words,
software failure occurs from the combination of a dormant error and the specific set of conditions
that trigger it. To simplify the discussion in this report, a dormant or inactive error in the software
is called a “fault.”

Requirements
Analysis Design Code

Generation Testing
System

Engineering and
Modeling

Operation and
Maintenance

Figure C.1 Stages in a Software Life Cycle (SLC)

C-4

The following are three important characteristics of a software fault :

1. It is specific to each design. Since software is developed by different teams using somewhat
different approaches to the SLC, it will have its own design-specific errors. Hence, the faults
may be triggered by different sets of conditions.

2. It is unknown. By the nature of a fault, it is undiscovered or hidden in the software until it
is triggered.

3. The impact of a triggered fault is difficult to predict. When a fault is triggered, the software
may behave in undesirable ways, having unwanted impacts on the components of the
associated system. Since the fault is unknown, it is difficult to predict the effects of its
failure on the software and these components.

C.2.3 Software Testing: Differences with Hardware

In testing hardware, e.g., starting of a pump, identical tests are performed, and the results are used
to estimate the failure probability. In software testing, different samples from the input domain of
the software are used as the input. Repeating the same input in software tests does not provide any
additional information. Typically, faults are fixed when they are identified. Therefore, the faults
that were removed no longer contribute to software failure; rather the undiscovered faults cause
concern. On the other hand, errors made in removing known faults may introduce new ones into the
software. It is commonly understood that apart from simple software, it is not possible to test
software exhaustively, nor can it be proven to be free of faults. Dunham and Finelli [1990]
introduced the concept of error crystals in the input space representing the inputs in the input space,
and which, if realized, would lead to a software failure. The removal and addition of software faults
correspond to removal and addition of error crystals in the input space.

C.2.4 Does Software Age?

Unlike hardware, which may fail due to physical degradation of the components themselves,
software does not age. Either a software fault exists at the beginning of life, or it does not. It does
not appear at some point in time except when revision to the software introduces faults. In some
cases, over time, it may become impossible to recover from the accumulation of errors, e.g., the
Patriot missile-defense system failed to track Scud missiles during the Iraq war [GAO, 1992], and
resources, such as memory space, may become insufficient. In other words, with age and usage of
the software, certain failures may occur which may not be possible at the beginning of the life cycle.
If software is not updated, it may become incompatible with its operating environment when the
systems with which it interfaces have changed. Arguably, these types of conditions represent aging
of the software. Hence, if the software is not appropriately updated, failures will occur because of
its incompatibility with the operating environment. These types of failures can be called age-related
software failures.

C-5

C.2.5 Software Updating

To remain compatible with operating environment and to satisfy the changing requirements for its
operating system, software requires updating. This may involve minor changes to major ones. In
all such updates, care must be taken to assure that additional errors are not introduced during the
process. Software updating essentially involves all the stages in the SLC, and so the different types
of failures that may be introduced in each stages also apply for software updates. A software that
may have very low likelihood of failure at its first operation may have much higher likelihood of
failure because of updating the software. Conversely, updating may correct some undetected
failures in the software, making it more reliable.

C.2.6 “Software-centric” and “System-centric” View of Software Failure

The characteristics of software failures, discussed above, focus on the failure of the software.
However, for the digital systems in NPPs, software is a part of the digital system and in the broader
context, a part of the NPP. The intent is to account for all types of software failures that may occur
in the plant due to the introduction of these systems, and also for successful execution of the
software within the plant’s systems.

Apostolakis [ACRS, 2005] noted that according to the literature on digital software [National
Research Council, 1997], [Leveson, 1995], and [Garrett and Apostolakis, 1999], there are two main
interpretations of the concept of software failure. The “software-centric” interpretation views failure
as a property of the software itself. In other words, the software is considered in isolation, and not
in the context of the system or the plant in which it operates. In contrast, the “system-centric” view
proposes that the concept of software failure is meaningful only when considering the software
within a system. This approach is very similar to the modeling of human performance; an unsafe
human act is considered meaningful only in the system context within which it occurs, an
observation that led the Office of Nuclear Regulatory Research (RES) of USNRC to develop the
concept of “error-forcing context” (EFC) [Cooper et al., 1996]. Consistent with Apostolakis’
recommendation [ACRS, 2005], software-induced failures were analyzed (see Section C.5) and a
“system-centric” view of software failures adopted that is considered applicable for capturing the
different types of software failures observed. While the “software-centric” and “system-centric”
views are compatible, the latter is more encompassing; it includes all “software-centric” failures and
specifically accounts for the system in which the software functions. In the next section, software
failures are discussed taking into consideration the digital system and their functions in an NPP.

C.3 Software Failure in the Context of Digital-System Failure

It is a common understanding that software failures often reflect unanticipated inputs that the
software cannot correctly respond to [Leveson, 1991; Lyu, 1994]. The variability of the input
depends on the operating environment, including the systems the digital system interacts with, and
the associated physical processes they operate in. The “system-centric” approach recommended by
the Advisory Committee on Reactor Safeguards (ACRS) [ACRS, 2005] and supported by the
analysis of software failures, as presented in Section C.5 of this Appendix, essentially asks that the

C-6

software is considered a part of the overall system in defining software failures and in modeling of
these failures.

C.3.1 Interactions Between Software and Hardware of a Digital System

Digital-system features are implemented in terms of both hardware and software. In general, a
software failure will lead to failure of the device that it controls. In some cases, the design of the
system may be such that the software can detect some hardware failures and prevent overall failure
of the system. Some hardware failures may be detected by software in such a way that the failure
is masked, e.g., if a sensor failure is detected, then its signal will be ignored and a second sensor’s
signal is used instead. However, the failure of the software to detect the sensor failure that triggers
the hardware’s failure because the redundant sensor’s signal does not get used is a software failure
of concern. Some unique features are implemented at a low level, e.g., cyclic redundancy checks
[Siewiorek, 1992], communication protocol, and synchronization. A single “stuck-at-one” fault on
a data line of the Traffic Collision Avoidance System of a Korean Air Cargo flight contributed to
a near-miss collision with British Air flight 027 on June 28, 1999. Capturing failures relating to
low-level design features may not always be feasible; even if the failures are identified at the low
level, modeling of the digital system will be required at the same detailed low level.

C.3.2 Software Failure in an Operating Environment

Once the software is operational, it is embedded in some system, and interacts with some
environment, such as the components of the system and is impacted by the operators’ actions. For
example, suppose that the flow control of the Main Feedwater system (MFW) (of a Pressurized
Water Reactor (PWR)) uses software. The software may control one or more components; in this
example, it controls the MFW’s flow control valves. In general, a software failure is propagated
directly to the device(s) controlled by the software (here, the flow control valves of the MFW) that,
in turn, may cause degradation or failure of the associated system.

In general, software interacts with its environment at four levels, depending on the detail: the
software itself, the device(s) that are controlled by the software (e.g., the flow control valves of the
MFW), the system wherein the software and the device(s) are embedded (e.g., the MFW), and the
complex engineered system, such as the entire nuclear plant. Depending on the overall context of
the plant and the tolerance to failures of the design of the software, device(s), and system, the failure
may propagate to the overall plant.

C.3.3 Error Forcing Context (EFC)

At any particular time, the software, the device(s) controlled by it, the system where the software
is embedded, and the nuclear plant, are in a certain state. In general, the state of the plant provides
an overall context for the operation of them. For example, the input to the software will depend on
the state of the plant. Accordingly, software faults are triggered by the input to the software, which
is provided by the context (state) of the plant. The context of the plant that the software “sees” is
particularly important because it may trigger a fault, thus causing a failure. The context causing a

C-7

software failure was called the “EFC” by Garrett and Apostolakis [1999] because, as its name
implies, it “forces” or activates the error. Accordingly, the set of conditions that trigger a fault is
comprised by the EFC. This approach is very similar to the modeling of human performance; an
unsafe human act is considered meaningful only in the system context within which it occurs, an
observation that led the Office of Nuclear Regulatory Research (RES) to develop the concept of EFC
[Cooper et al., 1996].

Figure C.2 illustrates the concept of EFC in software failures and their discovery. EFC can develop
at anytime, starting from when the software becomes operational. Normal operation may be the EFC
for a software that may not be discovered until some time has elapsed. A review of operational
events related to software failures, in Section C.5 of this report, also showed that in several events
the failure occurred practically as soon as the software became operational. In many situations, an
EFC occurs sometime during the software’s operation and may remain undetected until a specific use
is called for. Two representative cases of an EFC triggering a software failure are shown in the figure.
Figure C.2(a) depicts the situation where an EFC occurs sometime during the operation of the
software and remains dormant for an unknown period. In Figure C.2(b), normal operation is the EFC
activating the fault, but its presence is discovered at a later time through a specific usage.

C.3.4 Internal and External Causes of Software Failure

In addition to the failures related to the faults introduced in the software during its SLC, software may
also fail due to external causes or factors, as shown by Figure C.3. Based on the review, four main
types are identified: human error, failure of support systems, breaches in cyber security, and
compromised environment. They are defined as follows:

1. Human error: A person may use the software inappropriately, such as using
it in an operational environment for which it was not designed,
or may inadvertently enter incorrect data into it. In general,
these are errors by human operators that cause the software to
malfunction.

2. Support system failures: In general, the software that performs some function in a
complex system, such as controlling some device(s), requires
several supporting systems. They include other software (e.g.,
an operating system), computer hardware (e.g., a hard drive),
electric power, and possibly a system, such as a Heating,
Ventilation and Air Conditioning (HVAC) system, which
regulates some variables, e.g., temperature of the room(s)
where the computer system is located.

These support systems also may include an input/output
interface between software and hardware. A failure in either
interface may cause the software to fail.

C-8

3. Breaches in cyber security: If the computer where the software is embedded is connected
to a network, the operation of the software may be jeopardized
by cybernetic threats, such as viruses and hacking activities
transmitted through the network.

4. Compromised environment. Events, such as fire, flooding, and lightning, also can
jeopardize the operation of the computer wherein the software
is embedded.

Internal and external causes of software failures are discussed in detail in the next section.

Software becomes operational,
no fault is active,

time = 0

Time

Error-forcing context occurs,
triggering software failure

Software becomes operational,
time = 0

Time

Software failure occurs because
fault is actived by error-forcing

context which is normal
operation

(a)

(b)

Discovery
of failure

Discovery
of failure

Figure C.2 Triggering of Software Fault by Error-forcing Context

C-9

C.3.5 Propagation of Software Failure

The propagation of a software failure to the three higher levels (device(s), the system where the
software is embedded, and the nuclear plant) also depends on the plant’s overall context. For
example, at the time of the software failure, other components, trains, or systems may be unavailable
due to maintenance or testing, or standby components may fail to operate on demand. Hence, the
software failure may combine with the unavailability of other components, trains, or systems, thus
propagating throughout the plant.

In some situations, redundant components of a system or even components beyond a system may use
the same or similar software that may be vulnerable to similar failures. A software failure may imply
failure of similar software associated with multiple components within a circumscribed time. This
is common-cause software failure (CCSF) and is discussed further below. If this CCSF occurs, it may
cause all the devices controlled by similar software to fail within short time of each other and may
result in the entire system’s failure.

Figure C.4 represents software failure and its propagation in a complex system. Failure of software,
including CCSF, may result from both internal and external causes. As discussed, the overall context
of operation of the software, the devices, and the system generates the EFC (arrow labeled “Error

Software Failure
Causes

External Causes
of Failure

Internal Causes
of Failure

- Human errors
- Breach in cyber security
- Support system failure
- Compromised environment

Errors introduced during:
- System Engineering and Modeling
- Requirements Analysis
- Design
- Code Generation
- Testing
- Upgrades

Figure C.3 Software Failure Causes

C-10

Forcing Context” from the square “overall context”) that triggers a fault(s) in the software (arrow
from the stage “Operation and Maintenance” of the SLC). The potential propagation of this failure
is shown following the arrows downward. Thus, the square “Failure of Software” leads to the square
“Failure of Device,” which leads to failure of the system containing the software.

Accident

Failure of
Software

(including CCF)

Failure of Device
(including CCF)

Failure of System
Containing
Software

Status of Complex
System and
Recovery

Is recovery
successful?

Accident is
avoided

No Yes

Overall
Context

Error Forcing Context

External Causes
of Software Failure

Internal Causes
of Software Failure

Figure C.4 Propagation of Software Failure

C-11

C.3.6 Detection of Software Failure

Software that was developed and operated according to a high-quality SLC is expected to initially
operate without failure; any remaining faults are not active. When the software fails, it may not be
evident to the plant’s staff, and its detection depends on such factors as whether the failure is
automatically annunciated, and whether the failure is significant to the plant’s operation. In defining
the EFC for a software failure, it was noted that the failure may not be detected until some time has
elapsed following the triggering event caused by the EFC that resulted in the failure. If the failure
is automatically annunciated, it is promptly detected and corrective measures may be taken. In some
situations, a failure is significant enough to entail changes in the plant’s parameters that are
monitored by the staff, which facilitates detection of the failure. In other cases, the failure remains
hidden and is detected only when component or system failure becomes evident.

C.3.7 Recovery of Software Failure

After a software failure occurs, it may be possible to halt or mitigate its propagation and recover
automatically or manually. In principle, such recovery could be implemented at any of the four
levels previously discussed, i.e., at the software, device, system, or complex system (e.g., nuclear
plant) level. For example, a hypothetical software failure may propagate to the system level, but
recovery actions at this level can stop further propagation, so the failure does not negatively affect
the overall nuclear plant. For simplicity, Figure C.4 depicts recovery only for the highest level, i.e.,
the complex-system level. As shown, the combination of a software failure that propagated to the
complex-system level with the overall context may generate a hazardous condition that, if not
recovered, becomes an accident.

C.3.8 Common-Cause Software Failures

Diversity of software is difficult to demonstrate. Knight and Leveson [1986] experimented using
27 versions of a program and showed that the independence assumption is rejected with 99%
confidence. The dependence came from programmers making equivalent logic errors.

Often, a digital system consists of more than one channel with identical hardware and software.
Common-cause failure (CCF) of both must has to be considered. The defect found in the sequencer
software logic of the Turkey Point NPP [FPL, 1994] could affect all four sequencers at the plant, and
is an example of CCSF.

USNRC regulation of digital systems requires demonstration of defense-in-depth and diversity (D3)
for digital systems. A D3 analysis is conducted for both hardware and software; CCFs are postulated
one at a time, and diversity has to be demonstrated for each of the accidents in the final safety
analysis report (FSAR) [Preckshot, 1994]. When software CCF is postulated for design- basis
accidents, some accident-initiating events may become more severe than that assumed in Chapter 15
of the FSAR, e.g., the sticking open of all relief valves instead of a single relief one. The feedwater
control system of ABWR [Yih, 2004] exemplifies such difficulties.

C-12

In many cases, identical software is used for two redundant components in a system. For CCSF, a
complete dependence is assumed since a defect in one of the software is likely to be replicated in the
software for the redundant component. In that respect, a CCSF has a severe implication compared
to a common-cause hardware failure where a complete dependence is unlikely.

C.4 Characterization of Software Failures

The literature on software failure modes and effects analysis (FMEA) does not yet contain a uniform
definition of software failure modes, failure causes, and failure effects. A review of papers on
software FMEA in the aerospace-, automobile-, defense-, and nuclear-industries, along with a review
of failure experience in the medical- and nuclear-industries revealed the use of different failure
classifications and confusing use of terminologies.

In analyzing digital systems for NPPs, a consistent definition of failure modes, causes, and effects
is desirable since the definitions must correspond with hardware failures where a clear definition
exists. For modeling digital systems and software failures in the PRA for NPPs, definitions that are
comparable to hardware failures are desirable so that the models developed in this area can be
integrated smoothly with the current models in the PRA.

The software system and element failure modes presented here were primarily obtained from the
definitions in the literature. However, a significant improvement was made by avoiding overlaps and
confusing terminology, and clearly differentiating the software- system failure modes and software-
element failure modes. The intent is to clearly and consistently define of failure modes that can be
used in defining software failures for digital systems in the nuclear industry.

C.4.1 Software Failure Modes

In general, a failure mode represents a way a failure occurs. Software failure modes (SFMs) are
difficult to define because they depend on the level of detail at which the software failure is being
evaluated, and on the software’s specific application. For example, failure of communication due
to loss of synchronization is a lower-level software failure mode. The loss of synchronization of
communication processes associated with several devices is a failure mode at a device level which
may develop into a system failure impacting the complex system, such as a NPP.

Based on reviewing the literature on software failure in different industries and of the failure
experience in the nuclear industry, failure modes from the view point of the dynamic execution
process of software were introduced without distractions occasioned by specific functions of the
software. More important, this dynamic running process exactly reflects the observed behaviors of
software , i.e., the observed failures of the dynamic process are indeed the failure modes. The
software SFMs presented for generic use are inspired by the work of Ristord [2001].

Software can be considered to be composed of many elements where each of the elements performs
one of the generic software functions, such as input, output, processing, communication, and resource

C-13

allocation. Thus, it can be thought of as a system (software as an entity), i.e., a “software system”
which consists of “software elements” performing the generic software functions.

Software can be extremely complex and each of its elements may be conceptually considered a
software system (software as an entity) that again consists of many elements that can be functionally
differentiated. The process (and thus the corresponding failure modes of the so-called “software
system” and “software elements”) can be repeated until a level is reached where enough information
is available. From this point of view, the software can be generally considered to be of a nested
hierarchical structure of “software system” and “software elements,” and the failure modes can be
analyzed for both repeatedly to better understand the failure modes.

Because of this hierarchical structure, it is more appropriate to separately define the software failure
modes at both the system level and element level. One of the difficulties in defining generic
software failure modes is that it cannot be defined according to its intended functions because a
particular software has its particular function.

The published failure mode analyses were performed either at the system (software as an entity) level
or at the element level (it performs one of the software generic functions, such as input, output,
processing, communication, and resource allocation, which will be illustrated later), or a level that
is not clearly defined. When some failure-mode classifications considered failure modes at different
levels of details, more specifically at both system level and element level, the nested hierarchical
structure of the software was not considered. Thus, definitions of software failure modes are
presented at the system and element levels, addressing the difficulties that exist for many of the
current definitions in the literature. The definition given below is considered sufficient to address
different software failures observed and the modeling needs for digital systems in NPPs.

Software System Failure Modes

Two SFMs are defined: Malfunction of software in its execution, M-I; and, Problematic, confusing,
and less informative interface, M-II. These failure modes are summarized in Table C-2.

M-I represents malfunctions of software in its execution and includes two sub-modes:

M-I-1 Software stalls:

This failure mode represents software failures that stop generating output, i.e., the
software runs into an infinite loop and stops generating outputs, and deadlocks
between processes;

C-14

M-I-2 Software runs as usual but with wrong outputs:

In this failure mode, the software continues running but generates incorrect output,
i.e., it accepts incorrect inputs and sends wrong outputs.

The software failure mode M-I-1 is relatively easy to discover since all other functions cease except
maybe the one it is performing. Identifying M-I-2 is more difficult as all appears normal. Usually,
for this failure mode, the overall system cannot be saved from failure.

Each of the failure modes is further expanded into two systems-level failure modes depending on
whether or not the failure is clearly indicated, e.g., via an error message. Thus, four SFMs are
defined for software malfunctions during execution:

SFM-1 Halt/termination with a clear message
SFM-2 Halt/termination without a clear message
SFM-3 Runs with evidently wrong results
SFM-4 Runs with wrong results that are not evident.

M-II represents problematic, confusing, or less informative man-machine interface (MMI) designs.

M-II Software runs with misleading commands to the user, incomplete or incorrect display
of information due to software problems, missing alarms, and non- conservative
output.

In this case, the software performs its intended functions successfully but contributes to human errors,
or the software fails to display the information correctly. Two SFMs are defined for this failure mode:

SFM-5 Software runs with incomplete or incorrect display of information requiring
the operator to take action

SFM-6 Software provides misleading commands to the operator

The failure mode M-II, which includes SFM-5 and SFM-6, were not specifically defined in the
software literature that was reviewed for this study. However, this type of problem was found in
many software-failure events and is too important to exclude. Another reason to consider it is that
an alternate interface design very likely will prevent failure in this mode. Considering the need for
modeling digital systems in NPPs and the review of nuclear experience, this failure mode was defined
to assure a complete accounting of failures associated with software.

Software Element Failure Modes

The system-level failure modes represent a natural way of considering software failure modes at the
highest level. To conduct a detailed failure analysis, software-element failure modes (EFM) were
introduced based on the fact that any software package can be divided into five elements which

C-15

perform the generic functions of the software. Generally, a digital system software takes input data
from the hardware. Pre-processing may be performed during data input. Subsequently, the input data
will be processed, and the output data is sent out. During the execution of the software, resources,
such as memory and CPU, are used and communication may occur between different software
processes. Therefore, software may consist of elements that can be functionally decomposed into the
following:

1. SE-1: INPUT elements,
2. SE-2: OUTPUT elements,
3. SE-3: a communication element,
4. SE-4: RESOURCE ALLOCATION elements,
5. SE-5: PROCESSING elements.

Each of the five software elements is associated with failures and their failure modes can be defined.
A set of generic modes is defined that apply to all elements. A set of six software EFMs is defined;
they are as follows:

Timing/order failure (EFM-1): This failure mode category represents incorrect timing
and ordering of events; for example, race conditions,
execution time exceeding a time limit, incorrect timing
of available data, incorrect rate of data processing,
incorrect duration of data for processing, and slow
response.

Interrupt induced failure (EFM-2): This category represents interrupt-induced failures,
e.g., incorrect interrupt request, service, and return.

Omission of a function or an attribute
(EFM-3): This mode represents a function or its attribute (e.g.,

execution time of a function) being left out although
they should have been included.

Unintended function or attribute (EFM-4): This failure category represents unintended actions or
attributes that were implemented, e.g., modifying
variables that should not be modified, and modifying
code memory, in addition to the correctly implemented
intended function or attribute.

Incorrect implementation of a function
or an attribute (EFM-5) This failure mode represents a function or an attribute

of the function that is not left out but is incorrectly
implemented.

C-16

Data error (EFM-6) This category represents errors related to data. Lutz
[1996] and Li [2003] listed data errors that include
incorrect amount, incorrect value, incorrect range,
incorrect type, absent data, duplicate data (data
overflow, data saturation), corrupted output, correct
input not accepted, and wrong input accepted. Here,
the data error indicates problematic data that cannot be
identified or handled by properly designed software
logic. For example, it is impossible to design a
software logic that can identify and reject a data entry
with the wrong value, but within the permitted range.
On the other hand, a data entry with a value that is out
of the permitted range is taken as a valid input and is
not considered a data error because properly designed
software logic can be easily used to reject this as input.
Instead, this type of failure mode is called omission of
a function.

The above failure modes are applicable to all the software elements. It should be noted that for
RESOURCE ALLOCATION and COMMUNICATION elements, some unique failure modes are
known; they can be classified as one of the six generic failure modes listed above.

The specific failure modes include loss of synchronism, deadlock, lockout, and interruption and
priority error. Examples of specific failure modes of the elements are given below:

INPUT - failure to interact with I/O board, and excessive demand on I/O devices.

OUTPUT - failure to interact with I/O board, excessive demand on I/O devices, a faulty message,
checkpoint file failure, e.g., a file that describes status of hardware checked by operating system
during a computer reboot.

COMMUNICATION - failed interaction (in subroutine calls, data communications) between
processes, failed synchronization, dead lock (two processes prevent each other from communicating).

RESOURCE ALLOCATION - failure to interact with CPU resources, competing for resources,
priority errors, resource conflicts; internal capability exceeded, dead lock (two processes prevent each
other from obtaining the resource), lockout (a process is never able to acquire the resource).

Table C-2 summarizes both the software system and software element failure modes. The SFM and
EFM definitions are similar to the definitions of failure modes classification in Li [2003] and could
be performed at lower level according to nested hierarchical structures if enough information is
available, i.e., a module also can be quite complex and might be further divided into submodules of
INPUT, OUTPUT, COMMUNICATION, RESOURCE ALLOCATION, and PROCESSING, and
so on.

C-17

The concept of SFMs and EFMs naturally leads to a classification of software failure analysis based
on the software system’s hierarchical structure i.e., the failure mode analysis can always be described
by “software system” level failure modes and “software element” level modes repeatedly. Using the
failure modes shown in Table C-2, the complexity level of software failure analysis can be controlled.
Moreover, the failure-mode analysis can always be performed at any level provided that the required
details are available.

Table C-2 Software System and Software Element Failure Modes

Software System Failure Modes (SFM) Software Elements Failure Modes (EFM)

M-I-1

SFM-1: Halt/abnormal
termination with clear message

Software Elements:
SE-1: INPUT
SE-2: OUTPUT
SE-3: COMMUNICATION
SE-4: RESOURCE ALLOCATION
SE-5: PROCESSING

Generic Failure Modes of Software Elements:
EFM-1: Timing/order failure,
EFM-2: Interrupt-induced failure,
EFM-3: Omission of a required function or
attribute,
EFM-4: Unintended function or attribute in
addition to intended ones,
EFM-5: Incorrect implementation of a function
or attribute,
EFM-6: Data error that cannot be identified and
rejected by software logic

SFM-2: Halt/abnormal
termination without a clear
message

M-I-2

SFM-3: Runs with evidently
wrong results

SFM-4: Runs with wrong results
that are not evident

M-II SFM-5: Incomplete or incorrect
display of information requiring
operators to take action

SFM-6: Misleading command to
the user

C.4.2 Causes of Software Failure

Software can fail due to errors introduced during different stages of the SLC. They are caused by the
development of the software itself, and are called the “internal causes” of failure. Simply, internal
causes are errors during different stages of the software development that introduced bugs or faults
into the software and failed to detect them. In addition to internal causes, many software failures are
related to the environment in which the software functions. Using a “system-centric” view of the
software, these software failures are considered and are called “external causes” of software failure.

C-18

They are due to human errors, cyber-security problems, such as viruses and hackers, environmental
problems, such as electromagnetic interferences, and failures of hardware needed to support the
software. Internal and external causes together capture the different types of software failures
observed in different industries. Table C.3 summarizes and briefly describes these different causes.

Six categories (SFC-I to SFC-VI) are associated with internal causes related to the stages of the SLC;
the remaining four cover the external causes. Note that problems with documentation may become
a cause of failure at each stage of SLC. Table A.21 in IEEE [1995] lists the documentation problems,
so they are not listed herein.

Table C-3 Software Failure Causes

Software Failure
Cause Type

Software Failure Cause Cause Description

Internal Causes SFC-I System Engineering and
Modeling

Software developed with problematic or
outdated standards or policies, and cannot
integrate with the overall system

SFC-II Software Requirement
Analysis

Incomplete or incorrect requirements for
developing software

SFC-III Software Analysis and
Design

Failure to include desired functions of
software, and adoption of improper
algorithms, methods, and structures of
individual parts of the software

SFC-IV Software Code
Generation

Introduction errors, commonly known as
bugs, in the software product because the
software was not coded as intended.

SFC-V Software Testing Grossly insufficient or inappropriate
testing before releasing f the software

SFC-VI Software Operations and
Maintenance

Errors introduced when modifying the
software

External Causes SFC-VII Breach of Cyber Security Errors caused through breach in cyber
security, e.g., hacking and introduction of
viruses

SFC-VIII Human Error Operating errors that cause software to
malfunction, e.g., an operator mistakenly
issues incorrect command after which
the software fails to perform the function
the operator intended it to do

SFC-IX Support System Failure Failure in an input/output interface
between software and hardware, and
other hardware resources, such as a CPU,
memory, or disk space that support
computer system’s normal operation

Software Failure
Cause Type

Software Failure Cause Cause Description

C-19

SFC-X Compromised
Environment

Environmental causes may include
damages from lightening strikes ,
improper operating temperatures, fire,
and flooding.

Internal Causes of Software Failure

Six categories of internal causes of software failure related to the stages of a SLC are defined as
follows.

SFC-I System engineering and modeling: An example of failure caused by problems at this stage
is that the software cannot be integrated into the
overall system. Some typical causes are:

SFC-I-1 Incompatibility between software and overall system
SFC-I-2 Using problematic or outdated standards/policies

SFC-II Software requirements analysis: The failure causes at this stage include incomplete or
incorrect requirements of software. An example is that
certain functions the software should perform were not
specified (and thus not coded in the software). Typical
examples include:

SFC-II-1 Conditions that might impact on a specific function are not taken into account,
e.g., exception condition is not specified

SFC-II-2 Missing functions; the desired functions are not specified in the requirements
SFC-II-3 Incorrect specifications; the desired specification exists but is incorrect

SFC-III Software analysis and design: Failures at this stage include failure to include desired
functions of the software, and adoption of improper
algorithms, methods, and structures of individual parts
of the software.

Timing interaction between data and processes is more
critical for a real-time digital system. For non-real-
time systems, communication failure between multiple
processes might also be caused by this issue. Some of
the general causes at this stage are:

SFC-III-1 Calculation; the improper handling of boundary conditions, incorrect
equations, missing calculations, an incorrect operand or operator in equations,
parentheses used incorrectly, incorrect handling of abnormal conditions,

C-20

precision problems, rounding or truncation errors, sign convention errors,
units’ conversion errors.

SFC-III-2 Algorithm; the selection of an improper algorithm, algorithm error induced
unintended function.

SFC-III-3 Logic; forgotten cases or steps, duplicated logic, extreme conditions
neglected, misinterpretation of logic, missing condition testing, checking
wrong variables, an incorrect iterating loop, configuration scheme for
component interaction allows incorrect behavior, logic error induced
unintended functions.

SFC-III-4 Data handling (manipulation other than computation); incorrect data initiation,
data accessed or stored incorrectly, incorrectly setting for flags or indices,
incorrectly packed/unpacked data, data referenced out of bounds, incorrect
scaling or units, incorrectly dimensioned data, incorrectly subscripted
variable, improper data validation.

SFC-III-5 Fault tolerance; incorrect action due to abnormal conditions or human errors,
exception handling.

SFC-III-6 Interface; the software does not properly interface with external device or
other software components, such as mismatched or incorrectly called
subroutines, subroutines called at the wrong location, a nonexistent subroutine
called, inconsistent subroutine arguments (e.g., inconsistent types of
arguments).

SFC-III-7 Temporal faults; the processes are out of synchronism with each other or
waiting for each other for further actions, inaccurate clock or timer failure,
interrupts handled incorrectly.

SFC-IV Code generation: The failure causes at this stage may introduce the
errors, commonly known as bugs, in the software
product because it was not coded as intended. Thus, it
does not function as expected in certain situations even
if there is no problem with previous stages of
development, such as “requirement analysis” and
“analysis and design.” Examples of typical causes of
failure in this stage include:

SFC-IV-1 Typos: misspelled variables, incorrect variable usage, e.g., referencing the
wrong data variable

SFC-IV-2 Functions not coded although designed

SFC-V Testing: The failure causes that occur at this stage might be due
to grossly insufficient or inappropriate testing before
releasing the software. Some of the causes are:

SFC-V-1 Incomplete test plan and/or test procedures
SFC-V-2 Test plan was not implemented or executed appropriately

1 Regression testing is a type of software testing that w seeks to uncover regression bugs. Regression bugs occur
whenever software functionality that previously worked as desired stops working or no longer works in the same
way than t previously planned. Typically, they occur as an unintended consequence of program changes. Common
methods of regression testing include re-running previously run tests and checking whether previously fixed faults
have re-emerged.

C-21

SFC-V-3 Regression test1 was not performed on modified software
SFC-V-4 Untested for different running environments that might be encountered

 SFC-V-5 No validation before initial release
SFC-V-6 No validation on software changes
SFC-V-7 Problem with the quality assurance plan problem

SFC-VI Operation and maintenance: The failures at this stage can be caused by modifying
the software. Some of the typical causes include:

SFC-VI-1 Improper upgrades of software because of wrong procedures,
SFC-VI-2 Failure to upgrade related systems, including both software and hardware,

such as incompatibility between the upgraded software and the existing
hardware,

SFC-VI-3 Problems with the software configuration plan, maintenance plan, and
product-support plan after installation or upgrades,

SFC-VI-4 Issue with the management of the software configuration ,
SFC-VI-5 System administration, e.g., incompatible operating system caused software

failure.

Four categories of external causes of software failures are defined here.

SFC-VII Breaches in Cyber Security Cyber security issues include introducing viruses and
hacking.

SFC-VIII Human error Human causes include operating errors that cause the
software to malfunction, e.g., an operator mistakenly
issues an incorrect command so that software fails to
perform the function the operator intended it to do.

SFC - IX Support System Failure Support system causes of failure may include an
input/output interface between software and hardware,
and other hardware resources, such as a CPU, memory,
disk space etc., that support the computer system’s
normal operation.

SFC-X Compromised Environment Environmental causes may include damages from
lightening strikes, improper operating temperatures,
fire, and flooding.

C-22

The failure of the software can be caused by incorrect input, due to either hardware failures or human
errors. If the faulty input appears normal and valid (e.g., within the range of predefined input values),
software or hardware logic cannot be built to identify and reject it. In this case, the cause of the
software failure is support-system failure or human error.

On the other hand, if the incorrect input due to hardware failures or human errors that causes the
software failure is detectable with properly designed software logic, then the cause of this failure is
a missing desired function (SFC-II-2, the software logic should be designed to detect the abnormal
input). This is a major difference between failure causes SFC-II and SFC-VII.

Note that if the wrong inputs due to human or hardware that could be captured by properly designed
software logic but are not captured because of the lack of the software logic, the failure cause should
be called missing function in a software requirement analysis stage.

C.5 A Model Representation of Software Failures

In this section, a conceptual model of software failures is presented (Figure C.5). This conceptual
model considers the stages of software development wherein failures may occur, the EFC that may
develop during operation, and the propagation of these failures in a complex engineered system. The
model in this figure was inspired by a review of the relevant literature (especially, Yih et al. [2005],
and Garrett and Apostolakis [1999]), and the review of operational events related to software failures,
discussed in the previous section. Essentially it combines the software errors that may have been
created during the software’s life cycle with the software triggering faults created by the EFC during
operation of the software in a system. Propagation of software failure within the system onto the
entire system then is considered to arrive at a complete picture of software failures.

The SLC is defined in six stages that transform the software from a concept into a code that is
executed by a computer processor. A software failure can originate in any of them:

1. System engineering and modeling. This is the beginning of the software development. Since
software is part of a bigger system, the transformation from a concept begins by establishing
requirements for all the system’s elements, and then assigning some subset of these
requirements to software. This system view is essential when software must interface with
other elements, such as hardware, people, and other resources. The system will be engineered
or designed before its development team specifies the requirements for the defined system.

2. Software requirements analysis. The analysis of requirements focuses on the software, as
well as its function, behavior, performance, and interface with the rest of the system. Among
the parameters considered should be software product’s ability to handle unexpected or false
input signals, display for human-machine interfaces, and temporal interactions. Accordingly,
the development team formulates documents containing the software’s specific technical
requirements.

C-23

3. Software analysis and design. The analysis and design process translates those requirements
into a conceptual representation of the software that can be evaluated before coding begins.
The overall structure and the details, such as the logical- and algorithmic-systems, database
design, and data structure design, of the software will be defined.

4. Code generation. This stage translates the software’s design into a computer programming
language, usually simply known as code, that a computer can understand. If the design is
detailed, the coding can be accomplished without complications.

5. Testing. Some of the aforementioned stages may include testing. In this stage, testing is
carried out for the overall software after integrating individual modules. The tests are meant
to uncover any errors. Generally, this is achieved by observing that the results obtained from
certain inputs are consistent with the requirements of the software.

6. Operation and maintenance. The software is installed in its operational environment, and
operation starts. The software should be developed to accommodate changes that could
happen during the post-implementation period. After the software has operated for some
time, it may require modification for many reasons, for example because errors were
discovered. When maintenance is required, in principle, the previous five stages must be
repeated before the needed change, so that it is incorporated correctly into the software and
associated system, and no additional errors are introduced.

The upper part of Figure C.5 (between the dotted lines) presents the SLC that uses the “linear
sequential” model of development. As this name implies, and as depicted in the figure, the stages
of the SLC are conducted in sequence. While this is an old model of SLC, and newer ones are
available, it is used here as a conceptual framework for developing software, and to avoid
unnecessary complications.

At each stage of development, errors may be introduced into the software. Two examples are that
the requirements analysis may be incomplete, such that a requirement is omitted, and an error may
be introduced during the stage of “Code Generation,” usually known as a “bug.” The earlier in the
SLC an error is introduced into the software, the more severe and costly its impact is likely to be
because it is expanded in subsequent stages of development. For example, if an error is introduced
during the stage of “Requirements Analysis,” the following stages will implement it, and, most likely,
testing will not reveal it; fixing it requires revising the entire activities of the SLC.

C-24

Requirements
Analysis Design Code

Generation Testing

Operation &
Maintenance

Accident

Failure of
Software

(including CCF)

Faults (Internal Causes
of Failure)

Failure of Device
(including CCF)

Failure of
System

Containing
Software

Status of
Complex System

and Recovery

Is recovery
successful?

Accident is
avoided

No Yes

Overall
Context

Error Forcing Context

External Causes
of Failure:

Human error
Supporting systems

Cyber security
External events

Propagation of
Failure of Software

Software Life Cycle

Operating environment

System
engineering and

modeling

Figure C.5 Model of Software Failures

C-25

While the stage of “Testing” attempts to discover errors so they are fixed, in practice it is difficult
to discover all of them. Accordingly, some undiscovered errors may, and often do remain in the
software when it is installed in its operational environment and becomes operational. This is
particularly true for large software that can contain tens or hundreds of thousands of source code, and
whose logic is complex. Testing each possible path of execution would require tremendously large
resources in terms of time and money, so in practice it may be prohibitive. Further, testing detects
errors by observing that the results from certain inputs are consistent with the requirements of the
software; if the requirements are incorrect, testing will not reveal some errors.

The software errors may originate during the SLC and remain embedded in the software when it is
operated as part of a system. As discussed earlier, these dormant errors may be activated when an
error forcing context develops, as shown here. The software failure can then propagate, depending
on the design of the system in which it is used. In addition to errors developed during the SLC,
external causes can also cause a software to fail, which also is included. If the failure is detected and
recovered, any adverse effect is averted. Otherwise, the failure can lead to a failure of the system and
,ultimately, to an accident with undesirable consequences.

The above model representation of software can be employed to identify the following modeling
needs for integrating software failure in digital systems as part of a model for the overall system, e.g.,
the PRA for an NPP.

1. Software failures can be modeled considering the occurrence of triggering events that
generate from the EFC that activates dormant errors created during the SLC.

2. Software failures from external causes may need to be modeled separately, in addition to the
model developed for internal causes during the SLC. The likelihood of occurrence of external
causes may need to be developed to model software failures from external causes.

3. Software is susceptible to common-cause failures. If redundant components or systems use
the same equipment containing the same software, then such failures should be considered.
For software, complete dependence may need to be assumed.

4. Detection of, and recovery from software failures depend on its features and the system in
which it is used. Software failure detection and recovery may need to be included as part of
the system model.

5. Propagation of the software failure in the overall system is expected to be modeled similarly
to other failures modeled in the overall system. CCSF for multiple systems that play a role
concurrently in the overall system may need consideration.

C-26

C.6 Basis for Developing a Probabilistic Failure Model of Software

C.6.1 Considerations in a Probabilistic Failure Model of Software

The software being considered is one that is put into operation after the development stages are
completed. In other words, the software has gone through the testing stage to address identified
corrections, and is operating in the overall system for which it is designed. A “system-centric” view
of the software failures is employed, and the considerations that apply for probabilistic modeling of
software failures are defined.

Operating environment, input space, and operational context

The operating environment of a digital system and its software include all aspects that either directly
or indirectly affect the input to the software. In a NPP, the operating environment of a digital system
practically involves the entire plant and possibly, some offsite equipment, such as offsite power, since
the digital system may receive input from many systems and their support systems. For example, for
the digital feedwater control system at a NPP, the operating environment would include the physical
processes in the reactor coolant system and related systems, the support systems, and operator
actions. The changes in the operating environment generate changes in the input to the software and
define the input space. Thus, the operating environment defines the possible inputs that the software
would encounter, i.e., the input space. In general, the input space is a continuum, not well defined,
and the probabilistic distribution of the input over the input space, i.e., the operational context of the
software, is not precisely known [Frank, 1997].

In summary, the operational environment and the probabilistic distribution of the input over the input
space, i.e., the operational context of the software, should be considered for modeling software
failures. This would assure that they are not narrowly defined and that all relevant ones are covered.

Faults, failure triggering events, and failure modes

The software development process is not expected to be perfect and hence, some faults may remain
in the software. A fault can be activated/triggered if certain inputs in the input space take place,
which can lead to a software failure. Figure C.6 is a mapping of the parts of the input space that
would trigger faults, i.e., error crystals [Dunham, 1990], through the triggering events, to the failure
state.

C-27

If a fault is identified and corrected, then the corresponding triggering events are no longer applicable
events. If a new fault is introduced, for example when revising the software, then the new
corresponding triggering events are applicable. The occurrence of the input that triggers a particular
fault is random, and its likelihood is a function of the operating environment.

The likelihood of a software failure is the same as that of the triggering events, given that a fault was
introduced. Depending on the modeling needs and the function of the software, the likelihood of
software failure can be expressed in terms of a frequency or probability, i.e., that of the triggering
event; that is, for a continuously running control system, a failure rate is applicable, while for an
actuation system, a demand probability is appropriate.

A software may fail in any one of its failure modes, i.e., it may have different modes with different
effects. A failure rate or failure probability considering the corresponding triggering event may apply
to each failure mode. Modeling should cover the identified failure modes considering the randomness
of the triggering events that apply to the failure mode.

The randomness in the occurrence of the triggering event is the source of uncertainty in the
occurrence of software failures. For the types of uncertainties in modeling software failure, e.g.,
aleatory and epistemic uncertainties are applicable, the standard interpretation of how software-
failure-triggering events occur [Parry, 1996]. For example, for a control system, the aleatory
uncertainty of software failure can be modeled by a Poisson process with a failure rate, and the
epistemic uncertainty by the parameter uncertainty associated with the failure rate.

Figure C.6 A Framework for Probabilistic Failure of Software

C-28

Assuming that the occurrence of software failure is random because the fault-triggering event is
random, it is judged that modeling of software failures in terms of a failure rate or failure probability
should cover the random nature of software failures. The basic premise here is that it is meaningful
to model software failures using this concept. Figure C.6 depicts this concept as a framework for
modeling software failures. This framework applies to the digital systems at a NPP but is generally
applicable to the digital systems of other industries. Any software reliability model of a digital
system is expected to be consistent with this framework.

The considerations for developing a model for software failures can be summarized as follows:

1. The operating context of the software that includes the operating environment and the
distribution of the inputs that may be generated in the input space should be taken into
consideration in modeling software failures.

2. The software failures are random due to the randomness of the triggering events that caused
them. Hence, software failure can be modeled in terms of failure rate and/or failure
probability and their associated uncertainties.

C.6.2 Software Failure Modeling for Different Digital Systems in Nuclear Power Plants

For modeling purposes, the instrumentation and control systems of a NPP can be categorized into
three different types:

1. Control systems,
2. Actuation systems, and
3. Indication and alarm systems that support the operators’ actions.

Control systems are systems that are normally operating, e.g., the feedwater control system and the
chemical and volume control system; their failures may cause a plant transient, e.g., a reactor trip,
or an accident-initiating event, e.g., a Loss of Coolant Accident (LOCA). In general, failures of
digital control systems may generate events that are different from, and possibly more challenging
than, those considered in design-basis accidents. For example, software common-cause failure may
cause redundant equipment to fail, so challenging the design’s safety margin [Yih, 2004].

Actuation systems are systems that are normally on standby, e.g., the Reactor Protection System
(RPS) and the Emergency Safety Features Actuation System (ESFAS), and should generate the
needed actuation signals when demands arise. An actuation system may spuriously generate a signal
causing a transient, or fail to do so when there is a demand.

Indications are normally available for operators to monitor the plant’s status, and alarm systems alert
the operators about abnormal conditions that may require their action. An indicator is normally
running and may fail to provide correct information to the operator, leading to human errors of
omission and commission. An alarm system is normally on standby, and would generate an alarm(s)

C-29

on demand; its failures could entail the same types of human errors as failures of an indicator, except
that the failure modes are false alarms and failures to alarm on demand.

These three types of instrumentation and control systems are also characterized by different types of
failure that influence the software reliability model. For a control system, software failure occurs
when a set of input signals triggers a fault in it. The occurrence of the set of signals can be modeled
in terms of a frequency that is a function of the operational environment of the control system.

An actuation system, during standby, may fail, generating a spurious actuation signal. Its occurrence
reflects a set of input signals triggering a fault of the software, and can be modeled in terms of a
frequency, similar to the failure of a control system. When there is an actual demand for the actuation
system, then it may fail because the input signals of the demand trigger a fault in the software. The
occurrence of the demand can be modeled in terms of a frequency, and the occurrence of the fault-
triggering input signals can be modeled as a failure probability, i.e., the probability that the input
signals correspond to an EFC.

The failure of an indicator to provide correct indication can be modeled in terms of the frequency
of fault-triggering events, similar to a control system, except perhaps that the indicator’s failure may
not be recognized immediately. For an alarm system, a spurious alarm or a failure to alarm can be
modeled in the same way as is spurious actuation or failure to actuate an actuation system.

Figure C.7 illustrates two types of models needed for digital systems of a NPP in terms of failure
rates and of demand failure probabilities. Table C-4 summarizes the different modeling
considerations for different types of digital systems.

For a control system, the occurrence of the input that would trigger a software failure is represented
by a failure rate, λEFC. For the failure mode of a spurious actuation signal of an actuation system, the
occurrence of an EFC that triggers a spurious signal can be represented by λSS, and can be modeled
in the same way as is failure of control systems. For failure to generate an actuation signal from an
actuation system, a demand for the actuation system must be generated, represented by a frequency
λDemand. In general, different kinds of demands may have to be considered separately. For example,
a LOCA and a loss of feedwater both require the RPS to trip the reactor, but they represent different
challenges/input signals to the RPS, and have different frequencies, and therefore, may necessitate
modeling them separately. Given a demand on the actuation system, the input to the system may be
such that it would trigger a software failure; this can be represented by a probability, i.e., PEFC. For
different demands on the system, different probabilities may have to be used because the demands
have different input spaces. Models for the failure modes of indicators and alarms can be formulated
using the two models in Figure C.7.

A digital system may operate in different modes due to the plant’s different operational modes, e.g.,
full power, low power, and shutdown. Due to these differences, the digital system operates in
significantly different operational environments, and probably has to be modeled separately to
accommodate them. An operational mode of a digital system defines its operational environment and
the associated operational context and input space.

C-30

λ

λ

Figure C.7 Probabilistic Failure Models of Software

C-31

Table C-4 Considerations in Software Failure Modeling for Different Types of Digital Systems

Type of Digital
System

System
Characteristics

Failure
Characteristics

Failure Modeling

Control System Continuously
operating

A set of input
signals triggers a
fault in the software

Model occurrence of the
input that would trigger a
software failure in terms
of failure rate

Actuation System Standby - Failure
results in a spurious
signal

Spurious actuation
signal.
Occurrence of an
EFC triggers a
spurious actuation
signal

Model occurrence of
EFC that triggers a
spurious actuation signal
by failure rate

Standby - demand to
generate an actuation
signal

Failure to generate
an actuation signal
on demand.
Input signal triggers
a fault in the
software

Occurrence of the input
requiring a demand can
be modeled in terms of
frequency

Occurrence of the fault-
triggering input signal
can be modeled in terms
of a failure probability.

May require
consideration of different
types of demands
separately with different
failure probabilities

Indicator and
Alarm Systems

Indicators -
continuously
operating

Failure to provide
correct indication
Input triggers a fault
in the software

Model occurrence of the
input that would trigger a
software failure in terms
of failure rate

Alarms - spurious
actuations

Spurious actuation
signal.
Occurrence of an
EFC triggers a
spurious actuation
signal

Model occurrence of
EFC that triggers a
spurious actuation signal
by failure rate

Type of Digital
System

System
Characteristics

Failure
Characteristics

Failure Modeling

C-32

Alarms - failure to
alarm on demand

Failure to generate
an alarm signal on
demand
Input triggers a fault
in the software

Occurrence of the fault-
triggering input signal
can be modeled in terms
of a failure probability.

C.6.3 Desirable Modeling Attributes of Software Failure Models

The above discussions of considerations for modeling software failure and different types of digital
systems in NPPs and their modeling needs offer an idea of the required attributes for software
models. Essentially, they are ones that will assure the model(s) selected from those available, or any
newly developed models will possess the desirable features so that different types of failures can be
included.

The attributes cover the ability to model the following parameters:

• Normal behavior of the system
• Software failure in terms of a failure rate or probability
• Normal behavior of hardware
• Hardware failure in terms of failure rate or probability
• Interactions between software and hardware
• Explicitly consider the contexts that affect the input to the software
• The model should demonstrate overall consistency with these desirable attributes.

C.6.4 Review of Available Software Models in Terms of Desirable Attributes

The available models for software failures were reviewed to assess their suitability to meet the needs
in modeling digital systems for the PRA of NPPs. Different types of digital systems, their failure
characteristics, and the defined modeling attributes were considered. The review focused on the
scope of the applications and the ability of the models to address the attributes defined, but did not
consider the correctness of the application, the completeness of the modeling, level of modeling
detail, or the availability of needed data.

The methods were further divided into three groups: software reliability modeling methods, software
failure quantification methods, and currently used methods in the PRA. The first group consists of
methods for modeling digital systems whose application can potentially be used in a PRA, and the
second group encompasses methods for quantifying software-failure rates and probabilities that can
potentially be used in different models and applications. The third group comprises the methods now

C-33

used in PRAs for modeling human- and hardware-failures. The reviews of the individual methods
are summarized next; Table C-5 summarizes the models and their applicability.

C.6.4.1 Review of Software Modeling Methods

The methods for modeling digital systems were examined to determine their ability in probabilistic-
failure modeling of software; only two explicitly model failures of software, i.e., AP600 PRA
[Westinghouse, 1996] and the NASA software conditional risk model [NASA, 2002]. Neither gives
a method to quantify software failure rates and probabilities. The dynamic Flowgraph Methodology
(DFM) [Garrett, 1999] in principle captures software failures by explicitly modeling its normal
behavior. All other methods either model the normal behavior of software, e.g., formal methods
[Clarke, 1996] or simply assume that it does not fail, e.g., the Markov model of Tricon [Swanner,
2000]. Those methods that model its normal behavior, e.g., Petri nets [Sivertsen, 2004] and formal
methods [Clarke, 1996] potentially can be used to identify software faults and improve the quality
of the software. Two “dynamic” methods, i.e., dynamic Markov model [Aldemir, 2006b] and DFM
[Aldemir, 2006b] explicitly model the physical processes and related plant systems and,
advantageously, are explicitly “system centric.” More detailed discussion of each method is given
below.

Fault tree analysis of AP600 [Westinghouse, 1996]- Its modeling of software for actuation systems,
e.g., RPS and ESFAS, is in the form of basic events representing software common-cause failures
in a fault tree. The failure probabilities appear to be arbitrarily assigned and are described as
reliability goals. The CCF basic events effectively appear at the top of the systems’ fault trees of the
systems. Using CCF basic events is consistent with modeling attribute 4. The operating
environments of the systems are implicitly considered, as defined in the event tree logic. However,
their numeric values have no connection to the systems’ operational environments.

NASA software conditional risk method [NASA, 2002]- The NASA PRA procedures guide contains
a section on assessing software risk, which presented a framework for considering software failures
and proposed a conditional risk model for quantifying them. In the conditional risk model, the
probability of software-induced system failure can be expressed as the probability of system failure
upon the occurrence of a condition which may happen with certain probability. In this representation,
the condition can the reflection of a particular system operating mode, or of the occurrence of an
event external to the system of which software is a part, or of a system hardware failure. The
probability of occurrence of the condition can be expressed as rate of occurrence multiplied by the
mission time duration (See comment by Guarro in Appendix A). The method was applied in two
examples: a spacecraft altitude-control system and a fluid tank control system. In this model, the
occurrence of a condition which may trigger a software failure has similarity to the error forcing
context (EFC) defined here for modeling software failures. However, in using the model, the
conditions are taken into consideration differently than the EFC defined here. The model can be
adapted for use in the framework defined with interpretation of the model parameters consistent with
the parameters defined here.

C-34

Fault injection method [Elks, 2006]- The fault injection method is a useful tool for evaluating the
design of digital systems. It can capture the low-level fault-tolerant hardware designs, such as cyclic
redundancy check (CRC) as well as the software’s normal behavior, not just application software but
also platform software and operating system. The limitations of the method include (1) failure to
capture all possible ways a digital component/system could fail; that is, stuck-at faults are not the
only such ways and (2) its ability to capture software faults, e.g., software design errors, is very
limited because too few changes are made to the input values to the software. In this particular
application, the method was used to estimate the coverage factors, i.e., the conditional probability that
a stuck-at fault is detected, of the components of a digital feedwater control system. The input
variables are collected from the plant once per minute for more than 24 hours, i.e., 1440 sets of
supposedly successful input values were used. The estimated coverage factors then are used in a
Markov model [Aldemir, 2006b] that models software in terms of control laws and logic.
Accordingly, this model used in this application appears not to be an integrated model of the whole
digital feedwater control system. The modular approach, i.e., considering components separately,
may have ignored some dependencies in the system.

Traditional Markov model [Swanner, 2000]- The model was developed to aid in generating an update
of the ISA standards 84.01 [ANSI, 1996], a companion standard of IEC 61508 [IEC, 2000]. The
level of detail of the analysis appears to be consistent with the guidance on Markov models of both
standards, i.e., use of safe failure fractions and fault coverages. The Markov model of the Tricon
platform distinguishes between safe and dangerous failures of the system, and these two modes were
modeled separately to estimate a spurious trip frequency and a probability of failure on demand,
respectively. The models were developed for the platform (not an actual application) with assumed
input and output modules, and assuming that the software works as expected. The failure rates in the
model were estimated from Military Handbook 217. The safe failure fractions and diagnostic
coverages were obtained from a proprietary foreign report published by Foundation for Scientific and
Industrial Research at the Norwegian Institute of Technology (SINTEF). The author acknowledged
that no commonly accepted method exists for quantifying software reliability.

Dynamic Markov model [Aldemir, 2006b]- Unlike the Markov model developed by Swanner
[Swanner, 2000], this Markov model is not traditional, and, in addition to hardware component
failures, models the control laws and logic of the control system and the control laws of the systems
or the plant with which the control system interfaces. The method appears innovative but its
application to the digital feedwater control system is not demonstrated. Modeling control laws and
control logic is a model of the normal/expected behavior of the software, i.e., what the software is
supposed to do, but does not capture possible failures. The level of detail in the model for hardware
failure is considered to be similar to that of a traditional Markov model, which models hardware
failure and assumes that the software functions as expected. The benefit of the additional detail
obtained from the dynamic modeling of the interactions between software, hardware and the plant,
needs to be demonstrated. Because of the increase in modeling effort, it would not be surprising if
many simplifying assumptions were made to make the modeling feasible.

Dynamic Flowgraph Methodology (DFM) [Aldemir, 2006b]- This is an application of the DFM to
the digital feedwater control system. The method [Garrett, 1999] was proposed as one for finding

C-35

software faults as well as for modeling software in a PRA. It essentially develops a model for the
behavior of the software and integrates it with a model of hardware-component failures of the control
system and the part of the plant which interfaces with the software. Its ability to capture software
failures depends on how realistically the models represent the software and the respective systems.
Each prime implicant generated using the method is a potential challenge (or test) to the software,
which may or may not respond properly. In terms of the software-failure modeling attributes, DFM
effectively tries to discretize the input space and represent it in terms of a finite number of inputs,
while the actual input space may be infinite. The effort needed to develop a detailed model could
be prohibitive. Due to the complexity of the software and other systems that the model must cover,
it is not possible to identify all software faults, and possibly none could be found, which does not
necessarily mean that no fault exists.

Petri nets [Lawrence, 1995] and Formal Methods [Clarke, 1996]- The petri-net method has been used
to model the behavior of software [Lawrence, 1995]. Its advantage is its ease of modeling the
behavior of a control system. It can be used in modeling changes in the system’s state caused by
triggering events. For modeling of computer-based systems, the value of Petri nets is that, generally,
they can model the state- and time-dependent behavior of computer-based systems. In addition, they
can model finite-state machines, concurrent (parallel) processes, software (data flow), communication
protocols, synchronization control, and multiprocessor systems. Formal methods are mathematically
based languages, techniques, and tools for specifying and verifying design requirements of hardware
and software systems [Clarke, 1996]. The process of specification is the act of writing the
requirements precisely, thereby giving the developer a deeper understanding of the system specified
and the ability to discover design flaws, inconsistencies, ambiguities, and incompleteness. The
system can be checked for internal consistency and used to derive other properties of the system.
Both petri nets and formal methods are tools developed specifically for modeling the behavior of
software and digital systems. Analyses using them could identify software faults and improve the
softwares’ quality. Their use in modeling software failure in an integrated model of a plant, e.g., a
DFM model, should be further explored.

Stochastic Petri net [Balakrishnan, 1996; Malhotra, 1995]- While a petri net describes the state of a
machine whose transitions are triggered by discrete events, it does not specify the time spent in any
state [Balakrishnan, 1996]. Stochastic Petri-net is a Petri-net whose time of firing is exponentially
distributed [Malhotra, 1995]; it is similar to a Markov model and has to be converted into a Markov
model to be solved. Therefore, this type of analysis does not appear to significantly differ from that
of a Markov model.

C.6.4.2 Review of Software Failure Quantification Methods

Software-failure quantification methods model a complete software system assuming that the
associated digital hardware works as expected. They only consider the operating environment
implicitly. These methods were developed for different purposes, and their consistency with our
software failure frame work is discussed here.

C-36

Most methods reviewed use test data and operational data in the quantification. As discussed,
software faults are often corrected once discovered, and the use of software-failure data may not be
a good indication of the modified software [Fenton, 2000]. A distinction should be made between
test results and operational experience because test environments are not identical to operating ones,
and the difference could the location of failure triggering events. These are the common weakness
of the quantification methods.

Individual methods are discussed below.

Bayesian Belief Network (BBN) [Eom, 2004; Dahll, 2002]- In Dahll [2002] a BBN was developed
for a computerized system for geographically localizing helicopters. Its main purpose is to aid in a
rescue operation if the helicopter makes an emergency landing. The BBN explicitly considers the
qualifications of the software producer, quality of the software-production process, the complexity
of the problem and its solution and the quality of the product and quality of the analysis. Disparate
qualitative information about the software can be included in a single model taking into account the
associated uncertainties. It was used to calculate the probability of failure of the system, and used
as a tool that supports decision making on the approval of the system. This is consistent with the
attributes defined for an actuation system, i.e., the system functions as a safety system that is
demanded upon an emergency landing. Using expert elicitation is an advantage of the method, but
could be effort- intensive. In Eom [2004], a BBN was developed to assess the quality of the software
of a RPS, using as a measure the probability of the “unacceptable” state; this is also consistent with
the attributes defined.

Reliability Growth Methods [Schneidewind, 1992; AIAA, 1992] - The reliability growth methods
assume that the software’s failure rate changes with time due to detection and correction of software
faults during tests and operation. These methods use the experience from both in the same way that
hardware-failure data is used to estimate hardware failure rates, to estimate software failure rates as
a function of time, by assuming that the latter follows certain formulae whose parameters must be
estimated. This type of method models how revisions to software improve its quality. Using a failure
rate does not conflict with the attributes defined for a continuously running system (control system).
The change in a failure rate corresponds to eliminating some software faults and associated triggering
events.

Gray box software reliability [Zhang 2003]- The gray box reliability method uses information on the
internal structure of a software to decide on the tests, such that they cover all the nodes and paths,
if possible; it employs Bayesian analysis to the test results to estimate the probability that the
software would fail in the next execution. The modeling of software failure probability is consistent
with the framework discussed in Section C.6. 2. In the case study of the Signal Validation Algorithm
that is used for selecting the plant’s instrumentation signal set to constitute the input to the digital
Plant Protection System, it was found that not all possible paths of the software were encompassed.
All flow paths are effectively treated as if they have identical hardware, and the data analysis follows
the standard hardware-component analysis. It is suspected that the same results could be obtained
using a much simpler model treating the software as a single component with tests performed on it,
and assuming that errors are not corrected.

C-37

Metrics Method - In Smidts [2002], the reliability prediction systems based on six software
engineering measures were validated, using a personal-access control system (PACS) as a case study.
The software reliability is measured by a demand failure probability, and the six measures are mean
time to failure, defect density, test coverage, bugs per line of code, function points (a measure of the
functional size of the system), and requirement traceability. Using failure probability is consistent
with the modeling needs for an actuation system. The University of Maryland’s (UMD’s) study was
reviewed by a panel of experts who deemed the work to be generally sound, meeting the study’s
objective. Some critical comments include the following: (1) The predictive capability of the
method is inadequate for safety critical systems that may have a very stringent requirement on
probability of failure on demand and (2) the chosen test cases cannot capture problems of missing
requirements.

Software Safety Integrity Level (SIL) of IEC 61508 - IEC 61508 [IEC 61508] is a general standard
for safety-related systems that specifies requirements of safety-related systems and provides guidance
on assigning SIL. Part 1 of the standard specifies target failure probability for failure on demand and
target failure rates for different SILs. Using both failure rate and probability potentially is
contradictory, and inconsistent with the attributes defined. For each software SIL, the techniques
and measures that are recommended are given in the tables of Annex A and B of Part 3 of the
standard; that is, to achieve a certain SIL, appropriate techniques/measures have to be used for life-
cycle phases of software. No connection of SILs to the target failure probabilities and rates is
provided, the relationship between the SILs and the associated qualitative requirements has to be
validated.

C.6.4.3 Review of Methods Currently Used in PRAs

The applicability of currently used methods for estimating hardware- and human-reliability in
modeling software failures in digital systems were assessed. These methods can be easily
incorporated within a PRA and satisfy one of the attributes, i.e., they can model software failures in
terms of failure rate and/or failure probability. Hardware models primarily are data-driven and many
of the human reliability analysis (HRA) models have important features that can address special
characteristics of software failures. Considering the available HRA models, the Failure Likelihood
Index Method (FLIM) was selected as suitable for modeling software failures in digital systems.

C-38

Table C-5 Scope of Methods and Their Consistency with the Framework

Modeling Method 1- SW Normal 2- SW Failure 3- HW Normal 4- HW Failure 5- Interaction H+S 6-Context 7-Consistency

Fault tree [Westinghouse 1996] n y implied y n n y

NASA conditional risk [NASA 2002] n y implied y y partial y

Fault Injection [Elks 2004] y n y y (stuck-at faults y n NA

Markov [Swanner 2000] implied n implied y n n NA

Dynamic Markov [Aldemir 2006b] y (control laws) n implied y y y NA

DFM [Garrett 1999] y by context implied y y y y

Formal methods [Clarke 1996] y n implied n n n NA

Petri net [Sivertsen 2004] y n implied n n n NA

Stochastic Petri nets (Balakrishnan) n n implied y n n NA

BBN [Dahll 2002] n y n n n - y

Black box [Schneidewind 1992] n y n n n - y

Gray box [Zhang 2003] n y n n n - y

Reliability growth [AIAA 1992] n y n n n - y

Metrics [Smidts 2002] n y n n n - y

SIL [IEC 61508] n y n y n - n

1. Explicit model of normal behavior of software (implies normal behavior of hardware)
2. Modeling of software failure in terms of a failure rate or probability (questions consistency)
3. Explicit model of normal behavior of hardware
4. Explicit model of hardware failure in terms of a fault, failure rate or probability (implies normal behavior of hardware)
5. Modeling the interactions between hardware and software of digital systems
6. Explicit modeling of the contexts that determine the input to the software
7. Consistency with our basis for modeling software failures

C-39

FLIM is an HRA method for qualitative analysis [Chien 1988] and quantification of post-initiator
operator actions. FLIM's basic principle is the structured elicitation of expert judgments in the form
of ratings and weights for a set of performance-shaping factors (PSFs) that then are used to calculate
a dimensionless Failure Likelihood Index (FLI) for each action. The FLI scale is calibrated and
converted into an human- error probability (HEP) via a log-linear regression equation. To apply
FLIM in modeling software failure, the factors that influence such failures can be defined in terms
of PSFs. The examples of PSFs for software include the quality of testing performed, errors
identified during testing, testing or use of the software in its particular operational environment,
qualifications of the software development team, and number of upgrades performed. With such
parameters, a FLI for a software can be defined that, in turn, can be converted to a software failure
probability or rate. FLIM has not been used for software reliability assessment and to do so will
require systematically developing of PSFs for software, and formulating a process for calculating the
ratings and weights of the PSFs.

C.6.5 Summary of the Basis for Developing a Software Failure Model

In this appendix, a framework for modeling software failures in digital systems has been presented
considering the different types of such systems used in NPPs. The insights were discussed on the
characteristics of software failure apparent from the review, and analyses of actual software failures
that occurred in different industries, along with the considerations involved in probabilistic modeling
of software failures. Based on the framework defined, a set of attributes that a software failure model
should possess were identified. Having such a software failure model is considered to be appropriate
for modeling software failures of digital systems in NPPs and incorporating them into a NPP’s PRA.
Different software failure models that were used in different industries also were studied, considering
the attributes defined for use in NPP risk models. The major conclusions for developing a software
failure model for digital systems in NPP are summarized below:

1. The operating context of the software, which includes the operating environment and the
distribution of the inputs that may be generated in the input space, should be accounted for
in developing a software- failure model. Lack of specification of the software’s operating
context may result in the software failures not being completely defined, and hence, an
inadequate model.

2... The concept of EFC triggering a software fault is supported by analyses of experience data.
For many software failures, an EFC can be defined and is considered a reasonable way for
explaining the failures’ occurrence. Both types of EFC, one wherein EFC is the normal
operation of the software, and the other in which the triggering event occurs sometime during
the operation of the software, are observed in software failures.

3. The occurrence of the EFC is judged to be random, implying that software failures also are
random events since they are triggered by the EFC. With this explanation, software failures
can be modeled probabilistically. Failure rate and failure probability models can apply,
depending on the sofware’s function in the system.

C-40

4. Different software failure models have been developed in different industries addressing
differing needs and applications. The review of these models is presented, based on a set of
attributes defined upon the specific needs for modeling software failures of digital systems
in a PRA for NPPs. None of the models can be directly applied to model digital systems for
a PRA; some of them are consistent with the attributes defined and can be extended for this
purpose. Among the latter, the BBN and the FLIM are considered the best choice for
modeling software failures in digital systems.

5. BBN and FLIM can incorporate qualitative information about the software. Without using
qualitative information, software reliability can be overestimated since the available data is
sparse and, in many cases, sufficient experience in the operating environment/context is
unavailable. A specific implementation process, including a process for estimating the
parameters in these models, should be developed and tested for software in the digital systems
being considered.

C.7 Review and Analyses of Software Failures

Software failures that occurred in many different applications provide important clues for many
aspects studied here. Analyzing these failures is essential for understanding the characteristics of
these failures and developing models assessing their likelihood and impact on system reliability.

Software failures in nuclear and non-nuclear industries were analyzed to obtain insights on their
nature and characteristics. It also afforded useful perceptions for defining a basis for modeling
software failures. In this section, analyses are presented of software failure events and insights
derived from the results.

C.7.1 US Nuclear Power Plant (NPP) Experience

C.7.1.1 Approach for Experience Data Collection

Relevant operational events associated with software failures in domestic NPPs were identified to
gain knowledge of their nature in terms of characteristics such as the specific cause, the associated
EFC, and any dependent failures, such as common-cause failures.

The main approach for identifying software failures in domestic NPPs was conducted via the NRC’s
“Licensee Event Report (LER) Search System”; the search encompassed the following:

1. The LERs contained in this system that extended from January 1, 1984 through December 31,
2005, a range of 22 years at the time of this study.

2. All plants that operated during this period.

3. All modes of the plants, such as power operation and shutdown.

C-41

Since the LER Search System does not directly distinguish failures related to software, a search was
made for those LERs containing the keyword “software” in the abstract and title. It yielded
175 LERs. Assuming that if a software failure was significant, it would be mentioned in the LER’s
title or abstract, an individual review of each of these 175 LERs would be expected to reveal the most
important software failures. Hence, this was considered an efficient way of identifying LERs that
potentially are associated with software failures.

These events were complemented with two other sources of events:

1. Volume 2 of NUREG/CR-6734 [Hecht and Hecht, 2001] has 15 events, from 1998 to 2000,
that were considered software failures and documented in LERs. The abstract of six of them
did not include the keyword “software,” so they were not present in the events obtained from
the “LER Search System.” Hence, these additional ones were included in the database
(LERs 2061998001, 2201998003, 2751999002, 2821999002, 3021999001, and 3341999011).

2. An additional event involving software failure was known, LER 2931997007, and was added
to the database; its abstract did not include the keyword “software.”

The database of the LERs documenting the identified software failure was created using the
Microsoft Access database management system. An LER was not included in the database even if
the abstract contained the keyword “software” when it was clear that the event did not involve
asoftware failure. For example, this keyword might be used in describing the LER to indicate that
the software functioned correctly. Where the description of the LER did not conclusively signify a
software failure, the LER was included in the database, and this condition was noted in the
description of the event. The review of the 175 LERs resulted in a database of 113 LERs associated,
or potentially associated, with software failure(s).

This database is such that it can be sorted by any criteria, such as by the date of the event or by LER
number, and searched using one or more keywords in one or more fields. To the extent supported
by the information in a LER, each event is characterized in the table in terms of the following
properties (fields):

A) LER Number. An eleven-digit number that uniquely identifies the LER.

B) Event Date.

C) Plant. This property indicates the specific nuclear unit(s) involved.

D) Title. This is the title of the event given by the LER.

E) Summary. This property describes and identifies the software failure and the associated
digital systems are identified. The impact of the software failure on other systems and the
overall plant is presented.

C-42

F) Causes. The cause(s) of the software failure. For example, the failure may be due to an
incorrect specification of requirements of the software, or to an error during the
developmental stage of “Code generation.”

G) Consequences. The impact of the software failure on the safety of the plant is discussed. It
can be characterized in terms of two components, a violation of regulatory requirements and
an assessment of the actual safety significance of the overall event.

H) Error Forcing Context (EFC). This property presents the specific combination of conditions
that comprise the EFC, i.e., those that triggered an (inactive) software fault into becoming an
(active) software failure.

I) Dependent failure. This property discusses dependent failure(s) that may have resulted from
software failure(s). This involved identifying failures in more than one component, channel,
or system.

J) References. Presently, the only reference is the associated LER.

C.7.1.2 Summary of Results and Insights

The following results and insights were obtained from the analyses of LER data:

A) Seventy-one different nuclear units have at least one event related to software failure from
January 1, 1984 through December 31, 2005. This means that software failures have occurred
in a significant number of units. Hence, this type of failure may occur in any operating units
that use software-supported systems.

B) In 17 of the 113 LERs documenting software failures, two-unit nuclear plants are identified.
For example, LER 250-1994-005-02 documents events associated with software failures in
Turkey Point Unit 3 and Turkey Point Unit 4. Hence, there have been 130 events associated
with software failures in different nuclear units during the period studied.

C) The forty-five LERs that occurred during the last 10 years of the period in the database, i.e.,
January 1, 1996 to December 31, 2005, were analyzed to classify the “software failure mode”
and the cause of the failure according to the categorization scheme presented in Section C.4.
The following conclusions were reached:

C.1) Thirty-one out of the 45 events (i.e., about 69%) had the failure mode “Runs with
wrong results that is not evident.” The fact that most events studied had this failure
mode may be a reason for concern because it is undesirable to have software that is
executing, sometimes for long periods, and generating incorrect results. The next
most prevalent failure mode, in seven of the 45 events (~16%) was “Runs with
evidently wrong results.”

C-43

C.2) Software failures were due to a variety of causes, the most predominant being
“Software requirements analysis” with 16 out of the 45 events (about 36%). In
general, when software fails this way, it fails to perform a function because when its
requirements were specified, the function was not included. The second cause is
“Operation and maintenance” with 12 of the 45 events (~ 27%). Most events related
to “Operation and maintenance” involve a failure introduced during modifications or
upgrades of the software after it was developed, installed, and had operated for some
time. In other words, software that was meeting its expected functions was modified,
and some fault was introduced during this process.

D) Most of the software failures appear to have happened in non-safety-related systems, the main
cause(s) of which are not known. Potential reasons are: (1) safety-related systems that use
software have higher quality standards, and hence, a lower probability of failure, (2) software
may have been more commonly used in non-safety-related systems than in safety-related
ones, and (3) a combination of 1 and 2.

E) In many cases, the specific combination of conditions that comprise the EFC, i.e., the
conditions that triggered an inactive software fault into an active one, was identified for a
particular LER. The review also revealed that sometimes a failure may occur as soon as the
software becomes operational, and may remain hidden for several years. Then, the EFC is
the plant’s normal operation. Such failures may be discovered indirectly, such as by
discrepancies with the results produced by alternative calculations (see Section C.2, and
especially Figure C.2 for a discussion of the EFC). Long-hidden failures, or indirectly
discovered ones usually are associated with a non-safety-related system that often has less
stringent regulatory requirements than those of safety-related ones.

F) Most software failures identified in this review had low safety significance for the plant. For
example, a software failure might have violated the plant’s regulatory requirements, such as
its Technical Specifications. This violation may have resulted in the loss of functionality of
some system(s), and an automatic or manual reactor trip. However, during the event, the
plant may have had available redundant systems that perform the same function of the lost
system(s); accordingly, the safety significance of the software failure may be considered
minor. As mentioned earlier, the assessment of the consequence of a software failure on the
associated NPP used the LER’s evaluation of its safety impact.

G) In twenty-nine of the events, i.e., ~ 26% of the 113 LERs, some type of dependent failure
occurred, including common-cause failures. Thirteen LERs, i.e., about 12% of the total ,
potentially involved dependent failures; their LERs did not have enough information to
conclusively assess whether such failures had occurred. Hence, the potential of software
failures to cause dependent failures, including CCF, is demonstrated. Since a dependent
failure can be significant to the risk of an NPP, a software failure also carries this same
potential.

C-44

C.7.2 Foreign Nuclear and Non-Nuclear Industry Experience

C.7.2.1 Approach

The general approach adopted to collect software failure experiences in non-nuclear industries was
to search through the internet-based databases. The data search started from websites that briefly
described software-related incidents or accidents. Among the events claimed to be a computer-
related only a portion could be verified to be caused by computer or software failures from the
official reports from different websites, such as FAA, NTSB, NASA, and DOE. Official websites
containing databases were further queried to collect more related events. Most of the identified
events were verified using the official investigation reports, but a few of the interesting ones were
supported by a book or newspaper articles.

Some examples of the non-official websites include “Computer Horror Stories” at
http://www.cs.tau.ac.il/%7Enachumd/horror.html, “Collection of Software Bugs” at
http://www5.in.tum.de/~huckle/bugse.html, and Risks Digest at http://catless.ncl.ac.uk/Risks/.
The first two list several events with very brief descriptions. The website “Computer Horror Stories”
is maintained by Prof. Nachum Dershowitz from the School of Computer Science at Tel Aviv
University. The website “Collection of Software Bugs” is maintained by Prof. Thomas Huckle from
Institute of Information at TU Munchen. Links to the sources of these events are sometimes
provided, but often these links can no longer be accessed. Also, these two websites are not routinely
updated. The information in Risks Digest’s web site is updated frequently. It was inaugurated in
1985 and is maintained by Peter G. Neumann (http://www.csl.sri.com/users/neumann/short.bio) from
the SRI International Computer Science Laboratory. The Risks Forum, known as Comp. Risks in the
USENET community, is sponsored by the ACM (Association for Computing Machinery) Committee
on Computers and Public Policy (CCPP). The forum illustrates risks to the public from using
computer systems and related technology and summarizes, in one line, most of the interesting cases
over the past decades. The incidents are not limited to certain area. In fact, either brief or detailed
illustrations of almost every important computer-related event can be found here. However, the
information in Risks Digest must be further investigated and verified because it usually is not detailed
enough and applicability of these stories is not guaranteed.

The sources below contain official reports that were used to verify whether the failure events from
the preceding sources were software failures:

1. NTSB Aviation Accident Database at http://www.ntsb.gov/ntsb/query.asp:

The Aviation Accident Database, shared by the NTSB and the FAA, contains data describing the
aircraft, operations, personnel, environmental conditions, consequences, probable causes, and
contributing factors of civil aviation accidents within the United States, its territories and possessions,
and in international waters. An accident is defined as “...an occurrence associated with the operation
of an aircraft which takes place between the time any person boards the aircraft with the intention of
flight and all such persons have disembarked, and in which any person suffers death or serious injury,
in which the aircraft receives substantial damage.” The Safety Board also investigates some incidents,

C-45

and includes them in the database in the same form as accidents. An incident is defined as “...an
occurrence other than an accident, associated with the operation of an aircraft, which affects or could
affect the safety of operations.” The NTSB database website also has an information- query service;
some data collected here was obtained e querying it with the keywords “software” and “computer”.

2. ASN Aviation Safety Database at http://aviation-safety.net/database/

The ASN Safety Database is updated every week; it has a limited query capability. It briefly
describes more than 10,000 safety-related occurrences since 1943 in airliners, military transport
category aircraft, and corporate jet aircraft. These descriptions of most events are from official
reports often found in the NTSB database.

3. NASA Description of Missions at http://nssdc.gsfc.nasa.gov/planetary/planetary_home.html

This database chronologically lists known lunar and planetary missions, including a few historical
ones, that were instrumental in the development and evolution of space exploration, covering both
successful and failed events. A limited query capability is available. The reports are detailed. Some
events collected in the report are verified here.

4. C o m p u t e r - R e l a t e d I n c i d e n t s w i t h C o m m e r c i a l A i r c r a f t a t
http://www.rvs.uni-bielefeld.de/publications/compendium/incidents_and_accidents/index.
html

This website is maintained by Prof. Peter B. Ladkin’s research group conducting specification,
verification, and failure analysis of complex heterogeneous systems. The website gives only incidents
and accidents of commercial airplanes, providing for each event, both a brief description and a
detailed report. Most of the reports are official but some of the accidents are not related to failure of
software or computers.

5. Some other official websites were used that may not maintain a systematic database but
contain reports of accident investigations. For example, a 2004 blackout report is available
from the DOE’s website.

Other sources of the collected data include various publications and books and are individually
referred in each event collected in this report.

C.7.2.2 Summary of Results and Insights

Software failure events were identified in more than 10 different industries, mainly by searching the
Internet to identify events, reviewing their descriptions, and screening out those that are not related
to software failure, or not considered interesting. Four failure events that took place at foreign NPPs
were obtained from a report of the Nuclear Energy Agency [NEA, 1998], and one event at the Davis
Besse plant due to a virus [Schulin] that is not reported in the LER database. Forty-three software-
failure-related events were identified in non-nuclear industries; including the five nuclear events, 48

C-46

events were found. Detailed analyses of selected events are given in the appendix. The
consequences of most of the 48 events were very severe because people only tend to identify root
causes of very severe events, and only those sources that contain the most important or well-known
events are publically available. The nature of this search did not allow the events to be used in a
statistical analysis because the screening was subjective, and no attempt was made to identify the
period in which the search was performed.

The review of events revealed that software failures occurred in every industry that uses digital
systems. Practically all system- and element-level failure modes and failure cause categories defined
in this Appendix have taken place. At the software-element level, processing elements fail most
often. The more frequent element-failure modes are incorrect implementation and omission of
functions or attributes, while errors at a software requirement analysis stage are the most important
cause of failure.

Analyses of the software failures support the concept that the occurrence of EFC triggering a software
failure is a reasonable way of considering software failures. Accordingly, it is logical to model
software failures as random events with probabilities or frequencies. The probability or frequency
depends on the software’s operating environment, and can be used in reliability modeling of
software.

The different types of software failures observed in non-nuclear applications afford useful insights
for modeling software failures, in general, which will apply for digital systems in NPPs. The present
examples illustrate the needs in modeling levels of detail and in defining a scope of the analysis. For
quantitative reliability modeling, the failures do not necessarily have to be modeled explicitly;
rather, modeling must need to capture the impacts of the failures and assess the likelihood of software
failures.

1. A stuck-at-one fault on a data line of the Traffic Collision Avoidance System of the Korean
Air Cargo flight contributed to a near miss collision with British Air flight 027. To capture
this type of failure, a model would have to be developed at the individual bit level, and would
require a fault injection type of analysis [Cutright 2003].

2. A few events occurred due to faults in diagnostic software, interrupts, and communications;
they involve software that is a part of the platform hardware, a part of operating system, and
communication software. For example, at Darlington (event 47 in Table C-8), the hardware
diagnostic software contributed to stalling the computers and eventually shut the reactor
down. To capture these failures, the non-application software must be modeled.

3. A few cyber-security-related events have occurred. Thus, a book [Reed, 2004] written by a
former CIA employee reported that a virus the CIA had put in the control software that the
Soviet Union’s agents purchased caused a major explosion of the natural gas pipeline in
Siberia in 1982. Such failure probably is applicable to any software prepared by a vendor
and customized by the user. To account for cyber-security-related events, the computer
network at a facility has to be included in the model.

C-47

4. A few events involved failure of identical software in redundant systems due to CCSFs. For
example, a software exception caused failure of both initial reference systems of the Ariane 5
launch vehicle that exploded during a takeoff [Lions]. CCSF is real and has to be modeled
in a quantitative reliability model.

5. Poor human-machine interfaces contributed to a few accidents. Thus, in the 2003 blackout,
the computer alarm system at First Energy was unavailable for a long time without any
indication due to a race condition [Jesdanun 2004], and this prevented early mitigation of the
blackout. In the case of China Airline’s flight A300 [Greenwell], a conflict between an
autopilot and a human pilot caused the plane to crash. A good model of operator behavior
along with software behavior would be needed for identifying this accident scenario.

C.7.3 Insights on Modeling Software Failures in Digital Systems for NPPs

Analyses of experience data for nuclear and non-nuclear industries provide useful insights that
supported the concepts of software failures and the probabilistic modeling of these failures. Table C-6
breaks down the software failures observed in different industries in terms of the system’s failure
modes and causes. Here, specific insights derived for modeling software failures are summarized.

1. The assessment of operating experience shows that software failures occur in different
systems that use software and a “system-centric” view of software failure, as used in this
report.

2. Software failure modes and failures causes defined in this Appendix are consistent with, and
sufficient for, categorizing the failures observed for different applications. A new software
failure mode introduced here, i.e., software runs with incomplete or incorrect display of
information or misleading command to the user, is based on the analyses of experience data.

3. The concept of EFC triggering a software failure is supported by the analyses of experience
data. For many software failures, an EFC can be defined and is considered a reasonable way
for explaining the failure’s occurrence. Both types of EFC are observed: one where EFC is
the normal operation of the software, and the other wherein the triggering event occurs
sometime during the operation of the software.

4. The occurrence of the EFC is judged to be a random failure, implying that software failures
also are random since they are triggered by the EFC. Under this explanation, software
failures, can be modeled probabilistically.

C-48

Table C-6 Software Failures Modes and Causes Observed in Nuclear and
Non-Nuclear Industry Experience Data1

Industry Software
Failure Mode

Percentage of
Observed
Failures2

Software Failure
Causes

Percentage of
Observed
Failures3, 4

Nuclear SFM-1 2 SFC-I 0

SFM-2 9 SFC-II 36

SFM-3 16 SFC-III 7

SFM-4 69 SFC-IV 0

SFM-5 0 SFC-V 2

SFM-6 0 SFC-VI 27

SFC-VII 0

SFC-VIII 4

SFC-IX 0

SFC-X 0

Non-Nuclear SFM-1 2 SFC-I 2

SFM-2 2 SFC-II 46

SFM-3 54 SFC-III 23

SFM-4 33 SFC-IV 6

SFM-5 4 SFC-V 4

SFM-6 2 SFC-VI 3

SFC-VII 10

SFC-VIII 14

SFC-IX 6

SFC-X 0

C-49

Notes on Table C-6:

1. The categorization of data in this table is intended for obtaining insights on the characteristics
of software failure. It is not intended for statistical analysis or for developing parameters for
software reliability models. In this analysis, 45 events are included for US nuclear industry,
and 48 for non-nuclear industry.

2. Percentages do not necessarily add up to 100 because adequate information was not available
in all cases to define the categorization. SFM categorization could not be developed for 4%
of the data in the nuclear industry, and 2% in non-nuclear industry.

3. Percentages do not necessarily add up to 100 because adequate information was not available
in all cases to define the categorization. SFC categorization could not be developed for 24%
of the data in the nuclear industry, and 4% in non-nuclear industry.

4. For data in non-nuclear industry, more than one cause may be defined for a particular event.
Accordingly, the sum of the percentages is larger than 100.

C.8 Software Failures: Detailed Data

C.8.1 Software Failures in U. S. Commercial Nuclear Power Plants (NPPs)

The software failures identified for commercial NPPs operating in the United States are listed in
Table C-7. For each event, the date of event occurrence, the plant where the event took place, LER
number, and a title is given.

C-50

Table C-7 Events Related to Software Failures in US NPPs

LER
Number Event Date Plant Title

1551988007 June 29, 1988 Big Rock Point Technical Specification Shutdown - Inoperable Neutron Monitoring System
2061998001 January 14, 1998 San Onofre 1 The title is not known. (The Licensee Event Reports that are categorized as

"Safeguards/Security" are not available for general public viewing.)
2201984009 July 13, 1984 Nine Mile Pt 1 Both Fuel Zone Water Level Monitoring System Channels Inoperable

Simultaneously
2201986007 April 15, 1986 Nine Mile Pt 1 Software Error Causes Inaccurate Fuel Zone Level Indication
2201986019 June 18, 1986 Nine Mile Pt 1 Loss of RWM During Start-Up With Less Than 12 Rods Withdrawn and Less

Than 20% Power
2201986034 December 6, 1986 Nine Mile Pt 1 Loss of Stack Sample Flow Due to Software Problem
2201998003 March 4, 1998 Nine Mile Pt 1 Power/Flow Relationship Technical Specification Violation (Operation Above

Rated Power) Due to Inadequate Managerial Methods
2201998018 October 6, 1998 Nine Mile Pt 1 Violation of License Condition 2.C.(1) and the Power/Flow Relationship

Technical Specification Due to a Degraded Valve
2471999019 October 28, 1999 Indian Point 2 Inadvertent Disabling of Rod Position Plant Computer Program
2501994005 November 3, 1994 Turkey Point 3,

Turkey Point 4
Design Defect in Safeguards Bus Sequencer Test Logic Places Both Units
Outside the Design Basis

2541993008 July 9, 1993 Quad Cities 1,
Quad Cities 2

U1 and U2 Rx Bldg. Vent Radiation Monitors Hi Hi Setpoint Non-conservative
Due to Calibration Error Caused by An Errant Computer Program Used to
Calculate Source Exposure.

2541994017 December 5, 1994 Quad Cities 1,
Quad Cities 2

Banked Position Withdrawal Sequence Rules Violated Since October of 1991
Due to, Training, Procedure and Work Practice Deficiencies in The Nuclear
Engineering Group.

2601996005 May 10, 1996 Browns Ferry 2 Unit 2 Scrammed on Low Reactor Water Level Due to The Digital Feedwater
System Reinitializing Its Feed Pump Demand Output Signal to Zero and
Subsequent Trip of The Reactor Core Isolation Cooling on High Exhaust

2602001003 July 25, 2001 Browns Ferry 2 Automatic Reactor Scram Due to a Turbine Trip During Routine Testing
2602004001 July 8, 2004 Browns Ferry 2 Reactor Scram from Sensed Power Load Unbalance Condition

LER
Number Event Date Plant Title

C-51

2611992023 November 18,
1992

Robinson 2 Failure of ERFIS Processing Function Results in Inoperability of Control Rod
Monitoring Function

2631986010 May 8, 1986 Monticello Standby Gas Treatment System Initiation During Wide Range Gas Monitor
Source Check

2701998004 July 16, 1998 Oconee 2 Technical Specification Snubber Surveillance Interval Exceeded Due to An
Inadequate Process

2721998004 March 2, 1998 Salem 1, Salem
2

Failure to Perform Radioactive Effluent Concentration Surveillance and
Effluent Monitoring Instrument Channel Setpoint Determinations in
Accordance With Technical Specifications

2751990014 December 5, 1990 Diablo Canyon
1

Reactor Trip on Turbine Trip Due to Inadequate Evaluation of Runback Limit
Setpoint

2751992028 October 1, 1992 Diablo Canyon
1, Diablo
Canyon 2

Technical Specifications 3.3.3.8 and 3.7.10 Not Met Due to Procedural
Deficiency

2751999002 March 20, 1999 Diablo Canyon
1

Technical Specification 3.3.1 Not Met Due to Inadequate Knowledge and
Communication

2781995006 October 25, 1995 Peach Bottom 3 Technical Specification Violation Due to Exceeding Licensed Reactor Power
Due to Calculation Software Problem

2801986011 February 27, 1986 Surry 1 Inoperable Hi Range Radiation Monitors
2821999002 January 8, 1999 Prairie Island 1 While at Hot Shutdown a RCP was Tripped During Surveillance Testing of

RCP Breakers, Resulting in no RCPs Running and an Auto-Start of an
Auxiliary Feedwater Pump

2861993005 December 31,
1992

Indian Point 3 Missed Periodic Inservice Tests and Faults in AMSAC System Logic, Due to
Personnel Error, Place the Plant Outside Design Basis

2931997007 April 1, 1997 Pilgrim Safeguards Buses De-Energized and Losses of Off-Site Power During Severe
Storm While Shut Down

3021999001 January 18, 1999 Crystal River 3 Personnel Failed to Perform a Surveillance Requirement Within the Time
Specified in The Improved Technical Specifications With a Computer Alarm
Inoperable

LER
Number Event Date Plant Title

C-52

3051997003 March 10, 1997 Kewaunee Plant Operation Outside of Test Specs with Reactor Vessel Level Indication
Out of Service

3151986010 May 15, 1986 Cook 1 ESF Actuation Caused by a Radiation Monitor Software Error
3151998015 March 12, 1998 Cook 1, Cook 2 Ice Weight Requirements Potentially Not Met Due to Nonconservative

Assumption in Software Program
3161984003 March 11, 1984 Cook 2 Actuation of an Engineered Safety Feature
3161984008 April 19, 1984 Cook 2 Containment Purge Isolation Resulting From Radiation Monitor Software

Errors
3161984011 May 4, 1984 Cook 2 Containment Purge Isolates due to Software Errors
3161987014 December 15,

1987
Cook 2 Missed Surveillance Due to Personnel Error in Process Computer Software

Programming
3162000007 June 28, 2000 Cook 2, Cook 1 Technical Specification 3.0.3 Shutdown Initiated Due to Inoperable Rod

Position Indications
3171993002 February 5, 1993 Calvert Cliffs 1,

Calvert Cliffs 2
Missed Surveillance Requirements Due to Software Manual Error

3211984008 April 30, 1984 Hatch 1 Missed Surveillance
3211989003 March 2, 1989 Hatch 1 Tracking Program Software Deficiency Results in Missed Surveillance
3211989017 November 28,

1989
Hatch 1, Hatch
2

Personnel Error Results in Incorrect Liquid Radwaste Discharge Monitor
Setpoint

3241989005 March 13, 1989 Brunswick 2,
Brunswick 1

HPCI Declared Inoperable Due to a Limitorque Corporation Software Error

3252005001 April 9, 2005 Brunswick 1,
Brunswick 2

Operation Prohibited by Technical Specification - Inoperable Feedwater and
Main Turbine High Water Level Trip

3312001005 October 3, 2001 Duane Arnold Licensed Power Level Exceeded Due to Use of Non-conservative Constant in
Heat Balance

3331990029 December 7, 1990 Fitzpatrick Suppression Pool Average Water Temperature Monitor Inoperable Due to
Engineering Error Entering Incorrect Criteria Into Instrument Software
Program

LER
Number Event Date Plant Title

C-53

3331995015 December 15,
1995

Fitzpatrick Omission of RWR Seal Purge Flow From Reactor Heat Balance

3341997036 November 13,
1997

Beaver Valley
1, Beaver
Valley 2

Inadequate Channel Check for Meteorological Monitoring Instrumentation

3341999011 September 9, 1999 Beaver Valley
1, Beaver
Valley 2

Inadequate Axial Flux Difference (AFD) Monitor Alarm Surveillance

3351986005 June 20, 1986 St Lucie 1 Technical Specification Deviation Due to Personnel Error
3351997002 February 21, 1997 St Lucie 1 Operation in Excess of Maximum Rated Thermal Power Due to Digital Data

Processor Calorimetric Error
3362000013 July 31, 2000 Millstone 2 Failure to Calculate Azimuthal Power Tilt As Required by Technical

Specifications
3381986003 February 20, 1986 North Anna 1 Failure of Radiation Monitors Due to Software Design and Other Problems
3382000001 February 21, 2000 North Anna 1 Control Rod Deviation Monitor Inoperable Due to Personnel Error
3411997001 February 6, 1997 Fermi 2 Error in Mass Flow Conversion Algorithm in the Heat Balance Methodology

for Calculating Core Thermal Power
3412004004 December 4, 2004 Fermi 2 Automatic Reactor Shutdown Due to Automatic Voltage Regulator Failure
3441987020 August 3, 1987 Trojan Seismic Monitoring Instrumentation Surveillance Missed Due to Inadvertent

Deletion From Schedule
3441989028 August 1, 1989 Trojan Personnel Error in Preparing Procedure Results in Missed Rod Position

Surveillance
3461988006 February 22, 1988 Davis-Besse Software Error in Kaman Radiation Monitors
3482000006 May 28, 2000 Farley 1 Reactor Trip from 4% Power Due to Personnel Error
3531998005 June 29, 1998 Limerick 2 Tech Spec (TS) Violation in that a Surveillance Test Exceeded its TS

Surveillance Period due to Personnel Error & a Weakness in the use of the
Scheduling Program

3611986018 July 7, 1986 San Onofre 2 Unit 2 Trip Due to Failure of Control Rod Drive System
3622000002 February 1, 2000 San Onofre 3 Missed RCS Leak Rate Surv. - Y2K Error Inattention to Detail

LER
Number Event Date Plant Title

C-54

3661997006 April 7, 1997 Hatch 2 Data Entry Error Results in Missed Technical Specifications Surveillance on
Source Range Monitors

3681994003 August 24, 1994 Arkansas 2 Control Element Assembly Position Indication Surveillance Testing Not
Performed as Required by Technical Specification Due to Personnel Error
Associated With Computer Software Change

3681997004 May 26, 1997 Arkansas 2 Alternate Radioactive Gaseous Effluent Sampling Not Established Within One
Hour As Required Due to Inadequate Alarming Capabilities on Radiological
Dose Assessment Computer System Terminals

3681998003 May 20, 1998 Arkansas 2 Surveillance Testing of Control Element Assembly Position Indication
Maximum Deviation Was Not Performed for One Group As Required by
Technical Specifications Due to Inadequate Verification Or Validation of A
Computer Software Change

3691994008 November 1, 1994 McGuire 1 Three Auxiliary Feedwater to Steam Generator Isolation Valves Were
Determined to Be Past Inoperable Due to A Fabrication Deficiency in Vendor
Supplied Testing Software.

3732000003 June 24, 2000 LaSalle 1,
LaSalle 2

P-Bypass Setpoint Set Non-Conservatively Due to Inappropriately Turning Off
the Process Computer Feedwater Flow Density Correction Program

3741984049 August 1, 1984 LaSalle 2 Reactor Radiation Doors Unsecured
3821986025 October 22, 1986 Waterford 3 Reactor Trip During Startup Due to Prolonged Low power operations
3821989012 July 6, 1989 Waterford 3 Radiation Monitor Inoperable during Discharge due to Inadequate

Administrative Controls
3821990016 October 14, 1990 Waterford 3 Improper Access Control to A High Radiation Area Due to A Security

Computer Software Inconsistency
3821992001 January 22, 1992 Waterford 3 Failure to Satisfy Technical Specification Surveillance Requirement due to

Inadequate Administrative Controls and Inadequate Attention to Detail
3821994018 November 23,

1994
Waterford 3 Liquid Radioactive Waste Released from Waste Condensate Tank 'A'

3821997013 April 7, 1997 Waterford 3 Refueling Machine Failed to Meet Technical Specification Requirements

LER
Number Event Date Plant Title

C-55

3871997001 January 2, 1997 Susquehanna 1,
Susquehanna 2

SPING Terminals Not Communicating With Field Units

3951984013 March 9, 1984 Summer Smoke Detectors Temporarily Inoperable
3951990003 April 6, 1990 Summer Computer Software Error Caused Nonconservative Radiation Monitor

Setpoints
3951992001 January 11, 1992 Summer Missed Surveillance for Axial Flux Difference
3971996004 June 24, 1996 Columbia Manual Reactor Scram Due to Digital Feedwater System Error Found During

Testing
4121996001 February 12, 1996 Beaver Valley 2 Condition Prohibited by Technical Specifications, Missed Rod Position

Surveillance
4131986017 March 17, 1986 Catawba 1 Catawba Nuclear Station, Unit 1
4141987008 March 3, 1987 Catawba 2 Technical Specification Violation Due to A Design Deficiency in the Operator

Aid Computer Reactor Coolant Leakage Program
4231986011 February 5, 1986 Millstone 3 Control Building Isolation Signals Due to Noise Spike
4231989029 November 20,

1989
Millstone 3 Missed Axial Flux Difference Technical Specification Surveillance Due to

Procedural Inadequacy
4241987056 September 16,

1987
Vogtle 1 Technical Specification Not Met Due to Incomplete Vendor Software for Dose

Calculations
4241987058 September 21,

1987
Vogtle 1 False Signal From a Radiation Monitor Leads to Control Room Isolation

4241987065 November 9, 1987 Vogtle 1 Containment Ventilation Isolation Due to Actuator Failure and Software
Design

4241987068 November 17,
1987

Vogtle 1 Control Room Isolation Due to Faulty Sensing Tube and Software Design

4241987073 December 21,
1987

Vogtle 1 Containment Ventilation Isolation Due to Sensing Tube Failure and Software
Design

4241988030 October 27, 1988 Vogtle 1 Surveillance Missed Due to Inoperable Rod Position Deviation Monitor
4241988038 November 16,

1988
Vogtle 1 Erroneous Neutron Detector Indicators Lead to Plant Operation Outside of

Tech. Spec.

LER
Number Event Date Plant Title

C-56

4401999007 December 16,
1999

Perry Operating License Thermal Power Limits Exceeded During Previous Cycle
Coastdown

4402000002 March 1, 2000 Perry Inadequate Data Validation Checks Result in Missed Power Distribution Limits
Surveillance Requirements

4431994018 November 28,
1994

Seabrook Missed Technical Specification Surveillance Requirement

4541984024 November 29,
1984

Byron 1 Loss of Control Room Annunciation of Radiation Monitors

4541986014 May 12, 1986 Byron 1 Control Room Ventilation Actuation Due to High Vacuum Alarm on 0PR32J
Radiation Monitor

4551987011 July 25, 1987 Byron 2 Reactor Trip during 30% Load Rejection Test on Overtemperature Delta T Due
to Steam Dumps Failure to Fully Open and the Digital Electro- hydraulic
Sequential Valve Mode

4552005001 October 19, 2005 Byron 2, Byron
1

Unit 2 Automatic Reactor Trip Due to Low Steam Generator Level resulting
from a Software Fault on the Turbine Control Power Runback Feature

4561987057 October 9, 1987 Braidwood 1 Turbine Trip and Subsequent Rx Trip During Monthly Turbine Valve Cycle
Surveillance

4582001002 October 4, 2001 River Bend Potential Violation of Maximum Power Limit Due to nonconservative Error in
Core Thermal Power Calculation Software.

4821986045 September 2, 1986 Wolf Creek Moderate Loss of Physical Security Effectiveness Due to Computer
Malfunction

4821999014 December 2, 1999 Wolf Creek Computer Leak Rate Calculation for Containment Sump Leakage Indication
Does Not Meet Design

4822000002 May 24, 2000 Wolf Creek Loss of Containment Total Unidentified Leak Rate Computer Point Operability
4831986039 October 19, 1986 Callaway Action Statement Not Entered When Less Conservative Radiation Monitor

Setpoint Calculated Due to Computer Software Error
4831999009 December 3, 1999 Callaway RCS Leakage Detection Systems are Outside of Design Basis Because a 1 gpm

Leak cannot Be Detected within 1 Hour
4981988014 February 4, 1988 South Texas 1 Reactor Protection System Actuation Due to a Software Problem in QDPS

LER
Number Event Date Plant Title

C-57

4981989016 July 13, 1989 South Texas 1 Technical Specification Violation Due to Inadequate Procedural Control Over a
Plant Modification

4991990016 October 27, 1990 South Texas 2 Fuel Handling Building HVAC Actuation Due to Loss of Power
5281986046 June 25, 1986 Palo Verde 1 Incorrect Computer Constants Render the Containment Radiation Monitor

Inoperable
5281992011 July 13, 1992 Palo Verde 1,

Palo Verde 2
Missed Technical Specification Action for COLSS Inoperable

5291986017 September 11,
1986

Palo Verde 2 Reactor Trip Initiation by Reactor Protection System

5291998002 February 28, 1998 Palo Verde 2 Missed Core Protection Calculator Shift Channel Check due to Data Link
Failure

5292005004 August 22, 2005 Palo Verde 2 Technical Specification Required Shutdown due to Core Protection Calculators
Inoperable

C-58

C.8.2 Software Failures in Foreign Nuclear and Non-Nuclear Industries

Software failures identified for foreign NPPs and non-nuclear industries are presented in Table C-8.
For each of the event, the following information is included: a title, the date of occurrence, the EFC,
system failure mode (SFM), element failure mode (EFM), and the system failure cause (SFC).

C.8.3 Detailed Analyses of Selected Software Failure Events

A detailed analysis was conducted of each of the software failures identified in this report. The
detailed analysis was used to determine if an error forcing context (EFC) contributed to the software
failure, and to identify the system failure mode (SFM), the element failure mode (EFM), and the
software failure cause (SFC). Detailed analyses of the following 11 selected events are presented in
this appendix.

• Overdose of Radiation Therapy Machine THERAC-25 (1985-1987)
• London Ambulance Dispatch System (October 1992)
• China Airline Flight B1816 Crash at Nagoya (April 26, 1994)
• Turkey point Diesel generator Sequencer (November 4, 1994)
• Common Cause Failure of Voltage Regulating Transformers and Vital AC Buses at

Pilgrim (April 1, 1997)
• Core Protection Calculators Inoperable at Palo Verde 2 (August 22, 2005)
• Slammer Virus in Davis-Besse Nuclear Power Plant (January 25, 2003)
• Natural Gas Pipeline Explosion in Soviet Union (Summer 1982)
• Maroochy Water Treatment Plant Accident (2000)
• Blackout of North America (August 14, 2003)
• Common Cause Failure of Security Computers at San Onofre Unit 1(1998)

The following information is obtained from the detailed analysis of each of the software failure event:
a summary of the event, the software failure in the event, a brief summary of the consequences of the
software failure, an assessment of the EFC that resulted in the software failure, failure categorization
in terms of SFM and SFC, whether the failure involved dependent or common cause failure, and any
applicable discussion.

C-59

Table C-8 Summary of Software Failures in Foreign NPPs and Non-Nuclear Industries

Event Date Error Forcing Context (EFC) System
Failure Mode

Element Failure
Mode

Failure Cause

1. Theractron780-C
Teletherapy Unit at Panama’s
National Cancer Institute

Aug. 2000 -
Mar. 2001

Entering data of multiple shielding blocks together as a single block SFM-4 EFM-1.3
EFM-2.3

SFC-II-1
SFC-II-2

2. Overdose of Radiation
Therapy Machine Therac-25

1985 - 1987 Selecting “x-ray” treatment and quickly correcting it to “electron”
treatment in 8 seconds

SFM-4 EFM-1.1 SFC-II-1
SFC-V-1
SFC-V-2

3. London Ambulance
Dispatch System Failure

Oct. 26, 1992 Unavailable correct vehicle status and location SFM-3 EFM-1.6
EFM-2.6
EFM-5.5

SFC-I-1
SFC-V-2

4. 2003 August Blackout in
North American

Aug. 14, 2003 A unique combination of events causing the stalling and queuing SFM-2 EFM-2.1
(or EFM-5.1)
EFM-2.3

SFC-II-2
SFC-III-7

5. Southwest Airline Flight
1565 No. 2 Engine Fire
Incident

Jul. 7, 1998 Unstable sine voltage output of Channel B SFM-3 EMF-1.3 SFC-II-2

6. N954VJ Collision
Accident in Charlotte Airport

Jul. 2, 1994 Presence of wind shear and flaps in transition when landing SFM-4 EFM-5.5 SFC-III-2

7.Uncommanded Rolls of
N331NW

Apr. 27, 1995 Disrupted input (voltage spike) to ELAC SFM-3 EFM-1.3 SFC-II-2

8. Midair Collision Incident
of N1801B

Oct. 17, 2000 Incorrect transponder setting on airplane that is in range of tower SFM-5 None SFC-II-2
SFC-VII-2

9. FedEx MD11 N611FE
Crash During Landing at
Newark International Airport

Jul. 31, 1997 Overcontrol of airplane during landing SFM-4 EFM-5.5 SFC-III-2

10. An Almost Midair
Collision of BA027

Jun. 28, 1999 Incorrect flight altitude data sources SFM-4 EFM-1.3 SFC-II-2

11. China Airline B1816
Crash at Nagoya Airport

Apr. 26, 1994 Pilot attempts to control the aircraft without knowing that the
autopilot is engaged

SFM-5 EFM-5.4
EFM-2.3

SFC-II-2
SFC-II-3

Event Date Error Forcing Context (EFC) System
Failure Mode

Element Failure
Mode

Failure Cause

2 “X” is used due to insufficient information.

C-60

12. French Airbus Flight 148
Crash Near Strasbourg

Jan. 20, 1992 Wrong selection of one of the descent modes. SFM-5 None SFC-VIII

13. A330 Test Flight Crash at
Blagnac Airport, Toulouse

Jun. 30, 1994 Loss of an engine and cut-off of the hydraulic with settings of
altitude less than 7,000 feet.

SFM-3 EFM-5.5 SFC-II-3

14. Airbus A320 Crash at Air
Show Near Mulhouse

Jun. 26, 1988 When the flight switches from one flight mode to another SFM-4 EFM-1.5 SFC-II-X Or SFC-IV-X2

15. Korean Air Flight
801Crahsed into Nimitz Hill
in Guam

Aug. 6, 1997 When the airplane needs MSAW (when the altitude is too low)
information in 54-nm-inhibition range

SFM-4 EFM-2.3 SFC-VIII

16. Ariane 5 Failure 40
Seconds After First Launch

Jun. 4, 1996 Too high horizontal velocity in the lift-off SFM-4 EFM-5.5 SFC-II-1

17. Mars Climate Orbiter
(MBO) Disappeared After
Maneuvering into Target
Martian Orbit

Sep. 23, 1999 When the thruster firings are performed SFM-4 EFM-5.5 or
EFM-2.5

SFC-III-1

18. Patriot Missile Failure to
Track and Intercept a Scud
Missile

Feb. 25, 1991 The up time of the system is too long SFM-4 EFM-5.5 SFC-III-1
SFC-VIII

19. Swedish Gripen Fighter
Crash on Landing in Sixth
Test Flight

Feb. 2, 1989 Stick movements exceed the predicted values at low speed SFM-4 EFM-5.4 SFC-III-2

20. A320 Incident Due to
Spoiler in Maintenance Mode

Aug. 26, 1993 Spoilers are in maintenance mode in one side of the plane after
taking-off

SFM-3 EFM-1.3 or
EFM-5.3

SFC-II-1

21. U.S. Navy Smart Ship
Failure of Propulsion System

Sep., 1997 Enter zero (or other values), which can cause the database to
overflow, into the data field

SFM-3 EFM-1.3 SFC-II-1
C-II-2

Event Date Error Forcing Context (EFC) System
Failure Mode

Element Failure
Mode

Failure Cause

C-61

22. Pathfinder Reset Problem
Caused Loss of Data From
Mars

Jul., 1994 When medium priority task is scheduled while the high priority task
is blocked waiting for ASI/MET task

SFM-3 EFM-4.5 SFC-II-1

23. Mariner 1Destructed
After Launch Failure
Observed

Jul. 22, 1962 Malfunction of the airborne beacon. (In this situation, the incorrect
guidance signals were allowed to transmit)

SFM-3 EFM-1.5 SFC-IV-1

24. AT&T Telephone Outage
in 1990

Jan. 15, 1990 Recovery of a heavily loaded 4ESS switch from temporary failure,
which causes more than one call to the connecting 4ESS switches in
very short period

SFM-3 EFM-2.5 SFC-II-1

25. Telephone Outage in
1991

Jul. 1 - 2,
1991

Too many computer-generated messages for the DSC
communication software

SFM-3 EFM-5.3 SFC-VI-1
SFC-II-2

26. Apollo 8 Positioning
Problem Due to Accidental
Entry to Computer

Dec., 1968 Data stored in certain area of the memory was erased by accidentally
entering wrong data entry

SFM-3 EFM-5.3
EFM-5.4

SFC-II-1

27. NORAD False Alarm of
Nuclear Attack in 1980

Jun. 3, 1980 The failure of the computer chip SFM-4 None SFC-IX

28. Gemini 5 Landing with
169 km Off Target

Aug. 21, 1965 Whenever the spacecraft re-enters the atmosphere using the ground
based computer guidance program.

SFM-3 EFM-5.3 SFC-III-2

29. Delta III Launch Failure
Due to Design of Control
System Software

Aug. 26, 1998 Development of the 4 Hz roll mode that will be triggered as long as
the Delta III is launched

SFM-3 EFM-5.4 SFC-III-2

30. Titan IV Put Satellite into
Incorrect Orbit Due to Loss
of Control in Launch

Apr. 30, 1999 Lift-off of Titan IV SFM-4 EFM-5.6 SFC-VIII

31. Phobos I Incident Due to
Depleted Solar Array
Batteries Caused by Software
Error

Sep. 2, 1979 The letter that was left out in the message uploaded to Phobos I from
control center and it was needed during the transfer between two
command centers

SFM-3 EFM-5.4 SFC-VIII

32. An Inmate Escaped Due
to Faulty Computer System

Spring, 1992 The second computer is busy when the first one calls SFM-3 EFM-3.5
EFM-5.5

SFC-II-3

Event Date Error Forcing Context (EFC) System
Failure Mode

Element Failure
Mode

Failure Cause

C-62

33. NY Stock Exchange
Opened Late Due to
Communication Problem in
Software

Dec. 18, 1995 Undefined due to insufficient details SFM-3 EFM-3.X X

34. EFTPOS Crash Due to
Undistributed Workload of a
Failed Processor

June 2, 1997 Failure of a processor SFM-3 EFM-4.X X

35. Sewage Spill in
Williametter River Caused by
Alarm System Software
Failure

Sep. 19 and
20, 1988

Sewage treatment pumps stop working SFM-3 EFM-5.5 SFC-IV-X

36. Sewage Spill in
Williametter River Caused by
Loss of Electric Power

June 7, 1988 Loss of electric power for computer SFM-3 None SFC-VII-3

37. Slammer Virus in Davis-
Besse Nuclear Power Plant

Jan. 25, 2003 External consultant linked to plant’s intranet and caused the infection
of slammer worm of a computer that is interconnected to internal
network of the plant with MS-SQL server without installing the
security patch

SFM-3 EFM-1.6
EFM-5.6

SFC-VI-3
SFC-VII

38. Maroochy Water
Treatment Plant Accident
Caused by Hacking

Early, 2000 When the water treatment plant is attacked by a person who is either
an insider or knowledgeable enough to attach the plant’s control
system remotely

SFM-3 EFM-2.3
EFM-3.3

SFC-II-2
SFC-VII

39. Gazprom Hacked 2000 Hacker’s program embedded in benign code is not identified by the
operators

SFM-4 EFM-X.4 SFC-VII

40. Roosevelt Dam Hacker 1998 Undefined due to insufficient information SFM-4 X SFC-VII

41. Natural Gas Pipeline
Explosion in Soviet Union

Summer of
1982

Faulty software was not identified after certain time interval of
installation

SFM-4 EFM-X.5 SFC-VII

42. F-14 Weight on Wheels Unknown Pilot decides to raise landing gears while the airplane is still on the
ground

SFM-3 EFM-5.5 SFC-II-1
SFC-II-2

43. Train Signal System
Software Problem

July 1990 Undefined due to insufficient details SFM-5 EFM-5.5 SFC-III-X

44. Train Door Failure Jan. 8, 2000 When the door of the train is not closed properly SFM-3 None SFC-IX

Event Date Error Forcing Context (EFC) System
Failure Mode

Element Failure
Mode

Failure Cause

C-63

45. Bruce Refueling Accident Jan. 23, 1990 Software bug in the refueling machine code SFM-3 EFM-5.2 SFC-III-5

46 Software Patch Caused
Reactor Trip

Jan. 15, 1992 A software patch used during shutdown to bypass rationality check
was not removed, one sensor was down for maintenance, and a
second one had a faulty diode

SFM-3 EFM-1.6 SFC-VI-4

47. Diagnostics Caused
Reactor Trip

- An engineer requested longer than expected data causing delay in
hardware checking software

SFM-1 EFM-4.1 SFC-II-1

48. Memory Failure Caused
Pump Trip

Feb. 23, 1996 1. Memory failure caused recirc. Pump trip
2. Incorrect control constants being transferred from the
malfunctioned memory element to the replacement memory element

SFM-3 1. EFM-5.5
2. --

1. SFC-II-1,
SFC-II-3
2. SFC-VIII

3 Race condition is an error condition in which two signals or sets of data collide. It can take place within a chip, a
circuit, a network or an application, e.g., a software application. It can be due to a timing malfunction in the
hardware or poorly written software.

C-64

C.8.3.1 Overdose of Radiation Therapy Machine THERAC-25 [Leveson 1993, Peterson 1995] -
1985-1987

C.8.3.1.1 Summary

THERAC-25 is a computerized radiation therapy machine manufactured by Atomic Energy of
Canada Limited (AECL). It had been installed and operated at 11 different medical facilities during
1985-1987. It has two methods of treating patients, using accelerated electrons and x-rays generated
by hitting a target with high energy electrons. The overdose accidents occurred when the high energy
electrons used to generate x-rays were mistakenly used directly on patients, due to software errors.

C.8.3.1.2 Software Failures

The software of THERAC-25 was developed by a single person using PDP 11 assembly language
over a period of several years. The software evolved from that of an earlier version of Therac. There
appears to be more than one software failures/bugs, because the “the investigators could not
reproduce the fault condition that produced the 1987 Yakima overdose” [Leveson 1993]. The one
identified was a race condition3 that was not considered in the software. When an operator first
selected “x-ray” treatment by mistake and quickly corrected it to “electron” treatment in less than 8
seconds (this is the error forcing context), a part of the software is not aware of the correction, and
high energy electron is used instead of the lower dose rate specified by the operator. High energy
electrons are used to hit a target to generate x-rays. Much lower energy electrons are used for direct
treatment of patients. Other contributors include removal of hardware interlock, unacceptable
software engineering practice (no documentation, inadequate testing), poor user interface, and
accident management inadequacy.

C.8.3.1.3 Consequence

6 patients overdosed and 4 of them died. FDA declared THERAC-25 defective. Law suits were
brought upon by families of patients.

C.8.3.1.4 Likelihood of Error Forcing Context

According to “Fatal Defect” [Peterson 1995] the manufacturer was not able to reproduce the overdose
of Cox and Kidd cases. It was the user, i.e., the doctor and technician, who managed to reproduce
it. The error forcing context in these cases is the operator completing changing the mode from x-ray
to electron in less than 8 seconds. There were 11 units of THERAC-25 in use and the number of
times the treatment was given successfully can be estimated. Therefore, the probability that the error
forcing context occurs can be estimated.

C-65

In order to estimate the probability of the error forcing context occurrence, the information needs to
be collected over a given time period. For each THERAC-25 unit, the total number of times of
treatment and the number of times of failures caused by the error forcing context occurrence (the
failures due to other reasons do not count) should be obtained from the operating records of each unit.

According to [Peterson 1995], 11 units of THERAC-25 were used between June 1985 and January
1987 and a total of 6 accidents/accidents occurred, with 1 patient in Kennestone Regional Oncology
Center (Marietta, Georgia), 1 patient in Ontario Cancer Foundation (Ontario, Canada), 2 patients in
Yakima Valley Memorial Hospital (Washington), and 2 patients in East Texas Cancer Center (Tyler,
Texas). Exact number of patients who have had the Therac-25 treatment is unavailable. However,
[Peterson 1995] mentioned that around 500 patients had the treatment in East Texas Cancer Center.
If we assume that the same number of the patients in other centers used Therac-25, the total patients
number is about 5,500. The probability of the error forcing context is thus approximately
6/5,500=0.0011.

C.8.3.1.5 Failure Categorization

Failure modes:
– System failure mode:

Software runs with wrong results that are not evident
– Element failure mode:

Input element can not handle the input properly, a race condition exists which
caused the accidents

Failure causes:
Internal Causes:

- Incomplete software requirement analysis
- No software documentation
- Poor user interface
- Test plan was not implemented or executed appropriately in Testing and
Validation
- Inadequate accident management

EFC:
- When an operator first selected “x-ray” treatment by mistake and quickly corrected
it to “electron” treatment in less than 8 seconds, a part of the software is not aware of
the correction, and high energy electron is used instead of the lower dose rate
specified by the operator.

Failure effects and consequences:
– 6 overdoses and 4 fatalities

C.8.3.1.6 Dependent Failure and CCF

No.

C-66

C.8.3.1.7 Discussion

Leveson [Leveson 1993] stated “the description AECL provided for the FDA, although we have tried
to clarify it somewhat. The description leaves some unanswered questions, but it is the best we can
do with the information we have.” She probably did not perform a detailed failure analysis.

Leveson found that the claim that safety had increased 10E+5 times skeptical. A bad reliability claim
by a vendor should not prevent good reliability/risk analysis.

C.8.3.2 London Ambulance Dispatch System [South 1993, Finkelstein 1996] -
October 1992

C.8.3.2.1 Summary

The London computer-aided dispatch system developed by the London Ambulance Service, which
operated more than 700 ambulances and received between 2000 and 2500 calls daily, was put into
service on October 26, 1992. This was the first time the system was fully implemented without being
fully tested. The system allows the operators (call takers) to enter the calls, receives location and
status information of ambulances through mobile data terminals and mobile radios, determines the
nearest available ambulance, and allows the operators (allocators) to allocate the most suitable
ambulance. Due to multiple factors, such as inadequate project management, incomplete software,
and incomplete testing, (discussed in the next paragraph,) the system failed to dispatch ambulance
timely, dispatched multiple ambulances to the same location, which resulted in many delays in the
ambulance service and as many as 20 alleged deaths of the patients, although according to the
coroner’s court in no case has the late arrival of an ambulance caused a patient's death. After the
accident, the Central Ambulance Control reverted to a semi manual method of operation, identical
to that which had operated with a variable degree of success before.

C.8.3.2.2 Software Failures

The software of London Ambulance Dispatch system is an application software which runs on
Windows 3.0 and INTEL 486 processor in a multitasking environment. The software was developed
by Systems Options Ltd, a small software company with no experience in similar applications. It
relies on near perfect information of vehicle location and status, which are difficult to obtain in
reality. Although some poor allocations may be attributable to errors in the allocation routine, it is
believed that the majority of allocation errors were due the system not knowing the correct vehicle
status and location. The poor location and status information was due to inadequate training of the
operators and ambulance crew, radio communication black spots and bottle neck, and faults in the
hand shaking routine between mobile data terminals and the dispatch system, etc. Incorrect status
and position information resulted in incorrect allocations such as multiple vehicles sent to the same
incident, or not the closest vehicle sent, and generation of many exception messages which moved
off the screen which further delayed the response of the operators.

C-67

The system was over ambitious and developed against impossible timetable. The project
management was inadequate and the decision to implement the system without fully tested was a
mistake. The system was not complete, not properly tuned, and not fully tested. There were
outstanding communication problems to and from the mobile data terminals. The users of the system,
both the operators and ambulance crew, were not adequately trained.

C.8.3.2.3 Consequence

The deaths of 20 patients were suspected to be linked to the delays caused by the system. The chief
executive of the London Ambulance System resigned.

C.8.3.2.4 Likelihood of Error Forcing Context

The use of the system is the error forcing context. The probability of EFC is 1.

C.8.3.2.5 Failure Categorization

Failure Modes:
– System failure mode:

Runs with evidently wrong results
– Element failure mode:

Data error of INPUT and OUTPUT elements (unknown status and location of
vehicles, communication problems from and to mobile data terminal)
Incorrect implementation of a function in PROCESSING element (some
problems were due to errors in allocation routine)

Failure Causes:
Internal Causes:

Incompatibility between software and overall system in System/information
engineering and modeling stage (incompatibility between dispatch system and
data acquisition system)
Impact conditions not taken into account in Software requirement analysis
stage (impacts of incomplete information on dispatch system, i.e., poor
robustness of the dispatch system software)
Incomplete test plan and/or test procedures in Test stage (system was not fully
tested)
Test plan was not implemented or executed appropriately in Test stage
(system was not fully tested)

EFC:
Use of the ambulance dispatch system

Failure effects and consequences:
Deaths of 20 patients were suspected to be linked to the delays caused by the system

C-68

C.8.3.2.6 Dependent Failure and CCF

No.

C.8.3.2.7 Discussion

No.

C.8.3.3 China Airline Flight B1816 Crash at Nagoya [Ladkin, CSE] - 4/26/1994

C.8.3.3.1 Summary

An A300 airplane B1816 operated by China Airline crashed at Japan’s Nagoya Airport in April, 1994
during the landing process. Before the airplane was landing, it was under manual control by F/O
(First Officer). The plane went into take-off/go-around because the F/O inadvertently activated the
GO AROUND lever, which changed the FD (Flight Director) to Go Around mode. This made the
aircraft deviate above its normal glide path. Under these conditions the F/O continued to push the
control wheel despite its strong resistive force in accordance with the captain’s instructions, i.e., the
autopilot attempted to control the airplane in a way that was directly opposite to what the F/O was
attempting to control. Obviously, the design of the autopilot software does not allow the pilot to
disconnect it in case of this conflict. Thus, the trimmable horizontal stabilizer moved to its full nose-
up position (this conflicted with the movement of elevator) and caused an abnormal out-of-trim
situation. The crew were unaware of abnormal situation because there was no warning about this
abnormal situation.

The angle of attack (AOA, the angle the wing makes relative to airflow over the wing) increased,
Alpha Floor function to enter an optimal climb configuration was activated and the pitch angle
increased. It is considered that the captain (who had now taken the controls) judged that the landing
would be difficult and opted for go-around. The aircraft began to climb steeply with a high pitch
angle attitude. The captain and the F/O did not carry out an effective recovery, and aircraft stalled
and crashed, killing 264 of 271 people on board.

C.8.3.3.2 Software Failures

In addition to human errors involved in this accident, the most likely reason is not solely the software
itself but the confused interactions between software and human pilot [CSE]. Two minutes before the
landing, the autopilot went into take-off/go-around mode, which caused the airplane to continue
climbing. It is thus impossible for the plane to land. On one hand, the autopilot was attempting to gain
altitude and increase the pitch of the plane, while the F/O was trying to decrease the altitude using
different parts of the plane. The crew had to switch the autopilot out of take-off/go-around mode but
could not undo some of the changes the autopilot made to the stabilizer flaps on the wings that
increased the altitude. The crew had to switch the autopilot into go-around mode again.

C-69

The main contributing factor to the accident is the autopilot software could not solve the conflicts
between itself and human pilot. The interface of software design of the autopilot was not optimal for
communication between pilot and autopilot, e.g., there were no audio cues signifying when the
autopilot was engaged or disengaged. Also, below certain critical altitude, the autopilot was still
activated because the software designer were afraid that there was insufficient time for a human pilot
to regain the control in this situation.

Therefore, the error forcing context is the conflict between autopilot and human pilot, i.e., the pilot
attempts to control the aircraft without knowing that the autopilot is engaged after the pilot
inadvertently activating the GO AROUND lever.

C.8.3.3.3 Consequences

264 of 271 people on board were killed.

C.8.3.3.4 Likelihood of Error Forcing Context

The likelihood of error forcing context can be represented in terms of the probability that the F/O
inadvertently activated the GO AROUND mode of autopilot, and failed to recognize it. It can be
estimated by collecting actual data and performing human reliability analysis.

C.8.3.3.5 Failure Categorization

Failure modes:
– System failure modes:

Confusing or less informative interface
Runs with wrong results that are not evident

– Element failure modes:
Unintended function (allows both autopilot and pilot controls) in
PROCESSING element
Omission of a function (alarm or warning messages to make pilot aware of
situation) in OUTPUT element

Failure causes:
Internal Causes:

Desired functions (autopilot should warn the situation) are not specified in the
requirements in Software requirement analysis stage
Incorrect specification (conflict controls from both autopilot and human pilot
are allowed) in Software requirement analysis stage

EFC:
The F/O inadvertently activated the GO AROUND mode, and failed to recognize it.

C-70

Failure effects and consequences:

264 of 271 people on board were killed.

C.8.3.3.6 Dependent Failure or CCF

No.

C.8.3.3.7 Discussion

On June 8, 1994, BEA (Bureau Enquetes Accidents) transmitted the following recommendation to
DGAC (Direction General de l’Aviation Civile), France: “We recommended that study be performed
for the modification of the aircraft, with all necessary accompanying measures, leading to the
connection of autopilot when a pilot overrides it while in Landing and Go Around modes. The
modification resulting from this study should be made mandatory.”

C.8.3.4 Turkey Point Diesel Generator Sequencer - November 4, 1994

C.8.3.4.1 Summary

Turkey Point Units 3 and 4 have four sequencers (one sequencer per train, per unit). Each sequencer
is provided with Manual test and Automatic Self-test capability. The test mode is determined by a
three-position Test Selector switch. The three positions are AUTO (self-tests 16 steps or scenarios
in the automatic test sequence), MAN (each test is manually initiated), and OFF (no test signals are
generated). With the sequencer Test Selector switch in AUTO, the sequencer steps sequentially
through sixteen steps; first five bus stripping/clearing steps, followed by eleven LOOP and/or LOCA
scenarios. On November 3, 1994, Turkey Point Unit 3 was operating in Mode 1 at 100% power, and
Unit 4 was in Mode 5 during a refueling outage. During the Unit 4 Integrated Safeguards Test, a
failure of the 3A sequencer to respond to the opposite unit's Safety Injection (SI) signal occurred.
The 3A sequencer response should have been to start the 3A High Head Safety Injection (HHSI)
pump. However, the pump failed to start because it did not receive a start signal from the sequencer.
Troubleshooting resulted in the discovery of a defect in the sequencer software logic which, under
certain conditions, could inhibit the sequencer from responding to a valid emergency signal. The
defect manifested itself in the failure of the 3A HHSI pump to start. This event is documented in
LER 250-1994-005-02.

The software logic defect is limited to the test function, but the defect is common to all four
sequencers. Since this condition is applicable to both the automatic self-test and manual testing, the
sequencers must be considered inoperable during both testing modes. The design intent of the
sequencers is such that should a "real" emergency signal occur while the sequencer is being tested,
the test signal clears, allowing actuation of the Engineered Safety Features controlled by the
sequencer.

C-71

On May 5, 1994, there was an inadvertent ESF actuation on Unit 3, in which all equipment responded
as design, except the 4A HHSI pump. LER 250-1994-002 documents this other event. At that time
the failure of the 4A HHSI pump was attributed to an intermittent failure, which could not be
reproduced. As a result of the discovery of the software logic defect that is active during the test
function, the licensee was able to reproduce it at will on the sequencer simulator. The licensee
believes that the 4A HHSI pump failed to start because of the same defect that caused the 3A HHSI
pump failure to start, i.e., the software logic defect that is active during the test function.

The detailed review of the sequencer software resulted in the discovery of one other error in the
software, which is independent of the test mode; a potential condition was identified which would
preclude the automatic start of the Containment Spray (CS) pumps. The condition identified occurs
when the Hi-Hi Containment Pressure (HHCP) signal is received by the sequencer during an
approximate 60 millisecond (ms) time window just prior to the end of sequencer load block 3 for
Loss of Coolant Accident (LOCA) or Loss of Offsite Power coincident with LOCA (LOOP/LOCA)
events. This event also is documented in LER 250-1994-005-02.

C.8.3.4.2 Software Failures

A software design defect was discovered whereby the start signal for the 3A HHSI pump remained
inhibited during both manual and automatic testing, even though a valid process input was present.
This software logic defect was introduced during the detailed logic design phase of the software
development. The detailed logic designer and the independent verifier failed to recognize the
interaction between some process logic inhibits and the test logic. The defect in the software logic
was not detected during the Validation and Verification process (V&V) because the response to valid
inputs was not tested during all stripping and loading sequences of the automatic and manual testing
logic.

An "Independent Assessment Team" (IAT) confirmed that the V&V was not comprehensive enough
to test certain aspects of the logic: "The plan was weak in that it relied almost completely on testing
as the V&V methodology. More emphasis on the analysis of the requirements and design would have
increased the likelihood of discovering the design flaw."

The cause of the error in the sequencer software that would preclude the automatic start of the
Containment Spray (CS) pumps was not found in the LER. Possibly, the cause is the same as the one
for the other software error, i.e., a software logic defect introduced during the detailed logic design
phase of the software development.

C.8.3.4.3 Consequence

The periodic inoperability of all four sequencers, as described above, has existed since the sequencers
were installed during the dual unit outage in 1990/1991. As a result of the erroneous inhibit signals,
the potential exists for any sequencer output to be prevented from being generated when required.
Exactly which output or outputs is (are) prevented is determined by a combination of factors, i.e.,

C-72

which test scenario is in progress, how long since the test scenario was initiated, and which process
input or inputs are received.

Depending on the type of SI signal (e.g., LOCA on the same train, or LOCA on other Unit), the
software defect would cause several components to not be automatically loaded by a sequencer. For
example, if there is a LOCA on the same train, the following equipment would not be automatically
loaded by the 3A sequencer: Residual Heat Removal Pump 3A, HHSI Pump 3A Intake Cooling
Water Pumps 3A (1) and 3C (1), Emergency Containment Cooler Fan 3B and 3C, Component
Cooling Water Pumps 3A (1) and 3C (1), Emergency Containment Filter Fans 3B and 3C. The
equipment lists would be similar for the other three sequencers. The equipment identified with “(1)”
may already be in operation and may not require manual action to start.

In general, for the approximate one-hour duration of each test step (with the Test Selector switch in
AUTO), the sequencer will not respond correctly to a valid process input signal. The defect in the
sequencer test logic represented a potential concern for events where SI is required for mitigation and
no LOOP is experienced. Because the sequencers would not have responded properly to an SI signal
as designed, Turkey Point Units 3 and 4 were operating outside their design basis.

The LER considered the failure of the automatic start of the Containment Spray (CS) pumps to be
not significant, in part because the manual start capability of the CS pump is not affected (and is
adequately proceduralized), and in part because the probability of occurrence of the condition is
lower than the probability of failure of both trains of containment spray (see below).

C.8.3.4.4 Likelihood of Error Forcing Context

Separate errors in the sequencer software caused 1) failure of a sequencer to respond to an SI signal,
and 2) failure of a sequencer to automatically start the CS pumps. A different EFC is associated with
each error, and is discussed separately.

1) Error in the sequencer software causing failure of a sequencer to respond to an SI signal

This logic defect can occur when the sequencer is in either the manual or automatic test mode, and
the test sequence currently being executed is loading sequence test 2, 3, 6, 8, or 10. These five test
steps are all in the loading sequence test steps, so the first affected step is the seventh step in the total
testing sequence. During each of these affected test steps, fifteen seconds after the initiation of the
step, the sequencer would not have responded properly to a valid process input signal. Thus, in
general, for the approximate one-hour duration of each of the above test steps (with the Test Selector
switch in AUTO), the sequencer will not respond correctly to a valid process input signal. Hence,
the sequencer was inoperable for about five hours out of each sixteen hour period as long as its Test
Selector switch was in AUTO. The sequencer was also inoperable for the duration of any Manual
test of the five test steps listed above. A complete manual test on one sequencer takes about one
hour. Hence, in general, the EFC is the sequencer executing the test associated with each of these
five test steps.

C-73

The review of the sequencer logic determined that improper operation of the sequencer could occur
for only certain sequencer stripping/loading scenarios in which an SI signal without LOOP occurs.
The licensee identified the following four potential plant events where the logic software defect could
affect the operation of the sequencer, depending upon which of the five affected test steps are being
performed when the SI signal is received by the sequencer:

#1 LOCA Same Train
#2 LOCA on other Unit
#3 LOCA with High High Containment Pressure (HHCP) < 13 seconds
#4 LOCA with HHCP > 13 seconds.

For each of these events, the sequencer could receive a valid SI signal but the logic defect could
inhibit the sequencer from starting equipment. Events #1, #3, and #4 above each have four logic test
steps out of a total of sixteen which would inhibit the sequencer from providing a start signal to the
equipment it controls, while event #2 is affected by only one of the sixteen logic test steps.

The probability that an individual sequencer would not respond to a valid same train SI signal is 4
hours/16 hours = 2.5E-1. The probability that an individual sequencer would not respond to a valid
opposite unit SI signal is 1 hour/16 hours = 6.25E-2. These probabilities are conditional on an
individual sequencer being in a testing mode, and the occurrence of one of the four LOCAs identified
above.

2) Error in the sequencer software causing failure of automatic start of the CS pumps

The EFC for the failure of the software to automatically start the CS pumps is a HHCP signal
received by the sequencer during an approximate 60 ms time window just prior to the end of
sequencer load block 3 for LOCA or LOOP/LOCA events. Hence, the failure to automatically start
a CS pump due to this software error can only occur during an approximate 60 ms time window. If
it is assumed that HHCP can occur at any time within approximately two minutes after the SI signal
(the earliest time at which SI is postulated to be reset), then the probability of the evaluated condition
occurring on one train is:

0.060 sec/(2 min x 60 sec/min) = 5.0E-4

This probability is conditional on the occurrence of a signal of HHCP.

Using the Turkey Point baseline Probabilistic Safety Assessment (PSA) model, the probability of
dual train failure of the CS system if called on to operate was estimated to be approximately 2.6E-3.
This estimate reflects CS system and support system component failure probabilities not including
either of the software errors reported here. The estimate of the probability of a CS pump not starting
automatically in a LOCA or LOOP/LOCA due to the reported software error is therefore
approximately a factor of five below the PSA’s estimated probability of failure of both CS trains.

C-74

According to the LER, the probability of the software error affecting both trains is considerably
lower, since it would require: 1) the initiating SI signals to be at the sequencer inputs within 60 ms
of each other; 2) the two signals of HHCP both occurring within the 60 ms window of vulnerability;
3) the sequencer input processing times to be identical; and 4) the timing of the two sequencers in
synchronization. The difference in the cumulative delay time for relay actuations on the two trains
of Engineered Safety Features Actuation System (ESFAS) and differences in sequencer processing
would likely be sufficient to preclude the condition on both trains.

C.8.3.4.5 Failure Categorization

Failure modes:
- System failure mode:

Runs with wrong results that may not be evident.
- Element failure mode:

One of the elements of the software (possibly, the processing element) incorrectly
implemented some functions of the sequencer.

Failure causes:
Internal causes:

According to the LER, the software error causing failure of a sequencer to respond
to an SI signal was introduced during the detailed logic design phase of the software
development. Hence, the error was introduced during the stage “System analysis and
design” of the software development. The cause of the error in the sequencer
software that would preclude the automatic start of the CS pumps was not found in
the LER. Possibly, the cause is the same as the one for the other software error.

EFC:
- Regarding the error in the sequencer software causing failure of a sequencer to

respond to an SI signal, in general, the EFC is the sequencer executing the test
associated with sequence tests 2, 3, 6, 8, or 10.

- Regarding the error in the sequencer software causing failure of a sequencer to
automatically start the CS pumps, the EFC is a HHCP signal received by the
sequencer during an approximate 60 ms time window just prior to the end of
sequencer load block 3 for LOCA or LOOP/LOCA events.

Failure effects and consequences:
- The periodic inoperability of all four sequencers, as described above, has existed since

the sequencers were installed during the dual unit outage in 1990/1991. As a result
of the erroneous inhibit signals, the potential exists for any sequencer output to be
prevented from being generated when required. Because the sequencers would not
have responded properly to an SI signal as designed, Turkey Point Units 3 and 4 were
operating outside their design basis. The LER considered the failure of the automatic
start of the Containment Spray (CS) pumps to be not significant.

C-75

C.8.3.4.6 Dependent Failure and CCF

Turkey Point Units 3 and 4 have four HHSI pumps; one per train, per unit. Each HHSI pump is
capable of providing 50 percent of system requirements, therefore two of the four are required to
mitigate the consequences of accidents analyzed in the Updated Final Safety Analysis Report
(UFSAR). To meet single failure criteria, each sequencer signals its associated HHSI pump to start,
and the opposite unit's sequencers signal their associated HHSI pumps to start. For example, an SI
signal on Unit 3, Train A, signals the 3A sequencer and both of the Unit 4 sequencers. With no
equipment failures, all four HHSI pumps will respond to an SI signal on either unit. The software
logic defect is limited to the test function, but the defect is common to all four sequencers (one
sequencer per train, per unit). Hence, the error in the sequencer software causing failure to respond
to an SI signal can be considered a common cause failure of the four sequencers.

The error in the sequencer software causing failure to automatically start the CS pumps also can be
considered a common cause failure of the four sequencers.

C.8.3.4.7 Discussion

As discussed above, this event illustrates:

1) the potential of a software error to fail redundant channels of a system when the channels use
the same software.

2) the potential of a software error to cause a nuclear plant to operate outside its design basis
during several years.

C.8.3.5 Common Cause Failure of Voltage Regulating Transformers and Vital AC Buses at
Pilgrim - 4/1/1997

C.8.3.5.1 Summary

On April 1, 1997, Pilgrim nuclear power station was in cold shut down, with the reactor mode
selector switch in the REFUEL position. During a severe storm (blizzard), the safety-related 120 volt
(alternating current) safeguards control power Bus 'A' panels Y3 and Y31, and Bus 'B' panels Y4 and
Y41 de-energized on two occasions while the 4.16 Kv distribution system including safety-related
Buses A5 and A6 and related electrical system were energized from the 345 Kv transmission system.
Panels Y3/31 are powered from Bus A5 via 480/120 volt regulating transformer X55. Similarly,
panels Y4/41 are powered from Bus A6 via 480/120 volt regulating transformer X56. The 120 volt
safeguards buses were de-energized after brief, severe 345 Kv transmission system undervoltage
transients that resulted in automatic shut downs of the voltage regulating transformers X55 and X56
that power these buses. Subsequently, a loss of preferred off-site power (345 Kv) followed later by
a loss of secondary off-site power (23 Kv) occurred while the emergency diesel generators were in
operation. These losses of the off-site power sources were caused by the effects of the storm.

C-76

This event is documented in LER 293-1997-007.

C.8.3.5.2 Software Failures

The cause of the de-energizing of panels Y3/31 and Y4/41 on April 1, 1997, at 0135 hours and 0257
hours, was the automatic shut downs of voltage regulating transformers X55 and X56. During the
time frames of the shut downs of the regulating transformers, the 345 Kv transmission system
experienced brief but severe voltage transients, to as low as 250 Kv. The corresponding voltage on
the 480 volt load center portion of the 4.16 Kv distribution system was as low as 350 volts and lasted
for approximately 6 - 8 cycles (0.130 seconds). Regulating transformers X55 and X56 were designed
and tested to reliably regulate input voltages of 480 volts 20 percent (384 - 576 volts) and provide
regulated output voltages of 120 volts ±4 percent. Each regulating transformer contains a
programmable microprocessor control unit (MCU). The MCU is a 40-pin integrated circuit chip that
senses input voltage and selects the proper voltage tap to provide the regulated 120 volt output
voltage. The software code contained in an MCU automatically shut down its regulating transformer
if input voltage was outside the input voltage range of 480 volt ±20 percent (384 to 576 volts).

The automatic shut downs of the regulating transformers occurred due to a deficiency in the
licensee’s specification of the transformers because it did not address the effects of 480 volt transients
of less than 384 volts (greater than zero volts). The cause of the deficiency was, apparently, a
cognitive (unintentional) error made by the utility electrical engineer who prepared the specification.
Hence, the cause of the software failure is inadequate specification of requirements of the software.
A contributing cause was the manufacturer and supplier documentation that did not identify the
automatic shut down feature of the transformers due to voltage transients of less than 384 volts
(greater than zero volts). The lack of the identification of the feature is significant because an
automatic shut down due to input voltages greater than zero volts but less than 384 volts would
require a manual reset of the transformer, versus a designed automatic reset if input voltage was zero
volts.

C.8.3.5.3 Consequence

Circuits powered from panels Y3/31 and Y4/41 that were affected include:

1) Normally energized logic relays that are part of the inboard and outboard circuitry of the
primary containment isolation control system (PCIS) and reactor building isolation control
system (RBIS).

2) Torus temperature and pressure monitoring systems 'A' and 'B'.

3) Hydrogen/oxygen monitoring systems 'A' and 'B'.

4) Post accident monitoring systems 'A' and 'B'.

5) Instrument and control system 'A' and 'B'.

C-77

6) Noble gas effluent radiation monitors 1001-608, 1001-609, and 1001-610.

7) Containment atmosphere control system 'A' and 'B'.

8) Anticipated transient without scram (ATWS) division 1 and 2 alternate current power
supplies. The system is also equipped with redundant power supplies that are powered by 125
vdc power.

9) Analog trip system 'A' and 'B' alternate current power supplies. The system is also equipped
with redundant power supplies that are powered by 125 vdc power.

10) Salt service water (SSW) system train 'A' and 'B' pressure switches and reactor building
closed cooling water (RBCCW) system train 'A' and 'B' pressure switches. The pressure
switches monitor SSW and RBCCW header pressures, and provide the automatic start
signal(s) to the systems' pumps if sufficient header pressure is not present after applicable
time delay(s).

The de-energizing of panels Y3 and Y4 resulted in:

1) A PCIS Group 6 isolation signal and resultant automatic closing of the reactor water cleanup
(RWCU) system isolation valves MO-1201-2, MO-1201-5, MO-1201-80, trip of the RWCU
pump that was in service, and interruption in RWCU system operation.

2) An RBIS isolation signal and resultant automatic start of the standby gas treatment system
(SGTS) trains 'A' and 'B' and automatic closing of the reactor building ventilation supply and
exhaust dampers.

Regulating transformer X58 is part of the power supply for the post accident sampling system train
'B' equipment and also shut down when X55 and X56 shut down. Regulating transformer X57 is part
of the power supply for the post accident sampling system train 'A' equipment and was tagged out
of service for maintenance when the storm occurred.

The salt service water SSW pump P-208D and the RBCCW pumps in trains 'A' and 'B' that were in
service at the time of the event stopped, not as a result of the de-energizing of panels Y3/31 and
Y4/41, but due to brief undervoltage transients on the 480 volt portion of the 4.16 Kv distribution
system while safety-related Buses A5 and A6 were powered from the 345 Kv transmission system.
During the period of time panels Y3 and Y4 are de-energized, the SSW trains 'A' and 'B' pumps and
swing pump 'C', and the RBCCW trains 'A' and 'B' pumps would not be capable of automatically
starting as assumed in the design. The manual start function of the pumps is not affected while the
respective panel is de-energized.

Panels Y3/31 and Y41 de-energized twice; in one occasion for a maximum of approximately 24
minutes. The LER concluded the loss of power to panels Y3/31 and/or Y4/41 is detectable, and the
actions to re-energize the panels are proceduralized.

C-78

SSW pump P-208D and one pump each RBCCW train were manually started via their control
switches about 20 - 30 seconds after the pumps stopped. Regulating transformers X55 and X56 were
reset in accordance with procedures, and panels Y3/31 and Y4/41 also were re-energized. After the
PCIS Group 6 circuitry was reset, the RWCU system was returned to service. After the RBIS
circuitry was reset, the SGTS was returned to standby service, and the reactor building ventilation
system was returned to normal service.

The undervoltage shut downs of the regulating transformers, although in accordance with the
software code contained in the respective transformer microprocessor control unit, was outside the
Pilgrim Station design basis.

The microprocessor control units (MCUs) for regulating transformers X55, X56, X57, and X58 were
modified during the week of April 6, 1997, to disable the undervoltage and overvoltage shut down
functions. After this change, the transformers operate in the unregulated mode when the input
voltage is outside the design range.

C.8.3.5.4 Likelihood of Error Forcing Context

The software code contained in an MCU automatically shut down its regulating transformer if input
voltage was outside the input voltage range of 480 volt ±20 percent (384 to 576 volts). Hence, the
EFC was an event, such as the severe storm, that could cause the 480 volt load center portion of the
4.16 Kv distribution system to be below 384 volts. Hence, the likelihood of the EFC is the
probability of such event. According to NUREG/CR-5496, “Evaluation of Loss of Offsite Power
Events at Nuclear Power Plant: 1980-1996,” the frequency of loss of offsite power (LOOP) due to
plant-centered (during power operation), grid-related, and severe-weather causes is about 6E-2 per
year. Assuming that an event that causes a LOOP will also cause the 480 volt load center to have
significantly low voltages, the probability that the EFC occurs in any given year is about 6E-2.

C.8.3.5.5 Failure Categorization

Failure modes:
- System failure mode:

Runs with evidently wrong results.
- Element failure mode:

One of the elements of the software (possibly, the processing element) of an MCU has
the unintended function of shutting down the regulating transformer when the input
voltage is less than 384 volts (greater than zero volts).

Failure causes:
Internal causes:

Inadequate requirements of the software, in particular, unspecified exception
conditions.

C-79

EFC:
- The software code contained in an MCU automatically shut down its regulating

transformer if input voltage was outside the input voltage range of 480 volt ±20
percent (384 to 576 volts). Hence, the EFC was an event, such as the severe storm,
that could cause the 480 volt load center portion of the 4.16 Kv distribution system
to be below 384 volts.

Failure effects and consequences:
- The undervoltage shut downs of the regulating transformers, although in accordance

with the software code contained in the respective transformer microprocessor control
unit, was outside the Pilgrim Station design basis.

C.8.3.5.6 Dependent Failure and CCF

The MCUs use the same software, and the failure of the software caused both MCUs and regulating
transformers to fail. Hence, a common cause failure of the regulating transformers X55 and X56
occurred due to failure of the software of the MCUs.

C.8.3.5.7 Discussion

This event illustrates the potential of a software failure to propagate into the failure of several
redundant trains of equipment when these trains use the same software.

C.8.3.6 Core Protection Calculators Inoperable at Palo Verde 2

C.8.3.6.1 Summary

The Core Protection Calculators (CPCs) consist of four separate, redundant channels. Each channel
is a computer system that continuously calculates thermal conditions and thermal limits. The CPC
system is an integral part of the plant protective system in that it provides two trips to the reactor
protection system (RPS): Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density
(LPD). Trip signals are provided to the RPS whenever the minimum departure from nucleate boiling
ratio (DNBR) or fuel design limit Local Power Density is approached during reactor operation. Each
CPC channel provides contact outputs to its respective RPS channel. The CPC system is a four
channel system that uses a two out of four logic for reactor trip signal generation.

The following analog input sensors are processed in each CPC channel:

• 2 Cold Leg Temperatures
• 2 Hot Leg Temperatures
• 1 Pressurizer Pressure
• 3 Ex-core Neutron Flux Detectors

C-80

In the event of a failure of one of the input sensors a trip signal for the applicable CPC channel should
be generated.

Each input parameter is read by two separate analog input modules in a channel. One of the two
redundant analog input modules is normally selected. In the event the normally selected module
indicates a failure, the software will select the alternative module. In the event of a failure of both
modules at the same time, the CPC uses the last known good value and a trip signal for that channel
should be generated.

Detectable CPC channel failures, resulting in a loss of protective function and channel inoperability,
are required to generate CPC Fail indication and associated Low DNBR and High LPD channel trips.
Input failures resulting in a sensor out of range affecting one or more CPC process inputs will result
in a CPC Sensor Failure indication. In addition, since the CPC software limits the sensor value to
the lower or upper range limit value, a CPC channel trip would be generated in most cases due to
these extreme values.

Software release 6.1 was installed into the Unit 2 CPCs in May 2005. On May 18, 2005, personnel
of Westinghouse (the vendor of this release) identified a problem with the installed version of the
CPC software for Unit 2. On August 8, 2005 Westinghouse personnel completed an apparent cause
analysis for the issue and concluded the issue was a nuclear safety concern. At 0900 hours on August
22, 2005, a Westinghouse engineer informed the Palo Verde staff of the issue with the CPC software.
At 1326 hours on August 22, 2005, Unit 2 was operating in Mode 1, Power Operation, at
approximately 100% power when control room personnel declared all four channels of the CPCs
inoperable, and the licensee made the decision to enter Technical Specification Limiting Condition
for Operation (LCO) 3.0.3 due to the installed CPC software not supporting Technical Specification
Bases 3.3.1. Plant shutdown commenced at 1605 on 8/22/05 and LCO 3.0.3 was exited at 1750 when
the unit entered Mode 3, Hot Standby.

This event is documented in LER 529-2005-004.

C.8.3.6.2 Software Failures

Personnel of Westinghouse (the vendor) discovered that release 6.1 of the Unit 2 CPC software was
not consistent with the system requirements regarding the system response to analog input module
errors. When both analog input modules within a CPC channel indicate an error simultaneously, the
CPC uses the last known good value. However, the system requirements state that a channel trip
should be initiated for this event. Software release 6.1 resulted in the CPCs not being able to generate
this trip signal.

C.8.3.6.3 Consequence

The installed version (release 6.1) of the Unit 2 CPC software was not consistent with the system
requirements regarding the system response to analog input module errors since the software was
installed in May 2005. Hence, it appears that all four channels of the CPCs were inoperable, and the

C-81

plant operation violated Technical Specifications since that date. In addition, the plant had to be
shutdown. However, both a sensor failure and an analog input module failure actuate contact output
signals in the affected channel to the CPC Operator's Module Alarm and the plant annunciator alarm
in the main control room which would alert the control room operators to the condition. The LER
points out that the event did not result in a transient more severe than those analyzed in the updated
Final Safety Evaluation Report Chapters 6 and 15, and concludes that the event did not have
significant negative safety consequences.

C.8.3.6.4 Likelihood of Error Forcing Context

A latent fault was in the installed software (release 6.1) of the Unit 2 CPCs, but it was discovered
before it was triggered into an actual failure. The fault is that when both analog input modules within
a CPC channel indicate an error simultaneously, a channel trip should be initiated, but the CPC was
not able to generate this trip signal. Hence, the EFC is the simultaneous failure of both analog input
modules within a CPC channel. Possibly, the EFC also includes failures of the analog sensors
providing input to both analog input modules within a CPC channel.

Lacking probabilistic information about the analog input modules and about the analog sensors
providing input to these modules, the probability of failure of both analog input modules within a
CPC channel and of the associated analog sensors is not known. Hence, the likelihood of the EFC
is not known at this time.

The software fault was common to all four CPCs, so there is a potential for common cause failure
(CCF) of several or all CPCs. It appears that the most likely way in which this CCF may occur is
some kind of dependent failure of several analog input modules or several of the associated analog
sensors, or a combination of these two type of failures.

C.8.3.6.5 Failure Categorization

Failure modes:
- System failure mode:

Runs with potentially wrong results that are not evident.
- Element failure mode:

The software of the CPCs was not consistent with the system requirements regarding
the system response to analog input module errors. If both analog input modules
within a CPC channel fail, a channel trip signal should be generated, but it would not
have been generated. Hence, there is an omission of the function that should generate
this signal. One of the elements of the software (possibly, the processing element)
was missing this function.

Failure causes:
Internal causes:

The LER states that investigation into the cause of this event is ongoing, and that
preliminary results indicate the direct cause is that a CPC system requirement

C-82

specification was not properly translated into the CPC software by the vendor.
Accordingly, it appears that the error was introduced during the development of the
software, possibly during the stage of “System analysis and design.”

EFC:
- The EFC is the simultaneous failure of both analog input modules within a CPC

channel. Possibly, the EFC also includes failures of the analog sensors providing
input to both analog input modules within a CPC channel.

Failure effects and consequences:
- All four channels of the CPCs were inoperable, and the plant operation violated

Technical Specifications since the software was installed in May 2005. In addition,
the plant had to be shutdown from approximately 100% power.

C.8.3.6.6 Dependent Failure and CCF

There was a potential for common cause failure because all four channels of the CPCs were affected
by the software failure.

C.8.3.6.7 Discussion

This event illustrates the potential of a software failure to propagate into the failure of several
redundant channels of equipment when these channels use the same software.

The CPCs in Unit 2 were upgraded in November 2003. As part of the corrective actions, on August
25, 2005 activities were completed to install CPC software version 6.3 in all four channels of Unit
2 CPCs.

Unit 1 was scheduled to receive the upgraded CPC system in the refueling outage that was in
progress, and Unit 3 is scheduled to receive the upgraded CPC system in a future refueling outage.
The problem identified in the LER is therefore limited to Unit 2. The LER points out that changes
will be made to Units 1 and 3 upgraded CPCs, prior to their installation, to correct the problem.

C.8.3.7 Slammer Virus in Davis-Besse Nuclear Power Plant [Schulin, Poulsen] - 1/25/2003

C.8.3.7.1 Summary

Davis-Besse nuclear power plant was operated by FirstEnergy, the Ohio utility company that was the
focus of the investigation of 2003 blackout. In January 25, 2003, the Slammer worm penetrated a
computer network at Davis-Besse power plant [Schulin]. The infection of the Slammer worm
generated a large amounts of data that caused many computers to cease from communication with
other computers on the network [Poulsen]. As a result, the infection of the worm disabled a safety
monitoring system and the plant process computer, which the plant personnel believed to be protected
by a firewall, for nearly five hours.

C-83

C.8.3.7.2 Software Failures

The incident was caused by virus Slammer worm from an external consultant who had a link to the
plant's intranet and provided the application software running on MS-SQL server of the plant. The
worm entered the plant network through the interconnected link by bypassing (it was connected
behind the fire wall) the firewall of Davis-Besse power plant. Several routes into its computer
network completely bypassed the security firewall and one of these routes allowed the Slammer
worm to take up residence in the plant's Safety Parameter Display System (SPDS) that is used by the
operators to monitor the status of the safety-related processes and conditions [Poulsen].

It was discovered the security patch that removed the vulnerability target by the MS-SQL server
worm was not installed on the server. The security patch was released on July 10, 2002 [Poulsen].

The error forcing context in this case is thus 1) the plant’s network has a connection behind the
firewall, 2) the consultant’s computer was infected by the virus and was used in the connection, and
3) the MS-SQL server did not install the security patch.

C.8.3.7.3 Consequences

The infection of the worm caused many computers to cease from communication with other
computers and disabled a safety monitoring system and the plant process computer for nearly five
hours.

C.8.3.7.4 Likelihood of Error Forcing Context

The likelihood of the EFC can be expressed in terms of the probabilities of the events defining the
EFC.

C.8.3.7.5 Failure Categorization

Failure modes:
– System failure modes:

Runs with evidently wrong results
– Element failure modes:

Data error in INPUT and PROCESSING elements (Slammer worm generated
a large amounts of data that caused many computers to cease from
communication with other computers on the network)

Failure causes:
Internal cause:

Maintenance (security patch was not installed)
External cause:

Cyber security (virus)

C-84

EFC:
Infection of Slammer worm of a computer that is interconnected to internal network
of the plant with MS-SQL server without installing the security patch

Failure effects and consequences:
Insignificant because of the control and protection functions of Davis-Besse were not
affected and Davis-Besse was off-line at that time. However, the infection of the
worm caused many computers to cease from communication with other computers
and disabled a safety monitoring system and the plant process computer for nearly
five hours.

C.8.3.7.6 Dependent Failure or CCF

The spread of the Slammer virus is a dependent failure. It has the potential to further propagate from
the plant network to the corporate network. [Poulsen] also quoted an occurrence at one utility, in
which the Slammer worm downed the critical Supervisory Control and Data Acquisition (SCADA)
system after moving from a corporate network, through a remote computer to a VPN connection to
the SCADA.

C.8.3.7.7 Discussion

NRC advised against the interconnection of a nuclear plant's network to an outside network [NRC
2003]. NRC also urged vendors to add additional security to their software development process, as
a bulwark against sabotages writing backdoor into code, or implanting logic bombs programmed to
shut down a safety at a particular time.

C.8.3.8 Natural Gas Pipeline Explosion in Soviet Union [Reed 2004, Detroit 2004, Loney 2004] -
Summer 1982

C.8.3.8.1 Summary

The economy of the Soviet heavily depended on production and transportation of oil and natural gas.
In the early nineteen eighties, a new trans-Siberian pipeline was built to deliver natural gas from
Urengoi gas fields across Kazakhstan, Russia, and Eastern Europe, into the West in order to make
hard currency [Reed 2004]. Sophisticated control systems were needed to automatically operate
pipeline. Computer hardware was bought in the open market but the attempt to buy software was
turned down by the U.S. The Soviet had to look somewhere else. A KGB operative was sent to
penetrate a Canadian software supplier in an attempt to steal the needed codes.

At that time, the United States was attempting to block Western Europe from importing Soviet natural
gas. There were also signs that the Soviets were trying to steal a wide variety of Western technology.
The CIA responded by modifying the software that the Soviet needed. This was the software that

C-85

later triggered a huge explosion in a Siberian natural gas pipeline. U.S. satellites picked up the
explosion that occurred in the summer of 1982.

C.8.3.8.2 Software Failures

As mentioned above, there were signs that the Soviets were trying to steal a wide variety of Western
technology. A KGB insider revealed the specific "shopping list" and the CIA slipped the flawed
software to the Soviets. The pipeline software that ran the pumps, turbines, and valves was
programed to go haywire, after a decent interval, to reset pump speeds and valve settings to produce
pressure far beyond those acceptable to the pipeline joints and welds. The faulty software, which was
in a shopping list of Soviet priorities focusing on stealing Western technology [Loney 2004], was
slipped to Russia.

Thus, the error forcing context is thus the installation of the software without identifying the flaw for
the period of time before the explosion.

C.8.3.8.3 Consequences

The flawed software caused the biggest non-nuclear explosion the world has ever seen. It is
estimated that there were no fatalities in the explosion but the damage to the Soviet economy was
significant.

C.8.3.8.4 Likelihood of Error Forcing Context

The likelihood of the error forcing context can be represented in terms of the probability of 1.0 after
the installation.

C.8.3.8.5 Failure Categorization

Failure modes:
– System failure mode:

Runs with wrong results that are not evident
– Element failure mode:

Incorrect implementation of unknown elements in the pipeline software

Failure causes:
External cause:

Cyber security

EFC:
After certain time interval after the faulty software installation without identifying the
flaw

C-86

Failure effects and consequences:
The flawed software caused the biggest non-nuclear explosion the world has ever
seen. According to the author of the book “At the Abyss” [Reed 2004], there was no
evidence of fatalities in the explosion but the damage to the Soviet economy was
significant.

C.8.3.8.6 Dependent Failure or CCF

No.

C.8.3.8.7 Discussion

No.

C.8.3.9 Maroochy Water Treatment Plant Accident [Age 2003, Red 2003, Datz 2004]
- 2000

C.8.3.9.1 Summary

From early 2000, a number of faults and communication breakdowns occurred to a network of 150
computer-controlled sewage pumping stations belonging to Queensland's Maroochy Shire Council
in Australia. The pumps, alarms, and communication were not working as expected. Over the 2
month period, total 46 incidents occurred and this caused as much as 1 million liters of sewage to
spill into parks and rivers. An engineer who quit his job from a company that installed Maroochy's
computerized sewage control system did this using a laptop and a radio transmitter from his car to
release the valves of the sewage control system.

C.8.3.9.2 Software Failures

The control systems of the water treatment plant were attacked maliciously by personnel who is
familiar with the computer control system of the water treatment plant. Since these control systems
are old, there is no security available to track or prevent this from happening. The engineer was
caught because he parked in the wrong place and police recognized the computer and the radio
equipments as having recently been stolen.

Thus, the error forcing context is when the water treatment plant is attacked by a person who is either
an insider or knowledgeable enough (e.g., the engineer who quit his job from the company that
installed the sewage control system) to attack the plant's control system remotely.

C.8.3.9.3 Consequences

Leakage of around 1 million sewage into the rivers and parks and $50,000 to clean it [Datz 2004].

C-87

C.8.3.9.4 Likelihood of Error Forcing Context

The computer systems of the water treatment plant do not have security systems. Thus, the likelihood
of the error forcing context is probability of an attack by a person who knows the control system of
the plant.

C.8.3.9.5 Failure Categorization

Failure modes:
– System failure mode:

Runs with evidently wrong results
– Element failure mode:

Omission of a function (security) in COMMUNICATION and/or OUTPUT
element

Failure causes:

Internal cause:
Missing functions (desired functions such as security are not specified in the
requirements in Software requirement analysis stage)

External cause:
Cyber security (control from software was taken over by an intruder)

EFC:
Error forcing context is when the water treatment plant is attacked by a person who
is either an insider or knowledgeable enough to attack the plant's control system
remotely.

Failure effects and consequences:

Leakage of around 1 million sewage into the rivers and parks and $50,000 to clean.

C.8.3.9.6 Dependent Failure or CCF

No.

C.8.3.9.7 Discussion

This case has been studied by the US National Infrastructure Protection Center and it has been used
at international and national security conferences as the only known example of someone successfully
taking over a data-control system to attach public infrastructure [Red 2003].

4 An EMS (Energy Management System) is a system of computer-aided tools used by operators of electric utility
grids to monitor, control, and optimize the performance of the generation and/or transmission system. The monitor
and control functions are know as “SCADA” (Supervisory Control And Data Acquisition). The optimization
packages are often referred to as “advanced applications”.

C-88

C.8.3.10 Blackout of North America [US 2004, Jesdanun 2004] - August 14, 2003

C.8.3.10.1 Summary

On August 14, 2003, large portions of the Midwest and Northeast United States and Ontario, Canada,
experienced an electric power blackout. The blackout started in Midwest, then expanded to Ontario
area, and finally Northeast part of United States. The electric power was not restored for four days
in some area. Parts of Ontario had to experience rolling blackout for a week. It is estimated that 50
million people were affected and 61,800 MW of electric load was interrupted during the blackout.
The total costs ranges between $4 billion and $10 billion in the United States. The final report [US
2004] of the blackout mentioned many reasons, and one of them is the failure of the alarm system of
First Energy’s (FE’s) EMS4 XA/21 software.

C.8.3.10.2 Software Failures

There are many reasons indicated in 2003 Blackout final report but one of the important reasons is
the malfunction of the computer systems of FE and Midwest ISO (MISO, Midwest Independent
System Operator). Right before the blackout, FE’s control room operators lost the alarm function
that provided audible and visual indications when a significant piece of equipment changed from an
acceptable to problematic condition. Shortly thereafter, the EMS system lost a number of remote
control consoles. Next, it lost the primary server computer that was hosting the alarm function, and
then the backup server such that all functions that were being supported on these servers were
stopped. Therefore, FE’s operators were unaware of that their electrical system conditions began to
degrade. The alarm failed sometime shortly after 14:14 (the last time that a valid alarm came in),
after voltages had begun deteriorating by well before any of FE’s lines began to contact trees and trip
out. Neither FE’s control room operators nor FE’s IT EMS support personnel were aware of the
alarm failure. If an EMS’s alarm are absent, but operators are aware of the situation and the
remainder of the EMS’s functions are intact, the operators can still possibly continue to monitor and
exercise control of the grids. The FE’s EMS failed either because of the stalling of the alarm
processing application, “queuing” to the remote EMS terminals, or some combination of the two,
which caused the server failed to complete a specific event and produce any other valid alarms (the
reason of this problem is due to a software bug and explained below).

Following preprogrammed instructions, the alarm system application and all other EMS software
running on the first server automatically transferred (“failed-over”) onto the back-up server.
However, because the alarm application moved intact onto the backup while still stalled and
ineffective, the backup server failed 13 minutes later, at 14:54 EDT. Accordingly, all of the EMS
applications on these two servers stopped running. The unawareness of the alarm failure and the lack
of visualized display of measurement data, the FE’s operators still thought their system was

5 State Estimator uses the real-time data measurements available on a subset of those power facilities in a complex
mathematical model of the power system that reflects the configuration of the network (which facilities are in
services and which are not) and real-time system condition data to estimate voltage at each bus and to estimate real
and reactive power flow quantities on each line or through each transformer. Reliability coordinators and control
area who have state estimators commonly run a state estimation on regular intervals or upon demand. Not all control
areas are equipped with state estimators.

C-89

satisfactory until they received phone calls from other locations and information sources from MISO;
American Electric Power (AEP); Pennsylvania, Jersey and Maryland Interconnection (PJM); and FE
field operating staff. Without a functioning alarm system, the FE control area operators failed to
detect the tripping of electrical facilities essential to maintain the security of their control area even
after AEP identified the 14:27 EDT circuit trip and reclosure of the 345 kV line at AEP’s South
Canton substation. FE failed to be aware of the Harding-Chamberlin at 15:05:41 EDT or Hanna-
Juniper line trips at 15:32:03 due to loss of the alarm system until MISO manually updated the state
estimator at 15:41 EDT and informed FE.

Loss of the first server and the backup server caused an auto-page to be issued to alert FE’s EMS IT
support personnel to the problem. They did not notify the control room operators of this problem.
At 15:08 EDT, IT personnel completed a “warm reboot” of the primary server. It appears the
computer and all the processes were running without knowing and confirming that the alarm function
was still frozen. A “cold reboot” was also considered. However, they decided not to take such an
action after discussion with the operators at 15:43 EDT because the operators considered power
system conditions precarious and were concerned about the length of time it might take.

After the alarm processing application of the EMS failed, the system was operated using the outdated
information. Concurrently, MISO was also experiencing computer malfunctioning. The state
estimator5 was turned off between 12:15 EDT to 16:04 EDT in order to fix a computer glitch because
it produced a highly unmatched result (the MISO state estimator was actually reactivated at 14:44
EDT but again showed a mismatch). However, it was unable to account for outages occurred when
it was offline. This prevents MISO’s state estimator from promptly performing the precontingency
analyses and “early warning” assessments and predicting the system status due to the lack of system
information. Other operating areas were not informed the system status and this caused the cascading
blackout.

In February 2004, First Energy announced that the cause of the alarm failure before the 2003 blackout
was a programming failure [Jesdanun 2004]. The bug was unmasked as a particularly subtle
incarnation of a common programming error called a “race condition”. There was a couple of
processes that were in contention for a common data structure, and through a software coding error
in one of the application processes, they were both able to get write access to a data structure at the
same time. That corruption led to the alarm event application getting into an infinite loop and
spinning. The bug was triggered by a unique combination of events and alarm conditions on the
equipment it was monitoring. The utility has applied fixes developed by the system’s vendor, GE,
and have accelerated plans to replace GE’s XA/21 with a system from French nuclear engineers
Areva SA. GE distributed warning and a fix to its more than 100 other customers. This software

C-90

glitch was pinned by GE and energy consultants from Kema Inc., in Nov., 2003. The software bug
surfaced because of a number of unusual events occurred simultaneously.

The error forcing context is a unique combination of events [Jesdanun 2002] (the details of the
combination are unknown) that causes either the stalling of the alarm processing application,
“queuing” to the remote EMS terminals, or some combination of the two. In this situation, the so-
called “race condition” is satisfied and the alarm application went into an infinite loop and spinning.

C.8.3.10.3 Consequence

50 million people were affected and 61,800 MW of electric load was interrupted during the blackout.
The total costs ranges between $4 billion and $10 billion in the United States. In Canada, GDP was
down 0.7% in August. There was a net loss of 18.9 million work hours, and manufacturing shipments
in Ontario were down $2.3 billion (Canadian dollars).

C.8.3.10.4 Likelihood of Error Forcing Context

Since the EMS (and thus its alarm system) is running all the time, the likelihood of error forcing
context can be represented using the occurrence frequency. More than 100 customers were using
GE’s XA/21 when the blackout occurred. The failure of FE’s alarm system might not be the only
one. The data of alarm system failure can possibly be collected to give the frequency of the error
forcing context.

C.8.3.10.5 Failure Categorization

Failure modes:
– System failure modes:

Halt/abnormal termination without clear message
– Element failure modes:

Timing/order failure (race condition) in PROCESSING element (alarm system
may also be considered OUTPUT element)
Omission of a function or incorrect implementation of a function (it was
unusual to receive no warning messages in hours) in OUTPUT element

Failure causes:
Temporal fault in System analysis and design stage (race condition was generated).
Missing functions of alarm (desired functions are not specified in the
requirements in software requirement analysis stage, i.e., no message within long time
period is abnormal and the system was not able to handle this abnormally).

C-91

EFC:
Error forcing context is a unique combination of events (the details of the combination
are unknown) that caused either the stalling of the alarm processing application,
“queuing” to the remote EMS terminals, or some combination of the two.

Failure effects and consequences:

50 million people were affected and 61,800 MW of electric load was interrupted
during the blackout. The total costs ranges between $4 billion and $10 billion in the
United States. There was a net loss of 18.9 million work hours, and manufacturing
shipments in Ontario were down $2.3 billion (Canadian dollars).

C.8.3.10.6 Dependent Failure and CCF

Yes. Both main server and the backup server run the same software. If it is stalled on the main server,
it will also stalled on the backup server.

C.8.3.10.7 Discussion

According to GE, patches have been installed on other EMS XA/21 after the blackout.

C.8.3.11 Common Cause Failure of Security Computers at San Onofre Unit 1 - 1998

C.8.3.11.1 Summary

On January 14, 1998, Southern California Edison (SCE) prepared to install a chart recorder on the
primary security computer for system diagnostic testing. At about 9:25 A.M., before starting the
installation, SCE had posted compensatory guards for the appropriate plant areas, as specified in
Station Procedure SO123-IV-6.8, "Protected Area and Vital Area Barrier Patrols," for a complete loss
of security computers. SCE switched to the backup security computer, removed the primary
computer from service and installed the chart recorder. When returning the primary computer to
service, a computer network server software error occurred, causing the primary computer to
initialize incorrectly. At about 10:26 A.M., the backup computer also failed as a result of this error.
The primary and backup computers were restarted at about 10:32 A.M. and 10:36 A.M., respectively.
The cause of this event was an equipment failure. During the reboot of the primary computer, the
network server function for the security computers did not start. However, the "boot" sequence
continued until the main security program started on the primary computer. Without the network
server function, the two computers could not completely communicate and consequently could not
fully function. The main security program was not capable of recognizing that the network server
function had not started and tried to regain the primary role in the security monitoring system. As
a result, a conflict arose and the backup program became unstable and failed to function. Since the
primary had no network server function, it could not communicate properly, leaving both primary
and backup down.

C-92

This event is documented in LER 206-1998-001. The LERs that are categorized as
"Safeguards/Security" are not available for general public viewing, so it was not available for this
study at this time. The limited information about this LER was obtained from NUREG/CR-6734,
Vol. 2 [Hecht and Hecht, 2001].

C.8.3.11.2 Software Failures

There appears to be two types of software failures in this event:

1) A computer network server software error. It appears that this error occurred in the primary
security computer. No information is currently available on this error, so it is not further
discussed here at this time.

2) Failure of the software of the primary and backup security computers:
2.1 When returning the primary computer to service, the “main security program” started

on this computer. However, this program was not capable of recognizing that the
network server function was unavailable; as a result, it could not communicate
properly.

2.2 The “backup program” became unstable and failed to function due to the conflict that
happened when the “main security program” tried to regain the primary role in the
security monitoring system without the network server function.

The original cause of the failure of the “main security program” (in the primary computer) was that
initialization requirements did not cover start-up from unusual conditions (in this case, network server
function unavailable), causing a communication link to be dropped. The problem was compounded
by lack of robustness in that requirements for neither the primary nor the back-up computer provided
for verification of the presence of the communication link.

C.8.3.11.3 Consequence

The primary and backup security computers failed and were unavailable for several minutes. The
impact of these failures on the security of the plant was not found in the description available. Since
the licensee had posted compensatory guards for the appropriate plant areas for a complete loss of
security computers according to its procedure, this impact appears to be minimal.

C.8.3.11.4 Likelihood of Error Forcing Context

The EFC for the computer network server software error was not found in the information available.
The EFC for the failure of the software of the primary and backup security computers is the start-up
of the “main security program” (in the primary computer) when the network server function was
unavailable due to the network server software error. Since we currently do not have information
available about this error, the likelihood of the EFC of the failure of the software of the primary and
backup security computers is not known at this time.

C-93

C.8.3.11.5 Failure Categorization

Failure modes:
- System failure mode:

Halt/abnormal termination with clear outcome, i.e., failure of primary and backup
security computers.

- Element failure mode:
Possibly, the “communication” element of the “main security program” (in the
primary computer) omitted the function of managing communication properly when
the network server function is unavailable. Also possibly, the “communication”
element of the “backup program” omitted the function of managing communication
properly given the conflict that happened when the “main security program” tried to
regain the primary role in the security monitoring system without the network server
function.

Failure causes:
Internal causes:

The cause occurred in the stage of “Software requirements analysis.” As mentioned
above, the specific cause of the failure of the “main security program” (in the primary
computer) was that initialization requirements did not cover start-up from unusual
conditions (in this case, network server function unavailable), causing a
communication link to be dropped. The problem was compounded by lack of
robustness in that requirements for neither the primary nor the back-up computer
provided for verification of the presence of the communication link.

EFC:
- The EFC for the computer network server software error was not found in the

information available. The EFC for the failure of the software of the primary and
backup security computers is the start-up of the “main security program” (in the
primary computer) when the network server function was unavailable due to the
network server software error.

Failure effects and consequences:
- The primary and backup security computers failed and were unavailable for several

minutes. The impact of these failures on the security of the plant was not found in the
description available. Since the licensee had posted compensatory guards for the
appropriate plant areas for a complete loss of security computers according to its
procedure, this impact appears to be minimal.

C.8.3.11.6 Dependent Failure and CCF

A dependent failure occurred because the primary and backup security computers failed.

C-94

C.8.3.11.7 Discussion

This event illustrates the potential of a software failure to propagate into the failure of redundant
computers, i.e., main and backup.

