

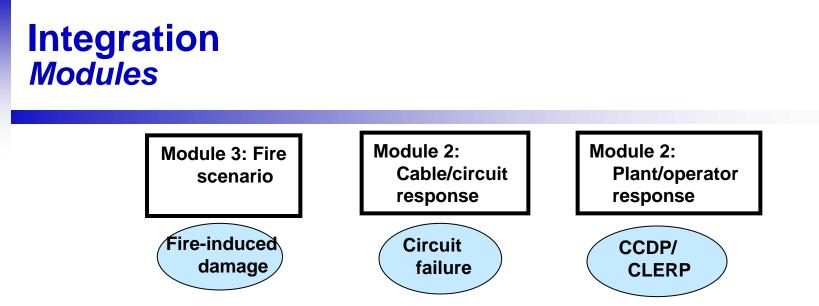
Sandia

EPRI/NRC-RES FIRE PRA METHODOLOGY

Integration, Lessons Learned and Insights

Bijan Najafi, SAIC Steve Nowlen, SNL Joint EPRI/RES Fire PRA Course July 23-27, 2007 Palo Alto, CA

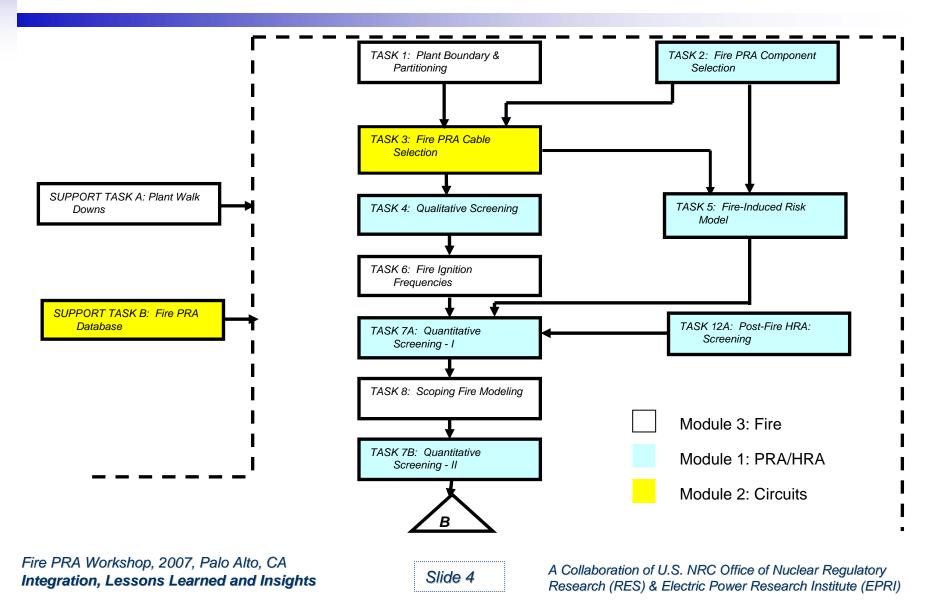
A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

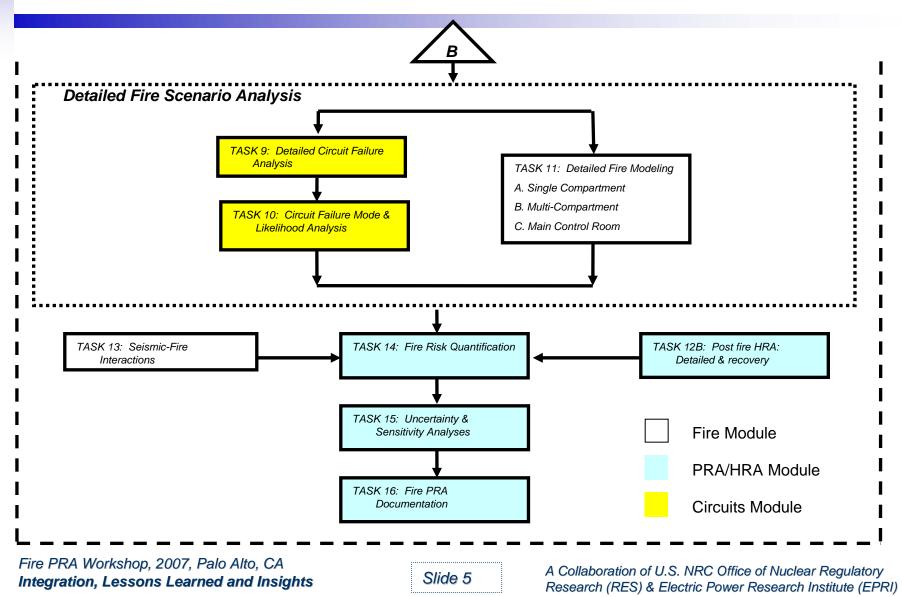

PART I

Integration

Fire PRA Workshop, 2007, Palo Alto, CA Integration, Lessons Learned and Insights

Slide 2


A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)


- Module 1: PRA/HRA
 - Post-fire plant response model, including systems, components and operator manual actions (CCDP, CLERP)
- Module 2: Cable selection, circuit failure mode analysis
 - Electrical response, embedded in the Post-fire plant response model $(\mathsf{P}_{\mathsf{cf}})$
- Module 3: Fire analysis
 - Fire hazard; ignition frequency, fire severity, fire growth,
 - detection/suppression (IF * SF * P_{ns})

Fire PRA Workshop, 2007, Palo Alto, CA Integration, Lessons Learned and Insights

Overview Of Fire PRA Process and Module Structure

Overview Of Fire PRA Process and Module Structure (2)

PART II

Lessons Learned and Insights to-date

on Use of

EPRI 1011989, NUREG/CR-6850

Fire PRA Workshop, 2007, Palo Alto, CA Integration, Lessons Learned and Insights

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Lessons Learned and Insights Scope of this Module

- Demonstration studies / Pilots
 - NRC/RES involvement in the demonstration studies ceased following September 2005 publication of the report
- Others applications
- FAQ
- General insights; Programmatic & Technical
- Path forward with EPRI 1011989, NUREG/CR-6850

Lessons Learned and Insights Demonstration /Pilot Studies

- The procedures have been individually tested:
 - By our team at two PWR's
 - A third team demonstration has been completed at a BWR (2005-2007)
- All the procedures worked, and seemed to be of reasonable depth, scope, and clarity to make implementation practical
- The procedures *have not yet been tested* top-to-bottom as a full, consolidated, and complete set
 - We cannot provide numerical results to back up some of our insights in particular
 - There could be some hidden surprises in store for us and you may be the one to find them
 - Please pass your experience back to us the procedures are intended to be "living documents" to at least some extent

Slide 8

Lessons Learned and Insights Pilot Studies – Our Experience Shows...

- Easy to get distracted, e.g.:
 - If you want to re-baseline Appendix R, do that first, then do your fire PRA the objectives are NOT the same although the Fire PRA would benefit
 - Work together with the Appendix R re-baseline to ensure the final product is useful for Fire PRA purposes
- Be sure you get a team of the right people with the right knowledge to do the job, e.g.:
 - The PRA gurus may think they know circuits, but you really need those with a true electrical expertise

Lessons Learned and Insights Frequently Asked Questions (FAQ)

- One vehicle for feedback to 1011989, NUREG/CR-6850
- To date, three FAQ's addressed related to implementation of EPRI 1011989, NUREG/CR-6850
 - TASK 6, Fire Ignition Frequencies FAQ related to the counting of electrical cabinets
 - Only clarifications to the guidance in NUREG/CR-6850
 - Task 6, Fire Ignition Frequencies FAQ related to the frequency of high energy arcing fault events
 - A frequency was calculated for medium and high voltage cabinets
 - Task 6, Fire ignition Frequencies FAQ related to the counting of the main control board
 - Clarifications to the guidance in NUREG/CR-6850

Slide 10

Lessons Learned and Insights Component Selection

- Resource intensive and critical, for the most part due to consideration of multiple spurious operation (MSO)
 - ANS Fire PRA Standard is identifying requirements on MSOs
- Defines the scope of the Fire PRA as it relates to post-fire plant (system and operator) response
 - Ongoing discussions re: instrumentation in NFPA 805 pilot program
- Fire PRA component list will be larger than your Appendix R and PRA component list
 - New components whose omission will be non-conservative
 - For MSO considerations
 - For fire-specific operator manual actions (OMAs)
 - Expect that you *will* want/need to consider others to get a realistic risk result
- NMP-1 pilot follows the EPRI/NRC-RES method on MSO consideration

Fire PRA Workshop, 2007, Palo Alto, CA Integration, Lessons Learned and Insights

Slide 11

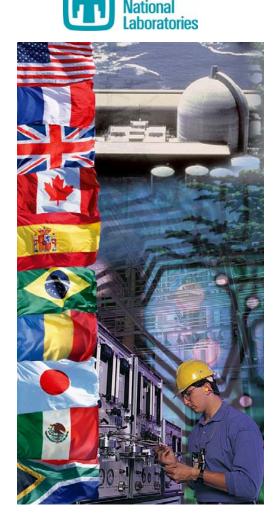
Lessons Learned and Insights Cable Selection

- Cable selection is probably the single biggest factor that will drive your resource requirements
 - The burden comes largely with the need to trace selected cables
 - You also need an *accessible* cable database, and constructing such a database from your existing system may not be so easy
 - This is going to depend a lot on the depth of your cable tracing and the nature of your current tracking system
- Exercise judgment
 - You may initially want to chase all your cables, but that may not be the best choice – you are taking on quite a job at most plants
 - Take advantage of the iterative approaches to cable tracing

Lessons Learned and Insights Circuit Analysis

- Circuit analysis need not be a huge burden
- Compared to cable tracing, circuit analysis should be far less resource intensive – although it does require participation of key personnel (the electrical guru)
- The procedure provides various approaches that have been drawn from past practice and experience
 - Make use of those options!
 - Go after the "bang for the buck" circuits and "take the hit" when it is not risk important

Lessons Learned and Insights Fire Ignition Frequency and Fire Modeling


- Understand the scope of work of Tasks 1, 6, 8 and 11
 - One walkdown effort for collecting information for all the tasks
 - Use of a relational database for organizing and analyzing data is recommended
 - It is recommended that Task 8, Scoping Fire Modeling be conducted with Task 6, Fire Ignition Frequencies or Task 11, Detailed Fire Modeling
- Fire modeling in single compartments
 - Most of the analytical fire modeling can be completed with hand calculations
 - Create fire modeling drawing packages. These are room layout drawings with ignition sources and Fire PRA targets highlighted.
- Fire modeling in the main control room
 - Fire zone or field models are necessary
 - Will require detailed system analysis and HRA
 - Smoke removal system can have significant impact on abandonment and risk

Sandia

EPRI/NRC-RES FIRE PRA METHODOLOGY

Module III-2: Perspective

Robert P. Kassawara - EPRI J.S. Hyslop - RES Joint EPRI/RES Fire PRA Course July 23-27, 2007 Palo Alto, CA

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

On The Requantification Project

- A consensus methodology for Fire PRA that is facilitating implementation of risk-informed fire protection
- Remains the best available method to estimate fire risk & obtain insights
- Guidance is producing greater agreement among technical experts
- The field of Fire PRA will continue to be refined, as further applications produce insights

Continued Cooperation

- We established a framework for future research cooperation
 - Quality of work and positive technical reviews pave the way for continued cooperation
- The cooperation under the MOU is continuing
 - Verification & Validation of Fire Models -
 - NUREG-1824/EPRI 101999
 - Fire Human Reliability Analysis (HRA)
 - Fire Low Power and Shutdown
 - Others....

