

EPEI ELECTRIC POWER RESEARCH INSTITUTE

EPRI Research on Crack Growth and Fracture Toughness of Irradiated Stainless Steels

NRC-ANL Meeting September 25-26, 2007

Raj Pathania, EPRI Bob Carter, EPRI Robin Dyle, SNOC

Overview of EPRI Research on Irradiated Stainless Steels

- Primary Systems Corrosion Research Program
 - CIR Program
 - Develop a mechanistic understanding of IASCC
 - Studies on fast reactor irradiated materials
- BWR Vessel and Internals Project
 - Crack growth and fracture toughness studies on BWR materials
- Material Reliability Project
 - Crack initiation, crack growth and fracture toughness studies on PWR materials
- EPRI also participates in the Halden IASCC research program

Primary Systems Corrosion Research Studies

Characteristics of IASCC in Austenitic Stainless Steels (Bruemmer)

Note : ~15 dpa $\equiv 10^{22}$ n/cm² E ≥ 1 MeV (for PWR and BWR neutron spectra)

~7 dpa = 10^{22} n/cm² E ≥ 0.1 MeV (for PWR and BWR neutron spectra)

CIR Program

Objectives

- Develop a mechanistic understanding of IASCC;
- Derive a predictive model of IASCC, if possible based on a mechanistic understanding
- Identify possible countermeasures to IASCC.
- CIR members include utilities, vendors, nuclear safety authorities and national research laboratories
- Focus on IASCC of BWR and PWR components
- CIR I: 1995-2000
- CIR II: 2000-2005
- CIR II Extension: 2005-08

CIR-II Program Roadmap

		CIR-	II Pro	ogran	n Roa	dmap		
2000	2001	2002	2003	2004	2005	2006	2007	2008
<u> </u>		CIR-II			— —	CIR-II I	Extension	
Charac	terizatio	n of LWF	R and Fa (Mechar	st React	or Irradi	ated Mat	erials	1
roton Irradiations, Characterizations & IASCC Testing (<i>Mechanisms</i>)								
utron Irradiations of Commercial and Tailored Alloys (Mechanisms & Predictive Models)								
			CGR Te: (M	sts on Fa lechanism	ast Reac s, Models	tor Irrad , Counter	iated Ma measures	iterials
In-Core IASCC Initiation Tests (Mechanisms)								
Nhite Pa	per on IA	ASCC	Interim Overview Report on CIR II P					R II Progr
nitiation	Appioa							

ELECTRIC POWER RESEARCH INSTITUTE

Ebgi

Crack Growth Tests: Type 304L, (5.5 dpa) in BWR Water in NWC and HWC (Jenssen)

Halden In-core Constant Load IASCC Test Device

Failure times determined from displacement of ⁵⁹Co flux monitor wires and Cd-10%Ag shields when the specimen breaks

RESEARCH INSTITUTE

Assessment of Progress to Achieving CIR Program Objectives

Mechanistic Understanding of IASCC

- The significant influence of increased hardness and tensile strength on IASCC has been demonstrated and quantified
- Role of initial cold work in retarding IASCC has been demonstrated
- Grain boundary chromium depletion in oxidizing BWR water and silicon enrichment in both BWR and PWR primary coolants appear to play a major role in IASCC susceptibility
- The role of localized plastic deformation (as judged from stacking fault energy) has contributed to understanding variability in IASCC susceptibility in different alloys
- This knowledge could be used to optimize the chemical composition and initial metallurgical state of austenitic stainless steels for BWR and PWR internals

Assessment of Progress to Achieving CIR Program Objectives

Predictive Modeling

- No overall predictive model for IASCC has yet been devised although various important potential component elements have been realized
- Such a predictive model for IASCC could in principle be mechanistic or parametric provided that the form of the latter can be justified on the basis of sufficient mechanistic understanding
- Since the evolution of mechanical properties as a function of neutron fluence affects IASCC susceptibility and growth, equations developed in the CIR program could be used to predict irradiated yield strength
- Since the mechanical properties of stainless steels already in service would be needed, correlations developed in the CIR program for the change in yield stress as a function of the change in hardness (which could be determined in situ) would be very useful

Assessment of Progress to Achieving CIR Program Objectives

Predictive Modeling (Contd.)

- Modeling IASCC growth rates of irradiated stainless steels in BWR environments will most likely be based the slip / oxidation model incorporating the effect of grain boundaries chromium depletion and silicon enrichment as a function of neutron fluence
- The effect of the increase in yield strength and loss of ductility with fluence are incorporated via their effects on crack tip strain rate
- Need to evaluate if crack growth model can be extended to PWR environments
- Component life prediction could also be based on parametric modeling of % YS vs. failure time data at different fluence levels
- As crack initiation time is dominated by the time necessary to reach the required fluence, it is critical to have reliable estimates of stress on a component as a function of irradiation time

Future Work

- Complete parametric crack initiation and growth studies
- Use data from CIR and other programs to develop more reliable models for IASCC initiation and growth
- Quantify trends in crack growth rates with increasing fluence
- Use data from crack growth tests on solute addition alloys to identify favorable and detrimental elements and potential countermeasures

BWRVIP Studies on Crack Growth and Fracture Toughness of Irradiated Stainless Steels

Introduction

- Austenitic stainless steels in BWRs core structures can experience significant fracture toughness reductions at elevated fluence levels
- EPRI identified certain gaps in fracture toughness data at fluences that will become relevant to evaluation of component serviceability
- Project initiated in 2005 to generate additional fracture toughness data of highly irradiated stainless steel
- Irradiated austenitic stainless steels retrieved from disposed BWR internal components

Fracture Toughness Data of Stainless Steels

- Fracture toughness is critical to flaw evaluations and repair decisions
- High priority for more test data at BWR conditions to characterize the material dependence, and the possible temperature dependence, of the fracture toughness transition.

Testing Organizations

- GE and Studsvik selected as primary contractors to conduct testing
 - GE Team
 - GE Vallecitos crack growth testing
 - Battelle material characterization
 - University of Michigan post test SEM
 - Studsvik Team
 - Studsvik fracture toughness and crack growth testing
 - Nippon Fuels fracture toughness testing, microstructural and microchemical examination for all fracture toughness specimens

Irradiated Material Fracture Toughness Test Matrix

Material	Source	Fluence	# of	Orientation	Lab
		dpa	specimens		
304	TG/Forsmark	~1.5	1 + 1	Longitudinal	Studsvik & NFD
304	TG/Forsmark	~1.5	1 + 1	Transverse	Studsvik & NFD
304	TG/Forsmark	~1.6	2	Longitudinal	Studsvik
304	TG/Forsmark	~1.6	2	Transverse	Studsvik
316L	CR/Oskarshamn	~5 - 7	3	Longitudinal	Studsvik
316L	CR/Oskarshamn	~5 - 7	3	Transverse	Studsvik
316L	CR/Oskarshamn	~5 - 7	1	Weld	Studsvik
304L	CR/Barsebäck	12	2	Longitudinal	Studsvik
304L	CR/Barsebäck	12	2	Transverse	Studsvik
304	CR/TEPCO	8	2	Longitudinal	NFD
304	CR/TEPCO	8	2	Transverse	NFD

Yellow: completed

Tensile Test Results

- Significant radiation hardening was observed for all materials
- Strain hardening capacity was lost in all materials except the Type 304 TG.

© 2007 Electric Power Research Institute, Inc. All rights reserved

Fracture Toughness Results

 $\bullet \, J_{\rm IC}$ results

- J_{IC} data obtained from this study and from Ref 1.
- Predicted curve for J_{IC} vs.
 neutron fluence using Ref. 1
- Data obtained from this study are bounded by the prediction methodology with the exception of the two T-L specimens with a J_{IC} of ~40 MPa \sqrt{m} at a fluence of ~5.5 10²¹ n/cm²

Ref. 1. R.G. Carter and R.M. Gamble, "Assessment of the fracture toughness of irrradiated stainless steel for BWR core shrouds", Fontevraud 5, September 25, 2002, Fontevraud, France.

Effect of Orientation on Fracture Toughness

- Fracture toughness is lower in the T-L orientation
 - Fracture surfaces different between T-L and L-T orientations
 - Configuration of fracture surface related to the material orientation affects the fracture toughness

Crack extension Fatique Crack extension Fatique Crack extension Fatigue Fatigue Crack extension crack during J_{IC} test crack during J_{IC} test during J_{IC} test during J_{IC} test crack crack 300.00 D101007 18 kV ×100 300×m D201008 18 ×100 D283007 18 kV ×100 D284007 18 kV ×100

Type 304 CR 8.4dpa

Type 304 TG 4.7dpa

Summary

- Fracture toughness and microstructural/microchemical data generated for BWR-irradiated stainless steel materials
- Significant radiation hardening was observed for all materials
- Orientation effects are apparent with the T-L direction resulting in consistently lower fracture toughness
- Existing correlation of J_{IC} vs. fluence bounds most conditions except two T-L specimens at ~ 5.5 10²¹ n/cm²

Normal Water Chemistry (NWC) Crack Growth Rate Data

- Irradiation at intermediate fluence accelerates SCC growth rate in stainless steels by a factor of 5 or more
- There are insufficient data at higher fluences to support evaluations in the long term

Hydrogen Water Chemistry (HWC) Crack Growth Rate Data

- HWC reduces SCC growth rates
- There are insufficient data at higher fluences to support evaluations in the long term

Crack Growth Test Matrix Studsvik/NFD

	Material	Source	Fluence, dpa	Fluence (estimated) 10 ²¹ n/cm ²
Test #1	304L	Control Rod Blade	3.5	2.3
Test #2	304L	Control Rod Blade	7	3
Test #3	304L	Control Rod Blade	10	7
Test #4	316L	Control Rod Blade	5-7	3.3-4.7
Test #5	304L	Control Rod Blade	12	8
Test #6	304 HAZ	Core Shroud	0.8	0.5
Test #7	304 Weld	Core Shroud	0.8	0.5
Test #8	316	Top Guide	0.7 or 1.4	0.5 or 0.9

Studsvik: Test Sequence for CGR Measurements

Table 3-2

Test Sequence for Crack Growth Measurements in NWC and HWC at Different Stress Intensities

Step	Water Chemistry	Stress Intensity MPa√m	R	Frequency, f Hz	Crack Increment mm
1-6	IG transitioning, see Table 3-1				1.2
7	2 ppm O ₂ , pure water, 288°C	11	1	Constant K _l	0.4
8	100 ppb H ₂ , pure water, 288°C	11	1	Constant K _l	0.2
9	2 ppm O ₂ , pure water, 288°C	11	1	Constant K _l	0.1
10	2 ppm O ₂ , pure water, 288°C	Ramp \rightarrow 14	0.6	0.001 sine	0.2
11	2 ppm O ₂ , pure water, 288°C	14	1	Constant K _l	0.4
12	100 ppb H ₂ , pure water, 288°C	14	1	Constant K _l	0.2
13	2 ppm O ₂ , pure water, 288°C	14	1	Constant K _l	0.1
14	2 ppm O ₂ , pure water, 288°C	Ramp \rightarrow 18	0.6	0.001 sine	0.2
15	2 ppm O ₂ , pure water, 288°C	18	1	Constant K _l	0.4
16	100 ppb H ₂ , pure water, 288°C	18	1	Constant K _l	0.2
17	2 ppm O ₂ , pure water, 288°C	18	1	Constant K _l	0.1

 $R = K_{min}/K_{max}$

Studsvik: CGR Measurements 3.5 dpa, (K = 14 MPa√m)

HWC Reduces CGR by Factor of ~ 5.8

Figure 4-8 Crack Length versus Time (Non-Linear Correction) during Steps 11 and 12

Summary of Crack Growth Rate Testing

- Initial testing on Type 304L, 3.5 dpa material shows that hydrogen injection reduces crack growth rate at K values of 11-18 MPa√m
- Tests continuing into 2009
- Test data will be used to revise and update BWRVIP-99 report

