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From: "Po Kee Wong" <pokwong@verizon.net>
To: <mlih@nsf.gov>, <kchong@nsf.gov>, <abement@nsf.gov>, <jon.dudas@uspto.gov>,
<Chuong.Ngo@uspto.gov>, <Chun-I.Chiang@pentagon.af.gov>, <whhoney@gmail.com>, "Walter Chan"
<wchan34@yahoo.com>, <whang@cua.edu>, <ahwu@aol.com>, <wu@usna.edu>, <LEK@nrc.gov>,
<axw2@nrc.gov>, <pyc@nrc.gov>, <Chairman@nrc.gov>, <MFL@nrc.gov>, <BWS@nrc.gov>, "Karen
Gonda" <gonda@us.ibm.com>, <tlee@hq.nasa.gov>, <mark.lee@hq.nasa.gov>,
<akenndy@hq.nasa.gov>, <ray.orbach@science.doe.gov>
Date: 9/13/2007 5:25:12 PM
Subject: Fw:

----- Original Message -----
From: Po Kee Wong
To: Charles Young ; chin8673@yahoo.com ; papapizza@comcast.net; tom_chang1999@yahoo.com
Cc: Po Kee Wong
Sent: Wednesday, September 12, 2007 3:37 PM
Subject:

CAPA.

301-585-3453
pokwong@verizon.net

----- Original Message -----
From: Po Kee Wong
To: Michelle.Rhee@dc.gov ; Mayor@dc.gov
Cc: Po Kee Wong; Adam Wong
Sent: Wednesday, August 01, 2007 12:13 PM
Subject: Fw: FW: TAMCE 2008 Symposium by Fw: Submission of five papers for ESIA9 to choose for
presentations

Dear Chancellor Rhee and Mayor Fenty:

With reference to my offer to you to solve your immediate needs of most updated text books in
Mathemaitcs and Sciences in my last E-mail having been sent to you, the current E-mail with 16
attachments are submitted to you for your consideration:

----- Original Message -----
From: Po Kee Wong
To: Yonhua Tzeng
Cc: ; ChihHongChen@aol.com ; Po Kee Wong
Sent: Monday, April 16, 2007 9:28 PM
Subject: Re: FW: TAMCE 2008 Symposium by Fw: Submission of five papers for ESIA9 to choose for
presentations

Dear Professor Yonhua Tzeng and professor dshieh:

Thank you for your message
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----- Original Message -----
From: Yonhua Tzeng
To: pokwong@verizon.net
Cc:
Sent: Monday, April 16, 2007 7:27 PM
Subject: Re: FW: TAMCE 2008 Symposium by Fw: Submission of five papers for ESIA9 to choose for

presentations

Dear Dr. Wong, Po Kee (:

Would you please send me your updated and detailed CV so that I can forward it to departments at
NCKU that fit your background and expertise?

Thank you very much for your willingness and enthusiasm in helping with NCKU! We do need a lot of
helps from NCKU alumni!

Sincerely,

Yonhua Tzeng
Professor of EE
VP for Research and Development
National Cheng Kung University
Tainan, Taiwan, R.O.C.

Wong, Po Kee
pokwong@verizon.net

On 4/16/07, <dshieh@mail.ncku.edu.tw> wrote:
Dear Prof. Tzeng:
Got an email from Alumni Center as following. Any suggestion?

DB

----- Original Message -----
From: Po Kee Wong <mailto:pokwong@verizon.net >
To: info@tmce-symposium.org ; default@ConfMaster.net ; Z.Rusak@tudelft.nl
Cc: Po Kee Wong <mailto:pokwong@verizon.net > ; Wong, Adam <mailto:Adam.Wong@fcps.edu>;

Simon Tam < mailto:dr.tamsimon@gmail.com>
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Sent: Saturday, April 14, 2007 1:55 PM
Subject: TAMCE 2008 Symposium by Fw: Submission of five papers for ESIA9 to choose for

presentations

Dear TAMCE 2008 Symposium.org ET AL:

The attachments contained in the communications with various organizations worldwide are
submitted to you for your consideration for open review and evaluation and to pick the topics that you want
to be presented at TAMCE 2008 Symposium:

Your time and effort spent on the subject matter will be appreciated.

Very truly yours,

Po Kee Wong, Ph.D.
Tel:+301-585-3453
Wong, Po Kee

Wong, Po Kee
pokwong@verizon.net

----- Original Message -----
From: Po Kee Wong < mailto:pokwong@verizon.net>
To: darchambault@wilmington.co.uk ; Volaniran@wilmington.co.uk
Cc: Po Kee Wong < mailto:pokwong@verizon.net>
Sent: Tuesday, March 20, 2007 9:19 AM
Subject: Fw: Submission of five papers for ESIA9 to choose for presentations

The is the first one of five consecutive 5 E-mails of communications being forwarded to you:

----- Original Message -----
From: Po Kee Wong <mailto:pokwong@verizon.net>
To: ??? <mailto:esia9@buaa.edu.cn> ; fesi@fesi.org.uk ; Dong <mailto:dongjl@tsinghua.edu.cn >
Cc: Po Kee Wong <mailto:pokwong@verizon.net> ;'simon tam' < mailto:simonfctam@yahoo.com.hk>

Wong, Adam < mailto:Adam.Wong@fcps.edu>
Sent: Sunday, January 28, 2007 11:39 AM
Subject: Fw: Submission of five papers for ESIA9 to choose for presentations

Dear Professors Wu;Gosney and Dong:

This to inform you that,by the instruction of Professor Wu, the paper ABSTRACT entitled "IMPACTS OF
NEW SOLUTIONS OF OLD PROBLEMS IN MATHEMATICAL AND EXPERIMENTAL SCIENCES " has
been successfully uploaded to your website and given a paper code:171.

However, the paper ABSTRACT entitled "FORMULATION AND SOLUTION OF A SYSTEM OF NON-
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COPLANAR BEAMS IN FINITE DEFORMATIONS" has NOT been successfully uploaded to your website
and NOT given a paper code number. This paper ABSTRACT has been SUCCESSFULLY forwarded to
all of you in our previous communications. One of the reasons may be the Figure in the submitted
ABSTRACT occupies too much spaces for transmission during the submission. Please help to input the
submitted ABSTRACT and send a paper code number of that submission to me.

Very truly yours,

Wong, Po Kee

Wong, Po Kee
pokwong@verizon.net

----- Original Message -----
From: Po Kee Wong < mailto:pokwong@verizon.net>
To: ??? <mailto:esia9@buaa.edu.cn > ; fesi@fesi.org.uk ; Dong < mailto:dongjl@tsinghua.edu.cn>
Cc: Po Kee Wong < mailto:pokwong@verizon.net>
Sent: Saturday, January 27, 2007 4:43 PM
Subject: Fw: Submission of five papers for ESIA9 to choose for presentations

Dear Professors Wu; Gosney and Dong:

The abstract of the submitted 5 papers is attached
together with the 5 papers and other relevant documents for your review and evaluation.

Yours truly,

Wong, Po Kee

Wong, Po Kee
2413 Spencer Road, Silver Spring, Maryland 20910-2344 USA
Tel:+301-585-3453
pokwong@verizon.net

----- Original Message -----
From: Po Kee Wong <mailto:pokwong@verizon.net >
To: ??? <mailto:esia9@buaa.edu.cn> ; fesi@fesi.org.uk ; Dong < mailto:dongjl@tsinghua.edu.cn>
Cc: Po Kee Wong <mailto:pokwong@verizon.net >
Sent: Saturday, January 27, 2007 4:18 PM
Subject: Fw: Submission of five papers for ESIA9 to choose for presentations

Dear Professors Wu;Gosney and Dong:

When you open the Fwmathforrum org Po Kee Wong Angles-Google Search... you should be
able to see 26 topics of mathematical discussions. However, some commercial companies intentionally
block some of the websites for their own advertisements without my permission. If you click the topics that
you want to see for two or more times you can open the website that you want to see and read !!! None of
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all those illegal pop-ups belong to me!!!. Both you and I can take them to the Courts in USA; UK and
China for their illegally blocking legitimate communications

Very truly yours,

Wong, Po Kee

Po Kee Wong
2413 Spencer Road,Silver Spring, Maryland 20910-2344 USA
Tel:+301-585-3453
pokwong@verizon.net

----- Original Message -----
From: Po Kee Wong <mailto:pokwong@verizon.net>
To: ??? < mailto:esia9@buaa.edu.cn> ; fesi@fesi.org.uk ; Dong <mailto:dongjl@tsinghua.edu.cn >
Cc: Po Kee Wong <mailto:pokwong@verizon.net>
Sent: Saturday, January 27, 2007 12:46 PM
Subject: Submission of five papers for ESIA9 to choose for presentations

Dear Professors Wu;Gosney and Dong:

Being forwarded to you in the attachments are 5 papers and one abstract for your selection of the
appropriate one or more than one of the papers for the presentations at ESIA9 according to your needs.

Your time and effort spent on the review and evaluation of the submitted papers for your needs will
be appreciated. I look forward to hearing from you about your decision will be appreciated.

Sincerely yours,

WONG,PO KEE

Po Kee Wong, Ph.D.
pokwong@verizon.net
------ Forwarded Message
From: Po Kee Wong < pokwong@verizon.net>
Date: Sun, 15 Apr 2007 22:05:02 +0800
To: <ChihHongChen@aol.com >
Cc: Po Kee Wong <pokwong@verizon.net>
Subject: Fw: TAMCE 2008 Symposium by Fw: Submission of five papers for ESIA9 to choose for

presentations

------ End of Forwarded Message

CC: "Po Kee Wong" <pokwong@verizon.net>
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Dr. Po Kee Wong
2413 Spencer Road

Silver Spring, MD 20910
Tel. 301-585-3453

Email: pokwong(-verizon.net

Work History

Systems Research Company, Silver Spring, MD 1976-Present

Owner and founder of SRC specializing in science and technology. Responsible for the
planning, marketing, managing, engineering and producing proposals, reports, technical
papers and data for national and international meetings. Presented more than 20 papers.
Attended more than 100 conferences. USPTO has granted 3 patents, I is pending.

Boston Public Schools. Boston. MA 1979-2001

High school and Middle School teacher. Taught regular and Chinese Bilingual math and
science courses. Licensed in the state of Massachusetts. My students have received the
top awards in math from BPS. Had taught all math courses using the TI calculators.

Engineer 1971-1975

Worked for Stone & Webster, MA and General Electric, CA performing review and
evaluation of computer codes, industrial and governmental technical reports. Used in
-house codes to check and to sign out specific areas in structural mechanics.

Education

1970 PHD Aeronautics and Astronautics
1966 ENG Applied Mechanics
1961 MS Mechanical Engineering
1956 BS Mechanical Engineering

Professional Organizations:
ASME, AIAA, IAF, NYAS, and AMS

Languages:
Mandarin, Cantonese

Certification:
National Board for Professional Teacher

STANFORD
CALTECH
UTAH
CHENG-KUNG U.
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Dr. Po Kee Wong, CEO
Systems Research Company
2413 Spencer Road
Silver Spring, MD 20910
Email:
Pokwong(Hyverizon. net
Tel: 301-585-3453
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Dr. Po Kee Wong
2413 Spencer Road

Silver Spring, Maryland 20910-2344 USA
Tel. and Fax.:301-585-3453

E-mail: pokwong@verizon.net

EXECUTIVE CORE QUALIFICATIONS:

(1) Leading Change: Established the sole proprietary SYSTEMS RESEARCH COMPANY (SRC) in
1976. The company has been cleared and recognized by the US Federal Government Small Business
Administration (SBA) and the Department of Defense (DOD), Defense Logistic Agency (DLA) which
granted SRC a Commercial And Government Enterprise (CAGE) Code: 5R583 for Mechanization Of
Contract Administration Services (MOCAS) since February 20, 1979.
He plans, directs, and implements all operations of SYSTEMS RESEARCH COMPANY from 1976 to
present.

(2) Leading People: Recruits, selects, supervises and develops professional and support staff involved in
diverse endeavors having been evidenced by the contents of his technical proposals written and
produced solely by himself and submitted to various federal governmental organizations that
include DOD,DOE,NRC,NSF,DOT and NASA. Evidences of this ability can be seen from the
following proposals:

A. SRC-DOE unsolicited proposal No. P7900450 entitled " INITIATION OF THE DEFINITION OF
TRAJECTORY SOLID ANGLE AND ITS INFLUENCE ON CLASSICAL, QUANTUM AND
STATISTICAL MECHNICS " January 17, 1979.

B. SRC-NSF SCREAMS proposal No. 98-12001 entitled " IMPACTS OF HIGH POWER FUNCTIONS;
TRAJECTORY SOLID ANGLE; THE WONG'S ANGLES AND THE PHYSICAL ECONOMIC
THEORY FOR SCIENTIFIC COMPUTING RESEARCH ENVIROMENTS " February 25, 1998.

C. SRC-NSF SBIR Proposal No. DMI-9760362 entitled " ESSENCE OF HIGH SCHOOL
MATHEMATICS: AP CALCULUS &AP STATISTICS " June 10, 1997

D. SRC- BMDO/TOI proposal entitled " APPLICATIONS OF THE TRAJECTORY SOLID ANGLE
AND THE WONG'S ANGLES TO SOLVE PROBLEMS OFFAILURE OF (THAAD)-Theater High
Altitude Area Defense Missile System " November 1, 1997.

E. SRC-NASA proposal No. NRA-96-HEDS-03-076 entitled " APPLICATIONS OF THE
TRAJECTORY SOLID ANGLE AND THE WONG'S ANGLES TO SOLVE FUNDAMENTAL
PROBLEMS IN PHYSICS " March 21, 1997.

F. SRC-NASA proposal No. TRIANA-0003-0006 entitled " APPLICATIONS OF THE TRAJECTORY
SOLID ANGLE AND THE WONG'S ANGLES FOR TRIANA" July 22, 1998.

G. SRC-NASA PROPOSAL No. AIST-0042-0006 entitled " APPLICATIONS OF THE TRAJECTORY
SOLID ANGLE AND THE WONG'S ANGLES TO SUPPORT ESTO PROGRAMS: AIST;ATI;IIP
AND HPCC/ESS." January 22, 2000.

(3) Result Driven: Obtained the first Federal Governmental Contract for SRC from DOT-TSC under
Order No. TS-15054 in 1978 responding to the solicitation of a program in collisions of structures and as a
test case of SRC' s unsolicited proposal NO. TSC-UP-77-27.
Established stature in the profession as members of ASME, AIAA, MAA,AMS,AAAS, New York
Academy of Sciences; having been cited in 12 published " who's who" biographies.
Presents and publishes high qualitative technical papers in AIAA, ASME, MAA ..etc. professional
conferences and meetings at regional, national and international meetings.
Contributes in the invention of several granted and pending US Basic Patents with international impacts in
physics, mathematics, engineering and high technologies.

(4) Business Acumen: The ability of Po Kee Wong to acquire and administer human, financial, material
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and information resources can be seen from the contents of the SRC-US Governmental various agencies
proposals from A,B,C ........ to G. In all these proposals that provide new technology to the U.S.
Government to enhance decision making, they include the key characteristics as being prescribed in this
job requirements for candidates.

(5) Building Coalitions/Communications: The ability of Po Kee Wong to explain, advocate, and express
facts and ideas in a convincing manner, and negotiate with individuals and groups internally and
externally has been repeatedly demonstrated in his U.S. Patents, presentations and publications of
technical papers at regional, national and international conferences as well as inside the contents of the
above proposals from A,B,C, to G.

(6) TECHNICAL QUALIFICATIONS.

PART I.
TECHINCAL PAPERS RELEVANT TO BOTH US PATENTS HAVING BEEN REVIEWED,
PRESENTED AND PUBLISHED AT INTERNATIONAL CONFERENCES: 68pages.

1.1." BASIC NEEDS OF HUMAN BEINGS AS THE PURPOSES AND FOUNDATIONS FOR THE
EXISTENCE OF GOVERNING INSTITUTIONS AND THE ADVANCEMENT OF SCIENCE AND
TECHNOLOGY ".A paper presented at 2001 ASME International Mechanical Engineering Congress &
Exposition on Tuesday, November 13, 2001, 9:30AM at Technical Session # E&TM-I I at Hilton New
York/Sheraton New York, New York City, NY.USA.8 pages.

1.2. " APPLICATIONS OF THE TRAJECTORY SOLID ANGLE (TSA) AND THE WONG'S ANGLES
(WA) TO SOLVE PROBLEMS OF THAAD FOR BMDO AND FOR FUTURE MISSIONS OF NASA"
US Copyright Registration Number TX5-375-549, April 19, 2001, presented at the Proceedings of the
Fifteenth SSI/Princeton Conference on Space Manufacturing, May 7-9, 2001.14 pages.

1.3. " APPLICATIONS OF THE TRAJECTORY SOLID ANGLE (TSA) AND THE WONG'S ANGLES
(WA) TO SOLVE PROBLEMS OF THAAD FOR BMDO AND FOR FURTURE MISSIONS OF NASA"
Excerpts of document No. 1.2 published in " SPACE MANUFACTURING 13 SETTLING
CIRCUMSOLAR SPACE" Proceeding of the Fifteenth SSI/Princeton Conference on Space Manufacturing
May 7-9,2001. Page 98 to page 101. 4pages.

1.4. " APPLICATIONS OF TRAJECTORY SOLID ANGLE (TSA) AND WONG'S ANGLE (WA) TO
SOLVE FUNDAMENTAL PROBLEMS IN PHYSICS AND ASTRONOMY " IAF-00-J. 1. 10 paper
presented and published at 51". International Astronautical Congress, 2-6 Oct 2000/Rio de Janeiro, Brazil.
5pages.

1.5. " APPLICATIONS OF TRAJECTORY SOLID ANGLE (TSA) AND WONG'S ANGLES (WA) FOR
LAUNCHING OF SPACE VEHICLES " IAF-00-S.6.03 paper presented and published at the 51s.
International Astronautical Congress, 2-6 Oct 2000/Rio de Janeiro, Brazil. 4 pages

1.6. " NUMERICAL DATA FOR SATELLITE ALTITUDE CONTROL BY MEANS OF WONG'S
ANGLES " AIAA-96-1047-CP paper presented and published at the 16th. International Communications
Satellite Systems Conference, February 25-29,1996 Washington DC. page 517 to page 523, 7pages.

1.7. " ON THE FORMULATION AND SOLUTION OF A CLASS OF MAGNETO-VISCOELASTO-
DYNAMICS (MVD) GOVERNING EQUATIONS OF MOTION " presented and published at the 1995
ASME Design Engineering Technical Conferences-The 1 5 1h. Biennial Conference on Mechanical Vibration
and Noise, September 17-20, 1995 Boston, Massachusetts, DE-Vol. 84-2 Volume 3- Part B page 1451 to
1456. 7pages.

1.8. " ON THE IRROTATIONAL-FLOW VELOCITY POTENTIAL FUNCTION AND A NEW
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STREAM FUNCTION OF FLUID MECHANICS " paper No. 80-C2/Aero-3 presented and published at
the ASME Century 2 Aerospace Conference, San Francisco, California, August 13-15, 1980. 1Opages.

1.9. " ON THE UNIFIED GENERAL SOLUTIONS OF LINEAR WAVE MOTIONS OF
THERMOELASTODYNAMICS AND HYDRODYNAMICS WITH PRACTICAL EXAMPLES" paper
No. 67-APM-32 presented and published at the ASME Applied Mechanics Conference, Pasadena,
California, June 26-28, 1967. 9pages.

PART II.
3 (SRC) SYSTEMS RESEARCH COMPANY'S TECHNICAL PROPOSALS HAVING BEEN
SUBMITTED TO NASA FOR SUPPORT: 11 3pages.

II. I. SRC-NASA proposal No.NRA-96-HEDS-03-076 entitled " APPLICATIONS OF THE
TRAJECTORY SOLID ANGLE AND THE WONG'S ANGLES TO SOLVE FUNDAMENTAL
PROBLEMS IN PHYSICS " submitted on March 21, 1997. 26pages.

11. 2. SRC-NASA proposal No. TRIANA-0003-0006 entitled " APPLIACTIONS OF THE
TRAJECTORY SOLID ANGLE AND THE WONG'S ANGLE FOR TRIANA " submitted on July 22,
1998. 36 pages

I1. 3. SRC-NASA proposal No.AIST-0042-0006 entitled " APPLICATIONS OF THE TRAJECTORY
SOLID ANGLE AND THE WONG'S ANGLE TO SUPPORT ESTO PROGRAMS:AIST;ATI;IIP AND
HPCC/ESS." Submitted on January 22, 2000. 51pages.
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ABSTRACT

Based on the claims of the US Basic patents number
5,084,232; 5,848,377 and 6,430,516 that can be
obtained from typing the Patent Numbers into the Box of
the Website
http-//164,195.1 00 11/netahtml/srchnum ht m
and their associated published technical papers having
been presented and published at Intemational
Conferences in the last three years and that all these
had been sent into US-NRC by E-mail on March 26,
2003 at 2:46 PM., three fundamental challenging
problems for developing new nuclear safety standard
computer codes had been presented at the US-NRC
RIC2003 Session W4. 2:15-3:15 PM. at the Washington
D.C. Capital Hilton Hotel, Presidential Ballroom on April
16, 2003 in front of more than 800 nuclear professionals
from many countries worldwide. The objective and

scope of this paper is to invite all nuclear professionals
to examine and evaluate all the current computer codes
being used in their own countries by means of
comparison of numerical data from these three specific
openly challenging fundament al problems in order to set
up a global safety standard for all nuclear power plant s
in the worid.

INTRODUCTION

Problem Number (1) provides impacts enumerated
in the followings:
1. Provides a new Statistical Mechanics in Physics.
2. The calculation of collision cross-sections in particle
physics, based on by utilization of Geometric Solid Angle
(as that was used in the well known Sir Rutherford's
APpha Scattering), must be re-examined again in
comparison with that by utilization of Trajectory Solid
Angle (TSA) (US Patent 5,084,232). Please also read
the IAC-02-J.P.02 paper.

1 ICONE13-50509 Copyright ©2005 by CNS
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3. A new Hydrogen Model is being proposed by
substituting the trajectory equations of the complete
Two-Body solution by Max Born into the definition of
Trajectory Solid Angle (US Patent 5,084,232).
4. Application of TSA in a cold-atom atomic fountain
clock as described by Bigelow (Ref 10 of paper IAF-00-
J.1.10) This is the JPL project trying to improve the
accuracy of the Norman Ramsey' Atomic Clock.
5. All the proposed tasks in the 1979 Unsolicited
Department of Energy Proposal number P7900450
should be re-examined again.

Problem Number (2) Wong's Angles (WA) Patent
provides:
1. A precise method to measure and determine the real
trajectories of object s under the actions of many-force
fields in various environment s and
to guide the using of appropriate instrument s for
measurement s in experiment s (for examples: How to set
up stations around the Nuclear Power Plant to shoot
down in-coming missiles to hit the Nuclear Power Plant;
How to set up instrument s around a nuclear reactor core
to track the internal flow conditions inside the nuclear
reactor core... etc.)
2. The (WA) provides a unique and precise method to
design the Digital Sensing Processor (DSP). The (DSP)
can be used directly in all instrument s or to be integrated

into the Central Processor Unit (CPU) in all calculators
and computers attached to regulate and control all
scientific instrument s including but not limiting to: Digital
Cameras; Digital Telescopes; Digital Microscopes;
Digital Theodolites; High Definition TV; CAD-CAM
System Design in Mechanical Engineering; Surveying
System Design in Civil and Architectural Engineering;
Aircraft and Airport Landing System Design and all other
relevant instrument s for measuring; tracking and
controlling of objects.
Problem number (3) provides a unique correction of the
calculating procedures that have been prevailingly used
in all computers and calculators for several decades.
This correction must be made, because of the errors in
computers and calculators have been extensively used
in various fields of sciences, engineering, technologies
and mathematics in education. The corrections that
involve in functions of complex variables are very
important to aerosp ace re-entry vehicles and nuclear
reactor cores both include the coupling motions of
dynamics and heat transfer. Therefore, the corrections
must be made.

SPECIFIC EXAMPLES OF PROBLEMS

Initial ejection velocity of a particle
V sub.zero = 9.8 m/sec at point 0

The gravitation in the direction perpendicular to the
plane XOY g = 9.8 m/sec squared a = square of v sub.
zero / g = 9.8 m = Max. range of the particle can hit rl
=9m r2= 10m r2-a = 10 - 9.8 = 0.2m will not
be hit sector angle =pi/6 shaded targeted area =
4.974 square m. Find the cumulative probability for the
particle ejected from point 0 randomly to hit the
prescribed targeted area.

Problem No. (2):
'Given all reliable sensing instrument s used for

detection of particles or objects moving in various
environment s, how to arrange and set them up in
stations to track; to measure; the position, velocity and
acceleration vectors of the moving particle or object with
the least amount of parameters to be experiment ally
measured to obtain the accurate data?

Given

2 byCNS
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Specific example: three ground stations identified as
stations A, B, C. Stations A is at the West of Station B.
Stations C is at the north of Station B. Segment AB
which is underneath the earth surface =0.4R(R=Radius
of the earth at sea level=OR, where 0 is the center of
the earth). Segment BC which is also underneath the
earth surface = 0.3 R. A high altitude object is observed
with two sets of Wong' s Angles from Stations A, and B
as Alpha 1 = 30 degrees; Beta 1 = 60 degrees; Gamma
1 = 60 degrees at time t = tl at point P1. Alpha 2 = 60
degrees; Beta 2 = 30 degrees; Gamma 2 = 90 degrees
at time t = t2 at point P2
Find: The position, velocity and acceleration vectors of
the object moving from point P1 to point P2.

Problem No. (3):
Given:
Zl=xl +1 yl, Z2 = x2 + I y2, where xl, yl, x2, y2 are
unknown real numbers to be determined from solving
the two following simultaneous equations involved in
High Power Functions of Complex Numbers. where i= (
- 1 ) A (1/2) is the unit imaginary number.
Find:
The Principal Solution of Zi and Z2 from the following
two simultaneous equations (1) and (2):

for the first time in October 1974. Comparing the (TSA)
method with all other methods at that time, all other
methods became approximate. For examples: the Monte
Carol Methods; the Geometric Solid Angle (GSA)
method are all conditionally accurate in some given
ranges of parameters but not precise in all ranges of the
given parameters.

2. The definition of (TSA) is explicitly defined with all
parameters implicitly contained within the definition while
all the other methods do not.

3. Due to the precise definition of (TSA), it is applicable
for macroscopic bodies as well as for microscopic
particles of mathematicall y defined infinitely small size
under the actions of any force and moment fields
between and among the bodies and particles. Therefore,
the (TSA) provides great impacts to the entire range of
physics; from the calculation of the collision cross
sections of sub-nucleus particles in high-energy physics
and to that of galaxies in astronomy. The applications of
all other methods are relatively limited.
force fields (which include: the hydrogen model; Alpha
scattering; moon-earth model; Comet

4. The Geometric Solid Angle (GSA) of any targeted
area, being finite or infinitesimal ly small, is unchanged
with respect to the location of the source where the
particle is ejected. The (GSA) is not related to the
parameters of ejection of the particle at all. It is a pure
mathematical quantity. The TRAJECTORY SOLID
ANGLE (TSA) is a term containing all the parameters of
generating the particle and the targeted area to be hit.
Thus the (GSA) of any targeted area is always finite and
unchanged while that of (TSA) can be zero. This
explains why the (TSA) can be and should be used to
solve the P.sub.2 targeting problem for particles and
bodies under the action of any force and moment fields
and that the (GSA) cannot and should not be considered
as the correct solution for the P.sub.2 problem. There will
be errors comparing the use of (TSA) between the uses
of (GSA) to solve the same problem. The errors will
range from 0% to more than 100%.

5. Since the collision cross sections of many problems in
central Halley scatters around the solar system etc.)
have been based on the use of (GSA) for calculation
and have been published in textbooks around the world,
the future assertion the truth of (TSA) will provide a great
impact to all those results in the past.

6. The (TSA) concept and its definition not only confirms
the well known Heisenberg's principle of uncertainty in
physics, but also provides the precise definition and
procedures to calculate the uncertainty in term of
numbers as precise as we want.

Arc Sin ( Z + Z2 )=
(3A( 1/2)-i)A((1 +i3^A(1/2))A(-1+ i)) Eq.(1)

Arc Sin (Z1 - Z2)=
((3A(1/2)-i)A(1+ i3A(1/2)))A(-1 + i) ......... Eq.(2)

The above specific problem is considered the simplest
problem in comp arison with other problems involved in
functions of complex variables of many Element ary
Transcendent al Functions in the general solutions of a
set governing equations of Thermo-V isco-
Elastodynamics appeared in many references shown in
the U.S. Patent No.: 6,640,516 that have been used for
LOCA, Fuel Pin Design, and Thermal Hydraulic
Transient Analysis in Nuclear Power Plants and
Aerospace Industries for years since 1968.

SUMMARY

1. The invention of TRAJECTORY SOLID ANGLE
provides the most precise definition to solve the problem

3 3 ICONE1 3-50509 Copyright @2005 by CNS
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7. The most important concept of (TSA) is that the
definition can be applied to discover new laws and new
particles by comparisons and matches of the unknown
results with the already confirmed and proved results. If
there are new laws of physics that describe the particle
motions other than those of Newton's classical
mechanics and Einstein's narrow and general relativity,
the present (TSA) concept is still applicable to obtain the
precise P.sub.2 function for the problem.

8. Four examples are selected to illustrate how to obtain
the probability distribution functions by means of (TSA).
They are: Alpha scattering; A particle in uniform,
isotropic linear motion; A particle under assumed
constant-gravity pull from a plane surface; A particle in a
medium where the resistance force is linearly
proportional to the velocity of the particle and under a
uniform gravitational field. These examples are selected
on the basis that they are well known and can be found
from the open literatures. They were selected with the
intention to show that even with such simple well-known
examples, the correct probability functions and
cumulative distribution functions of these problems have
never been obtained before. Whether exact solutions
can be obtained from the equations of motion that
govem other problems will not be the issue because the
equation of motions can always be solved by means of
numerical analysis together with computer programming.
The key issue is that through the definition of (TSA), the
P.sub.2 functions can be precisely defined and obtained.
The (TSA) can be applied to solve the most fundament al
problems in physics that include all the subjects listed as
cited references in this application.

NOMENCLATURE

BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE No.1:
FIGURE No. 1 shows a finite surface area ABCDA that
can be described with respect to a fixed coordinate
system designated to be hit by a particle generated and
ejected from the origin of the coordinate system. The
finite area ABCDA to be hit can be subdivided into
almost infinite number of infinitesimal surface areas,
thus the total surface area in vector form can be
expressed as

ir Ur
T "AA,

P-471 R2

ir Lr .Ur
A= AA -AA,

5=1

tJU Lii Li' 9 Ui
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Each infinitesimal surface area.delt a.A.sub.s is
connected by the position vector R.sub.s that defines the
equations of a surface. The spherical surface formed by
the position vector passing through a particular
infinitesimal surface area (which is as small as almost
like a point) is 4.pi.R.sub.s. sup.2, where 0<R.sub.s<
Infinity.

The probability for the particle to hit a infinitesimal
surface area .delta.Asub.s depends on the particle's unit
tangent vector T.

If T is parallel (direct common sense, since the surface
area vector has a unit vector perpendicular to the
surface area, thus mathematically it should have been
said perpendicular) to the surface area delta.A.sub.s,
the particle will miss the surface.

If T is perpendicular (it should have been said parallel
mathematically) to.delta.A.sub. s the particle will hit the
surface at a right angle.
The probability for the particle to hit on.delt a.A.sub.s is
P. sub. s which can be expressed in the following.

The probability for the particle to hit the entire surface
area ABCDA is therefore P. sub.2 that equals to the
summation of P. sub.s, where s is summed from s=1 to
s= to infinity.

These complete the proof that the (TSA) can be used to
solve the P.sub.2 targeting problem. (The unit tangent
vector T contains all the parameters of generation and
ejection of the particle and satisfies the goveming
equations of the laws of physics).

FIGURE No. 2 shows that particles under assumed
constant gravitational pull on a plane are generated and
ejected from the origin of the coordinates. The particles
can be electrons, ions or unchanged particles. The
gravitation g can also be simulated by an electric and/or
magnetic field for the charged particles. The plane is the
target surface to collect the particles. The figure
represent s the schematic diagram of a mass
spectrometer. Given the initial velocity v. sub .o of an
ejected particle, find the probab ility of the particle that
would hit the predetermined area bound by r.sub. 1 less
than or equal to .r that is also less than or equal to
r.sub.2; phi. sub.1 less than or equal to phi that is also
less than or equal to phi.sub.2.

4 ICONE13-50509 Copyright @2005 by CNS
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FIGURE No. 3 shows the probability density function of
the particle hitting on the plane surface. The cumulative
probability to hit on any area on the plane surface can
be calculated by carrying out the integration precisely.
For example:
Given v sub.o =9.8m/sec g=9.8m/secA2

a= (v su.o)A2/g =9.8m = Max. Range r sub.1 = 9 m
r sub.2 =10 m r sub.2-a =10-9.8 = 0.2 m will not be hit
phi sub.2 -phi sub. 1 = pi/6 =0.5235987756 radian

The targeted area =4.974 mA2

The cumulative probability for the particle to hit the
target area=.OMEGA/(4. pi.)=0.0035846.

FIG. No. 4 shows the classification of regions that can be
reached only by the high; only by the low, and by both
high and low trajectories of the particles.

Region H bounded by OPBT.sub.h AO can be reached
by high trajectory only.

Region L bounded by DBCD can be reached by low
trajectory only.

Region HL bounded by OPBDIO can be reached by both
high and low trajectories.

Region outside of OAT.sub.h BCIO cannot be reached
by either high or low trajectories.

The TRAJECTORY SOLID ANGLE (TSA), Probability
Density Function (pdf), and Cumulative Distribution
Function (cdf) are all different in each region. They are
all zero outside of the region bounded by
OAT.sub.hBCIO.

FIGURE No. 1 is applicable for the general targeting
problems in mass spectrometers particle accelerators,
super-colliders; actual missiles and rockets targeting
problems scattering and collision of astronomical bodies,
chaos of classical dynamics and quantum mechanics,
fluid dynamics and the weather prediction . .. etc.

FIGS. No. 2, 3, 4 are demonstrated in great details how
to apply the invention of (TSA) to solve a specific well-
known-simple problem but its Probability Density
Function (pdf) and Cumulative Distribution Function (cdf)
have never been precisely obtained by all other methods
before the invention of (TSA).

The procedures to find the distribution function P.sub.2
for a particle striking a predetermined area, given all its
parameters of generation and ejection can be

systematically summarized in the following steps:

1. Solve the set of govemi ng equations that govern the
trajectory of the particle and obtain the position vector,
the velocity vector and the trajectory equation in terms of
initial conditions and all other parameters in the
governing equations.

2. Find the unit tangent vector from the velocity vector or
from the trajectory equation.

3. Find the unit normal vector and the differential surface
area from the goveming equation of the surface to be
struck.

4. Find the intersection of the trajectory on the surface
and set the intersection coordinates in terms of the two
independent variables that define the surface.

5. The incident angle of the particle on the trajectory
striking at the surface and be defined from the inner
product of the unit tangent vector to the unit normal
surface vector expressed in terms of the two
independent variables at the intersection.

6. The trajectory solid angle for the problem can be
obtained from integration over the cosine of the incident
angle multiplying the differential surface area divided by
the square of the position vector of the surface.

7. The probability distribution function can be defined as
the ratio of the trajectory solid angles (TSA).

There are 11 separate tasks proposed tasks to be done
in the SYSTEMS RESEARCH COMPANY'S 143 pages
technical proposal DOE No. P7900450 that was sent for
supports in 1979 to the High Energy Physics Division of
the US Department of Energy.

There are also at least 3 technical proposals having
been submitted to NASA for funding and support.

The values of the invention depend on whether the
solution of the P.sub.2 targeting problem by means of
the (TSA) is TRUE. If it is, it will provide all the impacts to
practitioners, public and private decision makers, and
the general public especially involved in education:

It will affect many previous Nobel Laureates' work in
scattering and collision crossections of particles; in
Statistical Mechanics and Quantum Mechanics. Specific
work of interests include: Rutherford's Alpha Scattering;
Hofstadter's electron scattering; Yang's p-p collision and
its scattering and the geometric picture; Fermi-Dirac,
Bose-Einstein, Maxwell-Bo Itzmann statistics; quantum
mechanics based on Schrodinger's equation; Schwinger

5 ICONE13-50509 Copyright©2005 by CNS
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and Feynman's quantum electrodynamics and
Heisenberg's uncertainty principle... etc.

All these topics are in the current text books of physics
for graduate and undergraduate levels in all universities
in the world. It follows that will influence the selection of
materials for the secondary curriculum planning and
development according to the impacts.
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BASIC NEEDS OF HUMAN BEINGS AS THE PURPOSES AND FOUNDATIONS
FOR THE EXISTENCE OF GOVERNING INSTITUTIONS AND THE

ADVANCEMENT OF SCIENCE AND TECHNOLOGY

Po Kee Wong
Systems Research Company

Somerville, Massachusetts 02145-2930
E-mail: pokwonge rcn.com

ABSTRACT

This paper summarizes the most recent
advancement of space technologies and its
impacts to our social-economnic management
systems based on the needs of energies by all
human beings for survival. The paper contains
two subsections as a part for the solution of the
educational and social-economnic problems.
The one with education is entitled
EVIDENCES OF IMPACTS AND
RESISTANCES TO IMPLEMENT A
CONTROVERSIAL, SCIENTIFIC PROBLEM IN
CURRICULUM DEVELOPMENT " and the
other is entitled " FORMULATION OF THE
PHYSICAL ECONOMIC THEORY AND ITS
APPLICATION IN COST AND PRICE
A NA L YSIS FOR CONTRA CT
ADMINISTRA TION ORGANIZATIONS"

INTRODUCTION

The basic nature of creatures is to survive in
any suitable environment with freedom. Human
being, as one of the creatures, has desires in at
least three aspects: (1) materials needs for
survival, (2) spiritual needs for thinking and the
control of behaviors, (3) improvement and
upgrading the levels of both material and
spiritual needs for better quality, more quantity
and time efficiency. The material needs include
foods, shelters, vehicles for transportation, useful
tools and appliances. All of which can be
regarded as taking-in, conserving , transforming
and using of energies according to the Law of
Conservation of matter and energy of
Thermodynamics. The spiritual needs had been

well developed through the ancient times up to
the present and become the religions in our
present society. The improvement and the up-
grading of these needs can be obtained by
contributing each human being's work via his
knowledge or skill through education, training
and experiences. Human being having been
fulfilled with all what he needs will live happily
until the end of his biological life span in the
suitable environment. The environment in
which he lives will be peaceful without any
disturbances and violence.

Conflicts start when groups of human beings
compete for the same basic needs in the same
environment which is defined here in general as,
an organization, an institution, a town, a city, a
state and the world. Historically these conflicts
gave rise to (I) the governing institutions to solve
and to manage the conflicts among individuals,
families, tribes, counties, states and countries in
the world; (2) sciences and technologies to
improve and to provide the material or energy
needs with quality, quantity, low cost and time
efficiency. Chaotic situations occur everywhere
when the governing institutions fail to manage
their group of people properly and abuse the
products derived from the advancement of
science and technology. The ill management of
governing and political institutions and the abuse
of the technological forces will not only disturb
the peace in the environment but also destroy it if
these combined forces are periodically excited
and applied to the environment by some
ambitious and uncontrolled people with desires
beyond the needs of normal human beings.

The basic value of the problem is how to seek
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for and to provide concrete solutions of the
problem by means of the scientific and
technological forces together with the sensible
and justified management by the governing and
political institutions to shape our world such that
each human being's basic needs and desires can
be fulfilled.

It is suggested that the problem can be solved
by providing the opportunity for each individual:
(I) to be educated with the most updated
knowledge and skills to survive, (2) to be given
the freedom to adapt and to live in a suitable
environment with a career of his or her own
interest and choice, (3) to select, with his or her
own right, the officials to serve the governing
institutions, (4) to provide inputs to the
governing and political institutions for a sound
social-economic management system, (5) to
request the governing and political institutions of
local, state, national and international levels to
communicate effectively with one another and
seek for the best solutions of the problems to
fulfill the basic needs of all human beings in the
world.

EVIFENCES OF
RESISTANCES TO
CONTROVERSIAL,
PROBLEM IN
DEVELOPMENT

IMPACTS AND
IMPLEMENT A

SCIENTIFIC
CURRICULUM

Geometric Solid Angle and that the results
have been published in all physics journals
for many decades in the past must be re-
examined again in comparison with that by
utilization of the Trajectory Solid Angle
(TSA).

(2) A new Hydrogen Model is proposed by
substituting the trajectory equations of the
complete Two-Body solution by Max Born
into the definition of Trajectory Solid Angle
(TSA).

(3) The Wong's Angles (WA) provides a precise
method to measure and determine the real
trajectories of objects under the actions of
many-force fields and to guide the using of
appropriate instruments for measurements in
experiments. Putting both the (TSA) and the
(WA) together, it will provide a complete
solution of many fundamental problems in
physics and astronomy.

(4) The Wong's Angles (WA) provide a unique
and precise method to design the Digital
Sensing processor (DSP) which is directly
used in all instruments or to be integrated
into the Central Processor Unit (CPU) in all
calculators and computers attached to
regulate and control all scientific instruments
including but not limiting to: Digital
Cameras; Digital Telescopes; Digital
Microscopes; Digital Theodolites; High
Definition TV; CAD-CAM System Design
in Mechanical Engineering; Surveying
System Design in Civil and Architectural
Engineering; Aircraft and Airport Landing
System Design and all other relevant
instruments for measuring; tracking and
controlling of objects.

(5) Fundamental problems that must be solved
for all INF Members in various countries
that participate to build the International
Space Station (ISS) and the ground stations
to sense ; to track; to measure; and to control
the ISS from the ground stations are
described in the followings:

(6) Students and Faculty Member of IAF at 51st
Congress Outreach Programs are given
theodolites and rulers at the Rio de Janeiro
International Airport which is considered to
be closed at the sea level. They are asked to
set up both instruments in any way that they
want in the Airport such that they can obtain
data in the Airport to measure the distance
between the highest point M of Monumento
Do Cristo Redentor and the highest point P
of Pao De Acucar. That is to find the

The evidences are clearly described in two
U.S. Basic Patents Number 5,084,232 (Jan.
28,1992 by Wong) and Number 5,848,377 (Dec.
8, 1998 by Wong). The evidences are further
being confirmed by a sequential of papers
recently presented and published at the 51".
International Astronautical Congress / 2-6 Oct.
2000/Rio de Janeiro, Brazil and at the
SSl/Princeton Conference on Space
Manufacturing/ May 7-9, 2001/ Princeton, NJ.
USA. These evidences lead to the open
CHALLENGES AND CONCLUSIONS from the
IAF-00-J.I.10 and IAF-00-S.6.03 papers with a
formal documentation presented at the
SSl/Princeton Conference. They were so written
to provide an offer worldwide to all IAF
Members and the general publics for the benefits
of all people in the world and that they are
reiterated again in the followings:

(I) The calculation of collision cross-sections in
particle physics based on utilization of
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segment MP = a function of all measurable
data by means of the rulers and the
theodolites at the Rio de Janeiro
International Airport. A precise
mathematical algorithm should be obtained
to calculate the distance of MP and the true
altitudes of point M and point P above the
sea level.

(7) Boston, Massachusetts, U.S.A., is a city of
many cultures with more than 65 universities
and colleges in the metropolitan areas. One
of the fascinated scene in the sky of the city
often can be seen by our naked eyes on the
ground is the high flying B52 with long trails
of exhausted gases visible in the sky. Can
we write a precise mathematical algorithm to
track the high flying B52 in term of the data
that we can measure on the ground by
means of the rulers and the theodolites ?
What kind of parameters that we should
measure on the ground in order to know the
instantaneous velocities and accelerations of
the B52?

(8) CHALLENGES Number (5), (6) and (7) can
be easily answered if we know: (A) How
many ground stations are needed uniquely to
determine the exact location of a point in a
three dimensional space? (B) How many
minimum non-coplanar points in a three
dimensional space are needed to form a
solid? (C) Since most of the objects
including but not limiting to ISS; Airplanes;
Cars; Ships; Buildings; Mechanical Parts in
CAD and CAM design drawings; etc. are
three dimensional solid objects; (D)
Therefore, from both (B) and (C) we should
know how to control the complete motions
of three dimensional objects.

(9) Based on conclusion (8), the Twin-
telescopes, one built by NASA in Arizona
and the other one built by NSF in Chile, can
not be used to make a precise measurement
of three dimensional objects including but
not limiting to other planets in our solar
system. We actually need three identical
telescopes built on earth to observe the
object and record the data at the same time
in order to be able to measure, to track and
to control the object precisely. Similarly,
we need three identical Hubble Space
Telescopes far apart in the same order of
magnitude of the distances among them such
that they can be used to observe in order to
obtain the reliable data of an observed object
in billions of light years away.

(10)The (WA) patent can be applied for
observation of both macroscopic objects and
microscopic objects. It can be used outside
of the ISS in the ground stations to sense, to
measure, to track and to control the ISS.
Within the ISS, it can also be used to
observe and measure the growth of many
objects including but not limiting to crystals;
pharmaceutical products; biological tissues
under the condition of micro-gravity inside
the ISS.

(I I)The paper IAF-00-S.6.03 provides the basic
concepts to design a portable propulsion
system by combining an ion generator and a
ion accelerator together as an engine for
space vehicles to explore the deep space as
well as for building a launching system
externally for shooting objects like small
satellites and /or other space vehicles into a
desirable orbit It is also conceivable that
the paper was originally written to build a
heavy ion gun to substitute the ABM
missiles.

(12)The CHALLENGES and stated
CONCLUSIONS having been presented and
published from IAF-00-J.1.10 and IAF-00-
S.6.03 papers at 51 ". International
Astronautical Congress are still considered
as proprietary information solely proposed
by the authors since they have not been
supported and funded by any private, public,
industrial organizations nor by any
governmental agencies of all countries in the
world. These proprietary concepts, being
generated from the (TSA) and the (WA)
Patents, conceive possible great impacts to
the world social-economic systems followed
by their impacts in the field of physics and
astronomy and high technologies. The
patents and proposals listed in both papers
had been submitted to various governmental
agencies for supports without success and
that they have also been submitted to various
IAF Members in the world to assess their
truth on the possible impacts. Neither IAF
Members of various governmental agencies
of all levels nor their employees, nor any of
their contractors, subcontractors, or their
employees, makes any warranty, expressed
or implied, or assume any legal liability or
responsibility for the accuracy, completeness
or usefulness of any information, or
represents that its use would not infringe
privately own rights.

(13) The Wong's Angles (WA) patent covers the
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contents of an AIAA-96-1047-CP paper
entitled " Numerical Data for Satellite
Altitude Control by Means of Wong's
Angles " The paper was presented and
published in the 16t" International
Communications Satellite Systems
Conference, February 25-29,
1996/Washington, D.C. U.S.A. The paper
was the first one to have shown how to
obtain the true altitude of a satellite by
means of the Wong's Angles (WA) which
are measured from the ground Stations in
Houston, Boston and Seattle respectively.
NASA MSFC may have used the methods
having been shown both in the Wong's
Angles (WA) Patent and the AIAA-96-1047-
CP paper in order to provide the tracking
information about the current International
Space Station (ISS) and the Hubble Space
Telescope. These tracking information can
be obtained from the following two
websites
httn://liftoff.insfc.nasa. gov/teini/StationtLoc.
html and
httn://liftoff tnsfc.nasa. gov/temn/HubhleLoc.
html

in the TS-l15054 report was used to respond the
solicitation RFP No. F19628-78-R-0225
December. 21, 1978 entitled " IMAPCTS
ANALYSIS AND SYSTEMS INTEGRATION
STUDIES AND ANALYSES FOR THE AIR
FORCE JINTACCS PROGRAM OFFICE
The Proposal was submitted to:
Electronics Systems Division (PKR)
Surveillance Criticality Designator
Air Force Systems Command, USAF,
Hanscom AFB, MA 01731
The physical economic model was continuously
developed by (SRC) since 1978 when it was first
initiated in the TS-15054 report. The learning
power curve approach was also developed
independently by the author then and that it was
also proposed to the Boston Public Schools to
help the school system to solve problems in
budget management, review and evaluation
based on input and output of work by teachers,
administrators, as well as units and groups.

The basic concepts of the physical model can be
summnarized in the followings:
(1) The SRC's physical economic model is

defined as an economic model according the
natural law of physics. " Physical " does
not mean " bodily physical ". Thus a "
physically handicaped " person can also
perform " work" by means of his
knowledge. The term " work " or the "
job" is very general. It represents " labor
work " which means bodily physical skills
and " non-labor work " which means
knowledge of a person.

(2) Denoting M as mass, L as length and T as
time which are the three fundamental
dimensions of all physical quantities, the
dimension of work W can be expressed as
M L^2 T^(-2) and the dimension of power
can be expressed as M LA2 T^(-3).

(3) A person, a horse, a machine, an
organization or a school system can be
considered having the powers to perform
one or more than one kind of work. The
time rate of work is defined as the power.
That is, P = dW/dt or W = Integration of P
dt. The power of a person doing a certain
kind of work is in general a function of
time. . If the power is constant without
variation of time, it can be called uniform
power. Under this circumstance, his work
performance is linearly proportional to the
time. The person with higher power
constants (more basic skills, knowledge,

FORMULATION OF THE PHYSICAL
ECONOMIC THEORY AND ITS
APPLICATION IN COST AND PRICE
ANALYSIS FOR CONTRACT
ADMINISTRATION ORGANIZATIONS

A report, entitled " ENGINEERING
COMPARISON OF ANALYSES OF PLASTIC
DEFORMATIONS OF A THREE BAR FRAME
"1was produced by the author for the U. S.
Department of Transportation, Transportation
Systems Center (TSC) in Cambridge,
Massachusetts under the order of TS-15054 in
May 1978. The report was a test case of the
SYSTEMS RESEARCH COMPANY'S (SRC)
unsolicited proposal submitted previously to the
Transportation Systems Center. This proposal,
entitled " ON THE CLOSED FORM
ANANLYTICAL SOLUTION FOR A SYSTEM
OF INDETERMINANT SRUCTURES "was
authored and submitted to (TSC) for support.
The report was also presented as a paper in the
8"' U.S. National Congress of Applied
Mechanics, June 26-30, at UCLA, Los Angeles,
California. Later, the physical economic model
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experiences etc.) will produce more work
for the same amount of time.

(4) A person,... a school system has different
power functions in different kind of work.
A high power administrator may not be a
good teacher in mathematics; a good
English teacher may not be a good science
teacher. The differences can be specifically
measured from the power constants (
education backgrounds, accomplishments,
knowledge, learning power etc..) based on
the input and output of work performed in a
given period of time.

(5) It is important for each one of us to
recognize and differentiate the power of a
public position and his personal power. The
former is given by others to carry out a
mission (work) of vital interest to the public
while the latter is the intrinsic qualifications
(educational background, accomplishments,
knowledge, experiences etc.) of the person.
In order to achieve the mission effectively,
these two powers must be closely matched.
It will be considered a waste of human
resources and ill-management for an
organization not knowing of what, why and
how to fully utilize by matching the
positions opened for the appropriate
applicants from out side of the organization
and other human resource within the
organization.

(6) Work done is related to budget and
payment. Power is related to the pay rate
for a specific kind of work to be performed.

(7) The applications of the physical economic
model can be illustrated by the following
two examples: First Example: Persons A,
B, C, each one can do a certain work of 100
% correct at a uniform power of Pa, in time
Ta for A; Pb in time Tb for B; Pc in time Tc
for C. If they are assigned and combined to
do the same work and that they are provided
with a budget of $M, how soon will they be
able to finish the work and how the budget
$M is to be distributed among A,B,C ?
From the given conditions and the
definitions of work and power, the problem
can be easily solved:

The time required to finish the work together is
T= I/(I/Ta + I/Tb +l/Tc)
A should get $M * (T/Ta)
B should get $M* (T/Tb)
C should get $M* (T/Tc)

Second example: Pa= a + (ma)t , Pb = b + (mb)t

Pc= c + (mc)t

The time required to finish the work W together
is t= T.

T
(a+b+c)((I+2(ma+mb+mc)W/(a+b+c)^2)^(.5)-
I )/(ma +mb +mc)
A should get $M(aT+ ma T^2/2)/W
B should get $M(bT + mbTA2/2)/W
C should get $M(cT +mcT^2/2)/W
Where a,b,c are the uniform intrinsic power of
A,B,C ( educational training, experiences,
previous accomplishments, knowledge, skills
etc.) before starting the work; ma, mb , mc, are
the time rate of learning powers at any time after
starting the work.
The time T can be approximately estimated in
two particular conditions:
For short time work T=Ts
Ts = W/(a+b+c) if (a+b+c)A2/2(ma+mb+mc) is
much greater than W.
For long time work T=TI
TI = 2W/(ma+mb+mc) if
(a+b+c)^2/2(ma+mb+mc) is much less than W
These two particular mathematical expressions
provide interpretations that it is more effective to
use human resource with high values of a,b,c to
solve short-time-work problems and to use
human resource with high values of ma,mb,mc to
solve long-time-work problems. The best
choices are to select the human resource with
high intrinsic powers and high rate of learning
powers. They are effective both for short term
and long term work.
(8)The power functions in the second example of
(7) are theoretical. However, the functions can
also be derived from experiments or from
previous records of A, B, C which can be
persons, machines, or systems including both
humans and machines working together.
(9)The power functions for human and for
machines are different. The machine can be
fatique in a much longer period of time, while a
normal human working power is a decreasing
function in approximately of 6-8 hours.
However, due to the learning power of human
being, the curve should be higher as the time
increases to one year or longer while that for a
machine levels or decreases.
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Abstract
The present paper provides a unique correction of the

calculating procedures that have been prevailingly used in all
•computers and calculators for several decades. This correction
must be made, based on the impacts of the computers and
calculators have been extensively used in various fields of
sciences, engineering, technologies and mathematics in
education.

introduction
In recent years, several large companies that produce hand-

held calculators have been competing continuously with one
and other to break into the market for educators of all levels to
learn and to use their calculators for teaching in the classrooms.
During the summer months of June-August, 1995, many
seminars were conducted in the metropolitan Boston Areas in
the State of Massachusetts. CASIO offered workshops for the
use of CFX-9800G; Texas Instruments offered workshops for
the use of TI-82; Hewlett Packard offered for the use of HP
38G. Educators from the Boston Public Schools of the City of
Boston, Massachusetts were invited and assigned to attend the
workshops offered by CASIO and TI. Educators from
everywhere were invited to attend the HP 38G workshops. It
was undoubtedly that all the participants in these workshops
were benefited from utilizing the calculators to implement their
mathematics and science curricula in one way or the other. In
particular, educators from the State of Massachusetts came for
the workshops enthusiastically because they were given
Professional Development Points (PDP) to fulfill the
requirements for their re-certification to teach in the State of

Massachusetts. Others came to seek for the choices of the
appropriate calculator in order to implement their curricula
effectively in their own classes. In addition to the above
reasons, the first author of this paper also participated all the
workshops in order to select the appropriate calculator for the
Advanced Placement Calculus that was being offered at the
Charlestown High School of the Boston Public Schools under
the grant funded by the EAGLE program of the Boston Plan For
Excellence in The Public Schools in academic year 1995-96.
The author learned a lot from attending those workshops and
also fed back his opinions that could and should be updated and
to be built-in into the calculators for wider applications not only
for teaching but also for research in Physics and Mathematics.
For examples: special functions like circular cylindrical and
spherical Bessel's Functions; Legendre Functions and Error
Function should be built-in into the calculator to solve many
problems in Physics and in Engineering; likewise the Largrange
Interpolation Formula should also be built-in for curve
fitting.. .etc. After finishing the participation of all four
workshops in July-August 1995, the first author was asked by
Mr. Richard Stutman, a BPS mathematics teacher and colleague
working in the Boston Teacher's Union (BTU), to solve a fun-
and- game problem that was involved in high power functions
of infinite orders. Responding to his request, the author sought
to solve the problem by means of the CFX-9800G; TI-82 and
HP-38G. As a result of this effort, a major error in the
procedures of calculating the high power functions was found
simultaneously in all three calculators CFX-9800G; TI-82 and
HP-38G. The major error had been corrected and filed for
examination with the U.S. Patent Office in order to clear the
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legal liability problems from the companies.

SUMMARY OF THE CORRECTION
Mathematical procedures of calculation of a mathematical

function in symbolic form can be defined in many ways almost
at our own wills. However, there are examples that procedures
and the symbolic expression of the mathematical functions will
not be unique if one changes its standard calculating
procedures. The power functions are some of these examples.
The errors to calculate the high power functions contribute from
CFX-9800G; TI-82; and HP-38G are that they all start from the
base upward to the higher exponential power, while the correct
way should be started downward from the top exponential
power to the base. These can be cleared from the following
examples A and B:

A. Errors in Numerical Computations

DETAIL DESCRIPTION OF THE CORRECTION
The above examples A and B in errors can be corrected as

the followings:

A. Correct Numerical Computation.

2
3 9

4 = 4 = 262,144

3
2 8

3 = 3 = 6,561

2
3 2

4 64 = 4096 is not correct

3
2 3

3 = 9 = 729 is not correct

2
3 9

2 = 2 =512

B. Correct Symbolic Representation Uniquely Involved in
Solving Equations of High Power Functions.

x
x

x - 2=0 x = 1.476684337

3 2
2 = 8 = 64 is not correct

x
x

x
x - 2=0 x= 1.446601432B. Errors in Symbolic Representation uniquely Involved

in Solving Equations of High Power Functions.

x 2
x

x - 2 = 0 leads to wrong

(3x)
(2x)

x - 2 = 0 means
answer x = 1.1414213562

x -2=0 x=1.064146805

x
3

x
x - 2 = 0 means

answer x= 1.336709735

x
(2x)

(3x) - 2 = 0 x= .6140723908x - 2 = 0 leads to wrong

(3x) 2
(2x) (6 x

x -2 = 0means x
wrong answer x = 1.100152079

C. Examples of Correct Solutions of more Complicated
Equations of High Power Functions.

-2 = 0 leads to
2 2
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2 (x )
x

x= 1.41421356

(x )
-5x +6=0

and x= 1.565552276

y40(x) - 6 = 0 x = 1.449978187

y40(x) - 7 = 0 x = 1.450087526

y40(x) - 8 = 0 x = 1.4501607

y40(x) - 9 = 0 x= 1.45021365.9

y40(x) - 10 = 0 x = 1.450254088

CONCLUSION

(x) (x)
(x)2(x)

(x) - 5 (x) +6 =0

x = 1.476684337 and x= 1.635078475

x
x x

Denoteyl(x)=x; y2(x)=x ;y3(x) = x ;.....etc.

The solutions of the following equations of High Power
Functions can be obtained:

y2(x) - 2 = 0

.y3(x) - 2 0

y4(x) - 2 =0

y5(x) - 2 = 0

y6(x) - 2 = 0

y7(x) - 2 = 0

y8(x) - 2 = 0

y9(x) - 2 = 0

yl O(x) - 2 = 0

yl5(x)- 2 = 0

y20(x) - 2 = 0

y30(x) - 2 = 0

y40(x) - 2 = 0

y40(x) - 3 = 0

y40(x) - 4 = 0

y40(x) - 5 = 0

x = 1.559610469

x = 1.476684337

x = 1.446601432

x = 1.432694806

x = 1.425385621

x = 1.421227912

x= 1.418734462

x= 1.417182504

x= 1.416190183

x = 1.414502086

x = 1.414258764

x = 1.414214713

x= 1.414213592

x = 1.447839583

x = 1.449395757

x= 1.44979292

What is claimed is:

I. A unique method of calculating and solving equations
involved with High Power Functions has been made
for all current and future computers and calculators
that are built-in with the wrong procedures to calculate
the High Power Functions.

Acknowledgments
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Abstract
The " Coconuts " problem was described in 1926 by Ben

Ames Williams in a short story that appeared in The Saturday
Evening Post. Solutions have been given by Dirac and by
Whitehead, among others. Their solutions involve six
indetenninate equations that have been reduced to a single
Diophantine equation with two unknowns. We give a new
alternate solution obtained by means of a geometric series.

introduction
As can be seen from the article in reference No. I by

Gardner, the history of the "Coconuts" problem had been
described in the October 9, 1926 issue of the Saturday Evening
Post appeared as a short story by Ben Ames Williams. The
proposed solutions of the problem had been previously involved
with Noble Laureate Physicist Professor P. A. M. Dirac of the
Cambridge University and by Mathematician Professor J. H. C.
Whitehead of the University of Oxford in England. The older
version of the problem can be expressed in six indeterminate
equations that can further be reduced into a single Diophantine
equation with two unknowns. Up to the present, this
Diophantine equation can be solved by means of computer
programming. The modern version of the older version of the
Williams' "Coconuts" problem was re-stated by Herda in
reference No. 2 as following:

- A pile of coconuts was collected by four woman, assisted
by a monkey. During the night, one of the woman arose while
the others were asleep and divided the nuts into four equal
shares, with one nut left over which she gave to the monkey.
She hid one share, put the rest of the nuts into a single pile and

went back to sleep. In turn, each of the other three women went
through the same procedure, and in each case there was always
one nut to give to the monkey! In the morning, the four women
divided the remaining nuts into four equal shares and again had
one nut left over for the monkey. What is the smallest number
of nuts could have been in the original pile? "

The problem was re-stated by Professor Herda of the
University of Massachusetts at Boston to his students as a
midterm take-home examination question and to write a
computer program to solve the problem. The authors, without
previous knowledge in Number Theory and knowing the paper
by Gardner, provided an independent complete solution of the
problem. The method of obtaining the complete closed-form
solution is by means of a Geometric Series that appears in the
formulation.

Nomenclature
Assuming that there are N nuts in the pile and that there are

P women in the game. Denoting:
W I ---the amount of nuts hidden by the first woman with

R I nuts left over.
W2---the amount of nuts hidden by the second woman with

R2 nuts left over.
W3---the amount of nuts hidden by the third woman with

R3 nuts left over.
Then
Wr---the amount of nuts hidden by the r th. Woman with Rr

nuts left over.
Wp---the amount of nuts hidden by the p th. Woman with

I Copyright © #### by ASME
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Rp nuts left over.
Where r are positive integers between I and p.
Nuts hidden by each woman can be expressed in general

Wr = (R sub(r-l) - 1) / P for r equal to and greater than 2 while
WI= (N -I) / P
Nuts left over in the pile Rr after each woman took her

share can be expressed in general
Rr = (P-l) Wr

These two general expressions can be understood better by
the followings:

WI = (N-l)/P

W2 = (RI-l)/P =(N-I)(P-l) / P^2 - I/P

W3 = (R2- I )/P= (N- I ) (P- I )-2/P^3 -(P- I )/P-2 -1/P

And

RI = (P-1) WI=(N-l)(p-I)/P

R2 =(P-I ) W2=(N- I )(P- I )^2/P^2 - (P-I )/P

R3 =(p-1) W3=(N-I)(P-1 )3/P^3 - (P-1 )^2/P^2 - (P-I)/P

Based on the above results, both Wr and Rr can be
expressed, in general as:

Wr=(N- I )(P- I )^(r- )/P^r-(P- I )^(r-2)/PA(r- .).. (P- I )/PA2-
I/P.

Rr=(P- I )Wr=(N- I )(P- I )^r/P\r - ( (P-I )P^r -P(P- I )^r)/P^r

And when r=P

Rp=(N- I )(P-I )^P/PAP_ ((P-I )PAP-P(P-I )^P)/P^P
= (P-I) W p ................................................. E q. (1)

Equation (I) represents the nuts left over in the next
morning.

The P th. Woman hid the amount of nuts Wp is represented
by Equation (2) expressed in the following:

Wp=(N-I)(P-I)^(P-I )/P^P-(P^P-P(P-I)^(P-1 ))/P^P.....(2)

Again in the next morning, the left over amount of nuts Rp
in Equation (1) is to be divided by the P th. Woman and gave
one to the monkey, then

(R p - 1)/ P = I ............................................... (3)

The net gain of nuts by the r th. woman is denoted by Tr.

Tr = Wr + I =Wr +(Rp-l)/P= Wr +((P-l) Wp-])/P ...... (4)

Substituting Rp from Equation (1) into Equation (3) with
further simplification and obtaining

(N+P- l)(P - l)^P = (I + I) P^ (P+l) ..................... (5)

The problem is now reduced to find N and I as integers that
satisfy Equation (5) for any given P as total number of women
in the game.

It is when (N+P - I) = P^ (P+I) and (1+1) =(P - ])^P the
left-hand side and the right-hand side of Equation (5) becomes
identical to each other for any given P values, thus

N=P^(P+I) -P + I ................ (6)

I= ( P - I )A P - I ............................................. (7)

Are obtained as the general solution of the problem.

The solution represented by equations (6) and (7) is the
smallest solution because the numbers on both sides of
Equation (5) are divisible by (P - 1)^P x P ^(P+1)

The complete general solution of the problem can now be
summarized in the following:

P = Total number of women in the game

The total number of nuts in the pile is N

N=P^(P+ 1) -P + I

The amount of nuts that the r th. woman hid is Wr

Wr=(P-I)^(r-I) PA(P+I)/PAr- I

The amount of nuts that the P th. woman hid is Wp

Wp= P (P- )^(P- 1)- I

The total number of nuts that the r th. woman got is Tr

Tr = Wr +1 =(P-I)A(r-l) PA(P+ 1) / P^r +(P-I)^P - 2

The total number of nuts that the P th. woman got is Tp

Tp = Wp + I =P (P-I)^(P-I) + (P-I)AP -2

The last pile of nuts that each woman got is I

I= (P- I) AP I

The monkey got (P + I) coconuts
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All these results can also be counter-checked from the total
number of nuts in the pile that should be equal to the sum of all
nuts that each woman got plus the nuts that the monkey got,
that is

N = Summation of Tr (from r=l to r=P ) + ( P + I)
=Summation of Wr (from r=l to r=P) + PI + (P+I)
=Summation of Wr (from r=l to r=P) + P (P-1)^P+l
=Summation of ((P-1)A(r-1) P^(P-r+I) -I) (from r=l to

r=P) + P (P-1)^P +I
= P^(P+I)- P+1

The above general and complete solution of the problem
can be used to make numerical check for the older version of
the Williams' " Coconuts" problem as indicated by the paper by
Gardner by setting P = 5 sailors then N = 15,621 nuts. When P
becomes very large, there will be as many indeterminate
equations to be set up according to the paper by Gardner. The
reduction of these indeterminate equations into the single
Diophantine equation and then seeking the solution of the
Diophantine equation is extremely tedious and time consuming
even with the help of a powerful computer.

Based on the presentation of this paper, the advantages of
the complete closed-form solution over the previous solution by
means of the Diophantine equation is therefore distinctive.

CONCLUSIONS

I. The current complete solution is in closed -form
without solving the simultaneous linear equations of
congruence.

2. Its advantages over all other previous solutions by
means of the reduced Diophantine equations are:

a. Saving a great deal of computing time to obtain the
solutions especially when the number of women in the
game is a very large number.

b. Providing the complete information of the solution of
the problem that has never been obtained before : such
as Wr, Wp, Tr, and Tp terms as described in this
paper.

3. Equation No. (6) N = P^(P+I) - P + 1 can be integrated
into the current computer programs worldwide to search for the
largest prime numbers continuously.
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Abstract
Even though the famous ancient Greek Appollonius

problem had been solved by many others by means of the
Coordinate Geometry (Analytical Geometry) as indicated, for
example, from page 56 to page 59 in the book " CRC Concise
Encyclopedia of Mathematics" by Eric W. Weisstein in
(Reference No. 1), the complete closed-form solution of the
problem by means of Trigonometry and Plane Geometry that is
independent from the coordinate systems has never been
obtained until it was first derived, obtained and filed for a U.S.
Patent Application by the first author of this paper on October
31, 1994 ( Reference No. 2).

The closed-form formula can be applied for CAD/CAM
packaging of circular cylindrical objects. They are simple to be
used, cost effective and that they also provide the highest
precision and accuracy in closed-form equations containing
only six parameters. With all advantages over all other and
previous methods, the Wong's Formula are highly competitive
in worldwide market for automobile, ship and airplane
manufacturing industries.

introduction
The Wong's Formulas are simple to be used almost by

anyone who understands basic mathematics and/or algebra 1.
The inventor of the Wong's Formulas had already submitted the
specification of the invention containing the Formulas in a
sealed envelope to the U.S. Patent Office because of the
simplicity of the Wong's Formulas can be easily infringed. The
submitted Wong's Formulas should remain to be sealed before
and even after the application is to be granted until when the
U.S. Patent Law fails to protect this patent.

The procedures of using the Wong's Formulas can best be
described in the following with reference to the notations shown
under each figure:

(1) Measure or design to set the values of a, b, c, r sub.A, r
sub.B, r subC. by lengths that fulfill the conditions for
non-penetrating gears.

(2) Substitute these values into the Wong's Formulas
r=r(a,b,c,rsub.A,rsub.B,rsub.C), then r can be
calculated precisely and accurately.

(3) The center of the constructed fourth gear W sub.l can
be determined from points A, B, C, with:

(4) AWsub.I=Rsub.A=r+rsub.A
Bwsub.I=Rsub.B=r+rsub.B
Cwsub.l=Rsub.C=r+rsub.C where
rsub.A,rsub.B,rsub.C are positive values when the
fourth gear is tangented externally to the three fixed
given gears A,B,C respectively as being shown by
Figure No. 1. They should be set as negative values
when the fourth gear is tengented internally to the three
fixed given gears A,B,C respectively as being shown
by Figure No.2. Figures No.3 to No.8 show clearly
the meaning of the positive and negative values of
rsub.A, rsub.B, rsub.C relevant to the configurations of
the arrangement of the designed gears.

Nomenclature
Figure No. I to No. 8 provide a specific numerical example

of how to use the Wong's Formulas to determine the locations
of the centers of the fourth gears and their radii tangented to the
other three given gears. As can be seen from these 8 figures,
there are 8 different solutions for the problem.

Figures No.9 to No. 10 provide degenerated cases of the
problem represented by Figures No. I to No. 8. The three given
gears are initially tengented to one and others. No movements
can be transmitted from one to the other. Two solutions as
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indicated by the Figures are possible. These two Figures show
how to apply the Wong's Formulas for static packaging of
objects of circular cylindrical shapes. The Wong's Formulas
can be repeatedly applied to calculate the centers and new radii
of other circular cylindrical objects to fill in the emty spaces
bound by the three initially tangented circles.

Figure No. 11 provides a specific example of how to use
the Wong's Formulas to find the center of the fourth gear such
that the sum of its distances to the centers of the other three
given gears is a minimum. That is to find (CWsub.S +
AWsub.S + BWsub.S) = 6.7664362 = minimum

Figure No. 12 is the general figure used to derive the
Wong's Formulas that should be described in the followings:

A, B, C, are the center of rotation of each gear A, B, C
respectively.

rsub.A, rsub.B, rsub.C are the radii of each gear A, B, C
respectively.

Segment BC=a, Segment CA=b, Segment AB=c are the
distances separated the rotation axis of gears A, B, C
respectively.

. The radius of the fourth gear to be constructed and
tangented to the three given gears is denoted as r.

Rsub.A, Rsub.B, Rsub.C are to be used to locate the
centers Wsub.I of the fourth gears. They are measured from
centers A, B, C respectively with the calculated values of r that
can be obtained from the Wong's Formulas as
r=r(a,b,c,rsub.A,rsub.B,rsub.C).

Figure No.1

The Wong's Formulas holds true for the following
conditions for non-penetrating gears:

(a+b) is greater than or equal to c, (b+c) is greater than or
equal to a, (c+a) is greater than or equal to a and that a is
greater than or equal to ( rsub.B +rsub.C) , b is greater than or

equal to ( rsub.C + rsub.A ), c is greater than or equal to (rsub.A
+ rsub.B ).
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Figure Ro.2

a-3 b-4 c=5 ; rA.
2 

rB.1 rc
4
l ; radius r -1.0298221

RA= AWl4r+r A.3.0298221 B =2.0298221 -RC centered at W1
a-3 b=4 c=5 ; rA.-

2 
r,.-1 rC.-I ;

RA-AW2 =
2

.
0 29 8 2 2 1 

RB8 BW2 .3.0298
2 2

1

centered at W2

radius r -4.0298221

R C -CW2 -3.0298221
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Figure No.3 Figure No. 5

a-3 b-4 c-
5 

; rA.-
2 

r B
1  

r c i1 ; radius r =3.5237158

R84 AW3 .1,5237158 RB=BW 3-4.5237158 Rc-Cl3-4.5237158

centered at W3

a-3 b-4 c-5 ;

RAN-AW 5=.3.603479

centered at W5

rA.
2 

rB-l rc--1 ; radius rý1.603479

RB=BW 5=2.603479 Rc=Cw5.0.603479

Figure No. 6

Figure No.4

a-3 b-4 c-5 ; rA-
2 

rB--l rcl ; radius r-2.10
3

466
2

RA-AW 4 .
4

.1034662 RB-BW4 =1.1034662 RcwC 4 .3.1034662

centered at W4
a-3 b-4 c-5 ; rA.2 rB--1 rC=-I ; radius r =2.5237153

RA-AW6 -4.523715 RB-BW 6.1523715 R C=CW 6=1.5237158

centered at W6
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Figure No.10

Figure No.7

a-3 b=4 c-5 ; rA.-
2 

r B
1  

rc=-l ; radius r =3.7513535

RA=AW 7-.7513535 r BBW7 =4.7513535 R --CW 72.7513535

centered at W7

a=3 b-4 c-5 ; rA-
3

r B .2 r cl ; radius r - 6/23

RA= AW o- 3 2-L
eA er 10  t 23

centered atW1

R B -BW 10"23~
R 6RC= CW o10' 23T

Figure No.8

Figure No. 11

A

b-CA=4
RA.AW8 .351.39652

R8=CW-350396 8

3
a=BG=3

\ 8B

a-3 b-4 c-5 ; rA.-
2 

r B=-
1 

rCl 1 radius r =-349.39652

RA.AW8 = -351.39652 RB-BW8= -350.39652 R C -c 8 = -348.39652

centered at W8

CW = 1.0239075 AWS = 3.3885249 BW..=2,350035
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Figure No. 12

a-BC b-CA c-AB ; rA, rB' and rC each is the radius

of circle ABC respectively
is the radius of the circle to be constructed and tangented

with the given circles A.B.C respectively

RA. AWI" r + rA RB. BiI- r + rB Rc=CWI- r + rC

WI is the center of the circle to be constructed

Flaure No. 9

s-3 b-4 c-5 rA- -3 r.- -2 re -1 ; radius r=6

RA- AW.-r+r A3 RB-BWg9r+rB-4 Rc-CW9gr+rc-5 centered at W9
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ABSTRACT

The objective of the paper is openly to
invite all physicists, mathematicians and
engineers in the world to re-examine and
to confirm the ultimate truth and the
worldwide impacts of two U.S. Basic
Patents No. 5,084,232 and No.
5,848,377 which can be obtained from:
http://164.195.100.11/netahtml/srchnum.
htm
The application of Trajectory Solid
Angle (TSA) to obtain the correct
collision cross-sections in Nuclear
Physics and in Astronomy by the
example of obtaining the correct
scattering cross-section of the well-
known Alpha Scattering was shown in a
paper IAF-00-J.1.10. entitled "
Applications of Trajectory Solid Angle
(TSA) and Wong's Angles (WA) Solving
Fundamental Problems in Physics and
Astronomy " presented and published at
the 51st. International Astronautical
Congress, 2-6 Oct 2000/Rio de Janeiro,
Brazil.

The Alpha Scattering was done in
theory and in experiment by Sir
Rutherford. The differential scattering
cross section derived from using the
geometric solid angle can be seen from
all the textbooks of physics in the world.
However, the differential scattering cross
section derived from using the TSA has
not been known by most of our
colleagues in the world and it is different
from the previous results. The present
and the previous theoretical results
converge to be the same only when the
Alpha particle is far away from the
stationary heavy nucleus. That was
where Sir Rutherford made his
measurement and therefore the old
theory and the experiment were
confirmed. The Alpha Scattering is
really similar to the scattering of the
Comet Halley by our solar system even
though they are under the actions of
different force fields. In 1976-79, the
senior author of this paper
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communicated with JPL of NASA and
urged JPL to conduct an experiment to
confirm the curvature effects of the
trajectory of the Comet Halley coming
closer to our solar system in those years.
It is unfortunate that the communications
have never been answered even up to
now. Without repeating the analysis, the
trajectory equation can be expressed by
means of the spherical coordinate system
that was shown in the paper IAF-00-
J.l.10 Ref. 2 Figure No.1 and in Ref.3
Figure No. 1 for axially symmetric
motion. The scattered particle is
restricted in a plane surface which is
perpendicular to the XOY plane; the
particle is coming from the negative Z
axis going upward as the scattering angle
@ that is measured from the XOY plane
as zero degree. After going through all
the process as indicated in the above
example A. of the paper IAF-00-J.1.10,
the differential trajectory solid angle can
be obtained as

(2 pi (e)(Sin @)A2 d @)/((l+eCos @)A2

+(e Sin @)A2) A(1/2) (1)

that is obviously different from the
usual differential geometric solid angle
obtained as 2pi Sin @ d@ (2)

where e is the eccentricity of the orbit
and pi = 3.14159 .......

This paper will be concentrated in the
presentation and publication of the
graphical results of numerical data
obtained from the above two differential
scattering cross-sections in greater detail
in order to distinguish the differences by
Comparison of the Trajectory Solid
Angle (TSA) with the Geometric Solid
Angle (GSA) in Scattering Theory for
the Central Force Fields.

INTRODCUTION

As mentioned in the above Abstract, in
order to fulfill the objectives. of this
paper, the following direct technical
communications with the 2001 Nobel
Laureate Professor Ketterle of MIT are
directly quoted without excerptions and
modifications in the following for open
invitation of other physicists;
mathematicians; engineers and other
relevant scientists to join our open
reviews and evaluations either to
confirm or to deny the truth of this paper
in Scattering Theory for the Central
Force Fields in Physics:

Dear Professor Ketterle:
Thank you for your E-mail replying with
reference to the subject matters and giving me
your web site to search for your technical papers
contributing your success and achievements in
BEC.
As a result of searching for your technical
papers, I found that two of your papers are highly
educational to me with possibility of creating our
mutual technical interests. They are:
(1) " Collective enhancement and suppression in
Bose-Einstein condensates " by Wolfgang
Ketterle and Shin Inouye, January 23, 2001,
Lecture notes of the Cargese Summer School
2000. 38 pages.
(2) " Does Matter Wave Amplification Work for
Fermions?" by Wolfgang Ketterle and Shin
lnouye, PHYSICAL REVIEW LETTERS
Volume 86, Number 19, 7 May 2001. page 4203
to 4206. 4 pages.
The particular technical areas in these two papers
(1) and (2) that we may have mutual interests to
discuss and share are that:
In your paper No.(I) page 2 under the title of I.
SCATTERING OF LIGHT AND MASSIVE
PARTICLES Equation (I), the Hamiltonian
contains QUOTED " The strength of the
coupling is parametrized by the coefficient C
which in general may depend on the momentum
transfer) " UNQUOTED. The term C appears
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again in Equations (11), (12) on page 5; Equation
(16) on page 6; Equations (19), (21) of page 8;
Equations (26), (27) on pages 9 and 10.
In particular, Equation (26) C = ( 4pi *h^2/MV)a
where "a" is now the scattering length for
collisions between condensate and impurity
atoms. 4pi a^2 = collision cross-section.
In your paper No. (2), page 4203 under the title
of "Scattering theory.---"

"Scattering Theory" relevant to the calculation of
" Collision Cross-section" have been repeatedly
demonstrated in my patents and the IAF -00--
J. 1. 10 paper entitled " APPLICATIONS OF
TRAJECTORY SOLID ANGLE (TSA) AND
THE WONG'S ANGLES (WA) SOLVING
FUNDAMENTAL PROBLEMS IN PHYSICS
AND ASTRONOMY "
It is my humble opinion that the example B.
Application of TSA to obtain the correct
collision cross-sections in Nuclear Physics and in
Astronomy by the example of obtaining the
correct scattering cross-section of the well-
known Alpha Scattering in the paper IAF-00-
J. I. 10 should be related to our mutual interests.
Based on the above in-depth technical
discussions, I hope that you are willing to
provide your expertise to examine a copy of my
SRC-NASA proposal No. NRA-96-HEDS-03-
076 entitled " APPLICATIONS OF THE
TRAJECTORY SOLID ANGLE AND THE
WONG'S ANGLES TO SOLVE
FUNDAMENTAL PROBLEMS IN PHYSICS"
March 21, 1997 which is also the reference No.6
in the IAF-00-J. 1.10 paper.
Your are cordially invited to participate many of
the proposed tasks listed in the SRC-NASA
proposal NRA-96-HEDS-03-076 of your
choices. The proposal ( 29 pages ) is being sent
to you by fax to you at No. 1-617-253-4876
your fax. number).
With my best regards, I am,
Sincerely yours,
Po Kee Wong, Ph.D. & P.ME.
CEO, SYSTEMS RESEARCH COMPANY
(SRC)
U.S. Federal Supply Code: 5R583 for
Mechanization Of Contract Administration
Services (MOCAS)
50 Bradley Street, Somerville, Mass. 02145-
2930 USA
Tel. and Fax.: 1-617-628-8157
E-mail:pokwong(•.massed.nct

----- Original Message -----
From: Wolfgang Ketterle

<ketterle(@MIT.EDU>
To: pokwong
<pokwon(d massed. net>
Date: Sunday, October 14, 2001
2:45 PM
Subject: Re: (1) Congratulation to
you for winning the Nobel Prize (2)
Sending you two US basic Patents
and 5 international technical papers
to assess their truth relevant to the
Bose-Einstein Statistics that is the
foundation of your BEC

At 11:45 PM 10/13/2001 -0400,

you wrote:

Dear Professor Ketterle:

The original E-mail to you was
failed to be executed by the E-
mail server.
Please excuse the separate E-
mails being sent to you in
piecewise condition.

Your time and effort to help
me out will be gratefully
appreciated. I look forward to
hearing from you about the
subject matter No. (2) again.

Very truly yours,

Po Kee Wong

Thanks for your congratulations.

I am not an expert with regard to
your other request.
Regards
Wolfgang Ketterle

Wolfgang Ketterle
John D. MacArthur Professor of Physics
Research Laboratory for Electronics,
MIT-Harvard Center for Ultracold
Atoms,
and Department of Physics
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Massachusetts Institute of Technology,
Room 26-243
77 Massachusetts Ave., Cambridge, MA
02139-4307, USA
Tel 1-617-253-6815
Fax 1-617-253-4876
Email ketterle@mit.edu
Web http://cua.mit.edu/ketterle group/

Based on the above data, the orbital
equations can be described in the
followings:NUMERCIAL BATA ANB

DATA AND
GRAPHICAL PRESENTATION

The most recent data about the Comet
Halley can be obtained from:

http://wwwv.ssd.i pl.nasa.gov/horizons doc.html

Go to Appendices/Examples and Click
on Comet data screen then the
followings will be shown:

JPL/DASTCOM3 Halley 1997-Apr-02 11:13:57
Rec #: 20181 soln data arc: 1835-1989 # obs:
n.a. FK5/J2000.0 osculating elements (AU,
DAYS, DEG, period in Julian years): EPOCH=
2446480.5 != 1986-Feb-19.0000000 (TDB) EC=
.967276875 QR= .587103582 TP=
2446470.9589491 OM= 58.8601271 W=
111.8656638 IN= 162.2421694 A= 17.94154996
MA=. 1237401 ADIST= 35.295996338 PER=
75.9973 N= .012969228 ANGMOM=
.018487217 DAN= 1.80537 DDN= .84911 L=
191.5461888 B= -56.6792985 TP= 1986-Feb-
09.4589491 Physical & non-grav parameters
(KM, SEC; AI & A2 in AU/d"2): GM= n.a.
RAD= 5.6 AI= 3.88D-10 A2= 1.55D-10 MI=
5.5 M2= 13. kl= 8. k2= 5. PHCOF= .030
COMET comments 1: soln ref.= IHW 61, radius
ref. is Belton,M (1991) 2: kl=8, k2=5, phase
coef.=0.03; ref. for magnitude laws is ICQ 1994
Handbook

Select ... [E]phemeris, [F]tp, [K]ermit, [M]ail,
[R]edisplay, ?, :

GIVEN: (1)R(MIN)=0.587103582 AU ;
(2) ANGLE OF INCLINATION OF
COMET HALLEY'S OBITS TO THE
ECLITIC PLANE = 18 DEGREES; (3)
THE PERIOD OF THE COMET
HALLEY REVOLVING AROUND
THE SOLAR SYSTEM = T = 75.9973
YEARS ; (4) THE AVERAGE
DISTANCE FROM THE CENTER OF
THE SUN TO THE CENTER OF THE
EARTH IS DEFINED AS ONE
ASTRONAUTICAL UNIT (AU)

FIND: ALL OTHER OBITAL
ELEMENTS AND RELEVANT
PHYSICAL QUANTITIES OF THE
COMET HALLEY.

RESULTS: R(MAX)=35.295996338
AU ; SEMI-MAJOR AXIS = a
=17.94154996 AU ;SEMI-MINOR
AXIS=b=4.552186934 AU; DISTANCE
BETWEEN THE CENTER OF THER
ELLIPTICAL ORBIT OF THE COMET
HALLEY TO THE FOCUS (CENTER
OF THE SUN) = c =17.35423961 AU;
ECCENTRICITY OF THE ORBIT
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e=0.967276875 ; DISTANCE FROM
THE POINT OF INTERSECTION OF
THE ORBIT WITH THE ECLITIC
PLANE TO THE CENTER OF THE
SUN = 1.154967099 AU

Then, the orbital equation of the Comet
Halley in plane motion about the Sun is

scattering angle @.
where E=e=0.967276875. in the TI-83
Equations (4), (5) and (6) is the
Eccentricity of the orbit of Comet Halley
abotifmn.

Floti Plot2 Plot3
\riE(sin(e))A2/
((1+Ecos(e))A2+(
Esin(0))^2)^ 5
\Iralsin(O)
\,r3EEsin0e)/((1+
Ecos(e) )^2+(Esin
(0) )2)A . 5

r = a (1- e^2)/(1 +eCos@) (3)

Based on Equation (3), the following
Equations (4), (5) and (6) can be derived
from using the Trajectory Solid Angle
Patent No. 5,084,232.
The differential Trajectory Solid Angle
with respect to the differential Scattering
angle d@ and divided by 2pi is

rl= e( Sin @ ) A 2 / ((1+eCos @ ) ^2 +
(e Sin @ )A2)^(.5) (4)

The differential Geometric Solid Angle
with respect to the differential scattering
angle d@ and divided by 2pi is

rlE(sirC$))aa/(Ci.Ecos($)...

.(IL?.

4=.21209523 Y=.360?'535

r2 =:sinC(0)

H.'330=2? IY.fl

X=.249302l Y=.42590• 6

r2 = Sin @. (5)

The RATIO of the Differential
Trajectory Solid Angle (TSA) to the
Differential Geometric Solid Angle
(GSA) is

r3=rl/r2 =eSin@/((l+eCos@) A

2 + (e Sin @ ) A2)A(.5) (6)

Equations (4), (5) and (6) were first
shown on page No. 12 in the 1979 SRC-
DOE proposal No.P7900450 that is the
reference No.7 in the U.S. Patent No.
5,084,232.

Equations (4), (5) and (6) can be typed
into a TI-83 calculator. Each equation
can be graphed as a function of the

CONCLUSIONS

The claims and impacts of the Basic
Patents No. 5,084,232 and No.
5,848,377 can be seen and traced from
the Website given in the abstract, The
claims are also summarized in the
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IMECE 2001 paper recently presented in
New York City on November 13, 2001.

However, it is very amusing to provide
the old conclusions written more than 23
years ago in the SRC-DOE 1979
proposal No. P7900450 on page No. 22:

1. The probability distribution function
for a particle striking a designated
area, given the parameters of its
generation and ejection is presented.
It is being initiated and defined as the
ratio of the trajectory solid angle,
being subtended to the point from
where the particle is released, over
4pi. The trajectory solid angle
deviates but includes the geometric
solid angle as a special case. It is
defined from the definition of the
incident angle of a trajectory that
intersects the surface to be struck by
the particle. The trajectory of the
particle is governed by the
fundamental laws in classical and
modern physics.

2. The present result, in contrast with
the technique presented by Maxwell-
Boltzmann statistics, is derived from
the basic principles of classical
mechanics and differential geometry.
If the presentation is reviewed and
confirmed to be correct, the subject
may provide an impact on the theory
of statistical mechanics and quantum
mechanics of modem physics thus
affecting the theory and its
interpretation of experimental
results.

3. Important applications of the subject
are widely open in numerous areas
from problems in physics to
astronomy, from aerospace

engineering, nuclear safety to
precision design of electronic
instruments.
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al radii of the concentric spherical shells with i=1,2,3,4,

... identifying the number of the layer
r
All vector potential function with m =1,2,3,4,... identifying the kind of

material

A2" arbitrary constants
B In,,

B2, I

b geometrical length

c- sound speed of the viscous fluid

c,,, dilatational wave speed in an infinite viscoelastic medium of

material m

c,, shear wave speed in an infinite viscoelastic medium of material m

D partial differential operator with respect to time

e base of natural log e = 2.732 ...

e onedimensional strain, small number of a ratio of two
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i subscript i =1,2,3,4,...

j subscriptj =1,2,3,4,...identifying the order of the vibrational mode

a,, spherical Bessel function

ks,, dilatational wave number

ksm shear wave number
4k' /I

k bulk modulus of an elastic solid

m subscript identifying the kind of material

n degree of Legendre's function Pn (cos 0), or the meridianal wave

number of the spheres or spherical shells, or the order of Bessel's

functions a, and Y,

P instantaneous pressure

P0 equilibrium pressure

Pe excess pressure (perturbation pressure) Pe = P - Po

r spherical radial coordinate

T period of vibration

t time as an independent variable in the governing equations

td attenuation coefficient (time constant) of overdamped or damped

motion
ru displacement vector

A' velocity vector
r
u,, displacement vector of a continuum of material m
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ru, radial component of the displacement vector of a continuum of

material m
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1.
model; Z is equivalent to the reciprocal of Young's modulus I inE

the case of an elastic solid, otherwise it is a linear operator

Zd dilatational mechanical resistance of a viscoelastic material model;
1

Zd is equivalent to the reciprocal of Lam6's constant - in the case

of an elastic solid, otherwise it is a linear operator

Z, shear mechanical resistance of a viscoelastic material model; Z, is
1

equivalent to the reciprocal of Lame's constant - in the case of anP

elastic solid, otherwise it is a linear operator

P
P.
P'' Fliigge's 41 ) viscoelastic linear operators
Q
Q,
Q"

YpYs Bland's 42) viscoelastic moduli

PI/ Lam6's constants in elastic solids

Zd

ix



Billie Champ - Stanford The-si~s.p'dfP 'Pae. 1

I, -
pm -Z'

-i' first shear viscosity of a viscous fluid

rI second shear viscosity of a viscous fluid

v' first kinematic viscosity of a viscous fluid

u second kinematic viscosity of a viscous fluid

ý2 rotational vector of a continuum

o) angular frequency of vibration

aj,, roots of characteristi c equations, where subscriptj identifies the

number of modes in the spherical radial direction, while n

identifies the number of modes in the meridianal direction

po density of the continuum in equilibrium

V,, alar potential functions of a continuum of material in

0 spherical coordinate in the circumferential direction

4 spherical coordinate in the meridianal direction

x
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CHAPTER 1

INTRODUCTION

The work presented here deals with the formulation of a theory
that can be effectively applied to study the interactions of fluid, solid,
and viscoelastic materials. On the basis of the linearized Navier-
Stokes equation of a viscous fluid and the displacement equation of
motion of an elastic solid, the governing equations of motion for a
class of three-dimensi onal homogeneous, isotropic linearly
viscoelastic continua are systematically constructed. The general
solutions of these equations of motion are obtained by means of Lamn-
Helmholtz-Stokes potentials. Each equation of motion is then
transformed into a scalar and a vector potential equation. The scalar
potential equation is separable in eleven coordinate systems, whereas
the vector potential equation is separable in only six coordinate
systems. Choosing the spherical coordinate system for illustration and
introducing the Debye potentials to resolve the vector potential for the
purpose of obtaining a separable solution, we can reduce each equation
of motion into three independent scalar potential equations which are
all separable in spherical coordinates. The field quantities are obtained
in terms of these three scalar potentials from which the transient or
harmonic solutions can be sought for mixed or nonmixed boundary
value problems. Finally, applications of the general solutions for
physical problems in spherically symmetric, axially symmetric,
torsional and nontorsional motion are given in thirteen examples.
These examples can be used for the modeling studies of aero and
hydro space vehicles, geological wave problems and macroscopic
biomechanics.

Recent developments in this field were edited by GreensponI) in a
symposium volume of eleven articles from four fields, namely, air
blast loading and response, acoustic interaction, aeroelasticity and
hydroelasticity. However, another field which also involves fluid-
solid interactions and is rapidly expanding is biomechanics. It is
actually an old subject which was dormant for many years and has

I
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only recently regained its popularity. Typical examples of fluid-solid
interaction in biomechanics can be seen in a series of articles by
Anliker et al. 2-6) on the theoretical and experimental developments of
noninvasive methods to determine the elastic and inelastic properties
of individual arteries, veins, eyes and hearts. Other examples can be
found from articles edited and reviewed by Fung7' 8. In view of the
importance of this field to medical technology and the need for
systematic organization and efficient application of engineering and
scientific principles to medicine and biology, we are presenting here a
mathematical analysis of the interaction of viscous fluids, elastic solids
and viscoelastic materials.

The theory is formulated starting out from the classical
conservation laws-of momentum, mass and energy for continua with
different constitutive equations. This approach is conventional from
the point of view of continuum mechanics 8). Texts and articles on this
subject were given by Prager9), Scipio 10), Jaunzemis "), Eringen "),
Truesdel113), and many others. It is well known that the governing
equations are in general nonlinear and that their analytic solutions are
quite formidable. For example, in the case of a viscous fluid the
general solution of the Navier-Stokes equation still remains unknown
except in a few particular cases as indicated by Schlichtig 14). In view
of the difficulties in solving the simultaneous nonlinear partial
differential equations and the fact that the linearized solutions of these
equations still represent a wide class of practical engineering and
scientific problems, we confine our self to first seeking the linearized
solutions of these equations and then applying the successive iteration
method to find the nonlinear solutions. In the case of viscous fluids
this method, known as the Verturbation method, is for example
described in articles by Eckart '-, Truesdell") and Hunt"). It had been
systematically developed by Kaplun18), Van Dyke19), Cole2 °), Chang 21 )

and others.
Having confined our goal, we linearize the equations about the

equilibrium state and obtain a set of displacement equations of motion
for different materials. For simplicity these sets of equations are
derived for isothermal conditions which means that the energy
equation will not be coupled with the momentum equations and the

2
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equation of continuity. The coupling of these equations with the
thermal and electromagnetic fields can undoubtedly be included later.
Examples of thermal coupling can be found in articles by Truesdel'116)

who provided the harmonic plane wave solution and in publications by
Wu22) who gave the transient plane wave solution for the case of
viscous, thermally conducting fluids. Examples of thermally
conducting elastic solids are described in articles by Deresiewicz 23)

who obtained the harmonic solutions of dilatational plane waves in an
unbounded solid, axially symmetric nontorsional (longitudinal) motion
of a circular cylinder, and the thickness-stretch motion in an infinite
plate. Wong 24) also dealt with problems involving thermal coupling
and provided the harmonic solutions of multilayered cylindrical shells
in torsional, longitudinal, flexural and circumferential motion and the
harmonic solutions of multilayered spherical shells in axially
symmetric torsional and nontorsional motion. Examples of
electromagnetic or other field couplings were given by Scipio 10)

The displacement equations of motion are linear partial differential
equations and may be solved by means of the spectral operator theory
systematically presented by Friedman 25) However, there are at least
two difficulties encountered. First, the separability of the general
solutions of these equations for a given coordinate system is in
question; second, the boundary condition is generally in tensorial
form.

In order to remove the first difficulty the Helmholtz-Stokes
potentials were introduced in the field of fluid mechanics for the
velocity vector of the fluid field. The decomposition theorems of the
velocity vector are described for example by Lagerstrom et al. 26) and

22Wu 2). In elastodynamics, the identical potential functions, named
after Lam6, were introduced for the displacement vector of the elastic
solid. A detailed review, in which Lam6's potentials were used for the
integration of the equations of motion of elasticity, was given by
Sternberg and Curtin28 . In either case, the velocity vector or the
displacement vector is decomposed into two parts. This
decomposition of a vector is now generally known as Helmholtz's
theorem. It will be shown later in this text that the use of Lam6's
potentials is sufficient for the solution of the governing displacement

3
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equations of motion for elastic solids and viscous fluids as well as
viscoelastic materials. By means of Lam6's potentials, the governing
displacement equations of motion of isotropic materials are now
decomposed into two separate partial differential equations: the scalar
potential equation and the vector potential equation.

In order to remove the second difficulty, these potential equations
should be transformed into the proper orthogonal coordinates
describing the boundaries. When this is done, one again faces the first
difficulty: the transformed potential equations may not have a
separable solution. It should be clarified here that the general
solutions of the potential equations do not depend upon the coordinate
system, which is arbitrarily chosen to describe the boundary
conditions. We require not only the separable solutions of the field
equations (i.e., the governing potential equations), but also separable
solutions of those field quantities which are actually used to match the
boundary conditions. The potential equations can further be reduced
into a scalar Helmholtz equation and a vector Helmholtz equation by
suppressing the time variable either by Laplace transform methods or
by separation of variables. The separable solution of the scalar
H elmholtz equation in eleven curvilinear orthogonal coordinate
systems was shown by Moon and Spencer 29); however, he separable
solution of the vector Helmholtz equation is considerably involved. A
common technique of achieving the vector solution is to find some
scalar potentials which can be satisfied with the separable scalar
Helmholtz equation. These potentials, when they are constructed to
represent the Lam6 vector potential, should then be consistent with the
Helmholtz theorem. In a spherical coordinate system these scalar

30)potentials, known as Debye potentials, were discussed by Wilcox°.
The necessary conditions for the separable solution of the vector
Helnholtz equation in a general curvilinear orthogonal coordinate
system were given by Morse and Feshbach 31). They found that
separation of variables can only be achieved for spherical, conical and
general cylindrical coordinates. Seeking the harmonic solution for
general cylindrical coordinates in the case of a homogeneous, isotropic
elastic solid, they gave the results of the displacement and the stress
fields in terms of three scalar potential functions that satisfy the

4
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potential equations of motion of elastodynamics. However, Morse and
Feshbach 3 1 assert that these general harmonic solutions are useful
only in the case of circular cylindrical coordinates. For other general
cylindrical coordinates on a given coordinate surface (such as elliptical
or rectangular cylindrical coordinates), the field quantities that should
be satisfied with the boundary conditions are not separable on that
coordinate surface as they are on the radial surface in the case of
circular cylindrical coordinates.

For other than circular cylindrical boundaries the boundary value
problems are considerably more complicated, and very limited
information is available. For example, the harmonic wave propagation
in elastic rods of elliptical cross section with a stress-free surface has
been given by Wong et al. 32). This applies only to an infinite rod. If
the rod is of finite length, the stresses at both ends of the rod can not
be zero. This fact was also pointed out in Pochammer's 33) and
Love's 34) work on a circular cylindrical rod. The impossibility of
devising separable solutions for problems with nonmixed boundary
conditions can also be demonstrated for rectangular cylindrical
coordinates. Mindlin and Fox 35) gave a set of discrete points of the
frequency spectrum for an infinite rectangular rod with stress-free
boundaries, for special values of the ratio of width to depth. As
pointed out by Mindlin 36), the frequency equation in this case can not
be expressed in terms of a finite number of known transcendental
functions, because of the complexities arising from mode conversion
at the two perpendicular boundaries. Mathematically these difficulties
could be anticipated because of the presence of two characteristic
lengths in the problem which arise whenever the nonmixed conditions
should be satisfied. However, recently Miklowitz 37,38) presented a
means for solving some problems in this class, focusing on the semi-
infinite plate as an example. He pointed out that for problems
involving nonmixed end conditions, the direct separation methods fail
to yield solutions, and the usual transform methods have been oriented
only to the mixed-end conditions. In view of this, to accommodate a
wider class of boundary value problems we should seek a general
solution of the governing displacement equations of motion that can be
applied for harmonic as well as transient and for mixed as well as

5
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nonmixed boundary and initial value problems. This has been done by
Wong 39'40 ) only in the case of an elastic solid for the spherical
coordinates and the general cylindrical coordinates, and in the case of
a viscous fluid for the circular cylindrical coordinates. However, as
pointed out by Anliker et al. 2-6) and by Fung 7' 8), the materials involved
in biomechanics are far more complicated than a linearly elastic solid
or a viscous fluid; thus, the research results should be generalized to
cover a wider class of materials.

I

6



I Biliie Ch am p..-.Stanford .Thes~is_:pdf Billie Champ - Stanford Thess.pdf..page 17p

CHAPTER 2

DEVELOPMENT OF POTENTIAL EQUATIONS OF
MOTION

If we neglect the effects of thermal conduction, the linearized
equations which govern the mechanical behavior of a continuum are
reduced to the equation of continuity and three equations expressing
equilibrium in the sense of d'Alembert:

S+" (V • 0 (2.1)
at

Po '0--V*g=0 (2.2)

where p and p, are the local densities of the continuum in the

perturbed and unperturbed states, A is the velocity vector and q is the
stress tensor. For homogeneous, isotropic, linearly elastic solids, the
components of the stress tensor are related to the displacement vectorr
ui through Hooke's law

X (V. ) P[ei.(ej.V)v+ evj'(e'V)t•] (2.3)

where k and ý are Lam6's constants; V is the "gradient" operator; evi

and ej are unit vectors in the direction of coordinates X i and X j ; and

8 U is the Kronecker delta. If we are dealing with a homogeneous,

isotropic, and linearly viscous fluid, the components of the stress
tensor are related to the velocity vector ý through the Newtonian law

q=[- P+rl' (V't•)]6 +['(e"/ e. (e<.V ] (2.4)ýij P+ 71, V -4)]8ij ,q[I" (e1 V )A+ v

7
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In this equation '9' and ri are the dilatational and shear viscosities; and
P is the instantaneous pressure defined by the linearized equation of
state which for isothermal conditions is given by

P- .=(P - = POP - P.) (2.5)
P0

where PO is the pressure in the unperturbed fluid c. ;

Substituting (2.3) into (2.2), one obtains the displacement
equations of motion for a homogeneous, isotropic, and linearly elastic
solid:

po0 (+ 21)V x(r) =0 (2.6)

By combining (2.2), (2.4), and (2.5), we arrive at the equations of
motion for a homogeneous, isotropic, and linearly viscous fluid:

a,,' - 8 V r) +81 rP°-;- (r'+2r)- V(VIu)+i-Vx (V x u)+CoV(p- po)=O (2.7)

Taking the divergence of (2.7) and using (2.1) and (2.5) to

eliminate A one obtains

p - P0 Li

o + (L)' +2u)+ 72 L)--P = (2.8)
atT EET-p 0

8
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where co is the speed of sound in the viscous fluid, u'=''po =

dilatational kinematic viscosity u = r/p. = shear kinematic viscosity,

P-Po - Pe = excess density ratio, and P-P. _ P, = excess

pO p. P0  P.
pressure ratio.

In terms of the dilatation A and the rotation vector 2L which are
defined by

A = V (2.9)
VI

22= V xu (2.10)

equations (2.6) and (2.7) can be written respectively as

21

pV0 4-(X+2p)VA+p Vx2d =0 (2.11)
at2

po--7--7-- (rl'+ 2T") -VA +j-aV x2H + c2V(p - p)=0 (2.12)t- at at

By taking the divergence and the curl of (2.11) and (2.12) and
noting from (2.10)that V. 0=0, we find

p"0 -7 (X+ 2p)V A =0 (2.13)

a2 20Po at2 !-V, 2d = 0 (2.14)

a2 At "I2  )

po at- 2 a) a +CV(p-o)=O (2.15)

9
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P 0  (22 ) tV2 (20)=O (2.16)

The displacement vector u can be written in terms of the Lam6's

potentials 27,31) qp. and A,, (see also Appendix B)
V

u,, =V%, +.V xA, (2.17)

where the subscript m is introduced to identify the constitutive laws of
the various materials which will be considered. The left-hand side of
this expression involves three unknowns, whereas the right-hand side
contains four, namely, (p and the three components of A,,,. Thus

another condition must be imposed on Am, but this condition must be
such that the field quantity zu is not affected, i.e., the field quantities
must be gauge invariant 3 1). The forms of this condition will be
discussed later.

The substitution of (2.17) into (2.9) and (2. 10) gives

,,, = V 2 9. (2.18)

2m---- V xV xl- =V (V "Am)-V2Am (2.19)

Choosing m = 1 to represent the viscous fluid and m = 2 the elastic

solid, we obtain by substituting (2.18) and (2.19) into (2.13), (2.14),
(2.15), and (2.16)

V 2 
[ (-2- (k,+2p)V2 p2 ]=O (2.20)

0 at 2

a 2A2'j -2
VxVxLx o -v A2 =O (2.21)

M at 2

10
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72 [ 2 (P 1 V ,T I 2 F[]
V lip - (r+2r) Vp, +2co (p- po)D= 0 (2.22)

F, at 2, at 0

Da2 A
VxVxL [ 0oat a 2- D

T,-_V Ai E O
at ]

(2.23)

A sufficient condition for the satisfaction of these equations is that

1 2 1 a2E]
E 2 2t[P 2 = 0 (2.24)
L Cd tD

w 2  1t 2-0 (2.25)
S L C2 [7D
0 0,at

'+2)-)-av 2 __a
at a- 2 C.o P. (2.26)

(2.27)•72 1 a or

--- 41 =O0F] U at 0]

where cd = (k. + 2p) /op is the square of the dilatational wave speed

and c2 = / p. that of the shear wave speed for the elastic solid.

For m 1 we can eliminate (p- po)/p. with the aid of(2.1) and
(2.17) and therefore write equation (2.26) also in the form

o + (u'+ 2 ) a2 [=-- •'EP, =
(2.28)

11
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Equations (2.24) and (2.25) are the governing potential equations
for a linearly elastic solid whereas (2.27) and (2.28) are the governing
potential equations for a viscous fluid. The solutions of these
equations are contingent on the gauge invariance just mentioned.

If we take the divergence of (2.19) and make use of (2.10) and
(2.19) we find

.(2i,,-o= V2 (V .,) (2A,

which shows that the operators V 2 and V 0 are commutative. Hence
the divergence of (2.25) and (2.27) leads to

S2 1a 2  r (2297Y2 --- (V. A2) =0 (2.29)

2 
r_ _ V -V A,) -=0 (2.30)

Thus it is seen that (2.17) is automatically satisfied if we impose the
additional conditions:

V .A = 0 (2.31)

r I a2  r
2(V'-A,) -- ot (V'A2 )= 0 (2.32)

r
with r 2 = V'(P2 +V x A2 in the case of a linearly elastic solid, and

V .A= 0 (2.33)

r 2--Va. r
V- (V ,)---(u A,)= 0 (2.34)

U at

12
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r
with -j = V P + V X A1 in the case of a viscous fluid.

Since A 2 must satisfy either (2.31) or (2.32) and 4 must satisfy
either (2.33) or (2.34), there are in effect only two independent

components of the vector potentials A2 and 4. In spherical and

general cylindrical coordinates it is possible to choose these
components such that they satisfy the scalar diffusion equations for a
viscous fluid and satisfy the scalar shear wave equation for a linearly
elastic solid. 39' 40 )

It is shown in Appendix A that in spherical coordinates the vector

4, written as

r r
VX(er rx,)+ VxV x(er rXj) (2.35)

r
with er representing the unit vector in the radial direction, satisfies the

vector diffusion equation (2.27), provided the scalar functions Yj, and

X satisfy the scalar diffusion equations

v 2 Y I = (2.36)
U at

S2 1= OX, (2.37)

Uj at

Similarly the vector

r )V Vxr
•,Vx(errW2 )+ VxV x(r 2 ) (2.38)

satisfies the vector wave equation (2.25), ifY2 and X2 are solutions to
the scalar shear wave equations

13
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v 2g Y 2  
2  (2.39)

v 1 a2022 (2.40)C,2 -ca t2

So far we have obtained the linearized Navier-Stokes equations for
a viscous fluid and the equations of motion for a linearly elastic solid.
We have written these equations in terms of the corresponding
relations which govern the associated Lam6 and Helmholtz (Stokes)
potentials. It will be shown that these equations can be used to
construct the equations of motion for a class of linear viscoelastic
continua.

The basic idea and method of approach can best be explained
through electrical circuit analogy. We begin with the simplest model
in one dimension which we then generalize to allow for more complex
constitutive laws and three dimensions.

According to Ohm's law we have

I=-V (2.41)

R

where 1 is the current flowing through an electric resistance R and V
is the difference in voltage across R.

R

The corresponding mechanical model of Ohm's law is the one-
dimensional Hooke's law

I

14
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SEE= E- (2.42)

CEFD

where ;is the stress, e thestrain, E the Young's modulus, and Z the
mechanical resistance or impedance.

E

E

By taking advantage of elementary circuit theory we can readily find
the total mechanical resistance Z for continua with more complicated
constitutive laws.

For a viscous fluid the Newtonian law specifies

L ( = 1 = (2.43)
wt 1 Z

where ; is the shearing stress, e the strain, and r1 the viscosity

coefficient.
C.

- is treated as an operator.at

11

R-

15
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Comparing (2.43) with (2.42) we immediately identify the mechanical
1

resistance of a dashpot as z"-

In the case of the so-called Maxwell model we have a spring and a
dashpot in series:

E
A AAAA AA

1 1
ZI =- Z2-E

The total mechanical resistance is simply

z=zi + I + (2.44)
E Ti

in analogy with the electric resistance. Substituting (2.44) into

G E
(2.45)

Ea

we obtain the constitutive relation defined by the Maxwell model:

-(2.46)

16
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The Kelvin solid is obtained by arranging a spring and a dashpot in
parallel:

T1

at

the total mechanical resistance is now

-1 1 (2.47)

-+- E+ij
z1  z, aE

and the corresponding constitutive law is

atc (+ --)e (2.48)

In the ease of a four parameter fluid defined by the diagram below

E1
EE

E, T12 E3

E112 3 T1z3= 1

Z3 a
E3 +11 -t

17
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the total mechanical resistance is given by

Z __Zl + Z2 .+ Z3 +.1 1.+_• tEI I I
E- + E3 +- -1+ at at

and the constitutive equation can be written as

(2.49)

_wj a2 +( E 3  1 ) a+ E3 D
E 1 1 s 3 "1 2 11 3 a t 11 2 1 3 1 1

L9 a2w
4L at + at2 E- (2.50)

For one-dimensional problems the constitutive equation of a
viscoelastic material can be systematically constructed on the basis of
circuit analogy. A representativ e set of examples are given in Table 1.

18
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TABLE I
Constitutive

Model Name Mechanical Resistance Equation

E elastic I E
solid E Z

rl viscous z E
fluid o z

M axw ell Z= 1 + 1
fluid E - Z

E1

Kelvin Z =

solid E + -- at=-

3-parameter Z I
solid E ,'q2 Z

3-parameter Z + I E

fluid n, E, +yl2 Z

19
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Constitutive
Model Name Mechanical Resistance Equation

4-parameter z =I+.. + I o

fluid E - E , +112 = .

E, E, +
FJ1J-1 4-parameter Z E

solid E, +111- E, +112a~at Z

a OD, ] o 0 []
B; +E, +,1..0 +/

EE 0 4L + +E1 E, SoEB 11 ,a 'DB
0I 00

Flilgge
4 1) z= m [ o oU q =G-n10, --m- - , 0 0

•1.B +I Cc, [,c]]o
E4  2n

O.Hl,+1 ' O +E 4 ,n+,j+/03 00
El §?at E,]j

20
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The mechanical resistance or impedance Z given in Table 1 can be
related to the creep compliance J(t) and the relaxation modulus y (t)
introduced by Lee,44'45' Flugge,4 1) and Bland.42) This relationship is
given by

ca= t o

and

z -E-o

Elat F3

(2.51)

(2.52)

where the mechanical resistance

zat H
As indicated earlier, the

convenient features:

is written as a differential operator

electrical analogy offers several

a) Extremely complicated material models can be dealt with
in a simple manner by utilizing electrical network analysis.

b) As will be shown, we can
dimensions and if the
homogeneous, and linearly
equations can be systematicall

extend this analogy to three
continuum is isotropic,

viscoelastic, its constitutive
y constructed.

c) Without suppressing the time variable the governing field
equations are main-rained in their general form such that a
wider class of boundary value problems can be
accommodated.

21
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We are now deriving the linearized Navier-Stokes equations for a
viscous fluid and the equations of motion for an elastic solid and the
equivalent governing potential for the materials given in Table 1.

In the one-dimensional case the linear operator which interrelates
the stress and the strain varies with the constitutive law of the material.
Likewise do the corresponding two linear operators in the three-
dimensional case where one of the operators governs the dilatational
motions of the material, the other the shearing motions. The
constitutive law for a class of isotropic, homogeneous, linearly
viscoelastic materials is proposed in the following form:

ij =[_ ,,,+k. V.,)]5j+ P. r .(ejv r r .r.v)r]
1 O [r.(rjv r j. V ]

S. 1] Z +

1 1

where I =k,,m and I =p,, are linear operators. In particular, for the

case of a viscous fluid (m = 1), the constitutive law is given by

4;0" P+11 UI tt•ii + 11 -L[eri(e uV +ej e

and according to Table I the linear operators are

1 a at

For the case of an elastic solid m = 2 the constitutive law is given by

( .r r r

and the linear operators I and I are the ordinary Lame's constants
Zd Z'

22
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11

Zd 2 =P 2 = PZd Z'

(See Table 1).
With these two examples for m = 1 and m = 2 we can construct the

three dimensional constitutive equations for viscoelastic materials.
Considering for example a three dimensional Maxwell fluid (m 3),

we have as the operator connected with the dilatational motion

1 1
I= k3=__

Zd - '3 1 1
x, ,a3

and as the operator pertaining to the shearing motion

z +
at

The corresponding constitutive equation can therefore be written as

1 V .( )], I (.
"u)][- + I I .+ [1ei(ej it~ + e 'e, "V u]

1 1 1 1
+ ý + -

at ' a
For the three dimensional Kelvin solid the operator associated with

the dilatational motion is

I~ = Xý4 +fI a2

zd at
1d X = , ''--

23
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while that connected with the shearing motion is

Zat

Thus the constitutive equation for such a material can be expressed in
the form

a r +)r r r r r r.= [-P+ (k + T'a)(V u)]+(i+ .)[e (e + V)i+ (eV)i]

Proceeding in a similar fashion we can construct the three dimensional
constitutive equations for the remaining viscoelastic material models
given in Table 1. The results are summarized in Table 2.

24
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TABLE 2

CONSTITUTIVE EQUATIONS OF THREE-DIMENSI ONAL HOMOGENEOUS,
ISOTROPIC, LINEARLY VISCOELASTIC MATERIALS

Name Constitutive Equation

jm = [-P, + km(V "b)]5a
+ in.jm 1 .(ej* zi ej-(i V

1 1
'= •, = Pin

z ý InZ' PZ_____Z Z
[] p , (V .r)•

viscous q= -P+ a ( i
fluid c3 ri r r r r r]
m=1 + 1] e[ " (ej4 V)u + ej "(e. "V)u]

1 d a 1 a

elastic g02 = V "u + p[t. (j' V)z'u + ej "(e, "V)zui
solid

1 = 1
m=2 Zd 2 Zs

Maxwell 3 =I -P (V" )]61 1
fluid -+ x a
m=3 at

r r rj r r1 i.(ej. + ej.ei. V)u•

at
1 1 1 1

__ataa

25
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Name Constitutive Equation

Kelvin aP+(k+ a ) r.O
solid ,j4 =t- "U) i

m=4 r r r r r+ (p + 'I-) e'i-(eiV )rii+ ej (e,. "V)ur]
at'

1 ~ ,XO'2  1 a
k=•4 k + T= PJ4 =1PJ+

z_ at z, at
3-parameter 1____=____ r_ _

solid ij5 (V-+ (

=X =

m=5 + -2 +r~

at

1 1

=

Zd 1 1 !lJs

-+ S -

a + a

3-parameter 1 rfluid %i6=-p (Vul)]iJ3.

+ [r e ~ + 1j (e .(V)u]

~ ~2~at

10 1

6 = 
I

Zd -+

xI 2• + 2l. a"

,1 1
zs P2 + 1 a

at at

26
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Name Constitutive Equation

4- 1 r
parameter = [ -P+ (V • 8u)] 1

fluid +___ I 1+_I
+ +

m=7 W/ + 11'2•m7 'at

I r Vr r r r . r]
+ e '(e e(e V)1

at at

Zd 1 I

'at - at

-P7
Z + •+

a aP,/ P1/ •2 +112 •

at at
4- 1r

parameter go = [-P + I 1 (V u)]5i
solid - +

a a

kI+ 1  ' 1t X- + 112
m=8 at at

I [rr r) r + r[-P V) ri
+ Ili.-(e.V ' ite.(e.V1uX8 =

soi +

a a

x/1 +2+ I k 2 +
tt a t

I' +

a a
at at

Zd I 1
I +

P + 11' 2 Ta t

27
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TABLE 3

Elastic Moduli Viscoelastic Operators Viscoelastic Moduli
(transformed operator)

Flfigge [41] the present text Bland [42]

Bulk 3 2
3k + z Z

d, Z

Shear 2
2P - 2p,,

Young's Q 3 V V= 3Z, + 2Z, 3 Yy
E P 2P'Q"+PQ' Z Z,(Z, +Z) 2t, +Y

Poisson's ration P'Q-- P,' Z, Y,
q 2PQ'Q+P"Q' 2(Z, + Z.,) 2Y' + Y,

Lamd's constant ' '

28
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The constitutive equations of three-dimensi onal homogeneous,
isotropic, linearly viscoelastic materials given in Table 2 were
obtained by direct analogy from the constitutive laws listed in Table 1
for one-dimensional materials. In contrast to the one-dimensional
materials for which we have a single operator, the mechanical
resistance z, we have two operators for the three-dimensional
materials, a mechanical resistance z, due to dilatation, and a z, due to

shear. Z, Z, and Z are differential operators which after linear
transformation assume the form of the so-called viscoelastic moduli.
For comparison purposes the various operators are given also in Table
3 together with those obtained by Flugge 41) and Bland 42) on the basis
of the correspondence principle.

Following the formation of Table 2 and Table 3, the generalized
linear Navier-Stokes equations and their equivalent governing
potential equations are obtained by inspection from Table 3. The
results are shown in Table 4.
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TABLE 4

GENERALIZED LINEAR NAVIER-STOKES EQUATIONS AND
THEIR EQUIVALENT GOVERNING POTENTIAL EQUATIONS

Name Governing Field Equations

Materials , r r
S--T - (X + 2p)v(v)+v(v x) =0

r v
u, =Vy, +V x A,

- -v't = 0

C2 _ l, 2 _ I 1

C2 P
Po P oZ.,

Viscous fluid ar [] , -a 7 (o t oc' +01'+2, 1)L (V .,)+ LVx(Vxj) =0

n? =1

r v
u, =Vp, +Vx A,

L 2 V2 a-2 =0

L•AsA, = );,v2 -- 0o
1] at-
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2 2'1 0 2 1 2
Cd C o + - (il-'+2i) -= c2 + I +

d 0  at PoZd PoZ,

2 110 1CsI
__ __ __ Ot poZ5

Elastic solid a2 rr r
U2m= P T -(k+2pVv(Vu -)+ PV x(V xur) 0

V
U2 = V(P 2 +V xA 2

L,2= d,2- 2 P2 - 0- t2

L A2 A2= 2 2v - 2 =0

2 A+2_ 1 2
Cd2 - + 2

P0  PoZd PoZs

2 p 1
Cs2 -

PO PoZs
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Maxwell fluid a2U3 , 1 2 .r
Po at2 [P 0c + 7 1 + 1 ]V(V U3)

m=3 m+ - +

,I a p aI
a at

1 r
1 1 (Vx (vx 3)=0

p1 a

r =r
113 = V3+ V xV A3

L2•= _d3V2 _ 2 0
p3(P3~ d3 at 2 3

L . 5 2 M •v 2 - a2 =

2 2 2 1 2
C d 3 = C o + - + -- - + - C 0

Po + P o + PoZd PoZs
x, ,a tJ a

~at a

21 1

P, + P. PoZ,
p aIn•t
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Kelvin solid

m=4

a. at 2 P.C0 2 + + 11 '2 H 2(p +at ( -Ur4)

+ [ f a R7 x(Vx r)o
at a I

U4 =V4+V A 4

L~24 = V2 a

a2

2 = ~C2 +J
p 0 L

+ I 2am EPO at EjCO _ _ +PoZd
2

PoZ,

C, 4= i+flE 1i[
PO El atwE , pZ s
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3-parameter ., 1 1 1
solid Po -_=_ + + U(V'r)

M=5 X, +',

P2  X1 11 P qr

U5=V (P5+VxA 5

L•5p5 = ;dSV _0

LAsA = 2 V 2 -_ =

= 5 a t2 2 -5

2 + 2 2 2

Po + PO Po .+ PO PoZd PoZA

at/ •2+r' J/ P2 +112 a

c__1 _ 1

2t - I

s5 P...O + PO PoZs

p '- P2+ 112 ~ zatP.2 + 12
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[] I]

3-parameter a2r,6 E 1 2 0 r
fluid Po -t+ - l + +

m=6 cJ+ ,~ + 1 0+ 1 L\(]t 6
L^ XI+11'2 1 2 'qCr at 'at IJ~latH

rrU6 Vx(V x( 6 ) +0 -+

r l + IJ +r2

26 "V2 _Lep 6T) 6 ý

r ý22_6
LA6A 6 = 6 V2 -- = 00t

_2 2 2+ 1 + 2C;6 --. + 0 C +- -

Po + PO PO + PO poZ+ poZ,

c 2t =' I"2O l• t [ 2 q " '

s6  Po + Po PoZ S

a a
'I/7 IP2 + •2 "7
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[] U
~r U2 II]

4-parameter oa _r__[]_1 __ + 1 Ev(V'r)
fluid / 0 + I._ + I. I +

I I 1 11'I'X; , + P__2+0 1

m 7 at O +l-t

+ 1VV x 1470

at at
I I

u7 V(P 7 + V X u 7

L, 79 7 2d7V at 0

r ,2 V2 a2 ~r

+ 2 = 1 1
Q7T=q Cj + Po+ p , + I + Po + P_*o + ,

& ~ ~ ~ PZ P1- l- .A+V

21 1L7P.O+ Po + PO Pozs

p 71 P2 +112 -a a
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[] L]

4-parameter r 1 2

soi + E 2
solid P0  , [- O __c __1 1 1 1

[]+ ,a+' a [

El X' +111-at X2 +112  PI+I1T P2 + 112Tlm=8 t t a

r
+ 1 VX(XU8 -0

+

a a
, + ,1 - ItP2 + 112 at

r
=Vp8 + V xA

2 V _ a 8--0L~8p8(P = 24 a =

LAAs = 28V2 t2--k =a

cRc_+ 2 1~ ~ 2Cd = ()+C oPo POPO C', + i + i

o + + PPo o P OZ ,

Xi, +1a X2 +llza P 1+711a P2 +112a

a a
Pl +Ili Ft 1P2 +12 at
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CHAPTER 3

GENERAL SOLUTION OF THE FIELD QUANTITIES
IN TERMS OF THE POTENTIAL FUNCTIONS IN

SPHERICAL COORDINATES

In Chapter II it was shown that the differential equations of motion
for any isotropic, homogeneous, viscoelastic solid and/or fluid can be
systematically obtained. By utilizing Helmholtz's theorem, these
differential equations can be transformed into two governing potential
equations, a scalar potential equation, and a vector potential equation:

L rn A 2 = V2 a2k r~ =0

(3.1)

(3.2)

where L ý,m and LAm are linear differential operators, (p,, and Am are

the scalar and the vector potential functions respectively, c,, and C,2m

define the material properties (see Table 4).
If the solutions to these equations satisfy the gauge invariance

LAm (Vi y0 (3.3)

or

r
V"A = (3.4)

then all field quantities can be obtained from
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rU m = V (Pm + V X a, (3.5)

ru =V (P' + V x,, (3.5)

r r
2 i2 ,,, = V Xm = VXV x A1,, (3.6)

[_' [P-,+X.,(V. r. r r V) r .+u,1, r.t,.(, )me (erV¢

and

A, V .Um, = V29. (3.8)

Equations (3.1) to (3.8) can also be applied in studies of the
mechanical interactions of layered viscoelastic continua. A
classification of the type of problems that can be solved is given
below.

The time dependence of the solution can be determined with the
aid of linear transform techniques such as Laplace transform or Fourier
transform. Whenever we can separate the dependence of the solution
on the spatial variables we can determine the space dependence of
basic solutions of the differential equations of motion by utilizing
again linear transform techniques. Such separation of the dependence
on the spatial coordinates is for example possible when we use
Cartesian, circular-cylindr ical, elliptic-cylindr ical, parabolic-
cylindrical, spherical, and conical coordinates. The true complexities
enter usually into the problem through the character of the geometric
domain. Domains defined by spheres, cones, and cylinders with
circular, elliptic, and parabolic cross sections can be studied by
separation of variables. Likewise, we can analyze spherical shells and
cylindrical shells with circular, elliptic, and rectangular circumferences
in the same manner, at least for certain boundary conditions. We also
can give separable solutions for infinite domains with cavities or
inclusions in the form of spheres, and cylinders of the types
mentioned. Finally, as to the boundary conditions we may prescribe
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zero displacements or zero stresses on the boundaries, irrespective of
whether we are dealing with a single medium or a multilayered
medium.

As mentioned before, it is advantageous to delineate a class of
general solutions in which the dependence on the spatial variable is
separated and to determine the various geometric configurations of the
continua and the types of boundary conditions which can be
accommodated by the solutions for certain material models. We shall
demonstrate this for the case of spherical coordinates.

Depending on whether the medium is a viscous fluid or an elastic

solid, we use for the representation of A,, that given by (2.35).

Generalizing these expressions for 4,, to allow for a more complex

material behavior (see Appendix A) we can write the field quantities in
terms of the scalar potentials 'p,, X x,, and w,,, which are solutions of

L, ,,, =PM 0 (3.9)

LA,, X = 0 (3.10)

LAmlIm= 0 (3.11)

Accprding to (A7) and (3.5) the components of the displacement
vector u are then defined by

Urm =2¶r,+ Or2 - rV2 2WM (3.12)
a~r ar2

S= I APh,,,+ Iar I . (1 2, (3.13)

r aO r Xoa& rsMiO c a

& Pp,, + 1 2 r,, 1n I a(rV2X)

= rsinO -rsinO -7 r - (3.14)
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r
With (A7) and (3.6) the components of the rotational ,vector 207,.

can be expressed as

2ae,_l 0,r 2 ,) _ (r 2 (
2V 2) (3.15)

Mein rV 21,, a'(V2  X j(.6

2,-1 a (rVI a2 
-(rV2 (3.17)

r ao" rsinO aOar

On the basis of (A7), (3.5), and (3.7) we can give the components of
the stress tensor ý i, as

X V2 P m a (2 \ (3.18)
¢=@P+XmV2( +2. -4--r_ •2b m -* \'v ,I@

E2 a 2 (p,,. []

E Moar r ao
rV [I[+ -g ra3 ,,,~ 2 a2rw• I, 1 (rV2 Vn)8

[T 2 &" _
2 are, raO

a0 ]1 c3(V2Xm•(.9

+~ n]r•-r ]sinO 5
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ED 2 a 2(1Pm 2 a(, F]p Ir 2 [
4m=, ITsine -ýar r sinO i F-

E 2 a "V in 2 a2r' 1 a ( 2 .)
+ I 2 2]

[Tsin0 aOar2 rsin0 aýar rsinO aý' r 1

aEI a (02 X"

ar ao
¢ 0 e • = [ • P m + ;L V 2 (p m 2(1Jp

qOm P n 2n 200 2

(3.20)

El2 a3 rtN m 1 Ca2rvm
2m 2 &ara02 r ar2

V2

I ,.m

r
lm[E

D

- 2 p,, EO ,v (3.21)

= iinO a H 1 p 0a,,, i P m F,
00n, = ,, -•- 20 - r2sinoaoao I

LiinO a 1a2 r )3l.2 ~(y

+ in I
Fm r c r 2 sinO a'O&" F1

+p -inO t9 ___ O I.V2 7 R I 2 a' rV_2.
+l•Dt•7-. N- •n0-'- "• rsin0 El" (3.22)

p 1 , + l cotO &pD U
[0 pin+'m 2,,+2 ,, 2 sin 2o -2 r ar r 2  aO
F1o1,,I

D 1 a'r3 m + ia 2
LI 220 a2 +-
r sine & (r r

Ew I a 2 _(V2

U, sinO0 a~aO

2 r 2 aGaeG
VWV•,jJN
[]

corto a 2

r sinO aý
(3.23)
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By adding (3.18), (3.21), and (3.23) we obtain the mean of the normal
stresses

3 D 3 E
2 L 2 Wa_ B__L~(rV 2WYV2p

+ O3 r V ar 2var-m m.E

P r + P[2p (3.24)=- m 3 -0

where 2 a(rV 2,,)-2V 2m can be proved to be

identically equal to zero. The physical and mathematical interpretation
of (3.24) for the cases of a viscous fluid (mn =1) and an elastic solid
(m = 2) are given for example in references 9 to 13.

The terms containing V2T,,, V2W,,, or V2X,,, in (3.12) to (3.23)

can be replaced by I a ,2Wrn and I a2 X according toC2 at2 , 2 c 2 , 2 cat2 ,
Ctbn Csin C sm

Table 4 and equations (3.9) to (3.11).
All of the field quantities defined in terms of the potential

functions (p,, X m.. and y m can be applied for nonsymmetric motions

as well as for axially symmetric nontorsional and torsional motions.
The relative contributions of 9m,, Xm, and y,, to the various types of
motion can be assessed by a direct inspection of the components of the
displacement vector.

In the case of axially symmetric nontorsional motion we can give
the components of the displacement vectors as

U rmt- Urn (r,0, t)

UOm = u,,, (r,O, t)
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zm " =0

According to (3.12), (3,13), and (3.14) we have in such acase

. =rp (r,O,t)

W, , = 0(r,0,t)

Teda0

Thus the corresponding field quantities are defined by

a(f a2 '

kPn+IL2ry

4Un =0m

U =n 0

20mI a (rV ývM)r L0

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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P1 + • mV - + 2 P a 2" g in -[3

Sr'j
Er

LýD IVn+ 2P.m -

1 Om P m~ 5 ~

" -(rV 2Wi (3.31)

.2 20 D7

Lg oar 2 27 C -a r L9o
(3.32)

(3.33)gr4,, = 0

ý0e= ai'n +V 2 p+ 2pm1 . 2 p lýp~ r arir~

2ja r ,, ~ N, 2 W in
r &-

(3.34)

(3.35)Oon, = 0

ýOz= E pi + in 2 Pin+ P rniL9nCoto &~P
r2X

+4 a2 CotOS 2 IV fit n 71
+ 2p in1 --. ý+ 2 - - ) E

rr r 0011-
(3.36)

In the case of axially symmetric torsional motion, the components
of the displacement vector are
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rm -0

Uem = 0

uN,,,, = , (r,O ,t)

Such a displacement pattern is enforced if we require

(Pm 0

S,~ = x,, (r,O ,t)

Accordingly the field quantities can be expressed in
X m (r,O,t) alone.

1'r,n = 0

U,, I - (rV 2X m)
r 0

20,2 = rV2V2 x a 2(rV2Xm)
ar 

2

1 C, 2
200) = -a (rV 2 Xm)r 5Oar

20011, = 0

terms of

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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ý rrm = - Pin

=0

eL9 a1 L 2 El
rwl p,,r- x (I ,

E4 ynnm ~i2a IJ ~V 2X F

Oo~n = n 6 H

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

For radially symmetric motion, we have as the components of the
displacement vector:

Urnm = Urnm (r,t)

10m= 0

The associated scalar potentials are in this case

(p,, = (p,, (r,t)
., = (0

and the corresponding field quantities can be expressed in terms of
'p,, (r,t):
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Urm

UOm =0

2•,n = 0

M.= 0

=0n 0

20n 0

(rrm + kn,nV (p,,1, + 2p Pn ar2

r~n =0

royn =0

oe~n - P,,+ kxV hpnI + 2p,,1 I a

=0

=ý1 - rnI + XrnV 2 pm, + 2P " (
'r 5-

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

From the above three special cases of motions, we infer that ,,
characterizes dilatational motion, y,,, represents nontorsional shearing

motion, while Xn represents torsional shearing motion of the medium.
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CHAPTER 4

APPLICATIONS OF THE GENERAL SOLUTIONS
TO SPECIFIC PROBLEMS

In Chapter 3 it was shown that all field quantities of a continuum
can be obtained in terms of three independent scalar potential

functions Prm, x m and w, which are solutions to the governing

potential equations (3.9), (3.10) and (3.11). In this chapter it will be
shown how these results can be applied to specific cases.

For purposes of illustration we simplify the procedures and seek
harmonic time solutions of the governing equations (3.9), (3.10) and
(3.11) for each material model. These equations are then further
reduced into three corresponding scalar Helmholtz's equations which
involve two physical quantities kd,,, and km which themselves vary

with the material models. A list of k/,, and km for each model is

given in Table 6.
The k,,, and k,,,, in Table 6 can be interpreted physically, as

dilatational wave numbers and shear wave numbers which in general
are frequency dependent. The simplest forms of these wave numbers
are the cases of elastic solids and viscous fluids. For materials other
than these two, they are quite complicated. Once a boundary value
problem is solved for a particular kind of material, one can replace the
appropriate k,,,, and k,,,, from Table 6 and obtain the solution of the

same boundary value problem for another material.
Now let us explore in more detail the physical meaning of the

wave numbers k,,, and k,,,, by considering the two fundamental

materials, namely the elastic solid and the viscous fluid. The
interpretation of these wave numbers for other materials can be
generalized from these results.
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TABLE 6

HARMONIC SOLUTION CHARACTERIZED BY k', AND k1m

For solutions defined by

(p. = ý. eit.t

A,,[x(, )+ V xV x (r X,)jj'

for general cylindrical coordinates

Am = X x(e rqy,,, )+ V xV x(errX,n)ke

for spherical coordinates

u11= Vq9,, + V XA,,,

provided that y, . y,,, and X ,,, satisfy

(V2 + k2,,), = 0
(V2 +S k;,) X° = 0

where k ' t2 n- (.1 2k2Wd Cn 2
Cd,,

k 2 = 0)32
Sm 2

Csm

we obtain the following expressions k,,. and ksm
for the various material models considered

2 (.0)2 0) 2

Viscous fluid k2-- C2 ".--Cd, +l--(1'+2)ico

ml P0

2 )2 20)2ksl,- j - -2
CS, 

io)
POCl
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Elastic solid

m-2

k2 0) 2 (0 2
kd2

k 2 d2 i k +2pp

s2 2Cs2 :P

-P =

Maxwell fluid

m = 3

2
2 0) =kd3 -2

Cd3 C2

0

2 (0 )2
s~3 2

Cs 3

2¢0)

+ +

k 1l'io)

PO +__O
P TI io3

2

pO +PO
P ' iiki

Kelvin solid 2 o)2
kd24 2- , , 2

I= 4 C'd4 cý +--(+rk 9 i+)+-(p+rio)

P 0  p 0

k2 2 2
s4  )

s4 -(po- _ o)
PO
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7

3 parameter

m=5

2 _(.0 0)

"5d.) 2 1 1
5 Po Po +Po Po

i -q 2+f '2iO70 PI P 2 +112iCt

k2 (- 02 _
k5 2

¢s5
o+ PO

-['Jl P-2 + 12iO(0

2 2

3 parameter kd6 - 2)
Cd6 c?2 + 1 2+ -

mC: 6c 2  o + o P • P

'lto) +, +l1'2 iCo Tl i) o J2 +fl 2 (0j

kn 62 2 P 2 H
Cs6II P2 + 11
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4 parameter

m= 7

2
kd7 O, )

c-d7

2

1 2
-I-

Lo+ Po + Po
ý 7 1 'i°) ý 2 + q'l iC)

Lo-+ PO .+ IPi / 1 io1 11 0) P 2 + 112 'io)

k2 2 = 0)2 +.P 2 + P iO)
2s 2

C57 17J TI1I'(L)P 2 +112lO)0

7 W2 (0 2

4 parameter kd 8 - 2c~t8 %c l + 2

M 8 Po + Po P, + PO

k; oc2 [0 + 9
P2  + ic1'2+ P 2 ico

2s8
C58 j+fi)P 2 + 112i
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As can be seen later from the examples described, the wave
numbers k-,, and ks,, will appear in the frequency equations. They

can be cast into a dimensionless form by multiplying them with a
representative geometrical length b of the materials b k,, bks,.. As

such they depend on the physical and geometric characteristics
(frequency, viscosity, density, constitutive law, and the geometric
parameters). An expansion of the solution with respect to small or
large values of the parameters bk 1,,, and b ks,, provides two extreme

cases of the general solution. For the time being we shall restrict
ourselves to those cases where b is finite. The cases in which the
physical quantities are kept constant and the geometrical quantities are
allowed to vary will be dealt with later.

In the case of a viscous fluid, we have according to Table 6

J2 +0 Ik =2 M 1 +2u+1 -I + -I oo

C~+Wa C1)

The expressions for kdj can be approximated by series expansion for

1b2_L_ b
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and

U'+ 2u
b 2 0) <<1

i b [ nb D1

In the first case kdl is approximately equal to

2 ((u'+ 2i)

In the second expansion kdl is approximately equal to

The physical interpretations of these two expansions are listed below.
kdl Approximately Possible

Equal to Conditions Physical Statement

-2 y( i) ( c0c<<u'+ 2u Viscous effect dominant

" + b - b 2 over compressible effect.
Frequency response in the

small -- 0 order of 1.1
(long wavelength) [b [i

U. '+ 2 > Viscous effect dominant

2 - ý2,1 b) b over compressible effect.
finite Frequency response in the

ient'+2
(medium wavelength) order of L+2u. -

2 01'+ 2U c 0  Viscous effect same order

2 (, i o>> 2 b- with compressible. High
lit) +b frequency response.

large
(short wavelength) _________ _____________
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00mall -- ) << co i-'+ 2t Viscous effect and
b b2  compressible effect same

ro order of magnitude. Low
(long wavelength) frequency response.

C0  v + 2U Compressible effect
- init b b 2 dominant over the viscous0 b1 effect. Frequency response

(medium wavelength) in the order of LoH

0'0 +'" 2u < c o Compressible effect
mallab 2 b dominant over the viscousbO effect. Frequency response

(long wavelength) in the order of
in__ the__ or d bo H

The exact expression of kdl must be utilized when

U'+ 2Lu co

C0 C0

E b 1 (b-

[ub 4-0 bo

that is when either +.2U , o> 3-0-0-or b.+2U CO< I-H
:1 b 1 wbw ED b D Fi b

Noticing that co/9-+2- E1His equivalent to the Reynolds number of the

viscous fluid, but it is not the usual Reynolds number since it pertains
to harmonically varying motions: It should rather be called the wave
Reynolds number.

The values of ks, in two extreme cases can be obtained

immediately when b L-»l or b -<< I i.e. when the frequency is
eh h r

either high or low.
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For an elastic solid, Table 6 gives

kd2 = - k2 =-- -0)• • - l cs27,+ 27, Cd 2  k 7  2

Here the two extreme cases correspond also to high and low

frequencies or equivalently to short and long wave solutions cob >> 1
Cd 2

cob cob coband - <<1 and » >>I and << 1. Physical interpretations of
Cd CS2  Cs 2

kn, and ks,, for other material models can also be obtained although
the situation becomes quite involved, especially with regard to the
dilatational wave number k,,, for m = 3, 4, 5, 6, 7, 8,....

Now let us proceed to solve some problems of interest beginning
with spherically symmetric motion, axially symmetric torsional motion
and axially symmetric nontorsional motion. In each case we shall deal
with the interior, exterior, and interior-exterio r (shell type) problems.

4.1. Spherically Symmetric Motion

This motion is defined by equations (3.49), (3.50) and (3.51) which
indicate that Urm= un1 (r,t) with Uon= U• = 0 everywhere at all times.

An equivalent definition would be yPm=yPm(r,t) with y4,+Xm= 0

everywhere at all times. Thus one can see that the governing potential
equations (3.9), (3.10) and (3.11) are satisfied if

(pO M [A,,,a, (kdm r) + BM YO0 (dmI'~ ]el (4.1)

With (4.1) the displacement vector is according to (3.49) given by

u,.m = [mk,,,D'o (kmr)+B..km, Y'o (0d,,r Ie't (4.2)
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where A,4, B,,, are arbitrary constants and k,ý, is defined according to
Table 6.

In the case of viscous fluid [m = 1] we have

Ur/ =[Alkdl'o (kdlr)+ BlkdlY'o O(a ]e"' (4.3)

The excess pressure Pe =(P, Po) can be obtained from (2.25), (2.26),
(2.28) and Table 6:

Pe (P,-Po)=cj (•,-po

at2
= - poCVC 2" P

0 2 2 I 1  0 (4 4
pocokd, [A,&O(kdlr) + Bdo ldjr ]e')' (4.4)

With (4.1) and (4.4) the remaining nontrivial field quantities can
according to (3.55), (3.58) and (3.60) be written as

rr I +Po =Ak2 [- (p c + l io))o (kd,r )+ 2i &q 4"o (•djr ]e""
2 2 4 o)

+B,kdl #[-(po + icol•)Y0o(kdl,)+2iolY,, (ýdIrJe je"' (4.5)

+ 2 &1 k-d r)D i(,,
koo, +Po=A,2,L (p)C +io~r')Yo(kdlr)+2iOi (6ce)

0 (kd~r) EZ
+ B, k; - 0  + (kdII)+ 2cor -To (k e,) (4.6)

4;01,+ PO = Akd', (po~o+iCod , r)8o +.' . (kwT r)j D?

D 2(k-d,r) (4.7)+ ,l-,• ET (PocO + iwl')Yýo(k,,-)+ NiqY"- (4.7
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Adding (4.5), (4.6) and (4.7), we obtain

• 1r 0 +0, +9# - (Po +P)+iJo F' +- 2n (4.8)
3 [] 3 D

The physical interpretation of equation (4.8) implies that the

dilatational pressure io l 2 il , in a viscous compressible fluid is
n 3+ F

equal to the algebraic sum of the static pressure P0 and the excess
pressure P, plus the averaged normal viscous stresses at any point of

the fluid at any time. It should be clarified that if the Stokes relation
2

holds, i.e. TlI + -rI2 = 0 it does not mean that the fluid is incompressible
3

or the flow irrotational; the fluid is still viscous and compressible and
the dilatation A, may not vanish identically at all.

In the case of the elastic solid, m = 2, the radial displacement
.according to (4.2) is

= [42 dkd 2'o (kd r)+ B, kdY'o (d2 ]e (4.9)

Other nonzero field quantities are

= A2k , [- M-o (kd2 r)+ 2P,9
+ B 2 k22 [- XYo (kd2r)+ 2pY"o (4 d2r ]ei(ot (4.10)

A002 k= A~k , Elk oa0 (kd2r)+ 2p, ° (kd2r) F-io,
(kd2r) "3F

B2kd2  kY 0(kd~r)+ 2Y'p k"e (4.11)
kakdr 2 i
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~42=Ak 2  -X9(ldr+L&'o (k-d,r)~ iW
(;402 ""A2kd2 Er ka•o (kd2r )+ 2[P' (k-r iDt

2 0 Y'(kd2r) W

+ B2 kA [ X Yo (kd2r)+ 2p Yo(kd 2 r)[] e
A n . ((.d)( ,' w

Adding (4.10), (4.11) and (4.13), we obtain

(4.12)

rr2 + "0-2 + 2 = +
3 D- 3 E

(4.13)

Applications of the harmonic solutions (4.1) to (4.13) can be
illustrated with the following problems.

4.1.1. Spherically symmetric vibration and attenuation of a viscous,
compressible fluid enclosed by a rigid spherical boundary and
subjected to an initial finite excess pressure applied at the
center of the fluid.

The boundary conditions require that the field quantities be finite at
r=0 for any t> 0, thus B =0 and at r=a we have Url(a,t)=0,

which gives with (4.3)
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, ~n(k-a )D
d~k~d Eo (kdl a) 0

i.e.

tan (kdla)= (&dla (4.14)

This is the characteristic equation of the problem where (kd-) is the
27r

wave number and as such related to the wavelength XdI by kdI=- 27

The root (kdla) of equation (4.14) is well known [see for example,

Lamb 46)]:

(kda)=1.43037c , 2.4507r , 3.470971, 4.4774nt, 5.48187r (4.15)

Ld' =0.6992 0.4067 0.2881 0.2233 0.1824 (4.16)
2a

Since kdI is related to o as shown in Table 6 and is so defined in

order to obtain the solution from the field quantities given above, one
can solve for o) in terms of (kdla )=a. Thus

CO1  -2 ýU'+ 2u .if• (tu'+2u x (4.17)" - iC - [! r -_] + 4 . 7
o 0 2ac0 E 2aco

where j = 1, 2, 3,4,....

For each (xi given by (4.15) there is a o such that the boundary

condition u,, (a,k)= 0 is satisfied.

With the initial condition
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Pe(r,) e (ro (4.18)

and (4.4), we obtain

S(,-,o)Y1= Aj=l

2 2

2 0 a ra D aD (4.19)

Since the at 's are the roots of 'o (acj )=o we can determine the A1j 's

from

a2  oarPe(r,o), -,dir)dr
2 2 a 2 2Aa (kdlr)dr

2oOZ •r)

a J2rPe(r,O)0o •d/r)dr
22 a 20o o j a 0_8 (k -dla )

(4.20)

In particular, when the
represented by a function

Pe(r,o ) AP= const.

=0

initial excess pressure is distributed and

OZ r Z.

(4.21)
eZrZa

then

a2sin2 2 J -]I C
A Oj 2 2 AP

9°c0 cj sin2 j os2 2Y
(4.22)
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Thus all field quantities of the viscous compressible fluid inside the
rigid inclusion are uniquely determined:

sin

U1, (r,t)= ; a H'a-;° (4.23)
J'P°cý°J sin 2 

TL•2OSD2 [ L aL

sin2 '

Pe(r,t)= • AP (4.24)
= sin 2 ~OS 2 iaE

sin2 2J ±

rrI+Po= Y -,
m2

Jj rh.L
0x ( o +awj Lb (4.25)

• 2C~(j E

sin - -
4;001 +J?0

J -Io an j sin2eawI 2(4j.26Fý'TV RoYs t:•7o

LaL r LI]

xD-POCO + li 71)&'0P-(Xj-- H+ Di,2iwj71 ELý w (4.26)

LI 
Oi LI

ELI a EL

63



I Billie -Champ - Stanford Thesis.pdf Page t4 ]I- - ~ - .. ~ .. ...----- . --......-. --. -.. --...... .-.-

Po Kee Wong

2 Cat,[ 2e ;[
sin2

+P°" = Y Ad' L8a[

j~fp Ej 2LL 2L~E

[I aL p(P.- 2+i 1  1 LjWjfl1 j ~ LL (4.27)
K a E]r H

0 0 aD[]L

where o)C is given by (4.17) and cai represents the roots of (4.14).

The solutions are valid in the region e _ r _< a for 0•_ t5 oo,

where e is chosen such that qrrI' 9 0l and e00e will be finite at r E

and remain finite as we let e approach zero.
A detailed physical interpretation of these results is of interest. We

observe from (4.17) that the motion of the viscous fluid in the
inclusion can be classified as underdamped if

1 - + 2u >x d (4.28)

w aco 2

as critical-damp ed if

EGo'+ 2u o-i.
11- i-- ] - 0 (4.29)

w] aco 2 FE

and as overdamped if

E6'+ 2uoc dt
1- ElF < 0 (4.30)

F] aco 2 []
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The ratio of the x1j values represents the positions of the spherical

nodes. As shown by Lamb 46) for the inviscid fluid, in the second mode
there are two spherical nodes which are located at
1.4303 a=0.5816592 a and a. Thus one can further predict that the

2.4590

third mode should have three nodes, located at 1.4303 a= 0.4120833 a,
3.4709

2.450
5a =0. 7058679 a and a and that the fourth mode should have four

3.4709

nodes, located at 1.4303 a=0.3194487 a, 2 .4 5 a=0.5492026 a,
4.4774 4.4774

3 4 7 0 9 a0.775204 a and a, etc.
4.4774

a a\ -LL I

ac2 = 2.45907 a3 = 3.47097rc a4 4.4774 n

From (4.28), (4.29) and (4.30) one can see that as aj increases, i.e. as

we increase the order of the mode, the motion of the viscous fluid
begins with an underdamped wave motion, becomes a critically-
damped one and finally .reaches an overdamped character. The cause
of the damping is, of course, the u' and u. If (u'+ 2u Y- 0 the motion
of the fluid is undamped, thus the wave motion of an inviscid fluid in a
perfectly rigid inclusion never decays.

Equation (4.17) can be rewritten in the form

27t 2,r
271 = +-+ i-2 (4.31)
T il
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Then the time factor e wj becomes

27c 2iT

e (4.32)

where

2 Tcf ---- D = 1 - 2_ (4.33)T Ea 0 q aco []

27r U'+2Ua.2  

(

2 2 (4.34)
S a 2

f is the frequency of the underdamped wave motion for a given mode

(Xa and T is the corresponding period. 7 is the decayed factor of all
11

field quantities at any given position for a given mode ai for the case

of underdamped motion. From (4.32) one can see that the magnitudes
of all field quantities at a particul ar position are attenuated by a factor

of e-' = I at a time interval of
2.7321

t - a 2 2 2 X

td = -= 2(4.35)
27rt u'+2uaj) (u'+2u)k2 2t2(7u'+2)

td is called "modulus of decay" or "time constant" and (4.35) holds for
underdamped and critical-damped motion.

In the case of overdamped motion, i.e. when
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h'+ 2u J.d1 - 11 - 0
Ew aco 2 p

harmonic wave motions cease and the "modulus of decay" becomes

D ~ ) ' 2 L2
td =- - a __ _ _u -

27E c0cH c 2 aC 2
(4.36)

4.1.2. Viscous effects in fluid cones

The theory of rigid conical tubes filled with an inviscid fluid was

originally treated by Rayleigh 47). One can see that it is a part of the

solution of spherically symmetric motion. Since u, = u0 = 0 and

u, = itr(r,t), and the fluid motion is in the radial direction only, one

can form a tube bound by two spherical radii a, and a 2 as shown

below.

a2z

Y

x
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Rayleigh treated the problem with two particular boundary conditions,
namely: (1) both ends of the tube are open; (2) both ends of the tube
are closed. The same problem is extended here to account for
viscosity and compressibility of the fluid. Also we allow for one more
set of boundary conditions by considering one end closed and the other
end opened.

a) Both ends opened:

In this case we require that Pe(a,t)- 0 and Pe(a 2, t) 0. From (4.4)
we have

Ala. (kd la2) + BY. (kd la 2 ) =0

(4.37)

(4.38)

Since A, # 0 and B1 • 0 we obtain as frequency equation

&.o(kda,)YO(kdaa 2 ) - 9 o(kdla 2)Yo(kda,) = 0 (4.39)

which can be reduced to

sin kdl(a 2 - a,)=O

or

k-d,(a 2 -a,) = 2
7r (a2 -al) j71

kdl
j = 1.2.3.4L (4.40)

Thus for each kdl =- , there is a corresponding 01j

a 2 - a1

satisfying the boundary conditions for opened ends:

from (4.17)
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co a u'+2u jPr • u'+2u J7t'( 4 4 )o)i j~rt - --- + i E(.1
a2 - a, HA TaT- a,) 2c. (a2 - a,) 2Co

where j = 1,2,3,4,K.

The nontrivial solution of (4.37) and (4.38) is
A] - B c (4.42)

y. P j~caj a.PW2

Ha2 - a, ý I -a

This means that all field quantities can be obtained in terms of c j

( c1 = ( a)2 s in (4.43)
j=I (jrt) a2 r Ea 2 a1

M OC2 .Eq2-rJ

P0 =Y Cj °° smin' (4.44)
j=1 a 2r PA2 - al F]

, c(.4, -a,) []a2 - r F11 jr(a2 -r) a,-a, o,, (4.45)
= 13 " rin [ -r-. t o + I
j=1 1 Jla.,* [ 9] ,Fg - a, E] (a, - a,) jlr [L

L .sLj7t(a2 - r)[L

+P stubC2 ](a a,)
0 :i 9o .C j [-• "+' ,o)j (i1" +24 ](

j=l a 2ta2 r

,_4_ _[i (a - )] csn.(a.2, -,1d (4.46)
[2sin 11-[ 2Cos -+2 ri l j a, - a 1 ]_ a2 - a, LV m)

a2[1 a 7-aFF
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sin ( -r

~, +. =i> -k ~a, - a,¢o+P =Yc. oC + q' ioj
j=1 

a 2 r

Jr(a, - r) nJl(a. - r) (4.47)
2 '%fl11 I a - a, a 2 - a,

a,r =H b" -ab ý'a

Ssin Jrc(a 2 - r)

#,+po=c j[c2 0C+,roTI0] a2- a,
j=l q2 a1r

0 it(a. - r) jn(a2 -r) E (4.48)
2 I '1in cos F-0

i 0 a, -a, a. -a, ,,.,

a 2 r ' =§ a ' -r I i

Taking the sum of (4.46), (4.47) and (4.48), we obtain

[] jn(a2 - r) [I0 sin E]
-2 a2 -a,q,,, "i;()() "qo, +3P,, -•-c U-(3poc 2 

+iw 1 (3il'+2ij))
j=1 U a2r El

H
-- 3P +hio, (3Tl'+21j)V 2p

or

+rr o + + oo , l _ -III + io) jq'+ 2 (4.49)

This is in agreement with (4.8).
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b) Both ends closed:

In this case we have ur, (a,t)= 0 and ur2 (a2 ,t) =0, and with (4.3)

Alkd ,o9(kd a,) + BlkdlYO'(kda,) = 0 (4.50)

Akd I&0 ( kd a2 ) + BlkdlYo'(kd, a2 ) = 0 (4.5)

Again we must have A, # 0, B1 # 0 for a nontrivial solution, or

0d, (ka,) - Yo' (kdlal)&o(kda 2 )= 0 (4.52)

After some manipulation, the last equation can be simplified and
written as

tan kd,(a 2 - a,) 1(453)
kdl~a2 al) 1+ a2a1k(l(a2 - a)) + [kdl(a 2 - a,)]2

(a, -a,)

If we take a, = 0 in this form of the characteristic equation it reduces
exactly to (4.14). For given values of a, and a 2, kdl(a 2 -a,) can be
determined from (4.53). If kdl(a 2 - a,)=otj, then for each ax2 , the

corresponding frequency 0oj is defined by (4.17):

) lib'+2u axi d'+2u cX (4.54)

eoP.• ._ Cý [ 2 Co(a2- a,)DO 2 c.(a 2 - a,)

Since (4.54) represents a complex number, it is convenient to represent
it graphically together with the expression
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PA o Pe - a (4.55)

7Pe

which is obtained from (4.4) and (2.1). We note that Poh/pe lags
Co

behind coj/ with a phase angle V2 and that the amplitude
a, - a1

shrinks with a factor a j/ c(a 2 -a,) with respect to the expression

(4.54). When a, = 0, (4.54) reduces to (4.17).
The physical interpretation of these results is as follows. After

obtaining a1 = kdl (a2 - a,) from (4.53) for given values of a, and a2 ,

the mode shape of the vibrating fluid between two concentric rigid
spherical boundaries can be determined immediately by taking the
ratio among the aj values as demonstrated in example 4.1.1.

Corresponding to each ai the magnitude of ow. can be determined

from co1/ C0OLj = 1. If (u'+2u) is known, it follows that 01 can be
a2 - al

determined and thus the magnitude and direction of p p) Pe" The

projection of co along the real axis gives the value of 271 and that

along the imaginary axis gives the value of -.. - is the frequency of
T j T

vibration for the particular mode ai and 2n gives the "decay time"
Ic

for such a mode. In particular, when the Stokes relation u'+ 2u = 0
holds, then Oj = 0, the fluid becomes purely elastic, and there will be

no decay of the motion at all.
According to the preceding physical interpretation, one can

perform an experiment to determine (u'+2u), provided that the mode
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shape corresponding to an cxi value can be induced. Since oij is

known theoretically from (4.53) for given a2 and a, and with Tj

determined experimentally, we can evaluate (u'+ 2u) from

2~ Dý 27C 1
l '+2u oaj 1 21

22 c. (a,-a,)E Tp

The quantities 0j, 1jI , and PePo can thus be determined from the

expressions given in the graph above.
The values of cx . = kdl(a 2 - a,) can be discussed in some detail for

two extreme cases: a, •0; and, a»>> (a 2 -a,), a2 »" (a2 -a,) and
a2 -a,=h=fmite. For a,=0 the values of ca are the same as in

example 4.1.1. In the second case the fluid cone degenerated into a
viscous fluid vibrating between two almost parallel, plane rigid
boundaries. Denoting a2 + a, b 2a, equation (4.53) can be rewritten
as

tan kdlh _ 1 (4.56)
kdh I+ (kdlh)

4

If() -o and kd, h is finite, then tan kdh --> o . Therefore,

kdlh = jt. If X >> 1, the first approximate solution of (4.56) can be

obtained by setting kdlh=j7rt+ e where E<< land tan ee. Then
2

(4.53) is reduced to (pr+ E) r_= H4 ' and we have
Ib c
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4lb L +L

Thus for 1, kdlh can be given as

oX+ =kdlh = jrr + e= jn + 4-Y- - lb (4.57)
j7 o[] (j7t)3ZFb i

and the corresponding wavelength X,1is approximately

2 r7_ 22th _= 27tdi e-

kd Ij7t+ E jlr j7r El

=2h 1 4 Oh Lf lb Ch If L-- -- +E-+ E] - L E (4.58)

Since we consider the problem of standing waves (vibrations) which
are attenuated with time, the results of (4.57) and (4.58) are identical
with those obtained by Rayleigh 47) for the case of an inviscid fluid.
When (4.57) kdlh=cj is substituted into (4.54), the frequency is

clearly a complex number except when u '+ 2u = 0 or when u' = u = 0
(Rayleigh's solution)47).

c) One end closed and the other opened:

Here the boundary conditions are ur(a, t)= 0 and P,(a 2 ,t)= 0, or with

(4.3) and (4.4)

AjkdIa'o (kdja,)+ BjkdIY'o (kdja,)= 0 (4.59)

A1, a(kdl a 2 ) + BIYo (kdla 2 ) = 0 (4.60)
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In this case we also have 0 • 0, B1 # 0, and thus obtain as frequency
equation the relation

&'o (l-uala Y.o(kd,a 2 )- Y'o (kdla,)4O(kdla,) =0 (4.61)

which can be simplified to

tank'd(a 2 - a) a, a, a (4.62)

kdl(a 2 - a,) (a1 - a1) a- a1  a (4.6

For given values of aland a2 with a2 >a1 , we can determine

kdl(a2 -a,) from (4.62). If kl(a 2 -a 1)=oj then-for each (xi value,

the corresponding frequency woi can be determined from (4.54). When

the end opened is at r= a1 and the closed end at r=a2 , the
characteristic equation (4.62) is

tan k'd (a2 - al) _ a 2  (4.63)

kdl(a 2 - a,) a 2 - a,

The solutions of (4.62) and (4.63) can be evaluated by plotting

tan kdl (a2 - a,), a2 kdl(a, - a,) and - al kdl(a 2 - al) versus
a 2 - al a2 - al

kdl (a2 - a,) as shown below.
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i tan kdI(a 2 - a,)

I I
I I
I I I

I I

a, openedI

I I
I I a, clse

2ý. -a,

kdI (a2 - a)

II
I
I
I

I
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One can observe that the intersections of tan kdl(a 2 - a,) with

ka,(a 2 -a,) and kd(a a2 - a,) P provide two distinct

solutions corresponding to the two alternatives. For each
tj = kdl (a2 - a, ) the decay factor is less when the cone is open at r =a1

and closed at r= a, (loudspeaker analogy). From the figure, one can
see that the maximum of the decay factor ratio for the two alternatives
is e' . The decay factor ratio depends on the values of a2 and a, and

ranges from e' and e0'43037. However with increasing this ratio
reaches e' independent of a2 and a,.

In concluding this discussion of the viscous effects in fluid cones it
should be noted that the present solutions are valid only insofar as they
allow for slip in the radial direction along the wall of the tube. Strictly
speaking, once the viscous effect is considered the solutions are exact
only for viscous fluid contained within two concentric spherical
boundaries. A formal solution for the conical pipe containing viscous
fluid is rather involved and the present example serves to provide
some insight into the dynamic behavior of such bodies. The field
quantities are not written out for this case since they can be easily
obtained as for examples a) and b).

4.1.3. Spherically symmetric free vibration of a spherical elastic
solid, a spherical viscous fluid drop and a viscoelastic sphere.

The boundary conditions considered are: rr,,(r = a, t) = 0,
,,(r =a, t)=, and ,•,(r =a, t)= 0. Since 9,9m =r , = 0 is

automatically satisfied for spherically symmetric motion,

.rr (r = a, t) = 0 is the only condition to be enforced.
For an elastic solid (m = 2) we have according to (4.10) and with

B2 =0 (to achieve finiteness of the field quantities at the origin r = 0
the characteristic equation
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- kao(kd2a) + 2p•"(kd2 a) = 0 (4.64)

which can be simplified to

S(k2a) [_tan(kd2a)= 0 (4.65)

Fkd2a 4p /

This result was also obtained in another way by Love 34). He expressed4p ~~~2(1 - ý .- 1<q<-w
42p in terms of Poisson's ratio q as 2- With - 1< 2 < .weX + 2p -

have 3> 4p >0. Love gave the six lowest roots of (4.65) for a
k + 2 p

Poisson's ratio ; = 0.25: kd2a 0.81607r, 1.9285n , 2.9359n,

3.96587c , 4.97287T and 5.977471.
In the case of a viscous fluid (m = 1) we set B, = 0 in the harmonic

solution (4.5) to ascertain finiteness of the field quantities at the origin
r = 0. The boundary condition •rri(ra,t)=O leads to the
characteristic equation for a spherical viscous fluid drop:

pc,,9e + ioj)(ij'+ 2ý9) []
(kda)D tan(kdla) = 0 (4.66)•}kd a) ico~rj

Note that (4.66) can also be obtained by inspection from (4.65) and
Table 6.

Similarly we have in the case of a viscoelastic material

1- Ek la) (k,,,,a) 2 •an(k,,,,a)= 0 (4.67)a) 4 -• -n

H_ snm H

78



I Billie C~hamp--2Stanford -Th'es'is.Ddf I

Page 8•
Billie Chamo - Stanford Thesis.Ddf PaQe 891I 2.iZ:.m. . .~... ~.- ~ -.- ~-.~-..----.--.--..-.--------.*-----. *- ---.-----.-----.---.---------.--.- -. -----.-...----------.--.------------ *- I

Waves in Viscous Fluids, Elastic Solids, and Viscoelastic Materials

where kh, and k ,,, are listed in Table 6 for a given material model m .
Equation (4.67) reduces to that obtained by Bland 42) when we
substitute ka,,, and k,,,, from Tables 3 and 4.

4.1.4. Spherically symmetric free vibration of an elastic shell, a
viscous fluid shell (bubble) and a viscoelastic shell.

We consider here shells which are geometrically defmed by two
concentric spheres with radii r = a, and r= a, (a2 > a, ). For traction-
free boundaries we have

..rr.(r-a 1,t)= qr,, = a,,t = •rm(- = a,t = 0

crrm(r- a 2 ,t>-qre, 0- a2 ,t -r= 0-- a2 ,t =0

As indicated before, ( ,Om==r,= 0 is automatically satisfied for

spherically symmetric motion and we therefore have to require only
9 rr,,(r= a,,t), O and ( rr. ,(r=a 2,,t 0.

In the case of an elastic shell (mn = 2) the above boundary
conditions imply according to (4.10)

A,k12 [- Xk9 (kl 2a )+2P,'4;(,12a, ]+ B,k12 [- XY,(kd 2a,)+2P1Y,[(ý,,aa ]=0 (4.68)

and

A2 k.,.[- k'9(k,2a,)+2PJ(•, 2a, ]+B2kd2 [- X, (kdza 2 )+2PY0"(41 2a 2 ]=0 (4.69)

Seeking the nontrivial solutions we must have A2, 0, B2 • 0 , or

- XYo(ka 2a2 )+2p YO(Od 2a 2

- o (ka2a2 )+ 2p"` ((d 2a 2

k.Yo (kd2a, )+ 2 p YO" Od2a,

&O0 (kd2 a )+ 2p,90 2a,
(4.70)
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(4.70) is the characteristic equation for spherically symmetric free
vibration of a spherical shell with an inner radius a, and an outer
radius a2 . This equation can be simplified and written as

(kd2a2 )+ arc tan El ' k a 2 4 []

(kd2a )+ arctan E -- + 2p 4 k. 2aI)
T, a, 4p F]

(4.71)

A numerical example of the solution of (4.71) is given below.

a, = 1.81 a2 = 2.54 Poisson's ratio = 0.34

The roots k2a-2 are

'5 =kd2a, = 7.8791995, 15.62335, 23.397896, 31.179907,
Cd2

38.964892, 46.751358, 54.538672, 62.326515,

70.114712, 77.903153, ...

For a geometrical parametric study of the characteristic equation
(4.71) we consider the following two cases.

(a) a2a-a,] h,&---< 1.

This means the shell is very thin and a2 ; a1- a.
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(b) a 2 -a,= h where h is finite and a2,->oo, a,-->oo, and

a2 +a,=2a. We again have I- <I but now the shell is
j2a []

approximately a plate of finite thickness h.

In the case (a) we arrive at a first approximation for the roots of
(4.71) by expanding the expressions containing a, into a Taylor series

with respect to a,:

E~W[(k-d2ay (3c- c2 )IIC(kd2a Y+2 C2 2 d2a 2
_c2 (3c 2) '

ElaWZ (kd2a Y +(c2 - 2c)(kd2a ) +C2  D7i I

+0O1 -O+ ...... 0 (4.72)

where c- 2(1-2)

k ++2p 1-g

Equation (4.72) is the characteristic equation for the spherically
symmetric free vibration of a very thin shell of radius a and thickness
h. The first order solution of this equation gives

(oa =i FT7pY(k +2p
-a_ kd 2 a 4(3c_ cj)= N4 (kJ3-+ 2p.-) (4.73)

The period of vibration of the thin shell is

1_ 2rt 3t /3 X•+21

T-= I = 2c = a 3 + 2H (4.74)
f 0) ip Hý+ 2p~

which is identical to the result obtained by Love34 ).
For the case (b) we rearrange (4.71)
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+1 • +(kd2a 2 kd2aI)

tankd2 (a2 -a, kd2al kd2a1 c (4.75)[]1 1 00] 1 -1 []
1+ -kd2a1 Ed ' kd2a2 FD

d2+ l c C d2a2 C F1

With a2 - a, = h, a2 + a, = b = 2a, this can be further simplified:

(k2 2/)2 + I + l[(k,,2b)' - (42, h 2] (4.76)
tan (k, 21i)= k 2by ( C h 2 + 4 c 2(k'bY4 (','+ 1- ••(ab (ah2]+l•[(k'by ('2'2

4 77

As Xh--oo with (kd,2/) finite, the right-hand side of (4.76)

approaches zero, thus tan(kd2h)--O. Therefore kd27r=j7C where

j=1,2,3,4,.... If 1h>> I the first approximation of (4.76) can be

obtained by setting (kd2h)=jn+e where e<< 1 and tane= e.

Equation (4.76) is then reduced to

C [ or C 1h / _ 2c2 C1

For 1h>> I or 1b<< I we can approximate kd2h as

2 2
2  

4

kd2)=j c 2c +.... (4.77)

The corresponding wavelength Xd2 and the corresponding period of

vibration T are given by
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2ir~ 2it 42t,2.= ., f-12 [-, HH7 H.t L +...ER (4.78)

and

2nt 27th 1I 2hl c [R 2c0
T=-=cd2 jCdl 7 ElT 0 - _jT

(4.79)

A comparison of the two geometrical parametric studies of the
characteristic equation (4.71) is listed in the chart below.

h--> 0, a finite h finite, a->+oo

2_ C2 1Lc]
k3-7-7 1 jr + c i ah j 2c 2  ah I

a kd ' T7 *.

C= 4p. =2(1-2;) 4 212;
X+2pl 1-€ =4J=2__-€

+.+2p 1-I

j_= 1, 2,3,4,... integers

T=127w I 2h 1 _ c hR. 2c2 h•4h

Cd2 ýc-7c T I 7nT2aL * 7
Z E9a [

j=1,2,3,4,... integers

Long period, low Short period, high frequency
frequency

Thin spherical shell Plate of finite thickness

(Physically this represents (Physically this represents the thickness
the breathing of the stretch of the shell in the radial
spherical shell in the direction. In particular, as the radius
radial direction.) approaches infinity, it becomes the

thickness stretch vibration of a plate.)
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This geometric study of the characteristic equation (4.71) can also be
formalized in the following way. Since a2 - a, h, a2 + a, b - 2a

and E= L2h' [ H we obtain
E[]?-a [ bI

a2 a (1+ E): ký+iH
2z EE

a, = a(l+ E) = h -- 1 •
2D [1E

Substituting a2 (a,,G), a,(a,E) and a2 (h,e), a,(h,e) into (4.71), we
can then write the characteristic equation (4.71) as a function of (a,E)
or as a function of (h,e). Using Taylor's series expansion for both
expressions of (4.71) in terms of ascending powers of E and noting
that the coefficients of 1, G, E2, E , ... must be zero we obtain the
same solutions shown in the chart.

In view of the fact that the characteristic equation (4.71) is the
correct exact solution for the free vibration of a spherical shell of inner

.radius a, and outer radius a2 , the two degenerated solutions just
obtained can be regarded as "singular perturbation" solutions of the
characteristic equation. It is called "singular" or "irregular" because
there is only one limit E-•O but two distinct solutions are produced.
Other parametric physical quantities are not affected, as they appear in
the degenerated solutions. Systematic techniques and detailed reviews
of the method of perturbation can be found in books and articles by
Lagerstrom et al. 18), Van Dyke19), Cole2") and Chang2").

In the case of a viscous fluid shell (m = ) the characteristic
equation can be obtained from (4.5) or simply by invoking the
correspondence principle and using Table 6 and (4.71). As
characteristic equation we obtain:
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[] 1 q + (U'+ 24~m(k0,a)
(k-dla 2 )+ arc tan wkd 1a,~ + vk (kda,a)

(kdaI ,)+ arc tan D 1 c0 + (1'+ 2u)iho (kdlal,) (4.80)
P, 4uiio

The difference between (4.71) and (4.80) is the coefficient

c. , = which is a constant for the elastic solid _ = 4P and
k-2  k+2p

frequency dependent for the viscous fluid c o ,2 TM us
C,+ (u'+ 2L) 0)o

(4.80) is more complicated to solve for the unknown o) (frequency).
In (4.71) o is a real number, whereas in (4.80) co is complex.

Although c 14p'i is frequency dependent, the geometricalc, + (u'+ 2u )co

parametric study of (4.80) will not be not be affected by this and we
can proceed as in the case of (4.71).

If we replace kd 2 in (4.73) by kd, _ and c2 by
1co +i (u'+2v~

+ 'io the characteristic equation of a thin spherical viscous'c +*i (L'+ 2L) )T)

fluid shell of radius a vibrating in a spherically symmetric breathing
mode is

wa [] 4WiO 4Luim

E-[ + ku,+ 2L) .o, -Co+(' 2L) )a)

From this relation we deduce

o=ia2cj +4 p((3u+2u) a2c+4p(3u'+2u) i] 48a c (u'+2uL))
2 (u'+2L) a2 - 2(u + u/ 2 I (a2co+4u(3u'+2u))2D
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27t 27t2=r+i 271(4.81)

T rj

We know that the motion is overdamped because

48ua2c- (,' + 2u) >0

Fa2co + 4u (3R'+ 2u) >

Similarly it follows from (4.77) that the characteristic equation of a
thin spherical viscous fluid plate of thickness h undergoing thickness
stretch vibrations is

_ _ h 1 h I_ 4__io•
kdh= c+ (o'++ Eo 2+ .....

The corresponding relation for o) can be given as

03 i ý +] 1 E (,),+ 2t))+ 41) 5)2•

jTC2 u 111 i j()2)2

2 jr r 4' 20 +i( + =0 (4.82)
-(u+u4h2 : j c-2°a1 1  h2

The stability of the solution can be examined without solving
equation (4.82) for co . It is well known that for a solution of the form
e.te where is characterized by X3 + a.2+ B& + a = 0 is stable (i.e. real
part of X 's are negative) ifx > 0, P > 0, c> 0 and c43 - t > 0. We
now let k = ico and note that our characteris tic equation (4.82) assumes
the form
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03) - A PO) 30+ i = 0

in which ax, 13 and a are all real and positive. Hence the thickness
stretch vibrations of a spherical viscous fluid plate are also stable.

In the case of a viscoelastic shell (m -3,4,5,6,...) the characteristic
equation of spherical symmetric free vibration of the shell of inner
radius a, and outer radius a2 can again be obtained by means of the
correspondence principle, using Table 6 and equation (4.71):

0 1 1,,
a2 )+ arc tan -- ,,-,,a2)[

..k_ 7/,,,) (4.83)C

(kra,) + arctan -- (4.83)

where

CM 2km- k2

Performing the same geometrical parametric study as before, we
obtain as degenerate solutions of (4.83) the breathing mode solution

k-,,a = (3c,,-c,m,, (4.84)

and the thickness stretching mode solution

E] HmEh [ 2C~z •r.. []

,h= r+ C-•ff aR (jr ...2a E (4.84)

j =1,2,3,4,K integers
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4.1.5. Spherically symmnetric free vibration of a spherical elastic shell
containing a viscous fluid.

We now consider a spherical elastic shell with an inner radius
r = a, and outer radius r = a2 . The field quantities must be finite at

r=0 for any t>0 and therefore we must have B1 =0. The

displacements of the viscous fluid and of the elastic shell are
continuous at the interface, while the outer surface of the shell is
considered stress-free. Hence, with (4.3), (4.5), (4.9) and (4.10), the
boundary conditions are

PO+ rrl(a,t)-U, r2 l, t = 0

+rr2 (a2 ,t ( t 0

(4.86)

(4.87)

(4.88)

and the characteristic equation of the problem stated is

ka I&) (k, ., ) kd al O((da,aI

0

A_'2 El 2 (k)

2 Fl X &0 k2 a2 )

-k,,, Y, a

'2 '0 p))'(ka)I

I] X Yo kA 2aZ E

(4.89)

=0

To examine the effects of the geometric parameters on the roots of
(4.89) we examine the three cases:

(a) a, = 0. In this case (4.89) reduces to the characteristic equation

for the free vibrations of an elastic sphere which we discussed in
section 4.1.3.
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(b) a1 finite with a2 ->-0 . Geometrically this constitutes a viscous
fluid sphere surrounded by an infinite elastic medium.

(c) a2 -a, h and a,-a,=b= 2a, with a2-a(l+E)=-9+1

( h Ih ha,= a G) EL -1, and -= - h 0. As before, this
2 D=-2a b

will provide us with two approximate solutions of the
characteristic equation, one corresponding to a very thin elastic
shell of radius a containing a viscous fluid, the other representing
the solution to the thickness stretch vibrations of an elastic sheet on
a viscous fluid.

4.2. Axially Symmetric Torsional Motion

This motion is defined by (3.37), (3.38) and (3.39), according to

which uri = 11tm = 0, UOn = U. (r,O ,t / )= 1 20 ) , or
r ao0

X i= X,,(r,Ot) and y~m = W 0 everywhere at all times. Thus the
governing potential equations (3.9), (3.10) and (3.11) are satisfied if

X- = [An,,n (k,,,,r)+ B,,,Y,, (4,mr ]e"' (4.90)

From (3.39) it follows that the displacement un,, is given by

U ,,= - A.",,,[Am & (k,. 1)+ B,,Yn (ktmr ]dP cS e iWI (4.91)
dO

With (3.40) and (3.41) the nontrivial components of the rotational
vector become

Min,=k2m -k 2m +2 d +r d IAmn (ksnir 1mn'B (@sm r ]Pr (cosO )e'-'
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=- n (n +1 )[A,&,, (}4mr + B1,, (},,,r ]P,, (cos0 )e"• (4.92)
r

k2 e, d a" (A i., )B,, (4smr dP,, (cosO )e' (4.93)

r dr d(

and according to (3.43), (3.45), (3.46), (3.47) and (3.48) the nontrivial
components of the stress tensor g are

rrm 0 O,,,= = -P (4.94)

.d I5. 9 (k,-r) Y (ksm,) cdPý,(cose., 495
r m- mk t'" r- r A d"

P= _• [A (kr )+ B' r ]in 0 ddOs dP. (cos 0 (4.96)
r d~ 0Esine dO

k ,, ks,,,,- can be obtained from Table 6 for any of the materials listed.

Applications of the harmonic solutions (4.90) to (4.96) to torsional
motion will be illustrated in four specific problems.

4.2.1. Torsional vibration and attenuation of a viscous fluid, an elastic
solid, and a viscoelastic material in a rigid spherical inclusion.

The boundary conditions require that the field quantities be finite
at r = 0 for any time t > 0 and thus that Bm = 0. At r =a we have

Uý, (a,t)= 0 which yields as characteristi c equation

),9, (ksma))= 0 (4.97)

The roots kra = cj,, of (4.97) are well known and are for example

given in the mathematical handbook edited by Abramowitz and
Stegun 48 ). The first four roots for n = 0,1, 2,3 are given below:
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k' n=0 n=1 n=2 n=3
j=1 3.141593 4.493409 5.763459 6.987932

j=2 6.283185 7.725252 9.095011 10.417119
j=3 9.424778 10.904122 12.322941 13.698023
j=4 12.566370 14.066194 15.514603 16.923621

Using Table 6 and the field quantities given previously, one can
resolve (o in terms of k5,, a = a• for each material m . For a viscous

fluid (m = 1) we find for example from Table 6

2 2

(ksla = c o

Po

that is

2

COji l 2 (4.98)
po a

When co j is substituted back into the solutions with the time factor

eit"j it is clear that the corresponding field quantities are exponentially

decaying with time like e----7 t. The positions of nodes in the
po a

radial direction for each fixed meridianal mode defined by n can be
obtained by taking the ratio of successive oxj,, as illustrated from

example 1.1. The position of the meridianal nodes can be obtained

from dp,,(coso)= 0 which gives
dO
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n=O n=I n=2 n=3 4

L1 0 0 0 0 0

0 =0j /2 Cos"H-- CosE-~11 [1 5 [12][ 7 E

H /I nI It IT

From (4.98) we conclude that the torsional motion of a viscous fluid
within a rigid spherical inclusion is always overdamped.

In the case of an elastic solid (m = 2) we infer from Table 6

(kooa)ca11 wa o wa (4.99)
Cs

Fp0

For a given radial (j) mode and meridianal (n) mode the torsional
vibration of an elastic sphere in a rigid inclusion is undamped and has

() _Cs j
a frequency f - S JIZ27t 2ita

In the case of a viscoelastic material defined by the Maxwell
model (m = 3 )we obtain from Table 6

(k, 3a) =a 2 2 P .O+ PO.. 2

or

2

o)2 _ o) P (Xjn- 0 (4.100)

1 poa 2 0
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The roots of (4.100) are

0) i+ Llfl -l (4.101)

and

C) E4 
2 & (X2

§o -i- epa M

(4.102)

The motion of the material in the cavity is
q2

underdamped if 4 1>0,
p0 P a -

critical damped if 4(12-2 _I 0,2p0 1 a

2 2

and, overdamped if 4 " -I> 0.
POp a 2

The frequency of underdamped vibration is

fP 1 , 12 (4.103)
47rres 0p ato

and the corresponding attenuation factor is
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td 2'
Ip

(4.104)

For overdamped motion the attenuation factor (time constant) is given
by

2q

id p (4.105)1 ~20•

1+ I a2

In the case of a viscoealstic material of the Kelvin type (m = 4) we

deduce from Table 6

( k A4 a ) _ +_ co a (

P0

or

2 2
2 _1 i c, _I j

2 2
P0 a P0 a

The roots of (4.106) are

(4.106)

0) +

1_ 0, j2,

0 a 2

Lp4p0Pa 2
F1 2 2 1171 U- E (4.107)
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0) 2

O in¼
L4p,,a2Y
Etý 2  El
Mn c1 1 "

(4.108)

and the motion of the material in the spherical cavity is

dded 4Poa 2

underdamped if 2 1 > 0,2 a

critical damped if 4popa 2  1= 0,2 2(X jn

and, overdamped if 4p -la2 1 < 0.2 2

• 0T, jn

The frequency of underdamped vibration is

fl O
2 4pPa2

27c 2p 0 a' [1 ain [I

and the corresponding attenuation factor (time constant) is

td = 2pa2

For overdamped motion the latter assumes the form

(4.109)

(4.110)

td = 2pa
iix 7 1± 1 - 4pU a 2

2 
2Q
a i

(4.111)
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From these four cases of materials, we see that the pure viscous
fluid in torsional motion is damped. Other materials of viscoelastic
type in torsional motion are either underdamped, critical-damped or
overdamped according to the physical quantities of the material
models and the radius of the cavity as well as the vibrational mode
characterized by aj/,.

A comparison of the results for the Maxwell material with those
for the Kelvin material reveals some interesting aspects. The
attenuation factor for a Maxwell material does not depend on the wave
number xj,,wh ile that for the Kelvin material depends on o(x in

addition to the physical parameters of the model. Using the subscripts
mn = 3 for the Maxwell material and mi 4 for the Kelvin material in all
physical quantities we find from (4.100) and (4.106) that the dynamic
behavior is the same for both materials if

P3 - P4 (4.112)

P 3  P 4

and

P3 = '14 (4.113)

This means that the displacements, rotations, and strains will be the
same for these two material models, but the corresponding stresses
will be different. This may be referred to as the "Kinematic
Equivalence of Viscoelastic Models."

4.2.2. Free torsional vibration of a spherical elastic solid, a spherical
viscous fluid drop and a viscoelastic sphere.

As boundary conditions we have here P,, +rr (r =a, t 0,

(r=,(r a,t)= 0 and r -(r-a, t) 0. Since ,rr. = r&, = 0 is
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automatically satisfied for axially symmetrical torsional motion

rOy (r=a,t)"O is the only nontrivial boundary condition. For

fmiteness of the field quantities at the origin r= 0 we again require
Bn, = 0. The characteristic equation assumed the form

d [I,,(k,,,,a)[n_
-daU Ta[ 0

By means of the recurrence relations of spherical Bessel functions it
can be simplified to

(n -I )an (ajn )- ax,, &n,1 (ciK,)= 0 (4.114)

where axj, = k,,,a. Using Rayleigh's formula

a' ,(cj/,,)= (4, n• H_1 d I Uiot, =(otjin n (ýj,,

n1H aca dabe r H a Httenas

(4.114) can be rewritten as

(1aj" )n I(,, - Own , 01j"y "1 0 (4.115)

Equation (4.115) is identical with the result given by Love34 ).

In particular, when n1= we fimd from (4.114)

Q1+1 j 3a1  _ H I 1 cc
3~ j]a n 1 a117Caj

=0'

or
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tan oc1J = 3-o1  (4.116)
3 - (x'2j1

This result was also obtained by Love34 . The roots of(4.116) are

(Xu = 1.8346 Cr31 = 3.9225

a2 1 = 2.8950 ot41 = 4.9385,

All results described in this example are essentially identical to
those of example 4.2.1 with the exception that the cj,, values were

there the roots of ,, (cy )= 0 , while they are now the roots of (4.114).

4.2.3. Free torsional vibration of an elastic shell, a viscous fluid shell
(bubble) and a viscoelastic shell of spherical shape.

Again, we let a, denote the inner radius and a2 the outer radius.

The boundary conditions are

m+1 rr.. (r a1,/) , r + (- =aj,t):¢.,,,( =a,,t =0

P", + rrm (r= a2 ,t,) rO (r a 2 ,t ' 4m ()-a 2,t- 0

As indicated before, P + rri, = r rein = 0 is automatically satisfied for

axially symmetric torsional motion, leaving q., (r=a,,t)=O and

r rwn (r= a2,t)= 0 as the required conditions. With (4.95) and these

boundary conditions, the characteristic equation of the problem is

[(n-l)&.(ý..a, -(,.a . ][(n-I)Y(P .a, -( .•a, Y..,(4-a 2 = (4.117)
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For the lowest nontrivial circumferential torsional mode (= 1), (4.117)
can be further simplified:

ksal - arctan 3ksnal ks,,a 2  3kma2 (4.118)
3 -(k,a 1 )2 3 - (ksna 2 )2

A geometrical parametric study of (4.118) similar to that of (4.71)
also points out some interesting features of the motions. We consider
two limiting cases:

(a) a2 -al=h and a2 --->al=a with 4--R<1.
EJ2a E1

This means that the shell is very thin and has a finite radius a.

(b) a2 -a,=h with a2 ---oo, al-*oo, and a2 + a,=2a=b--oo .
In this case the shell approaches a plate of finite thickness h.

Expanding a2 with respect to a, into a Taylor series we obtain in
case (a)

(ksma4 Yb6+ 6(ksna) j(k,.aY
9 + 3 (k-ma + ,ma ' 9 + + 3(k,,,,,a)Y + (ý,,aa 41 D D

+F-. .. ........ =0 (4.119)

The first order solution is trivial (co = 0 ) but the second order solution
yields

(k,ma)2 -a 6 (4.120)
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The motions corresponding to the roots of (4.120) are however not
compatible with physical reality, which means that only the trivial
solution may be admissible.

Rearranging (4.118), we obtain

- a,)+3kma a2 (t 2 -a,
tan k,mh 9k., (a2 _ a s,1 a2 02 a1

s 2 2 a 2 k2 4 2 29 - 3 k2 n a2~ 1 sin 2a1ksia21a2
(4.121)

With 2X = --->oo and (k,,,,h) finite, the right-hand side of (4.121)

approaches zero. Therefore (ks,,h)=.jp where j= 1,2,3,4,.... If
»>> 1 the first approximation of (4.121) can be obtained by setting

(k,,h)= jr + e,where e<<1 and tane=e. Then (4.121) reduces to

or

12 V

12 E- h
C_ =

D F-

12
(j7 Y2EkDF

Thus (k,,,,h) can be obtained for Y >>1 from

ks,, h= jin +"•}-3b
int Fib wi

1 A4 .

(j7t)' FibDn (4.122)

Equations (4.98) to (4.111) are still valid for this particular solution for
if n= 1, if a is substituted for h and ccj, , for cj, as expressed in the

right-hand side of (4.122).
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4.2.4. Free torsional vibration of a viscoelastic spherical shell
containing a viscous fluid or other viscoelastic materials.

The field quantities of the core materials are finite at r = 0 at any
time t = 0, thus B, = 0. The displacements of the shell and that of the
core are continuous at the inter-spherical surface, and the outer surface
of the viscoelastic shell is considered stress-free. From (4.91) and
(4.95) with B, = 0 the boundary conditions are obtained as

u=1(at)-u.,(lt 0 (4.123)

ýr, r(a,,t)- r,,, (ý't =0 (4.124)

CO', (k+,) 0 (4.125)

They yield the characteristic equation

-k,, 5(.,. k, . 5. k . a,. O (4.126)

4.3. Axially Symmetric Nontorsional Motion

This motion is defined by equations (3.25), (3.26) and (3.27) which
require that uri= un,,,(r,0, ,t), U01,= U~ (r ,0, ,t), and u,,= 0 everywhere
at all times, or q%,=q,(r,0 ,t), -I = -(r, ,t), and , =0

everywhere at all times. Thus one can see that the governing potential
equations (3.9), (3.10) and (3.11) are satisfied provided that

101



Bilhie Cham .p -8Stan~ford Thesis-.pdf Pg 1Ij g-6 -11.2

Po Kee Wong

(pm =[AimQ~(k(*nr)+ Bim Y, (Lr ]P,(cosO)e~'-

and

Yim= [A 2 ,n4?n(ksmr)+ B 2 m Yn 4srnr ] P,, (cos O)e"'~

(4.127)

(4.128)

From (3.25) and (3.26) using (4.127) and (4.128) it follows that the
components of the displacement vector can be written in the form

rnjn

El a U a,, (r )[U Yn (r}] 11 Ele'w'

El Uons BI

E+- P(coso )2Ddo El•'"

(4.129)

where

[Umn(r)]= 7~P dm ',' (kd. r)

[Umrn (r)m]= •r(kdm ,)

nkmr) D
r

rflfl+1)y ,mr - [

ký. Y%' ()r + Iy (k. ru
r

(4.129a)

(4.129b)

According to (3.41), (3.42), (4.127) and (4.128) the components of the
pertinent stresses may be given as:
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4;rrm~'r P"

e, LL- (4.130)
r- r

E d ql~ r ~ n1 1RLI d DBj n P(coso) Y

where

[n• -ý-a (k,.
PU

1ii k' r2'&(k,,r) [

[]D]

Iz

n(n=l)[rk &'0 4-r (-aý Xr ]E

E7El

2 + - ( r r)L r '
2 mHnv Fm

- ,. s&'o (k)

[]0

(4.131)

i

• -L-k 2,,r r (-,.,n
,2 Yý kr

k, r'Y"ý'(k,,r )

[*Y. Y(r)]=i]
[]
EI-ý k ,,, Y.'( k,,. r )C]

SY(k []
r (+k,.) E

)813

[U

0

n(n1= l)[r k. O (- Y,. r

I]

'2 +n-l-. (k I r(A- ('Y(."20

- rksmYn(ksmr)

(4.132)

+

The other field quantities can be obtained by substituting (4.127) and
(4.128) into (3.40), (3.44) and (3.46).

In the following we shall discuss applications of (4.127) through
(4.132) to specific problems.
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4.3.1. Axially symmetric nontorsional free vibration of a viscous
fluid in a rigid spherical inclusion.

The boundary condition of the problem requires that
U"r (r a,O,t)= 0 and uoi(rt=a,O,t)= 0. These conditions are met ifwe

equate the determinant of (4.129a) equal to zero for r = a. We thus

have

kdla.,' (kdla)_ n(n+ R)d, a 3a

This is the characteristic equation of a viscous fluid in axially
symmetric vibration in a rigid spherical inclusion. The corresponding
expressions for (kda) and (k,,a) are according to Table 6

owa

kdj a = w

_=C + (W,+ 2L)/ko

k, ,a- 7-iai a

There are two degenerated solutions of (4.133) for viscous fluid:

(a) Inviscid solution: u' and u--+O

In this case

k~l =i c0 0a

and

kdI a = ý
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where the ý's are the roots of

(4.134)

(b) Slightly viscous solution: u' and u are both small

With this restriction we find

k2 aCi4 cFa
k,,a 7 with I k, 1al> 1

or

kdla = + e

where e << I and the ý 's are, as before, the roots of 4' () = 0.

Now (4.133) can be approximated by

Dn(n+ 1) D H n(n+ 1)e []• (-i)•
E E c-•a

[I E CEO4: :

or

ml±_i v n(n+l)
C== 7- .T•Co~a n(n+l)-47,

Solving k,, a = 4 + c for o) we obtain

oa E u n(n+ 1) r]

Co 0] ""2 Fc 0 a n(n+ 1)- 2 F1
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i ,'2 , n(n+1)
2 c0•a n(n+l)-4 2  (4.135)

The upper and lower signs in (4.135) correspond to [n(n+ 1)- 4,] > 0.
If [n(n+ 1)-ý4]> 0, the upper signs hold and in this case the

attenuation coefficient (time constant) is

td i= 2 n(n+l)- 42 a3  (4.136)n (n+ 1)L" "

and the frequency of the vibration is given by

_c 04E r42 u n(n+1) Z-1

1= i- -TOU (4.137)
27ra[ 2 c0•a n(n+1) - (417

If [n(n+ 1)- 4"] < 0, the lower signs hold, for which we obtain as
attenuation coefficient

td =,r 2- n(n+ 1 3'- (4.138)

n(n +1)4 ~c0

and as frequency

f Co{ D~ v • n(n+l) []2 c0 a_ [2n(n+l 1) (4.139)

27ta 0 -"2 c0•~a 4" n(n+ 1) r

where { are the roots of (4.134).
48)

According to Abramowitz and Stegun [Table 10.7, page 468],
the lowest value of 4 fora given n always yields [2 _ n(n+1)]>o. A
list of the first four roots for n= 1,2,3,4 is given below.
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n= 1 n= 2 n=3 n=4
/1 2.460536 3.632797 4.762196 5.86842
j = 2 6.029292 7.367009 8.653134 9.904306
j= 3 9.261402 10.663561 12.018262 13.337928

= 4 12.44526 13.88337 15.279081 16.641787

From these observations, we conclude that the lower signs in
(4.135) leads to an attenuated vibration whose attenuation coefficient
is given by (4.138) and whose frequency is defined by (4.139). The
upper signs in (4.135) and the subsequeny results from (4.136) and
(4.137) correspond to an unstable motion.

The time constants given by (4.138) are identical to those obtained
by Lamb 46). He also gives an alternate form of (4.134) in terms of
Rayleigh's formula. Unfortunately, Lamb made a computational error
in the-case of n = 1. The lowest mode of vibration ý should be
2.460536 instead of Lamb's value of 2.081.

4.3.2. Axially symmetric nontorsional free vibration of a spherical
elastic solid, a spherical viscous fluid drop and a viscoelastic
sphere.

The boundary conditions of this problem are
P,,,+rr,,?(r=a,O,t)=O and ý,om(r-a,O,t)=O. B,. and B,. are set

equal to zero to ensure finite field quantities at the origin r = 0. The
characteristic equation of the problem can be obtained by setting the
determinant of (4.131) equal to zero:

Lp....(kdm a)n (kdma)U r )
F, 2pm ( a n(n+l)[(k3,.a)&', (k,,a)- 9,,(k,,a)]
@ +(kd.a)2

&".(kd'a) P 0 (4. 140)

T 1 10
•k+-,, a & (kdma) LIe + ln- I -(kma) ?,9,, (k-a)l

S-~, 2 L1
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where Am and um are the operators defined in Table 2 with iwo replacing

at
models (m). In the case of an elastic solid (m = 2), 22 and P2 are the

(0) 0) 2 + 1 a2
usual Lam6 constants, k2 =- and k, =-, with cd2  and

C1. C, Ip 0

= - representing respectively the dilatational and shear wave

speeds. For the elastic medium the solutions of (4.140) are given in
Figure 1. The curves shown are plots of the normalized frequency
versus the meridianal wave number. According to this graph the
frequency appears to be a continuous function of the wave number;
however, the plots are only valid for discrete values of a) for each
meridianal wave number n, which is the degree of Legendre's function
P, (cosO). For each n there are an infinite number of ao's satisfying
(4.140), which means that there are an infinite number of frequency
curves.

4.3.3. Axially symmetric nontorsional free vibration of an elastic
spherical shell, a viscous fluid spherical shell, and a
viscoelastic spherical shell.

The spherical shell under consideration is again defined by two
concentric spheres whose radii are al, and a2. The boundary conditions
of this problem are given by

P, +, (r= a, , 0, t)=O

gr,.n (r= a,, 0, t)=O

P., + (;177 (r = a. , 0, t)=O0

';ran (r= a2, 0, t)= 0
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With (4.130), (4.131) and (4.132) we obtain as characteristic equation

[9mann(a)] [ImYn(a,) 1=0
[g. an (a,)] [Im Yn (a,)I (4.141)

where the matrices [a (a,)] and [%Y (a,)] are defined by (4.131)
and (4.132) for a given viscoelastic material m. Equation (4.141) is a
4x4 determinant and, with A0. representing an individual element, it
takes the form

All A1 2 A1 3 A1 4

A 2 1 A2 2 A2 3 A2 4

A 3 1  A 32  A 33 A3 4

A41 A 42 A 43 A4 4

=0
(4.142)

In the case of an elastic solid (m = 2) the elements become
A,, (oý,)=•i(n +l)-l-c" ,R((, -2x,& (x

D 1- [ ]"

S1 2 (1 -( )
A12 (al) n (n +1)• D -2_ 2, •112, 41 1F-2,

D1 (I -,) 2 D]
A1 3 (@i)= ( (n + )1) 1 -2 2aIn (, 1 .)

El2( -€) 1r~ (-41 ~ 2I~

A1 4 (at 1) n(n +1)[l Y n'Y, 1

A2 1 (xl)= I 1' (9n ) - 9n ((X1)
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2 - 2 1 C)2l ( 21A2 (a 1)=[ + -1 1- 2ýOLI [°n13 C) l (:I F 2 n 1F -,

S4- 1 F-22 -

'- 24 (a l ) I + n - I - 1 E ] I - 2 c Yn 1C ) ý
E I- 2C [ 1- 2c 2€ 1-2¢ D

I

A 23 (C'1 =0 X ='Ia IYn (Ol) Yn (al)

and
A31 = All (aX2 )

A32 :A 12 6 2)
A33 = A13 (aC2 )
A34 = A 14 (a 2 )

A41 = A21 (aL2)
A42 = A22(aL2
A43  _2 (X2 )

where a, a- c, and Wa, - is the Poisson's ratio and cd the
a, Cd

dilatational wave speed of the elastic solid.
The frequency of a vibrational mode is normalized by first

multiplying it by the inner radius of the spherical shell and then
dividing it by the dilatational wave speed of the elastic medium. The
frequency spectra are now reviewed for two particular cases. In the
case of radial vibration of a sphere the values are identical with those
defined by Lover's solution 34). In the case of a one-layer thin shell
theory used by Baker 49 ) and by Naghdi and Kalnins 50 ) as far as the two
lowest modes are concerned. However, the present investigation
indicates that there exists an infinite set of modes of vibration for a
one-layer thin shell of finite thickness. All the higher modes, however,
tend to have a constant high frequency as the meridianal wave number
continues to increase. These facts are demonstrated in Figures 2 and 3
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for a thin shell with a mean radius to thickness ratio of 63 and a thick
shell with a mean radius to wall thickness ratio of about 3. When the
thickness of a shell with a given radius is increased, the higher modes
are lowered and approach the same order of magnitude of the two
lowest modes. By substituting a particular frequency value from the
spectrum into the field quantifies, one obtains the displacement and
stress fields as functions of the spherical coordinates r, 0 and as
functions of time. Here the field quantities are normalized with the
function 0 at a given time, leaving r as the only variable. Thus the
profile of the variation of the field quantities in the radial direction can
be shown by plotting them as functions of the radial coordinate. The
mode shapes can also be given as vectorial sums of the displacements.
The modal analysis and the frequency spectra thus obtained are shown
in Figures 4 to 8.

4.3.4. Axially symmetric nontorsional free vibration of an elastic
spherical shell containing viscous fluid.

The elastic shell under consideration is uniformly thick with inner
radius r = a, and outer radius r = a2. The field quantities are finite at
r =0 for any t> 0, thus B, =0. The displacements and stresses are
continuous at the interspherical surface; the outer surface of the shell is
considered stress-free.

The boundary conditions of this problem are

uo1(r=aj,O, t)-Uo2(4=al,O, t =0

PI+ •rl(r=al,0, t)-,r2 (=a,,O, t =0

,91 (ra,,O, ,)- 0 ,2 (, =a1 ,O, t =0

c,,,.2(r' a2, 0, t) =O

¢,02 (r a2, 0, t)=0
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From (4.127) to (4.132), with m = I for the interior of the shell and

m = 2 for the shell material, the characteristic equation of the problem

is

[ " . n(aj )]

0

lu '3 . (a A luY (an I

2 p 2 k 2 &. (aj] 2p 2 [,;,Y. (aj] 0

2pj,;,&,(aj] 2ý12[q2y.(aj]

(4.143)

The characteristic equation (4.143) is considerably more complicated
than in previous examples. The elements of the determinant are
defined by (4.129a), (4.129b), (4.131) and (4.132). In seeking the high
frequency solution of (4.143), we can make use of the asymptotic
expansions of the spherical Bessel functions 49, and Y,, for large

arguments. By manipulating all the dominant terms in the determinant
(4.143), we can prove that the shearing effects and dilatational effects
of a spherical shell filled with compressible viscous fluid vibrating at
high frequency are almost decoupled. These results are summarized as
follows.

(a) Shearing effects

Solution Physical
Materials c) Statements

2v(n,2+n- l)i damped
Viscous 2 solution
fluidcore 2 damped

-c-e 7w + jn , 2 i solution

whereji = 0, 1, 2, 3...
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(b) Dilatational effects

Solution Physical
Materials (o Statements

22 E

wherej = 0, 1, 2, 3...
when c+"1  + ame

Viscous w > damped
fluid oscillation
core

when cja = +nt+] critical-
7__ 4 +.1 damped

2 motion.

when C,,a, < n n H OverdampedL....+2u) [+ 4 7r+ 4 E] motion

•a,

Spherical cd2  jI2 + nr + Undamped
elastic (a, + a,) oscillation
shell

wherej = 0, 1, 2, 3...
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CHAPTER 5

CONCLUSIONS, DISCUSSION AND SUGGESTIONS

C onclusions

1. The governing displacement equations of motion for a class of
three-dimensional homogeneous, isotropic, linear viscoelastic
materials are systematically constructed.

2. General solutions of these governing displacement equations are
obtained by means of the Lam6-Helmholtz-Stoke s potential
functions, from which each governing displacement equation of
motion is transformed into a scalar and a vector potential equation
of motion.

3. The vector potential function is further resolved in terms of two
independent scalar potential functions in order to secure a
separable solution. This can be done when the vector equation of
motion is expressed in terms of spherical, conical, or general
cylindrical coordinates. Therefore, the displacement equation of
motion for each material model can be transformed into three
independent scalar potential equations of motion.

4. The field quantities are
independent scalar potential
or harmonic solutions for
problems can be obtained.

Discussion and Suggestions

obtained in terms of those three
functions, and from these the transient
mixed or nonmixed boundary value

The present theory, as mentioned above, provides a systematic
means of constructing and solving the governing displacement
equations of motion for a class of three-dimension al, homogeneous,
isotropic, linear viscoelastic materials.
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The application of the theory to solve some physical problems is
demonstrated in thirteen examples which are all based on spherical
coordinate systems. However, as noted in the text, the theory can be
extended with regard to the following three aspects.

1. Analytical aspect

a. To provide detailed analytical general solutions and
physical examples in other separable coordinate systems,
namely, the rectangular, the parabolic, the circular and the
elliptic cylindrical coordinate systems, and the conical
coordinate system.

b. To consider thermal and electromagnetic coupling effects
in the general solutions for all separable coordinate
systems.

c. To obtain, by means of iteration from the basic linear
general solutions, the higher order nonlinear solutions
including thermal and electromagnetic coupling effects.

d. To develop a systematic method of analyzing the physical
problems involving nonhomogeneous, anisotropic
materials.

e. To implement electrical and mechanical circuit analogy to
simulate complicated material models.

2,3. Numerical and experimental aspects

a. There are quite a few difficult physical problems which
have been analytically solved, but so far no numerical
values or experimental data have been obtained for these
problems. Examples are: "the circumferential harmonic
wave propagation in elastic rods of elliptic cross section";
"the circumferential harmonic wave motions of a viscous
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fluid in a rigid elliptic inclusion"; and "flexural wave
motions in a multilayered circular cylindrical shell." All
these problems have been analytically solved, and although
they are physically meaningful, with important engineering
applications, the numerical results have so far not been
obtained.

b. To establish a long-term project for tabulation of well-
known functions of complex argument in the course of
evaluating the numerical values from the analytical
problems. For example, the harmonic solutions of physical
problems associated with thermal coupling effects, viscous
fluids or viscoelastic materials in a single- or multilayered
continuum involve mathematical functions with complex
arguments in order to retain the separability of the solutions
satisfying the boundary conditions. Also, nonmixed type
boundary value problems involve mathematical functions
of complex arguments. These can be solved by means of
linear transform techniques.
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APPENDIX A

SOLUTION OF THE VECTOR DIFFUSION
EQUATION AND THE VECTOR WAVE EQUATION

IN TERMS OF SCALAR POTENTIALS

The vector diffusion equation and the vector wave equation can be
solved in terms of two scalar potentials, which satisfy scalar diffusion
equations and scalar wave equations respectively. This will be
demonstrated here for the case of spherical coordinates.

If y' (r,O,4,t) is a scalar function of the spherical coordinates

r, 0,4, then it can be readily shown that:

r!
V x(errwl=(VrN,)xer (A1)

and

V xVX (er ry)" 'T er r VY (A2)

where er is a unit vector in the r direction.

If N (r, 0, p, t) satisfies the scalar diffusion equation and the

scalar wave equation

EE a
V = ' (A3)

- at 2 H

then substitution of(A3) into (A2) gives
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V XV x(e, rW)= V~r

A1 aVy [
r at2
er, T 11

R,2 at2

(A 4)

If V satisfies

01 . []

1:5 at L
(A5)

and X satisfies

ýI a~twF

LI]-2 at2  ElI
ff3 L

(A6)

r
then A=Vx(eryr)+ VxV 4,. rX

L r) + Lv -=V (, W oEoa Eoe

ol ax E-

rLQ1 a3xOI

IT --r[I I aX LI
(A7)

and

r
LI1 aAO

r ý-- -- 0

V2 =IV c~V A = El tr Li
OL1 a 2A EL
7, -j2LEF3 F

(A 8)
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PROOF: Taking the divergence of(A7) gives
V. A = 0 (A9)

Taking the curl of(A7) and making use of(A4), we obtain

El
r Fr + srnr

VxA=Vx 'x(e r) 7 err(e ELarEj
Ell 0Z FIN

R2 at2

ElLaMJ El

[]ar E]

EF ElxV1
-- U at

er r 2i ., El

3l a'FTH

l ax 0
r D t El

Vx err1 El 2
DI a x l

(A 10)

The curl of(A 10) gives, with (A9) and (A7)

r r
V xV X A v.(v- .)-v Av

El

ElEarE

[E1la ~rEl

eFl El -r Ell a2 wr ElR2 at 2 -
5] H3r[

El at rxOlH
V X er u E uV1e•rl El[]

El a2rx OF]

R2 at2
rEl1i OE

1-\1_- ~- -E
x (rx El= - 0 2 A El

[]I 2A

Eli aw

=-Fatr(V er)+ V x V
E]l a2 El

127



81 .I .. lie . ChaM .D - Stanford Th-e-sis'.odf
...... ...... I

Panqe 138;1
L .IZ .. _: - - ,: --...... ,2': .-- _1---.-.:•.....:....... ........... . . ............. ................... ...-- ........ ... ... ........ ........ .......... ~. . ....-... .. I

Po Kee Wong

Hence

r
V xV xA= -

El )A&

DII a 2A FD

and

El 04W

r
E]=D I 2A
Dw1 -0A

2P &2

Therefore, if V/ satisfies v 2~ FR
a21= Funct of]the

a function of the

and X satisfies

v 2 X FERýj-E3
&~t El

where FHt-H is
OtElI

operator f only,

then A=V x (ry) + V v x VX (r) satisfies V 2 A = FH2 -B4ý.
DYt LI
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APPENDIX B

r

The well-known Hehnholtz's theorem u = Vq + V x A indicated

by equation (2.17) where ý and A are potential functions, can be
traced back to contributions of Lame and Poisson. These functions 0

and A are often referred to as Lame's potentials. The traditional proof
of the Helnholtz theorem is diversified in the literature of several
scientific fields. It can be found in texts of potential theory,
electromagnetic theory, vector analysis, partial differential equations,
as well as in those of elasticity and fluid mechanics. The traditional
proof was obtained in terms of volume integrals for p and A over an
infinite domain. These results are in fact particular integral
representations of the Poisson's equations V2q = V and V 2A 0 - ,I Z2where A=Vu' and 2U= r

An alternate proof of such results is shown in the following
sequence: (a) vector algebra; (b) vector identity; (e) commutativeness
of divergence and curl with respect to the Laplacian operator; and (d)
completion of the proof.

(a) Vector algebra

rF
Given: c, D, 26 as known vectors at any points in the space with

their components lying along the coordinate basis of three
r - -

orthogonal unit vectors e, e, and e3 , and A a known

scalar at the same point, where D C•Oand D w 26

r
Consider: u as an unknown vector which satisfies

ý.r = A (I)

D x r = 2L (2)
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r
Then u can be determined from both (1) and (2). Such a result can be

obtained by taking the cross product of vector C and equation (2):

xu )= b (5U) (ab ý x 2ý (3)

Solve u from (3) and replace u from (1), obtaining

r DA- x2 (4)

r
Notice that u cannot be determined either from (2) or (3) alone. In the
former case, it is because of insufficiency of the simultaneousI ,

equations for the components of the vector u, and in the latter, the
determinant is singular.

(b) Vector identity

Since (4) is true for any given vectors D, C and 2 Q and any given
scalar A at any point where these four quantities are finite, then
without loss of generality let C= D = V which is defined as a gradient,
a vector operator in the usual sense; (1) and (2) become

V "' = A (5)

rV x u= 2 (6)

and equivalence of (4) becomes

V 2 u = VA-V V x29 (7)
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Substituting A from (5) and 20 from (6) gives the well-known
vector identity

V 2 = V (A.) - vX (VX U) (8)

(c) Commutativeness of divergence and curl with respect to the
Laplacian V 2. Taking the divergence of (8),
V .(V2Z',)= V2 (V "i,)_ V "[V x(V xU )], and noticing that

V .[V x (V x u)] a 0 in vector analysis, one obtains

V .(V 21,V2 (V.U (9)
Hence V V2 and V-2V. operated on a vector are commutative.
Taking the curl of (8), V (v2•).= V XV(V.) V x[V x(V 4)],
noticing that V x V (V - )= 0 and using (8) to expand the term

-v x[vX(vx I,)]= v2 (vX u)-v[v .(iX t ]= v2(v x.')

one obtains

v x(v21L)= V2 (Vx',) (10)

Hence VxV2 and V2 Vx are operated on a vector are also
commutative.

(d) Completion of the proof.

If
r = + U(11)

where u1 and u 2 are functions to be determined satisfying the

conditions

131



Billie Champ -StanfordThesisdf ...8. . . . . a.................... Pe 142

Po Kee Wong

V _xu = 0 (12)

and

V u 2 =0 (13)

then substitution of(11) into (7) gives

V2( 1+ u 2)=VA-V x2L (14)

Taking the divergence of (14) and noticing that from (9) V V 2 and
V 2 V are commutative, from (13) Vu 2 =0 and from vector analysis

V .V x2L= 0, one obtains

v2(V .i)= V 2A (15)

A sufficient condition for the satisfaction of (15) is that

V " - A (16)

Taking the curl of (14) and noticing from (10) that V XV2 and

V 2V x are commutative, from (11) that V x U, = 0, from vector analysis
that VxVA=0 and from (8) that

V2(V XU2  V [V X("7Xu2 ]- V xV X (V X U2) V X gives

- V XV x(V x2u2 )=-VxVx2L (17)

A sufficient condition for the satisfaction of (17) is that

-= I
V XZ42 = 2Q (18)

132



Billie Champ - Stanford Thesis.pdf
. I ý I I... .. ....,. ... ..... .. ..... .

.................................................... Pag.# •!.4•3...lBillie ..... Cha p_ Stn.r T...pd . . ............

Waves in Viscous Fluids, Elastic Solids, and Viscoelastic Materials

Of the two pairs of equations, (12) and (16), and (13) and (18), the first

pair contains u, as an unknown and the second pair contains u2 as an
unknown. (12) is satisfied if

ul= V 0 (19)

and it follows from (16)

V2 = A (20)

Equation (13) is satisfied if

u 2 = V xA

and it follows from (18) that

(21)

VXv x(VA)= 2L (22)

Simplifying the left-hand side of (22)
V x(V xA)= V (V .A)-V2A and choosing

V "A=0

by means of (8)

(23)

equation (22) becomes

v 2 =- 262 (24)

Substituting (19) and (21) back into (11) completes the proof of

r
U = Vp+VxA

satisfying (7) which represents (5) and (6) provided that V 20 = A and
I 2 IV 2 A=-2fl with V-A0.
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Subject: FW: 11 websites where you can obtain my patents; international conference papers and
relevant engineering and scientific documents for open review; evaluation and discussion
worldwide

Dear Chairman Sheon:

The following websites are consolidated together to facilitate for your filing and tracing of my work
that may be of your interest to collect and edit and put them into the file for your book " History of Nan Tao
High School "

While typing the cc of this E-mail to you, President George Bush's E-mail address pops up. This
gives me an idea to ask you whether you want also to invite President Bush of USA and President Hu Jin
Tao to come to our Centennial Celebration. They can meet and talk informally about the proposed
projects of collaborations between two governments to build: (1) A 3 rd. identical observatory and; (2) A
new satellite ejection station in the "High Plateau Region of China"

Please call me at + 301-585-3453 to discuss about this idea further if you think this is feasible
and mutually beneficial to all of us being involved. Please also respond this E-mail with acknowledgement
that you have already received all the E-mails of information having sent to you so far.

With my best regards to you all, I am,

Very truly yours,

WONG, Po Kee (1946-1949 Alumni)

Tel: + 301-585-3453

pokwonq(a.verizon.net

pokwonqa-rcn.com
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From: pokwong [mailto:pokwong@rcn.com]
Sent: Friday, September 29, 2006 10:50 PM
To: pokwong@verizon.net; pokwong
Subject:

(1) Search for Po Kee Wong Angles:
http://www.google.coin/search?q=+site:mathforum.org+Po+Kee+Wong+Angles&hl=en&lr-&ie
=UTF-8&filter=0

You and all members of CSTB are cordially invited to review and evaluate the TRUTH and the
IMPACTS from the following websites about the confrontation between Judges and Mathematicians
worldwide on the key issue of whether the Judges should be given the Judicial Power by any
governmental institutions in the world to rule against the ABSOLUTE TRUTH of MATHEMATICS:

(2) The following information was the first one of the several public documents to have been submitted back to
CAFC for the public hearing of the CAFC case number 2006-1324:

http://mathforum.org/kb/thread.i spa?forumID=206&threadID=478694&messagelD= 1467123

(3) The following information was the second one of the several public documents to have been submitted back to
the CAFC for the public hearing of the CAFC case number 2006-1324 IN RE PO KEE WONG:

http://mathforum.org/kb/inessage.i spa?messagelD= 1 094424&tstart=0

(4) The following was the third of the several public documents to have been submitted back to the CAFC for the
public hearing of the CAFC case number 2006-1324 IN RE PO KEE WONG:

http://mathforumi.orm/kb/thread.ispa?forumlD=1 30&threadiD=357907&messageID= 1094423

(5) The following was the fourth (4th.) of several public documents that had been submitted'back to the CAFC for
the Judges to re-consider their current disposition of the CAFC case number 2006-1324 IN RE PO KEE WONG:

http://mathforum.org/kb/message.ispa?messagelD=3566959&tstart=0

(6) Comparison of Trajectory Solid with Geometric Solid in Sacttering Theory:

http://adsabs.harvard.edu/abs/2002iaf..confE.559W

(7) U.S. Patent 5084232:
http://patft.uspto. gov/netactgi/nph-
Parser?Sect 1 =PTO 1 &Sect2=HITOFF&d=PALL&p= 1 &u=%2Fnetahtml%2FPTO%2Fsrchnum.h
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tmn&r= 1 &f=-G&1=50&s 1 =5084232.PN.&OS=PN/5084232&RS=PN/5084232

(8) U.S. Patent 5848377
http://patft.uspto.gov/netacgi/nph-
Parser?Sect 1 =PTO 1 &Sect2=HITOFF&d=PALL&p= 1 &u=%2Fnetahtlnl%2FPTO%2Fsrchnum.h
tm&r= 1 &f=G&l=50&s 1=5848377.PN.&OS=PN/5848377&RS=PN/5848377

(9) U.S. Patent 6430516
http://patft.uspto.gov/netacgi/nph-
Parser? Sect 1 =PTO 1 &Sect2=HITOFF&d=PALL&p= 1 &u=%2Fnetahtml%2FPTO%2Fsrchnum.h
tm&r=1 &f=-G&1=50&sl=6430516.PN.&OS=PN/6430516&RS=PN/6430516

(10) Mathforum Search
http://mathforuin.org/kb/profile.j spa?userlD=47317

(11) ICONE 13 paper 50509
httv://www.conferencetoolbox.org/ICONE 13/Author/PaoerDetails.cfin


