

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Task 3: Cracking of Nickel Alloys and Welds – CGRs of Alloys 600 and 690 in PWR Water

Investigators: Bogdan Alexandreanu, Omesh Chopra, Bill Soppet, and Bill Shack

Experimental Effort: Ed Listwan and Loren Knoblich

September 25-26, 2007 Nuclear Engineering Division Argonne National Laboratory, Argonne, IL 60439

Work sponsored by the US Nuclear Regulatory Commission

Outline

Experiment

CGR of Nozzle #3 Alloy 600 from Davis-Besse

CGR of Alloy 690

Experiment

- Temp: 320°C
- PWR Water (<10 ppb DO, 1000 ppm B, 2 ppm Li, ≈2 ppm hydrogen</p>
- Flow Rate: ≈55 mL/min
- Conductivity: ≈20 µS/cm
- Loading sequence chosen to facilitate the transition from transgranular fatigue cracking to intergranular SCC cracking:
 - Precracking carried out in the PWR environment
 - Load Ratio R: 0.3–precrack;
 - 0.5-0.7-sawtooth with up to 1000s rise time;
 - 1.0-constant load

The Analysis of Cyclic CGR Data for Ni-alloys

Cracking of Nozzle Alloy 600 from Davis-Besse

CGR of Nozzle #3 Alloy 600 from Davis-Besse

 Specimens tested in 316°C simulated primary water: 1/4T-CT
N3CL-1
N3CC-2
1/2T-CT
N3CC-3

Fracture surface of specimen N3CL-1

Fracture surface of specimen N3CL-4

Fracture surface of specimen N3CC-2

Fracture surface of specimen N3CC-2

Fracture surface of specimen N3CC-3

Did not start as IG fracture right from the notch, elements of IG are present in the TG region

Work sponsored by the US Nuclear Regulatory Commission

Cyclic CGRs for Nozzle #3 Alloy 600 from Davis-Besse

Cyclic CGRs show environmental enhancement

SCC CGRs for Nozzle #3 Alloy 600 from Davis-Besse vs. K

SCC CGRs are 2-4× the proposed disposition curve
Heat ranks at 95% of the distribution (26 heats)

Nozzle #3 Alloy 600 from Davis-Besse – Summary and Remaining Issues

- Very high crack growth rates
- IG fracture mode during precracking

Very high SCC CGRs unexpected because:

- Alloy with average strength
- Grain boundary carbide coverage (50–60%)

More recent investigations

- Good grain boundary carbide coverage
- Low special boundary fractions
 - could explain the high SCC CGRs
 - can not explain IG fracture mode during precracking

Stress Corrosion Cracking of Alloy 690

Alloy 690 specimens

Alloy 690 in plate form ((MIL-DTL-24802*)
---------------------------	------------------

Alloy ID (Heat)	Analysis	С	Mn	Fe	S	Р	Si	Cu	Ni	Cr	Ti	Nb	Co
A 690WC (NX3297HK12)	Vendor	0.03	0.20	9.9	< 0.001		0.07	0.01	59.5	29.5			
	ANL	0.04	0.33	8.53	0.001	0.003	0.02	0.04	59.67	30.82	0.47	0.01	< 0.01

Cold-rolled in three passes to achieve approx. 26% reduction in thickness

Specimens cut in both SL and ST orientations

- electro slag removed
- hot rolled
- de-scaled
- annealed at 1900F for 2h
- air-cooled

Results - Alloy 690 specimen A690WC-SL-1

Results - Alloy 690 specimen A690WC-ST-1

Fracture surface of A690WC-SL-1

Fracture surface of A690WC-ST-1

Fracture surface of A690WC-SL-1

Fracture surface of A690WC-SL-1

Cyclic CGR data for Alloy 690 and Davis-Besse Alloy 600

SCC CGRs for Alloy 690 and Davis-Besse Alloy 600 vs. K

Summary

Nozzle #3 Alloy 600 from Davis-Besse

- Fracture is predominantly IG, even during mechanical fatigue loading
- Cyclic CGRs show environmental enhancement in PWR water at 316°C
- SCC CGRs are a factor of 2-4 higher than the proposed disposition curve for Alloy 600; growth rates correspond to 95th percentile of the data

Alloy 690

- Fracture surfaces were uniform for both Alloy 690 specimens
- Cyclic CGRs of Alloy 690 show environmental enhancement
- The SCC CGRs in simulated PWR water at 320°C were as high as:
 - $2.8-3.3 \times 10^{-11}$ m/s for K_{max} = 28-31 MPa m^{1/2} for Alloy 690
 - 5.4 x 10⁻¹¹ m/s for K_{max} = 30.2 MPa m^{1/2} for Alloy 152

