

... for a brighter future

U.S. Department of Energy

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Task 3: Cracking of Nickel Alloys and Welds – CGRs of Ni-alloy Welds in Primary Water

Investigators: Bogdan Alexandreanu, Omesh Chopra, Bill Soppet, and Bill Shack

Experimental Effort: Ed Listwan and Loren Knoblich

September 25-26, 2007 Nuclear Engineering Division Argonne National Laboratory, Argonne, IL 60439

Work sponsored by the US Nuclear Regulatory Commission

Outline

- Background
 - Proposed disposition curve, selection criteria
 - CGR testing at ANL, participation in the Round-Robin testing of Alloy 182
- CGR of Laboratory-prepared Alloy 182
- GGR of Field Welds (Davis-Besse Alloy 182, V.C. Summer Alloys 182/82)
- Determination of the activation energy for SCC crack growth
- CGR of Laboratory-prepared Alloy 152

Background

Proposed disposition curve¹:

$$\dot{a}_{Ni-weld} = \alpha \exp\left[-\frac{Q}{R}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right] K^{\beta}$$
$$\alpha = 1.5 \times 10^{-12} \text{ m/s}$$
$$Q = 130 \text{ kJ/mol}$$
$$T_{ref} = 325^{\circ}\text{C}$$

¹White, G., J. Hickling, and C. Harrington, EPRI Alloy 600 Conference, 2005

Work sponsored by the US Nuclear Regulatory Commission

Background

Data analysis¹

- Divide by the engagement fraction to allow for incomplete initiation
- Normalize all CGRs to 325°C using Q=130 kJ/mol
- Multiply the CGRs for TL orientations by 2 to account for orientation effects
- Multiply the CGRs for Alloy 82 welds by 2.6 to account for the effects of alloy type.

¹White, G., J. Hickling, and C. Harrington, EPRI Alloy 600 Conference, 2005

Testing Facilities

- Autoclave (up to 350°C)
- Water loop
- Hydraulic test frame with Instron digital control
- Crack growth measuring system by the DC potential method
- LabView data acquisition

Experiment

- Temperature: 290°C 350°C
- PWR Water (<10 ppb DO, 1000 ppm B, 2 ppm Li)</p>
- Flow Rate: ≈55 mL/min
- Conductivity: ≈23 µS/cm
- Precracking carried out in the PWR environment to facilitate the transition from transgranular fatigue cracking to intergranular SCC cracking before conducting the constant load test
- Load Ratio R: 0.3–precrack; 0.5–sawtooth with up to 1000s rise time; 1.0–constant load

The Analysis of Cyclic CGR Data for Ni-weld Alloys

Round-robin CGR Test

Alloy 182 Round Robin – Specimen 6T (ANL)

Cyclic CGRs of the Round Robin Alloy 182

No environmental enhancement

SCC CGRs of the Round Robin Alloy 182

Very good agreement with other participants

Cracking of Laboratory-prepared Alloy 182 Weld

Alloy 182 Weld Specimens

Double-J weld

Deep-groove weld

CT31-W01 TS CT31-W02 TS

CT933-01 TS CT933-TL1 CT933-LS

Double-J Alloy 182 Weld Specimen CT31-W02 TS

Fracture Surface of CT31-W02 TS

Work sponsored by the US Nuclear Regulatory Commission

Cyclic and SCC Data for Laboratory Welds

SCC CGRs of Laboratory-prepared Alloy 182 Welds

Cracking of Field Weld Alloys (Davis-Besse and V.C. Summer)

Location of Specimens – Alloy 182 J-groove Weld of Nozzle #11 from Davis-Besse

Work sponsored by the US Nuclear Regulatory Commission

Location of specimens – V.C. Summer reactor vessel nozzle–to–pipe weld

Fracture Surface of Alloy 182 Specimen J11CC-1 (Davis-Besse)

Fracture Surface of Alloy 182 Specimen BCR-01 (V.C. Summer)

Work sponsored by the US Nuclear Regulatory Commission

Fracture surfaces of J11CC-1 and BCR-01 (Alloy 182)

Secondary cracks across the propagation front

Fracture Surface of WCR-01 (A82)

Crack branching (secondary cracks observed on the fracture surface, across the propagation front)

North Anna Unit 2 Nozzle #31 – Destructive Examination (PNNL)

Extensive branching

Work sponsored by the US Nuclear Regulatory Commission

Cyclic CGRs for Field Welds (Davis-Besse and V.C. Summer)

SCC CGRs for Field Welds (Davis-Besse and V.C. Summer)

All CGRs well below the proposed disposition curve

Determination of the Activation Energy for SCC Crack Growth of Alloy 182 Weld

Literature Data: Alloy 182

Larger than the proposed value of 130 KJ/mol

Literature Data: Alloy 82

Large scatter: 119-165 kJ/mol

Approach

- Conduct tests in PWR environment at different temperatures
- Use one specimen for up to three temperatures to observe the effect of temperature on a crack that is already propagating
- Maintain △E from the Ni/NiO line by adjusting the hydrogen overpressure

Composition (wt.%) of Alloy 182 Welds

Alloy ID (Heat)	Analysi s	С	Mn	Fe	S	Р	Si	Cu	Ni	Cr	Ti	Nb	Со
A 182	Spec.	0.10*	5.0-9.5	6.0-10.0	0.015*	_	1.0*	0.5*	Bal	13.0-17.0	1.0*	1.0-2.5	0.12*
A 182 Double-J	ANL	0.0415	7.095	6.005	0.008	0.06	0.53	0.03	65	14.35	0.43	1.585	0.03
A 182 Deep Groove	ANL	0.04	7.08	6.82	0.005	0.025	0.35	0.03	70.44	13.81	0.30	1.06	0.02

Three Alloy 182 weld specimens (all TS orientations) were tested:

- 1T CT Specimen A182-1: 320°C 305°C 290°C- 320°C
- 1/2T CT Specimen CT933H-1: 310°C 300°C 290°C- 310°C
- 1/2T CT Specimen CT933H-2: 350°C 310°C 290°C- 350°C

Cyclic CGRs for Laboratory-prepared Alloy 182 Welds

SCC CGR vs. temperature for Specimen A182-1

Fracture Surfaces

1T CT Specimen A182-1:
320°C - 305°C - 290°C- 320°C

 1/2T CT Specimen CT933H-2: 350°C - 310°C - 290°C- 350°C

Determination of the Activation Energy for SCC Crack Growth in Alloy 182 Weld

■ Q = 252 kJ/mol for double-J weld, 189 KJ/mol for deep groove weld

Comparison with Alloy 82 data

Alloy 82 appears to be more resistant to SCC crack growth than Alloy 182

The Consequences of Using a Larger Activation Energy

 $\dot{a}_{Ni-weld} = \alpha \exp\left[-\frac{Q}{R}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right]K^{\beta}$

Cumulative distribution of parameter α , when data normalization uses:

The Consequences of Using a Larger Activation Energy

If Q = 220 kJ/mole is used, the disposition curve for Alloy 182 becomes 36% less conservative

Determination of the Activation Energy for SCC Crack Growth of Alloy 182 Weld

Alloy 152 specimens (A152-TS-2 and A152-TS-4)

A152-TS-4 test in progress

Results - Alloy 152 specimen A152-TS-2

Fracture surface of A152-TS-2

Work sponsored by the US Nuclear Regulatory Commission

Fracture surface of A152-TS-2

Cyclic CGR data for A152-TS-2

A152-TS-4 rates are not corrected

SCC CGRs for A152-TS-2 and Alloy 182 vs. K

A152-TS-4 rates are not corrected

Summary

General

- Experimental procedure assured transition to IG fracture mode, superior IG engagement, and relative straight crack fronts (field and laboratory 182/82, 152)
- The environmental enhancement of cyclic CGRs is minimal for all weld alloys

Laboratory-prepared welds (Alloy 182)

- SCC CGRs consistent with other laboratory data
- The activation energies for SCC crack growth were 252 kJ/mol (double-J weld), and 189 kJ/mol for the deep-groove weld
- The use of the larger activation energy (220 kJ/mol vs. 130 kJ/mol) for CGR data analysis for Alloy 182 welds leads to a less conservative disposition curve disposition curve

Field welds

- Defects were found in the field welds
- SCC CGRs lower than those for laboratory-prepared welds
- Crack branching was observed on both fractures surfaces and cross sections

Alloy 152

SCC CGRs was as high as 5.4 x 10⁻¹¹ m/s for K_{max} = 30.2 MPa m^{1/2}

