

U.S. Department of Energy UChicago ► Argonne<sub>LLC</sub>



A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Task 2: Evaluation of the Causes & Mechanisms of IASCC in PWRs -Microstructural Examination of Austenitic SSs & Alloy 690 irradiated to 25 dpa

Investigators: Yong Yang and Todd Allen,<sup>1</sup> and Yiren Chen and Omesh Chopra

September 25-26, 2007 Nuclear Engineering Division Argonne National Laboratory, Argonne, IL 60439 <sup>1</sup>University of Wisconsin-Madison



Work sponsored by the US Nuclear Regulatory Commission

# Background (1)



Microstructurally visible features:

- Dislocation loops
- Voids
- Precipitations

Irradiation microstructure evolution is a dynamic process controlled by irradiation condition, e.g. irradiation temperature and damage rate.



#### **Background (2)**

Example – void swelling depends on temperature and dose rate.



Percent Swelling as Functions of Temperature and Fluence

Mansur. JNM, 216(1994)97



Work sponsored by the US Nuclear Regulatory Commission

# Background (3)

- Insufficient microstructure data on reactor internals for the irr. condition relevant to PWRs
  - Historically, high dose irr. microstructure studies mainly focus on fast breeder reactors or fusion system.
  - Extrapolating these data to PWR relevant conditions requires caution. (Chung, NUREG/CR-6897, 2006)
- PWR irr. condition
  - High EOL dose (life extension situations, it could be as high as ~100 dpa).
  - Moderate irradiation temperature (normally 295 ~ 340°C, but could be as high as 370 ~ 400°C with local  $\gamma$  heating).
  - Low damage rate (~ 10<sup>-7</sup> dpa/s).
  - He/dpa ratio: 2.5 ~ 6 appm/dpa

**Objectives:** Under PWR relevant temperature & dose

- examine void swelling
- characterize irradiation microstructure



# **Experimental (1)**

|  | 3-mm | TEM | disks | irradiated | in | BOR-60 | reactor |
|--|------|-----|-------|------------|----|--------|---------|
|--|------|-----|-------|------------|----|--------|---------|

| Mat Type     | Heat ID | Ni    | Si   | Р      | S     | Mn   | С     | Ν     | Cr    | Other Elements            |
|--------------|---------|-------|------|--------|-------|------|-------|-------|-------|---------------------------|
| 304 CW       | 2333CW  | 8.50  | 0.65 | 0.031  | 0.029 | 1.38 | 0.035 | 0.068 | 18.3  | Mo 0.37                   |
| 304 SA       | C12     | 8.23  | 0.47 | 0.018  | 0.002 | 1.00 | 0.060 | 0.070 | 18.43 | B<0.001                   |
| 316 LN SA    | 623     | 10.33 | 0.70 | 0.007  | 0.002 | 0.97 | 0.019 | 0.103 | 17.23 | Mo 2.38, Cu 0.21          |
| 304A         | C9      | 8.75  | 0.39 | 0.013  | 0.013 | 1.72 | 0.062 | 0.065 | 18.48 | B<0.001, O 0.0101         |
| HP 304L SA   | 945     | 9.03  | 0.03 | <0.005 | 0.005 | 1.11 | 0.005 | 0.003 | 19.21 | O 0.047, Mo<0.005         |
| CF-8 Cast SS |         | 8.08  | 1.07 | 0.021  | 0.014 | 0.64 | 0.063 | 0.062 | 20.64 | Mo 0.31, δ 23.4%          |
| CF-8 Cast SS |         | 9.34  | 1.08 | 0.008  | 0.007 | 0.60 | 0.062 | 0.045 | 20.33 | Mo 0.32, δ 13.5%          |
| CF-3 Cast SS |         | 9.40  | 0.92 | 0.012  | 0.005 | 0.57 | 0.009 | 0.052 | 19.49 | Mo 0.35, δ 13.5%          |
| 690 Base     | 690     | 61.49 | 0.05 | -      | <0.01 | 0.15 | 0.030 | -     | 29.24 | Fe 9.02                   |
| 690 GBE      | GBE690  | 59.40 | 0.30 | -      | 0.003 | 0.42 | 0.010 | -     | 29.10 | Fe 10.26                  |
| 347 SA       |         | 10.81 | 0.29 | 0.023  | 0.014 | 1.56 | 0.030 | 0.021 | 18.06 | Nb 0.60, Mo 0.29, Cu 0.09 |

Irradiation condition

- Dose ~ 24.5 dpa
- Temperature ~ 325°C
- Dose rate ~  $9.4 \times 10^{-7}$  dpa/s.
- He/dpa ratio < 1 appm/dpa</li>
- Sample radioactivity ~ 100mR/hr on contact; 0.7 mCi.



# **Experimental (2)**

Electrochemical method was used to prepare TEM foils



- Two-step sample preparation:
  - Uniform thinning from 250  $\mu m$  to 100  $\mu m.$
  - Perforation.
- Polishing condition:
  - For SS: 6% HClO<sub>4</sub> solution @ -20°C, and 70 mA.
  - For Alloy 690: 10% HClO<sub>4</sub> solution @ -40°C, and 110 mA.



## **Experimental (3)**

Imaging faulted loops in irradiated materials using Rel-rod streak





## Austenitic SSs (1)

#### Type 304 SS from ABB (Heat 2333), 35% cold-worked



Control sample



Work sponsored by the US Nuclear Regulatory Commission

#### Austenitic SSs (2)

Type 304 SS with low-S (Heat C12), SA



Bright Field image



Weak Beam Dark Field image



Rel-rods DF image of faulted loops





## Austenitic SSs (3)

Type 304 SS with high-S (Heat C9), SA



Bright Field image of control sample



Rel-rods DF image of faulted loops



TEM image of irradiated A2 sample





#### Austenitic SSs (4)

Type 316 LN SS (Heat 623), SA



Rel-rods DF image of faulted loops





## **Duplex SSs (1)**

■ CF-8 Cast SS (Heat 68), high-C and 23% ferrite.



TEM image of control sample



Rel-rods DF image of faulted loops



BF image of austenite in irradiated sample





#### Duplex SSs (2)

CF-3 Cast SS (Heat 52), low-C and 13% ferrite.



BF image of austenitic phase



BF image of grain boundary of austenite and ferrite



Rel-rods DF image of faulted loops in austenite





## Alloy 690 (1)

Alloy 690 (Heat 690 Base)



Voids in BF image with g=200



Rel-rods DF image of faulted loops



BF image of dislocation structures





## Alloy 690 (2)

GBE Alloy 690 (Heat 690 GBE)



Voids in BF image with g=200



Rel-rods DF image of faulted loops



BF image of dislocation structures





## Summary

#### Average size and density of Frank loops in the irradiated Austenitic steels

| Material Type       | Mat. Code | Average Size (nm) | Dislocation Density (m <sup>-3</sup> ) | Voids |
|---------------------|-----------|-------------------|----------------------------------------|-------|
| 316 CW              | B2        | Not measured      | Not measured                           | No    |
| 304 SA              | A3        | 25.5              | 3.0 x 10 <sup>22</sup>                 | No    |
| 316 LN SA           | B3        | 5.8               | 1.68 x 10 <sup>22</sup>                | No    |
| 304 SA              | A2        | 8.1               | 4.6 x 10 <sup>22</sup>                 | No    |
| HP 304L SA          | A8        | 12.2              | 1.2 x 10 <sup>22</sup>                 | No    |
| 347 Stainless steel | D1        | 9.39              | 2.0 x 10 <sup>22</sup>                 | No    |

#### Average size and density of Frank loops in $\gamma$ phase in irradiated cast steels

| Material Type | Mat. Code | Average Size (nm) | Dislocation Density (m <sup>-3</sup> ) | Voids |
|---------------|-----------|-------------------|----------------------------------------|-------|
| CF-8 Cast SS  | C4        | 16.25             | 1.74 x 10 <sup>22</sup>                | No    |
| CF-8 Cast SS  | C2        | 7.7               | 3.14 x 10 <sup>22</sup>                | No    |
| CF-3 Cast SS  | C1        | 8.48              | 2.8 x 10 <sup>22</sup>                 | No    |

#### Quantitative characterization of Frank loops in Nickel Alloys

| Material Type  | Mat. Code | Loop Mean Size (nm) | Loop density (m <sup>-3</sup> ) | Voids    |
|----------------|-----------|---------------------|---------------------------------|----------|
| Alloy 690 base | E2        | 28.9                | 1.13 x 10 <sup>22</sup>         | Observed |
| Alloy 690 GBE  | E1        | 17                  | 1.37 x 10 <sup>22</sup>         | Observed |



#### Conclusions

- No voids were observed in irradiated SSs, while some voids were found in the base and GBE treated Alloy 690.
- The density & size distribution of dislocation loops in SSs & Alloy 690 are consistent with reported results relevant to PWR in literatures.
- Radiation induced fine precipitates were not observed in high density in any examined materials.

#### Future work

- Exam the void swelling at higher dose.
- Establish the dose dependence of dislocation loop characteristics.
- Exam the deformation microstructure in irradiated material if possible.

