Session 8: SASSI Approach to Incoherency (Simulation and Algebraic Sum Methods) SShort 4:15-4:45

SASSI Incoherency Approaches

- There are four methods for considering incoherent ground motion in SSI analyses by SASSI
- SASSI-SRSS
- EPRI-INCOH
- SASSI Simulation
- SASSI-AS
- Treatment of the spatial modes distinguishes these methods
- SASSI Simulation and SASSI-AS are implemented in ACS SASSI, a commercially available version of the program (Dan Ghiocel, GP Technologies, Inc.)

SASSI - Simulation (Randomization)

- Perform Monte Carlo simulations varying the random phase θ for each spatial mode
$-\left\{\mathrm{U}_{\mathrm{g}}{ }^{\prime}\right\}=[\phi(\omega)][\lambda(\omega)]\left\{\eta_{\theta}(\omega)\right\} \mathrm{U}_{0}(\omega)$
- Loop on number of simulations ($5,10,15,20$)
- Loop on no. of SASSI solution frequencies (10s to 100s)
- Randomly sample θ for each spatial mode
- At each SASSI solution frequency, form $\left\{\mathrm{U}_{\mathrm{g}}\right\}$
- Numerical techniques for smoothing \& phase adjustment
- Calculate SSI response for the simulation (ISRS)
- Calculate the mean of the responses

SASSI Simulation Individual Results

SASSI Simulation Mean Results

SASSI Simulation Individual Results

SASSI Simulation Mean Results

SASSI-Simulation Analysis Considerations

- Selection of coherency function (1 through 5)
- Specification of the number of spatial modes (no reason to use less than all modes for this approach)
- Specification of random seeds and range for spatial mode phasing
- Selection of transfer function smoothing parameter
- Decide on number of simulations
- Compute the mean of the response quantities of interest

SASSI - AS (Algebraic Sum)

- Equivalent to one simulation of SASSI - Simulation with:
- Phase angle $\theta=0$ for each spatial mode - $\left\{U_{g}{ }^{\prime}\right\}=[\phi(\omega)][\lambda(\omega)]\left\{\eta_{\theta}(\omega)=1\right\} U_{0}(\omega)$
- Numerical techniques for smoothing \& phase adjustment
- All spatial modes included
- SSI response calculated directly

SASSI-AS Analysis Considerations

- Selection of coherency function (1 through 5)
- Specification of the number of spatial modes (no reason to use less than all modes for this approach)
- Choice of deterministic spatial mode phasing
- Selection of transfer function smoothing parameter

ACS SASSI Numerical Techniques for Incoherency Analyses

- Numerical techniques to assure the proper relationship of transfer function frequency to frequency
- Smoothing and interpolation - using the Parzen windowing technique
- Response phasing adjusted by limiting to range of $\pi / 2$ to $+\pi / 2$ to produce higher energy response time histories

Transfer Function Smoothing

Phase Adjustment

${ }^{15}$ Node 229, computed 6 dof ITF Rosette (complex plane plots) at $\mathbf{2 0 H z}$ for 20 Z-shaking Random Samples

Effect of Phase Adjustment

Effect of Phase Adjustment

Validation

- SASSI Simulation and SASSI-AS have been validated for use by:
- Comparison of results with other SASSI and CLASSI methods for a validation problem
- Comparison to Mita and Luco, 1986 published results

Parameters of the Validation Problem

- Coherency functions - NAA $(2005,2006)$
- Free-field ground motion defined by acceleration time histories matching site specific spectra for rock site (horizontal and vertical)
- Rock site profile
- Foundation is square - 150 ft on a side -15 ft thick with mass properties
- Structure model based, in part, on an advanced reactor structure stick model with eccentricities (160 modes)
- In-Structure Response Spectra (ISRS) (5\% damped)

Coherency Function for Horizontal Ground Motion (NAA 2005,2006)

Coherency Function for Vertical Ground Motion (NAA 2005, 2006)

Rock Site Profile

 Shear Wave Velocities vs. Depth

Site-Specific Response Spectra for Rock Site at Ground Surface (Depth 0-ft)

Computed and Target Response Spectra for Rock Site

Structural Model Characteristics

- Advanced reactor structure stick model with eccentricities
- 160 fixed-base modes model the dynamic characteristics of the structure
- Frequencies $3.0 \mathrm{~Hz}-141 \mathrm{~Hz}$
- Total mass ($x=92.7 \%, y=92.5 \%, z=93.1 \%$)
- Three sticks are coupled at various locations - modes are coupled
- ASB-3.2 Hz; SCV-5.5 Hz;CIS-13.3 Hz fixed base
- Relative mass distribution
- ASB - 86\%
- CIS - 11\%
- SCV - 3\%
zuctric fowne
RESEARCN wstru:

Validation by Comparison of CLASSISASSI Methods

- CLASSlinco
- Deterministic phasing
- CLASSlinco-SRSS
- Structure response to each foundation input motion combined by SRSS
- SASSI-Simulation (D. Ghiocel methodology)
- Spatial modes assigned random phasing
- Mean of structural response to spatial modes computed
- SASSI-SRSS (F. Ostadan)
- Structural responses to each spatial mode are combined by SRSS
- SASSI-AS (D. Ghiocel methodology)
- Linear combination (algebraic sum) of spatial modes used to compute structural response

Results for Comparison

- Calculate three directions of seismic input and combine the results as in the seismic design/qualification process
- Compare response spectra as calculated
- Coherent (light blue)
- CLASSlinco (dark blue)
- CLASSlinco-SRSS (green)
- SASSI-SRSS (yellow)
- SASSI-Simulation mean (black)
- SASSI-AS (red)
- Response comparisons for each direction of seismic input separately are also discussed

Foundation Response Comparisons

- Translations at the center of the foundation
- Incoherent response significantly less than coherent response
- Responses calculated by all methods are in very good agreement
- Rotations as measured by translations on the periphery of the foundation
- Little or no reduction due to incoherency compared to coherent response
- Responses calculated by all methods are in good agreement

Center of Foundation Response - X- Direction Coherent and Incoherent All Input Directions Combined

Center of Foundation Response - Z- Direction Coherent and Incoherent All Input Directions Combined

Edge of Foundation Response YY - Rotation Coherent and Incoherent All Input Directions Combined

Edge of Foundation Response ZZ－Rotation Coherent and Incoherent All Input Directions Combined

Top of Shield Building－Outrigger（Node 118 － 75 ft．）

－Incoherent response significantly less than coherent response
－Horizontal－frequencies greater than 12 Hz up to 30 Hz （less reductions at ZPA）
－Vertical－greater than 10 Hz
－Outrigger reductions somewhat less than on centerline
－Responses calculated by all methods are in good agreement－generally within 10\％
－Small increases in incoherent response over coherent response at peak spectral frequencies less than 10 Hz are observed－induced rotations effects

Top of Shield Building Outrigger (Node 118) - X- Direction Coherent and Incoherent All Input Directions Combined

Top of Containment Internal Structure (CIS) Outrigger (Node 229-75 ft.)

- Incoherent response significantly less than coherent response for frequencies greater than about 12 Hz some reductions greater than 50\%
- For this high frequency structure, responses calculated by all methods are in very good agreement - generally within 10\%

Top of CIS Outrigger (Node 229) - Y- Direction Coherent and Incoherent All Input Directions Combined

\qquad

Top of CIS Outrigger (Node 229) - Z- Direction Coherent and Incoherent
All Input Directions Combined

Top of Steel Containment Vessel (SCV) Outrigger (Node 145 - 65 ft.)

- Incoherent response significantly less than coherent response
- Horizontal - frequencies greater than 12 Hz (less reductions at ZPA)
- Vertical - very significant reductions for frequencies greater than 10 Hz
- Responses calculated by all methods are in very good agreement - generally within 10\%

Top of SCV Centerline (Node 145) - Z - Direction Coherent and Incoherent All Input Directions Combined

Individual Excitation Directions Independently

- Shows differences of CLASSlinco \& SASSI-AS results from that of other methods
- Containment internal structure (CIS) outrigger (Node 229) vertical response (z) is an example

Top of CIS Outrigger (Node 229) - Z- Direction Incoherent - X Input

Top of CIS Outrigger (Node 229) - Z- Direction Incoherent - Y Input

Top of CIS Outrigger (Node 229) - Z- Direction Incoherent - Z Input

Comparison with Published Results

- Mita \& Luco, 1986
- 40 m high, 10 m radius cylindrical structure represented by stick model
- Foundation has 10 m radius on $400 \mathrm{~m} / \mathrm{s}$ halfspace
- Transfer functions evaluated at base center and edge and top center and edge

Base Center Horizontal Response to Horizontal Input

[^0]48

Top Edge Vertical Response to Vertical Input

[^0]: 32006 Electric Power Ressearct hessute inc. Allights resemed.

