PSHA, Site Response, and Site Spectra

Technical Presentation Rockville, MD August 28, 2007 TOPIC 3: Site Hazard

> Robin K. McGuire Gabriel R. Toro Risk Engineering, Inc. Boulder, Colorado

Ì

Į

.

Mean and Median Reductions in ASCE DRS from CAV Filter at Each Structural Frequency

Frequency, Hz	Mean Reduction	Median Reduction
PGA (100)	10.4%	7.7%
25	13.2%	10.1%
. 10	12.2%	9.6%
5	12.6%	10.3%
2.5	15.0%	11.9%
1	18.0%	15.1%
0.5	19.8%	17.4%

Source: 2006 EPRI Report

Technical Presentation, 08/28/07, 18/51

Criti	cal ste	ep: use	approj	priate l	M and	R
	Ove	erall	R < 1	00 km	R > 1	00 km
	М	R	М	R	М	R
10-4 HF	7.0	260	5.6	22	7.7	360
10-4 LF	7.5	330	5.9	23	7.7	360
10 ⁻⁵ HF	6.0	90	5.6	14	7.7	360
10 ⁻⁵ LF	7.4	290	6.0	18	7.7	360
10 ⁻⁶ HF	5.8	31	5.7	12	8.1	320
10 ⁻⁶ LF	7.1	220	6.2	15	7.8	360

<u>Meth</u> Criti	nod 2 cal ste	(cont'o ep: use	l) appro	priate 1	M and	R
1	Overall		R < 1	00 km	R > 1	00 km
	М	R	М	R	М	R
10 ⁻⁴ HF	7.0	260	5.6	22	7.7	360
10 ⁻⁴ LF	7.5	330	5.9	23	7.7	360
10 ⁻⁵ HF	6.0	90	5.6	14	7.7	360
10 ⁻⁵ LF	7.4	290	6.0	18	7.7	360
10 ⁻⁶ HF	5.8	31	5.7	12	8.1	320
10 ⁻⁶ LF	7.1	220	6.2	15	7.8	360
nical Presentati	on, 08/28/07, 3	3/51			E	

Method 3 Convolve rock hazard with site AF to get site hazard. $P[A_{S} > a] = \int P[A_{R} = x] P\left[AF > \frac{a}{x}\right] dx$ Technical Presentation, 08/28/07, 41/51 Effect of $\sigma_{ln(AF)}$ on site UHS amplitudes $a_{rp}^{s} = a_{rp} \overline{AF_{rp}} \exp\left[0.5K_{H}\sigma_{\delta}^{2}/(1-K_{AF})\right]$ Technical Presentation, 08/28/07, 42/51

Method:	Direct Site Calculation	Rock Calculation Amplified
Ground Motion Equation	Site-specific	Rock
Hazard Integral	Site-specific	Rock
Hazard Curve	Site-specific	Rock
Post-process	N/A	Amplify rock
Advantages	"Truth"	Traditional
Disadvantages	Changing site parameters → rerun everything	Approximate site effects (M , R effects approximated)
Approach	4	1, 2A, 2B, 3

Technical Presentation, 08/28/07, 43/51

Comparison of methods (cont'd)				
Method:	Direct Site Calculation	Rock Calculation Amplified		
Site Amplification	For all M and R	For critical M and R only		
Epistemic uncertainties	Use multiple models	Use multiple models		
Aleatory uncertainties	Handle with each M and R	Can treat accurately		

Technical Presentation, 08/28/07, 45/51

