Enclosure 3 to E-25259

Transnuclear, Inc. Calculation NUH32PTH1-0450, "Thermal Analysis of OS200 Transfer Cask Loaded with 32PTH1 DSC," Revision 0 (Non-proprietary version, without discs)

	A			Calculation No.:	NUH32PTH1	-0450	
	TRANSNUCLEAR	Calcula	tion F	Revision No.:	0		
	AN AREVA COMPLAY			Page:	1 of 124		
	CALCULATION TITLE: Therma Cask L	al Analysis of OS200 oaded with 32PTH1	Transfer DSC	Project:	NUH32PTH	1	
				DCR:	N/A		
	SUMMARY DESCRIPTION:	- · · · · · · · · · · · · · · · · · · ·					
	The NUHOMS [©] OS200 Transfer Cask (TC) is used to transfer loaded dry shielded canisters (DSCs) between the fuel building and the horizontal storage module (HSM). The design of the OS200 TC is similar to the design of the OS187 TC with primary differences being a longer length and design modifications to the cask's closure lid and the addition of wedge-shaped spacers at the cask's bottom to accommodate forced air circulation in the TC-DSC annulus. The thermal performance of the TC is evaluated under normal, off-normal, and accident conditions of operation with and without forced air circulation						
	While provision is made for the use of a circulation is to be used only as one pos Forced air circulation is not relied on fo	forced air circulation to ssible recovery mode if or accident conditions.	improve the syste the operational lir	ms' thermal pe nits established	erformance, for I herein are exe	rced air ceeded.	
•	If ariginal issue, is licensing review per T	IP 3.5 required?					
•	Ves I No XI (evol	lain helaw) Lice	nsing Review No •				
	This calculation is one of the design bas NUHOMS [®] 32PTH1 system. Therefore	sis calculations to supp e, a 72.48 review by Tr	ort the current lice ansnuclear is not n	nsing amendme ecessary.	ent submittal fo	or the	
	Software Utilized:		Version:	Number o	of CDs:		
	Thermal Desktop [®] and SINDA/FLUINT	Г I	4.7	2			
	Calculation is complete:						
	Gregory Banken Heggory	gory Banken Sugary Banken			8/1/06	(Date)	
	Calculation has been checked for consiste	ncy, completeness and c	orrectness:				
	Larry Nielsen FHMielse			c	8/2/06	(Date)	
	Calculation is approved for use:				. 1		
(3)	Miguel A Manrique	Mart	roject Engineer Signati	пе)	8 3/05	(Datc)	
· · · · L							

•

.

.

...

•••

L

A TRANSNUCLEAR

.

.

	PROJ	ECT NO:	NUH32PTH1	0450			REVISION:	0
	CALC	ULATION N	U: NUH32PIHI	-0450			PAGE:	2 01 124
				<u>REVISIO</u>	N SUMM	ARY		
	1							
	REV.	DATE	<u> </u>	DESCRIP	TION		AFFECTED PAGES	AFFECTED DISKS
	0	8/3/02	Initial Release				ALL	N/A
								•
	1							
	j							
						·		
·	· ·							
					÷			,
1								
1								
in l								
:= ·								

.

• •

..

PRO.	PROJECT NO: NUH32PTH1 REVISION: 0			0
CAL	CULATI	ON NO: NUH32PTH1-0450	PAGE:	3 of 124
		TABLE OF CONTENTS		
				Page
1.	INTR	ODUCTION	•••••••••	7
	1.1	Objective	••••••	<u>7</u>
	1.2	Purpose	•••••	7 7
2	1.5	SCOPE	•••••••	
۷.	2.1	Design Configuration	******	0
	2.1	Design Assumptions	••••••	
	2.3	Design Criteria		10
	2.4	Design Load Cases	•••••	11
	2.5	Thermal Loads	••••••	12
3.	MATI	ERIAL THERMAL PROPERTIES	••••••	20
4.	CALC	ULATION METHODOLOGY	•••••	28
	4.1	General Code Description	•••••	28
	4.2	OS200 Transfer Cask Thermal Model	••••••	
		4.2.1 Gap between Lead Shield and Cask Outer Shell	•••••	
	4.3	DSC Thermal Model	••••••	
	4.4	Convection Heat Transfer	••••••	
5.	CALC	ULATIONS	••••••	46
	5.1	Evaluations for the 32PTH1 Fuel Basket w/ HZC #1 (40.8 kW)	46
		5.1.1 Transient Load Operations w/ HZC #1 (40.8 kW)		46
		5.1.2 Steady-State Operations Using Forced Air Circulation	w/ HZC #1 (4	0.8 kW)48
	50	5.1.3 Accident Conditions W/ HZC #1 (40.8 KW)	······	
	5.2	5.2.1 Transient Load Operations w/ HZC #2 (31.2 kW)	·····	
		5.2.2 Steady-State Operations for HZC #2 (31.2 kW) without	ut Forced Air (Circulation71
		5.2.3 Steady-State Operations with Type 2 (31.2 kW) DSC	with Forced A	ir Circulation 71
	5.2	5.2.4 Accident Conditions w/ HZC #2 (31.2 kW)	······	
	5.5 5.4	Evaluations for the 32P1H1 Fuel Basket W/ HZC #5 (24.0 KW Conclusions)	
	5.5	Conservatisms	••••••••••••••••••••••	
6.	REFE	RENCES		
	- 6. 63			
		Proprietary Information Withh	eld 🛛	
		in accordance with 10 CFR 2.3	390	
1		, ni an		

۰. .

.

PROJECT NO: NUH32PTH1	REVISION:	0
CALCULATION NO: NUH32PTH1-0450	PAGE:	4 of 124
		_
LIST OF TABLES		
		Page
Table 2-1 - Design Load Cases for 32PTH1 Basket and HZC #1		13
Table 2-2 - Design Load Cases for 32PTH1 Basket and HZC #2		14
Table 2-3 - Design Load Cases for 32PTH1 Basket and HZC #3		15
Table 3-1 - Material Properties, Solids		
Table 3-2 - Effective Thermal Properties for 32PTH1 Basket		23
Table 3-3 - Thermal Properties, Fluids	• • • • • • • • • • • • • • • • • • • •	24
Table 3-4 - Effective Water Filled Neutron Shield Thermal Conductivity	for Normal Co	nditions25
Table 3-5 - Effective Neutron Shield Thermal Conductivity for Accident	Conditions	
Table 3-6 - Material Emissivity Values		27
Table 4-1 - Effective Thermal Conductivity in Gamma Shield & Structure	l Shell Gap	36
Table 4-2 - Cask-DSC Gap Calculation as Function of Circumferential Pc	sition	
Table 4-3 – Forced Air Pressure Drop		
Table 5-1 - Transient Operations, HZC #1 (40.8 kW)		
Table 5-2 - Steady-State Operations with FC, HZC #1 (40.8 kW)		53
Table 5-3 - Loss of Neutron Shielding with HZC #1 (40.8 kW)		54
Table 5-4 - Fire Accident Temperatures with HZC #1 (40.8 kW)		54
Table 5-5 - Accident Ambient Temperatures with HZC #1 (40.8 kW)		55
Table 5-6 - Transient Operations, HZC #2 (31.2 kW)		74
Table 5-7 - Steady-State Operations without FC, HZC #2 (31.2 kW)		75
Table 5-8 - Steady-State Operations with FC, HZC #2 (31.2 kW)		76
Table 5-9 - Loss of Neutron Shielding with HZC #2 (31.2 kW)		77
Table 5-10 - Fire Accident Temperatures with HZC #2 (31.2 kW)		77
Table 5-11 - Accident Ambient Temperatures with HZC #2 (31.2 kW)		
Table 5-12 - Steady-State Operations without FC. HZC #3 (24.0 kW)		96

A TRANSNUCLEAR AN AREVA COMPANY

. .

PROJECT NO: NUH32PTH1	REVISION:	0
CALCULATION NO: NUH32PTH1-0450	PAGE:	5 of 124
LIST OF FIGURES		_
		<u>Page</u>
Figure 2-1 - Elevation View of NUHOMS [®] OS200 Transfer Casks		
Figure 2-2 - Cross-Section through NUHOMS® OS200 Transfer Cask		
Figure 2-3 - Location of Neutron Shield Support Rings		
Figure 2-4 - Enlarged View of Typical Neutron Shield Support Ring		
Figure 2-5 - Cone Adapter for Forced Air Entrance at Ram Access Cover.	•••••••••••••••	
Figure 2-6 - Illustration of Wedge Segments at Bottom of TC		
Figure 2-7 - Cask Lid with Slots for Air Exhaust, Plan, X-Section, & Detail	il Views	19
Figure 4-1 - Thermal Model of OS200 TC / 32PTH1 DSC Shell, Perspecti	ve View	
Figure 4-2 - Thermal Model of OS200 TC Body, Perspective View	••••••	
Figure 4-3 - Thermal Model of Inner Liner, Structural Shell, & Upper/Low	ver Forging	40
Figure 4-4 - Thermal Model for Closure End Lid & NS-3, Perspective Vie	w	41
Figure 4-5 - Solid View of Closure Lid Underside	• • • • • • • • • • • • • • • • • • • •	41
Figure 4-6 - Gamma Shield - Structural Shell Gap Size vs. Temperature	• • • • • • • • • • • • • • • • • • • •	42
Figure 4-7 - Thermal Model for 32PTH1 DSC Shell, Ends, & Cask Spacer	, Perspective V	View43
Figure 4-8 - Thermal Model for DSC Shell, Ends, & Fuel Basket, Perspect	ive View	
Figure 4-9 - Layout of Gas Nodes and Flow Paths within DSC-Cask Annu	lus	45
Figure 5-1 - Vertical Loading Transient w/ 40.8 kW, 140°F Facility Ambie	nt/No Insolati	on
(Case 1-1)		56
Figure 5-2 - Normal Hot Horizontal Transient w/ 40.8 kW, 106°F Ambient	t/Insolation (C	ase 1-2)57
Figure 5-3 - Normal Cold Horizontal Transient w/ 40.8 kW, 0°F Ambient/	No Insolation ((Case
Figure 5-4 - Off-Normal Hot Horizontal Transient w/ 40.8 kW, 117°F Am	bient/Sun Shad	ie (Case
1-4)	(40.0.1.337	
Figure 5-5 - DSC Temperature Distribution – Vertical Loading W/ HZC #1	(40.8 kW, Ca	lse 1-1)
Alternate Perspective Views	40.0.1-337. C	
Figure 5-6 - IC Temperature Distribution - Vertical Loading W/ HZC #1 (4	40.8 KW, Case	(1-1)
Figure 5.7 DSC Temperature Distribution - Normal Hot Transfer w/ H7(ייייייייייייייייייייייייייייייייייייי	
(10.8 kW Case 1-2) Alternate Perspective Views	5 #1	62
Eigure 5.8 TC Tomperature Distribution - Normal Hot Transfer 11/ H7C:	#1	
(40.8 kW Case 1-2) Alternate Perspective Views	TT 1	63
Figure 5-9 - DSC Temperature Distribution - Normal Hot Transfer w/ Force	ed Air Circula	ation
and H7C #1 (40.8 kW Case 1-5) Alternate Perspective View		64
Figure 5-10 - TC Temperature Distribution - Normal Hot Transfer w/ Force	ed Air Circula	tion
and HZC #1 (40.8 kW Case 1-5). Alternate Perspective View	s	
Figure 5-11 - Loss of Forced Circulation Transient w/ 40.8 kW. (Case 1-8)		
Figure 5-12 - Loss of Neutron Shield w/ 40.8 kW. (Case 1-9).		
Figure 5-13 - Hypothetical Fire Accident Transient (40.8 kW, Case 1-10).		
Figure 5-14 - Vertical Loading Transient w/ 31.2 kW. 140°F Facility Ambi	ent/No Insolat	ion
(Case 2-1)		

PROJECT NO: NUH32PTH1	REVISION:	0
CALCULATION NO: NUH32PTH1-0450	PAGE:	6 of 124
Figure 5-15 - Normal Hot Horizontal Transient w/ 31.2 kW, 106°F Ambie (Case 2-2)	nt/Insolation	
Figure 5-16 - Off-Normal Hot Horizontal Transient w/ 31.2 kW, 117°F Ar (Case 2-4)	nbient/Sun Sh	ade 81
Figure 5-17 - DSC Temperature Distribution – Vertical Loading w/ HZC Case 2-1) Alternate Perspective Views	#2 (31.2 kW,	82
Figure 5-18 - TC Temperature Distribution - Vertical Loading w/ HZC #2 Alternate Perspective Views	(31.2 kW, Ca	se 2-1)
Figure 5-19 - DSC Temperature Distribution - Normal Hot Transfer w/ H2 (31.2 kW, Case 2-2), Alternate Perspective Views	ZC #2	84
Figure 5-20 - TC Temperature Distribution - Normal Hot Transfer w/ HZC (31.2 kW, Case 2-2), Alternate Perspective Views	C #2	85
Figure 5-21 - DSC Temperature Distribution – Steady-State, Vertical Load (31.2 kW, Case 2-1) Alternate Perspective Views	ling w/ HZC #	[!] 2 86
Figure 5-22 - TC Temperature Distribution - Steady-State, Vertical Loadin (31.2 kW, Case 2-1) Alternate Perspective Views	ng w/ HZC #2	87
Figure 5-23 - DSC Temperature Distribution - Steady-State, Normal Hot 7 (31.2 kW, Case 2-2), Alternate Perspective Views	Fransfer w/ HZ	2C #2 88
Figure 5-24 - TC Temperature Distribution - Steady-State, Normal Hot Tra (31.2 kW, Case 2-2), Alternate Perspective Views	ansfer w/ HZC	: #2 89
Figure 5-25 - DSC Temperature Distribution - Normal Hot Transfer w/ Fo and HZC #2 (31.2 kW, Case 2-5), Alternate Perspective View	rced Air Circu	lation 90
Figure 5-26 - TC Temperature Distribution - Normal Hot Transfer w/ Forc and HZC #2 (31.2 kW, Case 2-5), Alternate Perspective View	ed Air Circula	ation 91
Figure 5-27 - Loss of Forced Circulation Transient w/ 31.2 kW, (Case 2-8) Figure 5-28 - Loss of Neutron Shield w/ 31.2 kW, (Case 2-9))	92 93
Figure 5-29 - Hypothetical Fire Accident Transient (31.2 kW, Case 2-10).	•••••••••••••••••••••••••••••••••••••••	94

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	7 of 124

1. INTRODUCTION

1.1 Objective

The objectives of this calculation are to develop a thermal model of the NUHOMS[®] OS200 On-site Transfer Cask (TC) and to determine the thermal performance of the OS200 TC under a combination of heat loads, operating assumptions, and ambient conditions.

The thermal model of the NUHOMS[®] OS200 TC provides a 3-D representation of the cask and its 32PTH1 dry shielded canister (DSC) payload. The thermal model also includes the heat transfer mechanisms between the DSC and the inner shell of the cask with and without forced air circulation. Under the forced air circulation option, air from an external fan enters through the ram access hole at the base of the cask, flows in the annular space between the DSC and the inner shell of the cask, and exits out slots in the closure lid. Besides improving the heat transfer coefficients from the air to the DSC and the inner shell of the cask, the forced air system will remove a significant amount of the decay heat via a mass transport process.

The thermal performance of the NUHOMS[®] OS200 TC is to be evaluated under normal, off-normal, and accident conditions of operation. If forced air circulation is required to maintain the system temperatures within normal operational limits for steady-state operations, the available time to initiate the forced air circulation or to re-store the forced air circulation in case of system failure is to be determined.

1.2 Purpose

The purpose of these evaluations is to demonstrate compliance with the applicable regulatory requirements for the NUHOMS[®] OS200 TC and its 32PTH1 DSC payload and to provide design data for associated calculations.

1.3 Scope

This scope of this calculation is limited to the OS200 TC loaded with a 32PTH1 DSC and with a maximum heat dissipation of 40.8 kW. The thermal performance of the TC under the option for helium gas backfill is not covered by this calculation.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	8 of 124

2. DESIGN INPUTS & ASSUMPTIONS

2.1 Design Configuration

The NUHOMS[®] OS200 TC is used to transfer the 32PTH1 DSC between the fuel building and the horizontal storage module (HSM) at the ISFSI site. If the provision for forced air circulation is not needed, then the OS200 TC outfitted with a standard top cover may be used to accomplish the transfer. However, if the need for forced air circulation is anticipated due to the combination of decay heat load and the fuel basket configuration of the 32PTH1 DSC payload exceeding the limits established in this calculation, then the OS200 cask must be outfitted with a top cover that offers the design provisions necessary to accommodate the forced air circulation with the 32PTH1 DSC. A full description of the design requirements for the NUHOMS[®]-32PTH1 DSCs is provided in [6.1].

3) Proprietary Information Withheld in accordance with 10 CFR 2.390

The TC is designed to function in both the vertical and horizontal orientation. The vertical orientation typically occurs during canister loading and closure operations, while the horizontal orientation

PROJECT NO: NUH	132PTH1	REVISION:	0
CALCULATION NO: NUH	132PTH1-0450	PAGE:	10 of 124
• The effective densition bounds the values of the 32PTH1 DSC.	ty and specific heat of the combined fuel and fuel computed in [6.4] for the range of fuel baskets and	basket therma conser fuel types cor	l mass vatively isidered for
• Due to differences if form at the outer su calculation assumes	in thermal expansion between lead and stainless st inface of the lead shield after the lead pour. For co is the potential gap is uniform over the entire outer	teel, a gap will onservatism, th surface of the	tend to is lead shield.
• The forced air circu distribute itself base	lation introduced in the annular gap between the l ed upon the flow area and hydraulic diameter	DSC and the ca	ask will
•	Proprietary Information Withheld in accordance with 10 CFR 2.390	for this calcu	
this configuration re	esults in the highest surface heat flux on the DSC	shell	in the second se

2.3 Design Criteria

• <u>.</u> • •..

The design criterion for the TC is established by the thermal limits associated with its most temperature sensitive components. These components are the lead in the gamma shield, the water in the neutron shield, and the NS-3 solid neutron shielding material. The temperature limits associated with the elastomeric seal used with the alternate cask closure lid design are not applicable to this calculation since operation of the TC when this closure lid is used is not addressed by this calculation.

The ASTM B29 lead used in the gamma shield has a melting point of approximately 620°F.

2.4 Design Load Cases

The thermal performance of the TC is evaluated for a range of thermal load cases. These load cases involve normal (i.e., 106 °F and 0 °F) and off-normal (i.e., 117 °F) ambient temperatures, with and without insolation, and with and without forced air circulation. Operations within the fuel handling building assume a peak ambient temperature of 120 °F for normal conditions and 140 °F for off-normal conditions. No solar loads are considered for operations within the fuel handling building.

Four accident scenarios are also evaluated for the TC. The first accident scenario involves the loss of the forced air circulation system. The time to re-establish the forced air circulation, complete the transfer operation, or initiate some other recovery mode is established. The second accident scenario involves the loss of both the forced air circulation system and the water in the neutron shield. The evaluation establishes the transient heat up trend and the ultimate temperatures achieved under steady-state conditions. The third accident scenario involves a 15-minute hypothetical fire. The maximum duration of the fire event will be controlled by limiting the available fuel sources within the vicinity of the TC. The evaluation establishes the maximum temperatures reached as a result of the fire event, as well as the post-fire, steady-state conditions. The fourth final accident scenario involves an undamaged TC under an elevated ambient condition of 133 °F. The evaluation addresses the maximum steady-state temperatures that would be achieved.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	12 of 124

2.5 Thermal Loads

The thermal loads imposed on the TC arise from the decay heat within the DSC and insolation on its exterior. As described in [6.1], the 32PTH1 DSC has 3 possible heat zone configurations for the various fuel basket designs with a maximum heat load of 40.8 kW. Alternative designs for the fuel basket are qualified for maximum heat loads of 31.2 and 24.0 kW. Since the combination of the 32PTH1 DSC and OS200 TC permits steady-state operations for some combinations of fuel basket design and decay heat loading, but not others, the results presented in Section 5 establish the operational time limits that address the thermal requirements of the various combinations of fuel basket design and decay heat loading.

The insolation loading is varied by the surface orientation and absorptivity, with vertical surfaces and curved surfaces facing upward . These insolation levels are based on regulatory insolation averaged over 12 hours

> Proprietary Information Withheld in accordance with 10 CFR 2.390

· · ·

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	17 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
has some till and the test of the second day of the second day	Figure 2-3 - Location of Neutron Shield Support	Rings	
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
	an a sugar status su s		
Figu	re 2-4 - Enlarged Vicw of Typical Neutron Shield St	upport Ring	

· . ··· . .

.

. .

.

i

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	19 of 124
			ļ
	Proprietary Information Withheld		
	in accordance with 10 CFR 2.390		
			{
			·
L			J
Figure 2.7	Cool I id with Slote for Air Exhaust Dian V Sasti	n & Datall V	lionus
rigure 2-1	- Cask Liu with Sidis for Air Exhaust, Fian, A-Sectio	m, α Detail v	riews

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	20 of 124

3. MATERIAL THERMAL PROPERTIES

Table 3-1 lists the thermal conductivity and specific heat as a function of temperature for SA-240, Type 304/304L stainless steel, ASTM B29 lead, and the NS-3 neutron shielding material.

Table 3-3 lists the thermal conductivity, specific heat, and dynamic viscosity for air and water as a function of temperature.

Proprietary Information Withheld in accordance with 10 CFR 2.390

The Table 3-4 values are applicable to the radial heat transfer within a water-filled shield under the normal conditions of transfer.

The effective thermal properties of the neutron shield under accident conditions (i.e., an air-filled shield and for the hypothetical fire event) are presented in Table 3-5.

. .

PROJECT NO: NUH32PTH1	REVISION: 0
CALCULATION NO: NUH32PTH1-0450	PAGE: 21 of 124
Table 3-6 lists the surface emissivity assumed for the various surface fin	ish types under normal and
accident conditions	
Accident conditions.	
Proprietary Information Withheld	
in accordance with 10 CFR 2.390	
• •	
	(

· .

.

٠

:

PROJECT NO: NUH32	PTH1	REVISION:	0
CALCULATION NO: NUH32	PTH1-0450	PAGE:	26 of 124
Table 3-5 - Effective	Neutron Shield Thermal Conductivity for	r Accident Co	onditions
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
	Level and the second		
			:

· .

PROJECT NO: NUH32PTH1	REVISION:	0
CALCULATION NO: NUH32PTH1-0450	PAGE:	27 of 124
Table 3-6 Material Emissivity Values	The state of the second second	
Proprietary Information Withne		
	errist far fillestel	
Ē		

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	28 of 124

4. CALCULATION METHODOLOGY

4.1 General Code Description

The analytical thermal model of the NUHOMS[®] OS200 TC and its 32PTH1 DSC payload is developed for use with the Thermal Desktop[®] [6.21] and SINDA/FLUINT [6.22] computer programs. These programs, validated for safety basis thermal analysis [6.23], are designed to function together to build, exercise, and post-process a thermal model. The Thermal Desktop[®] computer program is used to provide graphical input and output display function, as well as to compute the radiation exchange conductors for the defined geometry and optical properties. Since Thermal Desktop[®] runs as an extension module under the AutoCADTM design program, all of the CAD tools available for generating geometry within AutoCADTM can be used for generating a thermal model. In addition, the use of the AutoCADTM layers tool provides a convenient means of segregating the thermal model into its various elements.

The SINDA/FLUINT computer program is a general purpose code suitable for either finite difference or finite-element models. The code can be used to compute the steady-state and transient behavior of the modeled system. SINDA/FLUINT has been validated for simulating the thermal response of spent fuel packages and has been used in the safety analysis of numerous packages for both spent nuclear fuel and nuclear material.

The Thermal Desktop[®] and SINDA/FLUINT codes provide the capability to simulate steady-state and transient temperatures using temperature dependent material properties and heat transfer via conduction, convection, and radiation. Complex algorithms may be programmed into the solution process for the purposes of computing heat transfer coefficients as a function of the local geometry, gas thermal properties as a function of species content, temperature, and pressure, or, for example, to estimate the effects of forced air circulation in the cask-DSC annulus as a function of the flow geometry.

4.2 OS200 Transfer Cask Thermal Model

The thermal model used to simulate the thermal response of the OS200 TC represents a 180° segment of the cask. The use of a 180° model permits the accurate simulation of the temperature distribution within the cask when the cask is in the horizontal orientation and the axis of the DSC is eccentric to that of the cask.

4.2.1 Gap between Lead Shield and Cask Outer Shell

The OS197FC and OS200 Transfer Cask designs incorporate a lead gamma radiation shield. The shield is formed by a controlled pour of molten lead into the annular gap between the inner liner and structural shell. Under this controlled lead pour procedure the inner liner and structural shell are heated to a temperature above the melting point of lead before the lead is introduced into the annular gap. This ensures that a complete fill is accomplished with no cavities as a result of pre-mature solidification of the lead. However, due to differences in thermal expansion between lead and stainless steel, a gap will tend to form at the outer surface of the lead shield as the lead solidifies. For conservatism, the potential gap is assumed to exist uniformly over the entire outer surface of the lead shield since just the lack of intimate contact between the lead and the outer shell will introduce a

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	30 of 124

significant thermal resistance. The same difference in thermal expansion will keep the interface between the inner steel shell and the lead shield in intimate contact.

4.2.2 Forced Air Circulation Simulation

The NUHOMS[®] OS200 Transfer Cask contains design provisions for the use of forced air circulation to improve its thermal performance. For heat loads and/or time periods exceeding values determined in Section 5, the normal operating conditions will require that a fan system be connected to the cask and operating. The system will consist of redundant, industrial grade pressure blowers and power systems, ducting, etc. When operating, the fan system is expected generate a flow rate of 450 cfm or greater which will be ducted to the ram access cover location at the bottom of the cask, flow in the annulus between the DSC and the cask's inner liner, and exit through 'slots' in the cask lid. The thermal benefit of the forced flow arises from an increase in the heat transfer rate from the DSC and cask liner surfaces and from the mass transport of a significant portion of the decay heat from the cask via the exiting airflow.

4.2.2.1 Pressure Drop Calculations

The pressure drop experienced by the forced air from the fan discharge, through the DSC and cask annulus, and its subsequent exhausting back into the ambient is computed

 $(1,1,2,\dots,n) \in \{1,\dots,n\}$

· ...

· -

PROJECT NO:	NUH32PTH1	REVISION: 0
CALCULATION NO:	NUH32PTH1-0450	PAGE: 33 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390	
4.3 DSC The	ermal Model	

• . •

. . .

. .

:	PROJECT NO:	NUH32PTH1		REVISION:	0
	CALCULATION NO:	NUH32PTH1-0450		PAGE:	34 of 124
	4.4 Convecti	on Heat Transfer			
	Convection heat tra transfer.	nsfer occurs from various	exterior surfaces of the TC ur	nder all condit	ions of
		Proprietary in accorda	/ Information Withheld nce with 10 CFR 2.390)	

A TRANSNUCLEAR AN AREVA COMPANY

· · ·

• • • • • • • •

-

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	38 of 124
PROJECT NO: CALCULATION NO:	NUH32PTH1 NUH32PTH1-0450 Proprietary Information Withheld in accordance with 10 CFR 2.390	REVISION: PAGE:	0 38 of 124
Figure 4-1	- Thermal Model of OS200 TC / 32PTH1 DSC Shell	, Perspective	View

A TRANSNUCLEAR AN AREVA COMPANY

. • •

. .

• • • • • •

...

· · · ·

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	40 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 4-3 - 7	Thermal Model of Inner Liner, Structural Shell, & U	Jpper/Lower	Forging
			<u>•</u>

• •

.

• • ·

CALCULATION NO: NUH32PTH1-0450 PAGE: 41 of 124	PROJECT NO:	NUH32PTH1	REVISION:	0
Proprietary Information Withheld in accordance with 10 CFR 2.390	CALCULATION NO:	NUH32PTH1-0450	PAGE:	41 of 124
Figure 4-4 - Thermal Model for Closure End Lid & NS-3, Perspective View		Proprietary Information Withheld in accordance with 10 CFR 2.390		
Proprietary Information Withheld in accordance with 10 CFR 2.390	Figure 4	Proprietary Information Withheld in accordance with 10 CFR 2.390	erspective Vi	ew

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	42 of 124
	<u></u>		ı
			ļ
	•		
	Proprietary Information Withheld		
	in accordance with 10 CFR 2.390		
Figur	e 4.6 - Camma Shield - Structural Shell Can Size ve	Temperatur	
Tigui	e + v = Gamma Snield - Sti deturar Sneir Gap Size vs	• remperatur	~
		x	

4 · · ·

• • • •

ł

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	43 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 4-7 - 7	Thermal Model for 32PTH1 DSC Shell, Ends, & Cas	sk Spacer, Pe	rspective
	View		

• _ •:....

A

• • • •

All the second second

TRANSNUCLEAR AN AREVA COMPANY

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	45 of 124
		5- July 10-10	
		8	
	Branzietany Information Withhold		
	in accordance with 10 CED 2 200		
	In accordance with 10 CFR 2.390		
	· · · · · · · · · · · · · · · · · · ·		
		and the second	
Į			
E !	0 I awayt of Cas Nadas and Flow Daths within DS	C Cosle Annu	1

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	46 of 124

5. CALCULATIONS

5.1 Evaluations for the 32PTH1 Fuel Basket w/ HZC #1 (40.8 kW)

5.1.1 Transient Load Operations w/ HZC #1 (40.8 kW)

The thermal analyses presented under this section of the calculation addresses the thermal performance of the OS200 TC with the 32PTH1 fuel basket and with a heat zone configuration that is bounded by that for HZC #1 (40.8 kW) [6.1]. The level of decay heat dissipation under this heat zone configuration is too high to permit steady-state operations within the DSC due to excessive fuel cladding temperatures unless the TC-DSC annulus is filled with water or unless forced air circulation is used. As such, operational time limits will be used to ensure that the transfer operation is completed within the allotted time or some form of recovery operation is initiated. The evaluations are conducted for loading operations inside the fuel handling facility, and normal hot, normal cold, and off-normal hot conditions of operation outside the facility. The parameters for each of these conditions are defined in Section 2.4.

TRANSNUCLEAR AN AREVA COMPANY

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	48 of 124
Since all compone identified operation accommodate the 3 (40.8 kW) [6.1].	nts are seen in Table 5-1 to remain within the second seco	heir allowable temperature an undamaged OS200 TC n that is bounded by that f	e limits at the can or HZC #1
	Proprietary Informatio in accordance with 10	n Withheld CFR 2.390	
5.1.2 Steady	-State Operations Using Forced Air Circula	tion w/ HZC #1 (40.8 kW)
Steady-state conditi 40.8 kW will require the forced air circul access hole at the b inner shell of the ca coefficients from the a significant portion	tions of the OS200 TC with the 32PTH1 DS re the use of force air circulation to limit the ation option entails using an external fan to ase of the cask and then to flow in the annu isk before exiting out slots in the closure lid re air to the DSC and the inner shell of the c n of the decay heat via a mass transport proc	C and with decay heat load e system temperatures. Ap o force air to enter the TC lar space between the DS l. Besides improving the l cask, the forced air system cess.	dings up to oplication of via the ram C and the heat transfer will remove
The forced circulati OS200 TC under ar Table 5-2 presents to operating condition kW of heat dissipat	on of air through the TC-DSC annulus will by Normal or Off-Normal condition of trans the maximum component temperatures achi to (i.e., Load Cases 1-5, 1-6, and 1-7) for the son, and 450 cfm of forced air circulation	allow steady-state operations of the steady state operations is and for heat loads up to is very state operations of the state operations of the state of the operation of the state of the state of the state of the state of the operation of the state of	on of the to 40.8 kW. uated H1 DSC, 40.8

kW of heat dissipation, and 450 cfm of forced air circulation. As seen from the table, all of the TC component temperatures are well below their associated maximum allowable temperature limit. The results in Table 5-2 also demonstrate that the forced air circulation option will yield steady-state DSC shell temperatures that are below the target value of 450°F for all conditions.

• • • •

· .

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	49 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
5.1.3 Acciden	nt Conditions w/ HZC #1 (40.8 kW)		
5.1.3.1 Loss	of Forced Circulation		
As demonstrated in the 32PTH1 DSC w the FC be lost for so re-establish the FC, TC with the 32PTH 5-11.	Section 5.1.2, forced air circulation (FC) will provide t ithin the OS200 TC for indefinite periods under any co ome reason, a limited time period will be available eithe or to initiate some other recovery mode. The predicted 1 DSC and 40.8 kW of decay heat (i.e., Load Case 1-8)	he ability to ad ndition of tran er to complete l heat up rate f is illustrated i	ccommodate asfer. Should the transfer, or the OS200 in Figure
5.1.3.2 Loss of	of Neutron Shielding		
A transient evaluation accommodate the 32 time when the water steady-state evaluation	on (i.e., Load Case 1-9) was conducted to establish the PTH11 DSC with a decay heat load of 40.8 kW or less in the neutron shield is lost. The analys on.	ability of the C for an indefin	DS200 TC to hite period of
		A4	

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	50 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		

It should be noted that the target DSC temperature limit of 450 °F assumed prior to the start of the accident scenario is associated with maintaining the peak fuel cladding temperature below 700 °F. As such, a higher DSC shell temperature can be accommodated under accident conditions without exceeding the accident temperature limits for the fuel cladding.

5.1.3.3 Fire Accident Evaluation

. • .

The predicted TC thermal performance under a 15-minute hypothetical fire accident scenario (i.e., Load Case 1-10) is illustrated in Figure 5-13. The maximum duration of the fire event will be controlled by limiting the available fuel sources within the vicinity of the TC.

The analysis demonstrates that, with the exception of the exterior surfaces of the cask, the thermal mass of the DSC and cask components is sufficient to absorb the heat flux from the fire without a significant increase in temperature.

K TRANSNUCLEAR AN AREVA COMPANY

10.00	12.8 10.1			1.		1.1		1.00	100.00	1000			2.2.2	100 100	- · · · ·	-			1 C C C C C C C C C C C C C C C C C C C		And the Area	1000	1.00	51519472			C		E 14 2.						
1000			5 100			1.7 1.8		· · · · ·		· · · ·	1 4 1 4	1.1.1.1			1		1000	1.			· · · · ·	10.000		10000	A 80.00									A 12 - A 14	1
1.45	20.20	1.10								- · · · ·								106 2		1.1.1.1		1					1000				1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m			Sec. 18.	
1.57	6.66.4			1.1.1.1							2.2	1-1-1			1.0	6. 1. 1	1.22.3	- C - C - C	2.0	1.		1.5 1.7	· · · · ·				100.00		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			A		20. TT TA	
1.33	14.57	1.1.1	1.1	14 M	1.1.1.4	1.11	2.1		Sec. 2.				· · · · ·		1 C C	1		P. 15					S		1. 53 4 100		100.00		1 e 1 a - 1 a	1 1 1 A	1 C C	1.1.1		10 C 10 C 1	
1000	1.00		410	1. 1.			A			- C M		100	1.0 1.0			1.0			1.1.1		1.00					Sec. 7.	120.4						····	and the second second	11
	1000			Sec. 19					1.0			10.00			1.00					2 Y 194	18		G. 97			1.1.2.2					A	10.00			26 J
128	143	1.0	1.1			no 11.		5 6						122 3		1.00	1 2 4			1250 -	S				1.0		1.00	1 1 2 1			· · · · · · · · · · · · · · · · · · ·		the second	A	5.5
1.1	· · · · ·	100.00	1000	×		10.125							· · ·					5.1		A 18	P				2 - C		1. A			· · · · ·			- 2 1 1 and 17	4.755 3.8	- * *
1.1	5.0		1.11.1	4-200	1.1.1		1.1.1.1	200				See. 25		1.5	1.00	1. 1. 2.			1			1.0					1.10	Sec. 1				· · · · · ·		- 1 C C C C C C C C C C C C C C C C C C	x 22
		1.1	10.00			1.11			1000				2.5.5							1.5 64		11.04					- Sec.								
100	11.1		S S		64.5			1.15	1.1	1. 1. 1.	12.42.1			- C. C.						1. A.		1.1		See			- 21.5		1.0.0					200 2.7	
					1.1	1.4.1	24.0	10.00		1.5	1.0.00	1.14			1240			1.1			1.00	1.00		1 1 1 1 1	17 17 1		3. J	1.00	1000	1.2.	1.1		1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	- BARDAN	10.00
			14.101		2 C - 2			1.1.1		-			1.1									2111				3 Mar. 3-	Sec. 1600	L'art ist.	10 10 90	1. 10	A Person	1.1			
100	P 4 1 1		S				2.200		5		· · · ·	* 1 4											1.000		1.4.5		1 3 2			· .	1.199.045	5.4.5			
1000			C		 			1.00							Sec. 2. 5.		1 A A			and the lot	10 A 10 A 10	- H		1 may					E				للالا فسترجاط	the second s	
DEF		1.1.1	27.47	100	1 1.		1		1.1	10.00			~				· · · · · ·	- P.	1.4.5				100		1 m		17.7		1.1	C			ALC: 1 1 1		
100	2.1.2	1.200	1.1.2	1.7.1								1.1		5-0 1		1.2	S - 13	12 C 1	1.00	75 12			68-3 F		25 A.P				- AL		ER 75	- 19 A	1 7 2 4 3 4 3 4 3		
1.11		N 16 2	1 C 1 C 1 C 1	10.00						0. S. S.		1	1000	S	- C - C - C - C - C - C - C - C - C - C	3 C 1	- Kar	19778	Sec. 1	21.1	10.0	ST - 1993				وأحدث والمحادث				ويتحاجب والمراجع			the state of the second st		28 . 200 T (A)
20.2						2.1.7	•	- m	- A & A & A & A & A & A & A & A & A & A	1.00		A	- C. C. C.		GRAF I	S 17. 24	100		16.0	-196-	1 M M	100				8									
1112					10.0		A 24 5 5	1.00	17 14	1.1.1				1 A A			9 . M	1000	- 1 11			~ IN		197 M		÷									
1.2				Sec 1	- 10 P	1.0		G	1000	5 . 5 . 6				1 3		1.		7.7.7	- n	<u></u>		- C 194		20.0	1.1.1	11									
1.22	2E-O .	17.00						· · · · ·		1. 1.		1.5			- A -			· · · · ·	- C C C C C C C C.	1.1	21.00	1.2.2				1.1									
1.0	Sec. 2	لتتنسد	المتكنية ال	وللشفق	ستساء		-	S		سنحدد			سر فالعلاظ	ستست	است.			دغمت	100			-16-de-		فتتناه		44									

5.1.3.4 Accident Ambient Conditions

The fourth and final accident condition evaluated consists of steady-state operations under the accident ambient conditions of 133 °F, with regulatory solar (i.e., Load Case 1-11).

Europer in actual practice, the solar shade will

Further, in actual practice, the solar shade will be used as a partial recovery operation should this condition arise. Deployment of the shade is predicted to drop the average neutron shield water temperature to 281 °F.

TRANSNUCLEAR AN AREVA COMPANY

1

•

PROJECT NO: NUH	(32PTH1			REVISION: 0		
CALCULATION NO: NUH32PTH1-0450 PAGE: 52 of 124				of 124		
Table 5-1 - Transient Operations, HZC #1 (40.8 kW)						
		To	emperature (°F)	1		
Component	Case 1-1 ¹ Vert. Load	Case 1-2 ² Normal Hot	Case 1-3 ³ Normal Cold	Case 1-4 ⁴ Off-Normal Hot	Max. Allowable	
Max. DSC Shell	450	450	450	450	800	
Inner Liner	277	305	277	310	800	
Gamma Shield	275	299	270	304	620	
Structural Shell	240	247	205	254	800	
Neutron Shield, Max. / Avg.	236/217	242/215	199 / 147	248/210	-/290	
Bulk Average NS-3	216	175	86	169	250	
Closure Lid	223	217	158	214	800	
Top Forging	219	243	205	247	800	
Bottom Forging	228	193	127	195	800	
Forced Air, Inlet / Exit	n/a	n/a	n/a	n/a	n/a	
Neutron Shield Outer Skin	229	232	186	239	-	

Table Notes:

1) Vertical operation within the facility.

2) 106 °F ambient with insolation.

3) 0 °F ambient without insolation.

4) 117 °F ambient with sunshade.

Proprietary Information Withheld in accordance with 10 CFR 2.390

PROJECT NO: NUH32PTH1 REVISION: 0					
CALCULATION NO: NUH32PTH1-0450 PAGE: 53 of 124					of 124
Table 5-2 - Steady-State Operations with FC, HZC #1 (40.8 kW)					
		Т	emperature (°F)	1	
Component	Vert. Load ¹	Case 1-5 ² Normal Hot	Case 1-6 ³ Normal Cold	Case 1-7 ⁴ Off-Normal Hot	Max. Allowable
Max. DSC Shell	n/a	431	341	444	800
Inner Liner	n/a	339	247	348	800
Gamma Shield	n/a	333	241	342	620
Structural Shell	n/a	283	184	293	800
Neutron Shield, Max. / Avg.	n/a	278/210	180 / 89	288/211	- / 290
Bulk Average NS-3	n/a	206	85	202	250
Closure Lid	n/a	272	147	274	800
Top Forging	n/a	299	206	305	800
Bottom Forging	n/a	169	56	181	800
Forced Air, Inlet / Exit	n/a	106 / 275	0 / 152	117/283	n/a
Neutron Shield Outer Skin	n/a	267	169	278	-
	騣				

Table Notes:

•

1) Forced air circulation for vertical operation within the facility is not possible since air duct can not be connected.

2) 106 °F ambient with insolation and 450 cfm of forced air circulation.

3) 0 °F ambient without insolation and 450 cfm of forced air circulation.

4) 117 °F ambient with sunshade and 450 cfm of forced air circulation.

Proprietary Information Withheld in accordance with 10 CFR 2.390

• · .

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	54 of 124

Table 5-3 - Loss of Neutron Shielding with HZC #1 (40.8 kW)

· · · · · · · · · · · · · · · · · · ·	Temperature (°F)		
Component	Case 1-9 ¹	Max. Allowable	
Max. DSC Shell	651	800	
Inner Liner	544	800	
Gamma Shield	539	620	
Structural Shell	518	800	
Neutron Shield, Max. / Avg.	n/a	-	
Bulk Average NS-3	263	300 ²	
Closure Lid	383	800	
Top Forging	417	800	
Bottom Forging	317	800	
Forced Air, Inlet / Exit	n/a	n/a	
Neutron Shield Outer Skin	308		

Table Notes:

 Steady-state conditions for with no water in neutron shield jacket, no forced air circulation, 117 °F ambient with insolation.

2) Short term allowable temperature for NS-3.

		Tem	perature (°F)	
Component	Case 1-4 Pre-Fire ¹	Case 1-10 End of Fire ²	Case 1-10 Post-Fire Steady-State ³	Max. Allowable, Short / Long Term
Max. DSC Shell	450	451	646	1000 / 800
Inner Liner	310	313	536	1000 / 800
Gamma Shield	304	309	531	620
Structural Shell	254	423	506	1000 / 800
Neutron Shield, Max. / Avg.	248/210	n/a	n/a	-
Bulk Average NS-3	169	899	252	1300 /250
Closure Lid	214	772	371	1000 / 800
Top Forging	247	1067	401	1000 / 800
Bottom Forging	195	1164	303	1000 / 800
Forced Air, Inlet / Exit	n/a	n/a	n/a	n/a
Neutron Shield Outer Skin	239	958	294	•

Table 5-4 - Fire Accident Temperatures with HZC #1 (40.8 kW)

Table Notes:

1) Assumes initial conditions with 32PTH1 with 40.8 kW, 117 °F ambient with sunshade, @ 16.5 hours after drain down of TC-DSC annulus.

2) Component temperatures at end of 15 minute fire transient

3) Assumes no forced air circulation and no water in the neutron shield, 117 °F ambient with insolation

PROJECT NO:	NUH32PTH1		REVISIO	N: 0
CALCULATION NO	• NUH32PTH1-0450		PAGE:	55 of 124
Ta	ble 5-5 - Accident Ambient 7	Cemperatures w	ith HZC #1 (40.8 k)	W)
		Tempe	rature (°F)	
	Component	Case 1-11 ¹	Max. Allowable	
	Max. DSC Shell	558	800	
	Inner Liner	399	800	
	Gamma Shield	393	620	
	Structural Shell	341	800	
	Neutron Shield, Max. / Avg.	334 / 296 ²	- / 290	
	Bulk Average NS-3	245	250	
	Closure Lid	338	800	
	Top Forging	339	· 800	
	Bottom Forging	254	800	

Table Notes:

.

Forced Air, Inlet / Exit

Neutron Shield Outer Skin

1) Steady-state conditions with water in neutron shield jacket, no forced air circulation, 133 °F ambient with insolation

n/a

322

n/a

-

2) Deployment of the solar shade will lower the average neutron shield water temperature to 281 °F.

TRANSNUCLEAR AN AREVA COMPANY

. •

.

i. •

 $\{i_1,i_2,\dots,i_n\}$

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	56 of 124
	Proprietary Information Withheld		
	in accordance with 10 CFR 2.390		
Figure 5-1 - Ve	rtical Loading Transient w/ 40.8 kW, 140°F Facility (Case 1-1)	Ambient/No	Insolation

• • • •

.

• •

,

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	57 of 124
		·····	
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-2 -	Normal Hot Horizontal Transient w/ 40.8 kW, 106°] (Case 1-2)	F Ambient/In	solation
		· · · · · · · · · · · · · · · · · · ·	

•• •

e ja sere e

.

• • •

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	58 of 124
	Proprietary Information Withheld		
	in accordance with 10 CFR 2.390		
Figure 5.2	Normal Cold Horizontal Transiant w/ 40.8 kW 0°F	Ambiont/No 1	Incolation
rigure 5-5 - 1	(Case 1-3)	Ambient/No J	Insulation
	(Case 1-5)		

· ...

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	59 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-4	- Off-Normal Hot Horizontal Transient w/ 40.8 kW, Shade (Case 1-4)	117°F Ambie	nt/Sun
			.,

: • • · · ·

.

.

• • •

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	60 of 124
	· · · · · · · · · · · · · · · · · · ·		
			ļ
	Proprietary Information Withheld		
	in accordance with 10 CFR 2.390		
			•
		•	
Figure 5-5 - DSC	Temperature Distribution – Vertical Loading w/ HZ	2C #1 (40.8 k ^v	W, Case 1-1)
	Alternate Perspective Views		

• • •

and the second second

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	61 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-6 - TC	Femperature Distribution - Vertical Loading w/ HZ Alternate Perspective Views	ZC #1 (40.8 kV	, Case 1-1)

TRANSNUCLEAR AN AREVA COMPANY • • • • • • •

.

.

.

• • •

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	62 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-7	 - DSC Temperature Distribution - Normal Hot (40.8 kW, Case 1-2), Alternate Perspective V 	Transfer w/ HZ /iews	C #1

e entre si

· . · · ·

A TRANSNUCLEAR AN AREVA COMPANY

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	63 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-	8 - TC Temperature Distribution - Normal Hot Tr (40.8 kW, Case 1-2), Alternate Perspective Vi	ansfer w/ HZC ews	C #1

.

• .

• ·

•

.

• _ _ • • • • •

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	64 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-9 - DSC a	Temperature Distribution - Normal Hot Transfer v nd HZC #1 (40.8 kW, Case 1-5), Alternate Perspect	v/ Forced Air ive Views	Circulation

· · · · · ·

· · · · ·

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	65 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
	· ·		
Figure 5-10 - TC	Temperature Distribution - Normal Hot Transfer w nd HZC #1 (40.8 kW, Case 1-5), Alternate Perspectiv	/ Forced Air ve Views	Circulation

· · ·

ALCULATION NO:	: NUH32PTH1-0450	PAGE:	66 of 124
		· · ·	· · · · · · · · · · · · · · · · · · ·
,			
	Proprietary Information With	held	
	in appardance with 10 CEP (200	
	in accordance with TU CFR 2	2.390	
	· • • • •		
			ж.
	5 11 I am of Francel Cinculation Transienter		<u></u>
rigure	e 5-11 - Loss of Forced Circulation Transfert w	1 40.0 KW, (Case I	-0)
	· · ·		
	<i>,</i>		

A TRANSNUCLEAR AN AREVA COMPANY

•

.

· · · · · ·

A CONTRACT OF A CONTRACT OF

•

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	67 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
	Figure 5-12 - Loss of Neutron Shield w/ 40.8 kW, (C	ase 1-9)	

A TRANSNUCLEAR AN AREVA COMPANY

المراجع المراجع

. . . .

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	68 of 124
	<u></u>		
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
	·		
Figure	5-13 - Hypothetical Fire Accident Transient (40.8 k	W, Case 1-10)
-			
<u></u>			

. .

PROJECT NO:	NUH32PTH1		REVISION:	0
CALCULATION NO:	NUH32PTH1-04	50	PAGE:	69 of 124

5.2 Evaluations for the 32PTH1 Fuel Basket w/ HZC #2 (31.2 kW)

5.2.1 Transient Load Operations w/ HZC #2 (31.2 kW)

The thermal analyses presented under this section of the calculation addresses the thermal performance of the OS200 TC with the 32PTH1 fuel basket and with a heat zone configuration that is bounded by that for HZC #2 (31.2 kW) [6.1]. The level of decay heat dissipation under this heat zone configuration is too high to permit steady-state operations within the DSC due to excessive fuel cladding temperatures unless fuel basket utilizes solid aluminum rails, the TC-DSC annulus is filled with water, or unless forced air circulation is used. Otherwise, operational time limits will be used to ensure that the transfer operation is completed within the allotted time or some form of recovery operation is initiated. The evaluations are conducted for loading operations inside the fuel handling facility, and normal hot, normal cold, and off-normal hot conditions of operation outside the facility. The parameters for each of these conditions are defined in Section 2.4.

The allowable time limit for completing the transfer of the DSC to the storage cask (including the actual time it takes to complete the cask closure operations and place the cask on the trailer) is set by the time it takes for the maximum DSC shell temperature to reach temperatures of 400 °F, if left in the vertical orientation, and 420 °F, if rotated to the horizontal position. These target temperature points are established as the limiting DSC shell temperatures required to support the heat zone configuration #2 (31.2 kW) DSC by a separate, detailed analysis [6.4] of the temperature rise within the DSC fuel basket.

Table 5-6 presents the maximum component temperatures achieved under the evaluated transient operating conditions. The component temperatures are taken at the identified time point in the transient evaluation. As seen from the tables, all component temperatures are within their associated maximum allowable temperature limits.

Figure 5-21 to Figure 5-24 illustrate the associated temperature distributions within the DSC and the TC at steady-state conditions for the Vertical Loading and Normal Hot conditions of transfer.

5.2.3 Steady-State Operations with Type 2 (31.2 kW) DSC with Forced Air Circulation

The forced circulation of air (FC) through the TC-DSC annulus will allow steady-state operation of the OS200 TC under any Normal or Off-Normal condition of transfer. Table 5-8 presents the maximum component temperatures achieved under the three (3) evaluated operating conditions for the OS200 TC with a 32PTH1 DSC, 31.2 kW of heat dissipation, and 450 cfm of forced air circulation (note that the FC option can not be used with the TC in the vertical orientation since a connection can not be made to the ram access). As seen from the table, all component temperatures are well below their associated maximum allowable temperature limit. The results in Table 5-8 also demonstrate that the forced air circulation option will result in steady-state DSC shell temperatures well below target value of 420 °F for all conditions.
PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	72 of 124

Figure 5-25 and Figure 5-26 illustrate the expected temperature distribution within the DSC shell and the TC for the Load Case 2-5 condition (i.e., 106 °F ambient, with insolation, 31.2 kW decay heat, and 450 cfm of forced air circulation). Both figures show the expected shift in the peak temperature locations that result from the airflow in the TC-DSC annulus.

5.2.4 Accident Conditions w/ HZC #2 (31.2 kW)

5.2.4.1 Loss of Forced Circulation

As demonstrated in Section 5.2.3, forced air circulation (FC) will provide the ability to accommodate the 32PTH1 DSC within the OS200 TC for indefinite periods under any condition of transfer. Should the FC be lost for some reason, a significant time period will be available either to complete the transfer, re-establish the FC, or to initiate some other recovery mode. The predicted heat up rate for the OS200 TC with the 32PTH1 DSC and 31.2 kW of decay heat is illustrated in Figure 5-27.

Proprietary Information Withheld in accordance with 10 CFR 2.390

5.2.4.2 Loss of Neutron Shielding for HZC #2 (31.2 kW)

A transient evaluation (i.e., Load Case 2-9) was conducted to establish the ability of the OS200 TC to accommodate the 32PTH11 DSC with a decay heat load of 31.2 kW or less for an indefinite period of time when the water in the neutron shield is lost.

The analysis concludes with a steady-state evaluation.

It should be noted that the target DSC temperature limit of 420 °F assumed prior to the start of the accident scenario is associated with maintaining the peak fuel cladding temperature below 752 °F. As

·. :

PROJECT NO: NUH32PTH1	REVISION:	0			
CALCULATION NO: NUH32PTH1-0450	PAGE:	73 of 124			
such, a higher DSC shell temperature can be accommodated under accident conditions without exceeding the accident temperature limits for the fuel cladding.					
5.2.4.3 Fire Accident Conditions with HZC #2 (31.2kW) DSC					
The predicted TC thermal performance under a 15-minute hypothetical fire Load Case 2-10) is illustrated in Figure 5-29.	accident scen	ario (i.e.,			
The results of the analysis are similar to those seen for the HZC #1 evaluati that the thermal mass of the DSC and cask components is sufficient to abso fire without a significant increase in the interior component temperatures.	on (see Sectio rb the heat flu 2	n 5.1.3.3) in x from the			
in accordance with 10 CFR 2.390					
Table 5-10 present the peak component temperatures achieved at the pre-fin the fire (i.e., 15 minutes into the transient), and for the post-fire steady-state	e condition, at condition.	the end of			
5.2.4.4 Accident Ambient Conditions with HZC #2 (31.2kW) DSC	<u></u>	Are 64 adramini (1,2,3 f			

The fourth and final accident condition evaluated consists of steady-state operations under the accident ambient conditions of 133 °F, with regulatory solar (i.e., Load Case 2-11). As seen from Table 5-11, the peak component temperatures achieved under this accident condition remain within even their associated short term limits.

<u>.</u> ·

PROJECT NO: NUH		REVISION: 0				
CALCULATION NO: NUH	32PTH1-0450			PAGE: 74	of 124	
Table 5-6 - Transient Operations, HZC #2 (31.2 kW)						
		Te	emperature (°F)	1		
Component	Case 2-1 ¹ Vert. Load	Case 2-2 ² Normal Hot	Case 2-3 ³ Normal Cold	Case 2-4⁴ Off-Normal Hot	Max. Allowable	
Max. DSC Shell	401	420	429	420	800	
Inner Liner	255	288	265	295	800	
Gamma Shield	254	283	259	290	620	
Structural Shell	225	239	200	247	800	
Neutron Shield, Max. / Ave.	222/208	234/211	195 / 145	243 / 207	-/290	
Bulk Average NS-3	209	173	92	166	250	
Closure Lid	212	213	171	210	800	
Top Forging	210	235	207	240	800	
Bottom Forging	219	190	120	190	800	
Forced Air, Inlet / Exit	n/a	n/a	n/a	n/a	n/a	
Neutron Shield Outer Skin	217	227	182	235	•	

Table Notes:

1) Vertical operation within the facility.

2) 106°F ambient with insolation.

3) 0°F ambient without insolation.

4) 117°F ambient with sunshade.

TRANSNUCLEAR AN AREVA COMPANY

PROJECT NO: NUH32PTH1 REVISION: 0						
CALCULATION NO: NUH	32PTH1-0450			PAGE: 75	of 124	
Table 5-7 - Steady-State Operations without FC, HZC #2 (31.2 kW)						
		Te	emperature (°F)	1		
Component	Case 2-1 ¹ Vert. Load	Case 2-2 ² Normal Hot	Case 2-3 ³ Normal Cold	Case 2-4 ⁴ Off-Normal Hot	Max. Allowable	
Max. DSC Shell	492	485	429	476	800	
Inner Liner	330	337	265	340	800	
Gamma Shield	328	332	259	335	620	
Structural Shell	293	285	200	288	800	
Neutron Shield, Max. / Ave.	289/262	281/248	195 / 145	283 / 241	- / 290	
Bulk Average NS-3	269	204	92	196	250	
Closure Lid	299	· · 278	171	270	800	
Top Forging	267	286	207	288	800	
Bottom Forging	289	215	120	214	800	
Forced Air, Inlet / Exit	n/a	n/a	n/a	n/a	n/a	
Neutron Shield Outer Skin	280	272	182	272	-	

Table Notes: 1) Vertical operation within the facility.

2) 106°F ambient with insolation.

3) 0°F ambient without insolation.

4) 117°F ambient with sunshade.

PROJECT NO: NUH32PTH1 REVISION:				REVISION: 0		
CALCULATION NO: NUH32PTH1-0450 PAG				PAGE: 76	of 124	
Table 5-8 - Steady-State Operations with FC, HZC #2 (31.2 kW)						
		Te	emperature (°F)	1		
Component	Vert. Load ¹	Case 2-5 ² Normal Hot	Case 2-6 ³ Normal Cold	Case 2-7 ⁴ Off-Normal Hot	Max. Allowable	
Max. DSC Shell	n/a	370	274	374	800	
Inner Liner	n/a	293	197	299	800	
Gamma Shield	n/a	289	192	294	620	
Structural Shell	n/a	247	146	254	800	
Neutron Shield, Max. / Ave.	n/a	243 / 192	142 / 69	251/188	- / 290	
Bulk Average NS-3	n/a	188	66	182	250	
Closure Lid	n/a	236	113	233	800	
Top Forging	n/a	263	165	267	800	
Bottom Forging	n/a	156	43	162	800	
Forced Air, Inlet / Exit	n/a	106 / 243	0/120	117/241	n/a	
Neutron Shield Outer Skin	n/a ·	235	134	243	-	

Table Notes:

1) Forced air circulation for vertical operation within the facility is not possible since air duct can not be connected.

2) 106°F ambient with insolation and 450 cfm of forced air circulation.

3) 0°F ambient without insolation and 450 cfm of forced air circulation.

4) 117°F ambient with sunshade and 450 cfm of forced air circulation.

.

. . .

PROJECT NO:	NUH32PTI	H1		R	EVISION: 0
CALCULATION NO	· NUH32PTH	HI-0450		P.	AGE: 77 of 124
	Table 5-9 - L	oss of Neutro	n Shielding wit	th HZC #2 (31.	.2 kW)
			Tem	perature (°F)	
	Com	ponent	Case 2-9 ¹	Max. Allo	wable
	Мах. Г	OSC Shell	578	800	
	Inne	r Liner	482	800	
l .	Gamm	ha Shield	478	620	
Ì	Structi	ural Shell	456	800	
Ì	Neutron Shie	ld, Max. / Avg.	n/a	-	
	Bulk Av	erage NS-3	240	250	
	Clos	ure Lid	335	800	
	Top !	Forging	373	800	
	Bottom	1 Forging	288	800	
	Forced Ai	r, Inlet / Exit	n/a	n/a	
	Neutron Shi	eld Outer Skin	277	-	
T	`able 5-10 - Fi	re Accident T	Comperatures w	/ith HZC #2 (3	1.2 kW)
			Tem	perature (°F)	
Com	ponent	Case 2-4 Pre-Fire ¹	Case 2-10 End of Fire ²	Case 2-10 Post-Fire Steady-State	Max. Allowable, Short / Long Term
Max. E	OSC Shell	420	421	574	1000 / 800
Inne	r Liner	295	298	475	1000 / 800
Gamm	a Shield	290	295	471	620
Structu	ıral Shell	247	419	448	1000 / 800
Neutron Shie	ld, Max. / Avg.	243 / 207	n/a	n/a	-
Bulk Ave	erage NS-3	166	898	232	1300 /250
Closs	are Lid	210	771	326	1000 / 800
Top F	Forging	240	1065	360	1000 / 800
Bottom	1 Forging	190	1163	276	1000 / 800
		<u> </u>	·	(·
Forced Ai	, Inlet / Exit	n/a	n/a	n/a	n/a

Table Notes:

1) Assumes initial conditions with 32PTH1 with 31.2 kW, 117 °F ambient with sunshade, @ 25.5 hours after drain down of TC-DSC annulus.

2) Component temperatures at end of 15 minute fire transient

3) Assumes no forced air circulation and no water in the neutron shield, 117 °F ambient with insolation

• . • •

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	78 of 124

Table 5-11 - Accident Ambient Temperatures with HZC #2 (31.2 kW)

	Temperature (°F)		
Component	Case 2-11 ¹	Max. Allowable	
Max. DSC Shell	495	800	
Inner Liner	354	800	
Gamma Shield	349	620	
Structural Shell	305	800	
Neutron Shield, Max. / Avg.	301/269	- / 290	
Bulk Average NS-3	226	250	
Closure Lid	299	800	
Top Forging	304	800	
Bottom Forging	236	800	
Forced Air, Inlet / Exit	n/a	n/a	
Neutron Shield Outer Skin	292	-	

Table Notes:

 Steady-state conditions with water in neutron shield jacket, no forced air circulation, 133 °F ambient with insolation.

• • • • • • • • •

• .

• •

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	79 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-14 - Ve	ertical Loading Transient w/ 31.2 kW, 140°F Facility (Case 2-1)	Ambient/No	Insolation

Ne. Marine

•

.

CALCIT ATION NO.		DACE.	
CALCULATION NO:	NUH32P1H1-0450	FAGE:	ov 01 124
r			
		,	
	Proprietary Information Withheld		
	in apportance with 10 CEP 2 200		
	In accordance with TO CFR 2.390		
E	Normal Hat Havizantal Transient w/ 21 2 W 100	OF Amahian 4/Tu	
rigure 5-15 -	(Case 2.2)	r Ambient/In	Isolation
	(Case 2-2)		

and the second second

a and a second

.

P	ROJECT NO:	NUH32PTH1	REVISION:	0
C	ALCULATION NO:	NUH32PTH1-0450	PAGE:	81 of 124
		Proprietary Information Withheld in accordance with 10 CFR 2.390		
L	Figure 5-16 - 01	T. Normal Hot Horizontal Transient w/ 21.2 kW 115	PF Ambient/	Sun Shada
	Figure 5-10 - Of	(Case 2-4)	r Ambient/	Sun Snaue
		× ,		
				J

· .

.

.. .

.

• ;

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	82 of 124
·····			
			· .
			·
			· ·
	Proprietary Information Withheld		
	in accordance with 10 CFR 2.390		
	•		
			1
Figure 5-17 -	DSC Temperature Distribution – Vertical Loading	W/ HZC #2 (3	1.2 KW,
	Case 2-1) Alternate Perspective views		

• ·

• •

· .

i

1.1.1.1.1

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	83 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Eigune 5 19 TC	Townshitting Distribution Vertical Loading w/H	70 #2 (21 2 14	\sim
rigure 5-18 - 1C	Alternate Perspective Views	LC #2 (31.2 K)	av, Case 2-1)
	•		
····			

. . •

PROJECT NO:	NUH32PTH1	REVISION	: 0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	84 of 124
		·	
	Proprietary Information Withh	neld	
	in accordance with 10 CFR 2.	390	
Figure # 10	DEC Tomporature Distribution Normal II	04 Tuon 1604 / T	170 42
Figure 3-1	(31.2 kW. Case 2-2). Alternate Perspective	or Fransier w/ f Views	120 #2
	(21.4 KVV, Cuse 2 2), Michael Cospective	10110	
	• ,		

• • • • •

· ,

• • • • •

CALCULATION NO: NUH32PTH1-0450 PAGE: 85 of 124	PROJECT NO:	NUH32PTH1	REVISION:	0
Proprietary Information Withheld in accordance with 10 CFR 2.390	CALCULATION NO:	NUH32PTH1-0450	PAGE:	85 of 124
Proprietary Information Withheld in accordance with 10 CFR 2.390 Figure 5-20 - TC Temperature Distribution - Normal Hot Transfer w/ HZC #2 (31.2 kW, Case 2-2), Alternate Perspective Views				
Figure 5-20 - TC Temperature Distribution - Normal Hot Transfer w/ HZC #2 (31.2 kW, Case 2-2), Alternate Perspective Views		Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-20 - TC Temperature Distribution - Normal Hot Transfer w/ HZC #2 (31.2 kW, Case 2-2), Alternate Perspective Views		· · · · · · · · · · · · · · · · · · ·		
(31.2 kW, Case 2-2), Alternate Perspective Views	Figure 5-2	0 - TC Temperature Distribution - Normal Hot Th	ansfer w/ HZ	C #2
		(31.2 kW, Case 2-2), Alternate Perspective Vie	ews	
	·····			

A TRANSNUCLEAR AN AREVA COMPANY

e jene e

.

... •

•

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	86 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-21 - D	SC Temperature Distribution – Steady-State, Vertic (31.2 kW, Case 2-1) Alternate Perspective View	cal Loading w ws	// HZC #2

. • • •:

•••••

.

.

•

A TRANSNUCLEAR AN AREVA COMPANY

• •

and the second second

1

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	87 of 124
r			
	Draw viota we information Mithhald		
	in accordance with 10 CEP 2 200		
	In accordance with 10 CFR 2.390		
			1
Figure 5-22 - 7	FC Temperature Distribution - Steady-State, Ver	tical Loading w	HZC #2
0	(31.2 kW, Case 2-1) Alternate Perspective V	⁷ iews	
		·	
· · ·			

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	88 of 124
			· ·
	Proprietary Information Wi	Inneld	
	in accordance with 10 CFR	2.390	
			· · · ·
Figure 5-23 - DS	C Temperature Distribution - Steady-Si	ate, Normal Hot Transfe	r w/ HZC #2
	(31.2 kW, Case 2-2), Alternate Per	spective views	

1

÷

.

and the second second

• • • •

• _there is

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	89 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Eiguno 5 24 TC	Tomporature Distribution - Steady-State Normal I	Lot Transfor	 w/H7C #2
riguie 3-24 - IC	(31.2 kW. Case 2-2). Alternate Persnective View	AGE FLAUSICE NS	₩ 11 <i>L</i> \ #4
	(Sita Riv, Case 2-2), internate i erspective viel	10	

en aller in the second

• •

.

•

1. A. 18

1.1.1.1.1.1

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	90 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
Figure 5-25 - DSC	C Temperature Distribution - Normal Hot Transfer v nd HZC #2 (31.2 kW, Case 2-5), Alternate Perspecti	v/ Forced Air ve Views	Circulation

· · · · ·

and the second second

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	91 of 124
	•		
	Proprietary Information Withheld		
	in accordance with 10 CFR 2.390		
·			
Figure 5-26 - TC	Temperature Distribution - Normal Hot Transfo nd HZC #2 (31.2 kW, Case 2-5) Alternate Perso	er w/ Forced Air ective Views	Circulati
a			

· · · · · ·

· , · ·.

.

a server t

.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	92 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
	5.05 I and 6 Translation Translation (21.2)		
Figure	5-27 - Loss of Forced Circulation Transfert w/ 31.2	Kw, (Case 2-a	5)
			а. С
		•	
. <u> </u>			

a state to

· , · · ·

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

•

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	93 of 124
		•	
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
]	Figure 5-28 - Loss of Neutron Shield w/ 31.2 kW, (C	ase 2-9)	

· · ·

A TRANSNUCLEAR AN AREVA COMPANY

· • • • • •

۰.

•

• . • .

...

: _

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	94 of 124
r			
			•
•			
	Proprietary Information Withhe	ld	
	in accordance with 10 CFR 2 3	90	
Figure	5-29 - Hypothetical Fire Accident Transient (31	1.2 kW, Case 2-1	(0)
0	· · · · · · · · · · · · · · · · · · ·	·	
•			

. ,

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	95 of 124

5.3 Evaluations for the 32PTH1 Fuel Basket w/ HZC #3 (24.0 kW)

The thermal analyses presented under this section of the calculation addresses the thermal performance of the OS200 TC with the 32PTH1 fuel basket and with a heat zone configuration that is bounded by that for HZC #3 (24.0 kW) [6.1]. At this level of decay heat dissipation, steady-state operations are permitted for all transfer conditions and for any fuel basket configuration. The evaluations are conducted for loading operations inside the fuel handling facility, and normal hot, normal cold, and off-normal hot conditions of operation outside the facility. Each of these conditions is defined in Section 2.4.

Table 5-12 presents the maximum component temperatures achieved under the evaluated steady-state operating conditions. All component temperatures are within their associated maximum allowable temperature limits.

The thermal performance of the OS200 TC under accident conditions (i.e., loss of neutron shielding, the 15 minute on-site fire, and the accident ambient conditions) and with a decay heat loading of 24 kW are bounded by those presented in Section 5.2.4.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	96 of 124

Table 5-12 - Steady-State Operations without FC, HZC #3 (24.0 kW)

		Т	emperature (°F)	1	
Component	Case 3-1 ¹ Vert. Load	Case 3-2 ² Normal Hot	Case 3-3 ³ Normal Cold	Case 3-4 ⁴ Off-Normal Hot	Max. Allowable
Max. DSC Shell	436	429	365	419	800
Inner Liner	295	298	220	300	800
Gamma Shield	293	294	215	296	620
Structural Shell	264	257	164	256	800
Neutron Shield, Max. / Ave.	261/239	254 / 226	160/118	252/218	-/290
Bulk Average NS-3	244	189	74	180	250
Closure Lid	266	246	134	237	800
Top Forging	244	257	172	258	800
Bottom Forging	260	201	99	197	800
Forced Air, Inlet / Exit	n/a	n/a	n/a	n/a	n/a
Neutron Shield Outer Skin	253	247	150	244	-

Table Notes:

1) Vertical operation within the facility.

2) 106°F ambient with insolation.

3) 0°F ambient without insolation.

4) 117°F ambient with sunshade.

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	97 of 124

5.4 Conclusions

The analyses presented in this calculation demonstrate that NUHOMS[®] OS200 TC is qualified for onsite fuel transfer operations with the 32PTH1 DSC with decay heat loads up to 40.8 kW. The 32PTH1 DSC is available in three lengths and with two fuel basket configurations (i.e., with and with solid aluminum rails). The analyses provided in this calculation is bounding for all DSC lengths, but are dependent on the combination of fuel basket configuration and decay heat loading.

Steady-state operations under all conditions are permissible for heat loads of 24 kW or less for either fuel basket configuration. Likewise, steady-state operations under all conditions are permissible for heat loads of 24 kW to 31.2 kW if fuel basket configuration utilizes solid aluminum rails. However, if the decay heat load exceeds 24 kW and the fuel basket configuration does not utilize solid aluminum rails or if the decay heat loading exceeds 31.2 kW, a limited period of operation is permitted before the transfer operations must be completed or some form of recovery operation initiated. The allowable duration for the transfer operations (defined as from the time when the TC-DSC annulus water is drained to when the DSC is loaded into the storage module) will vary depending on the DSC fuel basket configuration and the heat load, and whether or not the forced air circulation option for the TC is utilized.

Proprie in acco	etary Information ordance with 1	on Withhel 0 CFR 2.39	d 90	
		STATE OF STATE		
			朝鮮淵族	

A TRANSNUCLEAR AN AREVA COMPANY

.

•

• •

PROJEC	TNO: NUH32PTH1	REVISION:	0
CALCUI	ATION NO: NUH32PTH1-0450	PAGE:	99 of 124
6.	REFERENCES		
6.1			
6.2	Proprietary Information Withheld in accordance with 10 CFR 2.390		
6.3			
6.4			
6.5	ASME Boiler & Pressure Vessel Code, Section II, Part D, Properti Addenda.	ies, 1998 Edii	ion thru 2000
6.6	Bucholz, J. A., <i>Scoping Design Analysis for Optimized Shipping C</i> , <i>5-</i> , <i>7-</i> , <i>or 10-Year old PWR Spent Fuel</i> , Oak Ridge National Labor ORNL/CSD/TM-149.	asks Contain atory, Januar	<i>ing 1-, 2-, 3-</i> y, 1983,
6.7			
6.8	Hottel, H. C. and A. F. Sarofim, <u><i>Radiative Transfer</i></u> , Chapter 4, p. York, 1967.	164, McGraw	-Hill, New
6.9	Rohsenow, Hartnett, and Ganic, Handbook of Heat Transfer Funde McGraw-Hill Publishers, 1985.	<u>amentals</u> , 2nd	l edition,
6.10	Rohsenow, Hartnett, and Cho, <i><u>Handbook of Heat Transfer Fundam</u></i> McGraw-Hill Publishers, 1998.	<u>nentals</u> , 3rd e	dition,
6.11	Incropera and DeWitt, <u>Handbook of Heat And Mass Transfer Fund</u> Wiley Publishers, 2002, Table A.6 pp 924.	<i>lamentals</i> , 5tl	n edition,
6.12	Guyer, Handbook of Applied Thermal Design, McGraw-Hill, Inc.,	1989.	
6.13	Kreith, Frank, Principles of Heat Transfer, 3 rd Edition, Harper and	Row Publish	ers.
6.14			

• •

.

· . . ·

PROJEC	r no:	NUH32PTH1	REVISION:	0
CALCUL	ATION NO:	NUH32PTH1-0450	PAGE:	100 of 124
6.15				
6.16	Gubareff, G Edition, Ho	. G., J. E. Janssen, and R. H. Torborg, <i><u>Thermal Radiat</u></i> neywell Research Center, 1960.	ion Propertie	<u>s <i>Survey</i>,</u> 2nd
6.17	Siegel, R. a Publishing (nd J. R. Howell, <i>Thermal Radiation Heat Transfer</i> , 3rd Corporation, Washington, D. C., 1992.	Edition, Hem	isphere
6.18	McAdams, 1954.	William H., <u>Heat Transmission</u> , McGraw-Hill Book Co	ompany, New	York, NY,
6.19	I.E. Idelchik	, <u>Handbook of Hydraulic Resistance</u> , 3 rd Edition, 1994.		
6.20	ASHRAE H	andbook Fundamentals 4 th Edition, 1983.		
6.21	Thermal De	sktop [™] , Version 4.7, Cullimore & Ring Technologies,	Inc., Littletor	, CO, 2004.
6.22	SINDA/FLU Integrator, `	INT TM , Systems Improved Numerical Differencing Ana Version 4.7, Cullimore & Ring Technologies, Inc., Littl	<i>lyzer and Flu</i> eton, CO, 200	id)4.
6.23				
6.24		Proprietary Information Withheld in accordance with 10 CFR 2.390		

.

.

.

.

÷...

, .

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	102 of 124
	Proprietany Information Withheld		
	in accordance with 10 CER 2 390		
			:
		2112	
	THE PARTY & F. THE		
		•	

• • • • •

· . ·

. .

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	103 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		

TRANSNUCLEAR AN AREVA COMPANY

.

•

· · · · · ·

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	104 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		

.

•

• • •

.

. . .

e en la constante de la consta

-

12.4

:

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	113 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
	n a sun an anna an an anna an ann an ann an an		

PROJECT NO:	NUH32PTH1	REVISION	: 0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	114 of 124
	······································		
	.		
ł			
	·		
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
	<u></u>		

• • • • • • • • • •

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	115 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		

		DEVICION	^
ROJECT NO:	NUH32PTHI · ·	REVISION:	U 116 of 124
CALCULATION NO.	NOH32P1H1-0430	TAGE.	110 01 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		

.

· ·

. .

1.12.15

··· · .

. :

.

•

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	117 of 124
· ·			
	Proprietary Information Withheld in accordance with 10 CFR 2.390		

.

.

•

. · · ·

ROJECT NO:	NUH32PTH1	REVISION:	0	
CALCULATION NO:	NUH32PTH1-0450	PAGE:	118 of 124	
	Dropriotony Information Withhald			
	Prophetary mormation withered			
	In accordance with 10 CFR 2.390			
	_			
	·			
			ľ	
	<u> </u>	·		

and the second second

.

1

ł

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	119 of 124
	Proprietary Information Withheld in accordance with 10 CFR 2.390		
L			

A TRANSNUCLEAR AN AREVA COMPANY

2. . · · ·

• .

.••

: .

• • • •

4

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	120 of 124
		<u>.</u>	
	-		
	Departmenter, Information 14	lithhald	
	Proprietary Information W		
	in accordance with 10 CFI	R 2.390	
			:
			•
	· · · · · · · · · · · · · · · · · · ·		

A TRANSNUCLEAR AN AREVA COMPANY

and the second second

.

Aller in the

1.2

:

1

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	121 of 124
		***	and an an an of This is the second
	· · · · · · · · · · · · · · · · · · ·		
]
			1
{			ļ
	Droprintom, Information Withhald		
•	Proprietary mormation withheid		
	in accordance with 10 CFR 2.390		
			{
			ł
			•

•

.

;- •

• • •

.

۰.

. . . .

and the second

. .

.

.

· · ·

••

PROJECT NO:	NUH32PTH1	REVISION:	0
CALCULATION NO:	NUH32PTH1-0450	PAGE:	123 of 124
}			
	Proprietary Information Withheld		
	in accordance with 10 CFR 2.390		
			[
			[
L			

.

.

:

PRO	JECT NO:	NUH32PTH1	REVISION:	0	
CAL	CULATION NO:	NUH32PTH1-0450	PAGE:	124 of 124	
			•		
		Proprietary Information Withheld			
		in accordance with 10 CFR 2.390			
					-
					•
				·	
			· · · · · · · · · · · · · · · · · · ·	· · · · · ·	