Enclosure 2 to E-25259

Transnuclear, Inc. Calculation NUH32PTH1-0421, "Thermal Analysis of HSM-H Loaded with 32PTH1 DSC," Revision 0 (Non-proprietary version, without discs)

		······
A	Calculation	Calculation No.: NUH32PTH1-0421
TRANSNUCLEAR AN AREVA COMPANY	Cover Sheet	Page: 1 cf 45
DCR NO: N/A	PROJECT NAME:	NUHOMS [®] 32PTH1 Transportable and Stor System
PROJECT NO: NUH32PTH1	CLIENT:	Transnuclear, Inc
CALCULATION TITLE:	المراجع والمراجع والم	
Thermal Analysis of HSM	-H Loaded with 32PTH1 DSC	
SUMMARY DESCRIPTION:		
The calculation present off-normal, and accider distribution of 32PTH1 application of the NUH0	ts thermal analysis of the HSM nt storage conditions The calcu DSC shell and HSM-H compor OMS [©] COC 1004	-H loaded with 32PTH1 DSC for no ulation determines the temperature nents to support an amendment
		•
f original issue, is licensing revie	w per TIP 3.5 required?	
Yes 🗋 No 🖾 (expla	ain below) Licensing Review N	lo.:
This calculation is one of the design 22PTH1 system. Therefore, a 72.48	basis calculations to support the curr review by Transnuclear is not neces	ent licensing submittal for the NUHOMS
		-,
Software Utilized:	Version:	Number of CDs:
ANSYS	8.1	3
•		
Calculation is complete:	· · ·	
(` ,	\sim	
Driginator Signature:	$\overline{\mathcal{O}}$	6/28/06
Calculation has been checked for	consistency, completeness and co	orrectness:
	\sim	1 and
	·	6/1.8706
Checker Signature:		Date:
Calculation is approved for use:		
Mian A	Maria	7/28/57
Imiact Engineer Signature:		
ojew Elighteer Bighawie.		Data:

••

.

-

Form.3 2-1 Rev. 1, Equivalent

ę

			JCLEAR AREVA COMPANY	Ca	lculation	Caiculat Revis	tion No.: NUH3 Sion No.: 0 Page: 2 of 45	2PTH1-0421
			· .	REV	VISION SUMMAI	RY		
	REV.	DATE		DESC	RIPTION		AFFECTED PAGES	AFFECTED DISKS
-	0	7/22/06	Initial Issue	· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·	All	All
F			L.,				I <u></u>	J
				·			•	
•								
							•	
: 								
•								

· _ _

-	RANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-0421 0 3 of 45
		TABLE OF CONTENTS		
				Page
1	Purpose		••••••	5
2	References	•••••••••••••••••••••••••••••••••••••••		5
3	Assumptions and Conserv	atism	••••••	7
4	Design Input	•••••••••••••••••••••••••••••••••••••••		8
	4.1 Material Properties	•••••••••••••••••••••••••••••••••••••••		8
	4.2 Effective Properties for	or NUHOMS-32PTH1 DSC Bas	sket (Mat 11)	
	4.3 32PTH1 DSC Configu	ration		
5	Methodology			
	5.1 ANSYS Finite Elemen	It Models		
	5.2 Boundary conditions f	or Normal, Off-Normal and Ac	cident Condition	s (Steady State)14
	5.3 Boundary Conditions	for Accident Blocked Vent Cor	nditions (Transie	nt)17
6	Computations			19
7	Results			
App	endix A – Thermal Input for	DSC Ends Structure Analysis	5	41

and the second second

and the second second

K TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH 0 6 of 45
	Proprietary Inform in accordance with	mation Withheld th 10 CFR 2.39	I 💽
.			
	Dediction Heat Transfer 4th		
9. Siegei, Howell, Thermal I 10 Bentz A Computer Mode	Radiation Heat Transfer, 4"	Edition, 2002.	e-of-wotr
Concrete Pavements and	d Bridge Decks. Report # NI	STIR 6551 Nation	nal Institute
Standards and Technolog	gy, 2000.		
11.On-Line User's Manual fo	or ANSYS, Revision 8.1.	`	
K			
13.NRC, Code of Federal Re Material, 2003.	egulations, Part 71, <i>Packagi</i>	ing and Transport	ation of Ra
14. Final Safety Analysis Rep	port, Standardized NUHOM	S [®] Horizontal Mod	lular Stora
for Irradiated Nuclear Fue	el, Transnuclear Inc, NUH-0	03, Rev. 8, Docke	t No. 72-1

.

and the second secon

	Calculation	Calculation No.: NUH32PTH1-042 Revision No.: 0 Page: 7 of 45
3 Assumptions and Conserv	vatism	
The assumptions and conservation	ism as described for 32PT	H DSC/HSM-H model [3] are applie
in this analysis.		
NA TABLE		
	Proprietary Info	ormation Withheld
	in accordance v	with 10 CFR 2.390
Madere Ander and		
		and the second secon
and restar and a		

A TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: NUH32PTH1-0421 Revision No.: 0 Page: 9 of 45
	Proprietary Inform in accordance with	nation Withheld n 10 CFR 2.390
Concrete	rete are discussed in detail in M	41 These properties are listed in
Table 4-3.		
	Ible 4-3 Thermal properties of c	
Soil		
The properties of soil (Mat 3) a	re discussed in [4] and summa	rized in Table 4-4 below.
	Table 4-4 Thermal properties of	of soil
	and a second the second	
<u>Air</u>	Table 4-5 Thermal properties	of Air
Tangan ang ang ang ang ang ang ang ang an	nener beitettet zurich 2000-100 Mar	

4.2 Effective Properties for NUHOMS-32PTH1 DSC Basket

Table 4-6 Effective Thermal properties of 32PTH1 DSC Basket [15]

		1	
A	Oslavlation	Calculation No.:	NUH32PTH1-0421
TRANSNUCLEAR AN AREVA COMPANY	Calculation	Revision No.:	0
		Page:	12 of 45

5 Methodology

Horizontal Storage Module, model H (HSM-H) is designed to provide an independent, passive system with substantial structural capacity to ensure safe storage of spent fuel assemblies in 32PTH1 DSCs. The decay heat load from stored DSCs is removed via combination of radiation, convection and conduction. Ambient air enters the HSM-H through ventilation inlet openings in the lower part of the HSM-H side walls and circulates around the DSC and the side heat shields. Warm air passes through the top heat shield and exits the HSM-H through the outlet openings in the upper part of the HSM-H side walls.

Decay heat is rejected from the DSC to the HSM-H air space by convection and then is removed from the HSM-H cavity by natural air circulation. Heat is also radiated from the DSC surface to the heat shields and HSM-H walls, where natural air circulation and conduction through the walls remove the heat.

This analysis determines the temperature distribution on the DSC shell, which is used to calculate the fuel peak cladding temperature in a detailed model of the DSC. The HSM-H wall temperatures are also determined in this analysis.

Two maximum decay heat loads are considered for the NUHOMS-32PTH1 system: 31.2 kW and 40.8 kW.

Proprietary Information Withheld in accordance with 10 CFR 2.390

Ambient temperatures of 0 °F and 106°F are considered as normal storage conditions. The lowest ambient temperature of -40°F and maximum ambient temperature of 117°F are used for off-normal storage condition [4]. Ambient temperature of 133°F is used for accident condition [1].

	Coloulation	Calculation No.:	NUH32PTH1-0421
AN AREVA COMPANY	Calculation	Revision No.:	0
		Page:	13 of 45

Since the HSM-H is located outdoors, there is a remote probability that the air inlet and outlet openings become blocked by debris from such events as flooding, high wind, and tornados. The perimeter security fence around ISFSI and the location of the air inlet and outlet openings reduces the probability of such an accident. A complete blockage of all inlets and outlets simultaneously is not a credible event. Nevertheless, to bound this scenario, analysis is carried out assuming complete blockage of the inlet and outlet vents as an accident case.

Proprietary Information Withheld in accordance with 10 CFR 2.390

The temperature distributions for the normal, off-normal and accident conditions are determined using a steady-state model **Example 1** For accident blocked vent case, a transient model includes **Example 1** For accident blocked vent case, a **Example 1**

5.1 ANSYS Finite Element Models

For the analysis, a half symmetric, three dimensional, finite element model of the HSM-H is developed by using ANSYS [11] to determine the temperature profiles for normal, off-normal and accident conditions.

			alculation No.:	NUH32PTH
	CLEAR Ca		Revision No.:	0
			Page:	14 of 45
			-	
			12 m.m. 18 m.m.	
				1.1 20 (11)
	Propr	ietary Information V	lithheld	
	in acc	ordance with 10 CF	R 2 390	
	III doo		N 2.000	
5.2 <u>Boundary c</u> <u>State</u>)	onditions for Normal, C	off-Normal and Accider	it <u>Conditions</u> (<u>Steady</u>
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o	f HSM-H documented i	off-Normal and Accider	it <u>Conditions (</u> ogy described	<u>Steady</u> d in [4] are
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound	f HSM-H documented i fary conditions for norn	off-Normal and Accider in [5] and the methodol nal, off-normal and acc	it <u>Conditions (</u> ogy described ident condition	<u>Steady</u> 1 in [4] are ns.
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound	f HSM-H documented i fary conditions for norn	off-Normal and Accider in [5] and the methodol nal, off-normal and acc	it <u>Conditions (</u> ogy described	<u>Steady</u> d in [4] are ns.
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe	f HSM-H documented i fary conditions for norn ratures used in the HS	off-Normal and Accider in [5] and the methodol nal, off-normal and acc M-H model are listed ir	it <u>Conditions (</u> ogy described ident condition i Table 5-1 be	<u>Steady</u> d in [4] are ns. low.
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe	f HSM-H documented i fary conditions for norn ratures used in the HSI Table 5-1 HSM	off-Normal <u>and Accider</u> in [5] and the methodol nal, off-normal and acc M-H model are listed ir -H Exit Air Temperatur	ogy described ident condition Table 5-1 be	<u>Steady</u> d in [4] are ns. low.
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM	off-Normal and Accider n [5] and the methodol nal, off-normal and acc M-H model are listed ir -H Exit Air Temperature Ambient Temperature	ogy described ident condition Table 5-1 be e Applied	<u>Steady</u> d in [4] are ns. low. Femperature
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, kW	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions	off-Normal and Accider n [5] and the methodol nal, off-normal and acc M-H model are listed ir -H Exit Air Temperature, Ambient Temperature, °F	it <u>Conditions (</u> ogy described ident condition Table 5-1 be e Applied Exit Air	<u>Steady</u> d in [4] are ns. low. low. ^{remperature}
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, <u>kW</u>	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions Normal Storage	off-Normal and Accider n [5] and the methodol nal, off-normal and acc M-H model are listed in H Exit Air Temperature Ambient Temperature, °F	ident conditions (ident condition Table 5-1 be Applied	<u>Steady</u> d in [4] are ns. low. Femperature °F 78 203
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, kW 40.8	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions	off-Normal and Accider in [5] and the methodol nal, off-normal and acc M-H model are listed ir -H Exit Air Temperature, O 106 -40	it <u>Conditions</u> ogy described ident condition Table 5-1 be Applied Exit Air	<u>Steady</u> d in [4] are ns. low. Femperature °F 78 203 30
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, kW 40.8	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions Normal Storage	n [5] and the methodol nal, off-normal and acc M-H model are listed ir -H Exit Air Temperature Ambient Temperature, °F 0 106 -40	ident conditions (ident condition Table 5-1 be Applied	<u>Steady</u> d in [4] are ns. low. ^{°F} 78 203 30 216
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, kW 40.8	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions Normal Storage Off-Normal Storage Accident	off-Normal and Accider n [5] and the methodol nal, off-normal and acc M-H model are listed ir -H Exit Air Temperature, PF 0 106 -40 117 133 0	it <u>Conditions</u> ogy described ident condition Table 5-1 be Exit Air	<u>Steady</u> d in [4] are ns. low. Femperature °F 78 203 30 216 235 64
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, <u>kW</u> 40.8	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions Normal Storage Off-Normal Storage Accident Normal Storage	off-Normal and Accider n [5] and the methodol nal, off-normal and acc M-H model are listed in -H Exit Air Temperature, oF 0 106 -40 117 133 0 106	it <u>Conditions</u> (ogy described ident condition Table 5-1 be Applied Exit Air	<u>Steady</u> d in [4] are ns. low. ^{°F} 78 203 30 216 235 64 187
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, kW 40.8 31.2	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions Normal Storage Off-Normal Storage Off-Normal Storage	n [5] and the methodol nal, off-normal and acc M-H model are listed ir -H Exit Air Temperature, °F 0 106 -40 117 133 0 106 -40	it <u>Conditions</u> (ogy described ident condition Table 5-1 be e Applied Exit Air	<u>Steady</u> d in [4] are ns. low. Femperature °F 78 203 30 216 235 64 187 18
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, kW 40.8 31.2	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions Normal Storage Off-Normal Storage Off-Normal Storage	$\frac{\text{off-Normal and Accider}}{n [5] and the methodolnal, off-normal and accM-H model are listed in-H Exit Air Temperature,\circ F0106-401171330106-40117132$	it <u>Conditions</u> (logy described ident condition Table 5-1 be Exit Air T	Steady d in [4] are ns. low. Femperature °F 78 203 30 216 235 64 187 18 199 217
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, kW 40.8 31.2	f HSM-H documented lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions Normal Storage Off-Normal Storage Off-Normal Storage Off-Normal Storage Off-Normal Storage	$\begin{array}{r} \begin{array}{c} \begin{array}{c} \text{Dff-Normal and Accider} \\ \hline \\ n [5] and the methodolic \\ nal, off-normal and accider \\ \hline \\ \text{M-H model are listed in and accider \\ \hline \\ \text{M-H model are listed in a structure } \\ \hline \\ \ \\ \text{M-H model are listed in a structure } \\ \hline \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$	at <u>Conditions (</u> ogy described ident condition Table 5-1 be e Applied Exit Air	Steady d in [4] are ns. low. remperature °F 78 203 30 216 235 64 187 18 199 217
5.2 <u>Boundary c</u> <u>State)</u> The thermal test o defining the bound The exit air tempe Heat Load, kW 40.8 31.2	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions Normal Storage Off-Normal Storage Off-Normal Storage Off-Normal Storage Off-Normal Storage Accident	$\begin{array}{r} \begin{array}{c} \hline \text{Dff-Normal and Accider} \\ \hline \text{n [5] and the methodol} \\ \hline \text{nal, off-normal and acc} \\ \hline \text{M-H model are listed ir} \\ \hline \text{-H Exit Air Temperature,} \\ \hline \hline \text{-H Exit Air Temperature,} \\ \hline \hline 0 \\ \hline 106 \\ \hline -40 \\ \hline 117 \\ \hline 133 \\ \hline 0 \\ \hline 106 \\ \hline -40 \\ \hline 117 \\ \hline 133 \\ \hline \end{array}$	it <u>Conditions</u> (logy described ident condition Table 5-1 be e Applied Exit Air	Steady d in [4] are ns. low. Femperature °F 78 203 30 216 235 64 187 18 199 217
5.2 <u>Boundary c</u> <u>State</u>) The thermal test o defining the bound The exit air tempe Heat Load, kW 40.8 31.2	f HSM-H documented i lary conditions for norm ratures used in the HSI Table 5-1 HSM Conditions Normal Storage Off-Normal Storage Off-Normal Storage Off-Normal Storage Off-Normal Storage	Dff-Normal and Accidern [5] and the methodolnal, off-normal and accM-H model are listed in-H Exit Air TemperatureAmbient Temperature $\circ F$ 0106-401171330106-40117133	at <u>Conditions (</u> ogy described ident condition Table 5-1 be e Applied Exit Air	Steady d in [4] are ns. low. remperature °F 78 203 30 216 235 64 187 18 199 217

	NSNUCLEAR AN AREVA COMPANY	Calcula	tion	Calculation No.: Revision No.: Page:	NUH32PTH1-042 0 16 of 45	1
		Table 5-2 HS	M-H Insola	tion		
	Component	Insolance	∋ [13], ²			
	HSM-H roof	gcal/c 800)			
	HSM-H front wall	200)			
To maxin	nize thermal gradients in	n the HSM-H cor	ncrete struc	cture, insolance is	not considered	for
the minim	num ambient temperatu	re of -40°F.				ר
			Propri	etary Informatio	on Withheld	
			in acco	ordance with 10	CFR 2.390	
5.42 - 20 () - 2						
ete	e ant fallend					
kas Eliineset Serger Vite	a ana dadaa a					
	randolalitation (1997)					
			· · · · · · · ·			
					The applied dec] Say
heat flux i	s:				The applied dec] Say
heat flux i	$a = \frac{Q}{Q}$				The applied dec] Xay
heat flux i Decay hea	s: $d = \frac{Q}{\pi D_1 L}$	$\frac{Btu}{hr \cdot in^2}$			The applied dev) Cay
heat flux i Decay hea	$\dot{q} = \frac{Q}{\pi D_t L}$	$\frac{Btu}{hr \cdot in^2}$			The applied de] Say
heat flux i Decay hea where Q = total o	is: at flux, $\dot{q} = \frac{Q}{\pi D_i L}$ decay heat load (31.2 k	$\frac{Btu}{hr \cdot in^2}$ W and 40.8 kWV			The applied dec] Say
heat flux i Decay heat Q = total o	is: Int flux, $\dot{q} = \frac{Q}{\pi D_{i}L}$ decay heat load (31.2 k DSC diameter	$\frac{Btu}{hr \cdot in^2}$ W and 40.8 kW)			The applied dec] Cay
heat flux i Decay heat Q = total o $D_i = inner$	s: at flux, $\dot{q} = \frac{Q}{\pi D_{i} L}$ decay heat load (31.2 k DSC diameter	$\frac{Btu}{hr \cdot in^2}$ W and 40.8 kW)			The applied dev] Cay

TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: NUH32PTH1-0421 Revision No.: 0 Page: 17 of 45
F ir	Proprietary Information With n accordance with 10 CFR 2	held .390
		neren en e
5.3 <u>Boundary Conditions</u>	for Accident Blocked Vent Cond	itions (Transient) the DSC shell for the blocked vent
	temperataree er tre rretti rratta	
accident case, the finite elen	nent model of the HSM-H is mod	ified to a transient model.
accident case, the finite elen	nent model of the HSM-H is mod	ified to a transient model.
accident case, the finite elen	nent model of the HSM-H is mod	ified to a transient model.
accident case, the finite elen	nent model of the HSM-H is mod	ified to a transient model.
accident case, the finite elen	nent model of the HSM-H is mod	ified to a transient model.
accident case, the finite elen	nent model of the HSM-H is mod	ified to a transient model.
accident case, the finite elen	nent model of the HSM-H is mod	ified to a transient model.
accident case, the finite element of the fi	nent model of the HSM-H is model The amount of general ulated as follows: $\frac{Q}{(4 \ D_i^2 L)}$ $\frac{Btu}{hr \cdot in^3}$	ified to a transient model.

•

A	Oalaulatian	Calculation No.:	NUH32PTH1-0421
IRANSNUCLEAR AN AREVA COMPANY	Calculation	Revision No.:	0
		Page:	21 of 45
7		Page:	21 of 45

Results 7

· · · · ·

The maximum 32PTH1-S DSC component temperatures for the normal, off-normal and accident cases are summarized in Table 7-1. The temperature plots for steady state normal, off-normal and accident storage conditions, and transient accident blocked vent condition under 31.2 kW and 40.8 kW heat loads are shown in Figure 7-1 through Figure 7-6.

Table 7-1 Maximum Component Temperatures for Normal/Off-Normal and Accident Conditions

Operating	Tamb		T _{DSC Shell}	T _{Concrete}			
conditions	۴F		°F	°F			
		40.8	kW Heat Lo	ad	PTON LASEA	125520 200	
Off-normal	-40		326	126			Series - Series
	117		469	295			
Accident	133		484	311			
	155	Y. L M. 24	484	311			
Normal	0		363	168			
	106		460	283			
		31.2	kW Heat Lo	ad			
Off-normal	-40		261	94	1		
On-normal	117		409	260			
Accident	133		424	277			
Normal	0		300	135			
	106		399	249			
		Pr	oprietarv	Inform	ation W	ithheld	
		in	accordar	ice with	10 CFI	R 2.390)

Proprietary Information Withheld in accordance with 10 CFR 2.390

The maximum component temperatures for the blocked vent accident cases without convection in HSM-H cavity are listed in Table 7-2.

e en la constant de l La constant de la cons

Table 7-2 Maximum Component Temperatures for Accident Blocked Vent Case, °F (31.2 kW / 40.8 kW)

Component		C Shell	⊤ _{c∘}	ncrete		
Time, hrs	31.2 kW	40.8 kW	31.2 kW	40.8 kW		
0	400	459	288	319		
5	470	543	316	355		
10	500	576	332	377		
15	520	599	346	395		ar.
20	535	615	358	410		
25	547	628	368	423		
28	-	635	-	431		
30	557	640	378	436		
35	567	650	387	447		
40	575	660	396	458		

A TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-0421 0 23 of 45
F in	Proprietary Information Wit accordance with 10 CFR	hheld 2.390	
	Figure 5-1 Finite Element M	oaei	

Approximation of the second sec

· . .

1. 1. 1. 1.

and the second second

RANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-0421 0 25 of 45
F	Proprietary Information W accordance with 10 CF	/ithheld R 2.390	
Figure 5	-3 Finite Element Model, Co	ncrete Structure	

n en general general en general de general de general de la seconda de la seconda de la seconda de la seconda d

and the second second

••••

K TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-042 ⁻ 0 26 of 45
Pi in	roprietary Information W accordance with 10 CFF	ithheld R 2.390	
Figure 5-4 Finite	Element Model, Heat Shiel	ds and Support Str	ucture

A TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-042 0 27 of 45
		<u></u> .	
Pro in ac	prietary Information With ccordance with 10 CFR 2	held 2.390	
Figure 5-5	Convection Boundary Condi	ition on DSC Shell	

1

.

Proprietary Information Withheld in accordance with 10 CFR 2.390 Figure 5-7 Heat Flux and Fixed Temperature Boundary Conditions for HSM-H	RANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: NUH32PTH1-042 Revision No.: 0 Page: 29 of 45
Figure 5-7 Heat Flux and Fixed Temperature Boundary Conditions for HSM-H	F in	Proprietary Information V accordance with 10 CF	Vithheld R 2.390
	Figure 5-7 Heat Flux	and Fixed Temperature Bou	undary Conditions for HSM-H

|

a da anti-arresta de la composición de

A		Calculation No.: NUH32PTH1-04
TRANSNUCLEAR AN AREVA COMPANY	Calculation	Revision No.: 0
		Page: 30 of 45
I		
Pro in a	prietary Information W	ithheld 2 2 390
		(2.000
Figure 5-8 Convec	ction Boundary Conditions	Applied on HSM-H Walls
, gui e e e conte		

na na paraga na paraga na paraga na paragana na paragana na paragana na paragana na paragana na paragana na par

	Calculation	Calculation No.:	NUH32PTH1-042
AN AREVA COMPANY		Revision No.: Page:	0 31 of 45
P	Proprietary Information V	Vithheld	
111		11 2.000	
Figure 7-1 Temperature	Plot for Normal Storage Co	nditions (0°F ambie	ent, 40.8 kW)

.

en la presentación de la contra d

RANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-0421 0 32 of 45
· .			
Pr in a	oprietary Information W accordance with 10 CFI	/ithheld R 2.390	
Figure 7-2 Temperature P	lot for Normal Storage Con	ditions (106°F amb	pient, 40.8 kW)

and a second a second of the second of th

· · · · · · · · · · · · · · · · · · ·		• •		
---------------------------------------	--	-----	--	--

the second second

•	

	•	١	• *	•

Prop in ac	orietary Informa cordance with	ation Withhe 10 CFR 2.3	eld 390	
Prop in ac	orietary Informa cordance with	ation Withhe 10 CFR 2.3	eld 390	
in de		10 01 17 2.0		

Calculation	Revision No.: Page:	NUH32PTH1-042 D 33 of 45
Proprietary Information W	/ithheld	
accordance with 10 CFF	R 2.390	
		·
	roprietary Information W accordance with 10 CF	Page: 2

TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-042 0 35 of 45
Pro in a	oprietary Information Wit accordance with 10 CFR	hheld 2.390	

a na provinsi and provinsi and the provinsi and the second second second second second second second second sec

	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-042 0 36 of 45
· F in	Proprietary Information W	/ithheld R 2.390	
		•	

.

TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-042 0 37 of 45
D	ropriotory Information M	lithhold	
in	accordance with 10 CFF	R 2.390	

and the second second

A TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.:	NUH32PTH1-042 0
		Page:	38 of 45
Pi	roprietary Information With accordance with 10 CFR	nheld 2.390	
Figure 7-8 Temperature Plot	for Blocked Vent Accident Sto	orage Conditions	(40.8 kW, 35 hi

.

a na na na natarita natarita na natarita na natarita na natarita na natarita na natarita natarita na natarita n

Proprietary Information Withheld in accordance with 10 CFR 2.390 Figure 7-9 Temperature History for Blocked Vent Accident Storage Conditions (31.2 kW)	RANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-042 0 39 of 45
Figure 7-9 Temperature History for Blocked Vent Accident Storage Conditions (31.2 kW)	F in	Proprietary Information W accordance with 10 CF	/ithheld R 2.390	
	Figure 7-9 Temperature H	History for Blocked Vent Acci	dent Storage Conc	litions (31.2 kW)

. . . .

i.

Ì

en en la envente en entre en la processa de la construcción de la construcción de la construcción de la constru

K TRANSNUCLEAR AN AREVA COMPANY	Calculation	Calculation No.: Revision No.: Page:	NUH32PTH1-0421 0 41 of 45
Appendix A – Thermal Input	for DSC Ends Structure Ar	nalysis	· · · · · · · · · · · · · · · · · · ·
	Proprietary Information V n accordance with 10 CF	Vithheld R 2.390	

en a leve series

and the second second

. :

: .

I

I.

Proprietary Information N accordance with 10 Cl	Withheld FR 2.390	
Proprietary Information accordance with 10 Cl	Withheld FR 2.390	
	· .	

TRANSNUCLEAR	Calculation	Calculation No.: NUH32P	111-0421
AN AREVA COMPANY	Carolation	Revision No.: 0	
		rage: 44 01 45	
		•	
Pi	roprietary Information Wi	thheld	
in	accordance with 10 CFF	(2.390	
L] :
Figure A- 1 DSC shell temperat conditic	ture plots for 40.8 kW, off-no	rmal -40°F and 117°F amb ctural analysis)	ient storag
		,,,,,,,,,,,,,,,	
			:

A	Calculation	Calculation No.:	NUH32PTH1-0421
TRANSNUCLEAR		Revision No.:	0
AN AREVA COMPANY		Page:	45 of 45
F	Proprietary Information Wi	thheld	
ir	accordance with 10 CFR	2.390	
Figure A- 2 DSC shell tempera	ture plots for 31.2 kW, off-non	mal -40°F and 11	7°F ambient storage
condition	ons (Input for DSC ends struct	tural analysis)	

- m -

and a second second