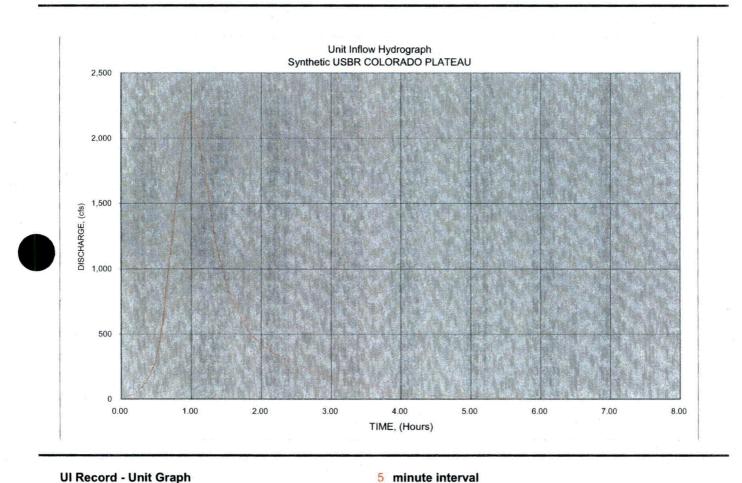
Selected Timestep =

in Analysis


UI

UI

Basin 3-PMP Proposed Conditions

Drainage /	Area =	3.47 s	sq. miles	Lg+D/2 =	1.23	Hours	
Basin S	lope =	57.1 f	t./mile	Basin Factor =	1.15		
	L =	4.73 n	ni., Length of Waterco	urse V' =	93.31	cfs/Day	
	Lca =		ni., Distance to Centro		76.1	* q, cfs	
	Kn =	0.042 -	, Ave. Weighted Mann	ing's n			
PARAMETERS:							
Calculated:	Lag Tim	ie, Lg =	1.14 Hours	Unit Duration, D =	12.46	minutes	
				Calculated Timestep =	3.68	minutes	
Data to be used	Unit Durati	on D=	10 minutes ro	ound down to nearest of 5.	10 15 30	60 120 180) or 360

5 minutes, integer value evenly divisible into 60

5	mi		60	-		
0		nu	le i	ш	Lei	va

UI	18	33	59	112	188	302	533	922	1330	1720
UI	2102	2181	2050	1833	1561	1276	1066	903	773	675
UI	588	520	464	426	392	361	334	311	288	267
UI	248	229	211	197	182	169	157	146	135	125
UI	116	108	101	93	86	80	74	68	64	59
UI	55	51	48	44	41	38	35	32	30	28
UI	26	24	22	21	19	18	17	16	15	14
UI	13	11	11	9	9	5				
UI										

18-May-06

UI UI

- UI
- UI
- UI

UI

UI

UI

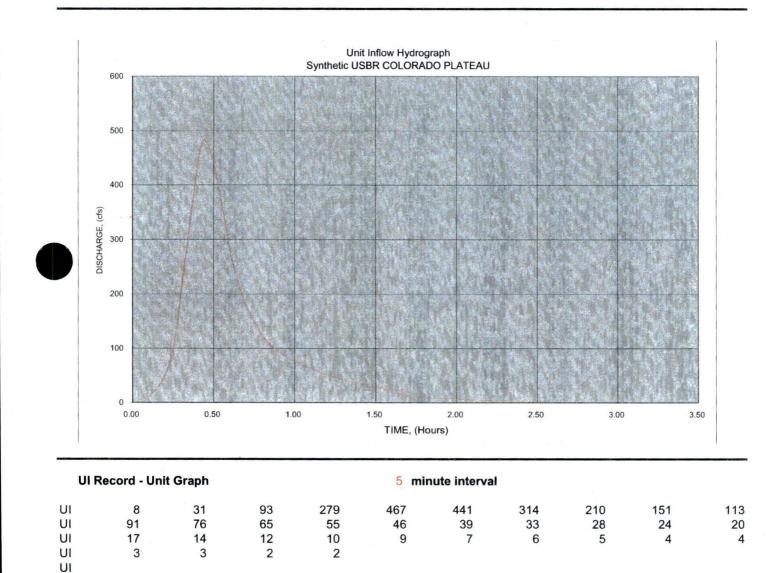
USBR calculated	unitgraph	peak =	2201
-----------------	-----------	--------	------

Interpolated F

Р	ea	ĸ	=		21	8	1
	-			-	-	-	

Time t, %				Qs	Time t, %				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.06	3.7	0.19	14	305.0	3.74	224.2	0.66	50
10.0	0.12	7.4	0.32	24	310.0	3.80	227.9	0.63	48
15.0	0.18	11.0	0.48	37	315.0	3.86	231.6	0.59	45
20.0	0.25	14.7	0.74	56	320.0	3.92	235.3	0.56	43
25.0	0.31	18.4	1.21	92	325.0	3.98	239.0	0.53	40
30.0	0.37	22.1	1.81	138	330.0	4.04	242.6	0.50	38
35.0	0.43	25.7	2.63	200	335.0	4.11	246.3	0.47	36
40.0	0.49	29.4	3.68	280	340.0	4.17	250.0	0.45	34
45.0	0.55	33.1	5.47	417	345.0	4.23 4.29	253.7	0.42	32
50.0	0.61 0.67	36.8	8.41 12.61	640	350.0	4.29	257.3	0.40	30
55.0	0.74	40.4	16.50	960	355.0	4.35 4.41	261.0	0.38	29
60.0 65.0	0.80	44.1 47.8	20.50	1,256	360.0 365.0	4.41	264.7 268.4	0.36 0.34	27 26
70.0	0.86	51.5	23.97	1,561 1,825	370.0	4.53	272.0	0.34	25
75.0	0.92	55.1	27.75	2,113	375.0	4.60	275.7	0.30	23
80.0	0.98	58.8	28.91	2,201	380.0	4.66	279.4	0.28	21
85.0	1.04	62.5	28.07	2,137	385.0	4.72	283.1	0.27	21
90.0	1.10	66.2	26.38	2,009	390.0	4.78	286.7	0.26	20
95.0	1.16	69.8	24.18	1,841	395.0	4.84	290.4	0.24	18
100.0	1.23	73.5	21.55	1,641	400.0	4.90	294.1	0.23	18
105.0	1.29	77.2	18.92	1,441	405.0	4.96	297.8	0.22	17
110.0	1.35	80.9	16.08	1,224	410.0	5.02	301.4	0.21	16
115.0	1.41	84.6	14.19	1,081	415.0	5.09	305.1	0.20	. 15
120.0	1.47	88.2	12.61	960	420.0	5.15	308.8	0.19	14
125.0	1.53	91.9	11.04	841	425.0	5.21	312.5	0.18	14
130.0	1.59	95.6	9.99	761	430.0	5.27	316.2	0.17	13
135.0	1.65	99.3	9.04	688	435.0	5.33	319.8	0.16	12
140.0	1.72 1.78	102.9	8.20	624	440.0	5.39	323.5	0.15	11
145.0	1.78	106.6	7.36	560	445.0	5.45	327.2	0.15	11
150.0	1.84	110.3	6.78	516	450.0	5.51	330.9	0.13	10
155.0	1.90	114.0	6.20	472	455.0	5.58	334.5	0.12	9 9
160.0 165.0	1.96 2.02	117.6	5.83	444	460.0	5.64	338.2	0.12	9 8
170.0	2.02	121.3 125.0	5.47 5.15	417 392	465.0 470.0	5.70 5.76	341.9 345.6	0.11	0
175.0	2.08	123.0	4.84	369	470.0	5.82	349.2		
180.0	2.14	132.3	4.57	348	480.0	5.88	352.9		
185.0	2.21 2.27	136.0	4.31	328	485.0	5.94	356.6		
190.0	2.33	139.7	4.10	312	490.0	6.00	360.3		
195.0	2.39	143.4	3.87	295	495.0	6.07	363.9		
200.0	2.45	147.0	3.68	280	500.0	6.13	367.6		
205.0	2.51	150.7	3.47	264	505.0	6.19	371.3		
210.0	2.57	154.4	3.28	250	510.0	6.25	375.0		
215.0	2.63	158.1	3.10	236	515.0	6.31	378.6		
220.0	2.70	161.8	2.93	223	520.0	6.37	382.3		
225.0	2.76	165.4	2.75	209	525.0	6.43	386.0		
230.0	2.82	169.1	2.63	200	530.0	6.49	389.7		
235.0	2.88	172.8	2.47	188	535.0	6.56	393.4		
240.0	2.94	176.5	2.33	177	540.0	6.62	397.0		
245.0	3.00	180.1	2.22	169	545.0	6.68	400.7		
250.0	3.06	183.8	2.10	160	550.0	6.74	404.4		
255.0	3.12	187.5 191.2	1.99	152	555.0	6.80	408.1		
260.0 265.0	3.19 3.25	191.2	1.88 1.78	143 136	560.0 565.0	6.86 6.92	411.7 415.4		
205.0	3.31	194.6	1.68	128	570.0	6.98	415.4		
275.0	3.37	202.2	1.59	120	575.0	7.05	419.1		
280.0	3.43	205.9	1.50	114	580.0	7.11	422.0		
285.0	3.49	209.5	1.43	109	585.0	7.17	430.1		
290.0	3.55	213.2	1.36	104	590.0	7.23	433.8		
295.0	3.61	216.9	1.28	97	595.0	7.29	437.5		
300.0	3.68	220.6	1.21	92		7.35	441.1		
	Use for model								

NOTES : Use for models including Basin 3 for the PMP Local event


Selected Timestep =

in Analysis

Basin A-10, 25, 100, 200 Proposed Conditions

	Drainage Area =	0.3456 sc	ą. miles	Lg+D/2 =	0.55	Hours	
	Basin Slope =	501 ft.	/mile	Basin Factor =	0.05		
	L =	1.55 m	i., Length of Waterco	ourse V' =	9.29	cfs/Day	
"	Lca =	0.68 m	i., Distance to Centro	pid Qs =	16.8	* q, cfs	
	Kn =	0.054 -,	Ave. Weighted Man	ning's n		and a state of a	
	PARAMETERS:						
	Calculated: Lag Ti	me, Lg =	0.51 Hours	Unit Duration, D =	5.59	minutes	
				Calculated Timestep =	1.66	minutes	
	Data to be used Unit Dura	ation, D =	5 minutes, r	ound down to nearest of 5, 1	0, 15, 30,	60, 120, 180,	or 360

5 minutes, integer value evenly divisible into 60

18-May-06

UI

UI UI

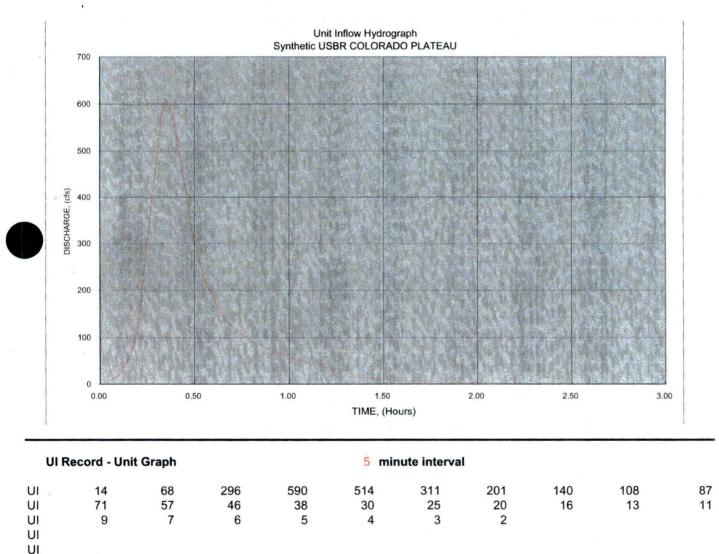
UI

UI

UI

UI UI

	USBR calcula	ated unitgra	oh peak =	485	Interpolate	ed Peak =	467		10 - 11 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 -
Time t, %			2	Qs	Time t, %				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.03	1.7	0.19	3	305.0	1.69	101.4	0.66	11
10.0 15.0	0.06	3.3 5.0	0.32 0.48	5 8	310.0 315.0	1.72 1.74	103.0 104.7	0.63 0.59	11 10
20.0	0.08	6.6	0.48	12	320.0	1.77	104.7	0.56	9
25.0	0.14	8.3	1.21	20	325.0	1.80 1.83	108.0	0.53	99888776666555544
30.0	0.17	10.0	1.81	30	330.0	1.83	109.7	0.50	8
35.0 40.0	0.19	11.6 13.3	2.63 3.68	44 62	335.0 340.0	1.86 1.88	111.3 113.0	0.47 0.45	8 8
45.0	0.22 0.25	15.0	5.47	92	345.0	1.91	114.6	0.42	7
50.0	0.28	16.6	8.41	141	350.0	1.94	116.3	0.40	7
55.0	0.30	18.3	12.61	212	355.0	1.97 1.99	118.0	0.38	6
60.0 65.0	0.33 0.36	19.9 21.6	16.50 20.50	277 344	360.0 365.0	2.02	119.6 121.3	0.36 0.34	6
70.0	0.39	23.3	23.97	402	370.0	2.05	123.0	0.33	õ
75.0	0.42	24.9	27.75	466	375.0	2.08	124.6	0.30	5
80.0 85.0	0.44 0.47	26.6 28.2	28.91 28.07	485 471	380.0 385.0	2.10 2.13	126.3 127.9	0.28 0.27	5
90.0	0.50	29.9	26.38	443	390.0	2.16	129.6	0.26	4
95.0	0.53	31.6	24.18	406	395.0	2.19 2.22	131.3	0.24	4
100.0	0.55	33.2	21.55	362	400.0	2.22	132.9	0.23	4
105.0 110.0	0.58 0.61	34.9 36.6	18.92 16.08	317 270	405.0 410.0	2.24 2.27	134.6 136.2	0.22 0.21	4
115.0	0.64	. 38.2	14.19	238	415.0	2.30	137.9	0.20	3
120.0	0.66	39.9	12.61	212	420.0	2.33	139.6	0.19	3
125.0	0.69	41.5	11.04 9.99	185 168	425.0 430.0	2.35 2.38	141.2 142.9	0.18 0.17	3
130.0 135.0	0.72 0.75	43.2 44.9	9.99	152	435.0	2.30	142.9	0.16	4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2
140.0	0.78	46.5	8.20	138	440.0	2.44	146.2	0.15	3
145.0	0.80	48.2	7.36	123	445.0	2.46	147.9	0.15	3
150.0 155.0	0.83 0.86	49.8 51.5	6.78 6.20	114 104	450.0 455.0	2.49 2.52	149.5 151.2	0.13 0.12	2
160.0	0.89	53.2	5.83	98	460.0	2.55	152.9	0.12	2
165.0	0.91	54.8	5.47	92	465.0	2.58 2.60	154.5	0.11	2
170.0 175.0	0.94 0.97	56.5 58.2	5.15 4.84	86 81	470.0 475.0	2.60 2.63	156.2 157.8		
180.0	1.00	59.8	4.64	77	475.0	2.66	159.5		
185.0	1.02	61.5	4.31	72	485.0	2.69	161.2		
190.0	1.05	63.1	4.10	69	490.0	2.71	162.8		
195.0 200.0	1.08 1.11	64.8 66.5	3.87 3.68	65 62	495.0 500.0	2.74 2.77	164.5 166.2		
205.0	1.14	68.1	3.47	58	505.0	2.80	167.8		
210.0	1.16	69.8	3.28	55	510.0	2.82	169.5		
215.0	1.19	71.4	3.10	52	515.0	2.85 2.88	171.1		
220.0 225.0	1.22 1.25	73.1 74.8	2.93 2.75	49 46	520.0 525.0	2.00	172.8 174.5		
230.0	1.27	76.4	2.63	44	530.0	2.94	176.1		
235.0	1.30	78.1	2.47	41	535.0	2.96	177.8		
240.0 245.0	1.33 1.36	79.8 81.4	2.33 2.22	39 37	540.0 545.0	2.99 3.02	179.4 181.1		
250.0	1.38	83.1	2.10	35	550.0	3.05	182.8	54 ° - 14 °	
255.0	1.41	84.7	1.99	33	555.0	3.07	184.4		
260.0	1.44	86.4	1.88	32	560.0	3.10	186.1		
265.0 270.0	1.47 1.50	88.1 89.7	1.78 1.68	30 28	565.0 570.0	3.13 3.16	187.8 189.4		*
275.0	1.52	91.4	1.59	27	575.0	3.18	191.1		
280.0	1.55	93.0	1.50	25	580.0	3.21	192.7		
285.0 290.0	1.58 1.61	94.7 96.4	1.43 1.36	24 23	585.0 590.0	3.24 3.27	194.4 196.1		
290.0	1.63	90.4 98.0	1.30	23	595.0	3.30	190.1		
300.0	1.66	99.7	1.21	20	600.0	3.32	199.4		:
NOTES .	Lice for model	e including E	Racin A for th	0 10 25	100 and 200 ve	ar avante			


295.01.6398.01.2821595.03.30300.01.6699.71.2120600.03.32NOTES :Use for models including Basin A for the 10, 25, 100 and 200 year events

Basin A-PMP Proposed Conditions

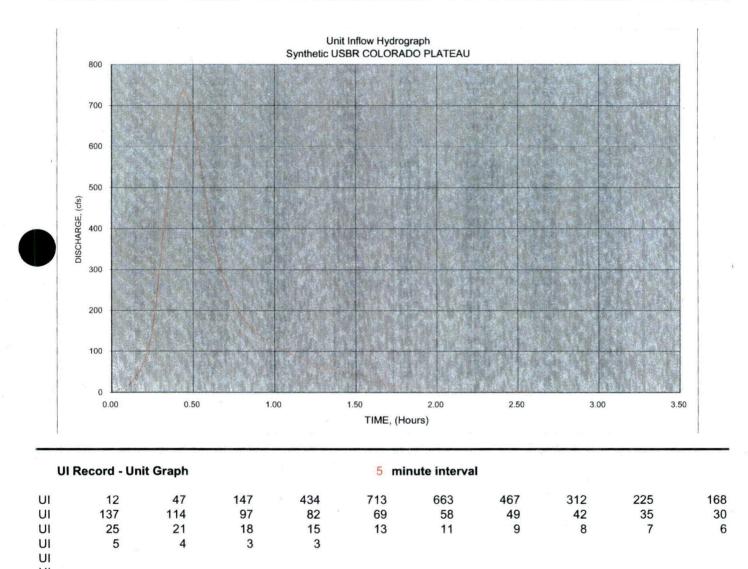
	Drainage Area =	0.3456 sq.	miles	Lg+D/2 =	0.44	Hours	
	Basin Slope =	501 ft./m	nile	Basin Factor =	0.05		
	L =	1.55 mi.,	Length of Watercou	urse V' =	9.29	cfs/Day	
,	Lca =	0.68 mi.,	Distance to Centroi	id Qs =	21.1	* q, cfs	
	Kn =	0.042 -, A	ve. Weighted Manni	ing's n			
	PARAMETERS:						
	Calculated: Lag	Time, Lg =	0.40 Hours	Unit Duration, D =	4.35	minutes	
				Calculated Timestep =	1.32	minutes	

Data to be used Unit Duration, D = **in Analysis** Selected Timestep =

5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

	USBR	calculated	unitgraph	peak =	611
--	------	------------	-----------	--------	-----

Interpolated Peal


ik =	590	

Time t, %				Qs	Time t, %				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.02	1.3	0.19	4	305.0	1.34	80.5	0.66	14
10.0	0.04	2.6	0.32	7	310.0	1.36	81.8	0.63	13
15.0	0.07	4.0	0.48	10	315.0	1.39	83.2	0.59	12
20.0	0.09	5.3	0.74	16	320.0	1.41	84.5	0.56	12
25.0	0.11	6.6	1.21	26	325.0	1.43	85.8	0.53	11
30.0	0.13	7.9	1.81	38	330.0	1.45	87.1	0.50	11
35.0	0.15	9.2	2.63	56	335.0	1.47	88.4	0.47	10
40.0	0.18	10.6	3.68	78	340.0	1.50 1.52	89.8	0.45	10
45.0	0.20	11.9	5.47	116	345.0	1.52	91.1	0.42	9 8 8 8
50.0	0.22	13.2	8.41	178	350.0	1.54	92.4	0.40	8
55.0	0.24 0.26	14.5	12.61 16.50	266	355.0	1.56 1.58	93.7 95.0	0.38 0.36	0
60.0	0.28	15.8 17.2	20.50	348 433	360.0 365.0	1.61	95.0	0.30	o 7
65.0 70.0	0.29	18.5	20.50	433 506	370.0	1.63	96.4 97.7	0.34	7
75.0	0.31	19.8	27.75	586	375.0	1.65	99.0	0.33	6
80.0	0.35	21.1	28.91	611	380.0	1.67	100.3	0.28	6
85.0	0.35	22.4	28.07	593	385.0	1.69	101.6	0.28	6
90.0	0.40	23.8	26.38	557	390.0	1.72	103.0	0.26	5
95.0	0.42	25.1	24.18	511	395.0	1 74	104.3	0.24	5
100.0	0.44	26.4	21.55	455	400.0	1.74 1.76	105.6	0.23	5
105.0	0.46	27.7	18.92	400	405.0	1.78	106.9	0.22	5
110.0	0.48	29.0	16.08	340	410.0	1.80	108.2	0.21	66655554444
115.0	0.51	30.4	14.19	300	415.0	1.83	109.6	0.20	4
120.0	0.51 0.53	31.7	12.61	266	420.0	1.85	110.9	0.19	4
125.0	0.55	33.0 34.3	11.04	233	425.0	1.87	112.2	0.18	4
130.0	0.57	34.3	9.99	211	430.0	1.89	113.5	0.17	
135.0	0.59	35.6	9.04	191	435.0	1.91	114.8	0.16	3
140.0	0.62	37.0	8.20	173	440.0	1.94	116.2	0.15	3
145.0	0.64	38.3	7.36	155	445.0	1.96	117.5	0.15	3
150.0	0.66	39.6	6.78	143	450.0	1.98	118.8	0.13	4 3 3 3 3 3 3 3 2
155.0	0.68	40.9	6.20	131	455.0	2.00	120.1	0.12	3
160.0	0.70	42.2	5.83	123	460.0	2.02	121.5	0.12	3
165.0	0.73	43.6	5.47	116	465.0	2.05	122.8	0.11	2
170.0	0.75	44.9	5.15	109	470.0	2.07	124.1		
175.0	0.77	46.2	4.84	102	475.0	2.09 2.11	125.4		
180.0	0.79	47.5	4.57	97	480.0	2.11	126.7		
185.0	0.81	48.8	4.31	91	485.0	2.13	128.1		*
190.0	0.84	50.2	4.10	87	490.0	2.16	129.4		
195.0 200.0	0.86 0.88	51.5 52.8	3.87 3.68	82 78	495.0 500.0	2.18 2.20 2.22	130.7 132.0		
200.0	0.88	54.1	3.47	73	505.0	2.20	133.3		
205.0	0.92	55.4	3.28	69	510.0	2.22	134.7		
215.0	0.95	56.8	3.10	65	515.0	2.27	136.0		
220.0	0.97	58.1	2.93	62	520.0	2.29	137.3		
225.0	0.99	59.4	2.75	58	525.0	2.31	138.6		
230.0	1.01	60.7	2.63	56	530.0	2.33	139.9		
235.0	1.03	62.0	2.47	52	535.0	2.35	141.3		
240.0	1.06	63.4	2.33	49	540.0	2.38	142.6		
245.0	1.08	64.7	2.22	47	545.0	2.40	143.9		
250.0	1.10	66.0	2.10	44	550.0	2.42	145.2		
255.0	1.12	67.3	1.99	42	555.0	2.44	146.5		
260.0	1.14	68.6	1.88	40	560.0	2.46	147.9		
265.0	1.17	70.0	1.78	38	565.0	2.49	149.2		
270.0	1.19	71.3	1.68	35	570.0	2.51	150.5		
275.0	1.21	72.6	1.59	34	575.0	2.53	151.8		
280.0	1.23	73.9	1.50	32	580.0	2.55	153.1		
285.0	1.25	75.2	1.43	30	585.0	2.57	154.5		
290.0	1.28	76.6	1.36	29	590.0	2.60	155.8		
295.0	1.30	77.9	1.28	27	595.0	2.62	157.1		
300.0	1.32	79.2	1.21	26	600.0	2.64	158.4		
	Use for models	including F		e PMP Lo	cal event				1

Basin B-10, 25, 100, 200 Proposed Conditions

Drainage	Area =	0.5218 sq.	miles	Lg+D/2 =	0.55	Hours
Basin S	Slope =	666 ft./r	nile	Basin Factor =	0.05	
	L =	1.38 mi.	Length of Water	rcourse V' =	14.03	cfs/Day
	Lca =	0.86 mi.	Distance to Cen	troid Qs =	25.5	* q, cfs
	Kn =	0.054 -, A	ve. Weighted Ma	anning's n		
PARAMETERS:						
Calculated:	Lag Tir	ne, Lg =	0.51 Hours	Unit Duration, D =	5.54	minutes
				Calculated Timestep =	1.65	minutes

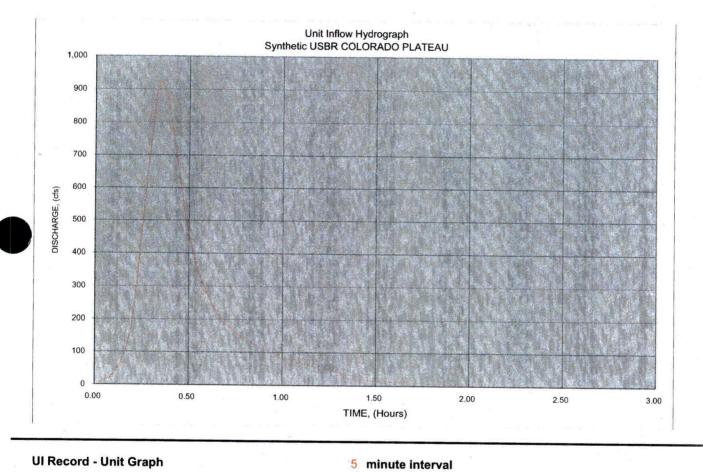
Data to be used Unit Duration, D = **in Analysis** Selected Timestep = 5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

UI UI UI

וני ו

USBR	calculated	unitgraph	peak =	738

Time t, %				Qs	Time t, %				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.03	1.6	0.19	5 8	305.0	1.68	100.6	0.66	17 16
10.0	0.05	3.3 4.9	0.32	8	310.0	1.70 1.73	102.3 103.9	0.63 0.59	16
15.0	0.08	4.9	0.48	12	315.0	1.73	103.9	0.59	15
20.0	0.11	6.6	0.74	19	320.0	1.76	105.6 107.2	0.56	14
25.0	0.14	8.2	1.21	31	325.0	1.79	107.2	0.53	14
30.0	0.16	9.9 11.5	1.81	46	330.0	1.81 1.84	108.9 110.5 112.2	0.50	13
35.0	0.19	11.5	2.63	67	335.0	1.84	110.5	0.47	12
40.0	0.22	13.2	3.68	94	340.0	1.87	112.2	0.45	11
45.0	0.25	14.8	5.47	140	345.0	1.90	113.8	0.42	11
50.0	0.27	16.5	8.41	215	350.0	1.92	115.5	0.40	10
55.0 60.0	0.30 0.33	18.1 19.8	12.61 16.50	322 421	355.0 360.0	1.95 1.98	117.1 118.8	0.38 0.36	10
65.0	0.35	21.4	20.50	523	365.0	2.01	120.4	0.34	9
70.0	0.36 0.38	23.1	23.07	612	370.0	2.01 2.03	120.4 122.1	0.33	9
75.0	0.41	24.7	23.97 27.75	708	375.0	2.06	123.7	0.30	8
80.0	0.44	26.4	28.91	738	380.0	2.09	125.4	0.28	7
85.0	0.47	28.0	28.07	716	385.0	2.12	127.0	0.27	7
90.0	0.49	29.7	26.38	673	390.0	2.12 2.14	128.7	0.26	7
95.0	0.52	31.3	24.18	617	395.0	2.17	130.3	0.24	6
100.0	0.55	33.0	21.55	550	400.0	2.20	132.0	0.23	6
105.0	0.58	34.6	18.92	483	405.0	2.23 2.25	133.6	0.22	6
110.0	0.60	36.3	16.08	410	410.0	2.25	135.3	0.21	5
115.0	0.63	37.9	14.19 12.61	362	415.0	2.28	136.9	0.20	5
120.0	0.66 0.69 0.71	39.6	12.61	322	420.0	2.31 2.34 2.36	138.6	0.19	5
125.0	0.69	41.2	11.04	282	425.0	2.34	140.2 141.9	0.18	5
130.0	0.71	42.9	9.99	255	430.0	2.36	141.9	0.17	4
135.0	0.74	44.5	9.04	231	435.0	2.39	143.5	0.16	4
140.0	0.77	46.2	8.20	209	440.0	2.42	145.2	0.15	4
145.0	0.80 0.82	47.8	7.36	188	445.0	2.45	146.8	0.15	4
150.0	0.82	49.5	6.78	173	450.0	2.47	148.5	0.13	10 9 9 8 8 7 7 7 6 6 6 5 5 5 5 4 4 4 4 3 3 3 3 3 3
155.0	0.85	51.1	6.20	158	455.0	2.50	150.1	0.12	3
160.0 165.0	0.88 0.91	52.8 54.4	5.83 5.47	149 140	460.0 465.0	2.53 2.56	151.8 153.4	0.12 0.11	3
170.0	0.93	56.1	5.15	131	470.0	2.58	155.1	0.11	3
175.0	0.96	57.7	4.84	124	475.0	2.61	156.7		
180.0	0.99	59.4	4.57	117	480.0	2.64	158.4		
185.0	0.99 1.02	61.0	4.31	110	485.0	2.67	160.0		
190.0	1.04	62.7	4.10	105	490.0	2.69	161.7		
195.0	1.07	64.3	3.87	99	495.0	2.72	163.3		
200.0	1.10	66.0	3.68	94	500.0	2.75	165.0		
205.0	1.13	67.6	3.47	89	505.0	2.78	166.6		
210.0	1.15	69.3	3.28	84	510.0	2.80	168.3		
215.0	1.15 1.18 1.21	70.9	3.10	79	515.0	2.83	169.9		
220.0	1.21	72.6	2.93	75	520.0	2.80 2.83 2.86 2.89	171.6		
225.0	1.24	74.2	2.75	70	525.0	2.89	173.2		
230.0	1.26	75.9	2.63	67	530.0	2.91	174.9		
235.0	1.29	77.5	2.47	63	535.0	2.94	176.5		
240.0	1.32	79.2	2.33	59	540.0	2.97	178.2		
245.0 250.0	1.35	80.8 82.5	2.22	57	545.0	3.00	179.8		
255.0	1.37 1.40	84.1	2.10 1.99	54 51	550.0 555.0	3.02 3.05	181.5 183.1		
260.0	1.43	85.8	1.88	48	560.0	3.05	184.8		
265.0	1.46	87.4	1.78	45	565.0	3.11	186.4		
270.0	1.48	89.1	1.68	43	570.0	3.13	188.1		
275.0	1.51	90.7	1.59	41	575.0	3.16	189.7		
280.0	1.54	92.4	1.50	38	580.0	3.19	191.4		
285.0	1.57	94.0	1.43	36	585.0	3.22	193.0		
290.0	1.59	95.7	1.36	35	590.0	3.24	194.7		
295.0	1.62	97.3	1.28	33	595.0	3.27	196.3		
300.0	1.65	99.0	1.21	31	600.0	3.30	198.0		
	Use for models								
NOTES.				5 10, 20,	100 and 200 ye				


Selected Timestep =

in Analysis

Basin B-PMP Proposed Conditions

	Drainage Area = Basin Slope =	0.5218 sq 666 ft./	mile	Lg+D/2 = Basin Factor =	0.44 0.05	Hours	
	L =	1.38 mi.	, Length of Waterco	ourse V' =	14.03	cfs/Day	
	Lca =		, Distance to Centre		32.1	* q, cfs	
	Kn =	0.042 -, A	Ave. Weighted Man	ning's n			
	PARAMETERS:						
	Calculated: Lag	Fime, Lg =	0.40 Hours	Unit Duration, D =	4.31	minutes	
÷				Calculated Timestep =	1.31	minutes	
	Data to be used Unit Dur		5 minutes, r	ound down to nearest of 5, 1	0, 15, 30,	60, 120, 180), or 360

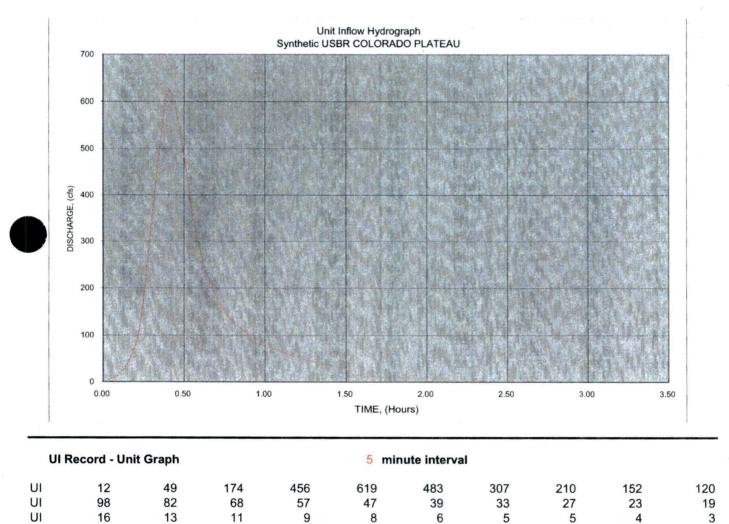
5 minutes, integer value evenly divisible into 60

UI	22	106	460	901	770	463	299	208	162 20	131
UI	106	85	69	56	45	37	30	24	20	16
UI	13	11	8	7	6	5	4	27	20	10
UI						•				

UI UI

LIODD	a a lavel a fa al	a sum tit an one on the	in a starter	000
USBR	calculated	Unitorann	peak =	928
00011	ouroundtou	annigraph	poun	020

901


Time t, %			: 	Qs	Time t, %			e naçis e norma di la controva de	Qs
of Lg+D/2	Hours	Min.	q		of Lg+D/2	Hours	Min.	q	cfs
5.0	0.02	1.3	0.19	6	305.0	1.33	80.0	0.66	21
10.0 15.0	0.04 0.07	2.6 3.9	0.32 0.48	10 15	310.0 315.0	1.35 1.38	81.3 82.6	0.63 0.59	20 19
20.0	0.07	5.2	0.48	24	315.0	1.30	83.9	0.59	19
25.0	0.11	6.6	1.21	39	325.0	1.42	85.2	0.53	17
30.0	0.13	7.9 9.2	1.81	58	330.0	1.44 1.46	86.5 87.8 89.1	0.50	16
35.0	0.15	9.2	2.63	84	335.0	1.46	87.8	0.47	15
40.0	0.17 0.20	10.5	3.68	118	340.0	1.49	89.1	0.45	14
45.0	0.20	11.8 13.1	5.47	176 270	345.0 350.0	1.51 1.53 1.55 1.57	90.4	0.42 0.40	13 13
50.0 55.0	0.22 0.24	14.4	8.41 12.61	405	355.0	1.55	91.8 93.1	0.40	12
60.0	0.26	15.7	16.50	530	360.0	1.57	94.4	0.36	12
65.0	0.28	17.0	20.50	658	365.0	1.59	95.7	0.34	11
70.0	0.31	18.4	23.97 27.75	770	370.0	1.62	97.0	0.33	11
75.0	0.33	19.7	27.75	891	375.0	1.64	98.3	0.30	10
80.0	0.35	21.0	28.91	928 901	380.0	1.66	99.6	0.28	9
85.0 90.0	0.37 0.39	22.3 23.6	28.07 26.38	901 847	385.0 390.0	1.68 1.70	100.9 102.2	0.27 0.26	9
95.0	0.42	24.9	24.18	776	395.0	1.73	103.6	0.20	8
100.0	0.44	26.2	24.18 21.55	692	400.0	1.73 1.75	104.9	0.23	Ť
105.0	0.46	27.5	18.92	608	405.0	1.77 1.79	106.2	0.22	7
110.0	0.48	28.8	16.08	516	410.0	1.79	107.5	0.21	7
115.0	0.50 0.52	30.1 31.5	14.19 12.61	456 405	415.0 420.0	1.81 1.84	108.8 110.1	0.20 0.19	6
120.0 125.0	0.52	32.8	11.04	355	420.0	1.04	111.1	0.19	6
130.0	0.55 0.57	34.1	9.99	321	430.0	1.86 1.88	111.4 112.7	0.17	5
135.0	0.59	35.4	9.04	290	435.0	1.90	114.0	0.16	5
140.0	0.61 0.63	36.7	8.20	263	440.0	1.92	115.4	0.15	5
145.0	0.63	38.0	7.36	236	445.0	1.94	116.7	0.15	10 99 88 77 77 66 66 55 55 44 44 44
150.0 155.0	0.66 0.68	39.3 40.6	6.78 6.20	218 199	450.0 455.0	1.97 1.99	118.0 119.3	0.13 0.12	4
160.0	0.00	40.0	5.83	185	460.0	2.01	120.6	0.12	4
165.0	0.72	43.3	5.47	176	465.0	2.03	121.9	0.11	4
170.0	0.74	44.6	5.15	165	470.0	2.05	123.2		
175.0	0.76	45.9	4.84	155	475.0	2.08	124.5		
180.0	0.79	47.2	4.57	147	480.0	2.10 2.12	125.8		
185.0 190.0	0.81 0.83	48.5 49.8	4.31 4.10	138 132	485.0 490.0	2.12	127.1 128.5		
195.0	0.85	51.1	3.87	124	495.0	2.16	129.8		
200.0	0.87	52.4	3.68	118	500.0	2.18	131.1		
205.0	0.87 0.90 0.92	53.7	3.47	111	505.0	2.18 2.21 2.23	132.4		
210.0	0.92	55.1	3.28	105	510.0	2.23	133.7		
215.0 220.0	0.94 0.96	56.4 57.7	3.10 2.93	100 94	515.0 520.0	2.25 2.27	135.0 136.3		
225.0	0.98	59.0	2.75	88	525.0	2.29	137.6		
230.0	1.00	60.3	2.63	84	530.0	2.32	138.9		
235.0	1.03	61.6	2.47	79	535.0	2.34	140.3		
240.0	1.05	62.9	2.33	75	540.0	2.36	141.6		
245.0	1.07	64.2	2.22	71	545.0	2.38	142.9		
250.0 255.0	1.09 1.11	65.5 66.9	2.10 1.99	67 64	550.0 555.0	2.40 2.42	144.2 145.5		
260.0	1.14	68.2	1.88	60	560.0	2.45	146.8		
265.0	1.16	69.5	1.78	57	565.0	2.47	148.1		
270.0	1.18	70.8	1.68	54	570.0	2.49	149.4		
275.0	1.20	72.1	1.59	51	575.0	2.51	150.7		
280.0	1.22 1.25	73.4	1.50	48	580.0 585.0	2.53	152.1		
285.0 290.0	1.25	74.7 76.0	1.43 1.36	46 44	590.0	2.56 2.58	153.4 154.7		
295.0	1.29	77.3	1.28	41	595.0	2.60	156.0		
300.0	1.31	78.6	1.21	39		2.62	157.3		
	Use for models						4		

Basin for Culvert C7-10, 25, 100, 200 Proposed Conditions

	Drainage /	Area =	0.4087 s	q. miles		Lg+D/2 =	0.51	Hours	
	Basin S	lope =	501 ft	./mile		Basin Factor =	0.04		
		L =	1.27 m	ni., Length of Waterco	ourse	V' =	10.99	cfs/Day	
		Lca =	0.62 m	ni., Distance to Centr	oid	Qs =	21.7	* q, cfs	
		Kn =	0.054 -,	Ave. Weighted Man	ning's n				
5 K.	PARAMETERS:								
	Calculated:	Lag Ti	me, Lg =	0.47 Hours	Ui	nit Duration, D =	5.07	minutes	
					Calcula	ated Timestep =	1.52	minutes	
	Data to be used		tion D -	5 minutos	round down	to nearest of 5.1	0 15 20	60 120 190	or 260

5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

3

UI

UI UI

ų

UI UI

UI

UI

UI UI

UI

UI

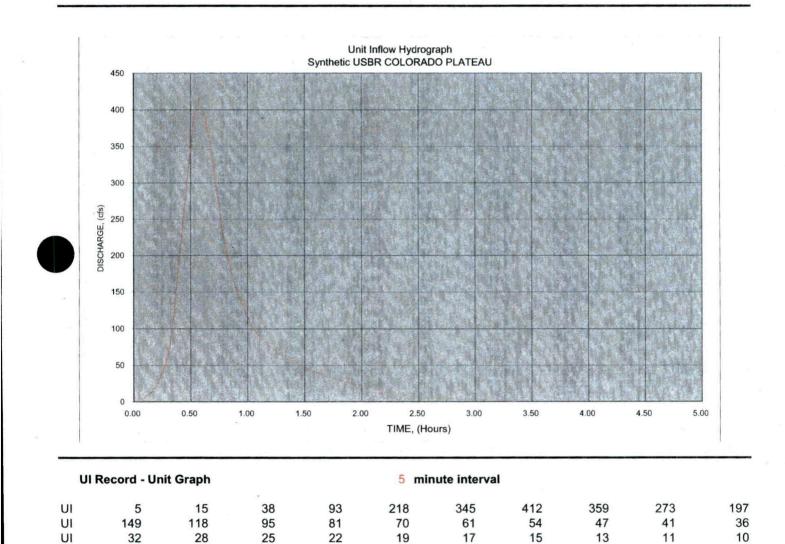
USBR	calculated	unitoraph	peak =	62
		0 1		

	USBR calcula	ated unitgrap	oh peak =	627	Interpolat	ted Peak =	619		
Time t, %				Qs	Time t, % -				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.03	1.5	0.19	4	305.0	1.55	92.8	0.66	14
10.0 15.0	0.05 0.08	3.0 4.6	0.32 0.48	7 10	310.0 315.0	1.57 1.60	94.3 95.8	0.63 0.59	14 13
20.0	0.08	6.1	0.48	16	320.0	1.62	97.3	0.56	12
25.0	0.13	7.6	1.21	26	325.0	1.65	98.8	0.53	11
30.0	0.15	9.1	1.81	39	330.0	1.67	100.4	0.50	11
35.0	0.18	10.6	2.63	57	335.0	1.70 1.72	101.9	0.47	10
40.0	0.20	12.2	3.68	80	340.0	1.72	103.4	0.45	10
45.0 50.0	0.23 0.25	13.7 15.2	5.47 8.41	119 182	345.0 350.0	1.75 1.77	104.9 106.4	0.42 0.40	9
55.0	0.28	16.7	12.61	273	355.0	1.80	108.0	0.38	99887776666555544
60.0	0.30	18.2	16.50	358	360.0	1.80 1.82	109.5	0.36	8
65.0	0.33	19.8	20.50	444	365.0	1.85 1.88 1.90 1.93 1.95 1.98	111.0	0.34	7
70.0	0.35	21.3	23.97	520	370.0	1.88	112.5	0.33	7
75.0	0.38 0.41	22.8 24.3	27.75	602 627	375.0 380.0	1.90	114.0 115.6	0.30 0.28	6
80.0 85.0	0.43	24.5	28.91 28.07	609	385.0	1.95	117.1	0.20	6
90.0	0.46	27.4	26.38	572	390.0	1.98	118.6	0.26	6
95.0	0.48	28.9	24.18 21.55	524	395.0	2.00	120.1	0.24	5
100.0	0.51	30.4	21.55	467	400.0	2.03	121.6	0.23	5
105.0	0.53 0.56	31.9 33.5	18.92 16.08	410 349	405.0 410.0	2.05 2.08	123.2 124.7	0.22 0.21	5
110.0 115.0	0.58	. 35.0	14.19	308	415.0	2.00	126.2	0.20	4
120.0	0.61	36.5	12.61	273	420.0	2.13	127.7	0.19	
125.0	0.63	38.0	11.04	239	425.0	2.15	129.3	0.18	4
130.0	0.66	39.5	9.99	217	430.0	2.18 2.20	130.8	0.17	4
135.0	0.68 0.71	41.1 42.6	9.04 8.20	196 178	435.0 440.0	2.20	132.3 133.8	0.16 0.15	3
140.0 145.0	0.73	42.0	7.36	160	445.0	2.26	135.3	0.15	4 3 3 3 3 3 3 2
150.0	0.76	45.6	6.78	147	450.0	2 28	136.9	0.13	3
155.0	0.79	47.1	6.20	134	455.0	2.31 2.33 2.36 2.38	138.4	0.12	3
160.0	0.81	48.7	5.83	126	460.0	2.33	139.9	0.12	3
165.0 170.0	0.84 0.86	50.2 51.7	5.47 5.15	119 112	465.0 470.0	2.30	141.4 142.9	0.11	2
175.0	0.89	53.2	4.84	105	475.0	2.41	144.5		
180.0	0.91	54.7	4.57	99	480.0	2.43	146.0		
185.0	0.94	56.3	4.31	93	485.0	2.46	147.5		
190.0	0.96 0.99	57.8 59.3	4.10	89	490.0 495.0	2.48 2.51	149.0 150.5		
195.0 200.0	1.01	59.3 60.8	3.87 3.68	84 80	500.0	2.53	150.5		
205.0	1.04	62.3	3.47	75	505.0	2.56	153.6		
210.0	1.06	63.9	3.28	71	` 510.0	2.59	155.1		
215.0	1.09	65.4	3.10	67	515.0	2.61	156.6		
220.0 225.0	1.12 1.14	66.9 68.4	2.93 2.75	64 60	520.0 525.0	2.64 2.66	158.1 159.7		
225.0	1.14	69.9	2.63	57	530.0	2.69	161.2		
235.0	1.19	71.5	2.47	54	535.0	2.71	162.7		
240.0	1.22	73.0	2.33	51	540.0	2.74	164.2		
245.0	1.24	74.5	2.22	48	545.0	2.76	165.7		
250.0	1.27	76.0	2.10	46	550.0 555.0	2.79 2.81	167.3 168.8		
255.0 260.0	1.29 1.32	77.6 79.1	1.99 1.88	43 41	560.0	2.84	170.3		
265.0	1.34	80.6	1.78	39	565.0	2.86	171.8		
270.0	1.37	82.1	1.68	36	570.0	2.89	173.3		
275.0	1.39	83.6	1.59	34	575.0	2.91	174.9		
280.0 285.0	1.42	85.2	1.50	33 31	580.0 585.0	2.94 2.97	176.4 177.9		
285.0	1.44 1.47	86.7 88.2	1.43 1.36	29	590.0	2.97	179.4		
295.0	1.50	89.7	1.28	28	595.0	3.02	181.0		
300.0	1.52	91.2	1.21	26	600.0	3.04	182.5		
NOTES :	Use for models	s including t	ne Culvert C	7 Basin fo	r the 10, 25, 1	00 and 200 y	ear events		

Basin D-10, 25, 100, 200 Proposed Conditions

	Drainage Area	a = 0.3827 sq.	miles	Lg+D/2 =	0.71	Hours	
	Basin Slope	e = 62.23 ft./r	nile	Basin Factor =	0.11		
		_ = 1.25 mi.	, Length of Waterco	ourse V' =	10.29	cfs/Day	
	Lca		Distance to Centro		14.4	* q, cfs	
	Kr	n = 0.054 -, A	ve. Weighted Mann	ning's n			
	PARAMETERS:						
	Calculated:	Lag Time, Lg =	0.67 Hours	Unit Duration, D =	7.34	minutes	
			¥.	Calculated Timestep =	2.14	minutes	
1.0000			in a state of the	n a <u>n an an</u>	ndia andre adda		
	Data to be used Uni	it Duration. D =	5 minutes, r	ound down to nearest of 5,	10, 15, 30,	60, 120, 180, c	or 360

Data to be used Unit Duration, D = in Analysis Selected Timestep =


UI

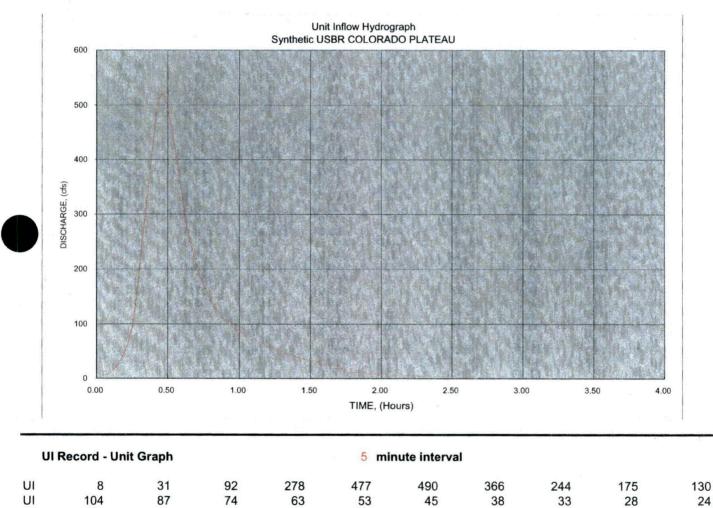
UI

U

5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

18-May-06

USBR c	alculated	unitgraph	peak =	416


Time t, %				Qs	Time t, %				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.04	2.1	0.19	3	305.0	2.18	130.8	0.66	10
10.0 15.0	0.07 0.11	4.3 6.4	0.32 0.48	3 5 7	310.0 315.0	2.22 2.25	132.9 135.1	0.63 0.59	10 9 8 8 8 7 7 6 6 6 5 5 5 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2
20.0	0.14	8.6	0.74	11	320.0	2.29	137.2	0.56	8
25.0 30.0	0.18	10.7 12.9	1.21	17 26	325.0 330.0	2.32	139.4 141.5	0.53 0.50	8
35.0	0.21 0.25	15.0	1.81 2.63	38	335.0	2.39	143.7	0.47	7
40.0	0.29 0.32	17.2	3.68	53	340.0	2.43	145.8	0.45	6
45.0 50.0	0.36	19.3 21.4	5.47 8.41	79 121	345.0 350.0	2.29 2.29 2.32 2.36 2.39 2.43 2.43 2.47 2.50	148.0 150.1	0.42 0.40	6
55.0	0.39	23.6	12.61	182	355.0	2.54	152.2	0.38	5
60.0 65.0	0.43 0.46	25.7 27.9	16.50 20.50	238 295	360.0 365.0	2.57 2.61	154.4 156.5	0.36 0.34	5
70.0	0.50	30.0	23.97	345	370.0	2.64	158.7	0.33	5
75.0	0.54	32.2	27.75	400	375.0	2.68	160.8	0.30	4
80.0 85.0	0.57 0.61	34.3 36.5	28.91 28.07	416 404	380.0 385.0	2.72 2.75	163.0 165.1	0.28 0.27	4
90.0	0.64	38.6	26.38	380	390.0	2.79	167.3 169.4	0.26	4
95.0 100.0	0.68 0.71	40.7 42.9	24.18 21.55	348 310	395.0 400.0	2.75 2.79 2.82 2.86	169.4 171.5	0.24 0.23	3
105.0	0.75	45.0	18.92	272	405.0	2.89 2.93	173.7	0.22	3
110.0 115.0	0 79	47.2 49.3	16.08 14.19	232 204	410.0 415.0	2.93	175.8 178.0	0.21 0.20	3
120.0	0.82 0.86 0.89	51.5	12.61	182	420.0	2.97 3.00 3.04 3.07	180.1	0.19	3
120.0 125.0	0.89	53.6	11.04	159	425.0	3.04	182.3	0.18	3
130.0 135.0	0.93 0.96	55.8 57.9	9.99 9.04	144 130	430.0 435.0	3 1 1	184.4 186.5	0.17 0.16	2
140.0	1.00	60.0	8.20	118	440.0	3.14	188.7	0.15	2
145.0 150.0	1.04 1.07	62.2 64.3	7.36 6.78	106 98	445.0 450.0	3.18	190.8 193.0	0.15 0.13	2
155.0	1.11	66.5	6.20	89	455.0	3.14 3.18 3.22 3.25	195.1	0.13	2
160.0	1.14	68.6	5.83	84	460.0	3.29 3.32 3.36 3.40 3.43 3.47	197.3	0.12	2
165.0 170.0	1.18 1.22 1.25	70.8 72.9	5.47 5.15	79 74	465.0 470.0	3.32	199.4 201.6	0.11	2
175.0	1.25	75.0	4.84	70	475.0	3.40	203.7		
180.0 185.0	1.29 1.32	77.2 79.3	4.57 4.31	66 62	480.0 485.0	3.43	205.8 208.0		
190.0	1.36	81.5	4.10	59	490.0	3.50	210.1		
195.0 200.0	1.36 1.39 1.43 1.47	83.6 85.8	3.87 3.68	56 53	495.0	3.54	212.3 214.4		
205.0	1.43	87.9	3.47	50	500.0 505.0	3.57 3.61	216.6		
210.0	1.50	90.1	3.28	47	510.0	3.65	218.7		
215.0 220.0	1.54 1.57	92.2 94.3	3.10 2.93	45 42	515.0 520.0	3.68 3.72	220.9 223.0		
225.0	1.61	96.5	2.75	40	525.0	3.75	225.1		
230.0 235.0	1.64 1.68	98.6 100.8	2.63 2.47	38 36	530.0 535.0	3.79 3.82	227.3 229.4		
240.0	1.72	102.9	2.33	34	540.0	3.86	231.6		
245.0	1.75 1.79	105.1	2.22	32	545.0	3.90	233.7		
250.0 255.0	1.82	107.2 109.4	2.10 1.99	30 29	550.0 555.0	3.93 3.97	235.9 238.0		
260.0	1.86	111.5	1.88	27	560.0	4.00	240.2		
265.0 270.0	1.89 1.93	113.6 115.8	1.78 1.68	26 24	565.0 570.0	4.04 4.07	242.3 244.4		
275.0	1.97	117.9	1.59	23	575.0	4.11	246.6		
280.0	2.00	120.1	1.50	22	580.0	4.15	248.7		
285.0 290.0	2.04 2.07	122.2 124.4	1.43 1.36	- 21 20	585.0 590.0	4.18 4.22	250.9 253.0		
295.0	2.11	126.5	1.28	18	595.0	4.25	255.2		
300.0	2.14 Use for model	128.7 s including F	1.21 Basin D for the	17 10 25	600.0 100 and 200	4.29 vear events	257.3		
NOTES .				5 10, 20,	100 anu 200	year evenis			×*

Basin D-PMP Proposed Conditions

Drainage A	Area =	0.3827	sq. miles	Lg+D/2 =	0.57	Hours	
Basin SI	ope =	62.37	ft./mile	Basin Factor =	0.11		
	L =	1.28	mi., Length of Waterco	ourse V' =	10.29	cfs/Day	
	Lca =	0.68	mi., Distance to Centr	oid Qs =	18.1	* q, cfs	
	Kn =	0.042	-, Ave. Weighted Man	ning's n			
PARAMETERS:							
Calculated:	Lag Tir	ne, Lg =	0.53 Hours	Unit Duration, D =	5.75	minutes	
				Calculated Timestep =	1.71	minutes	
					·		

Data to be used Unit Duration, D = Selected Timestep = in Analysis

5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

11

2

9

. 8

7

5

UI

UI

UI UI UI UI UI · 11 20

4

17

3

15

3

12

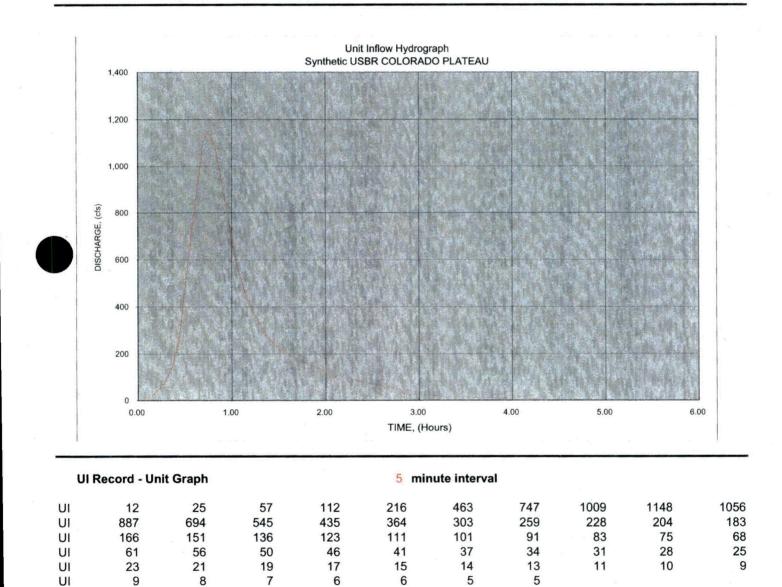
3

18-May-06

USBR	calculated	unitgraph	peak =	523
		annig. apri	Peen	

eak =	490

	Time t, %				Qs	Time t, % -				Qs
	of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
	5.0	0.03	1.7	0.19	3	305.0	1.74	104.1	0.66	12
	10.0	0.06	3.4	0.32	6	310.0	1.76	105.9	0.63	11
	15.0	0.09	5.1	0.48	9	315.0	1.76 1.79 1.82	107.6	0.59	11
	20.0	0.11	6.8	0.74	13	320.0	1.82	109.3	0.56	10
	25.0	0.14	8.5 10.2	1.21	22	325.0	1.85 1.88	111.0	0.53	10
	30.0	0.17	10.2	1.81	33	330.0	1.88	112.7	0.50	9 8 8 8 7
	35.0	0.20	12.0	2.63	48	335.0	1.91	114.4	0.47	8
	40.0	0.23	13.7	3.68	67	. 340.0	1.93	116.1	0.45	8
	45.0	0.26	15.4	5.47	99	345.0	1.96	117.8	0.42	8
	50.0	0.28	17.1	8.41	152	350.0	1.99	119.5	0.40	
	55.0	0.31	18.8	12.61	228	355.0	2.02	121.2	0.38	7
	60.0	0.34	20.5	16.50	298	360.0	2.05	122.9	0.36	7
	65.0	0.37	22.2	20.50	371	365.0	2.08	124.6	0.34	6
	70.0 75.0	0.40 0.43	23.9 25.6	23.97 27.75	433 502	370.0 375.0	2.11	126.3 128.0	0.33 0.30	0
	80.0	0.43	25.0	28.91	523	375.0	2.13	129.8	0.30	5
	85.0	0.48	29.0	28.07	508	385.0	2.10	131.5	0.28	5
	90.0	0.51	30.7	26.38	477	390.0	2.16 2.19 2.22 2.25	133.2	0.26	5
	95.0	0.54	32.4	24.18	437	395.0	2.22	134.9	0.24	4
	100.0	0.57	34.1	21.55	390	400.0	2.20	136.6	0.23	6 5 5 5 5 4 4
	105.0	0.60	35.9	18.92	342	405.0	2.30	138.3	0.22	4
	110.0	0.63	37.6	16.08	291	410.0	2.28 2.30 2.33	140.0	0.21	4 4
. 10	115.0	0.65	39.3	14.19	257	415.0	2.36	141.7	0.20	4
1	120.0	0.68	41.0	12.61	228	420.0	2.36 2.39 2.42	143.4	0.19	4 3 3 3 3 3 3 3 2 2 2 2 2 2
	125.0	0.71	42.7	11.04	200	425.0	2.42	145.1	0.18	3.
	130.0	0.74	44.4	9.99	181	430.0	2.45	146.8	0.17	3
	135.0	0.77	46.1	9.04	163	435.0	2.48 2.50	148.5	0.16	3
	140.0	0.80	47.8	8.20	148	440.0	2.50	150.2	0.15	3
	145.0	0.83	49.5	7.36	133	445.0	2.53	151.9	0.15	3
	150.0	0.85	51.2	6.78	123	450.0	2.56	153.7	0.13	2
	155.0	0.88	52.9	6.20	112	455.0	2.59	155.4	0.12	2
	160.0	0.91	54.6	5.83	105	460.0	2.62	157.1	0.12	2
	165.0	0.94	56.3	5.47	99	465.0	2.65	158.8	0.11	2
	170.0	0.97	58.0	5.15	93	470.0	2.67 2.70	160.5		
	175.0	1.00 1.02	59.8	4.84	88	475.0	2.70	162.2		
	180.0	1.02	61.5	4.57	83	480.0	2.73	163.9		
	185.0	1.05 1.08	63.2	4.31	78	485.0	2.76	165.6		
	190.0	1.08	64.9	4.10	74	490.0	2.79	167.3		
	195.0	1.11	66.6	3.87	70	495.0	2.82	169.0 170.7		
	200.0	1.14 1.17	68.3	3.68	67	500.0	2.85 2.87			
	205.0 210.0	1.20	70.0 71.7	3.47 3.28	63 59	505.0 510.0	2.07	172.4 174.1		
	215.0	1.22	73.4	3.10	56	515.0	2.90 2.93	175.8		
	220.0	1.25	75.1	2.93	53	520.0	2.96	177.6		
	225.0	1.28	76.8	2.75	50	525.0	2.99	179.3		
	230.0	1.31	78.5	2.63	48	530.0	3.02	181.0		
	235.0	1.34	80.2	2.47	45	535.0	3.04	182.7		
	240.0	1.37	81.9	2.33	42	540.0	3.07	184.4		
	245.0	1.39	83.7	2.22	40	545.0	3.10	186.1		
	250.0	1.42	85.4	2.10	38	550.0	3.13	187.8		
	255.0	1.45	87.1	1.99	36	555.0	3.16	189.5		
	260.0	1.48	88.8	1.88	34	560.0	3.19	191.2		
	265.0	1.51	90.5	1.78	32	565.0	3.22	192.9		
	270.0	1.54	92.2	1.68	30	570.0	3.24	194.6		
	275.0	1.56	93.9	1.59	29	575.0	3.27	196.3		
	280.0	1.59	95.6	1.50	27	580.0	3.30	198.0		
	285.0	1.62	97.3	1.43	26	585.0	3.33	199.8		
	290.0	1.65	99.0	1.36	25	590.0	3.36	201.5		
	295.0	1.68	100.7	1.28	23	595.0	3.39	203.2		
	300.0	1.71	102.4	1.21	22		3.41	204.9		
	NOTES :	Use for model	s including E	Basin D for th	e PMP Lo	cal event				



Basin G-10, 25, 100, 200 Proposed Conditions

Drainage Area =	1.3775 sq.	. miles	Lg+D/2 =	0.93	Hours	
Basin Slope =	353 ft./	mile	Basin Factor =	0.25		
L =	2.96 mi	, Length of Watercou	urse V' =	37.04	cfs/Day	
Lca =		, Distance to Centroi		39.9	* q, cfs	
Kn =	0.054 -, /	Ave. Weighted Manni	ng's n			
PARAMETERS:						
Calculated: La	g Time, Lg =	0.89 Hours	Unit Duration, D =	9.68	minutes	
			Calculated Timestep =	2.79	minutes	

Data to be used Unit Duration, D = in Analysis Selected Timestep =

ט טו טו וני 5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

UI UI

- UI
- UI UI

UI

UI

UI

Time t, % of Lg+D/2

	USBR calculate	l unitgraph peak	= 1153
--	----------------	------------------	--------

Min.

q

Hours

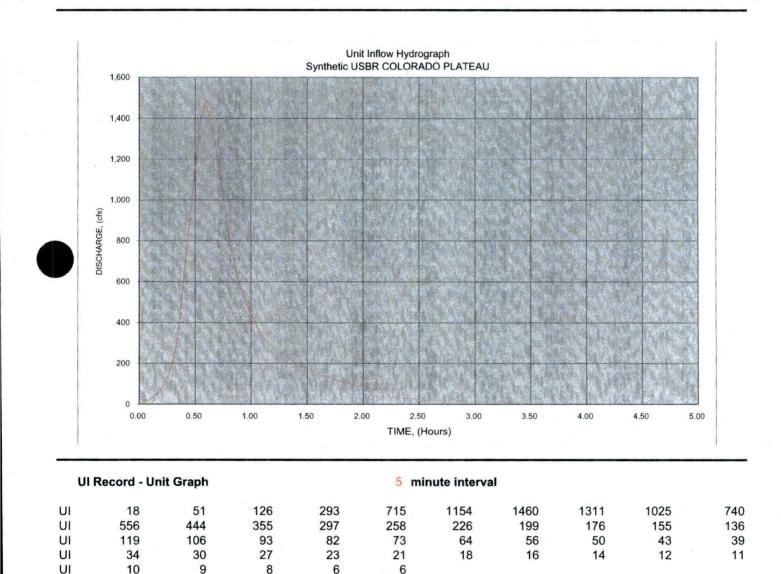
____

Qs Time t, % cfs of Lg+D/2

Carling and the second second second			
Hours	Min.	q	Qs cfs
2.83 2.83 2.93 2.97 3.02 3.07 3.11 3.16 3.20 3.25 3.30 3.34 3.39 3.44 3.39 3.44 3.58 3.62 3.67 3.72 3.76 3.72 3.76 3.86 3.90 3.95 3.99 4.04 4.09 4.13 4.23 4.27 4.32 4.37 4.46 4.51	170.0 172.8 175.6 178.4 181.1 183.9 186.7 189.5 192.3 195.1 197.9 200.7 203.4 206.2 209.0 211.8 214.6 217.4 220.2 225.7 228.5 231.3 234.1 236.9 239.7 242.5 245.24	$\begin{array}{c} 0.66\\ 0.63\\ 0.59\\ 0.56\\ 0.53\\ 0.50\\ 0.47\\ 0.45\\ 0.42\\ 0.40\\ 0.38\\ 0.36\\ 0.34\\ 0.33\\ 0.30\\ 0.28\\ 0.27\\ 0.26\\ 0.24\\ 0.23\\ 0.22\\ 0.21\\ 0.20\\ 0.19\\ 0.18\\ 0.17\\ 0.16\\ 0.15\\ 0.15\\ 0.15\\ 0.13\\ 0.12\\ 0.12\\ 0.11\\ \end{array}$	26 25 24 22 21 20 19 18 17 16 15 14 14 13 12 11 10 10 9 9 8 8 8 8 7 7 6 6 6 5 5 5 4

5.0	$\begin{array}{c} 0.05\\ 0.09\\ 0.14\\ 0.19\\ 0.23\\ 0.28\\ 0.33\\ 0.37\\ 0.42\\ 0.46\\ 0.51\\ 0.56\\ 0.60\\ 0.65\\ 0.70\\ 0.74\\ 0.79\\ 0.84\\ 0.88\\ 0.93\\ 0.98\\ 1.02\\ 1.07\\ 1.11\\ 1.16\\ 1.21\\ 1.25\\ 1.30\\ 1.35\\ 1.39\\ 1.44\\ 1.49\\ 1.53\\ 1.58\\ 1.63\\ 1.58\\ 1.63\\ 1.58\\ 1.63\\ 1.58\\ 1.63\\ 1.58\\ 1.63\\ 1.90\\ 1.95\\ 2.00\\ 2.04\\ 2.09\\ 2.14\\ 2.18\\ 2.23\\ 2.28\\ 2.37\\ 2.42\\ \end{array}$	2.8	0.19	8	305.0	$\begin{array}{c} 2.83\\ 2.88\\ 2.93\\ 2.97\\ 3.02\\ 3.07\\ 3.11\\ 3.16\\ 3.20\\ 3.25\\ 3.30\\ 3.34\\ 3.39\\ 3.44\\ 3.48\\ 3.53\\ 3.58\\ 3.62\\ 3.67\\ 3.72\\ 3.76\\ 3.81\\ 3.86\\ 3.90\\ 4.04\\ 4.09\\ 4.13\\ 4.18\\ 4.23\\ 4.27\\ 4.32\\ 4.37\\ 4.41\\ 4.51\\ 4.55\\ 4.60\\ 4.64\\ 4.69\\ 4.74\\ 4.78\\ 4.88\\ 4.88\\ 4.92\\ 4.97\\ 5.02\\ 5.06\\ 5.11\\ \end{array}$	170.0 172.8 175.6 178.4 181.1 183.9	0.66	
10.0	0.09	5.6	0.32	13	310.0	2.88	172.8	0.63	
15.0	0.14	8.4	0.48	19	315.0	2.93	175.6	0.59	
20.0	0.19	11.1	0.74	30	320.0	2.97	178.4	0.56	
25.0	0.23	13.9	1.21	48	325.0	3.02	181.1	0.53	
30.0	0.28	16.7	1.81	72	330.0	3.07	183.9	0.50	
35.0	0.33	19.5	2.63	105	335.0	. 3.11	186.7	0.47	
40.0	0.37	22.3	3.68	147	340.0	3.16	189.5	0.45	
45.0	0.42	25.1	5.47	218	345.0	3.20	192.3	0.42	
50.0	0.46	27.9	8.41	335	350.0	3.25	195.1	0.40	
55.0	0.51	30.7	12.61	503	355.0	3.30	197.9	0.38	
60.0	0.56	33.4	16.50	658	360.0	3.34	200.7		
65.0	0.60	36.2	20.50	817	365.0	3.39	203.4	0.34	
70.0	0.65	39.0	23.97	956	370.0	3.44	206.2	0.33	
75.0	0.70	41.8	27.75	1,106	375.0	3.48	209.0	0.30	
80.0	0.74	44.6	28.91	1,153	380.0	3.53	211.8	0.30 0.28	
85.0	0.79	47.4	28.07	1,119	385.0	3.58	214.6 217.4	0.27	
90.0	0.84	50.2	26.38	1,052	390.0	3.62	217.4	0.26	
95.0	0.88	53.0	24.18	964	395.0	3.67	220.2	0.24	
100.0	0.93	55.7	21.55	859	400.0	3.72	223.0	0.23	
105.0	0.98	58.5	18.92	754	405.0	3.76	225.7	0.22	
110.0	1.02	61.3	16.08	641	410.0	3.81	228.5	0.26 0.24 0.23 0.22 0.21 0.20 0.19	
115.0	1.07	64.1	14.19	566	415.0	3.86	231.3	0.20	
120.0	1.11	66.9	12.61	503	420.0	3.90	234.1	0.19	
125.0	1.16	69.7	11.04	440	425.0	3.95	236.9	0.18	
130.0	1.21	72.5	9.99 9.04 8.20 7.36 6.78 6.20 5.83 5.47 5.15 4.84 4.57 4.31 4.10 3.87 3.68 3.47 3.28 3.10 2.93 2.75 2.63 2.47 2.33 2.22 2.10 1.99	398	430.0	3.99	239.7	0.17	
135.0	1.25	75.2	9.04	360	435.0	4.04	242.5		ar é
140.0	1.30	78.0	8.20	327	440.0	4.09	245.2	0.15	
145.0	1.35	80.8	7.36	293	445.0	4.13	248.0	0.15	
150.0	1.39	03.0	0.78	2/0	450.0	4.18	250.8	0.13	
155.0	1.44	00.4	0.20	247	455.0	4.23	253.6	0.12	
160.0	1.49	09.2	5.63	232	460.0	4.27	256.4 259.2	0.12 0.11	
170.0	1.55	92.0	5.47	210	405.0	4.52	262.0	0.11	
175.0	1.50	97.5	4 84	103	475.0	4.57	264.8		
180.0	1.03	100.3	4 57	182	480.0	4.41	267.5		
185.0	1.07	103.1	4.31	172	485.0	4 51	270.3		
190.0	1.77	105.9	4 10	163	490.0	4.55	273.1		
195.0	1.81	108.7	3.87	154	495.0	4 60	275.9		
200.0	1.86	111.5	3.68	147	500.0	4.64	278.7		
205.0	1.90	114.3	3.47	138	505.0	4.69	281.5		
210.0	1.95	117.0	3.28	131	510.0	4.74	284.3		
215.0	2.00	119.8	3.10	124	515.0	4.78	287.0		
220.0	2.04	122.6	2.93	117	520.0	4.83	289.8		
225.0	2.09	125.4	2.75	110	525.0	4.88	292.6		
230.0	2.14	128.2	2.63	105	530.0	4.92	295.4		
235.0	2.18	131.0	2.47	98	535.0	4.97	298.2		. je
240.0	2.23	133.8	2.33	93	540.0	5.02	301.0		
245.0	2.28	136.6	2.22	89	545.0	5.06	303.8		
250.0	2.32	139.3	2.10	84	550.0	5.11	306.6		
255.0	2.37	142.1	1.99	79	555.0	5.16	309.3		
260.0	2.42	144.9	1.88	75	560.0	5.20	312.1		
265.0	2.46	147.7	1.78	71	565.0	5.25	314.9		
270.0	2.51	150.5	1.68	67	570.0	5.30	317.7		
275.0	2.55	153.3	1.59	63	575.0	5.34	320.5		
280.0	2.60	156.1	1.50	60	580.0	5.39	323.3		
285.0	2.65	158.9	1.43	57	585.0	5.43	326.1		
290.0	2.69	161.6	1.36	54	590.0	5.48	328.9		
295.0	2.74	164.4	1.28	51	595.0	5.53	331.6		
300.0	2.79	167.2	1.21	48	600.0	5.57	334.4		
NOTES :	Use for mod	lels including	g Basin G for	the 10, 25,	100 and 200	year events			
			s			-			

Selected Timestep =


in Analysis

UI

Basin G-PMP Proposed Conditions

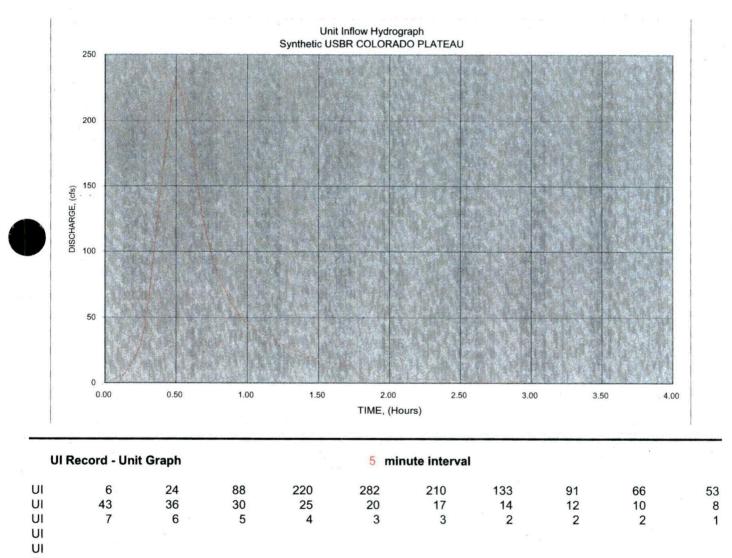
	Drainage Area =	1.3775 sq.	miles	Lg+D/2 =	0.73	Hours	
	Basin Slope =	353 ft./i	mile	Basin Factor =	0.25		
	L =	2.96 mi.	, Length of Waterco	ourse V' =	37.04	cfs/Day	
,	Lca =	1.58 mi.	, Distance to Centre	oid Qs =	50.6	* q, cfs	
	Kn =	0.042 -, A	ve. Weighted Man	ning's n			
	PARAMETERS:						
		g Time, Lg =	0.69 Hours	Unit Duration, D =	7.53	minutes	
		An		Calculated Timestep =	2.20	minutes	
	Data to be used Unit D	uration D =	5 minutes r	round down to nearest of 5	10 15 30	60 120 180	or 360

5 minutes, integer value evenly divisible into 60

USBR calculated unitgraph peak = 1463	USBR	calculated	unitgraph	peak =	1463
---------------------------------------	------	------------	-----------	--------	------

Time t, %				Qs	Time t, % -				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.04	2.2	0.19	10	305.0	2.23	133.9	0.66	33
10.0	0.07	4.4	0.32	16	310.0	2.27	136.1	0.63	32
15.0	0.11	6.6	0.48	24	315.0	2.31	138.3	0.59	30
20.0	0.15	8.8	0.74	37	320.0	2.34 2.38	140.5	0.56	28
25.0 30.0	0.18 0.22	11.0 13.2	1.21 1.81	61 92	325.0 330.0	2.30	142.7 144.9	0.53 0.50	27 25
35.0	0.22	15.2	2.63	133	335.0	2.41 2.45	144.9	0.30	23
40.0	0.20	17.6	3.68	186	340.0	2.45	149.3	0.47	23
45.0	0.33	19.8	5.47	277	345.0	2.49 2.52	151.5	0.42	21
50.0	0.37	22.0	8.41	426	350.0	2.56	153.7	0.40	20
55.0	0.40	24.1	12.61	638	355.0	2.60	155.9	0.38	19
60.0	0.44	26.3	16.50	835	360.0	2.63	158.1	0.36	18
65.0	0.48	28.5	20.50	1,038	365.0	2.67	160.3	0.34	17
70.0	0.51	30.7	23.97	1,213	370.0	2.71 2.74	162.5	0.33	17
75.0	0.55	32.9	27.75	1,405	375.0	2.74	164.7	0.30	15
80.0	0.59 0.62	35.1	28.91	1,463	380.0	2.78 2.82	166.8	0.28	14
85.0	0.62	37.3	28.91 28.07 26.38	1,421	385.0	2.82	169.0	0.27	14
90.0	0.66	39.5	26.38	1,335	390.0	2.85	171.2	0.26	13
95.0	0.70	41.7	24.18 21.55	1,224	395.0 400.0	2.89 2.93	173.4	0.24	12 12
100.0 105.0	0.73 0.77	43.9 46.1	18.92	1,091 958	400.0	2.93	175.6 177.8	0.23 0.22	12
110.0	0.80	48.3	16.08	814	410.0	3.00	180.0	0.22	11
115.0	0.84	50.5	14.19	718	415.0	3.04	182.2	0.20	10
120.0	0.88	52.7	12.61	638	420.0	3.04 3.07	184.4	0.19	10
125.0	0.91	54.9	11.04	559	425.0	3.11	186.6	0.18	9
130.0	0.95	57.1	9.99	506	430.0	3.15	188.8	0.17	9
135.0	0.99	59.3	9.04	458	435.0	3.18	191.0	0.16	8
140.0	1.02	61.5	8.20	415	440.0	3.22	193.2	0.15	8
145.0	1.06	63.7	7.36	373	445.0	3.26	195.4	0.15	8 7
150.0	1.10	65.9	6.78	343	450.0	3.29	197.6	0.13	7
155.0	1.13	68.1	6.20	314	455.0	3.33 3.37	199.8	0.12	6 6
160.0	1.17	70.3	5.83	295	460.0 465.0	3.37 3.40	202.0 204.2	0.12	6
165.0	1.21 1.24	72.4 74.6	5.47 5.15	277 261	405.0	3.40	204.2	0.11	0
170.0 175.0	1.24	76.8	4.84	245	470.0	3.44	208.6		
180.0	1.32	79.0	4.57	231	480.0	3.51	210.8		
185.0	1.35	81.2	4.31	218	485.0	3.51 3.55 3.59	212.9	a:	
190.0	1.39	83.4	4.10	208	490.0	3.59	215.1	٠	
195.0	1.43	85.6	3.87	196	495.0	3.62	217.3		
200.0	1.46	87.8	3.68	186	500.0	3.66	219.5		
205.0	1.50	90.0	3.47	176	505.0	3.70	221.7		
210.0	1.54	92.2	3.28	166	510.0	3.73 3.77	223.9		
215.0	1.57	94.4	3.10	157	515.0	3.77	226.1		*
220.0	1.61 1.65	96.6	2.93 2.75	148 139	520.0 525.0	3.81 3.84	228.3 230.5		
225.0 230.0	1.68	98.8 101.0	2.63	139	530.0	3.88	230.5		
235.0	1.72	103.2	2.47	125	535.0	3.92	234.9		
240.0	1.76	105.4	2.33	118	540.0	3.95	237.1		
245.0	1.79	107.6	2.22	112	545.0	3.99	239.3		
250.0	1.83	109.8	2.10	106	550.0	4.02	241.5		
255.0	1.87	112.0	1.99	101	555.0	4.06	243.7		
260.0	1.90	114.2	1.88	95	560.0	4.10	245.9		
265.0	1.94	116.4	1.78	90	565.0	4.13	248.1		
270.0	1.98	118.5	1.68	85	570.0	4.17	250.3		
275.0	2.01	120.7	1.59	80	575.0	4.21	252.5		
280.0	2.05	122.9	1.50	76	580.0	4.24	254.7		
285.0 290.0	2.09 2.12	125.1 127.3	1.43 1.36	72 69	585.0 590.0	4.28 4.32	256.9 259.1		
290.0	2.12	127.5	1.30	69 65	595.0	4.32	261.2		
300.0	2.10	129.5	1.20	61	600.0	4.39	263.4		
	Use for models					1.00	200.4		1
NOTES .	Use for models				our event				

Design Point 1-10, 25, 100, 200 Proposed Conditions

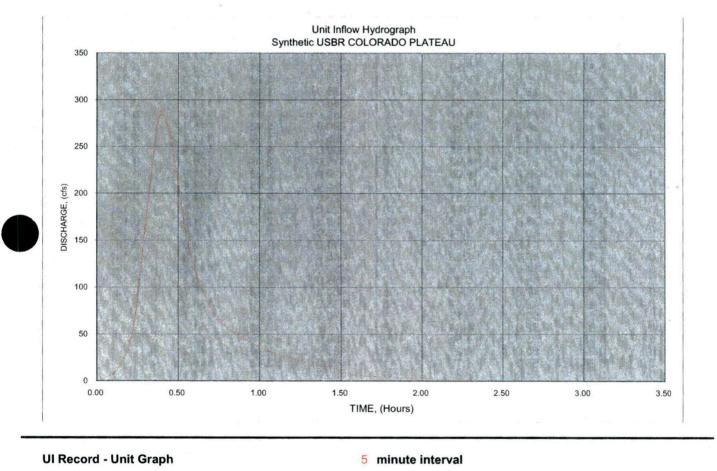

	Drainage Area =	0.1839 sq	. miles	Lg+D/2 =	0.63	Hours
	Basin Slope =	70.74 ft./	mile	Basin Factor =	0.07	
	L=	1.13 mi	., Length of Watercourse	• V' =	4.95	cfs/Day
2	Lca =	0.52 mi	., Distance to Centroid	Qs =	7.9	* q, cfs
	Kn =	0.054 -, /	Ave. Weighted Manning's	s n		
	PARAMETERS:					
	Calculated: Lag	Time, Lg =	0.58 Hours	Unit Duration, D =	6.36	minutes

Data to be use	be	Unit Duration, D =
in Analysis	Se	elected Timestep =

5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

1.88 minutes

Calculated Timestep =


- UI UI UI
- UI

LICDD	a a lavilata al	· · · · · · · · · · · · · · · · · · ·	manle m	220
USBR	calculated	Uniforann	peak =	229
0001	ouroundtou	annighaph	poun	

Lg+D/2 5.0 10.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0	Hours 0.03 0.06 0.09 0.13 0.16 0.19 0.22 0.25 0.28	Min. 1.9 3.8 5.6 7.5 9.4 11.3 13.1	q 0.19 0.32 0.48 0.74 1.21 1.81	cfs 2 3 4 6	of Lg+D/2 	Hours 	Min. 114.4 116.3	q 	
$\begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 25.0 \\ 30.0 \\ 35.0 \\ 40.0 \\ 45.0 \\ 50.0 \\ 55.0 \\ 60.0 \\ 65.0 \\ 70.0 \end{array}$	0.06 0.09 0.13 0.16 0.19 0.22 0.25	3.8 5.6 7.5 9.4 11.3	0.32 0.48 0.74 1.21	4 6	310.0 315.0	1.94	116.3		
$\begin{array}{c} 15.0\\ 20.0\\ 25.0\\ 30.0\\ 35.0\\ 40.0\\ 45.0\\ 50.0\\ 55.0\\ 60.0\\ 65.0\\ 70.0\\ \end{array}$	0.09 0.13 0.16 0.19 0.22 0.25	5.6 7.5 9.4 11.3	0.48 0.74 1.21	4 6	315.0	1.94	116.3	0.63	
20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0	0.13 0.16 0.19 0.22 0.25	7.5 9.4 11.3	0.74 1.21	6					
$\begin{array}{c} 25.0\\ 30.0\\ 35.0\\ 40.0\\ 45.0\\ 50.0\\ 55.0\\ 60.0\\ 65.0\\ 70.0\\ \end{array}$	0.16 0.19 0.22 0.25	9.4 11.3	1.21			1.97	118.1	0.59	
30.0 35.0 40.0 55.0 55.0 60.0 65.0 70.0	0.19 0.22 0.25	11.3	1.21		320.0	2.00	120.0	0.56	
35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0	0.25			10	325.0	2.03	121.9	0.53	
40.0 45.0 50.0 55.0 60.0 65.0 70.0	0.25	13.1	1.01	14	330.0	2.06	123.8	0.50	
45.0 50.0 55.0 60.0 65.0 70.0	0.25 0.28		2.63	21	335.0	2.09	125.6	0.47	
50.0 55.0 60.0 65.0 70.0	0.28	15.0	3.68	29	340.0	2.13 2.16 2.19	127.5	0.45	
55.0 60.0 65.0 70.0		16.9	5.47	43	345.0	2.16	129.4	0.42	
60.0 65.0 70.0	0.31	18.8	8.41	67	350.0	2.19	131.3	0.40	
65.0 70.0	0.34	20.6	12.61	100	355.0	2.22	133.1	0.38	
70.0	0.38	22.5	16.50	131	360.0	2.25	135.0	0.36	
70.0	0.41	24.4	20.50	162	365.0	2.28	136.9	0.34	
	0.44	26.3	23.97	190	370.0	2.31	138.8	0.33	
75.0	0.47	28.1	27.75	220	375.0	2.34	140.6	0.30	
80.0	0.50	30.0	28.91	229	380.0	2.38	142.5	0.28	
85.0	0.53	31.9	28.07	222	385.0	2.41	144.4	0.27	
90.0	0.56	33.8	28.07 26.38	209	390.0	2.44	146.3	0.26	
95.0	0.59	35.6	24.18	191	395.0	2.47	148.1	0.24	
100.0	0.63	37.5	21.55 18.92	170	400.0	2.50	150.0	0.23	
105.0	0.66	39.4	18.92	150	405.0	2.53	151.9	0.22	
110.0	0.69	41.3	16.08	127	410.0	2.56	153.8	0.21	
115.0	0.72	43.1	14.19	112	415.0	2.59	155.6	0.20	
120.0	0.75	45.0	12.61	100	420.0	2.59 2.63 2.66	157.5	0.19	
125.0	0.78	46.9	11.04	87	425.0	2.66	159.4	0.18	
130.0	0.81	48.8	9.99	79	430.0	2.69	161.3	0.17	
135.0	0.84	50.6	9.04	72	435.0	2.72	163.1	0.16	
140.0	0.88	52.5	8.20	65	440.0	2.75	165.0	0.15	
145.0	0.91	54.4	7.36	58	445.0	2.78	166.9	0.15	
150.0	0.94	56.3	6.78	54	450.0	2.81	168.8	0.13	
155.0	0.97	58.1	6.20	49	455.0	2.84	170.6	0.12	
160.0	1.00	60.0	5.83	46	460.0	2.88	172.5	0.12	
165.0	1.03	61.9	5.47	43	465.0	2.91	174.4	0.11	
170.0	1.06	63.8	5.15	41	470.0	2.94 2.97	176.3		
175.0	1.09 1.13	65.6	4.84	38	475.0	2.97	178.1		
180.0	1.13	67.5	4.57	36	480.0	3.00 3.03	180.0		
185.0	1.16	69.4	4.31	34	485.0	3.03	181.9		
190.0	1.19	71.3	4.10	32	490.0	3.06	183.8		9 2
195.0	1.22	73.1	3.87	31	495.0	3.09	185.6		
200.0	1.19 1.22 1.25	75.0	3.68	29	500.0	3.13	187.5		
205.0	1.28	76.9	3.47	27	505.0	3 16	189.4		
210.0	1.31	78.8	3.28	26	510.0	3.19	191.3		
215.0	1.34	80.6	3.10	25	515.0	3.19 3.22	193.1		
220.0	1.38	82.5	2.93	23	520.0	3.25	195.0		يقي ا
225.0	1.41	84.4	2.75	22	525.0	3.28	196.9		
230.0	1.44	86.3	2.63	21	530.0	3.31	198.8		
235.0	1.47	88.1	2.47	20	535.0	3.34	200.6		
240.0	1.50	90.0	2.33	18	540.0	3.38	202.5		
245.0	1.53	91.9	2.22	18	545.0	3.41	204.4		
250.0	1.56	93.8	2.10	17	550.0	3.44	206.3		
255.0	1.59	95.6	1.99	16	555.0	3.47	208.1		
260.0	1.63	97.5	1.88	15	560.0	3.50	210.0		
265.0	1.66	99.4	1.78	14	565.0	3.53	211.9		
270.0	1.69	101.3	1.68	13	570.0	3.56	213.8		
275.0	1.72	103.1	1.59	13	575.0	3.59	215.6		
280.0	1.75	105.0	1.50	12	580.0	3.63	217.5		
285.0	1.78	106.9	1.43	11	585.0	3.66	219.4		
290.0	1.81	108.8	1.36	11	590.0	3.69	221.3		
295.0	1.84	110.6	1.28	10	595.0	3.72	223.2		
300.0	1.88	112.5	1.20	10		3.75	225.0		

Design Point 1-PMP Proposed Conditions

Drainage Area =	0.1839 sq.	miles	Lg+D/2 =	0.50 Hours	
Basin Slope =	70.74 ft./r	nile	Basin Factor =	0.07	
L =	1.13 mi.	, Length of Waterco	ourse V' =	4.95 cfs/Day	
Lca =	0.52 mi.	Distance to Centro	oid Qs =	10.0 * q, cfs	
Kn =	0.042 -, A	ve. Weighted Manr	ning's n	na na se ville se	
PARAMETERS:					
Calculated: Lag T	ime, Lg =	0.45 Hours	Unit Duration, D =	4.95 minutes	
			Calculated Timestep =	1.49 minutes	
Data to be used Unit Dur in Analysis Selected T			ound down to nearest of 5, 10 nteger value evenly divisible ir		, or 360

6	24	88	220	282	210	133	91	66	53
43	36	30	25	20	17	14	12	10	8
7	6	5	4	3	3	2	2	2	1

UI UI UI

UI

UI

UI

UI

- UI UI
- UI
- U

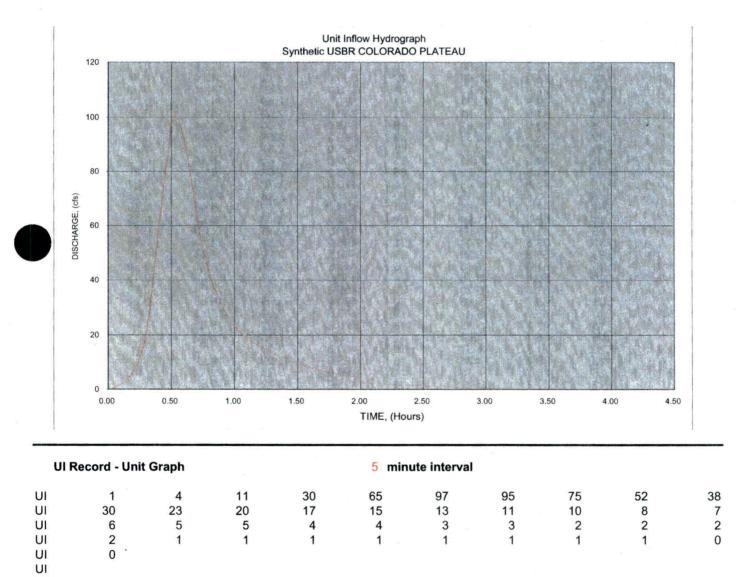
UI UI

- UI UI
- UI

UI

	USBR calcula	ated unitgra	ph peak =	289	Interpolate	ed Peak =	282	nana (ili ili ili ili ili ili ili ili ili il
Time t, % of Lg+D/2	Hours	Min.	q	Qs cfs	Time t, % of Lg+D/2	Hours	Min.	q
5.0	0.02	1.5	0.19	2 3	305.0	1.51	90.7	0.66
10.0 15.0	0.05 0.07	3.0 4.5	0.32 0.48	3 5	310.0 315.0	1.54 1.56	92.1 93.6	0.63 0.59
20.0	0.10	5.9	0.40	7	320.0	1.59	95.1	0.56
25.0	0.12	7.4	1.21	12	325.0	1.61	96.6	0.53
30.0	0.15	8.9	1.81	18	330.0	1.63	98.1	0.50
35.0	0.17	10.4	2.63	26	335.0	1.66	99.6	0.47
40.0	0.20	11.9 13.4	3.68	37	340.0	1.68	101.1	0.45
45.0 50.0	0.22 0.25	14.9	5.47 8.41	55 84	345.0 350.0	1.71 1.73	102.6 104.0	0.42 0.40
55.0	0.27	16.3	12.61	126	355.0	1.76	105.5	0.38
60.0	0.30	17.8	16.50	165	360.0	1.78	107.0	0.36
65.0	0.32	19.3	20.50	205	365.0	1.81 1.83	108.5	0.34
70.0	0.35	20.8	23.97	239	370.0	1.83	110.0	0.33
75.0	0.37 0.40	22.3	27.75	277	375.0	1.86 1.88	111.5	0.30
80.0 85.0	0.40	23.8 25.3	28.91 28.07	289 280	380.0 385.0	1.88	113.0 114.4	0.28 0.27
90.0	0.42	26.8	26.38	263	390.0	1.93	115.9	0.26
95.0	0.47	28.2	24.18	241	395.0	1.96	117.4	0.24
100.0	0.50	29.7	21.55	215	400.0	1.98	118.9	0.23
105.0	0.52	31.2	18.92	189	405.0	2.01	120.4	0.22
110.0	0.54	32.7	16.08	161	410.0	2.03	121.9	0.21
. 115.0	0.57 0.59	34.2 35.7	14.19	142	415.0	2.06	123.4 124.8	0.20
120.0 125.0	0.62	37.2	12.61 11.04	126 110	420.0 425.0	2.08 2.11	124.0	0.19 0.18
130.0	0.64	38.6	9.99	100	430.0	2.13	127.8	0.17
135.0	0.67	40.1	9.04	90	435.0	2.16	129.3	0.16
140.0	0.69	41.6	8.20	82	440.0	2.18	130.8	0.15
145.0	0.72	43.1	7.36	73	445.0	2.20	132.3	0.15
150.0	0.74	44.6	6.78	68	450.0	2.23 2.25	133.8	0.13
155.0 160.0	0.77 0.79	46.1 47.6	6.20 5.83	62 58	455.0 460.0	2.25	135.3 136.7	0.12 0.12
165.0	0.82	49.0	5.47	55	465.0	2.30	138.2	0.12
170.0	0.84	50.5	5.15	51	470.0	2.33	139.7	0.11
175.0	0.87	52.0	4.84	48	475.0	2.35	141.2	
180.0	0.89	53.5	4.57	46	480.0	2.38	142.7	
185.0	0.92	55.0	4.31	43	485.0	2.40	144.2	
190.0 195.0	0.94 0.97	56.5 58.0	4.10 3.87	41 39	490.0 495.0	2.43 2.45	145.7 147.1	
200.0	0.99	59.5	3.68	37	500.0	2.43	148.6	
205.0	1.02	60.9	3.47	35	505.0	2.50	150.1	
210.0	1.04	62.4	3.28	33	510.0	2.53	151.6	
215.0	1.07	63.9	3.10	31	515.0	2.55	153.1	
220.0	1.09	65.4	2.93	29	520.0	2.58	154.6	
225.0 230.0	1.11 1.14	66.9 68.4	2.75 2.63	27 26	525.0 530.0	2.60 2.63	156.1 157.5	
230.0	1.14	69.9	2.03	20	535.0	2.65	157.5	
240.0	1.19	71.3	2.33	23	540.0	2.68	160.5	
245.0	1.21	72.8	2.22	22	545.0	2.70	162.0	
250.0	1.24	74.3	2.10	21	550.0	2.72	163.5	
255.0	1.26	75.8	1.99	20	555.0	2.75	165.0	
260.0 265.0	1.29 1.31	77.3 78.8	1.88 1.78	19 18	560.0 565.0	2.77 2.80	166.5 167.9	
270.0	1.31	80.3	1.78	10	570.0	2.80	169.4	
275.0	1.36	81.7	1.59	16	575.0	2.85	170.9	
280.0	1.39	83.2	1.50	15	580.0	2.87	172.4	
285.0	1.41	84.7	1.43	14	585.0	2.90	173.9	
290.0	1.44	86.2	1.36	14	590.0	2.92	175.4	
295.0	1.46	87.7	1.28	13	595.0	2.95	176.9	
300.0 NOTES :	1.49	89.2	1.21	12	600.0	2.97	178.4	

600.0 NOTES : Use for models including Design Point 1 (Basin E) for the PMP Local event


Qs cfs

Design Point 2-10, 25, 100, 200 Proposed Conditions

Drainage Basin S	Area = Slope =	0.0863 sq. 52.14 ft./r		Lg+D/2 Basin Factor		Hours
	L =	1.04 mi.	, Length of Waterco	ourse V'	= 2.32	cfs/Day
	Lca =	0.59 mi.	, Distance to Centre	oid Qs	= 3.5	* q, cfs
	Kn =	0.054 -, A	ve. Weighted Man	ning's n		
PARAMETERS:						
Calculated:	Lag T	ime, Lg =	0.62 Hours	Unit Duration, D	= 6.79	minutes
				Calculated Timestep	= 1.99	minutes

Data to be used Unit Duration, D = **in Analysis** Selected Timestep =

5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

UI

UI UI

UI

UI UI UI

UI

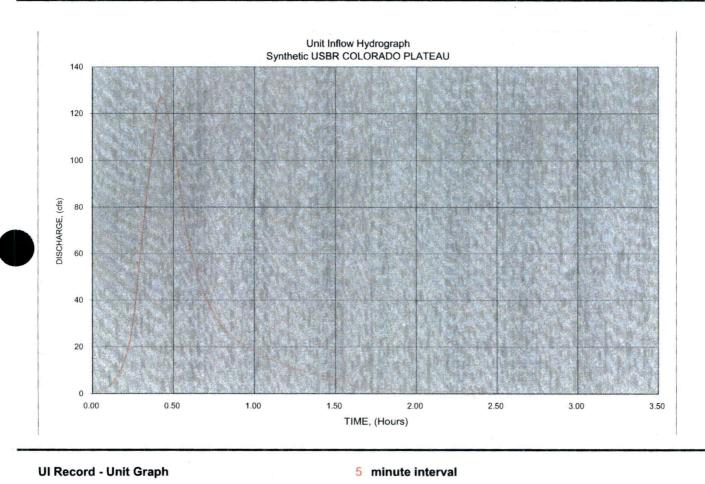
UI UI

UI

UI

USBR	calculated	unitgraph	peak =	101
------	------------	-----------	--------	-----

Time t, %					Time t, % -				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.03	2.0	0.19	1	305.0	2.03	121.5	0.66	2 2 2 2 2 2 2 2 2 2 2 2 2 2
10.0	0.07	4.0	0.32	1	310.0	2.06	123.5	0.63	2
15.0	0.10	6.0	0.48	23	315.0	2.09	125.5	0.59	2
20.0 25.0	0.13 0.17	8.0 10.0	0.74 1.21	3	320.0 325.0	2.12 2.16	127.5 129.5	0.56 0.53	2
30.0	0.20	12.0	1.81	4	330.0	2.10	131.5	0.50	2
35.0	0.23	13.9	2.63	9	335.0	2.22	133.5	0.47	2
40.0	0.27	15.9	3.68	13	340.0	2.26	135.5	0.45	2
45.0	0.30	17.9	5.47	19	345.0	2.26 2.29	137.5	0.42	1
50.0	0.33	19.9	8.41	29	350.0	2.32	139.4	0.40	1
55.0	0.37	21.9	12.61	44	355.0	2.36	141.4	0.38	1
60.0	0.40	23.9	16.50	58	360.0	2.39 2.42	143.4	0.36	1
65.0	0.43	25.9	20.50	72	365.0	2.42	145.4	0.34	1
70.0	0.46	27.9	23.97	84	370.0	2.46	147.4	0.33	1
75.0	0.50	29.9	27.75	97	375.0	2.49 2.52	149.4	0.30	1
80.0	0.53 0.56	31.9 33.9	28.91 28.07	101	380.0 385.0	2.52	151.4 153.4	0.28 0.27	1 1
85.0 90.0	0.60	35.9	26.38	98 92	390.0	2.50	155.4	0.26	1
95.0	0.63	37.8	24.18	85	395.0	2.62	157.4	0.20	1
100.0	0.66	39.8	21.55	75	400.0	2.66	159.4	0.23	i
105.0	0.70	41.8	18.92	66	405.0	2.69	161.4	0.22	1
110.0	0.73	43.8	16.08	56	410.0	2.69 2.72	163.3	0.21	1
115.0	0.76	45.8	14.19	50	415.0	2.76 2.79	165.3	0.20	. 1
120.0	0.80	47.8	12.61	44	420.0	2.79	167.3	0.19	1
125.0	0.83	49.8	11.04	39	425.0	2.82	169.3	0.18	1
130.0	0.86	51.8	9.99	35	430.0	2.86	171.3	0.17	1
135.0	0.90	53.8	9.04	32	435.0	2.89 2.92	173.3	0.16	1
140.0 145.0	0.93 0.96	55.8	8.20 7.36	29 26	440.0 445.0	2.92	175.3 177.3	0.15 0.15	1 1
150.0	1.00	57.8 59.8	6.78	20	4450.0	2.95 2.99	179.3	0.13	ó
155.0	1.03	61.8	6.20	22	455.0	3.02	181.3	0.12	0 0
160.0	1.06	63.7	5.83	20	460.0	3.05	183.3	0.12	õ
165.0	1.10	65.7	5.47	19	465.0	3.09	185.3	0.11	Ō
170.0	1.13	67.7	5.15	18	470.0	3.09 3.12	187.3		
175.0	1.16 1.20	69.7 71.7	4.84	17	475.0	3.15 3.19 3.22	189.2		
180.0	1.20	71.7	4.57	16	480.0	3.19	191.2		
185.0	1.23	73.7	4.31	15	485.0	3.22	193.2		
190.0 195.0	1.26	75.7 77.7	4.10 3.87	14 14	490.0 495.0	3.25 3.29	195.2 197.2		
200.0	1.33	79.7	3.68	13	500.0	3.32	199.2		
205.0	1.36	81.7	3.47	12	505.0	3.35	201.2		
210.0	1.39	83.7	3.28	11	510.0	3.39	203.2		
215.0	1.43	85.7	3.10	11	515.0	3.42	205.2		
220.0	1.46	87.7	2.93	10	520.0	3.45	207.2		
225.0	1.49	89.6	2.75	10	525.0	3.49	209.2		
230.0	1.53	91.6	2.63	9	530.0	3.52	211.2		
235.0	1.56	93.6	2.47	9	535.0	3.55	213.1		
240.0	1.59	95.6	2.33	8	540.0	3.59	215.1		
245.0 250.0	1.63 1.66	97.6 99.6	2.22 2.10	8 7	545.0 550.0	3.62 3.65	217.1 219.1		
255.0	1.69	101.6	1.99	7	555.0	3.69	2213.1		
260.0	1.73	103.6	1.88	7	560.0	3.72	223.1		
265.0	1.76	105.6	1.78	6	565.0	3.75	225.1		
270.0	1.79	107.6	1.68	õ	570.0	3.78	227.1		
275.0	1.83	109.6	1.59	6	575.0	3.82	229.1		
280.0	1.86	111.6	1.50	5	580.0	3.85	231.1		
- 285.0	1.89	113.5	1.43	5	585.0	3.88	233.1		
290.0	1.93	115.5	1.36	5	590.0	3.92	235.1		
295.0	1.96	117.5	1.28	4	595.0	3.95	237.1		
300.0	1.99	119.5	1.21	4	600.0	3.98	239.0		4
NOTES :	Use for model	s including [Design Point	2 (Basin F) for the 10, 2	5, 100 and 20	00 year event	S	


Selected Timestep =

in Analysis

Design Point 2-PMP Proposed Conditions

Drainage Area =	0.0863 sq		Lg+D/2 =		Hours	
Basin Slope =	52.14 ft./	mile	Basin Factor =	0.08		
L =	1.04 mi	, Length of Waterco	ourse V' =	2.32	cfs/Day	
Lca =	0.59 mi	, Distance to Centro	oid Qs =	4.4	* q, cfs	
Kn =	0.042 -, /	Ave. Weighted Manr	ning's n			
PARAMETERS:						
Calculated: Lag	Time, Lg =	0.48 Hours	Unit Duration, D =	5.28	minutes	
			Calculated Timestep =	1.58	minutes	
					14	
Data to be used Unit Du	ration, D =	5 minutes, r	ound down to nearest of 5, 1	10, 15, 30,	60, 120, 1	80, or 360

5 minutes, integer value evenly divisible into 60

UI	2	9	31	85	127	106	69	47	34	26
UI	22	18	15	13	11	9	7	6	5	4
UI	4	3	3	2	2	2	1	1	1	1
UI	1	1								
UI										

UI UI UI

UI UI

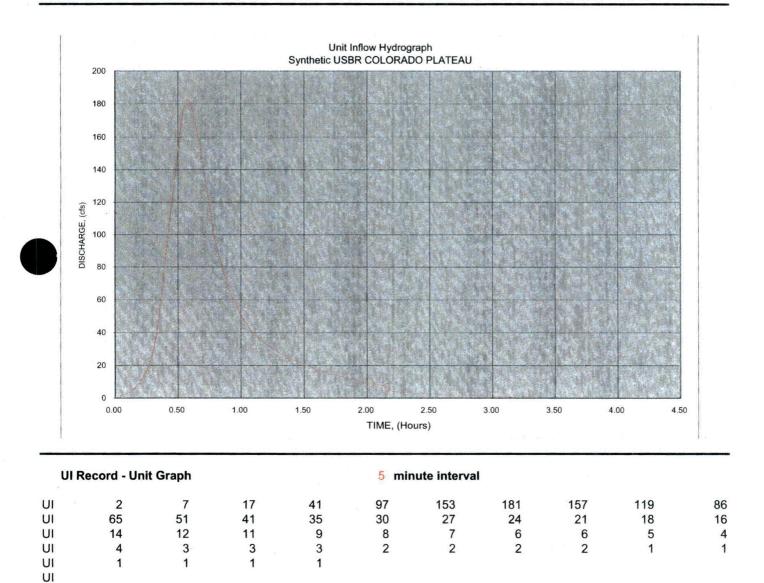
UI

UI

USBR	calculated	unitaraph	peak =	128
OOD	ouroundtou	uningiapri	poun	120

d	Peak =	127
-		

Time t, %				Qs	Time t, %				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.03	1.6	0.19	1	305.0	1.60	96.2	0.66	3
10.0	0.05	3.2	0.32	1	310.0	1.63	97.8	0.63	3
15.0	0.08	4.7	0.48	2	315.0	1.66	99.4	0.59	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20.0	0.11	6.3	0.74	2 3 5	320.0	1.68	100.9	0.56	2
25.0	0.13	7.9	1.21	5	325.0	1.71	102.5	0.53	2
30.0	0.16	9.5 11.0	1.81	8	330.0	1.73	104.1	0.50	2
35.0	0.18	11.0	2.63	12	335.0	1.76	105.7	0.47	2
40.0	0.21	12.6 14.2	3.68	16	340.0	1.79	107.2	0.45	2
45.0	0.24	14.2	5.47	24	345.0	1.81	108.8	0.42	2
50.0	0.26 0.29	15.8 17.3	8.41 12.61	37	350.0 355.0	1.84 1.87	110.4 112.0	0.40 0.38	2
55.0 60.0	0.29	17.3	16.50	56 73	355.0	1.07	112.0	0.38	2
65.0	0.32	18.9 20.5	20.50	90	365.0	1.89 1.92	115.1	0.34	2
70.0	0.34	20.5	23.07	106	370.0	1.92	116.7	0.33	1
75.0	0.39	22.1 23.7	23.97 27.75	122	375.0	1.95 1.97	118.3	0.30	1
80.0	0.42	25.2	28.91	128	380.0	2.00	119.9	0.28	1
85.0	0.45	26.8	28.07	124	385.0	2.02	121.4	0.27	i
90.0	0.47	28.4	26.38	116	390.0	2.05	123.0	0.26	i
95.0	0.50	30.0	24.18	107	395.0	2.08	124.6	0.24	1
100.0	0.53	31.5	21.55	95	400.0	2.10	126.2	0.23	1
105.0	0.55	33.1	18.92	84	405.0	2.13	127.7	0.22	1
110.0	0.58	34.7 36.3	16.08	71	410.0	2.16	129.3	0.21	1
115.0	0.60	36.3	14.19	63	415.0	2.18	130.9 132.5	0.20	1
120.0	0.63	37.9	12.61	56	420.0	2.21	132.5	0.19	1
125.0	0.66	39.4	11.04	49	425.0	2.18 2.21 2.23 2.26	134.1	0.18	1
130.0	0.68	41.0	9.99	44	430.0	2.26	135.6	0.17	1
135.0	0.71	42.6	9.04	40	435.0	2.29	137.2	0.16	1
140.0	0.74	44.2	8.20	36	440.0	2.31	138.8	0.15	1
145.0	0.76 0.79	45.7	7.36	32	445.0	2.29 2.31 2.34 2.37 2.39	140.4	0.15	1
150.0	0.79	47.3	6.78	30	450.0	2.37	141.9	0.13	1
155.0	0.81	48.9	6.20	27	455.0	2.39	143.5	0.12	1
160.0	0.84	50.5	5.83	26	460.0	2.42	145.1	0.12	1
165.0	0.87	52.0	5.47	24	465.0	2.44	146.7	0.11	0
170.0	0.89	53.6 55.2	5.15 4.84	23	470.0 475.0	2.47 2.50	148.3 149.8		
175.0 180.0	0.92 0.95	55.2 56.8	4.64	21 20	475.0	2.50	149.0		
185.0	0.95	58.4	4.31	19	480.0	2.52	153.0		
190.0	1.00	59.9	4.10	18	490.0	2.58	154.6		
195.0	1.03	61.5	3.87	17	495.0	2.60	156.1		
200.0	1.00	63.1	3.68	16	500.0	2.63	157.7		
205.0	1.05 1.08	64.7	3.47	15	505.0	2.65	159.3		
210.0	1.10 1.13	66.2	3.28	14	510.0	2.68	160.9		
215.0	1.13	67.8	3.10	14	515.0	2.71	162.4		
220.0	1.16	69.4	2.93	13	520.0	2.73	164.0		
225.0	1.18	71.0	2.75	12	525.0	2.76	165.6		
230.0	1.21	72.5	2.63	12	530.0	2.79	167.2		
235.0	1.24	74.1	2.47	11	535.0	2.81	168.8		
240.0	1.26	75.7	2.33	10	540.0	2.84	170.3		
245.0	1.29	77.3	2.22	10	545.0	2.87	171.9		
250.0	1.31	78.9	2.10	9	550.0	2.89	173.5		
255.0	1.34	80.4	1.99	9	555.0	2.92	175.1		
260.0	1.37	82.0	1.88	8	560.0	2.94	176.6		
265.0	1.39	83.6	1.78	8	565.0	2.97	178.2		
270.0	1.42	85.2	1.68 1.59	7	570.0 575.0	3.00 3.02	179.8 181.4		
275.0 280.0	1.45 1.47	86.7 88.3	1.59	7 7	575.0	3.02	181.4		
280.0	1.50	89.9	1.50	6	585.0	3.08	184.5		
205.0	1.50	91.5	1.45	6	590.0	3.10	186.1		
290.0	1.52	93.1	1.28	6	595.0	3.13	187.7		
300.0	1.58	94.6	1.20	5	600.0	3.15	189.3		
	Use for model								1


NOTES : Use for models including Design Point 2 (Basin F) for the PMP Local event

Design Point 3-10, 25, 100, 200 Proposed Conditions

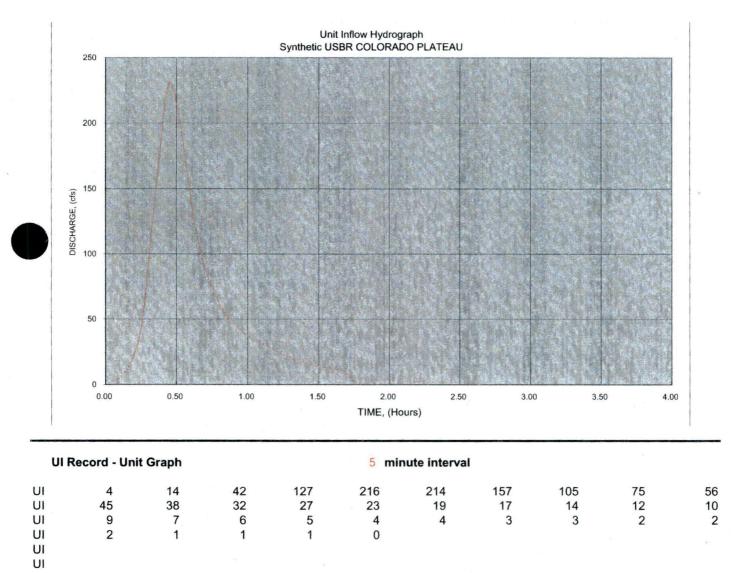
Drainage /	Area =	0.1675 sq.	miles	Lg+D/2 =	0.71	Hours
Basin S	lope =	77.56 ft./r	nile	Basin Factor =	0.11	
	L =	1.34 mi.	, Length of Waterco	ourse V' =	4.50	cfs/Day
	Lca =	0.7 mi.	, Distance to Centre	oid Qs =	6.3	* q, cfs
	Kn =	0.054 -, A	ve. Weighted Man	ning's n		ж.
PARAMETERS:						
Calculated:	Lag Tir	ne, Lg =	0.67 Hours	Unit Duration, D =	7.31	minutes
				Calculated Timestep =	2.14	minutes

Data to be used Unit Duration, D = **in Analysis** Selected Timestep =

 5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

USBR calculated	unitgraph	peak =	183
-----------------	-----------	--------	-----

(=	181	


$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Qs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P	cfs
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.66	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.63	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.59	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.56	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.53 0.50	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.30	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.45	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.42	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	ž
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.38	3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.36	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.34	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.33	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.30	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.28	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.27	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.26	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.24 0.23	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.23	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.22	i
125.0 0.89 53.4 11.04 70 425.0 3.03 181.6 130.0 0.93 55.5 9.99 63 430.0 3.06 183.7 135.0 0.96 57.7 9.04 57 435.0 3.10 185.9 140.0 1.00 59.8 8.20 52 440.0 3.13 188.0 145.0 1.03 62.0 7.36 47 445.0 3.17 190.2	0.20	i
125.0 0.89 53.4 11.04 70 425.0 3.03 181.6 130.0 0.93 55.5 9.99 63 430.0 3.06 183.7 135.0 0.96 57.7 9.04 57 435.0 3.10 185.9 140.0 1.00 59.8 8.20 52 440.0 3.13 188.0 145.0 1.03 62.0 7.36 47 445.0 3.17 190.2	0.19	i
130.0 0.93 55.5 9.99 63 430.0 3.06 183.7 135.0 0.96 57.7 9.04 57 435.0 3.10 185.9 140.0 1.00 59.8 8.20 52 440.0 3.13 188.0 145.0 1.03 62.0 7.36 47 445.0 3.17 190.2	0.18	1
135.0 0.96 57.7 9.04 57 435.0 3.10 185.9 140.0 1.00 59.8 8.20 52 440.0 3.13 188.0 145.0 1.03 62.0 7.36 47 445.0 3.17 190.2 150.0 1.07 64.1 6.78 43 450.0 3.20 192.3	0.17	1
140.0 1.00 59.8 8.20 52 440.0 3.13 188.0 145.0 1.03 62.0 7.36 47 445.0 3.17 190.2 150.0 1.07 64.1 6.78 43 450.0 3.20 192.3	0.16	1
145.0 1.03 62.0 7.36 47 445.0 3.17 190.2 150.0 1.07 64.1 6.78 43 450.0 3.20 193.3	0.15	1
	0.15	1
	0.13	1
155.0 1.10 66.2 6.20 39 455.0 3.24 194.4	0.12	1
160.0 1.14 68.4 5.83 37 460.0 3.28 196.6 165.0 1.18 70.5 5.47 35 465.0 3.31 198.7	0.12 0.11	1
170.0 1.21 72.6 5.15 33 470.0 3.35 200.8	0.11	
175.0 1.25 74.8 4.84 31 475.0 3.38 203.0		
180.0 1.28 76.9 4.57 29 480.0 3.42 205.1		
185.0 1.32 79.1 4.31 27 485.0 3.45 207.2		
190.0 1.35 81.2 4.10 26 490.0 3.49 209.4		
195.0 1.39 83.3 3.87 24 495.0 3.53 211.5		
200.0 1.42 85.5 3.68 23 500.0 3.56 213.7		
205.0 1.46 87.6 3.47 22 505.0 3.60 215.8		
210.01.5089.73.2821510.03.63217.9215.01.5391.93.1020515.03.67220.1220.01.5794.02.9319520.03.70222.2		
215.0 1.53 91.9 3.10 20 515.0 3.67 220.1 220.0 1.57 94.0 2.93 19 520.0 3.70 222.2		
225.0 1.60 96.1 2.75 17 525.0 3.70 222.2		
230.0 1.64 98.3 2.63 17 530.0 3.77 226.5		
235.0 1.67 100.4 2.47 16 535.0 3.81 228.6		
240.0 1.71 102.6 2.33 15 540.0 3.85 230.7		
245.0 1.74 104.7 2.22 14 545.0 3.88 232.9		
250.0 1.78 106.8 2.10 13 550.0 3.92 235.0		
255.0 1.82 109.0 1.99 13 555.0 3.95 237.2		
260.0 1.85 111.1 1.88 12 560.0 3.99 239.3		
265.0 1.89 113.2 1.78 11 565.0 4.02 241.4		
270.0 1.92 115.4 1.68 11 570.0 4.06 243.6		
275.0 1.96 117.5 1.59 10 575.0 4.10 245.7		
280.0 1.99 119.6 1.50 9 580.0 4.13 247.8 285.0 2.03 121.8 1.43 9 585.0 4.17 250.0		
285.02.03121.81.439585.04.17250.0290.02.07123.91.369590.04.20252.1		
290.0 2.07 123.9 1.30 9 350.0 4.20 232.1 295.0 2.10 126.1 1.28 8 595.0 4.24 254.2		
300.0 2.14 128.2 1.21 8 600.0 4.27 256.4		
NOTES: Use for models including Design Point 3 (Basin C) for the 10, 25, 100 and 200 year events		

Design Point 3-PMP Proposed Conditions

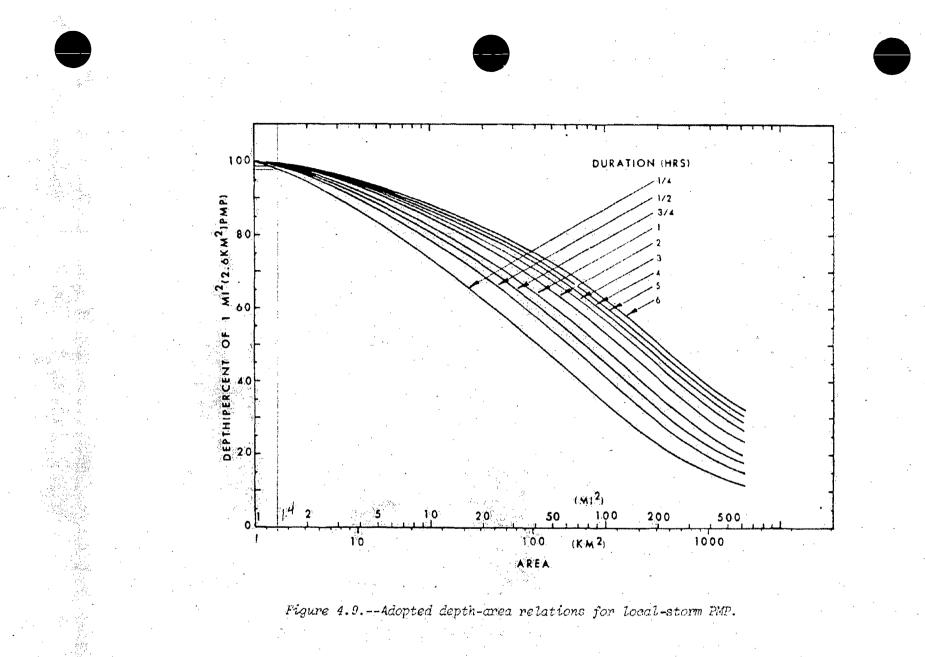
 Drainage / Basin S		0.1675 so 77.56 ft		Lg+D/2 = Basin Factor =		Hours
Basin S					0.11	
	L =	1.34 m	ii., Length of Waterco	ourse V' =	4.50	cfs/Day
	Lca =	0.7 m	i., Distance to Centro	oid Qs =	8.0	* q, cfs
	Kn =	0.042 -,	Ave. Weighted Mani	ning's n		
PARAMETERS:	Les Ti		0.50		E 00	
Calculated:	Lag II	me, Lg =	0.52 Hours	Unit Duration, D =	5.69	minutes
			and the state of the	Calculated Timestep =	1.69	minutes

Data to be used Unit Duration, D = **in Analysis** Selected Timestep = 5 minutes, round down to nearest of 5, 10, 15, 30, 60, 120, 180, or 360 5 minutes, integer value evenly divisible into 60

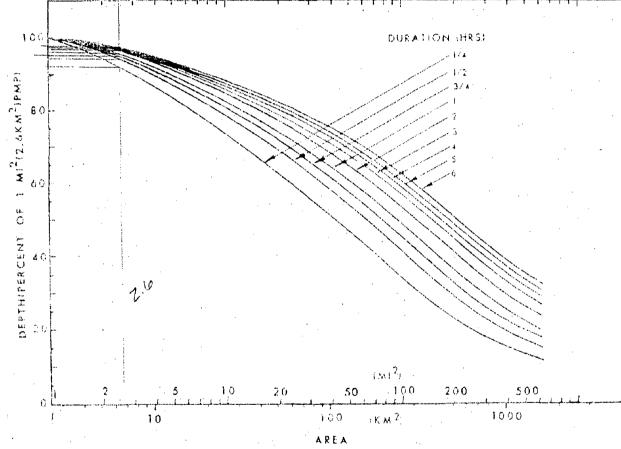
UI

UI UI

USBR calculated	unitaranh	nook -	224
USBR calculated	unitoraph	Deak -	231


Time t, %				Qs	Time t, %				Qs
of Lg+D/2	Hours	Min.	q	cfs	of Lg+D/2	Hours	Min.	q	cfs
5.0	0.03	1.7	0.19	2	305.0	1.72	103.1	0.66	5
10.0	0.06	3.4	0.32	2 3	310.0	1.75	104.8	0.63	5
15.0	0.08	5.1	0.48	4	315.0	1.77	106.4	0.59	5 5 5 4 4
20.0	0.11	6.8	0.74	6	320.0	1.80	108.1	0.56	4
25.0	0.14	8.4	1.21	10	325.0	1.83 1.86	109.8	0.53	4
30.0	0.17	10.1	1.81	14	330.0	1.86	111.5	0.50	4
35.0	0.20	11.8	2.63	21	335.0	1.89	113.2	0.47	4
40.0	0.23	13.5	3.68	29	340.0	1.91	114.9	0.45	4
45.0	0.25	15.2	5.47	44	345.0	1.94	116.6	0.42	- 3
50.0	0.28	16.9	8.41	67	350.0	1.97	118.3	0.40	3
55.0	0.31	18.6	12.61	101	355.0	2.00	120.0	0.38	3
60.0	0.34	20.3	16.50	132	360.0	2.03	121.6	0.36	3
65.0	0.37	22.0	20.50	164	365.0	2.06	123.3	0.34	. 3
70.0	0.39	23.7	23.97	192	370.0	2.08	125.0	0.33	3
75.0	0.42	25.3	27.75	222	375.0	2.11	126.7	0.30	2
80.0	0.45	27.0	28.91	231	380.0	2.14	128.4	0.28	2
85.0	0.48	28.7	28.07	224 211	385.0	2.17	130.1	0.27	2
90.0	0.51 0.54	30.4 32.1	26.38 24.18	193	390.0 395.0	2.20 2.22	131.8 133.5	0.26 0.24	2
95.0 100.0	0.56	33.8	24.10	172	400.0	2.22	135.2	0.24	2
105.0	0.59	35.5	18.92	151	400.0	2.25 2.28	136.9	0.23	2
110.0	0.62	37.2	16.08	129	403.0	2.31	138.5	0.21	2
115.0	0.65	38.9	14.19	113	415.0	2.34	140.2	0.20	4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
120.0	0.68	40.5	12.61	101	420.0	2.37	141.9	0.19	2
125.0	0.70	42.2	11.04	88	425.0	2.37 2.39 2.42	143.6	0.18	ĩ
130.0	0.73	43.9	9.99	80	430.0	2.42	145.3	0.17	1
135.0	0.76	45.6	9.04	72	435.0	2.45	147.0	0.16	i (
140.0	0.79	47.3	8.20	66	440.0	2.48	148.7	0.15	1
145.0	0.82	49.0	7.36	59	445.0	2.51	150.4	0.15	1
150.0	0.84	50.7	6.78	54	450.0	2.53	152.1	0.13	1
155.0	0.87	52.4	6.20	50	455.0	2.56	153.7	0.12	1
160.0	0.90	54.1	5.83	47	460.0	2.59	155.4	0.12	1
165.0	0.93	55.8	5.47	44	465.0	2.62	157.1	0.11	1
170.0	0.96	57.4	5.15	41	470.0	2.65	158.8		18 19
175.0	0.99	59.1	4.84	39	475.0	2.68	160.5		
180.0	1.01	60.8	4.57	37	480.0	2.70	162.2		
185.0	1.04	62.5	4.31	34	485.0	2.73	163.9		
190.0	1.07	64.2	4.10	33	490.0	2.76	165.6		
195.0	1.10	65.9	3.87	31	495.0	2.79 2.82	167.3		
200.0	1.13	67.6	3.68	29	500.0	2.82	169.0		
205.0 210.0	1.15 1.18	69.3 71.0	3.47 3.28	28 26	505.0 510.0	2.84 2.87	170.6 172.3		
210.0	1.21	72.6	3.10	20	515.0	2.90	172.3		
220.0	1.24	74.3	2.93	23	520.0	2.93	175.7		
225.0	1.27	76.0	2.75	22	525.0	2.96	177.4	36	
230.0	1.30	77.7	2.63	21	530.0	2.98	179.1		
235.0	1.32	79.4	2.47	20	535.0	3.01	180.8		
240.0	1.35	81.1	2.33	19	540.0	3.04	182.5		
245.0	1.38	82.8	2.22	18	545.0	3.07	184.2		
250.0	1.41	84.5	2.10	17	550.0	3.10	185.8		
255.0	1.44	86.2	1.99	16	555.0	3.13	187.5		
260.0	1.46	87.9	1.88	15	560.0	3.15	189.2		
265.0	1.49	89.5	1.78	14	565.0	3.18	190.9		
270.0	1.52	91.2	1.68	13	570.0	3.21	192.6		
275.0	1.55	92.9	1.59	13	575.0	3.24	194.3		
280.0	1.58	94.6	1.50	12	580.0	3.27	196.0		
285.0	1.61	96.3	1.43	11	585.0	3.29	197.7		
290.0	1.63	98.0	1.36	11	590.0	3.32	199.4		
295.0	1.66	99.7	1.28	10	595.0	3.35	201.1		
300.0	1.69	101.4	1.21	10		3.38	202.7		
NOTES :	Use for models	s including [Design Point	3 (Basin C	C) for the PM	P Local event			

Appendix B


Local Storm PMP Depth-Duration

1.0.	49	table 6.3B if areal variation is required.
La	titude	$\frac{Crescent Junction Disposel Site Area less than / mi2 (km2)}{38°57'50'' Longitude 109°48'00'W Minimum Elevation 4940 ft (m)(38.96°) (109.80°)prrespond to those in sec. 6.3A.$
1.		cage 1-hr 1-mi ² (2.6-km ²) PMP for <u>8.2</u> in. (m) inage [fig. 4.5].
2.		Reduction for elevation. [No adjustment (None reg'd) for elevations up to 5,000 feet $(1,524 \text{ m})$: 5% decrease per 1,000 feet (305 m) above 5,000 feet $(1,524 \text{ m})$].
	ь.	Multiply step 1 by step 2a. <u>B.2</u> in. (nm)
. 3.	Aver	cage 6/1-hr ratio for drainage [fig. 4.7].
		Duration (hr)
		$\frac{\text{Duration (hr)}}{\frac{1}{4} \frac{1}{2} \frac{3}{4} \frac{1}{2} \frac{3}{4} \frac{4}{5} \frac{5}{6}}$
4.		itional variation
•	for step	6/1-hr ratio of 3 [table 4.4]. 55 86 93 97 100 107 109 110 110 110 % 2 1
5.	indi	L ² (2.6-km ²) PMP for Leated durations
	[ste	ep 2b X step 4].4.5 7.1 7.6 8.0 8.2 8.8 8.9 9.0 9.0 9.0 in. (mm)
6.	Area	al reduction 3.4.9]. 6\ 61 67 7/ 73 76 78 80 8/ 82 % 22
•	[fig	3. 4.9]. 6\ <u>61 67 71 73 76 78 80 81 82</u> % ZC
7.		al reduced PMP aps 5 X 6]. 27 <u>4.3 5.1 5.7 6.0 6.7 6.9 7.2 7.3 7.4</u> in. (mg)
8.		remental PMP ccessive subtraction
	in s	step 7]. <u>6.0 0.7 0.2 0.3 0.1 0.1</u> in. (pm)
	•	<u>4.3 0.8 0.6 0.3</u> } 15-min. increments
9.		e sequence of incre- tal PMP according to: HMR No.5
		burly increments table 4.7]. <u>0.1 0.3 6.0 0.7 0.2 0.1</u> in. (pm)
		our largest 15-min.

Table 6.3A.--Local-storm PMP computation, Colorado River, Great Basin and California drainages. For drainage average depth PMP. Go to HMR No. 49 table 6.3B if areal variation is required. Area ter than I mi² (kom Drainage Crescent Junction Disposel Site Latitude <u>38° 57' 50</u> Longitude <u>109° 48'00 W</u> Minimum Elevation <u>4940</u> ft (m) (38.96°) (109.90°) Steps correspond to those in sec. 6.3A. (38.96°) 1. Average $1-hr 1-mi^2$ (2.6-km²) PMP for 8.2 in. (pm) drainage [fig. 4.5]. Reduction for elevation. [No adjustment (None reg'd) 2. a. for elevations up to 5,000 feet (1,524 m): 5% decrease per 1,000 feet (305 m) above 5,000 feet (1,524 m)]. 100 . % <u>8.2</u> in. (pm) b. Multiply step 1 by step 2a. 3. Average 6/1-hr ratio for drainage [fig. 4.7]. $5 \sim \frac{\text{Duration (hr)}}{1/4 \ 1/2 \ 3/4 \ 1 \ 2 \ 3}$ 4. Durational variation for 6/1-hr ratio of 41 mi² step 3 [table 4.4]. 55 86 93 97 100 107 109 110 110 % 1-mi² (2.6-km²) PMP for 5. indicated durations [step 2b X step 4].4.5 7.1 7.6 8.0 8.2 8.8 8.9 9.0 9.0 9.0 in. (nm) 6. Areal reduction 96 96 97 97 98 98 98 99 99 99 [fig. 4.9]. 6^x <u>61^x 67 77 78 78 88 87 87 88</u> 8 2 m 7. Areal reduced PMP 4.3 6.8 7.4 7.8 8.0 8.1 8.7 8.9 8.9 8.9 [steps 5 X 6]. 27 43 5.1 5.1 6.0 6.7 6.9 12 7.3 7.4 in. (mg) 8. Incremental PMP 8.0. 0.0 0.1 0.2 0.0 0.0 [successive subtraction] 6.0 0.1 0.1 0.3 0.1 0.1 in. (m) in step 7]. 43 0.8 0.6 043 } 15-min. increments 9. Time sequence of incre-6.8 0.6 0.4 0.2 mental PMP according to: HMR No. 5 0,0 0.2 8,00.6.2 0,0 Hourly increments 0.1 03 60 01 02 01 in. (mm) [table 4.7]. Four largest 15-min. 4.5 0.8 0.6 0.3 in. (pm) increments [table 4.8]. 6.18 0.16 0.4 0.4

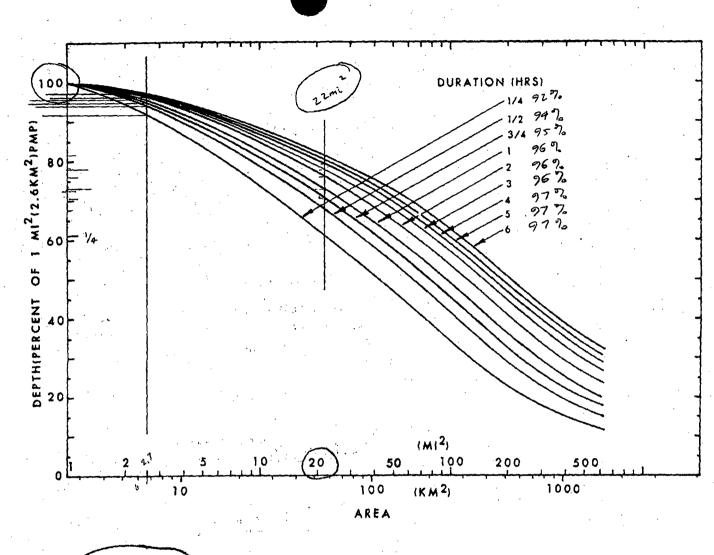
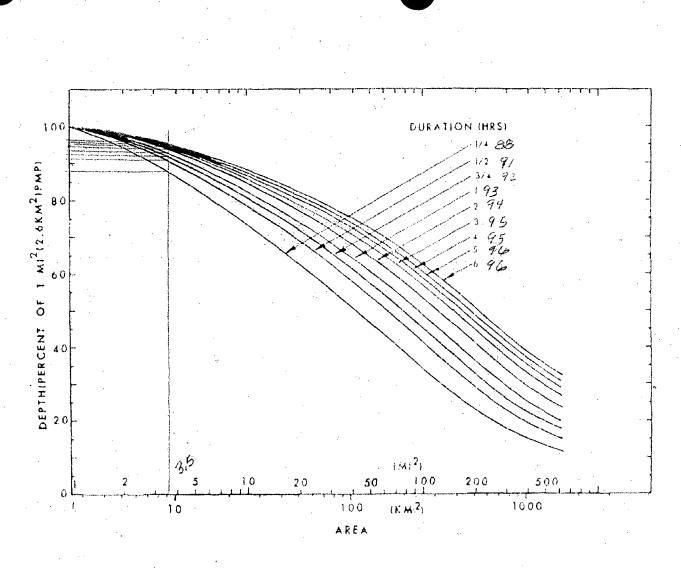
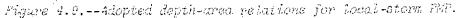
н — .	
152	
HMR No. 49	ALocal-storm PMP computation, Colorado River, Great Basin and California drainages. For drainage <u>average depth</u> PMP. Go to table 6.3B if areal variation is required.
Latit	age <u>Crescent Junction Disposed Site</u> Area <u>leastheast</u> mi ² (km ²) ude <u>38°57'so</u> Longitude <u>109°48'00'W</u> Minimum Elevation <u>4940</u> ft (m) (38.96°) (109.8.9°) correspond to those in sec. 6.3A.
	verage 1-hr 1-mi ² (2.6-km ²) PMP for <u>8.2</u> in. (pm) rainage [fig. 4.5].
2. a	 Reduction for elevation. [No adjustment (None reg'd) for elevations up to 5,000 feet (1,524 m): 5% decrease per 1,000 feet (305 m) above 5,000 feet (1,524 m)].
	. Multiply step 1 by step 2a. <u>8.2</u> in. (mm)
3. A.	verage 6/1-hr ratio for drainage [fig. 4.7].
f	$\frac{\text{Duration (hr)}}{5 \sim 1/4 \ 1/2 \ 3/4 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}$ wrational variation or 6/1-hr ratio of tep 3 [table 4.4]. 55 <u>86</u> <u>93 97 100 107 109 110 110 110 %</u> $2 \ 100 \ 107 \ 109 \ 110 \ 1$
í	-mi ² (2.6-km ²) PMP for indicated durations step 2b X step 4].4.5 7.1 7.6 8.0 8.2 8.8 3.9 9.0 9.0 9.0 in. (mm)
[$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7. A [steps 5 X 6]. $27 - 4.3 - 5.1 - 5.7 - 6.0 - 6.7 - 6.7 - 7.4 - in. (mg)$
· · · [Incremental PMP 7.9 0.5 0.2 0.1 0.1 successive subtraction 7.9 0.5 0.2 0.1 0.1 in step 7]. 6.5 0.6 0.5 0.2 0.1 0.1 in. (pm) 4.3 0.8 0.5 0.3 15 -min. increments
	Time sequence of incre- mental PMP according to: HMR No.5
	Hourly increments $0.1 \ 0.2 \ 7.9 \ 0.5 \ 0.1 \ 0.0 \ 10.2 \ 0.1 \ 0.1 \ 0.2 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.1 \ 0.0 \ 0.0 \ 0.1 \ 0.0$
	Four largest 15-min. 6.50.60.5 increments [table 4.8]. 48 0.8 0.6 0.3 in. (pm)
· ·	

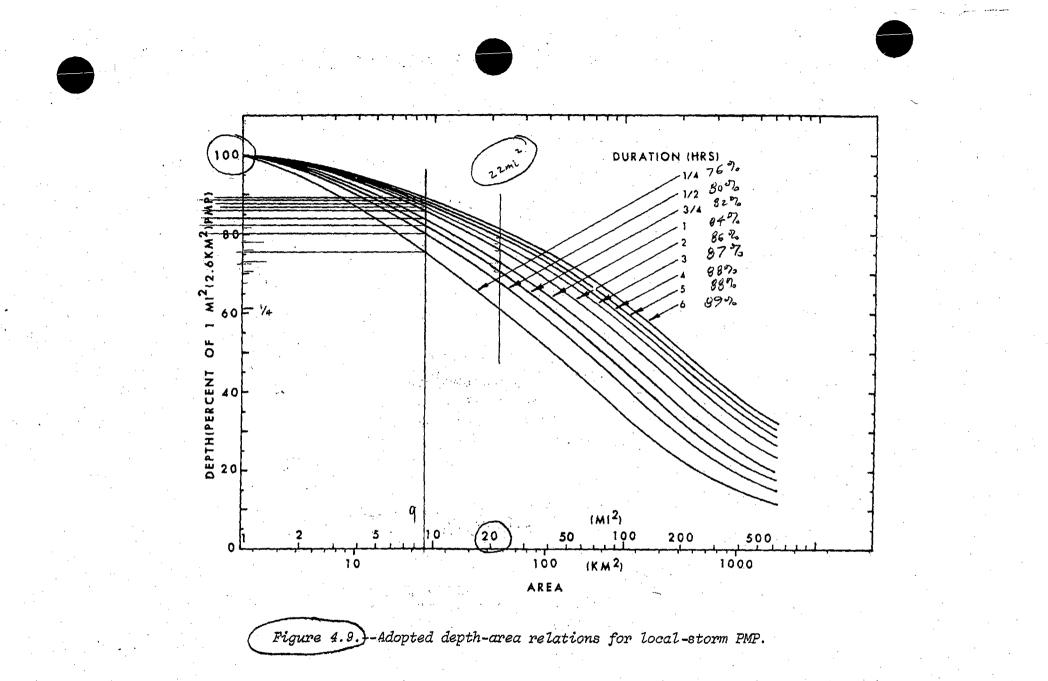
- Figure 4.0.--Adopted Supti-anna relations for icoal-storm INT,

60 (11)

152					
	1				
Tabl HMR N		3ALocal-storm PMP computation, Colorado River, Great Basin and California drainages. For drainage <u>average depth</u> PMP. Go to table 6.3B if areal variation is required. 2.7			
•	Latit	nage <u>Crescent Junction Disposel Site</u> Area <u>less that</u> mi^2 (km tude <u>38°57'50"</u> Longitude <u>109°48'00 W</u> Minimum Elevation <u>4940</u> ft (38.96°) (109.20°) s correspond to those in sec. 6.3A.		•	
•	1. A	Average 1-hr 1-mi ² (2.6-km ²) PMP for $\underline{8.2}$ in. (pm drainage [fig. 4.5].	5		
	2. a	a. Reduction for elevation. [No adjustment for elevations up to 5,000 feet (1,524 m): 5% decrease per 1,000 feet (305 m) above 5,000 feet (1,524 m)].			
	. 1	b. Multiply step 1 by step 2a. <u>8.2</u> in. (m	>		
	3.	Average 6/1-hr ratio for drainage [fig. 4.7].			
	t	$\frac{\text{Duration (hr)}}{5 \min_{1} \frac{1}{4} \frac{1}{2} \frac{3}{4} \frac{1}{1} \frac{2}{2} \frac{3}{4} \frac{4}{5} \frac{5}{6}}$ Durational variation for 6/1-hr ratio of step 3 [table 4.4]. 55 86 93 97 100 107 109 110 110 %			
	:	1-mi ² (2.6-km ²) PMP for indicated durations [step 2b X step 4]. 4 5 7.1 7.6 8.0 8.2 8.8 8.9 9.0 9.0 9.0 in. (m	()	·	
		Areal reduction 92 92 94 95 96 96 96 97 97 97 [fig. 4.9]. <u>47 47 73 76 78 80 87 82</u> %	•		
		Areal reduced PMP 4.1 6.5 7.1 7.6 79 8.4 8.5 8.7 8.7 8.7 [steps 5 X 6]. <u>4.3 5.1 5.7 6.0 67 6.9 7.2 7.3 7.4</u> in. (m	yh.s		
· • •		Incremental PMP [successive subtraction 7.9 0.5 0.1 0.2 0.0 0.0 in step 7]. $\frac{6.5}{4.3} \xrightarrow{0.6} 0.5 \xrightarrow{0.6} 0.3$ } 15-min. increments	L)		
•		Time sequence of incre- mental PMP according to: HMR No.5			-
•		Hourly increments [table 4.7]. 0.0 0.2 7.9 0.5 0.1 0.0 6.1 0.5 6.0 0.1 0.0 6.1 0.5 6.0 0.1 0.0	m)	·	· · · · · · · · · · · · · · · · · · ·
		Four largest 15-min. increments [table 4.8]. $4.5 ext{ ord } 0.5 ext{ ord } 0.3 ext{ in. (pm)}$			1
		•			

Ċ


Figure 4.9.)-Adopted depth-area relations for local-storm PMP.

· .				• •			
152			· .		-		in the balancest sources
HMR No.4 Drai	nage Creerent Junction Dispo	es. For drai 1 variation i arl Sile	nage <u>average</u> of s required. Area	iepth PMP. 35	Go to		
Lati	tude <u>38°57' so"</u> Longitu (38.96°) s correspond to those i	ide 109°4800 W (109.80°)	Minimum Eleva	ation <u>4940</u>	_ft (m)		·
1.	Average 1-hr 1-mi ² (2.6 drainage [fig. 4.5].	-km ²) PMP for		8.2	in. (pm)		
2.	a. Reduction for eleva for elevations up t 5% decrease per 1,0 5,000 feet (1,524 m	o 5,000 feet 00 feet (305	(1,524 m): -	ine regid) 100	%		
· · ·	b. Multiply step 1 by	step 2a.		8.2	in. (pm)		
3.	Average 6/1-hr ratio fo	or drainage [f	ig. 4.7].	1.1			
5.	5 Durational variation for 6/1-hr ratio of step 3 [table 4.4]. 55 1-mi ² (2.6-km ²) PMP for indicated durations [step 2b X step 4].4.5	<u>86 93 97 1</u>	<u>00 107 108 110</u>		% in. (mm)	m; 2	
			93 94 95 9 13 He 18 80			2 mi 2	·
7.	Areal reduced PMP 4.0 [steps 5 X 6]. 27	4.2 6.9 7.4 48 51 51	7.6 8.3 8.5 8 6.0 6.1 6.1 1	6 8.6 8.6 <u>1,3</u> 1.4	in. (mgs)		
8.	Incremental PMP [successive subtraction in step 7].	ين - بريوني	6.0 0.1 0.2 0.3		•		
9.	Time sequence of incre- mental PMP according to	-	<u>,,,,</u> , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, incleigence	· · ·		
· .	Hourly increments [table 4.7].	•	.1 0.3 6.0 0.7	0.2 0.1	in. (mm)		1
11. 1 1. 1 1	Four largest 15-min. increments [table 4.	8].	4.3 0.8 0.6 0	<u>.3</u> in. (p	m)	. •	ł
					•		

	No. 49	 3ALocal-storm PMP computation, Colorado River, Great Basin and California drainages. For drainage <u>average depth</u> PMP. Go to table 6.3B if areal variation is required.
		inage <u>Crescent Junction Disposel Site</u> Area tess they 1 mi ² (km ²) Lude <u>38° 51' 50</u> Longitude <u>109° 48'00 W</u> Minimum Elevation <u>4940</u> ft (m)
	Step	(38.96°) (109.20°) os correspond to those in sec. 6.3A.
		Average 1-hr 1-mi ² (2.6-km ²) PMP for $\underline{8.2}$ in. (pm) drainage [fig. 4.5].
	2.	 a. Reduction for elevation. [No adjustment for elevations up to 5,000 feet (1,524 m): 5% decrease per 1,000 feet (305 m) above 5,000 feet (1,524 m)].
•		b. Multiply step 1 by step 2a. <u>8.2</u> in. (nm)
	3.	Average 6/1-hr ratio for drainage [fig. 4.7].
		$\frac{\text{Duration (hr)}}{5\min \frac{1/4}{1/2} \frac{3/4}{1} \frac{1}{2} \frac{3}{4} \frac{4}{5} \frac{5}{6}}$
	4.	$5^{min} \frac{1}{4} \frac{1}{2} \frac{3}{4} \frac{1}{2} \frac{2}{3} \frac{4}{5} \frac{5}{6}$ Durational variation for 6/1-hr ratio of step 3 [table 4.4].55 <u>86</u> <u>93</u> <u>97</u> <u>100</u> <u>107</u> <u>109</u> <u>110</u> <u>110</u> %
	5.	l-mi ² (2.6-km ²) PMP for indicated durations [step 2b X step 4].4.5 7.1 7.6 8.0 8.2 8.8 8.9 9.0 9.0 9.0 in. (mm)
	6.	Areal reduction 76 76 30 32 34 85 37 38 33 39 [fig. 4.9]. <u>47 47 47 47 46 48 80 81 82</u> %
	7.	Areal reduced PMP 3.4 5.4 6.1 66 6.9 7.6 7.7 7.9 7.9 8.0 [steps 5 X 6]. <u>4.3 5.1 5.7 6.8 6.7 6.9 7.7 7.9 7.4</u> in. (mm)
	8.	Incremental PMP [successive subtraction 6.9 0.1 0.2 0.0 in step 7]. 5.4 0.7 0.5 $\frac{6.0}{6.7}$ 0.1 0.1 0.1 in. (mm) $\frac{4.3}{4.5}$ $\frac{6.8}{6.8}$ $\frac{6.6}{0.3}$ } 15-min. increments
	9.	Time sequence of incre- mental PMP according to: HMR No.5
;		Hourly increments $0.2 - 6.9$ $0.1 - 0.0$ [table 4.7]. $0.1 - 0.3 - 0.0 - 0.7 - 0.7 - 0.7 - 0.1$ in. (nm)
	•	Four largest 15-min. 54 0.7 0.5 increments [table 4.8]. 4.3 0.8 0.3 in. (pm)

Tał	ole 6	.3ALocal-storm PMP computation, Colorado River, Great Basin and
HMR		California drainages. For drainage average depth PMP. Go to
	Lat	inage <u>Crescent Junction Disposel Site</u> Area <u>Here Hare</u> mi ² (km ²) itude <u>38°57'50"</u> Longitude <u>109°48'00"</u> Minimum Elevation <u>4940</u> ft (m) (38.96°) (109.80°) ps correspond to those in sec. 6.3A.
	1.	Average 1-hr 1-mi ² (2.6-km ²) PMP for $\underline{8.2}$ in. (pm) drainage [fig. 4.5].
· · · · · · · · · · · · · · · · · · ·	2.	a. Reduction for elevation. [No adjustment for elevations up to 5,000 feet (1,524 m): 5% decrease per 1,000 feet (305 m) above 5,000 feet (1,524 m)].
•		b. Multiply step 1 by step 2a. <u>8.2</u> in. (mm)
•	3.	Average 6/1-hr ratio for drainage [fig. 4.7].
· ·	4.	$\frac{\text{Duration (hr)}}{5 \text{ min}} \frac{5 \text{ min}}{1/4 1/2 3/4 1 2 3 4 5 6}$ Durational variation for 6/1-hr ratio of step 3 [table 4.4]. 55 <u>86</u> <u>93 97 100 107 109 110 110 %</u>
·	5.	1-mi ² (2.6-km ²) PMP for indicated durations [step 2b X step 4].45 7.1 7.6 8.0 8.2 8.8 8.9 9.0 9.0 in. (mm)
	6.	Areal reduction 67 67 73 76 78 8: 81 83 84 85 [fig. 4.9]. <u>41 47 71 75 76 78 85 81 82</u> %
	7.	Areal reduced PMP 3.0 4.8 5.5 6.1 6.4 7.0 7.2 7.5 7.6 7.7 [steps 5 X 6]. <u>4.3 5.1 5.7 6.0 6.1 6.7 7.2 7.5 7.6</u> in. (mgh)
· ·	8.	Incremental PMP [successive subtraction $6.4 \ 0.6$ in step 7]. $4.8 \ 0.7 \qquad 6.4 \ 0.6 \qquad 0.3 \ 0.1 \ 0.1 \qquad \text{in. (pm)}$ $4.3 \ 0.8 \ 0.6 \ 0.3 \) 15-min. increments$
•	9.	Time sequence of incre- mental PMP according to: HMR No.5
•		Hourly increments [table 4.7]. <u>6.1 0.3 600 0.2 0.1</u> in. (mn)
	· .	Four largest 15-min. 4.8 increments [table 4.8]. 4.3 4.3 0.6 0.6 0.3 increments [table 4.8].

Ű,

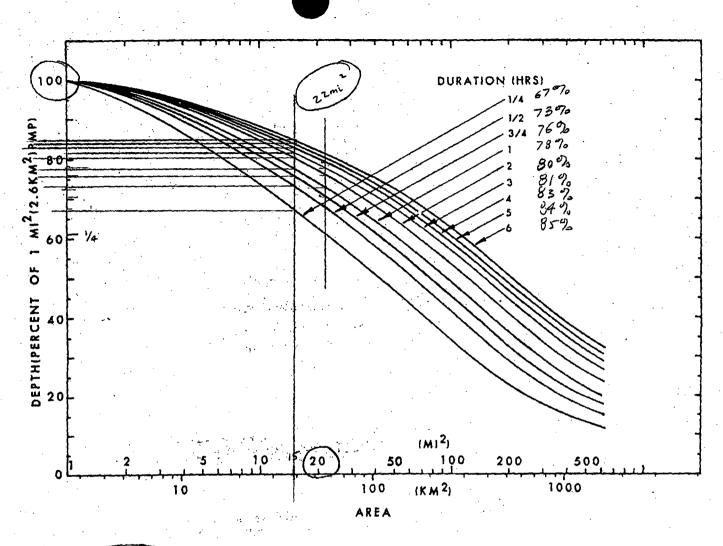
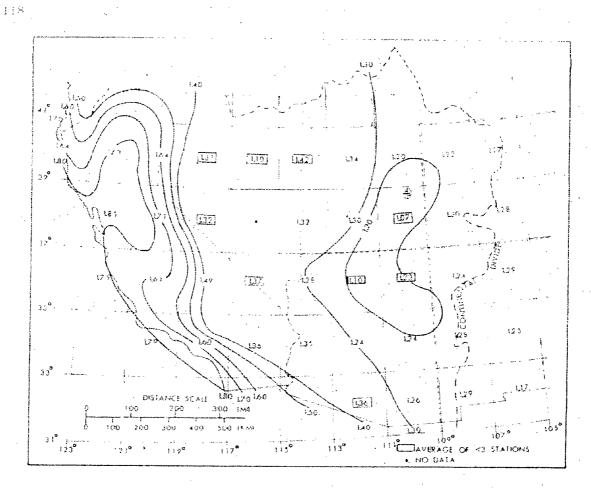
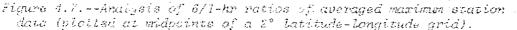




Figure 4.9.)-Adopted depth-area relations for local-storm PMP.

establish the basic depth-duration curve, then structure a variable set of depth-duration curves to cover the range of 6/1-hr ratios that are needed.

Three sets of data were considered for obtaining a base relation (see table 4.3 for depth-duration data).

a. An average of depth-duration relations from each of 17 greatest 3-hr rains from summer storms (1940-49) in Utah (U. S. Weather Bureau 1951b) and in unpublished tabulations for Nevada and Arizona (1940-63). The 3-hr amounts ranged from 1 to 3 inches (25 to 76 mm) in these events.

b. An average depth-duration relation from 14 of the most extreme shortduration storms listed in Storm Rainfall (U. S. Army, Corps of Engineers 1945-). These storms come from Eastern and Central States and have 3-hr amounts of 5 to 22 inches (127 to 559 mm). ratios than storms with high 3/1-hr ratios. The geographical distribution of 15-min to 1-hr ratios also were inversely correlated with magnitudes of the 6/1-hr ratios of figure 4.7. For example, Los Angeles and San Diego (high 6/1-hr ratios) have low 15-min to 1-hr ratios (approximately 0.60) whereas the 15-min to 1-hr ratios in Arizona and Utah (low 6/1-hr ratios) were generally higher (approximately 0.75).

Depth-duration relations for durations less than I hour were then smoothed to provide a family of curves consistent with the relations determined for 1 to 6 hours, as shown in figure 4.3. Adjustment was necessary to some of the curves to provide smoother relations through the common point at 1 hour.

We believe we were justified in reducing the number of the curves shown in figure 4.3 for durations less than 1 hour, letting one curve apply to a range of 6/1-hr ratios. The corresponding curves have been indicated by letter designators, A-D, on figure 4.3. As an example, for any 6-hr amount between 115% and 135% of 1-hr, $1-mi^2$ (2.6-km²) PMP, the associated values for durations less than 1 hour are obtained from the curve designated as "2".

Table 4.4 lists durational variations in percent of 1-hr PMP for selected 6/1-hr rain ratios. These values were interpolated from figure 4.3.

To determine 6-hr PMP for a basin, use figure 4.3 (or table 4.4) and the geographical distribution of 6/1-hr ratios given in figure 4.7.

Table 4.4.--Durational variation of 1-mi² (2.6-km²) local-storm PMP in percent of 1-hr PMP (see figure 4.3)

6/1-hr		•	Durati	on (hr)					
ratio	1/4	1/2	3/4	1	2	3	4	5	6
	•								
1.1	86	93	97	100	107	109	110	110	110
1.2	74	89	95	100	110	115	118	119	120
1.3	74	89	95	100	114	121	125	128	130
1.4	63	83	93	100	118	126	-132	137	140
1.5	63,	83	93	100	121	132	140	145	1.50
1.6	43 .	70	87	100	124	138	147	1.54	160
1.8	43	70	87	100	.130	149	161	171	180
2.0	43	70	87	100	137	161	175	188	200

4.5 Depth-Area Relation

We have thus far developed local-storm PMP for an area of 1 mi^2 (2.6 km²). To apply PMP to a basin, we need to determine how $1-\text{mi}^2$ (2.6-km²) PMP should decrease with increasing area. We have adopted depth-area relations based on rainfalls in the Southwest and from consideration of a model thunderstorm.

HMCLODED AREA TRACE

> 24 13 5.5

347

245

382

570 772

997

1293

-5/2 (40)

23

\$.5 23

:38

220

300

181

200

36.438

10

· Prate a

SOHYET

G

DEST 4.585 B

SCALE 1.100,000

Figure 4.10. -- Idealized local-storm isonyetul pattern.

storm period. The sequence of hourly incremental PMP for the Southwest 6-hr thunderstorm in accord with this study is presented in column 2 of table 4.7. A small variation from this sequence is given in Engineering Manual 1110-2-1411 (U. S. Army, Corps of Engineers 1965). The latter, listed in column 3 of table 4.7, places greater incremental amounts somewhat more toward the end of the 6-hr storm period. In application, the choice of either of these distributions is left to the user since one may prove to be more critical in a specific case than the other.

ţ

1

Table 4.7.--Time sequence for hourly incremental PMP in 6-hr storm

	HMR No. 5 ¹	EM1110-2-1411 ²
Increment	Sequence I	Position
Largest hourly amount	Third	Fourth
2nd largest	Fourth	Thicd
3rd largest	Second	Fifth
4th largest	Fifth	Second
Sth largest	First	Last
1845	Last	First
	10 C	

¹U. S. Weather Bureau 1947.

2U. S. Corps of Engineers 1952.

Also of importance is the sequence of the four 15-min incremental PMP values. We recommend a time distribution, table 4.8, giving the greatest intensity in the first 15-min interval (U.S. Weather Bureau 1947). This is based on data from a broad geographical region. Additional support for this time distribution is found in the reports of specific storms by Keppell (1963) and Osborn and Renard (1969).

Table 4.8.--Time sequence for 15-min incremental PMP within 1 hr.

Sequence Position
First
Second
Third
Last

4.8 Seasonal Distribution

The time of the year when local-storm PMP is most likely is of interest. Cuidance was obtained from analysis of the distribution of maximum L-hr thunderstorm events through the warm season at the recording stations in Utah, Arizona, and in southern California (south of 37°N and east of the Sierra Nevada ridgeline). The period of record used was for 1940-72 with an average record length for the stations considered of 27 years. The month with the one greatest thunderstorm rainfall for the period of record at each station was noted. The totals of these events for each month, by States, are shown in table 4.9.

Table 4.9.--Seasonal distribution of thunderstorm rainfalls.

(The maximum event at each of 108 stations, period of record 1940-72.)

	•			Mo	enth					
	·.	М	Ţ	· .)	A	S	0	No.	of Cases	
	Utah	1	5.	9	14	5			34	
	Arlzona		4	16	19	4			43	
	S. Calif.*		14.	10	7				31	
No	of cases/mo	1	23	35	40	Ģ	()	•		

No. of cases/mo. 1 23 35 40 9

*South of 37°N and east of Sierra Nevada ridgeline.

Appendix C

HEC-HMS Output

Project: Cre	escent Junction E	Ex Simulation Ru	un: CW 25						
Start of Run:01Jan2006, 00:00Basin Model:Crescent Wash-eventEnd of Run:02Jan2006, 00:00Meteorologic Model:25-yr 24-hrCompute Time:18May2006, 13:20:23Control Specifications:1 day at 5 min step									
Volume Units: IN									
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)					
Crescent Wash	22.5600	2975.47	01Jan2006, 14:15	0.49					
I-70	22.5600	2975.47	01Jan2006, 14:15	0.49					

Start of Run:	01Jan2006, 00:00	Basin Model:	Crescent Wash-event
End of Run:	02Jan2006, 00:00	Meteorologic Model:	100-yr 24-hr
Compute Time	e: 18May2006, 13:20:55	Control Specifications:	1 day at 5 min step

Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)	
Crescent Wash	22.5600	5982.86	01Jan2006, 14:10	0.98	
I-70	22.5600	5982.86	01Jan2006, 14:10	0.98	

Project: Cre	escent Junction E	x Simulation R	un: CW PMP Lo	cal		
Start of Run: End of Run: Compute Tin	,	0:00 Meteo	•	Crescent Wash-PMP PMP Local 22 sq mi 1 day at 5 min step		
Volume Units	Volume Units: IN					
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)		
Crescent Wash	22.5600	45196.66	01Jan2006, 04:4	0 6.11		
Sink-1	22.5600	45196.66	01Jan2006, 04:4	0 6.11		

Start of Run:	01Jan2006, 00:00	Basin Model:	Basin 1-event
End of Run:	02Jan2006, 00:00	Meteorologic Model:	100-yr 24-hr
Compute Time	: 18May2006, 13:22:10	Control Specifications	: 1 day at 5 min step

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Basin 1	2.6300	2135.13	01Jan2006, 12:35	0.99
DP 6	2.6300	2135.13	01Jan2006, 12:35	0.99

.

.

4	

Project: Cr	escent Junction E	x Simulation Ru	un: BASIN 1-PM	PLOCAL			
Start of Run:01Jan2006, 00:00Basin Model:Basin 1-PMPEnd of Run:02Jan2006, 00:00Meteorologic Model:PMP Local 2.7 sq miCompute Time:18May2006, 13:22:40Control Specifications:1 day at 5 min step							
Volume Uni	Volume Units: IN						
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)			
Basin 1	2.6300	21287.52	01Jan2006, 03:2	5 7.77			
DP 6	2.6300	21287.52	01Jan2006, 03:2	5 7.77			

Project: Cre	scent_Junction_	Pr Simulation R	tun: Basin 1-100	
Start of Run: End of Run: Compute Tin	01Jan2006, 0 02Jan2006, 0 ne: 18May2006,	0:00 Meteo		in 1-event -yr 24-hr ay at 5 min step
Volume Units	s: IN		. -	
Ĥydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Basin 1 Routed	2.6300	2210.10	01Jan2006, 12:35	1.00
DP 6	2.6300	2210.10	01Jan2006, 12:35	1.00

Project: Cre	escent_Junction_	Pr Simulation F	Run: Basin 1-PMF)	
Start of Run: End of Run: Compute Tin	· · · · · · · · · · · · · · · · · · ·	0:00 Meteo		PMP I	1-PMP _ocal 2.7 sq mi at 5 min step
Volume Units	s: IN		· ·	-	
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak		Volume (IN)
Basin 1 Routed	2.6300	21321.77	01Jan2006, 03:2	5	10.80
DP 6	2.6300	21321.77	01Jan2006, 03:2	5	10.80

Project: Cre	escent Junction E	x Simul	ation Ru	un: BASIN 2-25		
Start of Run: End of Run: Compute Tir	•	00:00	Meteor	Model: rologic Model: I Specifications:	25-yr	
Volume Unit	s: IN	· · · · · ·				
Hydrologic Element	Drainage Area (MI2)	Peak Dis (CFS)	scharge	Time of Peak		Volume (IN)
Basin 2	8.9600	1726.31	•	01Jan2006, 13:3	30	0.49

01Jan2006, 13:30

0.49

1726.31

RR Bridge

8.9600

4	

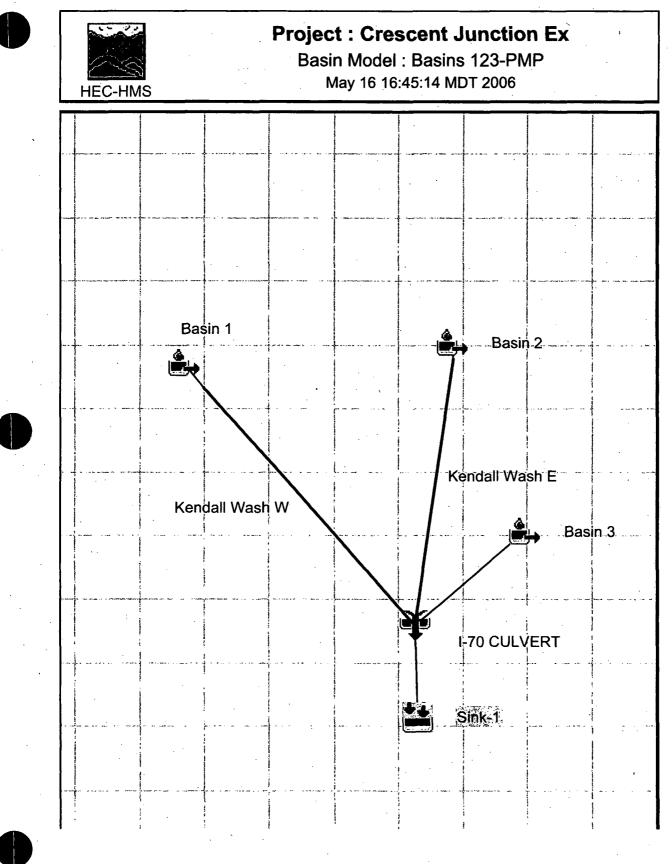
Project: Cre	escent Junction E	Ex Simulation R	un: BASIN 2-100	· · · · · · · · · · · · · · · · · · ·
Start of Run: End of Run: Compute Tin		0:00 Meteo	rologic Model:	Basin 2-event 100-yr 24-hr 1 day at 5 min step
Volume Units	s: IN	, ,		
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Basin 2	8.9600	3453.04	01Jan2006, 13:30) 0.99
RR Bridge	8.9600	3453.04	01Jan2006, 13:30) 0.99

Start of Run:	01Jan2006, 00:00	Basin Model:	Basin 2-PMP
End of Run:	02Jan2006, 00:00	Meteorologic Model:	PMP Local 9 sq mi
Compute Time:	18May2006, 13:26:56	Control Specifications:	1 day at 5 min step

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Basin 2	8.9600	29868.86	01Jan2006, 04:05	7.01
RR Bridge	8.9600	29868.86	01Jan2006, 04:05	7.01

4	

Project: Crescent Junction Ex Simulation Run: 123 100							
Start of Run:01Jan2006, 00:00Basin Model:Basins 123-eventEnd of Run:02Jan2006, 00:00Meteorologic Model:100-yr 24-hrCompute Time:18May2006, 13:32:06Control Specifications:1 day at 5 min step							
Volume Units	Volume Units: IN						
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)			
Basin 1	2.6300	2135.13	01Jan2006, 12:35	0.99			
Basin 2	8.9600	3453.04	01Jan2006, 13:30	0.99			
Basin 3	3.4700	1553.39	01Jan2006, 13:15	0.99			
I-70	15.0600	5108.83	01Jan2006, 13:30	0.99			
I-70 Culvert	15.0600	5108.83	01Jan2006, 13:30	0.99			
Kendall Wash E	8.9600	3441.54	01Jan2006, 13:35	0.99			
Kendall Wash W	2.6300	2066.77	01Jan2006, 12:40	0.99			



Project: Crescent Junction Ex Simulation Run: 123 PMP Local							
Start of Run:01Jan2006, 00:00Basin Model:Basins 123-PMPEnd of Run:02Jan2006, 00:00Meteorologic Model:PMP Local 15 sq miCompute Time:18May2006, 13:33:12Control Specifications:1 day at 5 min step							
Volume Units: IN							
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)			
Basin 1	2.6300	16218.18	01Jan2006, 03:25	6.38			
Basin 2	8.9600	27260.23	01Jan2006, 04:05	6.41			
Basin 3	3.4700	12147.64	01Jan2006, 03:55	6.41			
1-70	15.0600	40835.44	01Jan2006, 04:05	6.41			
I-70 Culvert	15.0600	40835.44	01Jan2006, 04:05	6.41			
Kendall Wash E	8.9600	26892.86	01Jan2006, 04:10	6.41			
Kendall Wash W	2.6300	15865.63	01Jan2006, 03:25	6.39			

Ļ

Project: Crescent_Junction_Pr Simulation Run: Basins 123-100						
Start of Run:01Jan2006, 00:00Basin Model:Basins 123-eventEnd of Run:02Jan2006, 00:00Meteorologic Model:100-yr 24-hrCompute Time:18May2006, 13:46:23Control Specifications:1 day at 5 min step						
Volume Units: IN						
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)		
Basin 1 Route	d2.6300	2210.10	01Jan2006, 12:3	5 1.00		
Basin 2	8.9600	3453.04	01Jan2006, 13:3	0 0.99		
Basin 3	3.4700	1553.39	01Jan2006, 13:1	5 0.99		
I-70	15.0600	5098.41	01Jan2006, 13:3	0 0.99		

5098.41

3441.54

2166.34

I-70 Culvert

Kendall Wash E 8.9600

Kendall Wash W 2.6300

15.0600

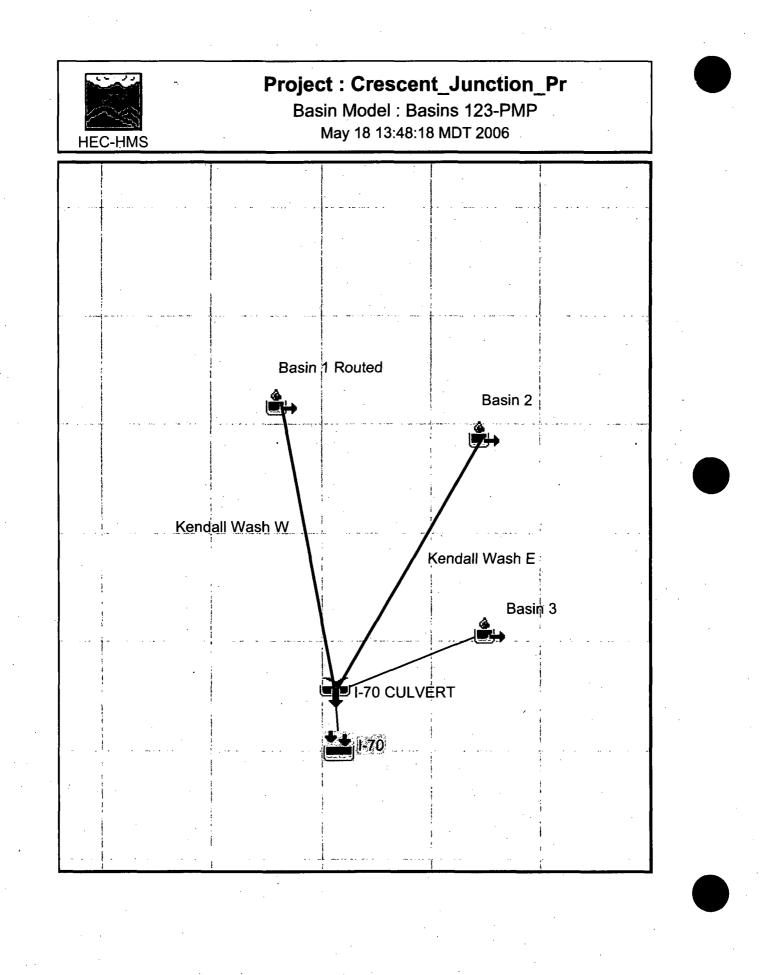
01Jan2006, 13:30

01Jan2006, 13:35

01Jan2006, 12:35

0.99

0.99


1.00

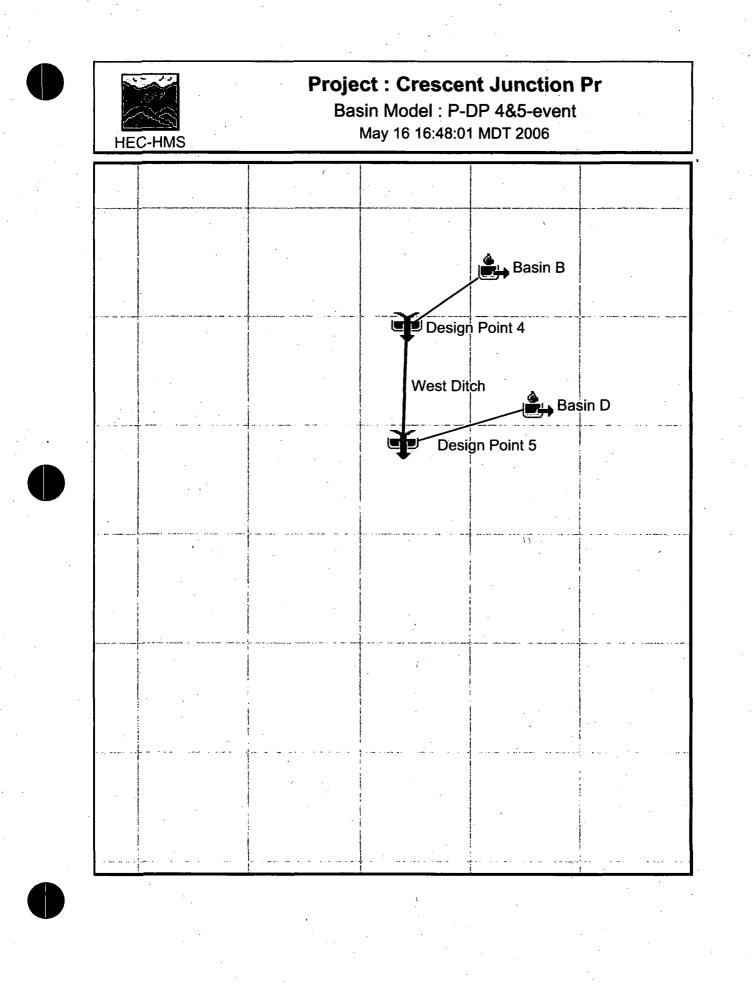
	Į.	
N	1	

Project: Cre	escent_Junction_	Pr Simulation F	Run: BASINS 123	B PMP
Start of Run: End of Run: Compute Tim	,	0:00 Meteo	•	Basins 123-PMP PMP Local 15 sq mi 1 day at 5 min step
Volume Units	s: IN	·		
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Basin 1 Routed	2.6300	16252.58	01Jan2006, 03:2	5 8.88
Basin 2	8.9600	27260.23	01Jan2006, 04:0	5 6.41
Basin 3	3.4700	12147.64	01Jan2006, 03:5	5 6.41
1-70	15.0600	40871.36	01Jan2006, 04:0	5 6.84
I-70 Culvert	15.0600	40871.36	01Jan2006, 04:0	5 6.84
Kendall Wash E	8.9600	26892.86	01Jan2006, 04:1	0 6.41
Kendall Wash W	2.6300	15899.38	01Jan2006, 03:2	5 8.89

Project: Ci	rescent_Junction_	Pr Simulation F	Run: DP 4&5-25	
Start of Run End of Run Compute Ti	•	00:00 Meteo	rologic Model:	P-DP 4&5-event 25-yr 24-hr 1 day at 5 min step
Volume Uni	its: IN			
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Basin B	0.5218	291.31	01Jan2006, 12:25	0.49
Basin D	0.3827	187.06	01Jan2006, 12:35	0.57
DP 4	0.5218	291.31	01Jan2006, 12:25	0.49
DP 5	0.9045	447.59	01Jan2006, 12:30	0.52
West Ditch	0.5218	281.01	01Jan2006, 12:25	5 0.49

Project: Ci	rescent_Junction_	Pr Simulation F	Run: DP 4&5-PM	P
Start of Run End of Run Compute Ti		00:00 Meteo	-	P-DP 4&5-PMP PMP Local <1 sq mi 1 day at 5 min step
Volume Uni	ts: IN	<i>t</i>		·
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Basin B	0.5218	5858.79	01Jan2006, 03:1	5 8.21
Basin D	0.3827	3426.58	01Jan2006, 03:2	8.48
DP 4	0.5218	5858.79	01Jan2006, 03:1	5 8.21
DP 5	0.9045	8722.28	01Jan2006, 03:2	8.34

5539.08


0.5218

West Ditch

8.24

01Jan2006, 03:15

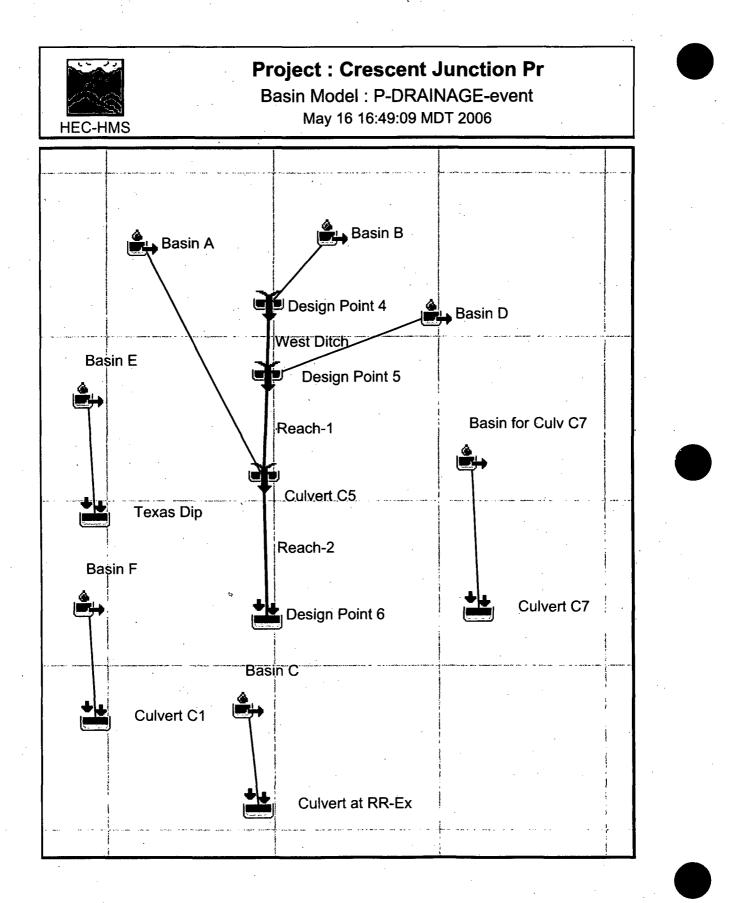
	Project: Crescent_Junction_Pr Simulation Run: BASIN C-25						
ſ	Start of Run:	01Jan2006, 00:00	Basin Model:	P-BASIN C-event			
	End of Run:	02Jan2006, 00:00	Meteorologic Model:	25-yr 24-hr			
	Compute Time:	18May2006, 13:56:17	Control Specifications:	1 day at 5 min step			

Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Basin C	0.1675	74.72	01Jan2006, 12:30	0.49
DP 3-ExCulv @ RR	0.1675	74.72	01Jan2006, 12:30	0.49

Project: Crescent_Junction_Pr Simulation Run: BASIN C-100							
Start of Run: End of Run: Compute Tin	01Jan2006, 0 02Jan2006, 0 ne: 18May2006,	0:00 Meteo	rologic Model:	P-BASIN C-event 100-yr 24-hr 1 day at 5 min step			
Volume Units	s: IN	· · · · · · · · · · · · · · · · · · ·					
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)			
Basin C	0.1675	146.99	01Jan2006, 12:30	0.99			
DP 3-ExCulv@RR	0.1675	146.99	01Jan2006, 12:30) 0.99			

Project: Crescent_Junction_Pr Simulation Run: BASIN C-PMP								
Start of Run: 01Jan2006, 00:00	Basin Model:	P-BASIN C-PMP						
End of Run: 02Jan2006, 00:00	Meteorologic Model:	PMP Local <1 sq mi						
Compute Time: 18May2006, 13:58:25	Control Specifications	: 1 day at 5 min step						


Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Basin C	0.1675	1488.43	01Jan2006, 03:20	8.18
DP3-Ex Culv@RR	0.1675	1488.43	01Jan2006, 03:20	8.18

Project: Cre	escent Junction	Pr Simulation R	un: P-DRAINAGE 25					
Start of Run: End of Run:		0:00 Basin 0:00 Meteo		RAINAGE-event r 24-hr				
Volume Units: IN								
Hydrologic [°] Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)				
Basin A	0.3456	192.54	01Jan2006, 12:25	0.49				
Basin B	0.5218	291.31	01Jan2006, 12:25	0.49				
Basin C	0.1675	74.72	01Jan2006, 12:30	0.49				
Basin D	0.3827	187.06	01Jan2006, 12:35	0.57				
Basin E	0.1839	91.30	01Jan2006, 12:30	0.49				
Basin F	0.0863	41.65	01Jan2006, 12:30	0.49				
Basin for Culv C7	0.4087	238.92	01Jan2006, 12:20	0.49				
Culv C1-DP 2	0.0863	41.65	01Jan2006, 12:30	0.49				
Cuiv C5	1.2501	610.57	01Jan2006, 12:30	0.52				
Culv C7	0.4087	238.92	01Jan2006, 12:20	0.49				
DP 4	0.5218	291.31	01Jan2006, 12:25	0.49				
DP 5	0.9045	447.59	01Jan2006, 12:30	0.52				
DP 6	1.2501	608.41	01Jan2006, 12:30	0.52				
Ex-Culv @ RR	0.1675	74.72	01Jan2006, 12:30	0.49				
Reach-1	0.9045	445.60	01Jan2006, 12:30	0.53				
Reach-2	1.2501	608.41	01Jan2006, 12:30	0.52				
Texas Dip	0.1839	91.30	01Jan2006, 12:30	0.49				
West Ditch	0.5218	281.01	01Jan2006, 12:25	0.49				

· · · ·

Appendix D

Rational Method Output

TIME OF CONCENTRATION

 $t_c = t_i + t_t$

Initial or Overland Flow = ti ti = $[0.395(1.1-C_5)SQRT(L)]/S^{0.33}$

Overland Travel Time = t_t

 $V = C_v S_w^{0.5}$

Where: C_v = conveyance coefficient from UD Table RO-2

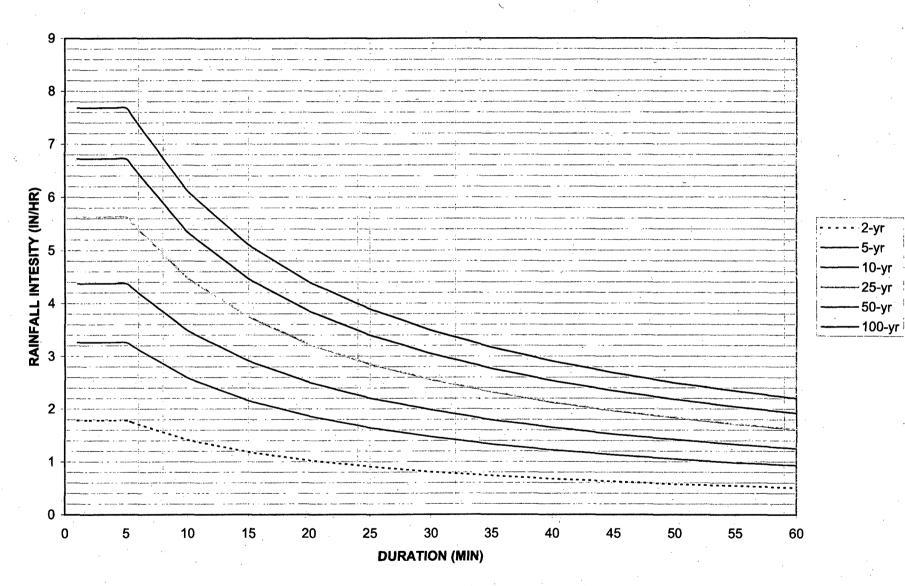
S_w = watercourse slope (ft/ft)

 $\dot{t}_{t} = L/60V$

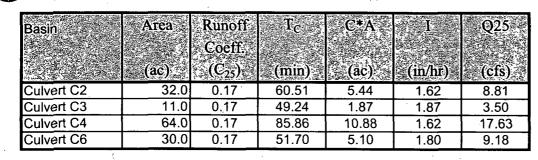
CHECK:

 $t_c = (L/180) + 10$ forUrbanized areas only

Minimum $t_c = 10$ minutes


ONSITE CULVERTS

Initial/Overland	Flow (t _i)				Gutter or C	hannelized	Flow (t _t)	······		Total Travel Time	check max	check min	Use
Basin	L	Slope	C ₅	Ti	L	Slope	C _v ¹	V	Tt	Tc=Ti+Tt	Tc	Tc	Tc
	(ft)	(ft/ft)		(min)	(ft)	(%)		(ft/sec)	(min)	Tc (min)	(min)	(min)	(min)
Culvert C2	500	0.014	0.09	36.56	1700	1.400	10.00	1.18	23.95	60.51	na	10.0	60.5
Culvert C3	500	0.014	0.09	36.56	900	1.400	10.00	1.18	12.68	49.24	na	10.0	49.2
Culvert C4	500	0.014	0.09	36.56	3500	1.400	10.00	1.18	49.30	85.86	na	10.0	85.9
Culvert C6	800	0.014	0.09	46.16	400	1.400	10.00	1.18	5.63	51.79	na	10.0	51.8


TABLE RO-2 Conveyance Coefficiant, C.

Type of Land Surface	Conveyance Coefficient, Cv
Heavy Meadow	2.5
Tillage/Field	5
Short pasture & lawns	77
Nearly bare ground	10
Grassed waterway	15
Paved areas	20

I-D-F CURVE FOR CRESCENT JUNCTION, UTAH

25 YEAR PEAK FLOWS

JSE RATIONAL METHOD TO CALCULATE PEAK FLOWS" b = CIA

Appendix E

Calibration and Check of Flows in Crescent Wash

The purpose of this appendix is to document the calibration and provide a check of calculated flows in Crescent Wash. The USGS had a gaging station in Crescent Wash at a point slightly downstream of the analysis point for this project. The drainage area at the old gage is 23.3 square miles, as opposed to 22.5 sq miles at the I-70 crossing. There are 10 years of record taken between 1959 and 1969. It should be noted that the basin is relatively undeveloped so flows taken 37 to 47 years ago should be relatively typical of the basin today. However, there are only 10 years of record. Thus information derived from the gaging station is considered only as a relative check for order of magnitude compared to the computations.

Using the 10 years of data the USGS developed a flood frequency curve using Log-Pearson Type III probability distribution (Vaill, 2000). The results of this analysis are shown in Table E1, below. These flows are compared to the 25-year and 100-year floods calculated in HEC-HMS using the specified unit hydrograph, a CN value of 70 for determining initial losses and a constant infiltration rate of 0.3 in/hour. Precipitation values are derived from NOAA Atlas 14. The results of the analysis are within 3% of the USGS results, when adjusted for drainage area. Thus the calculated values are utilized for this project and the parameters (CN, infiltration, and precipitation) are applied to the ungaged basins within the study area for determining the 25-year and 100-year floods.

Storm Event	USGS (USGS (23.3 mi ²)		S (22.5mi ²)
	cfs	cfs/mi ²	cfs	cfs/mi ²
25-year storm	3,260	140	3,021	134
100-year storm	6,460	277	6,073	•270

 Table E1. Flow comparison for Crescent Wash, 25-year storm

Several additional gaged sites were also checked for peak flows per square mile. Sites selected for comparison are similar in elevation and size and are in similar environmental conditions as the project site. Peak flows were calculated by the USGS using Log-Pearson Type III probability distribution (Vaill, 2000). Table E2 indicates that the flows per square mile are conservative as compared to the other basins. However, given the gaged information available on Crescent Wash, the calculated values will be utilized.

Station no.	Station Name	DA, mi ²	elev	Q _{25,} cfs	Q _{25/} DA _, cfs/mi ²	Q _{100,} cfs	Q _{100/} DA _, cfs/mi ²
9181000	Onion Creek nr Moab, Ut	18.8	5,702	2,470	131.4	3,380	179.8
9185200	Kane Springs Canyon nr La Sal, Ut	17.8	6,620	1,340	75.3	1,770	99.4
9306235	Corral Gulch below Water Gulch nr Rangely, Co	8.6	7,740	382	44.4	1,120	130.2
9606242	Corral Gulch nr Rangely, Co	31.6	7,490	883	. 27.9	2,450	77.5
9328900	Crescent Wash nr Crescent Junction, Ut	23.3	6,180	3,260	139.9	6;460	277.3

Table E2. Comparison of Peak Flows per Square Miles

Analysis of the Magnitude and Frequency of Floods in Colorado

By J.E. Vaill

i

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 99-4190

Prepared in cooperation with the COLORADO DEPARTMENT OF TRANSPORTATION and the BUREAU OF LAND MANAGEMENT

Denver, Colorado 2000

Table 3. Drainage-basin characteristics and flood-frequency data at streamflow-gaging stations-Continued

(LATDEG, latitude in decimal degrees: LNGDEG, longitude in decimal degree: DAREA, drainage area in square miles: YRSPK, years P2, P5, P10, P25, P100, P200, and P500 are the indicated recurrence intervals for the 2-year, 5-year, 10-year, 50-year, 100-year.

Station number	Station name	LATDEG	LNGDEG	DAREA	YRSPK	ELEV	PRECIP
09302500	Marvine Creek near Buford, Colo.	40.0383	107.4875	59.7	12	9,780	32.2 -
09303000	North Fork White River at Buford, Colo,	39.9875	107.6139	259.0	24	9,529	3().9 -
09303300	South Fork White River at Budges Resort, Colo.	39.8433	107.3342	52.3	19	10,569	40.0 -
09303320	Wagonwheel Creek at Budges Resort, Colo.	39.8428	107.3361	7.4	14	10.640	40.0
09303400	South Fork White River near Budges Resort, Colo.	39.8642	107.5333	128.0	19	10,250	40.0-
09304000	South Fork White River at Buford, Colo,	39.9744	107.6247	177.0	25	9,800	36.3 -
09304300	Coal Creek near Meeker, Colo.	40.0914	107.7694	25.1	11	7,956	28.5
09304500	White River near Meeker, Colo.	40.0336	107.8617	755.0	66	8.940	29.6
09306007	Piceance Creek below Rio Blanco, Colo.	39.8261	108.1825	177.0	21	7.628	24.5
09306058	Willow Creek near Rio Blanco, Colo.	39.8372	108.2436	48.4	12	-7.500	21.8
09306061	Piceance Creek above Hunter Creek, near Rio Blanco, Colo.	39.8506	108.2583	309.0	14	7.552	21.2
09306200	Piceance Creek below Ryan Gulch, near Rio Blanco, Colo.	39.9211	108.2969	506.0	_ 11	7.415	20.8
09306235	Corral Gulch below Water Gulch, near Rangely, Colo.	39.9061	108.5322	8.6	- 14	7.740	20.0
09306242	Corral Gulch near Rangely, Colo.	39,9203	108.4722	31.6	21	7,490	20.0
09306255	Yellow Creek near White River, Colo.	40.1686	108.4006	262.0	17	6,877	17.3
09306800	Bitter Creek near Bonanza, Utah	39.7533	109.3542	324.0	10	7.146	16.1
09307500	Willow Creek above diversions near Ouray, Utah	39.5664	109.5867	297.0	24	7.650	16.8
09308000	Willow Creek near Ouray, Utah	39.9389	109.6478	897.0	23	7.080	13.7
09328900	Crescent Wash near Crescent Junction. Utah	38.9422	109.8206	23.3	10	6,180	12.7
09340000	East Fork San Juan River near Pagosa Springs, Colo.	37.3694	106.8917	86.9	41	.10,200	39.0 -
09341500	West Fork San Juan River near Pagosa Springs, Colo.	37.3786	106.8989	87.9	26	10,000	42.0~
09342500	San Juan River at Pagosa Springs, Colo,	37.2661	107.0103	298.0	46	9,700	36.0 -
09343000	Rio Blanco near Pagosa Springs, Colo.	37.2128	106.7939	58.0	37	10.000	39.0-
<u> </u> 09343500	Rito Blanco near Pagosa Springs, Colo.	37.4936	106.9047	23.3	18	9.400	34.0 -
09344000	Navajo River at Banded Peak Ranch. near Chromo, Colo.	37.0853	106.6889	69.8	41	10,500	37.0 -
09345500	Little Navajo River at Chromo, Colo.	37.0456	106.8425	21.9	17	8,900	26.0
09346000	Navajo River at Edith, Colo.	37.0028	106.9069	172.0	36	9,200	33.0
09346200	Rio Amargo at Dulce, N. Mex.	36.9333	107.0000	168.0	- 26 -	7.930	17.7
09349500	Piedra River near Piedra, Colo,	37.2222	107.3422	371.0	34	9,400	33.0-
09349800	Piedra River near Arboles, Colo.	37.0883	107.3972	629.0	20	8.300	27.0
09350800	Vaqueros Canyon near Gobernador, N. Mex.	36.7333	107.2833	60.5	31		
09352500	Los Pinos River below Snowslide Canyon, near Weminuche Pass, Colo.	37.6389	107.3333	25.3	13	11,200	45.0
	number 09302500 09303000 09303300 09303300 09303300 09303300 09303300 09303300 09303300 09304300 09304000 09304300 09304300 09304300 09304300 09304300 09306235 09306242 09306255 09306242 09306242 09306242 09306242 09306242 09306255 09306200 09308000 09328900 09344000 09342500 09344000 09345500 09344000 09345500 09349500 09349800 09349800 09349800	numbername09302500Marvine Creek near-Buford, Colo.09303000North Fork White River at Buford, Colo.09303300South Fork White River at Budges Resort, Colo.(19303320)Wagonwheel Creek at Budges Resort, Colo.(19303320)South Fork White River near Budges Resort, Colo.(19303400)South Fork White River near Budges Resort, Colo.(19304000)South Fork White River near Budges Resort, Colo.(19304000)South Fork White River at Buford, Colo.(19304500)White River near Meeker, Colo.(19304607)Piceance Creek below Rio Blanco, Colo.(193060607)Piceance Creek above Hunter Creek, near Rio Blanco, Colo.(19306608)Willow Creek near Rio Blanco, Colo.(193066200)Piceance Creek below Ryan Gulch, near Rio Blanco, Colo.(19306221)Corral Gulch near Rangely, Colo.(19306223)Corral Gulch near Rangely, Colo.(19306800)Bitter Creek near White River, Colo.(19306800)Bitter Creek near Ouray, Utah(19307500)Willow Creek near Ouray, Utah(19308000)Willow Creek near Ouray, Utah(19308000)East Fork San Juan River near Pagosa Springs, Colo.(19341500)West Fork San Juan River near Pagosa Springs, Colo.(19343000)East Fork San Juan River near Pagosa Springs, Colo.(19343000)Rito Blanco near Pagosa Springs, Colo.(19343000)Rito Blanco near Pagosa Springs, Colo.(19344000)Navajo River at Banded Peak Ranch, near Chromo, Colo.(193	Station numberStation nameLATDEG09302500Marvine Creek near.Buford, Colo.40.038309303000North Fork White River at Buford, Colo.39.987509303300South Fork White River at Budges Resort, Colo.39.8433(19303320)Wagonwheel Creek at Budges Resort, Colo.39.8428(19303400)South Fork White River near Budges Resort, Colo.39.8428(19304000)South Fork White River near Budges Resort, Colo.39.8642(19304300)South Fork White River near Budges Resort, Colo.39.9744(19304300)Coal Creek near Meeker, Colo.40.0914(19304300)White River near Meeker, Colo.40.0336(19306007)Piceance Creek below Rio Blanco, Colo.39.8506(19306061)Piceance Creek below Rio Blanco, Colo.39.8506(19306200)Piceance Creek below Ryan Gulch, near Rio Blanco, Colo.39.90211(19306225)Corral Gulch below Water Gulch, near Rangely, Colo.39.90213(19306242)Corral Gulch near Rangely, Colo.39.9203(19306200)Bitter Creek near White River, Colo.40.1686(19308000)Bitter Creek near Ouray, Utah39.9389(1930255)Yellow Creek near Ouray, Utah39.9389(19304000)East Fork San Juan River near Pagosa37.3786(19344000)East Fork San Juan River near Pagosa37.3786(19344000)Kest Fork San Juan River near Pagosa37.3786(1934500)Kito Blanco near Pagosa Springs, Colo.37.1456(1934	Station number Station name LATDEG LNGDEG 09302500 Marvine Creek near Buford, Colo. 40.0383 107.4875 09303000 North Fork White River at Budges 39.8433 107.3342 09303300 South Fork White River at Budges 39.8433 107.3342 09303300 South Fork White River at Budges 39.8428 107.3342 09303400 South Fork White River near Budges 39.8428 107.3333 09304000 South Fork White River at Buford, Colo. 39.9744 107.6247 09304000 South Fork White River at Buford, Colo. 39.8721 107.8517 09304000 South Fork White River at Buford, Colo. 39.8721 108.1525 09304000 Piccance Creek helow Rio Blanco, Colo. 39.8372 108.2436 09306001 Piccance Creek helow Ryan Gulch, near 39.9061 108.5322 09306200 Piccance Creek helow Ryan Gulch, near 39.9061 108.5322 09306235 Corral Gulch hear Rangely, Colo. 39.9203 108.4722 09306000 Bitter Creek near Bonanza, Utah 39.7533 109	Station number Station name LATDEG LNGDEG DAREA 09302500 Marvine Creek near Buford, Colo. 40.0383 107.4875 59.7 09303000 North Fork White River at Buford, Colo. 39.8433 107.3342 52.3 09303300 South Fork White River at Budges Resort, Colo. 39.8428 107.3361 7.4 09303400 South Fork White River at Buford, Colo. 39.8422 107.5333 128.0 09304000 South Fork White River at Buford, Colo. 39.9744 107.6247 177.0 09304000 South Fork White River at Buford, Colo. 39.8421 107.5333 128.0 09304500 White River near Meeker, Colo. 40.0914 107.7694 25.1 09306007 Piccance Creek below Rio Blanco, Colo. 39.8506 108.1825 177.0 09306200 Piccance Creek above Hunter Creek. 39.8506 108.5322 &&6 09306235 Corral Gulch below Ryan Gulch, near 39.9061 108.5322 &<6	Station number Station name LATDEG LNGDEG DAREA YRSPK 09302500 Marvine Creek near.Buford, Colo. 40.0383 107.4875 59.7 12 09303000 North Fork White River at Budges, Resort, Colo. 39.8433 107.3342 52.3 19 09303200 South Fork White River at Budges, Resort, Colo. 39.8428 107.3361 7.4 14 09303400 South Fork White River at Budges, Resort, Colo. 39.8428 107.5333 128.0 19 09304400 South Fork White River at Buford, Colo. 39.9744 107.6247 177.0 25 09304500 Coal Creek near Meeker, Colo. 40.0914 107.7694 25.1 11 09304500 White River are Meeker, Colo. 40.0336 108.1825 177.0 21 09304500 Veitte River near Biolanc, Colo. 39.8261 108.1825 177.0 21 09306031 Piceance Creek how Riue Blanco, Colo. 39.8261 108.2583 309.0 14 09306202 Piceance Creek how Ruin Gulch, near 39.9061 <	Station number Station name LATDEG LNGDEG DAREA YRSPK ELEV 09302500 Marvine Creek near.Buford, Colo. 40.0383 107.4875 59.7 12 9,780 0930300 North Fork White River at Budges Resort, Colo. 39.8433 107.3342 52.3 19 10.569 0930320 Wagonwheel Creek at Budges Resort, Colo. 39.8428 107.3331 128.0 19 10.250 0930400 South Fork White River at Budges. 39.8428 107.5333 128.0 19 10.250 0930400 South Fork White River at Budges. 39.8421 107.5333 128.0 19 10.250 09304000 South Fork White River at Budges. 39.8421 107.5333 128.0 19 10.250 09304000 South Fork White River Colo. 40.0314 107.6817 75.0 21 7.628 0930600 Piccance Creek bolw Rio Bianco, Colo. 39.8261 108.258 30.00 14 7.550 09306235 Corral Gulch beare Maite River, Colo. 39.9061 10

of record: ELEV, mean basin elevation in feet: PRECIP, mean annual precipitation in inches; BSLOPE, mean basin slope in foot per foot, 00-year, and 500-year peak discharge; --, not available]

									:
Station number	BSLOPE	P2	P 5	P10	P25	P50	P100	P200	P500
09302500	0.245	318	400	447	498	532	563	591	626
09303000	0.237	1.380	1,890	2,230	2,640	2,940	3,240	3,540	3.930
09303300	0.198	924	1,380	1,700	2.120	2,440	2.760	3,090	3,540
09303320	0.159	188	260	307	365	406	447	488	540
09303400	0.256	1,700	2,480	3,030	3.770	4,350	4,940	5.570	6,440
09304000	0.259	1,800	2,310	2,600	2.920	3.140	3,340	3,530	3,760
09304300	0.285	50	80	100	126	144	162	180	. 203
09304500	0.222	3,170	4,210	4,840	5.600	6,140	6,650	7,150	7,780
09306007	0.283	- 148	294	411	576	710	851	1.000	1,210
09306058	0.272	14	36	58	99	140	191	254	360
09306061	0.263	193	381	534	758	943	1.140	1,360	1,660
09306200	0.243	145	255	. 345	479	594	723	867	1,080
09306235	0.253	14	69	158	382	673	1.120	1,780	3,110
79306242	0.236	39	175	- 383	883	1.510	2,450	3.810	6,490
9306255	0.197	154	508	982	2,040	3.310	5,170	7.850	13,200
9306800	0.287	115	451	894	1,820	2,840	4.210	6,000	9,150
09307500		241	476	692	1:050	1,380	1.780	2,260	3,030
09308000		636	1.860	3.170	5.510	7,810	10,600	14.000	19,300
09328900		439	1,140	1,890	3,260	4.670	6.460	8,720	12,600
09340000	0.387	924	1.350	1,640	2,020	2,300	2,600	2,900	3.310
09341500	0.400	1.320	1,830	2,170	2,590	2,910	3,230	. 3,550	3,970
09342500	0.342	2,610	4,160	5,480	7.570	9,460	11.700	14,300	18.400
09343000	0.428	853	1,200	1.450	1,780	2,030	2,290	2,570	2.950
09343500	. 0.239	190	313	401	519	610	704	800	932
09344000	0.368	650	897	1,070	1,280	1,450	1.620	1,790	2.020
09345500	0.225	146	253	334	447	538	633	733	874
09346000	0:277	852	1,310	1,660	2,160	2,570	3,020	3.510	4,230
09346200		1,030	1,490	1,830	2.280	2,650	3.040	3,44()	4,030
09349500	0.344	2,090	3,480	4.640	6,400	7,950	9,710	11.700	14,800
09349800	0.290	2,420	3,960	5,130	6,790	8.150	9,610	11,200	13,500
09350800		196	490	822	1,470	2,180	3.130	4,410	6.760
09352500		324	518	656	839	981	1,130	1,280	1,480

SUPPLEMENTAL DATA 33

Project: Crescent Junction	Ex Simulation Run:	CW 25
----------------------------	--------------------	-------

Start of Run: 01Jan200	6, 00:00	Basin Model:	Crescent Wash-event
End of Run: 02Jan200	3, 00:00	Meteorologic Model:	25-yr 24-hr
Compute Time: 16May200	6, 17:21:41	Control Specifications:	1 day at 5 min step

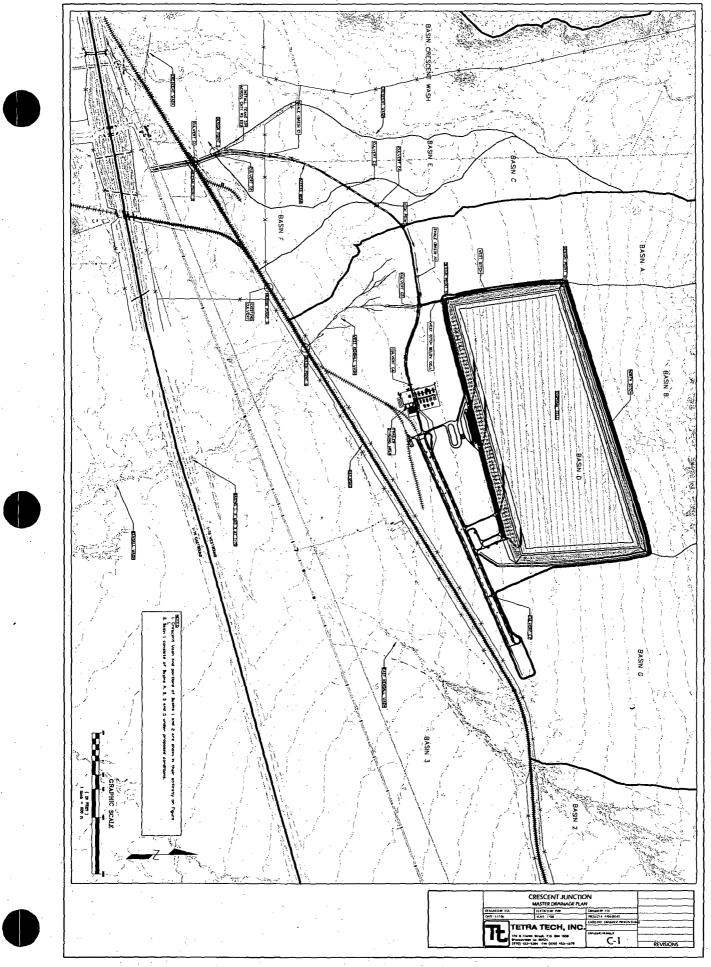
Volume Units: IN

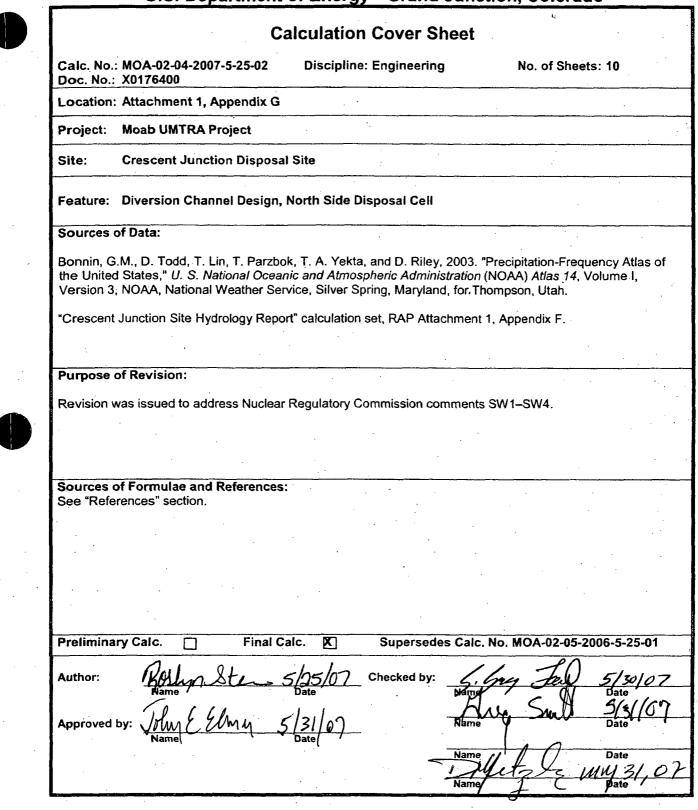
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Crescent Was	22.5600	3020.71	01Jan2006, 14:10	0.49
Sink-1	22.5600	3020.71	01Jan2006, 14:10	0.49

Project: Crescent Junction Ex Simulation Run: CW 100

Start of Run:	01Jan2006, 00:00	Basin Model:	Crescent Wash-event
End of Run:	02Jan2006, 00:00	Meteorologic Model:	100-yr 24-hr
Compute Time	: 15May2006, 15:48:31	Control Specifications	: 1 day at 5 min step

Volume Units: IN

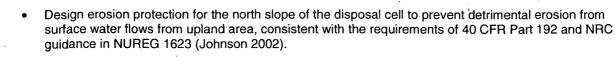

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Crescent Was	n22.5400	6072.68	01Jan2006, 14:10	0.98
Sink-1	22.5400	6072.68	01Jan2006, 14:10	0.98


Appendix F

Master Drainage Plan

· · · · · ·

U.S. Department of Energy—Grand Junction, Colorado


0

Diversion Channel Design, North Side Disposal Cell Doc. No. X0176400 Page 2

No text for this page

Problem Statement:

- Provide grading such that upland flow will drain to the west around the north side of the disposal cell.
- Provide protection at northwest corner of disposal cell to prevent headward erosion as flow is released to native ground.

Method of Solution:

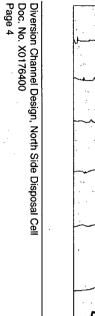
The disposal cell needs protection against erosion from precipitation events occurring in the upland area. A traditional diversion channel will likely become inundated with silt over time, reducing its capacity to carry water. Therefore, water will be allowed to flow along the north slope of the disposal cell. The north slope of the disposal cell will be armored to allow water to flow at the toe without negatively impacting the disposal cell. Excavation along the toe of the north slope will create a uniform slope that drains to the west.

The magnitude of the probable maximum flood (PMF) is obtained from the "Crescent Junction Site Hydrology" calculation (RAP Attachment 1, Appendix F). The depth and velocity of flow associated with the PMF is calculated using Manning's equation. The size of rock required to prevent erosion is calculated using the Safety Factor method as outlined in Chapter 3 of Appendix D of NUREG 1623 (Johnson 2002).

In addition to rock protection on the slopes of the disposal cell, sufficient riprap will be placed within the diversion channel bed to act as self-launching protection to prevent undercutting beneath the north slope of the disposal cell.

Assumptions:

- Topographic maps provided in the "Crescent Junction Site Hydrology" calculation (RAP Attachment 1, Appendix F) are accurate.
- Riprap stone is angular, possesses a specific gravity of 2.65, and has a minimum durability criteria score of 80 (Johnson 2002); thus it will not require oversizing for use in frequently saturated areas.
- Upland area contributes flow to the disposal cell uniformly, such that flows along any reach of the north toe can be calculated as a ratio of length of reach to total length of north toe multiplied by total flow at northwest corner.


Calculation:

- The upland drainage basin for the proposed disposal cell was determined in the "Crescent Junction
- Site Hydrology" calculation (RAP Attachment 1, Appendix F), and is shown in Figure 1. A PMF flow rate of 5,859 cubic feet (ft) per second (cfs) is the reported flow rate at the northwest corner of the cell.
- The north slope of the disposal cell is divided into five reaches, each of approximately 1,000 ft long.
- In areas not requiring excavation to meet the 0.5 percent channel bed grade, a V-shaped channel will convey flow, with the south slope consisting of the 5:1 (20 percent) side slope of the disposal cell, and the north slope consisting of natural ground at an approximate slope of 2.8 percent. In areas requiring excavation, the channel will consist of 5:1 side slopes with a 10-ft bottom width. Overbank flow will have a north slope of 2.8 percent.
- Invert slope of the channel is computed from the difference in elevation between the northeastern end to the southwest end, divided by the length between them:

(4,990 ft - 5,014 ft)/4,955 ft = 0.005, [-0.5%]

U.S. Department of Energy April 2007

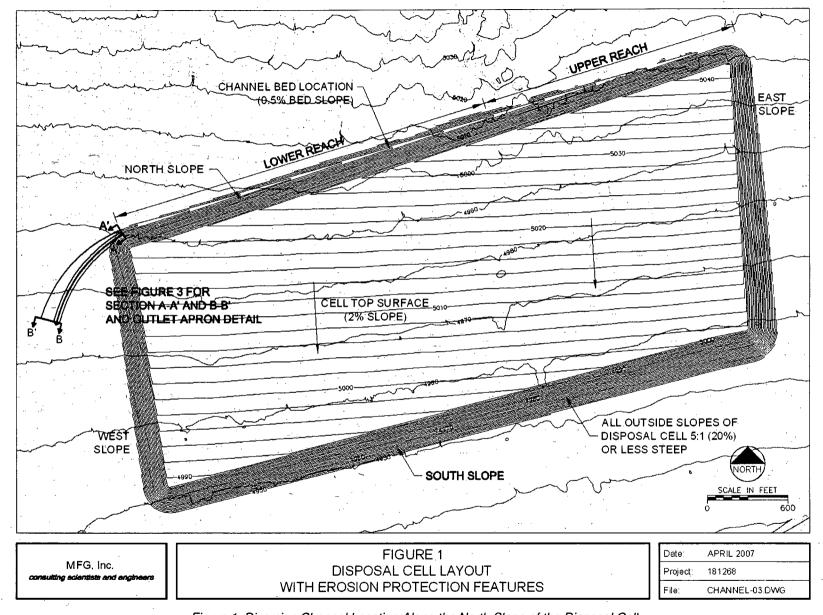


Figure 1. Diversion Channel Location Along the North Slope of the Disposal Cell

U.S. Department of Energy April 2007 Manning's n is computed using procedures discussed by Abt et al. (1987) and Abt and Johnson (1991) as follows:

$$n = 0.0456 * (D_{50} * S)^{0.159}$$

where: *n* is Manning's *n*,

 D_{50} is the mean riprap diameter in inches, and S is the channel slope (ft/ft).

A weighted value for *n* is used based on the length of erosion riprap and native ground submerged as:

$$n_{ave} = \frac{\sqrt{p_1 * n_1^2 + p_2 * n_2^2 + \dots p_n * n_n^2}}{\sqrt{p_1 + p_2 + \dots p_n}}$$
(2)

where: p is the wetted perimeter. Manning's *n* for the native ground is taken as 0.02.

The depth of flow along the toe is conservatively calculated for the point within the reach where the flow is most restricted (i.e. greatest cut required to meet 0.5 percent channel slope). The depth of flow during PMF flow is computed with Manning's equation for open-channel flow:

$$Q = \frac{1.486 * A * R_h^{\frac{2}{3}} * S^{\frac{1}{2}}}{R}$$
(3)

where: Q is the PMF flow rate,

A is the cross-sectional flow area,

R_h is the hydraulic radius equal to the cross-sectional flow area divided by the wetted perimeter, and all other variables are previously defined.

Assuming a trapezoidal cross-section, flow area and hydraulic radius are expressed as a function of the flow depth (y), base width of the channel (B) and two side slopes, s_1 and s_2 (ft/ft), by:

$$A = \frac{0.5 * y^2}{s_1} + \frac{0.5 * y^2}{s_2} + y * B$$
(4)

Hydraulic radius is evaluated by:

$$R_{h} = \frac{A}{\sqrt{y^{2} + \left(\frac{y}{s_{1}}\right)^{2} + \sqrt{y^{2} + \left(\frac{y}{s_{2}}\right)^{2} + B}}$$

(5)

(1)

For each reach of the north toe, equations (3), (4) and (5) are solved simultaneously to obtain depth of flow y.

Riprap to Protect Against Flows Within Channel:

Riprap size is determined using the Safety Factor Method (Johnson 2002) by computing the tractive shear stress (τ , psf) at the base of the channel as:

$$\tau = \gamma_w * S * y$$

(6)

(7)

where: γ_w is the unit weight of water (62.4 pcf),

y is the depth of flow (ft),

S is the channel slope (ft/ft) as previously defined.

Tractive shear stress is related to the mean rock size through equation (6) of the Army Corps of Engineers (ACE) (ACE 1994) as:

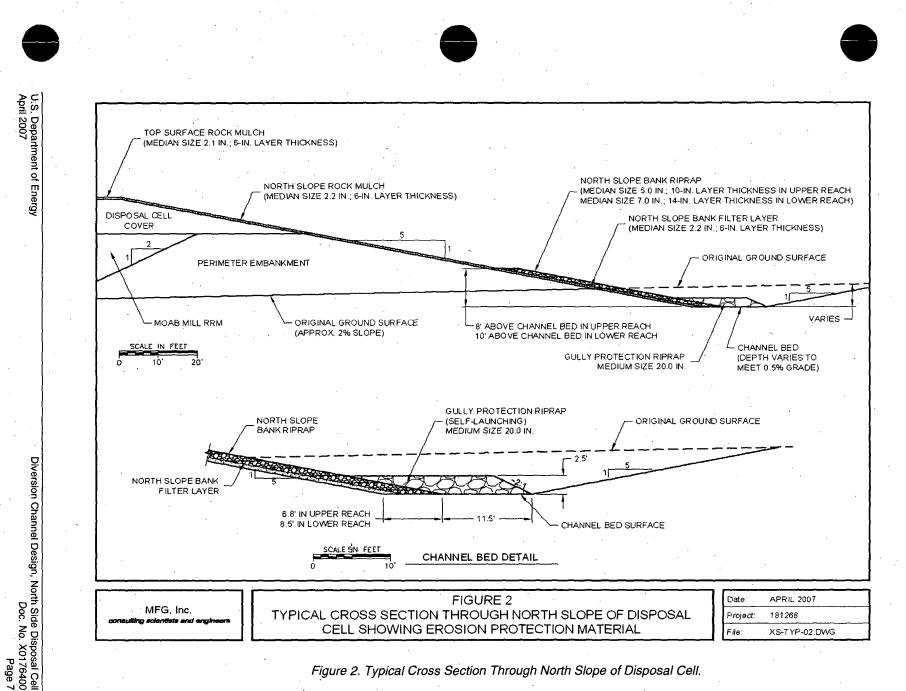
$$\tau = \alpha^* (\gamma_{\rm s} - \gamma_{\rm w}) * \mathsf{D}_{56}$$

where: γ_s is the unit weight of riprap (62.4 pcf times specific gravity of 2.65), and α is a coefficient of 0.04.

Equation (6) and (7) are solved simultaneously. The resulting D_{50} is used as input into Equation (2), and all equations are solved iteratively until a depth of flow, computed rock size, and Manning's *n* converge.

For construction purposes, the diversion channel and north erosion protection are divided into two reaches. Results for computed parameters for each reach are shown in Table 1. Further calculations are shown in Appendix A.

Reach	Distance of Reach from Northeast Corner of Disposal Cell (ft)	Maximum Flow (cfs)	Maximum Depth of Flow (ft)	Minimum D₅₀ Required (inches)
Upper Reach, Left Channel Slope	0 to 2,000	2,344	6.0	5.0
Lower Reach, Left Channel Slope	2,000 to 5,000	5,859	8.0 .'	7.0
Channel Bottom	All Reaches	469	3.9	30


Table 1. Computed Depth of Flow and Required Rock Size for North Diversion Channel.

Riprap should extend from the base of channel to the maximum depth of flow, as shown on Figure 2.

Riprap to Protect Against Flow from Gullies Discharging Into Channel:

Existing and future gullies upstream of the diversion channel will discharge into the diversion channel. Due to the steeper slopes of the natural gullies, the riprap along the channel base is increased to protect against the higher flow velocities from the gullies. In order to estimate the potential scour depth and flow velocities from natural gullies, it is assumed that the 5,859 cfs of flow reporting to northwest corner of disposal cell ("Crescent Junction Site Hydrology," RAP Attachment 1, Appendix F) is accumulated uniformly along the 5,000 ft of the north toe of the disposal cell (i.e. unit flow is approximately 1.17 cfs/ft). It is conservatively assumed that some of the larger gullies have a swath of up to 400 ft that contribute to flow in the gully. Therefore, the PMF associated with a gully is calculated to be up to 470 cfs. Using this flow, an assumed v-channel configuration of the gully with 2:1 (50 percent) side slopes, and a gully slope of approximately 3 percent, the maximum scour depth was calculated using procedures outlined in NUREG 1623 (Johnson 2002) and U.S. Department of Transportation (DOT 1983).

The maximum scour depth associated with a gully is estimated to be 5.4 ft. Using the Safety Factor Method, the required rock size to protect against the gully flows is 20 inches. Following guidance given in NUREG 1623, the rock placed in the channel bottom is designed to collapse into the scoured area that occurs immediately upslope of the diversion channel. The thickness of launched rock should be a minimum of 1.5 times the average rock size. A rock volume of 38 cubic feet per linear foot of channel is required. This rock volume assumes the scour hole develops at a slope of 1V to 2H to a depth of 5.4 ft, the collapsed rock thickness in the scour hole is 1.5 times the average rock size, and assumes approximately 25 percent of the launched rock is lost downstream.

Riprap for Diversion Channel Outlet:

As the diversion channel reaches the west edge of the disposal cell, it continues approximately 500 ft west of the cell, turns south and discharges the flow onto natural ground. The channel extends an adequate distance west of the cell to minimize the possibility of gully headcutting to impact the disposal cell. A 4-ft-high riprap-protected berm is used to divert the water away from the cell. The channel width at the outlet will transition from 11.5 ft to 100 ft in order to slow flow velocities. The rock size within the outlet will increase as the flow velocities increase due to the steepening slope. Assuming a unit flow of 64 cfs/ft across the outlet apron, a maximum scour depth at the outlet is estimated to be approximately 5 ft. A preformed rock slope will be constructed extending vertically to the estimated depth of scour along a 10H:1V buried slope. Using the Abt and Johnson (1991) method, the required median rock size for this slope is 20 inches. The rock should be placed at a minimum rock depth of 1.5 times median rock size, or 30 inches.

Expected Operational Performance:

Run-on from frequent storm events will flow along the north edge of the disposal cell. Erosion and deposition of sediments from this run-on are expected to occur in the channel over the lifetime of the facility. Scour will occur locally where upstream gullies develop and discharge into the diversion channel. The 20-in rock placed in the bottom of the diversion channel is designed to launch into any formed scour hole and prevent undermining of the disposal cell. Erosion and deposition will occur along the channel as the channel system conforms to the local climate and ecology under frequent storm events.

During large-magnitude storm events, such as the design PMF, the higher flows may erode the sediments deposited during smaller events.

At the northwest corner of the disposal cell, at the termination of the channel, flow is spread out and transition to natural ground. It is expected that erosion will occur at this transition. The amount and distance of upstream migration of this scour will be limited by the buried rock slope. This rock slope is extended below the calculated depth of scour. Figure 3 shows the recommended channel cross-section and outlet.

Conclusion and Recommendations:

Riprap protection should follow minimum sizes specified in text and figures. Design should be reevaluated once a specific rock source and actual durability test data are available.

Computer Source:

Not applicable.

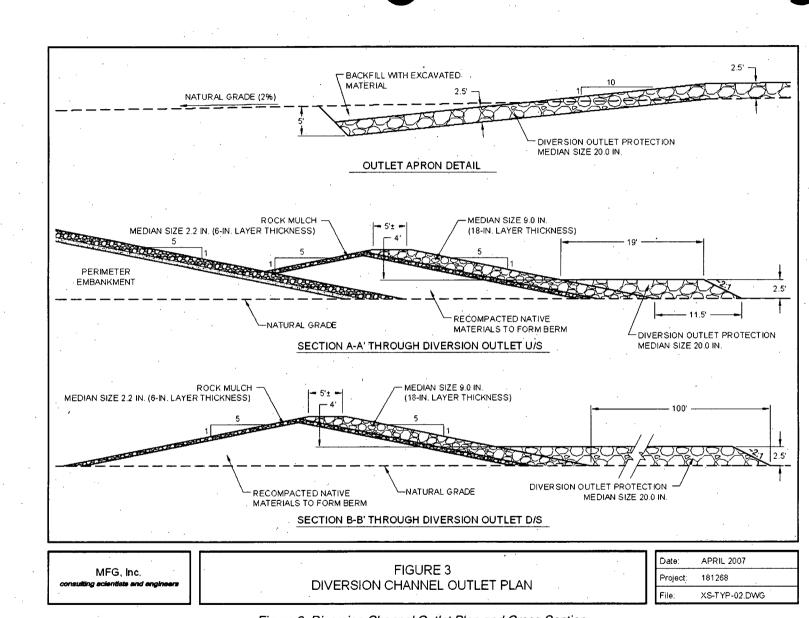


Figure 3. Diversion Channel Outlet Plan and Cross Section

U.S. Department of Energy April 2007

Channel Design, North Side Disposal Cell Doc. No. X0176400 Page 9

Diversion

References:

40 CFR 192. EPA (Environmental Protection Agency), "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings," *Code of Federal Regulations*, March 2007.

Abt, S.R., and T.L. Johnson, 1991. "Riprap Design for Overtopping Flow," *Journal of Hydraulic Engineering*, American Society of Civil Engineers, 117(8), pp.959–972.

Abt, S.R., M.S. Khattak, J.D. Nelson, J.F. Ruff, A. Shaikh, R.J. Wittler, D.W. Lee, and N.E. Hikle, 1987. *Development of Riprap Design Criteria by Riprap Testing in Flumes: Phase I*, NUREG/CR-4651.

ACE (U.S. Army Corps of Engineers), 1994. "Hydraulic Design of Flood Control Channels," EM 1110-2-1601, Office of the Chief of Engineers, Washington, D.C.

Chow, V.T., 1959. Open-Channel Hydraulics, McGraw-Hill Book Company, New York, New York.

DOT (U.S. Department of Transportation). 1983. *Hydraulic Design of Energy Dissipaters for Culverts and Channels*, Hydraulic Engineering Circular No. 14, September.

Graf, W., 2002. Fluvial Processes in Dryland Rivers, The Blackburn Press.

Johnson, T.L., 2002. *Design of Erosion Protection for Long-Term Stabilization Final Report*, NUREG 1623, U.S. Nuclear Regulatory Commission, September.

Schumm, S.A., M. D. Harvey, and C.C. Watson, 1988. *Incised Channels Morphology, Dynamics and Control,* Water Resource Publications, Littleton, Colorado.

Appendix A Supporting Calculations

5

		-		-		
Client:	Stoller		Job No.:	181268		
Project:	Crescent Junction	Disposal Cell	Date:	3/16/2007	· .	· · · · ·
Jetail:	Erosion Protection	n .	Computed By:	RTS		,
			·····			
pron Protection						
This is for areas where cha	innel has cut 5:1 s	lopes and then ov	verbank flow on nativ	e upland area	· ·	
Area: North side of disposal cell			_			
flow from upland area north of o	ell:	5859 cfs	Source: DP 45 PM			May 11, 2006
flow from disposal cell area A4:		0 cfs	Flow was included	in DP 45 PMP ca	alc.	
total flow:		5859 cfs	conservatively assu	umes peak flows	are cummulative f	from cell and upland
Reach 1	0 to 1000 feet from	northeast corner of d	isposal cell			
max flow in reach:	1171.8 cfs		ispecta con			
	1111.0 010					
Trapezoid or triangular channels	;					1
slope (ft/ft)	0.005 ft/ft					
Channel Side Slope 1 (ft/ft)	0.2 ft/ft					
Channel Side Slope 2 (ft/ft)	0.2 ft/ft					
maximum cut height in reach	2.5 ft	•				
-						
Channel Side Slope 3 (ft/ft)	0.028					
bottom width	19 ft		•			
Assume flow is in trapezoidal ch	annel with two 20% s	ide slones, and overt	ank flow			
Q	1171.8 cfs					
Assumed D50 on side slope (ft)	0.33 ft			· .		
Assumed D50 on side slope (in)						
D50 on channel bottom (ft)	1.67 ft					
D50 on channel bottom (in)	20 in					•
n riprap side	0.0245 Abt et a	I. 1987 as presented	in UMTRA TAD pg. 69 de	eveloped for taili	ngs piles	
n riprap bottom	0.0316 Abt et a	1987 as presented	in UMTRA TAD pg. 69 de	eveloped for taili	ngs piles	
n native soils	0.020	•	15			
weighted average n		0-2-1601, U.S. Army	Corps of Engineers			
Area of flow (A)	178.65 ft^2	· · · · · · · · · · · · · · · · · · ·				
Wetted Perimeter Rock Slope	19.81 ft			•		•
Wetted Perimeter Rock Bottom	19.00 ft	•		•		
/etted Perimeter Soil Slope	62.20 ft					
draulic Radius (R)	1.77 ft					
p Width (T)	100.4 ft					
waximum depth of flow (d)	3.88 ft	iterate with d un	til Q calc equals Q desi	gn		
Q calc	1171.8 cfs	note: d>max cut,	so overbank flow, but roo	k size is conserv	/ative	
average velocity (v)	6.559094 fps					
unit discharge	30.49921 cfs/ft	take as total O div	vided by average flow wid	1th		
unit discharge	00.40021 Clant		Noo by average now with	241		
Safety Factor Method	(for rock on side slo	pe of disposal cell)				
Angle of repose of rock (degees) 37 See Fig	4.1 of TAD or Fig 4.8	3 of NUREG 4620, typica	llv between 32 a	nd 42 for angular.	29 and 41 for rounded
Angle of repose of rock (rad))	0.646			, _0		
	5.0 XH:1V					
Side Slope						
Angle of side slope (degrees)	11.310					
Angle of side slope (radians)	0.197				,	•
Specific gravity of rock	2.65				· · · · ·	1 A A A A A A A A A A A A A A A A A A A
Concentration Factor	1 Typicall	y between 1.1 to 3.2	for slopes. Set to 1 for cl	hannel		
design flow (cfs)	1171.8					
max shear stress, τ	1.21 psf	· ·		*		•
Stability number for rock, η	0.742		1			
β	0.959					
P Stability number for rock, η'	0.674					
	0.0/4					
Factor of Safety for side slope						
rock	1.19	Iterate with D50	until FS equal or greate	er than 1.0	1999 - A.	
•						

Client:	Stoller	Job No.:	181268
Project:	Crescent Junction Disposal Cell	Date:	3/16/2007
Detail:	Erosion Protection	Computed By:	RTS

Apron Protection

This is for areas where channel has cut 5:1 slopes and then overbank flow on native upland area

Area: North side of disposal cell					
flow from upland area north of ce	li:	5859 cfs	Source: DP 45 PMP file from Pegg	y Bailey email on May 11, 2006	
flow from disposal cell area A4:		0 cfs	Flow was included in DP 45 PMP c	alc.	
total flow:		5859 cfs	conservatively assumes peak flows	are cummulative from cell and upland	
Reach 2	1000 to 2000 feet fro	om northeast corner of	lisposal cell		
max flow in reach:	2343.6 cfs				
Trapezoid or triangular channels					
slope (ft/ft)	0.005 ft/ft				
Channel Side Slope 1 (ft/ft)	0.2 ft/ft				
Channel Side Slope 2 (ft/ft)	0.2 ft/ft				
maximum cut height in reach	5.5 ft				
Channel Side Slope 3 (ft/ft)	0.028				
bottom width	19 ft				
Assume flow is in trapezoidal cha	nnel with two 20% si	de slopes			
Q	2343.6 cfs				
Assumed D50 on side slope (ft)	0.42 ft				
Assumed D50 on side slope (in)	5 in	• •			
D50 on channel bottom (ft)	1.67 ft	•			
D50 on channel bottom (in)	20 in				
n riprap side		1987 as presented in	JMTRA TAD pg. 69 developed for taili	nas piles	
n riprap bottom		•	JMTRA TAD pg. 69 developed for taili	•	
n native soils	0.020		sinner me pg. co developed for tall		
weighted average n)-2-1601, U.S. Army Co	ros of Engineers	4	
Area of flow (A)	250.98 ft^2	-2-1001, 0.3. Anny 0	ipa of Eligineera		
Wetted Perimeter Rock Slope	27.71 ft			· •	
Wetted Perimeter Rock Bottom	19.00 ft				
Wetted Perimeter Soil Slope	27.71 ft				
Hydraulic Radius (R)	3.37 ft				
Top Width (T)	73.4 ft	•	•		
	• 5.44 ft	الغميمة بيراغان مغممها	Deale aguala O dealan		
Maximum depth of flow (d)		iterate with d until	Q calc equals Q design		
Q calc	2343.6 cfs				
average velocity (v)	9.33777 fps	taka as tatal O divid	d hu avarage flavy width		
unit discharge	50.75327 cfs/ft	take as total Q uivid	ed by average flow width		
Safety Factor Method	(for rock on side slop	ne of disposal cell)			
	(,			
Angle of repose of rock (degees)	37 See Fig.	4.1 of TAD or Fig 4.8 o	NUREG 4620, typically between 32 a	nd 42 for angular, 29 and 41 for rounde	d
Angle of repose of rock (rad))	0.646	•		- · ·	
Side Slope	5.0 XH:1V		·	·	
Angle of side slope (degrees)	11.310				•
Angle of side slope (radians)	0.197				
Specific gravity of rock	2.65	· .			
Concentration Factor		v between 1.1 to 3.2 for	slopes. Set to 1 for channel		
design flow (cfs)	2343.6		•		
max shear stress, τ	1.70 psf				
Stability number for rock, n	0.830				
β	1.011	•	•		
Stability number for rock, n'	0.767				
Factor of Safety for side slope	0.101				
rock	1.08	Iterate with D50 ur	II FS equal or greater than 1.0		
	1.00		an i e aquai ei greater thair i.u		
	•	. · ·			
		ь.			

Client: Project: \etail:	Stoller Crescent Junction Erosion Protection		Job No.: Date: Computed By:	181268 3/16/2007 RTS	· .
Apron Protection					
This is for areas where cha	nnel has cut 5:1 s	slopes and then ov	verbank flow on nativ	ve upland area	
Area: North side of disposal cell		· .	•		
flow from upland area north of cel	H:	5859 cfs			y email on May 11, 2006
flow from disposal cell area A4:		0 cfs 5859 cfs	Flow was included i		mmulative from cell and upland
Reach 3		om northeast corner o	f disposal cell		
max flow in reach:	3515.4 cfs				
Trapezoid or triangular channels					
slope (ft/ft)	0.005 ft/ft				
Channel Side Slope 1 (ft/ft)	0.2 ft/ft				
Channel Side Slope 2 (ft/ft)	0.2 ft/ft				
maximum cut height in reach	7.5 ft			·	
Channel Side Slope 3 (ft/ft)	0.028	¢ .			
bottom width	19 ft				
			• •	й. 1	
Assume flow is in trapezoidal cha		ide slopes			
	3515.4 cfs	*			
Assumed D50 on side slope (ft)	0.50 ft				
Assumed D50 on side slope (in)	6 in				
D50 on channel bottom (ft)	1.67 ft				
D50 on channel bottom (in)	20 in				
n riprap side			UMTRA TAD pg. 69 de		
n riprap bottom		, 1987 as presented in	1 UMTRA TAD pg. 69 de	eveloped for tailings pile	35
n native soils	0.020	0 4004 11 0 4			
weighted average n)-2-1601, U.S. Army C	orps of Engineers		
Area of flow (A)	338.58 ft^2		•	•	
Wetted Perimeter Rock Slope	33.38 ft				
Vetted Perimeter Rock Bottom	19.00 ft	· · ·			
etted Perimeter Soil Slope	33.38 ft	· ·			
draulic Radius (R)	3.95 ft				
op Width (T)	84.5 ft				
Maximum depth of flow (d)	6.55 ft	iterate with d unti	I Q calc equals Q desig	gn	
Q calc	3515.4 cfs				
average velocity (v)	10.3829 fps				
unit discharge	67.96047 cfs/ft	take as total Q divi	ded by average flow wid	ith	
Safety Factor Method	(for rock on side slop	pe of disposal cell)	· ·		
Angle of repose of rock (degees)	37 See Fig	4:1 of TAD or Fig 4.8	of NUREG 4620 typical	lly between 32 and 42 f	for angular, 29 and 41 for round
Angle of repose of rock (rad))	0.646				or angular, 20 and 41 for 10th
Side Slope	5.0 XH:1V				
Angle of side slope (degrees)	11.310				
Angle of side slope (degrees) Angle of side slope (radians)	0.197				
	2.65				
		v between 1.1 to 3.2 fr	or slopes. Set to 1 for ch	hannel	
Specific gravity of rock	1 Tynically				
Specific gravity of rock Concentration Factor					
Specific gravity of rock Concentration Factor Jesign flow (cfs)	3515.4				
Specific gravity of rock Concentration Factor design flow (cfs) max shear stress, τ	3515.4 2.04 psf				· ·
Specific gravity of rock Concentration Factor design flow (cfs) max shear stress, τ Stability number for rock, η	3515.4 2.04 psf 0.833				
Specific gravity of rock Concentration Factor design flow (cfs) max shear stress, τ Stability number for rock, η 3	3515.4 2.04 psf 0.833 1.012				
Specific gravity of rock Concentration Factor design flow (cfs) nax shear stress, τ Stability number for rock, η	3515.4 2.04 psf 0.833				

Client:	Stoller		Job No.:	181268	
Project:	Crescent Junction	Disposal Cell	Date:	3/16/2007	
Detail:	Erosion Protection		Computed By:	RTS	
			•••npaile= =) ·		
Apron Protection			· .		
This is for areas where cha	annel has cut 5:1 s	lopes and then ove	erbank flow on nativ	ve upland area	
Area: North side of disposal cell					
flow from upland area north of c		5859 cfs	Source: DP 45 PM	P file from Peggy Bailey email on May 11, 2006	
flow from disposal cell area A4:	511.	0 cfs	Flow was included in		
total flow:		5859 cfs		umes peak flows are cummulative from cell and upland	
			·····, ····	· · · · · · · · · · · · · · · · · · ·	
Reach 4	3000 to 4000 feet fro	om northeast corner of	disposal cell	·	
max flow in reach:	4687.2 cfs				
Trapezoid or triangular channels					
slope (ft/ft)	0.005 ft/ft			•	
Channel Side Slope 1 (ft/ft)	0.2 ft/ft			· .	
Channel Side Slope 2 (ft/ft) maximum cut height in reach	0.2 ft/ft 5.5 ft		•		
•	0.028	•	••		
Channel Side Slope 3 (ft/ft) bottom width	0.028 19 ft				
	15 11		•		
Assume flow is in trapezoidal ch	annel with two 20% si	de slopes, and overba	nk flow		
Q	4687.2 cfs	• •			
Assumed D50 on side slope (ft)	0.58 ft	•			
Assumed D50 on side slope (in)	7 in		•		
D50 on channel bottom (ft)	1.67 ft				
D50 on channel bottom (in)	20 in				
n riprap side	0.0268 Abt et al.	1987 as presented in	UMTRA TAD pg. 69 de	eveloped for tailings piles	
n riprap bottom	0.0316 Abt et al.	1987 as presented in	UMTRA TAD pg. 69 de	eveloped for tailings piles	
n native soils	0.020				
weighted average n	0.023 EM 1110	I-2-1601, U.S. Army Co	orps of Engineers		
Area of flow (A)	、490.12 ft^2				
Wetted Perimeter Rock Slope	38.40 ft				
Wetted Perimeter Rock Bottom	19.00 ft				
Wetted Perimeter Soil Slope	100.63 ft				
Hydraulic Radius (R)	3.10 ft				
Top Width (T)	156.7 ft			. • • •	
Maximum depth of flow (d)	7.53 ft		Q calc equals Q desig		
Q calc	4687.2 cfs	note: d>max cut, so	overbank flow, but rock	K SIZE IS CONSERVATIVE	
average velocity (v)	9.563429 fps	taka oo totol O divid	ad hu ovorogo flow wid		
unit discharge	82.72764 cfs/ft	take as total Q divid	ed by average flow wid	10	
Safety Factor Method	(for rock on side slop	be of disposal cell)			
-					
Angle of repose of rock (degees	·	4.1 of TAD or Fig 4.8 o	f NUREG 4620, typical	lly between 32 and 42 for angular, 29 and 41 for rounded	
Angle of repose of rock (rad))	0.646				
Side Slope	5.0 XH:1V				
Angle of side slope (degrees)	11.310				
Angle of side slope (radians)	0.197			·	
Specific gravity of rock	2.65	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		
Concentration Factor	•••••	between 1.1 to 3.2 for	slopes. Set to 1 for ch	nannel .	
design flow (cfs)	4687.2			· · ·	
max shear stress, τ	2.35 psf				
Stability number for rock, η	0.822				
β Bit billton and a far and b	1.006		,		
Stability number for rock, η'	0.758				
Factor of Safety for side slope	1.00	Manada wittle DPC		· ·	
rock	1.09	iterate with DSU UP	til FS equal or greater		

Stoller Crescent Junction Disposal Cell Erosion Protection Job No.: Date: Computed By: 181268 3/16/2007

RTS

pron Protection

Client: Project: Detail:

This is for areas where channel has cut 5:1 slopes and then overbank flow on native upland area

				-			
Area: North side of disposal cell							
flow from upland area north of ce	II:	5859 cfs	Source: DP 45 PM	P file from Peaav	Bailev email on	May 11, 2006	3 . ·
flow from disposal cell area A4:		0 cfs	Flow was included i				
total flow:		5859 cfs	conservatively assu			from cell and	upland
			•		*	-	
Reach 5		om northeast corner of	f disposal cell				*
max flow in reach:	. 5859 cfs						•
· · · · · · · · · · · · · · · · · · ·							
Trapezoid or triangular channels	0.005.000				· ·		
slope (ft/ft)	0.005 ft/ft	•		•			
Channel Side Slope 1 (ft/ft)	0.2 ft/ft 0.2 ft/ft						
Channel Side Slope 2 (ft/ft) maximum cut height in reach	1.5 ft				· .		
Channel Side Slope 3 (ft/ft)	0.028						
bottom width	10 ft						
bollom width	. Io it						
Assume flow is in trapezoidal cha	nnel with two 20% s	ide slopes, and overba	ank flow				
Q	5859.0 cfs	,	1			•	•
Assumed D50 on side slope (ft)	0.50 ft	•					
Assumed D50 on side slope (in)	6 in						
D50 on channel bottom (ft)	1.67 ft						
D50 on channel bottom (in)	20 in	•					
n riprap side			UMTRA TAD pg. 69 de	• •	• •		
n riprap bottom		 1987 as presented in 	UMTRA TAD pg. 69 de	eveloped for tailing	gs piles		· ·
n native soils	0.020						
weighted average n		0-2-1601, U.S. Army C	orps of Engineers				
Area of flow (A)	610.14 ft^2	•					•
Wetted Perimeter Rock Slope	32.00 ft					·	
Wetted Perimeter Rock Bottom	10.00 ft				•	-	
Vetted Perimeter Soil Slope	178.31 ft						
draulic Radius (R)	2.77 ft	,					
op Width (T)	219.5 ft 6.28 ft	léennés voléh al roméli	O anto anuale O dest				
Maximum depth of flow (d) Q calc	5859.0 cfs		Q calc equals Q design o overbank flow, but roc		ativo		
average velocity (v)	9.602772 fps	note. u>max cut, st	Diverbalik now, but foc	K SIZE IS CUIISEIVE	IUAG		
unit discharge	141.5795 cfs/ft	take as total O divid	ded by average flow wid	Ith			
unit discharge			and by average non ma				
Safety Factor Method	(for rock on side slo	pe of disposal cell)		•			
	•	•			•		
Angle of repose of rock (degees)	37 See Fig	4.1 of TAD or Fig 4.8 d	of NUREG 4620, typical	lly between 32 an	d 42 for angular	, 29 and 41 fo	r rounded
Angle of repose of rock (rad))	0.646						
Side Slope	5.0 XH:1V	and the second se					
Angle of side slope (degrees)	. 11.310						
Angle of side slope (radians)	0.197						
Specific gravity of rock	2.65		·				
Concentration Factor		y between 1.1 to 3.2 fo	r slopes. Set to 1 for ch	nannel		. 1	
design flow (cfs)	5859						
max shear stress, τ	1.96 psf						
Stability number for rock, η	0.799						
β Stability symbol for cook, wh	0.993						
Stability number for rock, η'	0.734						
Factor of Safety for side slope rock	1.12	Itorato with DE0	ntil FS equal or greate	r than 1 0			
	1,12	neiale with D30 th	nur ro equal of greate				

					· .		
Client:	Stoller		Job No.:	404000			
Project:				181268			
-	Crescent Junction Dispo Erosion Protection	ISSI CAIL	Date:	3/16/2007			
Detail:	Erosion Protection		Computed By:	RTS			
Channel Outlet							
Channel Outlet							
Area: North side of disposal cell							
flow from upland area north of ce	ell:	5859 cfs	Source: DP 45 PMP	file from Peggy E	Bailey email on May 11,	2006	
additional flow from upland area	west of cell area	0 cfs					
total flow:		5859 cfs	conservatively assur	nes peak flows ar	e cummulative from cell	and upland	
Outlet1	immediately west of dispos	sal cell					
max flow in reach:	5859 cfs						
Trapezoid or triangular channels							
slope (ft/ft)	0.005 ft/ft		•				
Channel Side Slope 1 (ft/ft)	0.333 ft/ft						
Channel Side Slope 2 (ft/ft)	0.01 ft/ft				b.		
maximum cut height in reach	ft						
Channel Side Slope 3 (ft/ft)							
bottom width	19 ft			,			
Assume flow is in trapezoidal cha							
Q	5859.0 cfs	•					
Assumed D50 on side slope (ft)	0.75 ft		,	•			
Assumed D50 on side slope (in)	9 in						
D50 on channel bottom (ft)	1.67 ft				,		
D50 on channel bottom (in)	20 in						
n riprap side	0.0279 Abt et al. 1987						
n riprap bottom	0.0316 Abt et al. 1987	as presented in U	MTRA TAD pg. 69 dev	eloped for tailings	s piles		
n native soils	0.020						
weighted average n	0.021 EM 1110-2-16	01, U.S. Army Cor	ps of Engineers				
Area of flow (A)	757.04 ft^2						
Wetted Perimeter Rock Slope	11.55 ft						
Wetted Perimeter Rock Bottom	19.00 ft						
Wetted Perimeter Soil Slope	365.42 ft		•				•
Hydraulic Radius (R)	1.91 ft			•			
Top Width (T)		rate with d until Q) calc equals Q design	n			
Maximum depth of flow (d)	3.65 ft						
Q calc	5859.0 cfs	a an Antol O albitato.	d har manne fleraridet				
average velocity (v)			d by average flow width	n			
unit discharge	28.279661 cfs/ft 1.0	for angular, 1.4 fo	r rounded rock				
Sofaty Easter Mathed	(for rock on side slopes of	diversion obennel\					
Safety Factor Method	(IOI TOCK OIL SIDE SIDES OF	uversion channel)					
Angle of repose of rock (degees)	37 See Fig 4.1 of		NUREG 4620, typically	between 32 and	42 for angular, 29 and 4	11 for rounded	
Angle of repose of rock (degees)	0.646		NOTCEO HOZO, typically	Detween 52 and	+z ioi angulai, zo and -	+1 joi rounded	
Side Slope	3.0 XH:1V	•			· · · · · · · · · · · · · · · · · · ·		
Angle of side slope (degrees)	18.435						
Angle of side slope (radians)	0.322						
Specific gravity of rock	2.65						
Concentration Factor		een 1.1 to 3.2 for s	lopes. Set to 1 for cha	nnel			
design flow (cfs)	5859						
max shear stress, τ	1.14 psf		÷				· ·
Stability number for rock, n	0.310		· ·				
β	0.354					•	
Stability number for rock, η'		ate with D50 unti	I FS equal or greater	than 1.0			
Factor of Safety for side slope		boo ditu					
rock	1.57						
	,						
					•		

Client: Project: Vetail:	Stoller Crescent Junctior Erosion Protection	•	Job No.: Date: Computed By:	181268 3/16/2007 RTS	
Channel Outlet					
Area: North side of disposal of					
flow from upland area north of additional flow from upland are		5859 cfs 586 cfs		P file from Peggy Bailey email	
total flow:		6445 cfs	conservatively assu	imes peak flows are cummulati	ve from cell and upland
Outlet max flow in reach:	approximately 5500 6445 cfs	feet from northeast co	orner of disposal cell	•	• •
Trapezoid or triangular channe	els	. ·		•	
slope (ft/ft)	0.02 ft/ft				
Channel Side Slope 1 (ft/ft)	0.333 ft/ft				
Channel Side Slope 2 (ft/ft)	0.008 ft/ft				
maximum cut height in reach	ft				
Channel Side Slope 3 (ft/ft)					•
bottom width	100 ft				
Assume flow is in trapezoidal					
Q	6444.9 cfs				
Assumed D50 on side slope (I				• *	· · ·
Assumed D50 on side slope (i					
D50 on channel bottom (ft)	1.67 ft 20 in				
D50 on channel bottom (in) n riprap side		1 1087 as presented in		eveloped for tailings piles	·
n riprap bottom				eveloped for tailings piles	
n native soils	0.020	a. 1307 as presented i	rominion indi pg. 03 de	sveloped for tanings piles	
weighted average n		0-2-1601, U.S. Army (Corps of Engineers		
Area of flow (A)	615.48 ft^2	· - ····, -···, ·			
Wetted Perimeter Rock Slope	7.64 ft				
Wetted Perimeter Rock Bottor	n 100.00 ft			-	•
Wetted Perimeter Soil Slope	302.10 ft	•			
Iydraulic Radius (R)	1.50 ft				
p Width (T)	. 409.3 ft	iterate with d unti	I Q calc equals Q desig	gn	
aximum depth of flow (d)	2.42 ft				
calc	6445.0 cfs				
average velocity (v)	10.471333 fps		ded by average flow wid	lth.	
unit discharge	25.306641 cfs/ft	1.0 for angular, 1.4	for rounded rock		
Safety Factor Method	(for rock on side slo	pes of diversion chanr	iel)		
Angle of repose of rock (dege	es) 37 See Fig 0.646	4.1 OT TAD OF FIG 4.8	or NUKEG 4620, typical	ly between 32 and 42 for angu	iar, 29 and 41 for rounded
Angle of repose of rock (rad)) Side Slope	5.0 XH:1V				· · · ·
Angle of side slope (degrees)	11.310 XH: IV				
Angle of side slope (degrees) Angle of side slope (radians)	0.197				
Specific gravity of rock	2.65			. •	
Concentration Factor		v between 1.1 to 3.2 fe	or slopes. Set to 1 for ch	annel	
design flow (cfs)	6444.9	,			
max shear stress, τ	3.02 psf				
Stability number for rock, η	0.820				
β	1.005				
Stability number for rock, n	0.756	Iterate with D50 u	ntil FS equal or greate	r than 1.0	
		· ·			•
Factor of Safety for side slope	1.09				
Factor of Safety for side slope rock		· .			
rock			· .		
rock Rock size of Channel Outlet T	•	991 method)	·	· .	
rock Rock size of Channel Outlet T q (cfs/ft)=	64 cfs/ft	• ·			
rock Rock size of Channel Outlet T	64 cfs/ft	991 method) .25 0.2 30 27	0.1 20		

Client:	Stoller	Job No.:	181268	· •
Project:	Crescent Junction Disposal Cell	Date:	7/24/2006	
Detail:	Erosion Protection	Computed By:	RTS	

Depth of Scour

Scour depth is based on equations presented by FHA based on erosion a culvert outlets Source: US Department of Transportation, Federal Highway Administration, Hydraulic Engineering Circular No. 14, September, 1983

	Flow over riprap	upland of cell, sheet wash		upland of celi, guliy	cfs for gully picking up
	Flow, q	1.17	cfs/ft	468.72	swath of 400 ft area
	Concentration factor	3		1	
	Design Flow,q	3.52	cfs/ft	468.72	cfs
	gravity, g		ft/s^2		ft/s^2
	time, t		minutes		minutes
	base time, to	316	minutes	316	minutes
	D50	native soil		native soil	
	D50				
	Slope of gully		(ft/ft)		(ft/ft)
	Manning's n	0.025		0.025	
	Side slopes of gully (XH:1V)	×		2.0	
	angle of side slopes of gully		÷		degrees
	Hydraulic radius of gully			1.764	
	Flow area of gully			31.105	ft^2
	depth of flow (iterate until	0.50		2.04	
	Qcalc=Qdesign) Q	0.59	π	3.94 468.72	
	velocity	5.94	ft/c	400.72	
	Native soils	0.54	145	13,07	10.34
	plasticity index of alluvial soil	5	%	5	%
	unconfined compressive strength		psi	1.4	• •
	critical tractive shear (lb/ft^2)	0.25414336	•	0.254143	•
	modified shear number	269.411592		1733.365	
	. ,				
	d84 bedding	0.12	mm	0.12	mm
	d16 bedding	0.002		0.002	
	gradation standard deviation, o	7.74596669		7.745967	
	gradation classification	graded	,	graded	
		Depth			
. '	α	0.86			
	β	0.18		•	
	θ	0.1			,
	αe	1.37			
	equivalent depth, ye	0.59	ft	1.40	ft
	depth of scour (ft)	1.6	ft	5.4	ft

from GEG, 2005 lab.data assumed value for silty clays (200 psf)

Average for Eolian/shweet wash materials from GEG, 2005 lab data Average for Eolian/shweet wash materials from GEG, 2005 lab data

coefficients for clay with PI 5-16

Client: Project: Detail:

Stoller

Crescent Junction Disposal Cell Rock size to protect against high velocity gully flows upstream of disposal cell Job No.: 181268 Date: 3/20/2007 Computed By: RTS

Safety Factor Method

Use for sizing rock to resist velocities from incoming gullies Assume gully locations can migrate, but spacing will be similar to existing conditions of 400-ft spacing Design for SF of 1.5 for non-PMF applications, and slightly greater than 1.0 for PMF Use for slopes less than 10 percent

	Top Slope
Slope (ft/ft)	0.03
angle α (rad)	0.030
	See Fig 4.1 of TAD or Fig 4.8 of NUREG 4620, typically
Angle of repose of rock (degees)	37 between 32 and 42 for angular, 29 and 41 for rounded
Angle of repose of rock (rad))	0.646
Specific gravity of rock	2.65
PMP flow in gully, Q (cfs)	468.72 cfs for gully picking up swath of 400 ft area
average width of flow in gully (ft)	7.89 area/depth assuming 2H:1V triagular shaped gully
PMP unit flow (cfs/ft)	59.43 Q/width
Depth of flow (ft)	3.94 from "Depth of Scour" calculation sheet
Flow velocity (ft/s)	15.07 from "Depth of Scour" calculation sheet
ave shear stress	7.38
Assumed D50 (in) #1	20
Stability number for rock #1	0.903
Factor of Safety for rock #1	1.06

Adjust assumed D50 until design criteria for Factor of Safety is greater than 1.0

P:\181268\RAP\Diversion Channel Design Calc Set\supporting files\North Toe Protection_2:Upland Gully flows

Client: Project: Detail: Stoller Crescent Junction Disposal Cell Depth of potential scour at diversion channel outlet Job No.: 181268 Date: 3/20/2007 Computed By: RTS

Depth of Scour

Scour depth is based on equations presented by FHA based on erosion a culvert outlets Source: US Department of Transportation, Federal Highway Administration, Hydraulic Engineering Circular No. 14, September, 1983

Flow at Outlet

		·
Flow, Q	6444.90 cfs	from "Outlet"
gravity, g	32.2 ft/s^2	
time, t	15 minutes	•
base time, to	316 minutes	
D50	native soil	
D50		
natural slope downgradient of		· · · ·
outlet	0.02 (ft/ft)	•
Manning's n	0.025	· · · ·
velocity	10.47 ft/s	from "Outlet"
depth of flow	2.42 ft	from "Outlet"
Native soils		
plasticity index of alluvial soil	5.%	from GEG, 2005 lab data
		assumed value for silty clays (200
unconfined compressive strength	1.4 psi	psf)
critical tractive shear (lb/ft^2)	0.254143	• •
modified shear number	837.0029	
		Average for Folion (abused week
	0.10	Average for Eolian/shweet wash
d84 bedding	0.12 mm	materials from GEG, 2005 lab data
		Average for Eolian/shweet wash
d16 bedding	0.002 mm	materials from GEG, 2005 lab data
gradation standard deviation, σ	7.745967	
gradation classification	graded	
α	0.86	coefficients for clay with PI 5-16
β	0.18	•
θ	0.1	
αe	1.37	· · ·
equivalent depth, ye	1.10 ft	
		•
depth of scour (ft)	3.73 ft	

P:\181268\RAP\Diversion Channel Design Calc Set\supporting files\North Toe Protection_2:Depth of Scour-Outlet

U.S. Department of Energy—Grand Junction, Colorado

	Cal	culation Cover Sheet	
Calc. No.: Doc. No.:	MOA-02-08-2006-6-01-00 X0175500	Discipline: Geotechnical	No. of Sheets: 22
Location:	Attachment 1, Appendix H		
Project:	Moab UMTRA Project	·	
Site:	Crescent Junction Disposal	Site	
Feature:	Erosional Protection of Disp	osal Cell Cover	
Sources o	f Data:		· _ · _ · _ · _ · _ · _ · _ ·
Remedial A	Action Plan (RAP) calculation se	ts as referenced in the text.	
		•	
· .			
Sources o	f Formulae and References:		· · · · · · · · · · · · · · · · · · ·
See "Refe	ences" section.		
			· · · ·
r.			
• •			•
			· *

Preliminary Calc.	Final Calc. 🛛	Supersedes Calc. No.	
Roshins	ten 5/25/07	Checked by: Checked by:	w 15/30/07
Author:	Date	Marine Su	n 5/3/107
Approved by: <u>////////////////////////////////////</u>	<u>MY 5/31/0')</u> D/ate	Namě	Date
		Name Dufeto	Date
		Name	Date

Νο

No text for this page

Erosional Protection of Disposal Cell Cover Doc, No. X0175500 Page 2

Problem Statement:

Determine the rock protection required to protect the cover of the disposal cell from erosion due to action of surface water and wind to meet the specifications of the *Code of Federal Regulations* (CFR) (40 CFR part 192).

Method of Solution:

- Determine the peak unit discharge from both the Probable Maximum Precipitation (PMP) and the 100-year precipitation event on the drainage basins of the disposal cell using the Rational method (Chow 1964):
- Evaluate erosional stability of soil cover on top slope of disposal cell using Temple method (Temple et al. 1987).
- Evaluate erosional stability of rock mulch on top slope of disposal cell using Safety Factor method (Nelson et al. 1986).
- Evaluate erosional stability of rock mulch or riprap on side slopes of disposal cell using Abt and Johnson method (Abt and Johnson 1991).
- Evaluate surface sheet erosion of top slope of disposal cell due to action of surface water and wind using Modified Universal Soil Loss Equation (MUSLE) method (Nelson et al. 1986).
- Evaluate required rock size for toe apron to accommodate flow transitioning from cell slope to native ground using method proposed by Abt et al. (1998).
- Evaluate scour potential of toe apron from headward erosion using methods in NUREG 1623 (Johnson 2002) and U.S. Department of Transportation (1983).
- Evaluate the need for bedding layer between cover soils and erosion protection material by estimating interstitial pore velocities using method proposed by Abt and Johnson (1991).

Assumptions:

- The 100-year precipitation event is applicable for evaluating drought, fire, and post-construction conditions when little or no vegetation is on the cover.
- The PMP precipitation event is applicable for long-term erosional stability analyses.
- The 1-hour PMP event is estimated to be 8.2 inches, and the 1-hour, 100-year event is estimated to be 1.65 inches ("Site Drainage—Hydrology Parameters" calculation, RAP Attachment 1, Appendix E).
- The layout of the disposal cell is shown in Figure 1. This layout shows a 2 percent top slope, 5:1 (horizontal:vertical) side slopes, and a total footprint area of 251 acres.
- Rock available for erosion protection will be angular, have a specific gravity of 2.65, and will meet Nuclear Regulatory Commission (NRC) durability requirements.

Calculation:

See Discussion section.

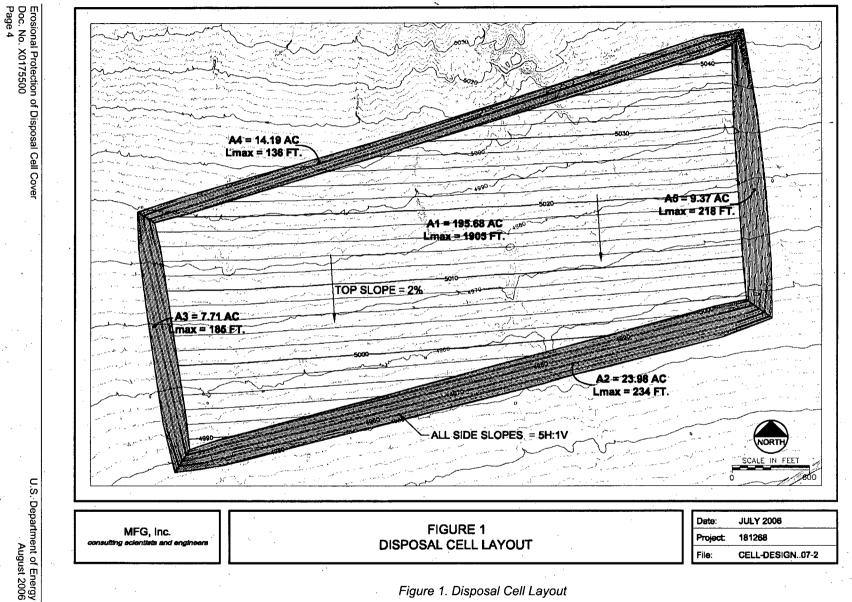


Figure 1. Disposal Cell Layout

Discussion:

Drainage Area Characteristics

Five drainage areas were delineated on the cover of the disposal cell, as shown in Figure 1. The area and flow length of these drainage areas were calculated using computer-aided design (CAD) tools.

Peak flows occurring within each drainage area are calculated using a rainfall duration equivalent to the time of concentration for each drainage basin. The time of concentration is a characteristic of the geometry and slopes of the drainage areas, and is computed by three different methods, with the average of the three methods used to calculate peak discharges. The three methods used to calculate the time of concentration are described below.

1) The Kirpich equation as presented in NUREG/CR-4620 (Nelson et al. 1986):

$$T_c = 0.0078 \frac{L^{0.77}}{S^{0.385}}$$

where:

 T_c = time of concentration (minutes),

L = slope length (feet [ft]), and

S = slope (ft/ft).

 The Soil Conservation Service (SCS) Triangular Hydrograph Theory, as presented in NUREG/CR-4620 (Nelson et al. 1986):

$$T_c = \left(\frac{11.9L^3}{H}\right)^{0.385}$$

where:

 T_c = time of concentration (hours),

L = slope length (miles), and

H = slope height (ft).

3) The Brant and Oberman equation as presented in the Uranium Mill Tailings Remedial Action Project (UMTRA) Technical Approach Document (TAD) (DOE 1989):

$$T_c = C \left(\frac{L}{Si^2}\right)^{\frac{1}{3}}$$

where:

 T_c = time of concentration (minutes),

C = coefficient = 1.0 for bare earth,

S = slope (ft/ft), and

i = one-hour rainfall intensity (inches/hour).

As specified in UMTRA TAD (DOE 1989), T_c is limited to a minimum of 2.5 minutes. Because precipitation falling on the top of the cover flows to the south slope, the time of concentration for the south side slope is equivalent to the time of concentration of precipitation on the top slope plus the time of concentration of precipitation occurring on the south side slope. The characteristics of the drainage areas on the disposal cell are summarized in Table 1.

Drainage Area	Incremental	Slope	Slope	Tin	ne of C	oncentration	(min)
Description	Drainage Area (acres)	(ft/ft) Length (ft)		Kirpich	SCS	Brant and Oberman	Average
A1, top	195.7	0.02	1,950	12.0	12.0	11.3	11.8
A2, south slope	. 24.0	0.2	230	13.0	13.0	13.9	13.3
A3, west slope	7.7	0.2	190	0.8	0.8	2.4	2.5*
A4, north slope	14.2	0.2	140	0.7	0.7	2.2	2.5*
A5, east slope	9.4	0.2	220	0.9	0.9	2.5	2.5*

Table 1. Drainage Area Characteristics

*Time of concentration is limited to a minimum of 2.5 minutes.

Peak Discharge

One of the technical criteria for the stability of the disposal cell is acceptable erosional stability from extreme storm events (10 CFR 40, Appendix A). NRC has interpreted this criterion to be able to safely pass the peak runoff from storms up to the PMP event (Johnson 2002). The PMP event has a 1-hour depth of 8.2 inches, and a 15-minute depth of 7.1 inches ("Site Drainage—Hydrology Parameters" calculation, RAP Attachment 1, Appendix E). For events with durations less than 15 minutes, precipitation depths as a percent of the 1-hour PMP are estimated using the following formula, as given in Table 4.1 of the UMTRA TAD (DOE 1989):

$$%PMP_{1-hour} = \frac{RD}{0.0089RD + 0.0686}$$

where: RD = rainfall duration (minutes).

The precipitation depth of any given storm duration is then calculated as:

$$PD_{PMP} = \% PMP_{1-hour} \times PMP_{1-hour}$$

where: PD_{PMP} = precipitation depth of the PMP storm with duration equivalent to the time of concentration (inches).

The precipitation events for 100-year recurrence interval for several storm durations were taken from Appendix A of the "Site Drainage—Hydrology Parameters" calculation, (RAP Attachment 1, Appendix E) and are summarized in Table 2. Precipitation depths for durations other than those listed in Table 2 are interpolated.

Table 2.	100-Year	Storm	Event i	Preci	ipitation D)epths

Rainfall Duration (min)	Precipitation Depth (inches)	Intensity (inches/hr)
5	0.53	6.36
10	0.8	4.80
15	0.99	3.96
30	1.33	2.66
60	; 1.65	1.65
120	1.82	0.91

The rainfall intensity is calculated for a rainfall duration equivalent to the time of concentration for the drainage basin. Rainfall intensity (inches per hour) is calculated as follows:

$$I = \frac{PD \times 60}{RD}$$

The Rational method (Chow 1964) was used to determine the peak discharge from the PMP and the 100-year event for evaluation of cover erosion protection. For each drainage area, the peak flow was calculated with the Rational Formula, as follows:

Q = CIA

where:

Q = peak flow (cfs),

C = runoff coefficient,

I = rainfall intensity (inches per hour) corresponding to the time of concentration, and A = area (acres).

The runoff coefficient is approximately 1.0 for PMP conditions, as discussed in UMTRA TAD (section 4.1.3). A runoff coefficient of 0.9 is used for 100-year storm events based on a conservative estimate for a riprap/rock surface.

Peak flow may also be expressed as a unit discharge as follows:

$$q = \frac{Q}{w} = \frac{CIL}{43200}$$

where:

q = unit discharge (cubic feet per second per foot [cfs/ft]),

w = unit width (ft),

C = runoff coefficient = 1.0,

I = rainfall intensity (inches per hour), and

L = slope length (ft).

Table 3 shows the results of the PMP peak flow in cubic feet per second (cfs) and the unit discharge calculations in cubic feet per second per foot (cfs/ft) for the areas shown in Figure 1. Table 4 shows results for the 100-year storm. These peak unit flows will be applied to the entire drainage area when evaluating erosional stability. Additional supporting calculations can be found in Appendix A.

Tat	ole 3.	Results o	of PMP	Peak	Flow	and	Unit	Discharge
-----	--------	-----------	--------	------	------	-----	------	-----------

Drainage Area Description	Runoff Coef. C	Average T _c (min)	Percent PMP _{1-hr}	PD _{PMP} (inches)	Intensity (inches/hr)	Peak Flow, Q (cfs)	Unit Discharge, q (cfs/ft)
A1, top	1.0	11.8	67.9	5.6	28.4	5,550	1.28
A2, south slope	1.0	13.3	71.1	5.8	26.3	5,787	1.33
A3, west slope	1.0	2.5	27.5	2.3	54.2	417	0.24
A4, north slope	<u> </u>	2.5	27.5	2.3	54.2	769	0.18
A5, east slope	1.0	2.5	27.5	2.3	54.2	509	0.28

Drainage Area Description	Runoff Coef. C	Average T _c (min)	PD _{100-yr} (inches)	Intensity (inches/hr)	Peak Flow, Q (cfs)	Unit Flow q (cfs/ft)
A1, top	. 0.9	11.8	0.9	4.6	817	0.19
A2, south slope	0.9	13.3	0.9	4.3	849	0.19
A3, west slope	0.9	2.5	0.5	6.4	44	0.03
A4, north slope	0.9	2.5	0.5	6.4	81	0.02
A5, east slope	0.9	2.5	0.5	6.4	54	0.03

Table 4. Results of 100-Year Peak Flow and Unit Discharge

Top Surface: Erosional Stability of Soil Cover

The top surface of the disposal cell was evaluated for erosional stability without a rock layer using the method developed by Temple et al. (1987). This procedure, developed to analyze grassy channels, estimates stresses from runoff on channel vegetation as well as the channel surface soils. The erosional stability of the cover surface was evaluated by calculating a factor of safety against erosion due to the peak runoff. Factor-of-safety values were calculated as the ratio of the allowable stresses (the resisting strength of the cover vegetation or soils) to the effective stresses (the stresses impacted by the runoff flowing over the cover). As outlined in UMTRA TAD (1989), the 100-year peak unit flows (Table 4) were used to analyze the stability of a non-vegetated slope, such as would be representative of post-construction, drought, or burn conditions. PMP peak unit flows (Table 3) were used to analyze the stability of a vegetated slope, assuming a poor to fair cover of grass eventually will be established on the cover. In addition, peak flows are multiplied by a concentration factor of 3.0 to account for channelization of flow.

The stress calculations are summarized below. Potential materials evaluated for use as cover soils were (1) low-plasticity silt and clayey material from excavated on-site alluvial and eolian deposits, (2) excavated on-site weathered Mancos Formation shale, and (3) imported coarse-grained sands and gravels.

Allowable Stresses

Allowable stresses for the non-vegetated cover soils were calculated using the equations in Temple et al. (1987). For cohesive soils, the resistance is based on the plastic limit and void ratio of the material. The equation for allowable shear strength for cohesive soils is:

$$\tau_a = \tau_{ab} C_e^{2}$$

where:

 τ_a = allowable shear strength (pounds per square feet [psf]),

 τ_{ab} = basis allowable shear strength (for a CL) = (1.07 [PI]²+14.3[PI]+47.7) × 10⁻⁴,

 C_e = soil parameter = 1.48 – 0.57e,

PI = plasticity index, and

e = void ratio.

For non-cohesive soils, the resistance is based on particle size, specifically the size where 75 percent of the material is finer, or D₇₅. The equation for allowable shear strength for non-cohesive soils is:

$$\tau_a = 0.4 D_{75}$$

where D75 is in inches.

Plasticity index and void ratio are estimated from preliminary geotechnical laboratory testing results for on-site material (GEG 2005), assuming compaction to approximately 85 percent of maximum dry density as determined from the Modified Proctor test.

Erosional Protection of Disposal Cell Cover Doc. No. X0175500 Page 8

For vegetated slopes, the allowable stresses are a function of the quality of vegetation established on the cover, as given by the following equation:

 $\tau_{va} = 0.75C_i$

where:

 τ_{va} = allowable vegetation shear strength (psf),

$$C_1 = \text{cover index} = 2.5 \times \left(h \times \sqrt{M}\right)$$

h = stem length (ft), and

M = stem density factor (stems per square foot).

Because of the arid climate at the site, vegetative properties are modeled as poor, with average stem height of 0.3 ft, and a stem density factor of 17 as given in Temple et al. (1987), conservatively using poor conditions represented by a poor stand of Sudan grass (a bunch grass providing incomplete surface cover).

Effective Stresses

The effective shear stress on soil due to peak runoff from the 100-year event on the non-vegetated slope is calculated as:

$$\tau_e = \gamma dS$$

where:

 τ_e = effective shear stress (psf),

 γ = unit weight of water = 62.4 pcf,

d = depth of flow (ft), and

S = slope of cover surface (ft/ft).

For vegetated slopes, the effective shear stress on soil due to peak runoff from the PMP event is calculated as:

$$\tau_e = \gamma dS \left(1 - C_f \right) \left(\frac{n_s}{n_v} \right)^2$$

where:

 C_F = cover factor = 0.25 for poor vegetation, and n_s = soil grain roughness factor, calculated by the following equation:

 $n_s = 0.0156$, for cohesive soil

 $n_s = 0.0256 (d_{75})^{\frac{1}{6}}$, for granular soil, where d is in inches.

n_v = combination of resistance due to soil roughness, n_s and vegetation, n_r, calculated by:

$$n_{v} = \sqrt{n_{r}^{2} - 0.0156^{2} + n_{s}^{2}}$$

U.S. Department of Energy August 2006 Erosional Protection of Disposal Cell Cover Doc. No. X0175500 Page 9

where: n_r = resistance due to vegetation, calculated by:

$$n_r = \exp(0.01329C_i (\ln q)^2 - 0.09543C_i \ln q + 0.2971C_i - 4.16)$$

where: q = unit flow (cfs/ft).

The cover factor, C_f is assumed to be 0.5 for good vegetation conditions, and 0.25 for poor vegetation, as given in Temple et al. (1987) for Sudan grass. The effective shear stress on vegetation is calculated as:

$$\tau_{ve} = \gamma dS - \tau_e$$

where τ_v = effective vegetal stress (psf).

The depth of flow is calculated by iteration of Manning's equation:

$$q = \frac{1.486 dR^{\frac{2}{3}} \sqrt{S}}{n}$$

where:

q = unit flow (cfs/ft),

d = depth of flow (ft),

R = hydraulic radius = d for wide channels,

S = slope (ft/ft), and

n = Manning's coefficient.

For bare-soil conditions, n is equivalent to n_s , soil grain roughness. For vegetated conditions, n is equivalent to n_v , a combination of resistance due to soil roughness (n_s) and vegetation (n_r).

Table 5 summarizes the stability of the 100-year precipitation on bare-soil conditions, and Table 6 summarizes long-term stability of the PMP event on poorly vegetated cover. More detailed calculation tables can be found in Appendix A.

As shown by the resulting shear stress ratios in Table 5 and Table 6, both the eolian/sheet wash on-site soils and the weathered Mancos materials are too erosive to resist erosion (1) during the 100-year precipitation without vegetation or (2) during the PMP event with vegetation. Imported coarse sandy gravel with D₇₅ of 1.1 inches would be adequate as a soil cover. The sandy gravel will adequately resist erosion to the 100-year precipitation without vegetation, and can also resist erosion from the PMP event, assuming at least a poor stand of grass or equivalent is established on the cover.

	Slope (ft/ft) 2 -Year Flow (c		
Co	ncentration	Factor 3	····
Cover Soil Eolian/Sheet V	Vash	Weathered Mancos	Sandy Gravel
Soil Characteristic	PI=5	PI=10	D ₇₅ =1.1 in
n _s	0.0156	0.0156	0.0260
Depth of flow, d (ft)	0.15	0.15	0.20
Allowable shear stress, $ au_{\partial} $ (psf)	0.018	0.038	0.440
Effective shear stress, $ au_e$ (psf)	0.187	0.187	0.254
Shear stress ratio ^a	0.10	0.20	1.73

Table 5. Erosional Stability of 100-Year Precipitation on Bare Soil

^aDesign criteria is shear stress ratio of 1.0 or greater

Top Slope (ft/ft) 2.0 percent PMP Flow (cfs/ft) 1.28							
Concentration Factor 3							
Cover Soil Eolian/Sheet Was	n	Weathered Mancos	Coarse Sand				
Soil Characteristic	PI=5	PI=10	D ₇₅ =1.1 in				
n _s .	0.0156	0.0156	0.0260				
n _r	0.0261	0.0261	0.0261				
Πv	0.0261	0.0261	0.0334				
Depth of flow, d (ft)	0.64	0.64	0.74				
Allowable soil shear stress, τ (psf)	0.018	0.038	0.440				
Allowable vegetated shear stress, τ_{va} (psf)	2.01	2.01	2.01				
Effective soil shear stress, $ au_e$ (psf)	0.214	0.214	0.422				
Effective vegetated shear stress, τ_{ve} (psf)	0.587	0.587	0.506				
Shear stress ratio (soil) ^a	0.09	0.18	1.04				
Shear stress ratio (vegetation) ^a	3.42	3.42	3.96				

Table 6. Erosional Stabili	y of PMP on Poorly	Vegetated Cover
----------------------------	--------------------	-----------------

^aDesign criteria is shear stress ratio of 1.0 or greater

Rock Mulch Sizing for the Top Slopes

In addition to analyzing the top slope as a soil cover, the erosional stability of rock mulch is also analyzed, using the Safety Factor method, as recommended in NUREG/CR-4620 (Nelson et al. 1986) and NUREG-1623 (Johnson 2002) for slopes less than 10 percent. The safety factor against erosion for any given rock is calculated as:

$$SF = \frac{\cos \alpha \times \tan \phi}{n \times \tan \phi + \sin \alpha}$$

- α = angle of slope measured from horizontal,
- ϕ = angle or repose of rock, and
- η = stability number.

The stability number is calculated as:

$$\eta = \frac{21\tau_o}{(S_s - 1)\gamma D}$$

where:

 τ_{o} = bed shear stress (psf),

 S_s = specific weight of the rock,

 γ = specific weight of water,

D = representative rock size (ft),

and:

$$\tau_o = \gamma ds$$

where:

d = depth of flow (ft), and s = slope (ft/ft).

The key parameters used in the rock mulch sizing calculations are outlined in Table 7. For a PMP event, a factor of safety slightly greater than 1.0 is recommended (Nelson et al. 1986). The method assumes uniform sheet flow across the entire drainage basin. The peak unit discharges due to the PMP (Table 3) were used to represent flow conditions on the top slope. A concentration factor of 3 was used to account for potential flow channelization. The angle of repose and specific gravity of rock were assumed and will need to be verified for final design. More details of the calculation can be found in Appendix A.

Table 7. Rock Mulch Sizing for Top Slope Using Safety Factor Method

Top Slope (ft/ft)	2.0 percent	
Angle of repose of rock (degrees)	37	
Specific Gravity of rock	2.65	
PMP unit flow (cfs/ft)	1.28	
Concentration factor	3	
Design flow (cfs/ft)	3.84	
D ₅₀ rock mulch (in)	2.1	
Factor of Safety	1.01	

Riprap Sizing for the Side Slopes

The erosional stability of the side slopes is analyzed using the Abt and Johnson (1991) method, as discussed in NUREG-1623 (Johnson 2002). This method is recommended for slopes greater than 10 percent. The D_{50} rock sizes using the Abt and Johnson method is calculated as:

$$D_{50} = 5.23S^{0.43}q^{0.56}$$

where:

q = unit discharge (cfs/ft), and

S = Slope (ft/ft).

The key parameters used in the rock mulch sizing calculations are outlined in Table 8. More details of the calculation can be found in Appendix A.

Erosional Protection of Disposal Cell Cover Doc. No. X0175500 Page 12

Method	Abt and Johnson							
Side Slope (ft/ft)		20 Pe	rcent					
Area	A2 South	A3 West	A4 North	A5 East				
PMP unit flow (cfs/ft)	1.33	0.24	0.18	0.28				
Concentration factor	3	3	3	3				
Coefficient of Movement	1.35	1.35	1.35	1.35				
Design flow (cfs/ft)	5.38	0.96	0.71	1.12				
D ₅₀ for angular rock (inches)	6.7	2.6	2.2	2.8				

Table 8. Rock Mulch Sizing for Side Slopes

The method assumes uniform sheet flow across the entire drainage basin. The peak unit discharges due to the PMP (Table 3) were used to represent flow conditions on the top slope. A concentration factor of 3 was used to account for flow channelization. The angle of repose and specific gravity of rock were assumed and will need to be adjusted (if necessary) with actual source characteristics.

Using Abt and Johnson's methods, the side slopes will have a median rock size ranging from 2.2 inches to 2.8 inches for the north, east, and west slopes, and a median rock size of 6.7 inches for the south slope. If rounded rock is used for erosion protection, the median rock size should be increased by approximately 40 percent (Abt and Johnson 1991). In addition, median rock size may be oversized for durability considerations once the rock source has been identified.

The rock protection layer thickness should be at least 1.5 to 2 times the median rock size.

Sensitivity of Required Rock Size of Rock Mulch and Riprap Protection to Cell Configuration

The rock mulch on the top of the disposal cell and the riprap on the side slopes has been designed for minimum D_{50} rock size based on the cell configuration given in Figure 1. Figure 2 and Figure 3 show how changes in the disposal cell configuration may affect the rock sizes required for erosion protection, or conversely, what changes in the disposal cell configuration would be required in order to be able to use an available rock size.

Wind Erosion

The potential for wind erosion of the top surface of disposal cell during drought conditions was evaluated using the MUSLE method, as presented in NUREG/CR-4620 (Nelson et al. 1986). Three potential cover materials were evaluated: (1) on-site sheet wash/eolian soils, (2) on-site excavated weathered Mancos Shale, and (3) imported coarse gravel.

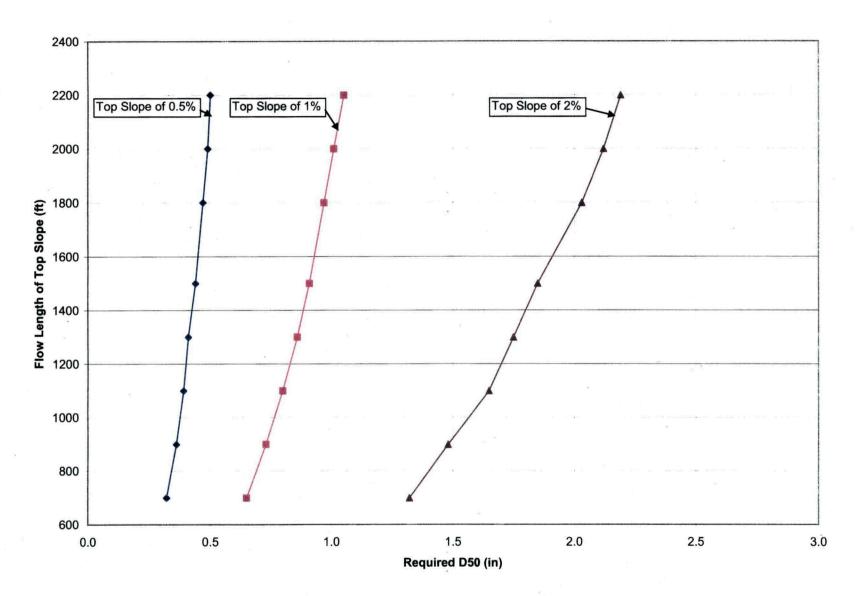


Figure 2. Required D₅₀ for Top of Disposal Cell

Erosional Protection of Disposal Cell Cover Doc. No. X0175500 Page 14

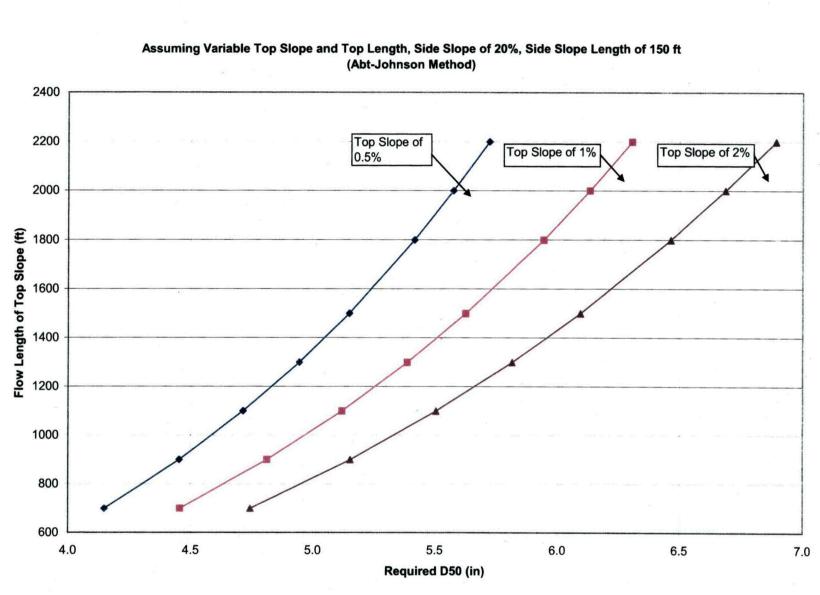


Figure 3. Required D₅₀ for Side Slope With Contributed Flow From Top Slope

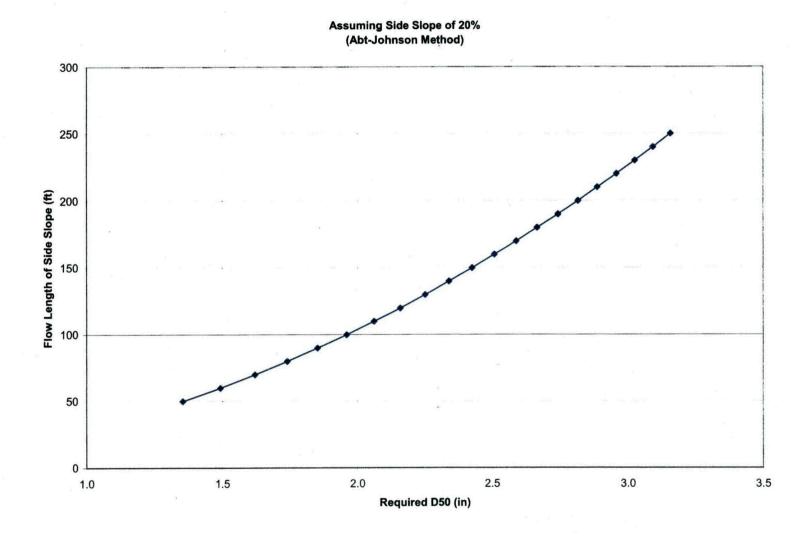


Figure 4. Required D50 for Side Slope with No Contributed Flow from Top Slope

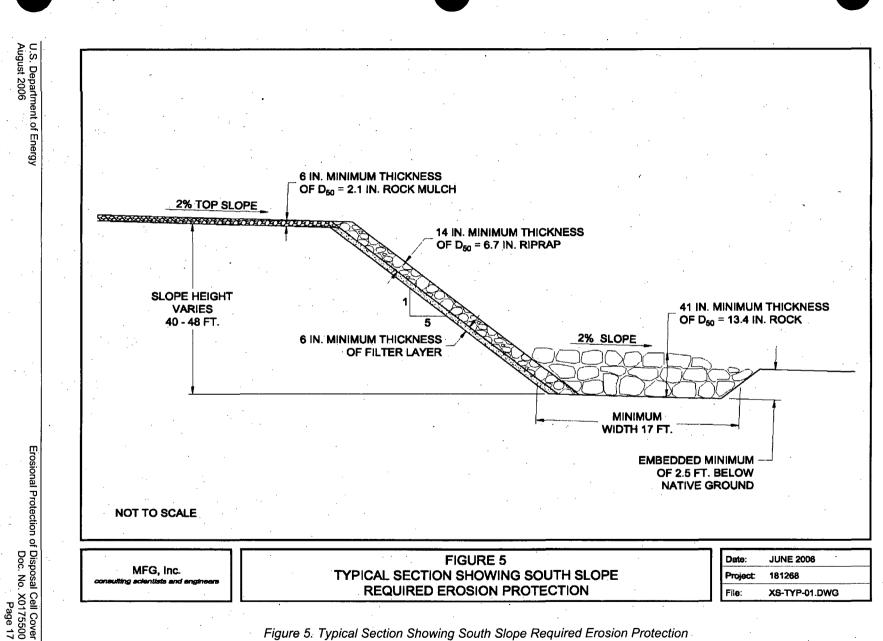


Figure 5. Typical Section Showing South Slope Required Erosion Protection

The soil loss equation was calculated as follows:

$$A = R \times K \times LS \times VM$$

where:

A = soil loss in tons per acre per year,

R = rainfall factor,

K = soil erodibility factor,

LS = topographic factor, and

VM = dimensionless erosion control factor relating to vegetative and mechanical factors.

The rainfall factor is 30, as given in NUREG/CR-4620 (Nelson et al. 1986) for the eastern third of Utah. The soil erodibility factor was estimated using the nomograph given in NUREG/CR-4620 (Nelson et al. 1986).

The topographic factor is calculated by the following equation:

$$LS = \frac{650 + 450 \times s + 65 \times s^2}{10,000 + s^2} \times \left(\frac{L}{72.6}\right)^m$$

where:

s = slope steepness in percent,

L = slope length in ft, and

m = exponent dependent upon slope steepness.

The dimensionless erosion control factor used was 0.4, from Table 5.3 of NUREG/CR-4620 (Nelson et al. 1986), representing seedings of 0 to 60 days to mimic light vegetation on the cover. Table 9 summarizes the results of the soil loss equation.

Soil Cover	Sheet Wash/Eolian	Weathered Shale	Coarse Gravel		
Rainfall factor, R	30	30	30		
Silt and very fine sand (%)	60	55	10		
Sand (%)	25	5	20		
Organic matter (%)	2	• 2	0		
Soil structure	Very fine granular	Blocky, platy or massive	Med. or coarse granular		
Relative permeability	Moderate	Moderate	Moderate to rapid		
Erodibility factor	0.35	0.26	0.05		
Topographic factor, LS	0.49	0.49	0.49		
VM (low density seedings)	0.4	0.4	0.4		
Soil loss (tons/acre/year)	2.04	1.51	0.29		
Soil loss (inches/1,000 years)	11.2	8.3	1.6		

The soil loss equation shows that the potential for sheet erosion is unacceptably high if either the native sheet wash/eolian soils or weathered shale is used as a soil cover. The soil loss of less than 2 inches over the life of the disposal cell for coarse gravel is acceptable; especially considering vegetation is not required for stability of this material (but is required for stability of native soil cover to protect against PMP event).

Riprap Sizing for Rock Aprons

Additional erosion protection will be provided for runoff from the east, west, and south side slopes of the disposal cell with a rock apron. The north side of the disposal cell will receive runoff from the upland area north of the cell, and will require a diversion channel. The design of this diversion feature will be covered in the "Diversion Channel Design, North Side Disposal Cell" calculation (RAP Attachment 1, Appendix G).

The perimeter apron will: (1) serve as an impact basin and provide for energy dissipation of runoff, (2) provide erosion protection, and (3) transition flow from side slopes to natural ground. The median rock size required in the perimeter apron was calculated using the equations derived by Abt et al. (1998) as outlined in NUREG 1623 (Johnson 2002) as follows:

$$D_{50 energy dissipation} = 10.46S^{0.43} (C_f q_d)^{0.56}$$

where S is the slope, C_f is the concentration factor, and q_d is the design unit discharge.

Based on Table 10, the rock apron should have a median rock size of 13.4 inches along the south toe and between 5.1 and 5.6 inches along the east and west toes. Oversizing will be required for rounded rock or for durability considerations. The width of the apron should be a minimum of 15 times the median rock size or construction width. Rock apron thickness should be a minimum of 3 times the median rock size.

Method Abt et al. (1998) Side Slope (ft/ft) 20 Percent									
									Area A2 South A3 West A5 East
PMP unit flow (cfs/ft)	1.33	0.24	0.28						
Concentration factor	- 3	3	3						
Coefficient of Movement	1.35	1.35	1.35						
Design flow (cfs/ft)	5.38	0.96	1.12						
D ₅₀ for angular rock (in)	13.4	5.1	5.6						
Minimum apron width (ft)	• 17	6	7						
Minimum apron thickness (in)	41	15	17						

Table 10. Riprap for Toe Apron

The maximum unit flow off the south toe is 1.33 cfs/ft. A concentration factor of 3 was used to account for flow channelization. Using this maximum flow, and an assumed slope of the rock apron of 2 percent, the maximum scour depth was calculated using procedures outlined in NUREG 1623 (Johnson 2002) and U.S. Department of Transportation (1983). The maximum scour depth from flow coming off the rock apron along the south side of the disposal cell is estimated to be 2.2 ft. Therefore, the bottom elevation of the rock apron should be placed approximately 2.5 ft below natural grade. The aprons along the east and sides of the disposal cell should be placed approximately 1.0 ft below natural grade. Details of calculations can be found in Appendix A.

Bedding Requirements

NUREG-1623, Appendix D (Johnson 2002), recommends a filter or bedding layer be placed under erosion protection if interstitial velocities are greater than 1 ft/sec, in order to prevent erosion of the underlying soils. Bedding is not required if interstitial velocities are less than 0.5 ft/sec, and recommended depending on the characteristics of the underlying soil if velocities are between 0.5 and 1 ft/sec.

Interstitial velocities are calculated by procedures presented by Abt and Johnson (1991) as given in the following equation:

$$V_i = 0.23 * (g * D_{10} * S)^{\frac{1}{2}}$$

where:

 V_i = interstitial velocities (ft/s),

g = acceleration of gravity (ft/s^2),

 D_{10} = stone diameter at which 10 percent is finer (inches), and

S = gradient in decimal form.

The maximum D_{10} of the erosion protection is estimated based on D_{50} required for erosion protection, assuming the erosion protection will have a coefficient of uniformity (CU) of 6 and a band width of 5. Band width refers to the ratio of the minimum and maximum allowed particle sizes acceptable for any given percent finer designation. USDA (1994) recommends CU to be a maximum of 6 in order to prevent gap-grading of filters. Table 11 summarizes the results.

Location	A1 Top	A2 South Side Slope	A3 West Side Slope	A4 North Side Slope	A5 East Side Slope	A2 South Apron	A3 West Apron	A5 East Apron
Minimum D ₅₀ (inches)	2.1	6.7	2.3	2.2	2.8	13.4	5.1	5.6
Maximum D ₁₀ (inches)	0.9	2.1	0.9	0.9	0.9	4.2	1.6	1.7
Slope (%)	0.02	0.2	0.2	0.2	0.2	0.02	0.02	0.02
Interstitial Velocity (ft/s)	0.18	0.84	0.56	0.56	0.56	0.38	0.23	0.24

Table 11. Results of Bedding Requirements

With the exception of the south side slope, the calculated interstitial velocities on the slopes and toe aprons are low enough that a bedding layer is not necessary. However, the interstitial velocities within the erosion protection on the south side slopes warrant a bedding layer beneath the rock protection.

Conclusion and Recommendations:

- Rock mulch with median rock size of 2.1 inches is recommended for the top slope of the disposal cell.
- Angular riprap protection with a median rock size of 6.7 inches is recommended for the south side slope, and a median rock size of 2.2 to 2.8 inches is recommended for the east, north, and west side slopes.
- Rock sizes should be adjusted if rock is not angular or does not meet NRC durability requirements (without oversizing). If rock is rounded, the median rock size should be increased by 40 percent. If rock has marginal durability, rock should be oversized using guidance given in NUREG-1623 (Johnson 2002).
- The riprap on the south side slope should be underlain with a bedding layer that meets filter criteria with the riprap and the underlying soils.
- A toe apron should be provided at the base of the east, south, and west side slopes. Median rock sizes
 of 5.6, 13.4, and 5.1 inches, respectively, should be provided. To protect against scour, the apron should
 be constructed such that the bottom elevation of the rock apron is a minimum of 2.5 ft below natural
 grade along the south side of cell and 1.0 ft below grade along the east and west sides.
- Figure 5 summarizes the different components of the erosion protection for a typical section drawn through the south side slope.

References:

10 CFR 40. U.S. Nuclear Regulatory Commission (NRC), "Domestic Licensing of Source Material," Appendix A, Code of Federal Regulations, February 2007.

40 CFR 192. U.S. Environmental Protection Agency (EPA) "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings," *Code of Federal Regulations*, February 2007.

Abt, S.R., and T.L. Johnson, 1991. "Riprap Design for Overtopping Flow", *Journal of Hydraulic Engineering*, 117(8), pp. 959–972.

Abt, S.R., T.L. Johnson, C.I. Thornton, and S.C. Trabant, 1998. "Riprap Sizing at Toe of Embankment Slopes", *Journal of Hydraulic Engineering*, 124(7), July.

Abt, S.R., J.F. Ruff, and R.J. Wittler, 1991. "Estimating Flow Through Riprap", *Journal of Hydraulic Engineering*, 117(5), pp. 670–675.

Chow, V.T., 1964. Handbook of Applied Hydrology, McGraw-Hill Book Company, New York, New York.

DOE (U.S. Department of Energy), 1989. *Technical Approach Document, Revision II*, UMTRA-DOE/AL 050424.0002, December.

DOT (U.S. Department of Transportation), 1983. *Hydraulic Design of Energy Dissipaters for Culverts and Channels*, Hydraulic Engineering Circular No. 14, September.

Geotechnical Engineering Group, Inc. (GEG), 2005. Technical Testing, Crescent Junction, GEG Job No. 2165, December 22.

Johnson, T.L., 2002 *Design of Erosion Protection for Long-Term Stabilization*, Final Report, NUREG-1623, U.S. Nuclear Regulatory Commission, September.

Nelson, J.D., S.R. Abt, R.L. Volpe, D. van Zyl, N.E. Hinkle, W.P. Staub, 1986. *Methodologies for Evaluating Long-Term Stabilization Design of Uranium Mill Tailings Impoundments*, NUREG/CR-4620, U.S. Nuclear Regulatory Commission, June.

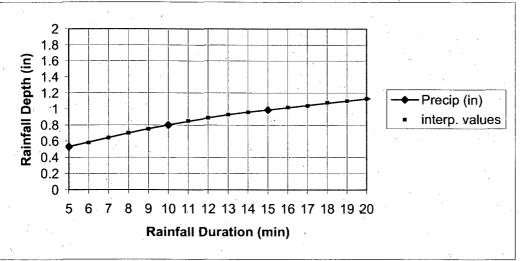
Temple, D.M., K.M. Robinson, R.M. Ahring, and A.G. Davis, 1987. *Stability Design of Grass-Lined Open Channels*, U.S. Department of Agriculture Handbook No. 667, September.

USDA (U.S. Department of Agriculture), 1994. "Gradation Design of Sand and Gravel Filters", *National Engineering Handbook*, Part 633, Chapter 26, October.

Erosional Protection of Disposal Cell Cover Doc. No. X0175500 Page 21

End of current text

Appendix A


Supporting Calculations

Client: Project: Vetail: Stoller Crescent Junction Disposal Cell Erosion Protection

Job No.:	181268
Date:	5/2/2006
Computed By:	RTS

100-year precipitation event

Values from NOAA Table (DOE 2005)			Interpolated Values					
Storm Duration		Intensity	Storm Duration	Interpolated	Interpolated Intensity			
(min)	Precip (in)	(in/hr)	(min)	Precip (in)	(in/hr)			
5	0.53			0.53				
10	0.8	4.8		0.53				
15	0.99	3.96		0.58				
	1.33	2.66	7	0.64	5.49			
60	1.65	1.65	· 8	0.7	5.25			
120	. 1.82	0.91	9	0.75	5.00			
• •			10	0.8	4.80			
· .	•		11	0.85	4.64			
		•	. 12	0.89	4.45			
2 · · · ·			13	0.93	4.29			
			14	0.96	4.11			
			15	0.99	3.96			
			16	1.02	3.83			
			17	1.04	3.67			
· ·			18	1.08	3.60			
• · · · · · · · · · · · · · · · · · · ·			19	1.1	3.47			
j			20					

P:\181268\RAP\erosional stability\ripraprev2:100yr precip

Client:	Stoller	Job No.:	181268
Project:	Crescent Junction Disposal Cell	Date:	4/28/2006
Detail:	Erosion Protection	Computed By:	RTS

PMP Event

PMP calculation from Calc. No.: MOA-02-08-2005-2-08-00, Site Drainage--Hydrology Parameters Use values for drainage area <1 square mile

	, Crescent Junction, Utah Site

Hourly Increments	First Hour	Second Hour		Third	Hour	, . , .	Fourth Hour	Fifth Hour	Sixth Hour
PMP Depths (inches)	0	0.1		8	.2		0.6	0.1	0
Third-Hour Component Depths (inches)			7.1	0.5	0.4	0.2			

ງ8\RAP\erosional stability\ripraprev2:PMP

•

Client: roject: etail:

Stoller **Crescent Junction Disposal Cell Erosion Protection**

8.2

Job No.: Date: Computed By: RTS

181268 5/2/2006

Time of Concentration

1-hour PMP (in)

For top slopes of 2.0%, side slopes at 1V:5H

	Incremental		Slope	Time of Concentration (minutes)						
	Drainage Area	Slope	Length			Brant and		% of 1-		Intensity
Description	(acres)	(feet/feet)	_(feet)	Kirpich	SCS	Oberman	Average	hour PMP	PD _{PMP} (in)	(in/hr)
A1, top	213.91	0.02	2130	12.9	12.9	11.7	12.5	69.4	5.7	27.4
A2, slope	16.10	0.2	170	13.6	13.6	14.0	13.7	72.0	5.9	25.8
A3, slope	4.82	0.2	115	0.6	0.6	2.0	2.5	27.5	2.3	54.2
A4, slope	7.19	0.2	80	0.4	0.4	1.8	2.5	27.5	2.3	54.2
A5, slope	6.43	0.2	150	0.7	0.7	2.2	2.5	27.5	2.3	54.2

Note: Flow over A2 includes flow from A1

Source: Brant and Oberman(1975) as presented in UMTRA TAD (1989) Formula: tc=C(L/Si^2)^(1/3).

Source:Kirpich (1940) as presented in NUREG 4620 Formula: tc=0.00013*L^0.77/S^0.385 with L in feet, tc in hours

Source: SCS as presented in NUREG 4620

Formula: tc=(11.9L^3/H)^0.385 with L in miles, H in feet, t in hours

% of one-hour PMP=RD/(0.0089*RD+0.0686) for tc<15 min based on Table 4.1 of TAD

P:\181268\RAP\erosional_stability\ripraprev2:Time of concentration

Client:	Stoller	Job No.:	181268
Project:	Crescent Junction Disposal Cell	Date:	5/2/2006
Detail:	Erosion Protection	Computed By:	RTS

Unit discharge of PMP

Top slope =2.0%

Description	Total Drainage Area (acres)	с	Tc (min)	Intensity (in/hr)	Q (cfs)	longest slope length (ft)	unit discharge (cfs/ft)
A1, top	213.91	1	12.5	27.4	5863.3	2130	1.35
A2, slope	230.01	1	13.7	25.8	5928.1	2300	1.37
A3, slope	4.82	1	2.5	54.2	261.0	115	0.14
A4, slope	7.19	1	2.5	54.2	389.4	80	0.10
A5, slope	6.43	1	2.5	54.2	348.2	150	0.19

Note: Flow over A2 includes flow from A1

P:\181268\RAP\erosional stability\ripraprev2:Flow-PMP

Client: Project: Detail: Stoller Crescent Junction Disposal Cell Erosion Protection

Job No.:			181268
Date:			5/2/2006
Computed By:	•	RTS	

Unit discharge of 100-year precipitation

Top slope =2.0%

Description	Total Drainage Area (acres)	С	Tc (min)	Precip. Depth (in)	Intensity (in/hr)	Q (cfs)	longest slope length (ft)	unit discharge (cfs/ft)
A1, top	213.91	0.9	12.5	0.9	4.5	856.7	2130	0.20
A2, slope	230.01	0.9	13.7	0.9	4.3	888.5	2300	0.21
A3, slope	4.82	0.9	2.5	0.5	6.4	27.6	115	0.02
A4, slope	7.19	0.9	2.5	0.5	6.4	41.2	80	0.01
A5, slope	6.43	0.9	2.5	0.5	6.4	36.8	150	0.02

Note: Flow over A2 includes flow from A1

P:\181268\RAP\erosional stability\ripraprev2\ripraprev2:Flow-100yr

Stoller Crescent Junction Disposal Celi

Job No.: Date: Computed By:

181268	
5/2/2006	

RTS

Temple Method for 2% Top Slope

Client: Project: Detail:

Reference: Temple, D.M., Robinson, K.M., Ahring, R.M., and Davis, A.G., 1987. Stability Design of Grass-Lined Open Channels, USDA Handbook 667. And as presented in UMTRA TAD Section 4.3.3 and NUREG 1623, Appendix A

native soll is classified as CL/ML with average values of LL=22, PI=4, %fines=70 This doesn't truly fit any of Temple's soll types, as PI is less than 10, but also not a sand

100-yr Design flow (cfs/ft)	. 0.20
PMP Design flow (cfs/ft)	1.35
Concentration Factor, F	3
100-yr Design flow (cfs/ft), q	0.6
PMP Design flow (cfs/ft), q	4.05
Slope, S (ft/ft)	0.02
average dry density (pcf)	103 (at 85% modified procto
average specific gravity	2.68
void ratio, e	0.624
unit weight water (pcf)	62.4

	If SW or SP eollan/sheetwash	lf CL eollan/sheetwash	if CL weathered mancos	lf ML eolian/sheetwash	If imported coarse sand
175 (inches)	<.05	· · · · · · · · · · · · · · · · · · ·			1.
Plasticity Index, Pl		5	10	5	
End-of-construction, 100-yr precip					
Manning's n for non-veg slope	0.0156	0.0156	0.0156	0,0156	0.026
					0.020
assumed depth of flow, no veg (ft), d	0.15	0.15	0.15	0.15	
calculated q (cfs/ft), no veg	0.60	0.60	0.60	0.60	<u> </u>
terate with d until calc. q equals design q	-				
velocity, v, no veg (ft/s)	3.88	3.88	3.88	3.88	2.8
base allowable tractive shear stress (psf) tab=		0.014595	0.02977	0.00744	
void ratio correction factor, Ce=		1.124541359	1,124541359	1.124541359	
	0.000				······
allowable tractive shear stress (psf), ra=	0.020	0.018	0.038	0.009	. 0.44
effective shear stress (psf), te (no veg)	0.193	0.193	0.193	0.193	0.26
shear stress ratio, end of construction	0.10	0.10	0.20	0.05	1.6
Limit slope such that shear stress ratio is 1.0	1				
Stable slope	0.08%	0.07%	0.19%	0.03%	4.17
		1			
and form DND provin	· · · · · · · · · · · · · · · · · · ·	I			
Long-term, PMP precip		ļ			
Repr. stem length (in) h(ave)	L	L		ļ	
good veg	1	1	11	L1	
poor veg	. 0.3	0.3	. 0.3	0.3	0.
Repr. stem density (stems/sq in), M(ave)	1 ·····				
good veg	50	50	50	50	· · · ·
			17	17	
poor veg	17	17	17	<u> </u>	1
Retardance curve index, Ci					
good veg	4.80	4.80	4.80	4.80	4.8
poor veg	2.67	2.67	2.67	2.67	2.6
Cover factor, Cf					
	0.5	0.5	0.5	0.5	0
good veg					
poor veg	0.25	0.25	0.25	0.25	0.2
allowable vegetated shear strength (psf), tva					
good veg	3.60	3.60	3.60	3.60	3.6
poor veg	2.01	2.01	2.01	2.01	2.0
Mannings n for soil roughness, ns=	0.0156	0.0156	0.0156	0.0156	0.026
	0.0130	0.0100	0.0130	0.0150	0.020
Mannings n for vegetal conditions, nr				0.0000	
. good veg	0.0388	0.0388	0.0388	0.0388	0.038
poor veg	0.0259	0.0259	0.0259	0.0259	0.025
Mannings n for vegetated slopes, nv					
good veg	0.0368	0.0388	0.0388	0.0388	0.044
poor veg	0.0259	0.0259	0.0259	0.0259	0.033
assumed depth of flow, d (ft)	0.0200	0.0200	0.0200	0.0200	0.000
good veg	0.840			0.840	0.90
poor veg	0.659	0.659	0.659	0.659	0.76
calculated q (cfs/ft), with veg		Г			1
good veg	4.05	4.05	4.05	4.05	4.0
poor veg	4.05		4.05	4.05	4.0
	4.05	4.05			4.1
Iterate with d until q calc equals q design				·	· · · · · · · · · · · · · · · · · · ·
					·
velocity (ft/s), v					
good veg	4.82	4.82	4.82	4.82	4.4
poor veg			6.14	6.14	5.2
poor veg	1	J. 14	······································		<u></u>
-feative charge strage (act)					
effective shear stress (psf), те	·				
good veg	0.0848		0.0848	0.0848	0.19
poor veg	0.2236	0.2236	0.2236	0.2236	0.43
effective veg shear stress (psf) rve					
good veg	0.9629	0.9629	0.9629	0.9629	0.93
	0.5993		0.5993	0.5993	0.51
poor veg	0.5993	0.5993	0.5993	0.5993	0.51
				<u> </u>	
shear stress ratio, vegetated slope					
good veg	3.74	3.74	3.74	3.74	3.
poor veg				3.35	3.
poor veg			1 0.00	1	······································
	·····	· · · · ·			
shear stress ratio, soil on vegetated slope		L		L	
good veg	0.24	0.22	0.44	0.11	2.1

Client:	Stoller	Job No.:	181268
Project:	Crescent Junction Disposal Cell	Date:	5/2/2006
'Jetail:	Erosion Protection	Computed By:	RTS
afety Factor Method			

ppropriate for evaluating rock stability from flow parallel to cover and adjacent to the cover. Design for SF of 1.5 for non-PMF applications, and slightly greater than 1.0 for PMF Use for slopes less than 10 percent

	Top Slope	
Slope (ft/ft)	0.02	1
angle α (rad)	0.020	
	07	See Fig 4.1 of TAD or Fig 4.8 of NUREG 4620, typically
Angle of repose of rock (degees)	37	between 32 and 42 for angular, 29 and 41 for rounded
Angle of repose of rock (rad))	0.646	
Specific gravity of rock	2.65	
PMP unit flow (cfs/ft)	1.35	(max from "flow-PMP" worksheet)
Concentration Factor		Typically between 1.1 to 3.2
design flow (cfs/ft)	4.05	
design flow over rock (cfs/ft)	4.05	assumes negligible flow through rock
Assumed D50 (in) #1	2	
Assumed D50 (in) #2	2.1	
Assumed D50 (in) #3	2.2	
Assumed D50 (in) #4	2.3	l
Assumed D50 (in) #5	2.4	
Manning's a for rook #1	0 0272	Abt at al. 1097 as procented in LIMTRA TAD
Manning's n for rock #1	0.0273	Abt et al. 1987 as presented in UMTRA TAD
Manning's n for rock #2		
Manning's n for rock #3	0.0278	-
Manning's n for rock #4	0.0279	, ,
Manning's n for rock #5	0.0281	
Assumed depth of flow for rock #1 (ft)	0.681	· .
Assumed depth of flow for rock #2 (ft)	•	
· · · · · · · · · · · · · · · · · · ·	0.684	
Assumed depth of flow for rock #3 (ft)	0.687	
ssumed depth of flow for rock #4 (ft)	0.690	
sumed depth of flow for rock #5 (ft)	0.693	
Calculated flow for rock #1 (cfs/ft)	4.05	
Calculated flow for rock #2	4.05	· · · · · · · · · · · · · · · · · · ·
Calculated flow for rock #3	4.05	
Calculated flow for rock #4		
	4.05	
Calculated flow for rock #5	4.05	
modify depth of flow until calculated	q = design q	
calculated velocity for rock #1, (ft/s)	5.95	·
calculated velocity for rock #2, (ft/s)	5.92	
calculated velocity for rock #3, (ft/s)	5.90	
calculated velocity for rock #4, (ft/s)	5.87	·
calculated velocity for rock #5, (ft/s)	5.85	
ave shear stress. τ for rock #1	0.85	
ave shear stress, τ for rock #2	0.85	
ave shear stress, τ for rock #3	0.86	
ave shear stress, τ for rock #4	0.86	· · ·
ave shear stress, τ for rock #5	0.86	
Stability number for rock #1	1.040	
Stability number for rock #2	0.995	
Stability number for rock #2	0.954	
Stability number for rock #4	0.916	
Stability number for rock #5	0.882	
Factor of Safety for rock #1	0.94	
Factor of Safety for rock #2	0.98	,
Factor of Safety for rock #3	1.02	
Factor of Safety for rock #4	1.06	
Factor of Safety for rock #5	1.10	

Adjust assumed D50 until design criteria for Factor of Safety is bracketed

P:\181268\RAP\erosional stability\ripraprev2:Safety Factor Method

Client:	Stoller	Job No.:	181268
Project:	Crescent Junction Disposal Cell	Date:	5/9/2006
Detail:	Erosion Protection	Computed By:	RTS

Abt METHOD (Abt and Johnson, 1991) applicable for slopes of 50% or less.

Equations assume specific gravity of rock is 2.65 or greater and angular rock. For rounded rock, increase size by 40%.

ROCK SIZING EQUATION d50 = 5.23*S^0.43q*^0.56

Area	A2	A3	A4	A5	
Side Slope (ft/ft)	0.2	0.2	0.2	0.2	
angle α (rad)	<u>0</u> .197	0.197	0.197	0.197	
PMP unit flow (cfs/ft)	1.37	0.14	0.10	0.19	(max from "flow-PMP" worksheet)
Concentration Factor	3	3	3	3	Typically between 1.1 to 3.2
Coef. Of Movement	1.35	1.35	1.35	1.35	1.35 to prevent movement
design flow (cfs/ft)	5.56	0.58	0.41	0.76	
design flow over rock (cfs/ft)	5.56	0.58	0.41	0.76	assumes negligible flow through rock
D50 (inches) angular	6.8	1.9	1.6	2.2	
D50 (inches) rounded	9.6	2.7	2.2	3.1	

`%8\RAP\erosional stability\ripraprev2:CSU-Abt

Ξ.

Client: Project: Detail: Stoller Crescent Junction Disposal Cell Erosion Protection Job No.: Date: Computed By: 181268 5/9/2006 RTS

STEPHENSON'S METHOD FOR SIZING RIPRAP

Applicable for shallow flow on slopes greater than 10%

Area	A2	A3	A4	A5	· · · ·
slope (ft/ft)	0.2	0.2	0.2	0.2	
slope angle α (rad)	0.197	0.197	0.197	0.197	
					See Fig 4.1 of TAD or Fig 4.8 of NUREG 4620, typically between 32 and 42 for angular, 29 and 41 for
Angle of repose of rock (degees)	41	41	41	41	rounded
Angle of repose of rock (rad))	0.716	0.716	0.716	0.716	
Specific gravity of rock	2.65	2.65	2.65	2.65	
Dry unit weight of rock (pcf)	125	125	125	125	
Porosity of rock	0.32288	0.32288	0.32288	0.32288	
					varies from 0.22 for gravel and
C	0.22	0.22	0.22	0.22	pebbles to 0.27 for crushed granite
PMP unit flow (cfs/ft)	1.37	0.14	0.10	0.19	(max from from "flow" worksheet)
flow concentration	3	3	3	3	
design flow (cfs/ft)	4.12	0.43	0.30	0.56	
design flow over rock (cfs/ft)	4.12	0.43	0.30	0.56	assumes negligible flow through rock
D50 (inches) for angular rock	9.47	2.11	1.65	2.52	
D50 (inches) for rounded rock	13.25	2.95	2.32	3.52	

P:\181268\RAP\erosional stability\ripraprev2:Stephenson

Client:	Stoller	Job No.:	181268
Project:	Crescent Junction Disposal Cell	Date:	2/6/2006
Detail:	Erosion Protection	Computed By:	RTS

Preliminary Gradations

This spreadsheet calculates preliminary gradations of riprap based on D50

Source: NUREG 4620

Source: USDA, National Engineering Handbook, Part 633, Chapter 26, Gradation Design of Sand and Gravel Filters, October 1994.

Area	A1	. /	2	A3 A	4 A	5	A2 Apron	A3 Apron	A5 Apron	Comment Assuming angular rock, average between Abt and
Minimum D50 (in)	:	2.20	8.15	2.02	1.62	2.38	13.68	3.87	4.49) Stephenson methods
·										Based on constructability: 2*D50. May consider 12" as
Rock thickness (in)		6.00	16.31	6.00	6.00	6.00	27.36	7.75	8.99) minimum thickness for rock
Maximum D50 (in)		4.00	10.87	4.00	4.00	4.00	18.24	5.16	5.99	Based on constructability: Thickness/1.5
Maximum D50 (in)	1	1.00	40.77	10.11	8.09	11.91	68.40	19.37	22.47	Prevent gap-grading: minimum D50*5
Maximum D50 (in)	•	4.00	10.87	4.00	4.00	4.00	18.24	5.16	5.99	Smaller of two above criteria
Maximum D100 (in)	•	6.00	16.31	6.00	6.00	6.00	27.36	7.75	8.99	Based on constructability: 1*Thickness
Maximum D100 (in)		0.00	54.35	20.00	20.00	20.00	91.20	25.82		Based on internal stability?: 5*maximum D50
Maximum D100 (in)		6.00	16.31	6.00	6.00	6.00	27.36	7.75		Smaller of two above criteria
Minimum D100 (in)		4.40	16.31		3.24	4.76	27.36			Based on internal stability: 2*minimum D50
Minimum D15 (in)		0.38	1.02		0.38	0.38	1.71	0.48		Based on internal stability: Maximum D100/16
Maximum D15 (in)		1.88	5.10		1.88	1.88	8.55	2.42		Prevent gap-grading: Minimum D15*5
Minimum D60 (in)		3.08	11.41		2.26	3.33	19.15			Prevent gap-grading: D60/D10<=6
Maximum D60 (in)		5.60	15.22		5.60	5.60		7.23		Prevent gap-grading: D60/D10<=6
Minimum D10 (in)	· · · · ·	0.51	1.90		0.38	0.56	3.19	0.90		5 Prevent gap-grading: D60/D10<=6
Maximum D10 (in)		0.93	2.54		0.93	0. 9 3	4.26	1.21) Prevent gap-grading: D60/D10<=6
Summary								•		· ·
Percent Passing	Diame	ter (m	m)		·		· .			
 50		56	²⁰⁷	-51	41	60	347	98	114	L
50)	102	· 276	102	102	102	463	131	152	
100)	152	414		152	152	695	197	228	}
100)	112	414	103	82	121	695	197	228	}
15	5	10	26	10	10	10	43	12	14	•
15	5	48	129		48	48	217	61		
60		78	290		58.	85	486	138		
60)	142	387	142	142	142		184	213	3
10		13	48		10	14		23		
10)	24	64		24	24	108		36	

Client:	Stoller	Job No.:	181268	
Project:	Crescent Junction Disposal Cell	Date:	2/6/2006	
Detail:	Erosion Protection	Computed By:	RTS	

Interstitial Velocities

Source:

NUREG 1623, Section D Abt, SR, JF Ruff, RJ Wittler (1991). Estimating Flow Through Riprap, Journal of Hydraulic Engineering, Vol. 117, No. 5, May.

Area	A1	A2	A3	A4	A5	A2	apron A3	apron /	5 apron	
									from Safety Factor Method	, or ave of Abt,
Minimum D50 (inches)	· .	2.20	8.15	2.02	1.62	2.38	13.68	3.87	4.49 Stephenson etc. assuming	angular rock
Maximum D10 (inches)		0.93	2.54	0.93	0.93	0.93	4.26	1.21	1.40 from preliminary gradation	specs
Slope (ft/ft)		0.02	0.2	0.2	0.2	0.2	0.02	0.02	0.02 from preliminary disposal of	
Velocity (ft/s)		0.18	0.93	0.56	0.56	0.56	0.38	0.20	0.22 calculated from Abt et al. (1991)
Underlying filter										
required?	no	ma	iybe ma	ybe may	/be may	vbe no	nc) I	Per NUREG 1623, Append	lix D, section 2.1.1

Client:	Stoller	Job No.:	181268
Project:	Crescent Junction Disposal Cell	Date:	5/9/2006
Detail:	Erosion Protection	Computed By:	RTS

Modified Universal Soil Loss Equation (MUSLE)

Source : Clyde et al. (1978) as presented in NUREG 4620, section 5.1.2 A=R*K*LS*VM

	Sheet	weathered	coarse	
Inputs for K factor	wash/eolian	shale	gravel/sand	· · · ·
Percent silt and very fine sand	60	55	10	
Percent sand (0.10-2.0 mm)	25	5	20	
Percent oganic matter	2	2	0	
Soil structure	No. 1	No. 3	No. 3	•
Permeability	No. 3	No. 3	No. 2	
Inputs for LS factor				
Slope length (ft)	2130) 2130) 2130	
slope steepness (%)	2	2 2	2 2	· · · ·
m exponent	0.3	3 0.3	3 0.3 f	rom table 5.2 of NUREG 4620

		Sheet	Weathered	Coarse	<u>ן</u>
		Wash/Eolian	Shale	Sand	-
R	Rainfall Factor	30	30	30	F
ĸ	Soil Erodibility factor	0.35	0.26	0.05	ΠFι
LS	Topographic factor	0.50	0.50	0.50	7
VМ	Dimensionless erosion control factor	0.4	0.4	0.4	F
A	Soil Loss (tons/acre/year)	2.09	1.56	0.30	
A	Soil density (pcf)	100	100	100	
A	Soil Loss (inches/1000 years	11.5	8.6	1.6	7

From Table 5.1 of NUREG 4620 for eastern third of Utah From nomograph Fig. 5.1 of NUREG 4620

From Table 5.3 of NUREG 4620 for seedings, 0-60 days

Client: ⊳roject:

)etail:

Stoller Job No.: **Crescent Junction Disposal Cell** Date: **Erosion Protection Computed By:**

0.761558 0.583861

0.2

4.5

181268 5/12/2006 RTS

Apron Protection

Source:

Abt, SR, Johnson, TL, Thornton, CI, and Trabant, SC, Riprap Sizing at Toe of Embankment Slopes, Journal of Hydraulic Engineering, Vol. 124, No. 7, July 1998.

0.2

3.9

Equation:	D50=10.46*	S^0.43*qd^0.56		·
	North	South East	We	est ·
unit discharge (cfs/ft)	0.10	1.37	0.19	0.14
Cr	1	1	1	.1
Cf	3	3	3	3
Cm	1.35	1.35	1.35	1.35

0.2

3.2

5.557379

0.2

13.7

design discharge (cfs/ft) 0.406164 Slope (ft/ft) D50 (in)

P:\181268\RAP\erosional stability\ripraprev2

Client:	Stoller	Job No.:	181268
Project:	Crescent Junction Disposal Cell	Date:	5/12/2006
Detail:	Erosion Protection	Computed By:	RTS

Scour depth is based on equations presented by FHA based on erosion a culvert outlets Source: US Department of Transportation, Federal Highway Administration, Hydraulic Engineering Circular No. 14, September, 1983

Flow over riprap	A2, south	A3, west	A5, east	
Flow, q	1.37	0.14	0.19 cfs/ft	
gravity, g	32.2	32.2	32.2 ft/s^2	
time, t	15	15	15 minutes	
base time, to	316	316	316 minutes	
D50	13.7	3.9	4.5 in	
D50	1.14	0.32	0.37 ft	
Slope of Apron	0.02	0.02	0.02 (ft/ft)	
Manning's n	0.040	0.033	0.034 COE (19	970) for submerged riprap
depth of flow	0.45	0.10	0.12 ft	
velocity	3.06	1.41	1.54 ft/s	
Native soils				
plasticity index of alluvial soil	5	5	5 %	from GEG, 2005 lab data
unconfined compressive strength	1.4	1.4	1.4 psi	assumed value for silty clays (200 psf)
critical tractive shear (lb/ft^2)	0.254143	0.254143		
modified shear number	71.41606	15.15466	18.19436	
d84 bedding	0.12	0.12	0.12 mm	Average for Eolian/shweet wash materials from GEG, 2005 lab data
d16 bedding	0.002	0.002	0.002 mm	Average for Eolian/shweet wash materials from GEG, 2005 lab data
gradation standard deviation, σ	7.745967	7.745967	7.745967	
gradation classification	graded	graded	graded	
-	-	-	· ·	
i i	Depth			
α	0.86			coefficients for clay with PI 5-16
β _	0.18	-	· ·	
θ	0.1	,		
αe	1.37			
equivalent depth, ye	0.45	0.10	0.12 ft	
depth of scour (ft)	0.98	0.22	0.27	
,	• •			

38\RAP\erosional stability\ripraprev2

U.S. Department of Energy—Grand Junction, Colorado

Calculation	Cover Sl	neet
-------------	-----------------	------

Calc. No.: MOA-01-06-2006-5-02-01 Discipline: Geotechnical No. of Sheets: 14 Doc. No.: X0176600

Location: Attachment 1, Appendix I

Project: Moab UMTRA Project

Site: Moab Disposal Site

Feature: Volume Calculation for the Moab Tailings Pile

Sources of Data:

Various site topography files, including pre-2000 data, and 2003 and 2005 topography files.

Boring logs and CPTs from Steffen, Robertson, and Kirsten (2000) site investigation.

Boring logs from Dames & Moore (1981) site investigation.

Boring logs, test pit logs, CPT soundings, and laboratory test data from Golder (2005) field investigation.

Sources of Formulae and References:

ConeTec, Inc. (ConeTec), 2000. Cone Penetration Test Report, Atlas Minerals Mill Tailings Impoundment, Moab, Utah, Vols. I and II, Salt Lake City, Utah, May 12.

Dames & Moore (D&M), 1981. Additions to Tailings Pond-Embankment System, Moab, Utah, Report of Engineering Design Study for Atlas Minerals, Salt Lake City, Utah, May 26.

Steffen, Robertson, and Kirsten (SRK), 2000. Dewatering Options for Placement of Cover, Moab Tailings Impoundment, prepared for Moab Mill Reclamation Trust, Lakewood, Colorado, June.

Preliminary	Calc.	Final Calc. X	Supers	edes Calc. No	. MOA-01-05	-2006-5-02-00
Author:	Kemberey L. ,	Marinon 6/5/00	Checked by:	6/100	- Jelen	5/20/07
	Name		- •.	Narte	Sunt	State /07
Approved by:	Ast	45/06		Name		Date
	Name 6 4	Date	-	Mail	Kaifty	5-31-07
· ·	Volny E G	ling 5/31/07		Name	t / m	Date M 31,07
	· ·			Name	" C	Date

No text for this page

Volume Calculation for the Moab Tailings Pile Doc. No. X0176600 Page 2

U.S. Department of Energy June 2006

Problem Statement:

Estimate the total volume of tailings and associated fill materials requiring removal and re-location from the Moab Tailings Impoundment, including an estimate of the various material types (i.e., cover fill, sands, transitional tailings and slimes).

Method of Solution:

Review site geotechnical data including boring logs, test pit logs, laboratory test results and cone penetration test soundings conducted at the Site. Using AutoCAD and Land Development Desktop, develop cross-sections both laterally (northwest to southeast) and transversely (southwest to northeast) across the site in order to estimate the volumes. Where laboratory test data are available, use the data to divide the material into the following general classifications:

- Sand: <30 percent fines (minus 74 micron).
- Transitional tailings: >30 percent and < 70 percent fines.
- Slimes: >70 percent fines.

Assumptions:

- Relative percent fines can be estimated from the cone penetration soundings based on relative resistance, whereby higher resistances infer presence of sandy soils and lower resistance infer presence of fine-grained soils.
- The average end area method, wherein averaged cross-sectional areas from two adjacent sections
 multiplied by the distance between those two sections provides a reasonable estimate of the volume of
 material between the same sections.

Calculation:

Volumes were calculated using the average-end area method, whereby cross-sections were developed across the site and the material constituents of each cross-section were averaged with the same from the adjacent cross-section and multiplied by the distance between the sections.

Discussion:

Based on the method discussed herein, results of the volume evaluation using lateral cross-sections (0 through 10) and transverse cross-sections (11 through 25) are summarized as follows, with volumes presented in cubic yards (yd³):

Material Type	Lateral Cross-Sections (yd ³)	Transverse Cross-Sections (yd3)
Cover Fill	452,800	440,800
Sand Tailings	2,860,100	2,736,700
Transitional Tailings	3,930,500	3,903,100
Slimes	3,116,100	3,236,600

- The total volume of tailings and cover soils was calculated to be 10.36 million yd³ and 10.32 million yd³ using the lateral and transverse cross-sections, respectively.
- See Tables 1 and 2 for summary of cross-sectional areas and volumes based on the lateral and transverse cross-sections, respectively.
- See Figures 1 through 8 for map and cross-sections.

Table 1. Area and Volume Summary

GOLDER ASSOCIATES INC

TABLE 1 AREA AND VOLUME SUMMARY BASED ON LATERAL SECTIONS

Data from AutoCAD Sections

22-May-06 0532269 DR 18May06.dwg

	Cover Fill Area	Sand Tallings	Transitional Tailings	Silmes Tailings Area
Section	(ft ²)	Area (ft ²)	Area (ft ²)	(ft ²)
0	. 0	33,613	0	· 0
· 1	2,427	60,649	44,207	3,213
2	4,657	35,088	72,000	30,949
3	6,963	20,934	73,724	51,085
4	8,843	29,590	43,767	71,139
5	9,724	28,294	70,101	52,258
6	12,217	39,020	34,538	68,572
7	8,570	21,813	64,582	58,960
8	7,366	25,373	63,253	60,320
9	361	58,795	64,448	24,171
10	0	61,556	0	0

Volumes Calculations

Section Increment	Cover Fill Volume (ft ³)	Sand Tailings Volume (ft ³)	Transitional Tailings Volume (ft ³)	Slimes Tailings Volume (ft³)
Outside 0	0	2,100,813	. 0	0
0 to 1	242,700	9,426,200	4,420,700	321,300
1 to 2	708,400	9,573,700	11,620,700	3,416,200
2 to 3	1,162,000	5,602,200	14,572,400	8,203,400
3 to 4	1,580,600	5,052,400	11,749,100	12,222,400
4 to 5	1,856,700	5,788,400	11,386,800	12,339,700
5 to 6	2,194,100	6,731,400	10,463,900	12,083,000
6 to 7	2,078,700	6,083,300	9,912,000	12,753,200
7 to 8	1,593,600	4,718,600	12,783,500	11,928,000
8 to 9	772,700	8,416,800	12,770,100	8,449,100
9 to 10	36,100	12,035,100	6,444,800	.2,417,100
Outside 10	0	1,692,790	0	0
	•			•
Total (ft ³)	12,225,600	77,221,703	106,124,000	84,133,400
Total (yd ³)	452,800	2,860,063	3,930,519	3,116,052

Volume Calculation for the Moab Tailings Pile Doc. No. X0176600 Page 4 279,704,703 10,359,433

GOLDER ASSOCIATES INC

TABLE 2 AREA AND VOLUME SUMMARY BASED ON TRANSVERSE SECTIONS

Data from AutoCAD Sections

1-Jun-06 0532269A027

Section	Cover Fill Area (ft ²)	Sand Tailings Area (ft ²)	Transitional Tailings Area (ft ²)	Slimes Tailings Area (ft ²)
11	0	27,774	5,649	0
12	3,430	16,667	31,875	567
13	2,897	16,159	48,193	9,117
14	5,356	21,704	38,804	29,743
15	6,681	17,276	25,998	51,026
16	8,435	17,476	20,190	58,429
17	7,138	23,344	24,057	56,265
18	4,848	18,228	23,136	70,274
19	4,790	17,565	46,072	56,152
20	5,212	25,587	50,827	52,443
21	6,864	24,841	71,631	42,733
22	2,238	31,676	100,069	10,192
23	1,624	60,991	41,118	0
24	.0	44,823	0	0
25	0	12,373	0	0

Volumes Calculations

Section	Cover Fill Volume	Sand Tailings	Transitional Tailings Volume	Slimes Tailings	
Increment	(ft ³)	Voiume (ft ³)	(ft ³)	Volume (ft ³)	
Outside 11	0	2,083,050	423,675	0	
11 to 12	343,000	4,444,100	3,752,400	56,700	
12 to 13	632,700	3,282,600	8,006,800	968,400	
13 to 14	825,300	3,786,300	8,699,700	3,886,000	•
14 to 15	1,203,700	3,898,000	6,480,200	8,076,900	
15 to 16	1,511,600	3,475,200	4,618,800	10,945,500	
16 to 17	1,557,300	4,082,000	4,424,700	11,469,400	
17 to 18	1,198,600	4,157,200	4,719,300	12,653,900	
18 to 19	963,800	3,579,300	6,920,800	12,642,600	
19 to 20	1,000,200	4,315,200	9,689,900	10,859,500	
20 to 21	1,207,600	5,042,800	12,245,800	9,517,600	
21 to 22	910,200	5,651,700	17,170,000	5,292,500	
22 to 23	386,200	9,266,700	14,118,700	1,019,200	
23 to 24	162,400	10,581,400	4,111,800	0	
24 to 25	0	5,719,600	0	0	
Outside 25	0	525,853	0	0	
Total (ft ³)	11,902,600	73,891,003	105,382,575	87,388,200	278,564,3
Total (vd ³)		2.736.704	3,903,058	3,236,600	10.317.1

10,317,199

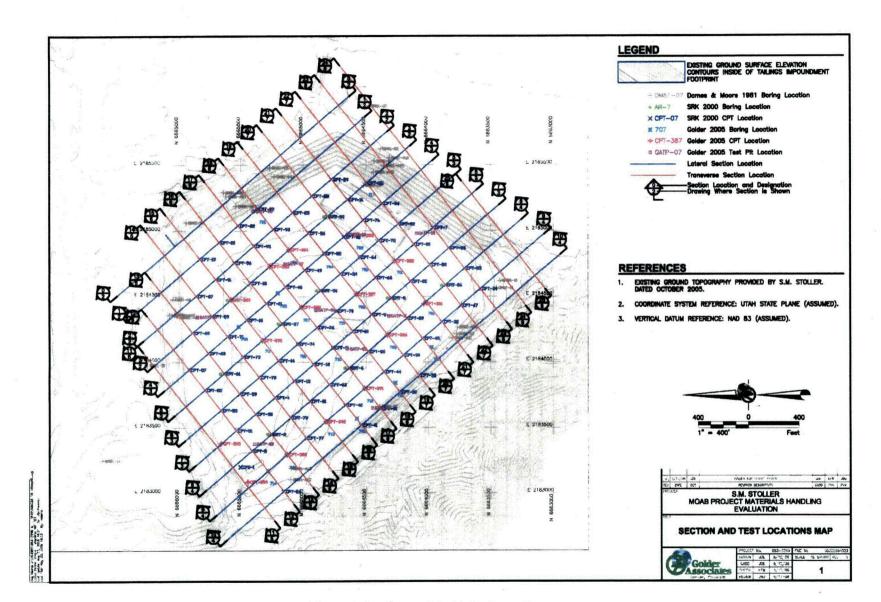


Figure 1. Section and Test Locations Map

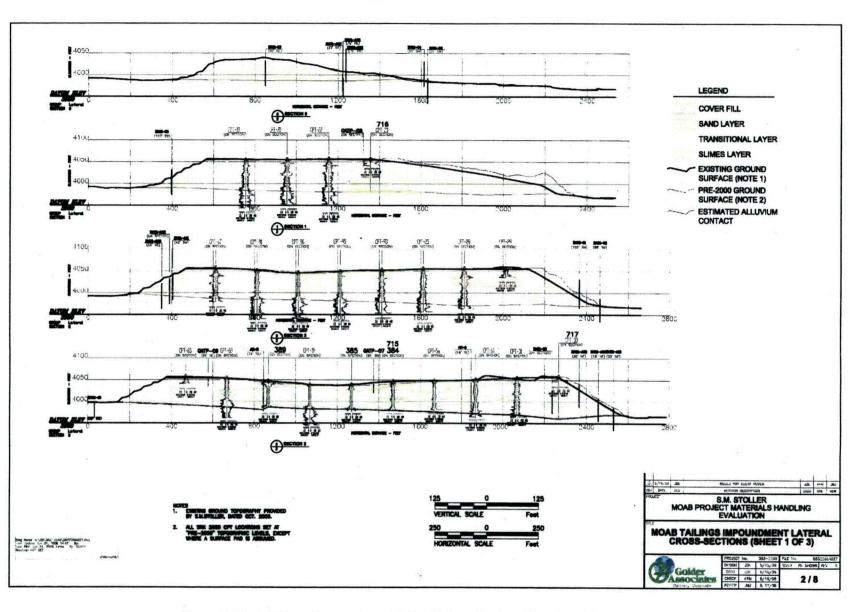


Figure 2. Moab Tailings Impoundment Lateral Cross-Section (Sheet 1 of 3)

Volume Calculation for the Moab Tailings Pile Doc. No. X0176600 Page 7

Volume Calculation for the Moab Tailings Pile Doc. No. X0176600 Page 8

> U.S. Department of Energy June 2006

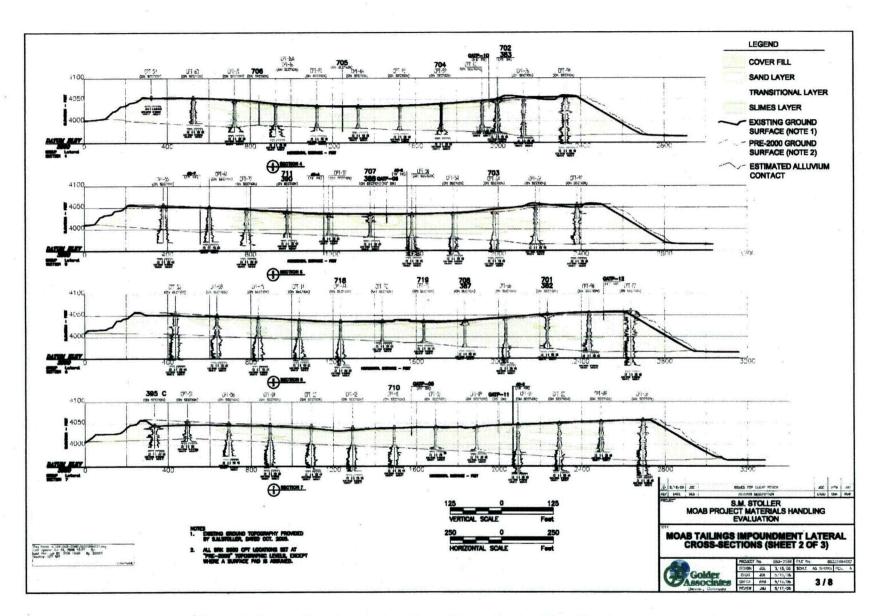


Figure 3. Moab Tailings Impoundment Lateral Cross-Section (Sheet 2 of 3)

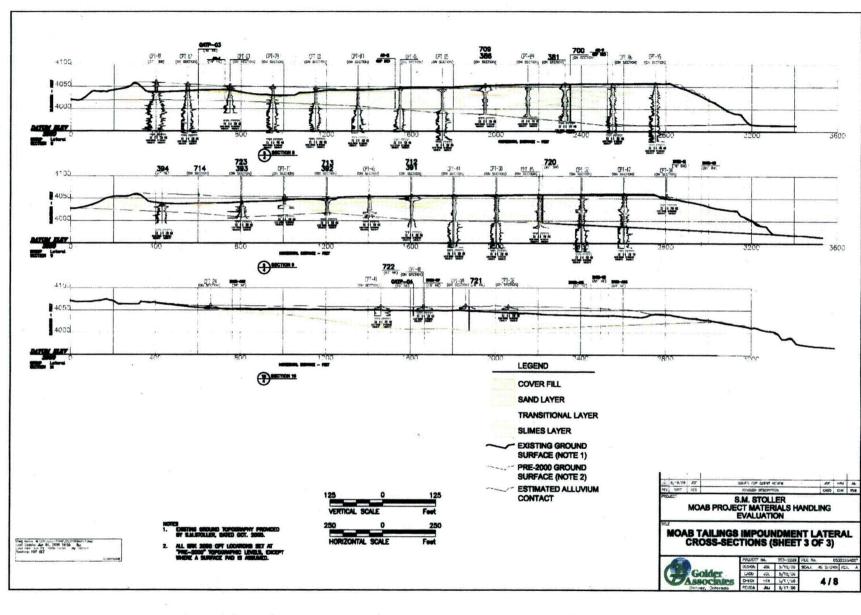


Figure 4. Moab Tailings Impoundment Lateral Cross-Sections (Sheet 3 of 3)

Volume Calculation for the Moab Tailings Pile Doc. No. X0176600 Page 9

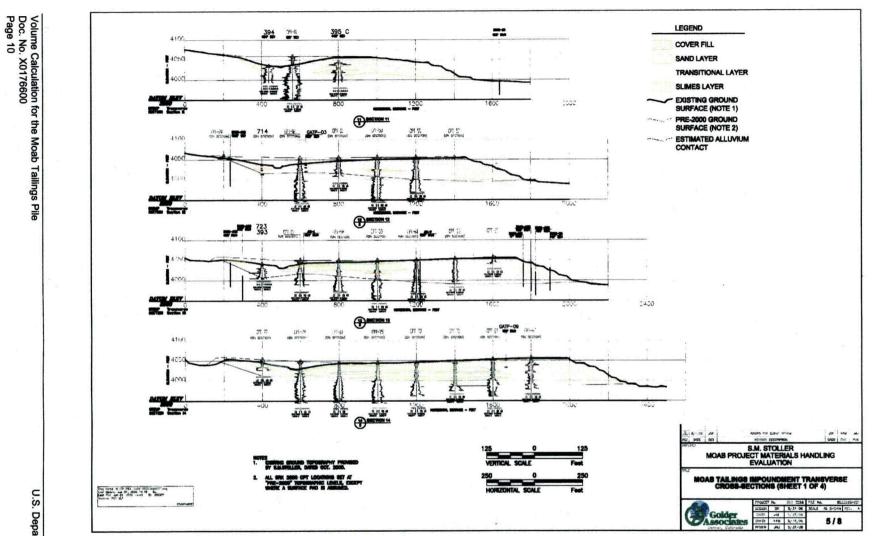


Figure 5. Moab Tailings Impoundment Transverse Cross Sections (Sheet 1 of 4)

U.S. Department of Energy June 2006

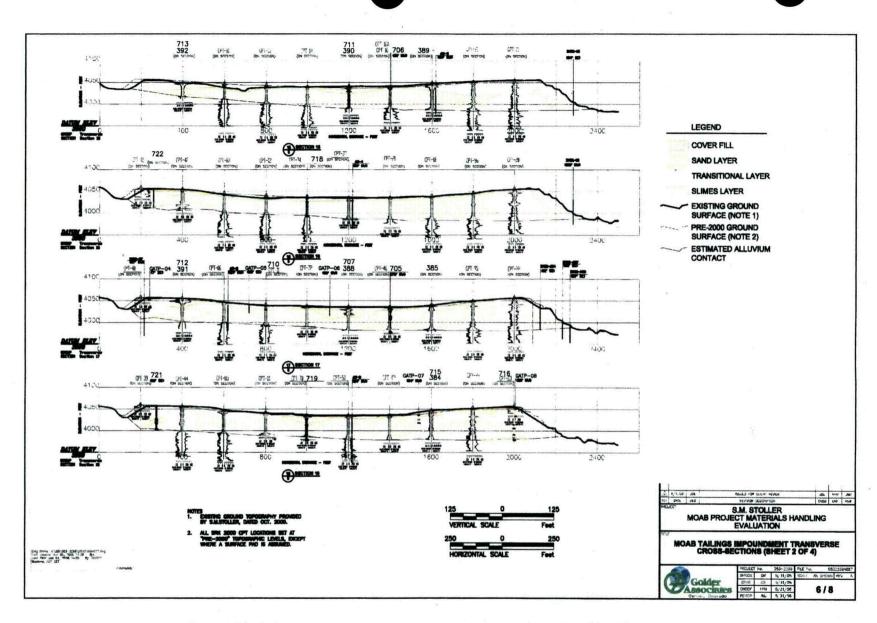


Figure 6. Moab Tailings Impoundment Transverse Cross Sections (Sheet 2 of 4)

Volume Calculation for the Moab Tailings Pile Doc. No. X0176600 Page 12

U.S. Department of Energy June 2006

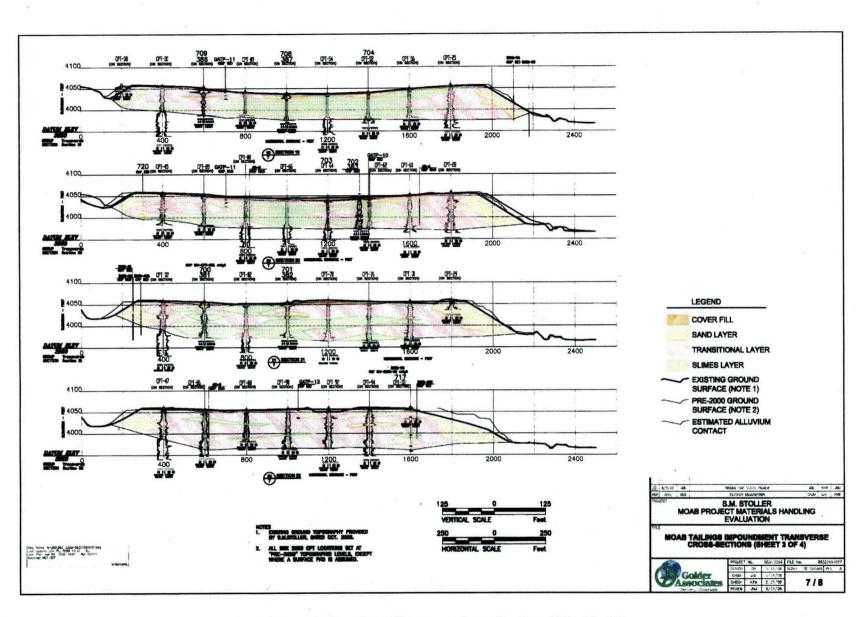


Figure 7. Moab Tailings Impoundment Transverse Cross Sections (Sheet 3 of 4)

U.S. Department of Energy June 2006

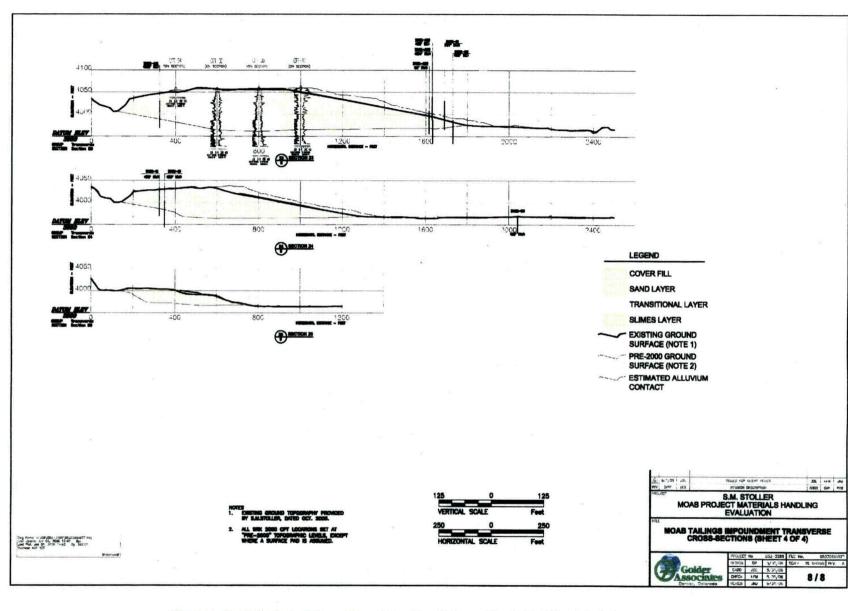


Figure 8. Moab Tailings Impoundment Transverse Cross Sections (Sheet 4 of 4)

Volume Calculation for the Moab Tailings Pile Doc. No. X0176600 Page 13

Conclusion and Recommendations:

- The total volume of tailings and cover soils requiring removal is approximately 10.3 to 10.4 million yd³. This volume includes no allowance for excavation of contaminated alluvial soils at the base of the tailings pile.
- Volume estimates of the individual constituents were made by developing lateral and transverse cross-sections through the impoundment. The total volumes compare well for the two sets of calculations.

Computer Source:

Not applicable.

U.S. Department of Energy—Grand Junction, Colorado

,						
Calc. No.: M Doc. No.: >	10A-02-08-2006 (0181000	-5-03-00	Discipline	: Geotechnical	No. of Sheets	:6
Location: A	Attachment 1, Aj	ppendix J	·	· ·		
Project:	loab UMTRA Pr	oject				
Site: C	Crescent Junctio	on Disposal S	ite			
Feature: V	Veight / Volume	Calculation f	or the Moab	Tailings Pile		
Sources of	Data:			,	······································	
Laboratory t	est data summar	ies listed below	W .			
Test data fro	om March 2006 b	ench scale tes	sting on cove	r soils and urani	um mill tailings.	
Remedial A	ction Plan (RAP)	calculations a	s referenced	in the text.		
Sources of	Formulae and R	References:			<u> </u>	
	es & Moore), 198 Design Study for				System, Moab, Utah, F	Report of
	Deerge einer j		is, bait cano	Oity, Otali, May 2	20.	
	es & Moore), 1984	4. Proposed 1	0-foot Tailing	is Embankment f	Raise, Moab, Utah, Re ake City, Utah, Septerr	
Geotechnica Golder (Gol	es & Moore), 1984 al Work as Reque	4. Proposed 10 ested by the N nc.), 2005a. <i>M</i>	0-foot Tailing RC, for Atlas laterials Hand	is Embankment F Minerals, Salt La	Raise, Moab, Utah, Rej ake City, Utah, Septerr Study for the Moab Tai	nber 25.
Geotechnica Golder (Gol Impoundme Golder (Gol Mill Tailings	es & Moore), 1984 al Work as Reque der Associates, Ir <i>nt, Moab, Utah</i> , F der Associates, Ir	4. Proposed 10 ested by the N nc.), 2005a. <i>M</i> Report to S.M. nc.), 2005b. "F ailings Impour	0-foot Tailing RC, for Atlas laterials Hand Stoller, Lake Results of Bel	is Embankment F Minerals, Salt La dling Evaluation S ewood, Colorado, nch Scale Testin	Raise, Moab, Utah, Rej ake City, Utah, Septerr Study for the Moab Tai	iber 25. <i>lings</i> oils and Uran
Geotechnica Golder (Gol Impoundme Golder (Gol Mill Tailings Lakewood, SRK (Steffe	es & Moore), 1984 al Work as Reque der Associates, Ir <i>nt, Moab, Utah</i> , F der Associates, Ir from the Moab T Colorado, April 3.	4. Proposed 10 ested by the N nc.), 2005a. <i>M</i> Report to S.M. nc.), 2005b. "F ailings Impour d Kirsten), 200	0-foot Tailing RC, for Atlas laterials Hand Stoller, Lake Results of Bei ndment, Grar 00. Dewaterir	IS Embankment F Minerals, Salt La dling Evaluation S ewood, Colorado, nch Scale Testin nd County, Utah, ng Options for Pla	Raise, Moab, Utah, Rep ake City, Utah, Septerr Study for the Moab Tai September 21. g Program on Cover S ' Draft Technical Memo acement of Cover, Moa	iber 25. <i>lings</i> oils and Uran orandum,
Geotechnica Golder (Gol Impoundme Golder (Gol Mill Tailings Lakewood, SRK (Steffe	es & Moore), 1984 al Work as Reque der Associates, Ir <i>nt, Moab, Utah</i> , F der Associates, Ir from the Moab T Colorado, April 3. n, Robertson, and	4. Proposed 10 ested by the N nc.), 2005a. <i>M</i> Report to S.M. nc.), 2005b. "F ailings Impour d Kirsten), 200	0-foot Tailing RC, for Atlas laterials Hand Stoller, Lake Results of Bei ndment, Grar 00. Dewaterir	IS Embankment F Minerals, Salt La dling Evaluation S ewood, Colorado, nch Scale Testin nd County, Utah, ng Options for Pla	Raise, Moab, Utah, Rep ake City, Utah, Septerr Study for the Moab Tai September 21. g Program on Cover S ' Draft Technical Memo acement of Cover, Moa	iber 25. <i>lings</i> oils and Uran orandum,
Geotechnica Golder (Gol Impoundme Golder (Gol Mill Tailings Lakewood, SRK (Steffe	es & Moore), 1984 al Work as Reque der Associates, Ir <i>nt, Moab, Utah</i> , F der Associates, Ir from the Moab T Colorado, April 3. n, Robertson, an <i>nt</i> , Prepared for I	4. Proposed 10 ested by the N nc.), 2005a. <i>M</i> Report to S.M. nc.), 2005b. "F ailings Impour d Kirsten), 200	0-foot Tailing RC, for Atlas laterials Hand Stoller, Lake Results of Ber ndment, Grar 00. <i>Dewaterir</i> lamation Trus	IS Embankment F Minerals, Salt La dling Evaluation S ewood, Colorado, nch Scale Testin nd County, Utah, ng Options for Pla	Raise, Moab, Utah, Re ake City, Utah, Septerr Study for the Moab Tai September 21. g Program on Cover S ' Draft Technical Memo acement of Cover, Moa plorado, June.	iber 25. <i>lings</i> oils and Uran orandum,
Geotechnica Golder (Gol Impoundme Golder (Gol Mill Tailings Lakewood, (SRK (Steffe Impoundme	es & Moore), 1984 al Work as Reque der Associates, Ir <i>nt, Moab, Utah</i> , F der Associates, Ir from the Moab T Colorado, April 3. n, Robertson, an <i>nt</i> , Prepared for I	4. Proposed 10 ested by the N nc.), 2005a. <i>M</i> Report to S.M. nc.), 2005b. "F ailings Impour d Kirsten), 200 Moab Mill Rec	0-foot Tailing RC, for Atlas laterials Hand Stoller, Lake Results of Ben ndment, Grar 00. <i>Dewaterir</i> lamation Trus	IS Embankment F Minerals, Salt La dling Evaluation S wood, Colorado, nch Scale Testin nd County, Utah, ng Options for Pla st, Lakewood, Co	Raise, Moab, Utah, Re ake City, Utah, Septerr Study for the Moab Tai September 21. g Program on Cover S ' Draft Technical Memo acement of Cover, Moa plorado, June.	iber 25. <i>lings</i> oils and Uran orandum,
Geotechnica Golder (Gol Impoundme Golder (Gol Mill Tailings Lakewood, G SRK (Steffe Impoundme Preliminary	es & Moore), 1984 al Work as Reque der Associates, Ir <i>nt, Moab, Utah</i> , F der Associates, Ir from the Moab T Colorado, April 3. n, Robertson, an <i>nt</i> , Prepared for I	4. Proposed 10 ested by the N nc.), 2005a. <i>M</i> Report to S.M. nc.), 2005b. "R ailings Impour d Kirsten), 200 Moab Mill Rec Final Calc.	0-foot Tailing RC, for Atlas laterials Hand Stoller, Lake Results of Ben ndment, Grar 00. <i>Dewaterir</i> lamation Trus X Checked	IS Embankment F Minerals, Salt La dling Evaluation S wood, Colorado, nch Scale Testin nd County, Utah, ng Options for Pla st, Lakewood, Co	Raise, Moab, Utah, Re ake City, Utah, Septerr Study for the Moab Tai September 21. g Program on Cover S ' Draft Technical Memo acement of Cover, Moa plorado, June.	iber 25. lings oils and Uran orandum, ab Tailings
Geotechnica Golder (Gol Impoundme Golder (Gol Mill Tailings Lakewood, G SRK (Steffe Impoundme Preliminary	es & Moore), 1984 al Work as Reque der Associates, Ir <i>nt, Moab, Utah</i> , F der Associates, Ir from the Moab T Colorado, April 3. n, Robertson, an <i>nt</i> , Prepared for I	4. Proposed 11 ested by the N nc.), 2005a. <i>M</i> Report to S.M. nc.), 2005b. "F ailings Impour d Kirsten), 200 Moab Mill Reci Final Calc.	0-foot Tailing RC, for Atlas laterials Hand Stoller, Lake Results of Ben ndment, Grar 00. <i>Dewaterir</i> lamation Trus X Checked	Is Embankment F Minerals, Salt La dling Evaluation S ewood, Colorado, nch Scale Testin nd County, Utah, ng Options for Pla st, Lakewood, Co Supersedes C	Raise, Moab, Utah, Rejake City, Utah, Septem Study for the Moab Tai September 21. g Program on Cover S Draft Technical Memo acement of Cover, Moa blorado, June.	iber 25. lings oils and Uran orandum, ab Tailings

Weight / Volume Calculation for the Moab Tailings Pile Doc. No. X0181000 Page 2

No text for this page

Problem Statement:

Estimate the total weight and relocated volume of tailings and associated fill materials requiring removal and re-location from the Moab Tailings Impoundment, including an estimate of the various material types (i.e., cover fill, sands, transitional tailings, and slimes).

Method of Solution:

- 1. Determine the average in-place wet density and in-place moisture content for each material type based on data from earlier studies plus recent lab test data (D&M 1981, D&M 1984, SRK 2000, and Golder 2005b).
- 2. Determine the average Standard Proctor maximum dry density and optimum moisture content for each material type based on the bench-scale Standard Proctor test results.
- 3. Revise and update a working draft spreadsheet sent by Greg Lord of S.M. Stoller Corp. to calculate the following:
 - In-place total weight.
 - In-place water weight.
 - Solids weight.
 - Final water weight.
 - Final total weight.
 - Final wet density.
 - Final volume.

Assumptions:

Material to be placed and compacted in the Crescent Junction Disposal Cell at 90 percent of the Standard Proctor maximum dry density at the optimum water content for each material type, based on prior UMTRA experience.

Calculation:

Table 1 shows the resulting spreadsheet. Input data are located in columns 1, 2, 3, 7, and 10. Calculations are performed in columns 4, 5, 6, 8, 9, 11, and 12. The input data and calculations are discussed on a column-by-column basis below. Note that initial input values are wet densities.

- Column 1. The in-place volumes are calculated as the average of the volumes determined using the lateral and transverse cross-sections in the "Volume Calculation for the Moab Tailings Pile" calculation (RAP Attachment 1, Appendix I).
- Column 2. The in-place wet densities were calculated as the average of all wet density lab test data from recent lab tests performed by Shaw, E & I, Inc. These lab results were separated by material type before being averaged. This same method was used to average older lab test data, the results of which were compared to the more recent averages. The numbers used in Table 1 are slightly conservative estimates based on the most recent lab test data.
- Column 3. The in-place moisture contents were calculated in the same manner as the in-place densities in Column 2.
- Column 4. The in-place total weight was calculated by multiplying the in-place volume (1) with the inplace wet density (2).
- Column 5. The in-place water weight was calculated using the following two equations: w = Ww/Ws, and Wt = Ws + Ww. Where w is the moisture content, Ww is the weight of water, Ws is the weight of solids, and Wt is the total weight. Combining these equations, Ww can be solved for knowing w (3) and Wt (4).

- Column 6. The solids weight is calculated as the total weight less the water weight.
- Column 7. The final moisture content was assumed to be equal to the average optimum moisture content determined through the Standard Proctor tests, based on a limited number of Proctor density tests.
- Column 8. The final water weight is calculated as the solids weight multiplied by the final moisture content, as per the definition of moisture content.
- Column 9. The final total weight is calculated as the solids weight added to the final water weight.
- Column 10. The final wet density was calculated by first averaging the maximum dry density (MDD)
 results for each material type from the Standard Proctor tests. The assumption was then made that the
 material would be placed at 90 percent of the MDD, based on prior UMTRA projects. Lastly, 90 percent
 of the MDD was converted to a wet density using the final moisture content (ywet=0.9*MDD*(1+w)).
- Column 11. The final volume is calculated by dividing the final total weight (9) by the final wet density (10).
- Column 12. The volume change is calculated by subtracting the in-place volume (1) from the final volume (11). A positive number in Column 12 indicates volume expansion, and a negative number indicates volume compression.
- Conversions Used:
 - a. 1 cubic yard $(yd^3) = 27$ cubic feet (ft^3)
 - b. 1 ton = 2,000 lbs

Discussion:

The input properties for the off-pile material, vicinity property, and subpile material were not calculated by Golder. With the exception of the in-place wet densities for these materials, the numbers in Table 1 were left unchanged from the original spreadsheet received from Stoller on June 6, 2006. The in-place wet densities were changed, as they previously appeared to represent the dry densities of these materials. All other input values for these materials appear to be reasonable based on available information.

The total in-place wet weight of the cover, sand tailings, transitional tailings, and slimes tailings is 15.8 million tons, and the equivalent dry weight of solids is 12.5 million tons. These values are slightly lower than predicted previously (Golder 2005a) (see also the "Volume Calculation for the Moab Tailings Pile" calculation, RAP Attachment 1, Appendix I) when the wet weight was estimated as 16.6 million tons and the equivalent dry weight as 13.2 million tons.

The final volume is nearly 600,000 yd³ less than the in-place volume, indicating a net reduction in volume of material. This reduction can be attributed to a denser state following compaction, assuming sufficient water loss to achieve compactable moisture contents.

Conclusion and Recommendations:

- The total wet weight of tailings material plus interim cover soils is estimated to be 15.8 million tons. In place, this material occupies 10.3 million yd³. When dried or wetted to the optimum moisture content and compacted, this material will occupy 9.7 million yd³ of storage space.
- The total wet weight of tailings material and other residual radioactive material (RRM) is estimated to be 18.1 million tons. In-place, this material occupies an estimated 11.9 million yd³. When dried or wetted to the optimum moisture content and compacted, this material will occupy 11.2 million yd³ of storage space.

Computer Source:

Not applicable.

Table 1. Volume and Weight Calculations Per Material Type

	1	2	3	4	· 5	6	7	. 8	9	10	11	12
Material	in-Place Volume (yd ³)	In- Place Wet Density (pcf)	In-Place Moisture Content	In-Place Total Weight (tons)	In-Place Water Weight (tons)	Solids Weight (tons)	Final Moisture Content	Final Water Weight (tons)	Final Total Weight (tons)	Final Wet Density (pcf)	Final Volume (yd ³)	Volume Change (yd³)
	Tailings Material											
Sand Tailings	2,798,384	109	10%	4,117,821	374,347	3,743,474	14.3%	535,317	4,278,791	. 109	2,903,606	105,222
Transitional Tailings	3,916,789	115	25%	6,080,814	1,216,163	4,864,651	17.5%	851,314	5,715,965	115	3,676,985	-239,803
Slimes Tailings	3,176,326	114	50%	4,888,366	1,629,455	3,258,910	25.0%	814,728	4,073,638	111	2,712,368	-463,958
Subtotal	9,891,498			15,087,001	3,219,965	11,867,036		2,201,358	14,068,394		9,292,959	-598,539
	<u> </u>			· · ·	Ot	her RRM Mate	erial					
Interim Cover	452,800	109	9%	666,295	55,015	611,280	12.9%	78,855	690,135	115	443,053	-9,747
Off-Pile Material	700,000	105	9%	992,250	81,929	910,321	11.0%	100,135	1,010,456	113	659,796	-40,204
Vicinity Property	120,000	105	9%	170,100	14,045	156,055	11.0%	17,166	173,221	113	113,108	6,892
Subpile Material	774,000	115	20%	1,201,635	200,273	1,001,363	12.0%	120,164	1,121,526	114	725,783	-48,217
Subtotal	2,046,800			3,030,280	351,262	2,679,019	۹.	316,320	2,995,339		1,941,740	-105,060
Total				18,117,281	3,571,227	14,546,054		2,517,678	17,063,733		11,234,699	-703,599

Notes:

Column 1 - In-Place Volume calculated as average of lateral and transverse method results

Column 2 - In-Place Wet Density calculated as average of lab test results per material type, conservative rounding

Column 3 - In-Place Moisture Content calculated as average of lab test results per material type

Column 4 - In-Place Total Weight calculated as In-Place Wet Density (2) times In-Place Volume (1) with appropriate unit conversion factors

Column 5 - In-Place Water Weight calculated as [(4) x (3)] / [1-(3)] (Das 1998, page 40)

Column 6 - Solids Weight calculated as Total Weight (4) less Water Weight (5)

Column 7 - Final Moisture Content calculated as average optimum moisture contents determined via Proctor tests conducted on bench-scale tests

Column 8 - Final Water Weight calculated as Solids Weight (6) times Final Moisture Content (7)

Column 9 - Final Total Weight calculated as Solids Weight (6) plus Final Water Weight (8)

Column 10 - Final Wet Density calculated as 90 percent of maximum dry density determined via Proctor tests, converted to wet density by multiplying by (1+w)

Column 11 - Final Volume calculated as Final Total Weight (9) divided by Final Wet Density (10) with appropriate unit conversion factors

Column 12 - Volume Change calculated as Final Volume (11) less In-Place Volume (1) (Positive numbers in this column indicate volume expansion)

U.S. Department of Energy August 2006

Weight / Volume Calculation for the Moab Tailings Pile Doc. No. X0181000 Page 6

End of current text

U.S. Department of Energy—Grand Junction, Colorado

	Ca	alculation Cover	r Sheet		
	MOA-01-08-2006-5-14-00 X0187200	Discipline: Engine	ering	No. of Sheets: 6	
Location:	Attachment 1, Appendix K	·			
Project:	Moab UMTRA Project		· · ·		
Site:	Moab Tailings Pile		·		
Feature:	Average Radium-226 Conc	entrations for the Moa	ıb Tailings Pile		
Sources o	f Data:	· · · · · · · · · · · · · · · · · · ·		``````````````````````````````````````	
Oak Ridge	National Lab, 1997. Limited C	Ground Water Investigat	ion, December.		
Remedial /	Action Plan (RAP) calculations	as referenced in the te	xt.		
Stoller (SN January.	Stoller Corporation), 2003. D	etermination of Subpile	Soil Concentra	tions, GJO-MOA 19).1.2,
Stoller (SM November.	Stoller Corporation), 2005. S	oil Sample Catalogue, l	nformation for S	Shipping Soil Sampl	es,
SRK (Steff	en, Robertson, and Kirsten), 2	2000. Dewatering Option	ns for Placemer	nt of Cover, June.	
Sources o	f Formulae and References:				
	f Formulae and References:		· · · · · · · · · · · · · · · · · · ·		
None.	f Formulae and References: was statistically evaluated us				
None. Informatior Data on sa		sing Microsoft Excel. The Determinat			were not
None. Informatior Data on sa	was statistically evaluated us	sing Microsoft Excel. The Determinat			were not
None. Informatior Data on sa	was statistically evaluated us	sing Microsoft Excel. The Determinat			were not
None. Informatior Data on sa	was statistically evaluated us	sing Microsoft Excel. The Determinat			were not
None. Informatior Data on sa used, since	was statistically evaluated us mples below the removal crite this material is below the pile	sing Microsoft Excel. aria from the <i>Determinat</i> and below the removal		.	were not
None. Informatior Data on sa	was statistically evaluated us mples below the removal crite this material is below the pile y Calc. E Final Ca	sing Microsoft Excel. aria from the <i>Determinat</i> and below the removal	l concentrations Supersedes (s. Calc. No.	
None. Informatior Data on sa used, since Preliminar Author:	y Calc. Final Ca	sing Microsoft Excel. eria from the <i>Determinat</i> and below the removal	Concentrations	s. Calc. No	were not
None. Informatior Data on sa used, since Preliminar	y Calc. Final Ca	sing Microsoft Excel. eria from the <i>Determinat</i> and below the removal	Supersedes (by:	calc. No.	late

0

Average Radium-226 Concentrations for the Moab Tailings Pile Doc. No. X0187200 Page 2

No text for this page

Problem Statement:

Evaluate the available radium-226 data to determine an average radium-226 concentration for the material that will be disposed of in the Crescent Junction Disposal Cell.

Method of Solution:

Review published literature and maps of radium-226 concentration at the Moab tailings pile.

Assumptions:

Literature sources are reliable and there is sufficient data, as well as geospatial variability, that the data is statistically suitable.

Calculation:

The data was averaged both on a volumetric-weighted basis and as a straight average. The straight average was determined to be the most conservative and is used in the "Radon Barrier Design Remedial Action Plan" calculation (RAP Attachment 1, Appendix B).

Discussion:

Although the data was acquired at different times by different groups and, in some cases, for different purposes, there is sufficient geospatial variability, both vertically and horizontally, to create a valid representative sampling.

Samples were obtained by Oak Ridge National Lab as part of a ground water modeling task; by Stoller as part of a task to determine the quantity of subpile soils requiring removal; by Steffen, Robertson, and Kirsten as part of a pile characterization task; and by Stoller to characterize samples for shipment.

Conclusion and Recommendations:

Based on the results of the averages, 707 pCi/g is the average radium-226 value to be used in the "Radon Barrier Design Remedial Action Plan" calculation (RAP Attachment 1, Appendix B)

Computer Source:

Not applicable.

Ra-226

Sample	Depth	Ra-226 Activity (pCi/g)	Material	Sample	Depth	Ra-226 Activity (pCi/g)	Material
BH-701	0-20	400.9	trans	PB-2	34-36	782	slime
BH-701	20-40	480.8	trans	PB-2	54-56	2070	slime
BH-703	0-20	457.6	trans	437	40.75-41	2194.9	slime
BH-703	20-40	610.1	trans	438	72.75-73	1891.7	slime
BH-705	20-40	616.9	trans	439	82-82.25	2157.5	slime
BH-709	20-40	546.6	trans	AR-10	75-86	588.8	slime
BH-713	20-36.5	631.1	trans	BH-700	30-60	466.5	slime
BH-715	20-40	278.9	trans	BH-701	40-60	758.9	slime
BH-718	0-20	717.8	trans	BH-701	60-80	1215.8	slime
BH-718	20-40	917.3	trans	BH-703	40-60	1396.3	slime
BH-719	0-20	357.4	trans	BH-703	65-73	1333	slime
PB-1	39-41	335	trans	BH-705	40-60	1232.8	slime
PB-1	44-46	464	trans	BH-709	40-60	1195.3	slime
PB-1	49-51	566	trans	BH-709	60-65	1205.8	slime
PB-1	64-66	418	trans	BH-715	0-20	1000.5	slime
PB-1	74-76	605	trans	BH-715	40-60	1225.9	slime
PB-1	76-81	220	trans	BH-715	60+	1518.6	slime
PB-1	81-83	201	trans	BH-718	40-43	1601.7	slime
PB-2	9-11	803	trans	BH-719	20-40	1117.7	• slime
PB-2	29-31	192	trans	BH-719	40-51.5	1669.7	slime
PB-2	39-41	325	trans	PB-1	59-61	236	slime
PB-2	49-51	816	trans	PB-1	69-71	748	slime
PB-2	59-61	781	trans	PB-1	83-85	1600	slime
PB-2	61-66	711	trans	PB-1	85-87	2040	slime
PB-2	69-71	614	trans	PB-1	87-89	1640	slime
AR-4S	20-21	530.6	unconsol	PB-1	89-91	1690	slime
AR-8	21-22	594.8	unconsol	PB-2	44-46	1740	slime
AR-8	25-35	639.9	unconsol	PB-2	71-73	1390	slime
Impound 2	imp	12.7	imp	PB-2	73-75	1280	slime
Impound 3	imp	87.4	imp	PB-2	75-77	1130	slime
AR-10	3-4	311.8	sand	PB-2	77-79	1240	slime
AR-10	20-25	98	sand	PB-2	79-81	1550	slime
AR-6	35-40	100.4	sand	PB-2	84-86	1620	slime
AR-9	10-11	320.2	sand	437	44-44.25	135.5	alluvium
AR-9	30-32	87.2	sand	438	74-74.25	134.3	alluvium
BH-705	0-20	186.2	sand	438	75-75.25	92.8	alluvium
BH-709	0-20	289.9	sand	438	76-76.25	31.3	alluvium
PB-1	9-11	215	sand	438	78-78.25	118.4	alluvium
PB-1	14-16	99.7	sand	439	87-87.25	23.9	alluvium
PB-1	19-21	202	sand	AR-5	0-1	84.3	alluvium
PB-1	24-26	148	sand	AR-6	0-1	17.3	alluvium
PB-1	29-31	153	sand	PB-1	94-96	208	alluvium
PB-1	34-36	447	sand	PB-2	89-91	1.83	alluvium
				-		1	

Table 1. Moab Project, Crescent Junction Disposal Cell Tailings, and Other Contaminated Materials

Ra-226 Activity

849

sand

54-56

PB-1

Sample	Depth	Ra-226 Activity (pCi/g)	Material	Sample	Depth	Ra-226 Activity (pCi/g)	Material
PB-2	14-16	269	sand				
PB-2	19-21	150	sand				
PB-2	24-26	100	sand				
AR-2	5.5-10	786.5	silt				
AR-7	20-25	562.2	silt				
AR-9	50-55	543.6	silt				
AR-9	60-62	239.1	silt				

Measurements	All Data	Sands	Transitional Tailings	Slimes	Subpile & Interim Cover Materials (Alluvium)	Average of All Samples Without Weighting
Max:	2,195	849	917	2,195	208	
Min:	2	13	192	236	2	
Average:	697	272	530	1,349	85	
Median:	564	202	556	1,333	89	
Std Dev.:	589	224	195	479	66	
Count:	94	23	28	33	10	
Material Dry Weight (tons)	14,546,054	3,743,474	4,864,651	3,258,910	2,679,019	
Dry Weight %:	100%	26%	33%	22%	18%	
Weighted Activity (pCi/g)	565	70	177	302	16	707

End of current text

