

COGEMA Mining Inc.

IRIGARAY and CHRISTENSEN RANCH PROJECTS

ANNUAL REPORT

WDEQ PERMIT TO MINE No. 478

August 19, 2004 – August 18, 2005

August 2005

ANNUAL REPORT PERMIT TO MINE NO. 478 August 19, 2004 through August 18, 2005

This document provides the information required by the Wyoming Environmental Quality Act, Wyoming Statue 35-11-411 (a). Each section is a response to a specific request listed in the Required Annual Report Information form for large mining operations, which was provided by District III, Land Quality Division, Wyoming Department of Environmental Quality (WDEQ). Additional information reported annually, as required by Permit to Mine No. 478, is provided in Response No. 9 below.

REQUIRED ANNUAL REPORT INFORMATION

1. <u>GENERAL INFORMATION:</u>

Name of Permittee:	COGEMA Mining, Inc. P.O. Box 730 Mills, Wyoming 82644
	Ninis, wyoning 02044
Mining Permit Number:	Permit to Mine No. 478
Date of Permit Issuance:	August 18, 1978
Amendment No. 1:	March 6, 1987
Amendment No. 2:	September 12, 1988
Mineral Mined:	Uranium

State and Federal Mineral Lease Numbers Inside Permit Area:

COGEMA Mining Inc.'s (COGEMA) operations are primarily conducted on federal mining claims. These claims are too numerous to list here. Claim numbers for the Irigaray (IR) mine may be found in annual reports prior to the 1988-1989 reporting period, and for the Christensen Ranch (CR) mine, in Volume II, Adjudication File of the Amendment No. 2 application for CR operations. Referenced locations in the following text are shown on specified maps located in the Report Appendices.

2. <u>REPORTING PERIOD:</u>

The annual WDEQ report period for Permit No. 478 is August 19, 2004 through August 18, 2005. However, to be consistent with past annual reports and to simplify data reporting the actual period that this report covers is: July 1, 2004 through June 30, 2005.

3. <u>MINING:</u>

a) COGEMA ceased all mining activities on June 23, 2000. Therefore, there are no newly disturbed acres or topsoil stockpiled at the IR or CR projects during the report period.

1

Activities have since been devoted to groundwater restoration and final decommissioning. See Section 4 for the groundwater restoration summary.

b) Tabulated surface acreage disturbed to date is provided below:

Irigaray Project:

Years Affected All disturbances prior to August 17, 1978 August 18, 1978 - August 18, 1979 August 19, 1979 - August 18, 1980 August 19, 1980 - August 18, 1981 August 19, 1981 - August 18, 1995 August 19, 1995 - August 18, 1996 August 19, 1996 - August 18, 2004 Total

Christensen Ranch Project:

Years Affected August 19, 1988 - August 18, 1989 August 19, 1989 - August 18, 1990 August 19, 1990 - August 18, 1992 August 19, 1992 - August 18, 1993 August 19, 1993 - August 18, 1994 August 19, 1994 - August 18, 1995 August 19, 1995 - August 18, 1996 August 19, 1996 - August 18, 1997 August 19, 1997 - August 18, 1998 August 19, 1998 - August 18, 1999 August 19, 1999 - August 18, 2000 August 19, 2000 - August 18, 2004 Total

GRAND TOTAL (IR & CR)

Acreage

9.00 Acres 74.56 Acres 43.38 Acres 4.66 Acres 0.00 Acres 1.50 Acres 0.00 Acres 133.10 Acres

Acreage

79.60 Acres¹ 10.5 Acres² 0.00 Acres 106.87 Acres³ 5.00 Acres⁴ 40.72 Acres⁵ 66.26 Acres⁶ 33.70 Acres⁷ 12.98 Acres⁸ 95.70 Acres⁹ 2.53 Acres¹⁰ 0.00 Acres 453.90 Acres

587.00 Acres

¹Mine Unit 3 wellfield area - 45.99, ponds & plant - 13.98, topsoil - 3.71, roads - 11.03, lay-down area - 4.88; ²Unit 3 extension - 10.50; ³Unit 2 wellfield, pipeline corridors & staging areas - 50.15, Unit 2 topsoil - 0.96, roads - 7.36, Unit 4 development area - 48.08, Unit 4 topsoil - 0.32; ⁴Unit 5 lay-down area & delineation holes, - 5.00; ⁵Unit 5 roads - 11.1, Unit 5 wellfield, pipeline corridors & staging area - 27.20, Unit 5 topsoil - 2.42; ⁶Unit 5 wellfield & pipeline corridors - 47.8, Unit 5 roads & modules - 1.9, Unit 5 topsoil - 0.04, Unit 6 wellfield, delineation holes, & staging area - 11.1, Unit 6 topsoil - 2.52, Deep disposal well # 1 - 2.9, ⁷Unit 6 Booster Pump Station & road - 1.8, Unit 6 wellfield, delineation holes & staging area - 29.2, Unit 6 roads & module buildings - 2.7; ⁸Unit 7 delineation holes - 8.28, Unit 7 lay-down & borrow area - 0.22, Unit 8 delineation holes - 4.48; ⁹Unit 7 development area & delineation holes - 42.7, Unit 8 exploration holes - 53.0 acres; ¹⁰Deep disposal well # 18-3 location & road - 2.3 acres, wellfield electrical line replacement - 0.23.

c) Tabulated topsoil stockpile volumes and dates are provided below:
 Stockpile No. Estimated Volume (vd³) Date Stockpiled

Stockpile No.	Estimated Volume (yd [°])	Date Stockpiled
Irigaray Project:		
1	1,657.0	Nov. 1976*
2	267.0	Sep. 1978
3	9,748.0	Sep. 1978
4	120.0	Oct. 1978
5	2,248.0	Oct. 1978
6	9,463.0	Aug. 1979
7	1,553.0	Sep. 1979
8	630.0	Oct. 1979
9	3,032.0	Jul. 1980
10	3,369.0	Aug. 1980
11	1,444.0	Aug. 1980
12	8,771.0	Aug. 1980

*IR stockpile No. 1 was utilized for the restoration efforts of 517 in May 2004.

Christensen Ranch Project:

an iscensen rune		
1	71,787.0	Sep. 1988
2	17,182.0	Sep. 1988
3	14,278.0	Oct. 1988
4	16,779.0	Oct. 1988
5	6,520.0	Mar. 1993
6	1,680.0	Apr. 1993
7	8,291.2	May 1995
8	4,315.0	Jun. 1995
9	16,822.0	Jun. 1995
10	1,157.0	Apr. 1996
11	4,888.9	Jul. 1996
12	4,120.0	Jan. 1997
13	2,284.7	Feb. 1997
13*	1,230.0	May 1998
14	2,591.3	Dec. 1999

* Note: Stockpile No. 13 was developed in two consecutive years as construction in Mine Unit 6 continued.

d) Due to the nature of in-situ mining, no spoil material has been produced or stockpiled.

e) A total of 14,705 pounds of uranium as U₃O₈ was captured from groundwater restoration operations at CR during the report period. Tabulated quantity of uranium recovered from both projects is provided below:

3

Year	Lbs. U ₃ O ₈
December, 1978 - August 18, 1979	101,581
August 19, 1979 - August 18, 1980	122,462
August 19, 1980 - August 18, 1981	58,394
August 19, 1981 - August 18, 1982	425
August 19, 1982 - August 18, 1987	0
August 19, 1987 - August 18, 1988	127,350
August 18, 1988 - July 31, 1989	245,514
November 6, 1989 - February 1, 1990	105,030
August 19, 1990 - August 18, 1991	6,224
August 19, 1991 - July 31, 1992	239,723
August 1, 1992 - June 30, 1993	168,967
July 1, 1993 - June 30, 1994	323,726
July 1, 1994 - June 30, 1995	417,237
July 1, 1995 - June 30, 1996	713,238
July 1, 1996 - June 30, 1997	650,197
July 1, 1997 - June 30, 1998	523,237
July 1, 1998 - June 30, 1999	201,010
July 1, 1999 - June 30, 2000	146,264
July 1, 2000 - June 30, 2001	32,411
July 1, 2001 - June 30, 2002	39,415
July 1, 2002 – June 30, 2003	24,712
July 1, 2003 - June 30, 2004	17,700
July 1, 2004 - June 30, 2005	14,705
Total	3,996,660

- f) No new construction occurred, as described above.
- g) No significant environmental problem areas were noted at either project site during this report period.
- h) There were no reportable spills during this report period.

4. SURFACE RECLAMATION AND GROUNDWATER RESTORATION:

Surface Reclamation:

- a) There was no surface reclamation done during this report period.
- b) Vegetation cover remains good in the 5I7 pond and wellfield areas where the permanent seed mix was planted in May 2004. However, during the spring and early summer of 2005, mustard weed infested these areas. Both pond and wellfield areas were mowed in June 2005

prior to seed production to help control the weeds.

c) The annual noxious weed-spraying program was initiated in July 2005 and is ongoing at the time of this report. To date, 5 gallons of Tordon 22K, 25 gallons of Amine 2-4-D and 2.5 gallons of Opti-Amine weed killer have been applied primarily on Scotch and Canadian Thistle, Milk Vetch, Cocklebur and Tamarisk (Salt Cedar) bushes. One Tamarisk bush was removed from the Irigaray laydown area with a backhoe.

Groundwater Restoration - Irigaray Project:

Groundwater restoration activities were concluded in November 2001, and groundwater stabilization monitoring was completed in August 2002. A report requesting approval of the Irigaray groundwater restoration was submitted to the WDEQ in July 2004. The report is currently under technical review by the WDEQ.

Groundwater Restoration - Christensen Ranch Project:

Groundwater restoration activities continued at Christensen Ranch during this report period. A summary of the activities for each mine unit follows:

Mine Unit 2:

All groundwater restoration work was completed in MU2 in September 2003. Stabilization monitoring began in March 2004 and was completed with the fourth sample round taken in January 2005. Preparations are underway for the final restoration report submittal to the regulatory agencies.

Mine Unit 3:

All groundwater restoration work was completed in MU3 in September 2004. The first round of stabilization monitoring samples was taken in October 2004. The fourth and final round of stabilization monitoring was conducted in July 2005. Preparations are underway for the final restoration report submittal to the regulatory agencies.

Mine Unit 4:

Groundwater restoration work was completed in MU4 in June 2003. The first round of stabilization monitoring samples was collected in April 2004. The fourth and final round of stabilization monitoring was conducted in January 2005. Preparations are underway for the final restoration report submittal to the regulatory agencies.

Mine Unit 5:

Groundwater restoration work was completed in MU5 in November 2003. Round one of stabilization sampling was collected in November 2003. The fourth and final round of stabilization sampling was collected in August 2004. WDEQ personnel were present to split samples for the last round. Preparations are underway for the final restoration report submittal to the regulatory agencies.

Mine Unit 6:

The groundwater sweep phase of restoration began in September 2000 and was completed in February 2003. The reverse osmosis phase began in October 2003 and continued through May 2005. A decision was made in March 2005 to add reductant (H2S gas) to the permeate injection stream within portions of the mine unit that were not responding to RO treatment (experiencing higher uranium and selenium values that the remainder of the mine unit). The H2S injection continued through May 30 at which time all groundwater restoration was ceased. The first stabilization monitoring samples were collected from Mine Unit 6 in June 2005. The second round is scheduled for September 2005, third round in December 2005, and the fourth and last round is scheduled for March 2006.

Groundwater Restoration Maps, showing the areas where restoration is in progress or completed, are included in Appendix 5 of this report.

5. MINING PLANS:

As stated in Section 3, COGEMA ceased all mining activities on June 23, 2000. A resumption of mining activities is possible due to the rising market price for uranium. If mining were to resume, activity would begin in Christensen Mine Unit 7, during year 2006. WDEQ will be informed of any decisions to continue mining activity.

6. <u>RECLAMATION & RESTORATION PLANS - NEXT REPORT PERIOD:</u>

Irigaray Surface Reclamation:

Pond dewatering and decommissioning of IR ponds A, C, D, E and RA (see IR Map - Appendix 4) was started in June 2003. Currently ponds A, C, RA and E have been completely emptied of sludge material and liners removed and disposed of at the Pathfinder - Shirley Basin disposal site. During this report period, Canberra, Inc, conducted surface gamma radiation surveys for Ponds A, C, RA and E. Soil sampling, removal of any contaminated soils, then backfilling and contouring operations, will follow this. Ponds B and RB will remain in place until all water is evaporated and the ponds are no longer needed. If mining at Christensen should resume in 2006, the ponds would not be backfilled, but instead re-lined to use for solution evaporation from Christensen resin processing conducted at Irigaray.

At Irigaray PU 1 through 9, equipment removal was started in May 2003 with removal of wellfield piping, conduit, wellhead boxes, and associated fixtures surveyed for possible contamination. All surface equipment removal was completed in July 2005. Canberra, Inc. conducted surface gamma radiation surveys of the Irigaray Production Units 1-9 in August. Well plugging and abandonment in Production Units 1 through 9 will commence as soon as regulatory approval for groundwater restoration is received.

Irigaray Groundwater Restoration:

All groundwater restoration has been completed at the Irigaray site. A formal request for restoration approval of the Production Units 1 through 9 was submitted to the WDEQ in July 2004. Final approval is expected during the fourth quarter of 2005.

Christensen Ranch Surface Reclamation:

Surface reclamation planned for the August 2005 through July 2006 period will include the plugging and abandonment of wells after groundwater restoration approval, plant decommissioning, wellfield surface equipment removal and reclamation, trunklines removal and pond decommissioning. If a decision were made to continue mining, then all of this activity would be postponed. A decision whether to continue mining or decommissioning should be made by January 2006.

7. MONITORING ACTIVITIES:

a) Groundwater Monitoring - Wellfield Monitor Wells:

Groundwater quality at both projects is monitored by routine sampling of 327 monitor and trend wells surrounding or within the wellfields. Sampling frequency varies for these wells. Monitor wells on excursion status are sampled weekly. Monitor wells not on excursion status and trend wells are sampled monthly until restoration is complete. These wells are then sampled quarterly during post-restoration/stabilization monitoring and thereafter.

Sample data for each monitor and trend well from January 1, 2005 through June 30, 2005 are contained in Appendix 2. Sample data from the second half of 2004 was included with the 2004 Annual Effluent and Monitoring Report, submitted in February 2005.

There currently are no wells on excursion status at IR.

There is currently one well that has been reported on excursion status at CR during this reporting period. Perimeter ore zone monitor well 5MW66 went on excursion on July 21, 2004 when all three of its Upper Control Limits (UCL) were exceeded. Because MU5 has been restored, it was agreed with WDEQ and NRC that the well would be taken off excursion status but would continue to be monitored on a quarterly basis until final restoration approval of MU5.

Groundwater Monitoring - Regional Ranch Wells:

Annual samples were collected from two regional ranch wells in July 2005. Five other ranch wells that are normally sampled have problems with inoperable pumps, and therefore, were not sampled at this time. When and if the ranch owner repairs or replaces the pumps, annual samples will again be collected for these wells. Regional well samples collected in July 2005 were analyzed for uranium along with four other radionuclides in the decay chain. The resulting concentrations were primarily Non Detectable (ND), with the remaining

7

concentrations within normal historical ranges. 2005 sample data are provided in Table 1 of Appendix 1. Sample data from the second half of 2004 were included with the 2004 Annual Effluent and Monitoring Report submitted to the WDEQ in February 2005.

Underground Injection Wells:

Two Class I injection wells are installed at the CR project and are licensed by WDEQ Permit Number UIC00-340 for industrial wastes. A total of 15,264,034 gallons of restoration water were injected into disposal well COGEMA DW No. 1, and 22,986,388 gallons were injected into disposal well Christensen 18-3 during the report period.

As required by UIC Permit 00-340 section I, paragraph 4, "COGEMA shall shut one of the wells covered by this permit in annually for a period of time long enough to observe a valid pressure falloff curve. Each year, a well which was not tested in the previous year shall be tested, until all wells are tested in sequence." To comply with this regulation COGEMA Christensen 18-3 was tested on August 31, 2004 through September 1, 2004. Petrotek Engineering of Littleton, Colorado performed the required Mechanical Integrity Test (MIT) and analysis of the falloff data. The results indicated that Christensen 18-3 "continues to be suitable for use as a Class I injector".

Quarterly reports for both wells are submitted to the WDEQ - Water Quality Division in Cheyenne, Wyoming. No exceedances of the permit limits were recorded for flow, pressure or water quality during this annual report period.

b) <u>Surface Water Monitoring</u>:

Willow Creek is an intermittent stream present within the permit boundary of both the IR and CR projects. Three sample locations are designated at each site: upstream, downstream and within the permit boundary. Annual samples were collected in July 2005 from the locations where flow was available, sites IR-17 and CR CG-05. An annual sample of the Powder River (IR-5) was also collected near the IR site, downstream from its confluence with Willow Creek.

The samples were analyzed for both radionuclide and chemical parameters. The resulting radionuclide concentrations were mostly non-detectable, with the remaining concentrations within historical ranges. The chemical parameters were also within historical ranges. 2005 sample data are contained in Table 2 of Appendix 1. Sample data from the second half of 2004 were submitted with the 2004 Annual Effluent and Monitoring Report dated February 2005.

The Federal Water Pollution Control Act and WDEQ - NPDES Program requires facilities with an approved Storm Water Discharge permit to collect water samples and report, "runoff from storm events with greater than 0.1 inches of rainfall", semi-annually in the second, fourth and sixth year of the license period. The CR project is covered by NPDES license WYR00-0904 for the period from September 1, 2002 to August 31, 2007. Year 2005

8

qualifies as the fourth year of the license period. However, during this period the CR project has had no chemical materials susceptible to storm water discharge and/or no storm events with rainfall greater than 0.1 inches where runoff was available for samples to be collected. Therefore, no samples have been collected through the first half of this reporting period (through June 2005) and/or analyzed for compliance with this permit.

Surface Discharge Monitoring:

A surface discharge outfall is present at each project for disposal of treated groundwater generated by restoration activities. The outfalls are licensed by the U.S. Environmental Protection Agency (EPA) under National Pollutant Discharge Elimination System (NPDES) permits issued by the WDEQ. No water was discharged at the IR project (Permit No. WY0028801, discharge 001) or at the CR site (Permit No. WY0033642, discharge 002) during this report period, therefore no data set is included.

Evaporation Pond Monitoring:

Weekly inspections are conducted on all operable evaporation ponds (currently two at IR and five at CR). On November 15, 2004, during a routine inspection, water was observed in the leak detection system. Thirteen small holes were found in the liner above the pond water level and immediately patched. Transfer of the pond water to CR Pond 2 was also started. On November 18, the leak detection system was re-checked and found to be dry. The pond leak was concluded. It was determined that moving a discharge line around on the liner could have caused the holes and subsequent water intrusion into the leak detection system.

On March 16, 2005 water was again detected in the CR Pond 4 leak detection system. Water transfer to CR Pond 2 was immediately initiated. After the water level was lowered in Pond 4, washing and acidizing of the liner was performed to provide a clean surface to look for potential holes in the liner. A separation of the pond liner was discovered along the northwest embankment. Repairs were made at this time. The weight of the sediment buildup on the northwest embankment is thought to be the cause the separation. Sediment buildup will be carefully watched to avoid having recurrence of this type of problem. The pond leakage event was declared as concluded in a letter to the regulatory agencies on July 8, 2005.

The reader is referred to the incident reports of December 2004 and March 2005 for details of the CR Pond 4 leakage. 2005 pond sample data are contained in Table 3 of Appendix 1. Sample data from the second half of 2004 was included with the 2004 Annual Effluent and Monitoring Report submitted in February 2005 and is repeated in this report for the reader's convenience.

c)-g) N/A.

h) Since mining activities have ceased at both projects, all wildlife monitoring has been suspended. If mining resumes at a future date, the sage grouse and raptor studies will be

reinitiated.

i) Maps showing the monitored locations discussed in this section are located in Appendix 4.

8. **RECLAMATION PERFORMANCE BOND ESTIMATE**:

An updated reclamation/restoration bond estimate for August 2004 through July 2005 is provided in Appendix 3. Few changes have been made to the 2004 bond estimate to prepare the new 2005 estimate. The changes include a 5.9% inflation rate from August 2003 (base surety estimate) through July 2005, the addition of an updated reclamation schedule (Figure 1), and a proposed 3.5% decrease in the total miscellaneous costs associated with third party contractors. An explanation of all changes is provided in Appendix 3.

A summary of the 2005-2006 reclamation bond estimate is provided in Appendix 3 as Table 1. Table 1 is the only worksheet that has been revised for this estimate. As noted, a 5.9% adjustment for inflation was added. Also, the total of third party costs and contingency has been adjusted downwards from a total of 23.5% to 20%. The new Grand Total restoration and reclamation cost for WDEQ is \$9,303,391. The NRC estimate is \$10,352,659 (NRC has not allowed any allowance for groundwater restoration work completed as WDEQ does). We respectfully request that WDEQ approve the new bond amount of \$9,303,391.

9. ADDITIONAL INFORMATION AS REQUESTED BY THE DIVISION:

a), b) COGEMA received no notices of violation or orders during this report period.

c) No permit stipulations occurred during the report period.

d) Other:

The following additional information is provided to meet the reporting requirements of Section 5.10.1.1 & 5.10.1.2, of the 1996 Permit No. 478 Update Application.

1. General Location Maps showing the locations of monitor wells and wellfields in conjunction with past mining activities are located in Appendix 4. Groundwater Restoration Maps showing the areas where groundwater restoration is in progress or completed are located in Appendix 5.

2. The following groundwater restoration volumes were calculated <u>for the report period</u> (data period of July 2004 through June 2005) from totalizing flowmeters:

Gallons Recovered (Kgallons) Irigaray: 0 Christensen: 314,000 Gallons Injected (Kgallons) 0 261,005 2005 monthly groundwater restoration volume data for CR are provided in Table 4 of Appendix 1. No restoration volume data is given for the IR project, since active restoration ceased there in October 2001.

- 3. Water quality monitoring data were previously provided in Section 7. a).
- 4. Piezometric maps of the monitored aquifers for IR and CR are included in Appendix 6. For the IR project these include: the shallow zone, coal zone, ore zone and deep zone. For the CR project they include: the shallow zone, ore zone and deep zone. The maps were constructed using water level data from monitor wells and production wells where applicable. This data was collected during June 2005.
- 5. MIT results are reported to the WDEQ by phone on a quarterly basis. Twenty-nine (29) MITs were completed during this report period with all wells passing the testing. This data is provided as Table 5 in Appendix 1.

6. DRILL HOLES AND ABANDONED WELLS:

No drill holes were completed or abandoned for exploration or mine expansion purposes. A total of one hundred thirty one (131) cased wells were plugged and abandoned at the Irigaray and Christensen sites during this report period.

APPENDIX 1

Tables

 Table 1 – Ranch Wells Regional Groundwater

 Table 2 – Surface Water Annual Samples

Table 3 – Evaporation Pond Samples

 Table 4 - CR Groundwater Restoration Volumes

 Table 5 – Mechanical Integrity Test Summary

Table 1

COGEMA Mining, Inc. - Irigaray and Christensen Ranch Projects 2005 Annual Report

Sample Type: Regional Groundwater (ranch wells) - Annual Samples

Sample Location: Chri	istensen Ranch House #3	Sample Location: Christensen Middle Artesian
		pump down
Jul	ly11, 2005	July 11, 2005
Radionuclide(uCi/ml)	Radionuclide(uCi/ml)
Uranium 1	I.0E-08	Uranium
Thorium-230	n/d	Thorium-230
Radium-226 1	1.0E-09	Radium-226
Lead-210	N/D	Lead-210
Polonium-210	N/D	Polonium-210
Sample Location: Chri		Sample Location: Christensen Del Gulch Lower #13
pi	ump down	pump down
Jul	ly 11, 2005	July 11, 2005
Radionuclide(uCi/ml)	Radionuclide (uCi/ml)
Uranium		Uranium
Thorium-230		Thorium-230
Radium-226		Radium-226
Lead-210		Lead-210
Polonium-210		Polonium-210
		· ·
Sample Location: Chr	ristensen Willow Corral #32	Sample Location: Christensen First Artesian Well #1
pi	ump down	pump down
July	y 11, 20005	July 11, 2005
Radionuclide ((uCi/ml)	Radionuclide (uCi/ml)
Uranium		Uranium
Thorium-230		Thorium-230
Radium-226		Radium-226
Lead-210		Lead-210
Polonium-210		Polonium-210
		N/D = Non Detectable
Sample Location: Iriga	aray Willow # 2	LLD
		(uCi/m!)
Jul	ly 11, 2005	0.2 E-9 Uranium
	(uCi/ml)	0.2 E-9 Thorium-230
Uranium	N/D	0.2 E-9 Radium-226
Thorium-230	N/D	2.7 E-9 Lead-210
Radium-226	N/D	2.7 E-9 Polonium-210
	4.8E-09	
Polonium-210	N/D	

TABLE 2 (Page 1 of 2)

COGEMA Mining, Inc. Irigaray and Christensen Ranch Projects

2005 Annual Report Sample Type: Surface Water, Annual Samples, July 11, 2005

Sample Location: Irigaray Project

N/D = NON DETECTABLE

<u>Radionuclide</u> Uranium) Thorium-230 Radium-226 Lead-210 Polonium-210	Willow Creek IR-9 Downstream (uCi/ml) No Sample	Willow Creek IR-14 Upstream (uCi/ml) No Sample	Willow Creek IR-17 Mine Site (uCi/ml) 1.4 E-8 N/D N/D 4.8 E-9 N/D	Powder River IR-5 Ranch Site (uCi/ml) 8.6 E-9 N/D 0.7E-9 +/- 0.2 N/D N/D	LLD (uCi/ml) 0.2 E-9 0.2 E-9 0.2 E-9 2.7 E-9 2.7 E-9	10 CFR 20 Appendix B Effluent Limit (uCi/ml) 3.0 E-07 1.0 E-07 6.0 E-08 1.0 E-08 4.0 E-08
Chemical Parameter Total Alkalinity Chloride TDS Specific Conductivity Sulfate pH Arsenic Selenium			(mg/l) 211 40 3680 4120 2050 7.9 0.005 0.001	(mg/l) 237 532 2910 4170 1090 8.3 0.001 0.003	(mg/l) 1 2 1 1 0.01 0.001 0.001	N/A N/A N/A N/A N/A N/A N/A
Estimated Flow Rate	e: No Flow	No Flow	Low	Medium		

Medium = 5 - 50 cfs

High = > 50 cfs .

TABLE 2 (Page 2 of 2)

COGEMA Mining, Inc. Irigaray and Christensen Ranch Projects 2005 Annual Report

Sample Type: Surface Water, Annual Samples, July 11, 20005 Sample Location: Christensen Ranch Project

N/D = Non Detectable

<u>Radionuclide</u> Uranium) Thorium-230 Radium-226 Lead-210 Polonium-210		Willow Creek GS-01 Downstream (uCi/ml) No Sample	Willow Creek CG-05 Upstream (uCi/ml) 4.0 E-9 N/D 8. 0 E-10 < 2.7 E-9 N/D	Willow Creek GS-03 Mine Site <u>(uCi/ml)</u> No Sample	LLD (uCi/ml) 0.2 E-9 0.2 E-9 0.2 E-9 2.7 E-9 2.7 E-9 2.7 E-9	10 CFR 20 Appendix B Effluent Limit (uCi/ml) 3.0 E-07 1.0 E-07 6.0 E-08 1.0 E-08 4.0 E-08
<u>Chemical Parameters</u> Total Alkalinity Chloride TDS Specific Conductivity Sulfate pH Arsenic Selenium	(umhos/cm) (units)	· · ·	(mg/l) 253 9 2450 2880 1320 7.8 0.01 N/D		(mg/l) 1 2 1 1 0.01 0.001 0.001	N/A N/A N/A N/A N/A N/A N/A
Estimated Flow Rate: Low = $<5 \text{ cfs}$		No Flow	Low	No Flow		

Medium = 5 - 50 cfs

High = > 50 cfs

TABLE 3 (Page 1 of 4)

COGEMA Mining, Inc. -- Irigaray and Christensen Ranch Projects

2005 Annual Report

Sample Type: Waste Ponds (quarterly)

Sample Date: September 2, 2004

N/D =NON DETECTABLE

	(3rd Quarter 2	004)		
Pond ID #	IR-A	IR-B	IR-C	IR-D
Sulfate (mg/l)		48,900		
Chloride (mg/l)		203,000		
NH4 as N (mg/l)		1.8		
NO3 & NO2 as N (mg/l)		1.21		
TDS (mg/l)		333,000		
Conductivity		155,000		
pН		8.1		
Zinc (mg/l)		N/D		
Uranium (mg/l)		753		
Radium 226 (pCi/l)		983+-43		

Pond ID #	IR-E	IR-RA	IR-RB	CR-P1
Sulfate (mg/l)			44,400	35
Chloride (mg/l)			50,500	6
NH4 as N (mg/l)			N/D	N/D
NO3 & NO2 as N (mg/l)			0.22	0.06
TDS (mg/l)		·	143,000	310
Conductivity			105,000	447
рН			8.9	8.7
Zinc (mg/l)			N/D	N/D
Uranium (mg/l)			242	0.005
Radium 226 (pCi/I)			959 + -0.2	N/D

Pond ID #	CR-1	CR-2	CR-3	CR-4
Sulfate (mg/l)	1,220	12,600	17,100	4,950
Chloride (mg/l)	704	28,300	47,400	7,010
NH4 as N (mg/l)	N/D	N/D	N/D	N/D
NO3 & NO2 as N (mg/l)	N/D	0.13	0.21	0.57
TDS (mg/l)	4,110	66,600	94,500	21,400
Conductivity	5,260	70,300	92,300	28,000
pН	8.9	9	8.9	8
Zinc (mg/l)	N/D	N/D	N/D	N/D
Uranium (mg/l)	9.8	12.4	11.3	191
Radium 226 (pCi/l)	22.4 + -3.3	10.3 + - 2.6	13.9 + - 1.9	260 + - 7.7

TABLE 3 (Page 2 of 4)

COGEMA Mining, Inc. -- Irigaray and Christensen Ranch Projects

2005 Annual Report

Sample Type: Waste Ponds (quarterly)

Sample Date: 4TH Quarter of 2004 No samples, ponds frozen

Pond ID #	IR-A	IR-B	IR-C	IR-D
Sulfate (mg/l)				
Chloride (mg/l)		· · · · · · · · · · · · · · · · · · ·		
NH4 as N (mg/l)				
NO3 & NO2 as N (mg/l)				
TDS (mg/l)				
Conductivity				
рН				
Zinc (mg/l)				
Uranium (mg/l)				
Radium 226 (pCi/l)				

Pond ID #	IR-E	IR-RA	IR-RB	CR-P1
Sulfate (mg/l)				
Chloride (mg/l)				
NH4 as N (mg/l)				
NO3 & NO2 as N (mg/l)				
TDS (mg/l)			4	
Conductivity				
рН				
Zinc (mg/l)				
Uranium (mg/l)				
Radium 226 (pCi/l)				· · · · · · · · · · · · · · · · · · ·

Pond ID #	CR-1	CR-2	CR-3	CR-4
Sulfate (mg/l)				
Chloride (mg/l)				
NH4 as N (mg/l)				
NO3 & NO2 as N (mg/l)				
TDS (mg/l)				
Conductivity				
рН				
Zinc (mg/l)				
Uranium (mg/l)				
Radium 226 (pCi/l)				

TABLE 3 (Page 3 of 4)

COGEMA Mining, Inc. -- Irigaray and Christensen Ranch Projects 2005 Annual Report

Sample Type: Waste Ponds (quarterly)

Sample Date: March 31, 2005 (1st Quarter of 2005)

IR Ponds A,C,D,E,& RA - empty N/D = Non Detectable

Pond ID #	IR-A	IR-B	IR-C	IR-D
Sulfate (mg/l)		11,100		
Chloride (mg/l)		139,000		
NH4 as N (mg/l)		0.6		
NO3 & NO2 as N (mg/l)		0.26		
TDS (mg/l)		220,000		
Conductivity		167,000	-	
рН		8.5		
Zinc (mg/l)		N/D		
Uranium (mg/l)		541		
Radium 226 (pCi/l)		517		

Pond ID #	IR-E	IR-RA	IR-RB	CR-P1
Sulfate (mg/l)			17,600	109
Chloride (mg/l)			29,400	15
NH4 as N (mg/l)			0.2	0.3
NO3 & NO2 as N (mg/l)			0.32	N/D
TDS (mg/l)			85,000	480
Conductivity			80,100	732
рН			9	8.5
Zinc (mg/l)			0.01	N/D
Uranium (mg/l)			251	0.0154
Radium 226 (pCi/l)			54.8	2.01

Pond ID #	CR-1	CR-2	CR-3	CR-4
Sulfate (mg/l)	739	11,200	11,600	21,000
Chloride (mg/l)	540	56,900	44,700	156,000
NH4 as N (mg/l)	0.3	0.5	0.8	0.7
NO3 & NO2 as N (mg/l)	N/D	0.05	0.06	0.33
TDS (mg/l)	2,860	111,000	91,800	223,000
Conductivity	4,050	112,000	96,000	172,000
pH	9	8.4	9	8.1
Zinc (mg/l)	N/D	N/D	N/D	N/D
Uranium (mg/l)	7	159	44.7	240
Radium 226 (pCi/l)	51.4	291	67.6	259

TABLE 3 (Page 4 of 4)

COGEMA Mining, Inc. -- Irigaray and Christensen Ranch Projects

2005 Annual Report

Sample Type: Waste Ponds (quarterly)

Sample Date: June 29, 2005 (2nd Quarter of 2005)

IR Ponds A,C,D,E,& RA - empty

N/D = Non Detectable

Pond ID #	IR-A	IR-B	IR-C	IR-D
Sulfate (mg/l)		23,500		
Chloride (mg/l)		140,000		
NH4 as N (mg/l)		3.03		
NO3 & NO2 as N (mg/l)		0.2		
TDS (mg/l)		272,000		
Conductivity		223,000		
рН		8.5		
Zinc (mg/l)		N/D		
Uranium (mg/l)		539		
Radium 226 (pCi/l)		312		

Pond ID #	IR-E	IR-RA	IR-RB	CR-P1
Sulfate (mg/l)			24,700	79
Chloride (mg/l)			23,800	8
NH4 as N (mg/l)			0.76	0.13
NO3 & NO2 as N (mg/l)			N/D	N/D
TDS (mg/l)			78,000	338
Conductivity			88,600	354
pН			9.2	9.1
Zinc (mg/l)			0.04	N/D
Uranium (mg/l)			186	0.0056
Radium 226 (pCi/l)			18.3	0.2

Pond ID #	CR-1	CR-2	CR-3	CR-4
Sulfate (mg/l)	678	6,150	13,100	16,100
Chloride (mg/l)	598	19,600	59,000	89,300
NH4 as N (mg/l)	0.21	0.3	0.63	2.47
NO3 & NO2 as N (mg/l)	N/D	N/D	N/D	0.3
TDS (mg/l)	2,750	43,900	103,000	157,000
Conductivity	4,150	61,700	130,000	180,000
рН	9.9	8.6	8.6	8.4
Zinc (mg/l)	N/D	N/D	N/D	N/D
Uranium (mg/l)	4.37	51.7	86.4	169
Radium 226 (pCi/l)	193	154	83.6	84.8

TABLE 4

COGEMA Mining, Inc. -- Irigaray and Christensen Ranch Projects 2005 Annual Report

Christensen Ranch Project

Groundwater Restoration Volumes (Mine Units 2, 3, 4, 5, & 6)

Year 2005	Gallons Injected in thousands	Gallons Recovered	Average Recovery
Month	in thousands	in thousands	Flow Rate (gpm)
January	21,565	25,658	748
February	21,335	24,529	581
March	20,972	24,418	611
April	19,665	24,006	602
May	11,569	20,690	494
June			
July			
August			
September			
October			
November			
December			
	95,106	119,301	
	Total	Total	607.2 (ave7months)

2004-2005 CHRISTENSEN RANCH WELL INTEGRITY TESTING SUMMARY

TABLE 5

			BOTTOM	LOWER	1				
	DATE	CASING	CASING	PACKER	INITIAL	FINAL	PRESSURE		
HOLE #	TESTED	TYPE	DEPTH	DEPTH	PRESSURE	PRESSURE	LOSS	% LOSS	PASS
3AB77-2	10-Aug-04	YM	415	400	168	158	10	6	Χ
3AB78-1	10-Aug-04	YM	416	400	168	156	12	7	Х
3AB80-2	14-Jul-04	YM	394	380	168	156	12	7	X
3AC79-1	14-Jul-04	YM	413	400	168	154	14	8	Х
3AD87-1	12-Aug-04	YM	383	310	168	155	15	9	Х
3AD87-3	14-Jui-04	ΥM	420	370	168	154	14	8	Х
3AE84-1	14-Jul-04	YM	373	369	168	156	12	7	Х
3AE86-1	14-Jul-04	YM	386	375	168	160	8	5	Х
3AF82-1	14-Jul-04	ΥM	361	350	168	158	10	6	Х
3AF84-1	14-Jul-04	ΥM	368	360	168	160	8	5	Х
3AF87-1	14-Jul-04	YM	386	375	168	154	14	8	Х
3X86-1	26-Jul-04	YM	315	309	168	156	12	7	Х
3Y84-1	26-Jul-04	ΥM	320	310	168	156	12	7	Х
3Y86-1	11-Aug-04	ΥM	310	300	168	160	8	5	Х
3Z86-2	26-Jul-04	ΥM	305	290	168	159	9	5	Х
3Z87-1	26-Jul-04	YM	303	290	168	158	10	6	Х
4F2-2	11-Aug-04	PVC	315	305	168	156	12	7	X
4F5-1	11-Aug-04	PVC	340	330	168	159	9	5	Х
4G2-2	11-Aug-04	PVC	339	330	168	160	8	5	Х
4H2-1	11-Aug-04	PVC	323	310	168	156	12	7	Х
4H3-3	11-Aug-04	PVC ·	329	320	168	158	10	6	Х
412-1	12-Aug-04	PVC	294	285	160	155	15	9	Х
413-1	11-Aug-04	YM	318	310	168	154	14	8	X
4J1-2	14-Jul-04	PVC	302	290	168	160	8	5	Х
4J2-1	12-Aug-04	PVC	374	365	168	158	10	6	X
4J3-1	11-Aug-04	PVC	294	285	168	158	10	6	X
4K2-1	12-Aug-04	PVC	369	360	168	156	12	7	X
4K3-1	12-Aug-04	PVC	361	350	168	160	8	5	Х
5MW66	5-Oct-04	PVC	265	255	168	160	8	5	X

APPENDIX 2

Monitor and Trend Well Sampling Data

COGEMA Mining, Inc. Irigaray Project

Monitor and Trend Well Index

Well	Location	Page	Well	Location	Page
No.		No.	No.		No.
M2	Mine Unit 2	1	M27	Mine Unit 7	6
M4	Mine Unit 2	1	M28	Mine Unit 8	7
M7	Mine Unit 1	2	M29	Mine Unit 8	7
M10	Mine Unit 4	2	M30	Mine Unit 9	8
M17	Mine Unit 1	3	M31	Mine Unit 9	8
M18	Mine Unit 1	3	M32	Mine Unit 9	9
M19	Mine Unit 3	4	M33	Mine Unit 9	9
M23	Mine Unit 5	4	T31	Mine Unit 1	10
M24	Mine Unit 6	5	RS27	Mine Unit 5	10
M25	Mine Unit 6	5	16-151	Mine Unit 9	11
M26	Mine Unit 7	6			
		Shal	low Sand		
SSM2	Mine Unit 1	12	SSM19	Mine Unit 8	17
SSM3	Mine Unit 2	12	SSM34	Mine Unit 9	18
SSM4	Mine Unit 2	13	SSM35	Mine Unit 9	18
SSM5	Mine Unit 3	13	SSM36	Mine Unit 9	19
SSM6	Mine Unit 4	14	SSM37	Mine Unit 7	19
SSM7	Mine Unit 5	14	SSM38	Mine Unit 7	20
SSM8	Mine Unit 5	15	SSM39	Mine Unit 7	20
SSM9	Mine Unit 6	15	SSM40	Mine Unit 8	21
SSM10	Mine Unit 6	16	SSM41	Mine Unit 4	21
SSM11	Mine Unit 6	16	SSM42	Mine Unit 3	22
SSM18	Mine Unit 8	17	SSM43	Mine Unit 1	22
		Dee	ep Sand		
DM1	Mine Unit 1	23	DM14	Mine Unit 8	27
DM2	Mine Unit 1	23	DM15	Mine Unit 9	28
DM3	Mine Unit 2	24	DM16	Mine Unit 9	28
DM4	Mine Unit 4	24	DM17	Mine Unit 5	29
D M5	Mine Unit 2	25	DM18	Mine Unit 4	29
DM9	Mine Unit 5	25	DM19	Mine Unit 3	30
DM10	Mine Unit 6	26	DM20	Mine Unit 3	30
DM11	Mine Unit 7	26	DM21	Mine Unit 7	31
DM13	Mine Unit 8	27	DM22	Mine Unit 6	31

COGEMA Mining, Inc. Irigaray Project

Monitor and Trend Well Index

Monitor Wells

	5I7 and USMT Sites							
Well	Location	Page	Well	Location	Page			
No.		No.	No.		No.			
M-219	USMT Site	32	M-1	5I7 Site	33			
M-220	USMT Site	32	NM-3	5I7 Site	34			
M-221	USMT Site	33	M-4	5I7 Site	34			
			SM-1	5I7 Site	35			

•

Monitor and Trend Wells Index

	Perimeter Ore Zone							
Well	Location	Page	Well	Location	Page			
No.		No.	No.		No.			
MW17-2	Mine Unit 3	36	MW87	Mine Unit 2	57			
MVV18	Mine Unit 3	- 36	MVV88	Mine Unit 2	57			
MVV19	Mine Unit 3	37	MVV89	Mine Unit 2	58			
MVV20	Mine Unit 3	37	MW90	Mine Unit 2	58			
MW23	Mine Unit 3	38	MW101	Mine Unit 2	59			
MW2 4	Mine Unit 3	38	MW102	Mine Unit 2	59			
MW25	Mine Unit 3	39	MW103	Mine Unit 2	60			
MVV26	Mine Unit 3	39	MW104	Mine Unit 2	60			
MVV27	Mine Unit 3	40	MW105	Mine Unit 2	61			
MW28	Mine Unit 3	40	MW106	Mine Unit 2	61			
MW29	Mine Unit 3	41	MW107	Mine Unit 2	62			
MVV30	Mine Unit 3	41	MW108	Mine Unit 2	62			
MW31	Mine Unit 3	42	MW109	Mine Unit 2	63			
MW32	Mine Unit 3	42	MW110	Mine Unit 2	63			
MVV35	Mine Unit 3	43	MW111	Mine Unit 2	64			
MW36	Mine Unit 3	43	MW114	Mine Unit 3	64			
MVV37	Mine Unit 3	44	MW115	Mine Unit 3	65			
MW38	Mine Unit 3	44	MW116	Mine Unit 3	65			
MW39	Mine Unit 3	45	4MW-1	Mine Unit 4	66			
MVV40	Mine Unit 3	45	4MW-2	Mine Unit 4	66			
MVV41	Mine Unit 3	46	4MW-3	Mine Unit 4	67			
MVV42	Mine Unit 3	46	4MW-4	Mine Unit 4	67			
MVV43	Mine Unit 3	47	4MW-5	Mine Unit 4	68			
MVV44	Mine Unit 3	47	4MW-6	Mine Unit 4	68			
MW45	Mine Unit 3	48	4MW-7	Mine Unit 4	69			
MVV62	Mine Unit 3	48	4MW-8	Mine Unit 4	69			
MW63	Mine Unit 3	49	4MVV-9	Mine Unit 4	70			
MVV64	Mine Unit 3	49	4MW-10	Mine Unit 4	70			
MW73	Mine Unit 2	50	4MW-11	Mine Unit 4	71			
MW74	Mine Unit 2	50	4MW-12	Mine Unit 4	71			
MW75	Mine Unit 2	51	4MW-13	Mine Unit 4	72			
MW76	Mine Unit 2	51	4MW-14	Mine Unit 4	72			
MW77	Mine Unit 2	52	4MW-15	Mine Unit 4	73			
MW78	Mine Unit 2	52	4MW-16	Mine Unit 4	73			
MW79	Mine Unit 2	53	4MW-17	Mine Unit 4	74			
MW80	Mine Unit 2	53	4MW-18	Mine Unit 4	74			
MW81	Mine Unit 2	54	4MW-19	Mine Unit 4	75			
MW82	Mine Unit 2	54	4MW-20	Mine Unit 4	75			
MW83	Mine Unit 2	55	4MW-21	Mine Unit 4	76			
MW84	Mine Unit 2	55	4MW-22	Mine Unit 4	76			
MW85	Mine Unit 2	56	4MW-23	Mine Unit 4	77			
MW86	Mine Unit 2	56	4MW-24	Mine Unit 4	77			

Monitor and Trend Wells Index

		Perimeter C	Pre Zone (cont.)		
Well	Location	Page	Well	Location	Page
No.		No.	No.		No.
4MW-25	Mine Unit 4	78	5MW57	Mine Unit 5	99
5MW1	Mine Unit 5	78	5MW58	Mine Unit 5	99
5MW2	Mine Unit 5	79	5MW59	Mine Unit 5	100
5MW3	Mine Unit 5	79	5MW60	Mine Unit 5	100
5MW4	Mine Unit 5	80	5MW61	Mine Unit 5	101
5MW5	Mine Unit 5	80	5MW62	Mine Unit 5	101
5MW6	Mine Unit 5	81	5MW63	Mine Unit 5	102
5MW7	Mine Unit 5	81	5MW64	Mine Unit 5	102
5MW8	Mine Unit 5	82	5MW65	Mine Unit 5	103
5MW10	Mine Unit 5	82	5MW66	Mine Unit 5	103
5MW12	Mine Unit 5	83	5MW67	Mine Unit 5	104
5MW14	Mine Unit 5	83	5MW69	Mine Unit 5	104
5MW16	Mine Unit 5	84	6MW17-2	Mine Unit 6	105
5MW18	Mine Unit 5	84	6MW19	Mine Unit 6	105
5MW20	Mine Unit 5	85	6MW21	Mine Unit 6	106
5MW30A	Mine Unit 5	85	6MW23	Mine Unit 6	106
5MW31	Mine Unit 5	86	6MW25	Mine Unit 6	107
5MW32A	Mine Unit 5	86	6MW27	Mine Unit 6	107
5MW33	Mine Unit 5	87	6MW29	Mine Unit 6	108
5MW34	Mine Unit 5	87	6MW31	Mine Unit 6	108
5MW35A	Mine Unit 5	88	6MW33	Mine Unit 6	109
5MW36	Mine Unit 5	88	6MW34	Mine Unit 6	109
5MW37	Mine Unit 5	89	6MW35	Mine Unit 6	110
5MW38	Mine Unit 5	89	6MW36	Mine Unit 6	110
5MW39A	Mine Unit 5	90	6MW37	Mine Unit 6	111
5MW40	Mine Unit 5	90	6MW38	Mine Unit 6	111
5MW41A	Mine Unit 5	91	6MW39	Mine Unit 6	112
5MW42	Mine Unit 5	91	6MW40	Mine Unit 6	112
5MW43	Mine Unit 5	92	6MW41	Mine Unit 6	113
5MW44	Mine Unit 5	92	6MW42	Mine Unit 6	113
5MW45	Mine Unit 5	93	6MVV43	Mine Unit 6	114
5MVV46	Mine Unit 5	93	6MW44	Mine Unit 6	114
5MW47B	Mine Unit 5	94	6MW45	Mine Unit 6	115
5MW48	Mine Unit 5	94	6MW46	Mine Unit 6	115
5MW49	Mine Unit 5	95	6MW47	Mine Unit 6	116
5MW50	Mine Unit 5	95	6MW48-3	Mine Unit 6	116
5MW51	Mine Unit 5	96	6MW49	Mine Unit 6	117
5MW52	Mine Unit 5	96	6MW50	Mine Unit 6	117
5MW53	Mine Unit 5	97	6MW51	Mine Unit 6	118
5MW54	Mine Unit 5	97	6MW52	Mine Unit 6	118
5MW55	Mine Unit 5	98	6MW53	Mine Unit 6	119
5MW56	Mine Unit 5	98	6MW54	Mine Unit 6	119

Monitor and Trend Wells Index

		Shallo	w Sand		
Well	Location	Page	Well	Location	Page
No.		No.	No.		No.
MW-11S	Mine Unit 5	120	4SRM-07	Mine Unit 4	131
MW46S	Mine Unit 3	120	5SM1	Mine Unit 5	131
MW48S	Mine Unit 3	121	5SM2	Mine Unit 5	132
MW50S	Mine Unit 3	121	5SM3	Mine Unit 5	132
MW52S	Mine Unit 3	122	5SM5	Mine Unit 5	133
MW54S	Mine Unit 3	122	5SM6	Mine Unit 5	133
MW56S	Mine Unit 3	123	5SM7	Mine Unit 5	134
MVV58S	Mine Unit 3	123	WCOW-04	Mine Unit 5	134
MW66S-2	Mine Unit 3	124	6SM1	Mine Unit6	135
MW68S	Mine Unit 2	124	6SM2	Mine Unit6	135
MW70S	Mine Unit 2	125	6SM3	Mine Unit6	136
MW72S	Mine Unit 2	125	6SM4	Mine Unit6	136
MW92S	Mine Unit 2	126	6SM5	Mine Unit6	137
MW94S	Mine Unit 2	126	6SM6	Mine Unit6	137
MW96S	Mine Unit 2	127	6SM7	Mine Unit6	138
MW98S	Mine Unit 2	127	6SM8	Mine Unit6	138
MW100S	Mine Unit 2	128	6SM9	Mine Unit6	139
MW112S	Mine Unit 2	128	6SM10	Mine Unit6	139
MW117S	Mine Unit 2	129	6SM11	Mine Unit6	140
4SM-1	Mine Unit 4	129	6SM12	Mine Unit6	140
4SM-4	Mine Unit 4	130	6SM13	Mine Unit6	141
4SM-8	Mine Unit 4	130	6SM14	Mine Unit6	141

.

Monitor and Trend Wells Index

	<u>, , , , , , , , , , , , , , , , , , , </u>	Dee	o Sand		
Well	Location	Page	Well	Location	Page
No.		No.	No.		No.
MW-12D	Mine Unit 5	142	5DM1A	Mine Unit 5	153
MW45D	Mine Unit 3	142	5DM2	Mine Unit 5	153
MW47D	Mine Unit 3	143	5DM3	Mine Unit 5	154
MW49D	Mine Unit 3	143	5DM4	Mine Unit 5	154
MW51D	Mine Unit 3	144	5DM5	Mine Unit 5	155
MW53D	Mine Unit 3	144	5DM7	Mine Unit 5	155
MW55D	Mine Unit 3	145	WCOW-37D	Mine Unit 5	156
MW57D	Mine Unit 3	145	6DM1	Mine Unit 6	156
MW65D	Mine Unit 3	146	6DM2	Mine Unit 6	157
MW67D	Mine Unit 2	146	6DM3-2	Mine Unit 6	157
MW69D	Mine Unit 2	147	6DM4-2	Mine Unit 6	158
MW71D -	Mine Unit 2	147	6DM5	Mine Unit 6	158
MW91D	Mine Unit 2	148	6DM6	Mine Unit 6	159
MW93D	Mine Unit 2	148	6DM7	Mine Unit 6	159
MW95D	Mine Unit 2	149	6DM8	Mine Unit 6	160
MW97D	Mine Unit 2	149	6DM9	Mine Unit 6	160
MW99D	Mine Unit 2	150	6DM10	Mine Unit 6	161
MW113D	Mine Unit 2	150	6DM11	Mine Unit 6	161
4DM-1	Mint Unit 4	151	6DM12	Mine Unit 6	162
4DM-4	Mint Unit 4	151	6DM13	Mine Unit 6	162
4DM-8	Mint Unit 4	152	6DM14	Mine Unit 6	163
4DRM-07	Mint Unit 4	152			

<u>, , , , , , , , , , , , , , , , , , , </u>	Trend Wells Perimeter Ore Zone							
Well	Location	Page	Well	Location	Page			
No.		No.	No.		No.			
MW78T	Mine Unit 2	164	6TW2	Mine Unit 6	166			
MW87T	Mine Unit 2	164	6TW3	Mine Unit 6	166			
5TW-1	Mine Unit 5	165	6TW4	Mine Unit 6	167			
6TW-1	Mine Unit 6	165	6TW5	Mine Unit 6	167			

	· · · · · · · · · · · · · · · · · · ·	Deep Sa	and		
Well	Location	Page	Weil	Location	Page
No.		No.	No.		No.
5DM8T	Mine Unit 5	168	6DT1	Mine Unit 6	169
5DM9T	Mine Unit 5	168			

IRIGARAY PROJECT

Perimeter Ore Zone Monitor Wells

Mine Unit 2

Well I.D. M2

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
mg/l	μ mho/c	m mg/l as CaCO	3	mg/l	msl
18	685	131.1		<u></u>	
	. <u></u>		·		·
15.4	788 *	85.1	8.6		4297.3
14.7	776 *	89.4	8.6		4298.7
Upper Control L	imit				M2
	mg/1 18 15.4 14.7	Conductance mg/l μ mho/cz 18 685 15.4 788	Conductance Alkalinity mg/l μ mho/cm mg/l as CaCO 18 685 131.1 15.4 788 85.1 14.7 776 89.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ConductanceAlkalinitypHUraniummg/l μ mho/cmmg/l as CaCO3mg/l18685131.115.478885.18.614.777689.48.6

Negative U3O8 Grades Indicate Less Than Detection Limit.

Well I.D. M4

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cr	n mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	18.1	671	100.4			
Date	<u></u>					
23 MAR 2005	10.6	994 *	76.8	8.4		4310.2
06 JUN 2005	10.1	993 *	77.9	8.6		4311.0
* Values Exceed	Upper Control Lim	it				M4

1

* Values Exceed Upper Control Limit

Mine Unit 1 Well I.D. M7

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specifi Conducta		Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	µ mh	o/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	17.5	679)	109.8			
Date							
23 MAR 2005	12.2	1539	*	82.8	8.0		4309.8
06 JUN 2005	11.5	1492	*	83.8	8.0		4310.4
* Values Exceed	Upper Control L	imit					M7

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. M10

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	17.5	701	132.3			
Date	· · · · · · · · · · · · · · · · · · ·					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
29 MAR 2005	11.5	607	88.8	8.7		4302.4
06 JUN 2005	12.2	611	95.0	8.5		4302.4
* Values Exceed	Upper Control Lim	it				M10

* Values Exceed Upper Control Limit

Mine Unit 1 Well I.D. M17

ŧ.

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

- الم	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
U	pper Control Limit	17.1	724	112.9			
L	Date	·			**************************************	· · ·	
	23 MAR 2005	9.9	652	93.3	8.5		4323.1
	06 JUN 2005	9.7	650	88.7	8.5		4323.7
	* Values Exceed	Upper Control Lim	it				M17

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 1 Well I.D. M18

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation	
Units Upper Control Limit	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl	
	17	719	111.7				
Date					····		
23 MAR 2005	10.6	884 *	80.0	8.4		4310.3	
06 JUN 2005	10.1	862 *	83.0	8.4		4311.0	

M18

* Values Exceed Upper Control Limit

Mine Unit 3 Well I.D. M19

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometine Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	17	651	116.7			
Date						
23 MAR 2005	11.2	643	87.2	8.7		4311.2
06 JUN 2005	10.4	630	88.6	8.4		4310.8
* Values Exceed	Upper Control L	imit				M19

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. M23

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	17_	614	106.6			
Date	,					<u></u>
23 MAR 2005	10.5	554	100.5	8.8		4314.9
06 JUN 2005	9.7	562	96.3	8.7		4313.8
* Values Exceed	Upper Control Lim	it				M23

Mine Unit 6 Well I.D. M24

1

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

-	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Up	pper Control Limit	14.5	632	119.4			
	Date			······································			
	23 MAR 2005	8.8	496	105.2	8.8		4316.3
	06 JUN 2005	8.9	496	112.2	8.6		4613.3
	* Values Exceed	Upper Control Lim	it				M24

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. M25

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15.5	692	111.9			
Date						
29 MAR 2005	10.6	600	87.1	8.6		4307.7
06 JUN 2005	10.4	599	92.6	8.3		4607.6
* Values Exceed	Upper Control Lim	uit				M25

Mine Unit 7 Well I.D. M26

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃	,	mg/l	msl
Upper Control Limit	14.6	596	113.9	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Date						
23 MAR 2005	9.8	539	96.5	8.7		4314.7
06 JUN 2005	9.4	540	98.7	8.4		4614.8
* Values Exceed	Upper Control Lim	uit				M26
Negative U3O8 G	rades Indicate Less Thar	n Detection Limit.				

Mine Unit 7 Well I.D. M27

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15.2	625	105.8			
Date			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
29 MAR 2005	11.0	601	93.1	8.6		4310.5
07 JUN 2005	10.7	598	97.8	8.6		4309.5
* Values Exceed	Upper Control Lim	it				M27

Mine Unit 8 Well I.D. M28

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Hey W	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upp	per Control Limit	15.5	715	110.9			
L	Date	<u></u>					
	29 MAR 2005	11.1	622	38.2	8.7		4319.6
	06 JUN 2005	10.4	619	89.8	8.4		4319.2
	* Values Exceed	Upper Control Lim	uit				M28

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 8 ____'ell I.D. M29

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation	
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl	
Upper Control Limit	16.1	702	109.8				
Date							
29 MAR 2005	10.9	608	93.8	8.7		4317.5	
06 JUN 2005	10.7	608	93.8	8.3		4317.3	
* Values Exceed	Upper Control Lir	nit				M29	

Mine Unit 9 Well I.D. M30

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometre Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15.2	704	105.5		<u></u>	
Date	<u>.</u>	, <u> </u>		,	······································	
16 MAR 2005	10.8	620	96.2	8.8		4322.9
06 JUN 2005	10.4	619	91.2	8.4		4322.5
* Values Exceed	d Upper Control L	<i>,</i> imit				M30

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 9 Well I.D. M31

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15.6	690	107.2			
Date						
23 MAR 2005	11.8	621	96.9	8.6		4319.1
06 JUN 2005	11.4	621	100.4	8.3		4318.5
* Values Exceed	Upper Control Lim	nit				M31

Mine Unit 9 Well I.D. M32

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

للحليم	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upp	per Control Limit	16.1	707	107.4			
	Date			· · · · · · · · · · · · · · · · · · ·			
	16 MAR 2005	11.7	619	98.9	8.7		4325.4
	07 JUN 2005	10.6	616	98.5	8.6		4325.6
	* Values Exceed	Upper Control Lim	it				M32

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 9 Well I.D. M33

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15.9	686	112			
Date			·····			,
23 MAR 2005	10.9	307	91.1	8.5		4319.1
07 JUN 2005	10.2	606	97.4	8.6		4319.0
* Values Exceed	Upper Control Lim	it				· M33

Values Exceed Upper Control Limit

Mine Unit 1 Well I.D. T31

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride mg/1 21.8		Specific Conductance	Total Alkalinity	pH	Uranium	Piezomer
Units			μ mho/cm			mg/l	msl
Upper Control Limit			779				
Date			· · · ·				
29 MAR 2005	22.4	٠	730	81.5	8.5		4296.0
07 JUN 2005	21.6		743	84.4	B.4		4296.0
* Values Exceed	Upper Con	trol Li	mit				T31

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. RS27

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometri Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	16.9	646	101.2			······································
Date	4					
29 MAR 2005	10.9	619	94.3	8.4		4307.1
06 JUN 2005	10.4	610	90.4	8.4		4308.0
* Values Exceed	Upper Control Lim	it				RS27

* Values Exceed Upper Control Limit

Mine Unit 9 Well I.D. 16-151

IRIGARAY RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	16	702	110.2			
Date			<u> </u>			
23 MAR 2005	10.8	590	94.2	8.6		4320.7
06 JUN 2005	11.0	592	93.0	8.6		4323.8
* Values Exceed	Upper Control Lim	it				16-151

IRIGARAY PROJECT

Interior Shallow Sand Monitor Wells

Mine Unit 1 Well I.D. SSM2

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	ChlorideSpecific Conductancemg/lμ mho/cm20.32075		Total Alkalinity	pН	Uranium	Piezometric Elevation	
Units			μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit			2075				
Date				· · · · · · · · · · · · · · · · · · ·			
29 MAR 2005	22.6	*	1917	79.3	7.7		4309.0
31 MAY 2005	23.3	*	1962	110.9	7.8		4309.9
* Values Exceed	Upper Conti	rol Li	mit				SSM2

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 ell I.D. SSM3

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chlori	de	Specific Conductance		Total Alkalinity mg/l as CaCO ₃	pH	Uranium	Piezometric Elevation
Units	mg/l		μ mh	io/cm			mg/l	msl
Upper Control Limit	38.5		145	1	219.1			· · · · · · · · · · · · · · · · · · ·
Date	<u></u>							
23 MAR 2005	69.6	*	1940	*	134.3	7.9		4311.7
31 MAY 2005	60.1	*	1858	*	128.3	7.8		4309.0
* Values Exceed	Upper Con	trol Lim	ut					SSM3

* Values Exceed Upper Control Limit

Mine Unit 2 Well I.D. SSM4

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezor. Elevation	
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl	
Upper Control Limit	23.5	883	275.5		· · · · · · · · · · · · · · · · · · ·		
Date	1						
23 MAR 2005	16.1	710	237.4	8.5		4302.8	
31 MAY 2005	16.5	707	234.5	8.4		4302.0	
* Values Exceed	1 Upper Control L	imit				SSM4	

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. SSM5

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.5	825	254.9			
Date						
23 MAR 2005	14.9	698	203.1	8.1		4312.7
31 MAY 2005	15.0	676	203.3	8.2		4314.0
* Values Exceed	Upper Control Lin	vit				SSM5

Mine Unit 4 Well I.D. SSM6

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

ب	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
	Upper Control Limit	16.3	2445	122.2			
L	Date	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
	23 MAR 2005	11.6	2022	92.3	7.8		4312.1
	31 MAY 2005	11.5	2015	92.7	7.6		4313.2
	* Values Exceed	Upper Control L	imit				SSM6

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. SSM7

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	· Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	17.1	2604	119.4	· · · · · · · · · · · · · · · · · · ·		
Date		<u></u>			· · · · · · · · · · · · · · · · · · ·	<u> </u>
29 MAR 2005	13.1	2269	111.7	7.6		4312.4
31 MAY 2005	13.2	2250	97.5	7.6		4313.4
* Values Exceed	Upper Control Lim	it				SSM7

Mine Unit 5 Well I.D. SSM8

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chlori	de	Specific Conductance	Total Alkalini	ty	pH	Uranium	Piezome
Units	mį	g/1	μ mho/cm	mg/l as	CaCO ₃		mg/l	msl
Upper Control Limit	16.6		2389	112.2				
Date								
29 MAR 2005	23.2	*	2386	116.5	*	7.6		4312.3
31 MAR 2005	22.1	*	2335	111.0		7.4		4312.3
31 MAR 2005	23.3	*	2330	111.0		7.4		4312.3
31 MAY 2005	23.0	. *	2385	112.0		7.6		4312.9
* Values Exceed	Upper Con	trol L	imit					SSM8

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. SSM9

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15	2008	117.8			
Date						
29 MAR 2005	9.0	1502	97.1	7.7		4318.6
31 MAY 2005	9.4	1480	90.8	7.6		4313.8
* Values Exceed	Upper Control Lin	nit				SSM9

Mine Unit 6 Well I.D. SSM10

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
	Units	ing/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Up	per Control Limit	15.5	1955	177.4	<u>,</u> ,,		
L	Date						
	29 MAR 2005	10.0	1526	103.6	7.7		4314.2
	31 MAY 2005	10.2	1513	96.3	7.7		4314.8
	* Values Exceed	Upper Control Lim	it				SSM10

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. SSM11

IRIGÅRAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	16.2	2784	122.9			
Date						
29 MAR 2005	13.3	2449	84.5	7.5		4316.0
31 MAY 2005	15.3	2404	87.5	7.6		4315.8
* Values Exceed	Upper Control Lim	it				SSM11

Values Exceed Upper Control Limit

Mine Unit 8 Well I.D. SSM18

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chlori	de	Specifi Conducta		Total Alkalini		pH	Uranium	Piezome Elevation
Units	mg	g/1	µ mł	ho/cm	mg/l as	s CaCO3		mg/l	msl
Upper Control Limit	14.7		184	9	119.4				
Date									
29 MAR 2005	18.6	*	2065	•	147.8	*	7.6		4315.0
31 MAY 2005	17.5	*	2013	*	149.0	*	7.5		4316.1
* Values Exceed	Upper Con	trol L	imit						SSM18

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 8 Well I.D. SSM19

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.7	1636	114.1			
Date						
29 MAR 2005	8.5	1499	82.8	7.9		4315.7
31 MAY 2005	9.1	1481	81.2	8.0		4316.8
* Values Exceed	Upper Control Lim	it				SSM19

* Values Exceed Upper Control Limit

Mine Unit 9 Well I.D. SSM34

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
	Upper Control Limit	13.2	1698	110.4			
L	Date			······			
	29 MAR 2005	9.0	1229	87.4	7.8		4315.5
	31 MAY 2005	9.5	1215	86.0	7.8		4315.1
	* Values Exceed	Upper Control Lim	it				SSM34

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 9 Well I.D. SSM35

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	14.4	1688	132.7		· · · · · · · · · · · · · · · · · · ·	
Date		······				
29 MAR 2005	10.2	1293	108.8	7.9		4316.0
31 MAY 2005	10.4	1255	101.6	7.7		4315.9
* Values Exceed	Upper Control Lin	nit				SSM35

Mine Unit 9 Well I.D. SSM36

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.7	1565	119.6			
Date						
29 MAR 2005	8.7	1276	104.5	7.9		4317.6
31 MAY 2005	8.8	1268	97.4	8.0		4319.0
* Values Exceed	Upper Control Lim	ıit				SSM36

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 7 Well I.D. SSM37

IRIGÀRAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	14.3	1813	120			
Date			· · · · · · · · · ·		- · · · · · · · · · · · · · · · · · · ·	
29 MAR 2005	9.8	1466	109.0	7.7		4311.8
31 MAY 2005	10.0	1450	101.0	7.8		4312.0
* Values Exceed	Upper Control Lim	it				SSM37

Mine Unit 7 Well I.D. SSM38

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

ل	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
U	pper Control Limit	16.2	2800	118.8			
	Date	·]					
	29 MAR 2005	10.8	2019	103.0	8.0		4314.0
	31 MAY 2005	11.5	2158	99.7	7.6		4314.0
	* Values Exceed	Upper Control Lim	uit				SSM38

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 7 Vell I.D. SSM39

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	14.5	2071	104.4			
Date	<u> </u>					
29 MAR 2005	12.0	1833	106.3 *	7.6		4312.4
31 MAY 2005	11.5	1803	102.0	7.8		4312.5
* Values Exceed	Upper Control Lim	it				SSM39

Mine Unit 8 Well I.D. SSM40

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	1672	109.2			
Date			<u> </u>			
29 MAR 2005	13.3 .	1681 *	111.2 *	7.8		4317.4
31 MAY 2005	10.7	1494	103.2	7.9		4316.9
* Values Exceed	Upper Control Limit	it				SSM40

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. SSM41

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chlori	ide	Specific Conductance	Total Alkalini		pH	Uranium	Piezometric Elevation
Units	m	g/1	μ mho/cm	mg/l as	CaCO ₃		mg/l	msl
Upper Control Limit	24.9		2566	126.8				
Date				<u></u>			÷	
23 MAR 2005	33.8	*	2454	128.5	*	7.6		4336.4
31 MAY 2005	31.6	*	2437	134.7	*	7.6		4336.4
* Values Exceed	Upper Cor	ntrol Li	mit					SSM41

Mine Unit 7 Well I.D. SSM38

1 i f

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Ý	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
τ	Upper Control Limit	16.2	2800	118.8			
L	Date						······································
	29 MAR 2005	10.8	2019	103.0	8.0		4314.0
	31 MAY 2005	11.5	2158	99.7	7.6		4314.0
	* Values Exceed	Upper Control Lim	it				SSM38

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 7 Well I.D. SSM39

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance			Uranium	Piezometric Elevation	
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl	
Upper Control Limit	14.5	2071	104.4			# <u>* * * * * * * * * * * * * * * * * * *</u>	
Date	<u> </u>						
29 MAR 2005	12.0	1833	106.3 *	7.6		4312.4	
31 MAY 2005	11.5	1803	102.0	7.8		4312.5	
* Values Exceed	Upper Control Lim	it				SSM39	

* Values Exceed Upper Control Limit

Mine Unit 8 Well I.D. SSM40

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		, mg/l	msl
Upper Control Limit	13.6	1672	109.2	<u> </u>		
Date					<u> </u>	······································
29 MAR 2005	13.3	1681 *	111.2 *	7.8		4317.4
31 MAY 2005	10.7	1494	103.2	7.9		4316.9
* Values Exceed	Upper Control Lim	uit				SSM40
Negative U3O8 (Grades Indicate Less Than	Detection Limit.				

Mine Unit 4 Well I.D. SSM41

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chlori	ide	Specific Conductance	Total Alkalini		pH	Uranium	Piezometric Elevation
Units	m	g/1	μ mho/cm	mg/l as	CaCO ₃		mg/l	msl
Upper Control Limit	24.9		2566	126.8	0			
Date			<u></u>	· · · · · · · · · · · · · · · · · · ·				
23 MAR 2005	33.8	*	2454	128.5	*	7.6		4336.4
31 MAY 2005	31.6	•	2437	134.7	*	7.6		4336.4
* Values Exceed	Upper Cor	ntrol L	imit					SSM41

Mine Unit 3 Well I.D. SSM42

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
23.3	1571	213.2		······································	
				· · · · · · · · · · · · · · · · · · ·	
19.6	1094	158.8	8.2		4304.1
22.8	1088	154.2	8.1		4305.1
Upper Control L	imit				SSM42
	mg/l 23.3	Conductance mg/l μ mho/cm 23.3 1571 19.6 1094	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ConductanceAlkalinitypHUraniummg/l μ mho/cmmg/l as CaCO3mg/l23.31571213.219.61094158.88.222.81088154.28.1

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 1 Well I.D. SSM43

IRIGARAY RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride Specific Conductance		Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation	
Units	m	g/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl	
Upper Control Limit	25.6		1456	170.4	······································			
Date								
23 MAR 2005	33.7	*	1374	116.1	8.2		4311.0	
31 MAY 2005	30.8	*	1326	114.7	7,9		4310.7	
* Values Exceed	Upper Cor	trol L	imit				SSM43	

IRIGARAY PROJECT

Interior Deep Sand Monitor Wells

Mine Unit 1 Well I.D. DM1

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Ý	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
U	pper Control Limit	16.2	609	207.4			
L.,	Date			-			
	23 MAR 2005	9.1	474	115.9	8.7		4313.5
	31 MAY 2005	8.4	476	121.5	8.7		4313.4
	* Values Exceed	Upper Control Lim	it				DM1

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 1 /ell I.D. DM2

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride Specific Conductance		Total Alkalinity pH		Uranium	Piezometrie Elevation
Units	mg/l μ mho/c		mg/l as CaCO ₃	mg/l	mg/l	msl
Upper Control Limit	15.1	757	187.1			· · · · · · · · · · · · · · · · · · ·
Date						
23 MAR 2005	7.9	600	179.5	8.4		4305.0
31 MAY 2005	8.0	598	138.8 *	8.3		4305.7
* Values Exceed	Upper Control Lim	it				DM2

* Values Exceed Upper Control Limit

Mine Unit 2 Well I.D. DM3

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	Alkalinity pH		Piezomet. Elevation
Units	mg/l	μ mho/cm	3		mg/l	msl
Upper Control Limit	15.8	677	240.9			
Date						·····
23 MAR 2005	12.3	542	144.3	8.4		4310.1
31 MAY 2005	11.0	539	147.7	8.4		4310.5
* Values Exceed	Upper Control Lim	lit				DM3

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. DM4

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	lkalinity pH		Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	14.4	603	117.6			
Date					<u></u>	
23 MAR 2005	9.3	515	94.3	8.8		4308.8
31 MAY 2005	8.7	516	100.2	8.7		4313.3
* Values Exceed	Upper Control Lin	nit				DM4

Mine Unit 2 Well I.D. DM5

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

New J	Water Quality Parameters	Chloride	Specific Total Conductance Alkalinity pH		pH	Uranium	Piezometric Elevation
-	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
	Upper Control Limit	15.7	675	206			
L.	Date						
	23 MAR 2005	8.7	618	189.9	7.9		4301.7
	31 MAY 2005	7.7	613	193.6	8.1		4302.9
	* Values Exceed	Upper Control Lim	it				DM5

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. DM9

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	•		Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm mg/l as CaCO ₃ mg/l		msl		
Upper Control Limit	16.3	647	132.7			
Date		<u></u>			······	
29 MAR 2005	9.5	525	99.0	8.8		4312.8
31 MAY 2005	8.8	519	98.2	8.6		4315.5
* Values Exceed	Upper Control Lim	it				DM9

Mine Unit 6 Well I.D. DM10

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specif Conducta		Total Alkalini		pН	Uranium	Piezomet. Elevation
Units	mg/l	μ ml	no/cm	mg/l as	CaCO ₃		mg/1	msl
Upper Control Limit	16.4	60	б	107.5	•			
Date						·······		
29 MAR 2005	14.5	630	*	125.0	*	8.4		4318.2
31 MAY 2005	14.2	636	*	121.1	*	8.2		4318.4
* Values Exceed	Upper Control Lim	uit						DM10
	a da a Ya di a da Yana Titan	Data	r *					

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 7

Well I.D. DM11

ł

1

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Conductance Alkalinity pH		pH	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15	607	104.7			······································
Date						
29 MAR 2005	10.6	592	99.3	8.6		4313.9
31 MAY 2005	9.8	545	103.8	8.5		4316.5
* Values Exceed	Upper Control Lim	iit				DM11

Mine Unit 8 Well I.D. DM13

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Up	per Control Limit	15.1	624	113.5			•
(Date						
	29 MAR 2005	9.7	535	103.4	8.6		4320.0
	31 MAY 2005	9.1	542	99.0	8.5		4320.7
	* Values Exceed	Upper Control Lim	it				DM13

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 8 Vell I.D. DM14

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	ctance Alkalinity pH		Uranium	Piezometric Elevation
Units	mg/l μ mho/		mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15.5	619	109.5			· · · · · · · · · · · · · · · · · · ·
Date				· · · · · · · · · · · · · · · · · · ·		
29 MAR 2005	10.3	561	99.6	8.8		4317.3
31 MAY 2005	9.5	558	98.5	8.7		4317.3
* Values Exceed	Upper Control Lim	it				DM14

Mine Unit 9 Well I.D. DM15

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15.1	618	110.6			
Date						
29 MAR 2005	10.4	560	100.6	8.7		4322.8
31 MAY 2005	9.3	558	100.2	8.6		4322.9
* Values Exceed	Upper Control Lim	ut				DM15

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 9 Well I.D. DM16

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	•		Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15.7	646	111			
Date						
29 MAR 2005	10.5	565	95.1	8.8		4320.5
31 MAY 2005	9.7	560	93.9	8.7		4320.5
* Values Exceed	d Upper Control Lin	nit				DM16

Mine Unit 5 Well I.D. DM17

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters		Chloride	le Specific Conductance		Total Alkalinity		Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as	CaCO ₃		mg/l	msl
Up	per Control Limit	15	618	108.2				
	Date	· · · · · · · · · · · · · · · · · · ·		<u> </u>				
	29 MAR 2005	9.3	523	117.4	•	8.8		4313.6
	31 MAY 2005	8.7	526	111.3	•	8.5		4312.0
	* Values Exceed	Upper Control Lim	it					DM17

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. DM18

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	14.5	598	105.6			
Date			<u> </u>			
23 MAR 2005	9.6	522	95.4	8.6		4309.0
31 MAY 2005	8.9	525	97.7	8.5		4310.7
* Values Exceed	Upper Control Lim	it				DM18

* Values Exceed Upper Control Limit

Mine Unit 3 Well I.D. DM19

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters			Specific Total Conductance Alkalinity F		Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	31.7	1207	245.3			
Date	· · · · · · · · · · · · · · · · · · ·					·····
29 MAR 2005	9.9	508	125.4	8.4		4306.7
31 MAY 2005	9.3	515	130.0	7.8		4311.6
* Values Excee	d Upper Control Lin	nit				DM19

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. DM20

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	17.5	609	135.6			
Date	,					· · · · · · · · · · · · · · · · · · ·
23 MAR 2005	9.2	511	96.1	8.6		4313.4
31 MAY 2005	8.6	512	100.3	8.4		4314.7
* Values Exceed	Upper Control Lim	nit				DM20

Mine Unit 7 Well I.D. DM21

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

للبسط	Water Quality . Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
	Upper Control Limit	15.6	628	126.7			
٤	Date		2 ⁹⁹			· · ·	
	29 MAR 2005	10.3	552	95.7	8.7		4320.1
	31 MAY 2005	10.0	551	99.3	8.5		4320.1
	* Values Exceed	Upper Control Li	imit				DM21
	Negative U3O8 Gra	des Indicate Less Th	an Detection Limit.				

Mine Unit 6 Vell I.D. DM22

IRIGARAY RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	15.1	654	117		· · · · · · · · · · · · · · · · · · ·	
Date		<u></u>				
29 MAR 2005	9.9	540	98.2	8.6		4317.9
31 MAY 2005	9.2	534	96.9	8.4		4318.1
* Values Exceed	Upper Control Lim	it				DM22

IRIGARAY PROJECT

USMT – 517 Wells

Mine Unit USMT Well I.D. M-219

COGEMA Mining Inc. **IRIGARY RANCH** Monitor Wells 5-1-7 & USMT Sites **

Water Quality	Chloride	-	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	Mg/l	u mho/cm	mg/l as CaCO3			
Upper control	*	*	*			

N/R

82.7 N/R N/R 653 Date 6/22/05 8.8 N/R = Not RecordedNOTES: N/A = Not Available*No UCL's established for these wells. **Wells are sampled only once per year. **Per NRC License SUA-1341 Section 10.17

COGEMA Mining Inc. **IRIGARY RANCH**

Mine Unit USMT Well I.D. M-220

Monitor Wells 5-1-7 & USMT Sites **

Water Quality	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
Units	Mg/l	u mho/cm	mg/l as CaCO3			
Upper control	*	*	*			

Date 6/22/05 14.2 873 1	104.7	N/R	N/R	N/R
-------------------------	-------	-----	-----	-----

NOTES:

N/R = Not Recorded

N/A = Not Available

*No UCL's established for these wells."

**Wells are sampled only once per year.

**Per NRC License SUA-1341 Section 10.17

COGEMA Mining Inc. IRIGARY RANCH Mine Unit USMT Monitor Wells 5-1-7 & USMT Sites **

Well I.D. M-221

Water Quality	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	Mg/l	u mho/cm	mg/l as CaCO3			
Upper control	*	*	*		· .	. ,

Date 6/22/05	· ·	9.1		625	90.2	N/R	N/R	•	N/R
NOTES:	N/A *No **W	l = No UCL Vells a	ot Ava 's est ire sai	orded ailable ablished for t mpled only on	nce per year.	0.17			
			~	cense SUA-1.	341 Section 10	0.17			
		· ·	÷.	· •			• ;		

COGEMA Mining Inc. **IRIGARY RANCH**

Well I.D. M-1 Monitor Wells 5-1-7 & USMT Sites **

Water Quality	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	Mg/l	u mho/cm	mg/l as CaCO3	•		<u> </u>
Upper control	*	*	*			

Date 6/22/05	36.4	721	143.1	N/R	N/R	N/R
--------------	------	-----	-------	-----	-----	-----

NOTES:

Mine Unit USMT

N/R = Not RecordedN/A = Not Available

*No UCL's established for these wells.

**Wells are sampled only once per year.

**Per NRC License SUA-1341 Section 10.17

COGEMA Mining Inc. IRIGARY RANCH

Well I.D. NM-3 Monitor Wells 5-1-7 & USMT Sites **

Mine Unit USMT

Water Quality	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	Mg/l	u mho/cm	mg/l as CaCO3			
Upper control	*	*	*			

Date 6/22/058.463782.5N/RN/RN/RNOTES:N/R = Not Recorded
N/A = Not Available
*No UCL's established for these wells.
**Wells are sampled only once per year.
**Per NRC License SUA-1341 Section 10.17

COGEMA Mining Inc. Mine Unit USMT IRIGARY RANCH Well I.D. M-4 Monitor Wells 5-1-7 & USMT Sites **

Water Quality	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
Units	Mg/l	u mho/cm	mg/l as CaCO3			
Upper control	*	*	*			

Date 6/22/05	21.0	946	111.0	N/R	N/R	N/R
--------------	------	-----	-------	-----	-----	-----

NOTES:

N/R = Not Recorded

N/A = Not Available

*No UCL's established for these wells.

**Wells are sampled only once per year.

**Per NRC License SUA-1341 Section 10.17

COGEMA Mining Inc. IRIGARY RANCH

Well I.D. SM-1 Monitor Wells 5-1-7 & USMT Sites **

Water Quality	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	Mg/l	u mho/cm	mg/l as CaCO3		· <u>··································</u> ·····	
Upper control	*	*	*			· · · · · · · · · · · · · · · · · · ·

Date 6/22/05 20.3 817 267.5 N/R N/R N/R

.

NOTES:

Mine Unit USMT

N/R = Not RecordedN/A = Not Available

*No UCL's established for these wells.

**Wells are sampled only once per year.

**Per NRC License SUA-1341 Section 10.17

35

CHRISTENSEN PROJECT

Perimeter Ore Zone Monitor Wells

Mine Unit 3 Well I.D. MW17-2

¢

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	Conductance	Alkalinity	pH	Uranium	Piezometric Elevation
mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
13.4	777	129.7			
<u></u>		· · · ·			
9.4	667	84.4	8.7		4529.2
9.8	670	93.9	8.6		4535.2
Upper Control L	imit				MW17-2
	9.4 9.8 Upper Control L.	9.4 667	9.4 667 84.4 9.8 670 93.9 Upper Control Limit 93.9	9.4 667 84.4 8.7 9.8 670 93.9 8.6 Upper Control Limit 93.9 8.6	9.4 667 84.4 8.7 9.8 670 93.9 8.6 Upper Control Limit 8.6

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW18

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date						· · · · · · · · · · · · · · · · · · ·
03 JAN 2005	9.5	670	94.0	8.5		4528.3
05 APR 2005	9.5	666	93.3	8.5		4534.3
* Values Exceed	Upper Control Lim	it				MW18

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome.
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date						
06 JAN 2005	9.2	675	88.3	8.3		4529.4
05 APR 2005	9.6	665	96.1	8.1		4533.3
* Values Exceed	Upper Control Lin	nit				MW19

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW20

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date		······································			······	······
03 JAN 2005	9.1	671	89.3	8.4		4525.9
05 APR 2005	9.4	668	99.2	8.3		4532.6
* Values Exceed	Upper Control Lim	it				MW20

Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
U	pper Control Limit	13.4	777	129.7		·····	· · · · · · · · · · · · · · · · · · ·
L	Date	· · · ·		······			
	03 JAN 2005	9.5	659	94.5	8.5		4523.3
	05 APR 2005	9.9	650	90.0	8.3		4529.0
	* Values Excee	1 Upper Control L	imit				MW23

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW24

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date		·····				
03 JAN 2005	9.6 .	658	83.0	8.5		4522.0
05 APR 2005	9.9	654	92.4	8.4		4522.0
* Values Exceed	Upper Control Lim	uit				MW24

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL .

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometra Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date	· · · · · · · · · · · · · · · · · · ·				<u>, </u>	
03 JAN 2005	9.4	661	89.4	8.5		4524.5
05 APR 2005	9.6	657	93.7	8.3		4527.6
* Values Exceed	Upper Control Lim	it				MW25

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW26

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date	-1					
03 JAN 2005	9.8	660	84.1	8.5		4525.2
05 APR 2005	9.9	655	91.9	8.3		4529.8
* Values Exceed	Upper Control Lim	nit				MW26

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

i I	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
-	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
-	Upper Control Limit	13.4	777	129.7			
L	Date						
	03 JAN 2005	11.0	663	93.0	8.4		4525.2
	05 APR 2005	11.5	658	93.9	8.3		4531.4
	* Values Exceed	Upper Control Lir	nit				MW27

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW28

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date		······································				
06 JAN 2005	9.8	715	87.0	8.4		4527.2
05 APR 2005	10.6	704	99.1	8.3		4533.9
* Values Exceed	Upper Control Lim	it				MW28

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Qua Paramete	-	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Uni	its	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Li	imit	13.4	777	129.7			
Dat	te					· · · · · · · · · · · · · · · · · · ·	
06 JAN	1 2005	9.5	669	94.0	8.4		4528.4
05 APR	t 2005	9.8	655	96.1	8.3		4535.0
* V:	alues Exceed 1	Upper Control Limi	it				MW29

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW30

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7		<u> </u>	
Date					<u>,</u>	
06 JAN 2005	9.2	677	89.4	8.4		4530.1
05 APR 2005	9.6	663	98.9	8.3		4536.9
* Values Exceed	Upper Control Lim	uit				MW30

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

المخطيبين	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upp	per Control Limit	13.4	777	129.7			
	Date				·····		
	06 JAN 2005	9.2	678	92.0	8.4		4533.0
	05 APR 2005	9.6	664	97.5	8.3		4539.7
	* Values Exceed	Upper Control Lim	it				MW31

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Vell I.D. MW32

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7		· · · · · · · · · · · · · · · · · · ·	
Date						·····
05 JAN 2005	9.3	670	91.9	. 8.4		4532.8
05 APR 2005	9.1	672	98.0	8.3		4539.8
* Values Exceed	Upper Control Lim	it				MW32

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chlori	de	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	m	g/1	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	· •,•,	777	129.7			
Date	<u> </u>			· · · · · · · · · · · · · · · · · · ·			
05 JAN 2005	15.5	•	726	114.1	8.3		4530.4
05 APR 2005	16.7	*	741	125.7	8.2		4538.7
* Values Exceed	Upper Cor	trol L	imit				MW35
Negative U3O8 G	rades Indicate	Less Tl	nan Detection Limit.		•		

Mine Unit 3 Well I.D. MW36

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date					·····	
05 JAN 2005	9.1	670	88.6	8.3		4537.5
11 APR 2005	9.5	663	98.2	8.1		4515.0
* Values Exceed	Upper Control Lim	it				MW36

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Y	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
-	Upper Control Limit	13.4	777	129.7			
L	Date						· · · · · · · · · · · · · · · · · · ·
	05 JAN 2005	10.1	678	99.5	8.4		4530.7
	05 APR 2005	10.4	678	99.8	8.2		4537.1
	* Values Exceed	Upper Control Lin	nit				MW37

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW38

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date					······································	
03 JAN 2005	9.1	669	88.3	8.5		4529.8
11 APR 2005	9.4	666	97.1	8.2		4536.1
* Values Exceed	Upper Control Lim	it				MW38

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date						
03 JAN 2005	9.8	669	91.0	8.6		4530.0
11 APR 2005	9.8	665	95.6	8.6		4525.2
* Values Exceed	Upper Control Lim	iit				MW39

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW40

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7	<u></u>		
Date					· · · · · · · · · · · · · · · · · · ·	
06 JAN 2005	9.5	674	86.8	8.6		4529.8
11 APR 2005	9.8	667	100.3	8.3		4536.4
* Values Exceed	Upper Control Lim	it				MW40

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
	Upper Control Limit	13.4	777	129.7			
۲	Date						
	05 JAN 2005	9.0	677	93.7	8.4		4534.1
	05 APR 2005	9.1	678	105.5	8.3		4541.1
	* Values Exceed	Upper Control Lin	nit				MW41

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW42

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date					·····	
05 JAN 2005	9.0	668	95.0	8.5		4536,3
05 APR 2005	9.1	670	98.6	8.4		4543.4
* Values Exceed	Upper Control Lim	it				MW42

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date						
27 JAN 2005	8.6	659	86.3	8.5		4538.3
05 APR 2005	9.2	668	99.1	8.3		4525.4
* Values Exceed	Upper Control Lim	цit				MW43

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW44

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date	·		<u> </u>			
. 05 JAN 2005	9.1	670	91.4	8.3		4529.4
05 APR 2005	9.3	669	94.4	8.1		4535.9
* Values Exceed	Upper Control Lim	it				MW44

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

بخب	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Ū	Jpper Control Limit	13.4	777	129.7		·.	
L	Date	· · · · · · · · · · · · · · · · · · ·		-			· · · · · · · · · · · · · · · · · · ·
	05 JAN 2005	9.1	671	87.5	8.4		4529.4
	05 APR 2005	9.3	681	95.6	8.3		4538.7
	* Values Exceed	Upper Control Lim	it				MW45

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW62

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃	_	mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date	1		· · ·	· · · · · · · · · · · · · · · · · · ·		
05 JAN 2005	8.8	667	89.0	8.8		4536.0
05 APR 2005	9.5	662	91.5	8.7		4542.7
* Values Exceed	Upper Control Lim	it				MW62

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
13.4	777	129.7	······································		
<u></u>		·			
8.8	662	89.3	8.7		4538.0
9.0	656	88.7	8.6		4544.5
Upper Control L	<i>l</i> imit				MW63
	8.8 9.0	Conductance mg/l μ mho/cm 13.4 777 8.8 662	ConductanceAlkalinitymg/l μ mho/cmmg/l as CaCO313.4777129.78.866289.39.065688.7	Conductance Alkalinity pH mg/l μ mho/cm mg/l as CaCO ₃ 13.4 777 129.7 8.8 662 89.3 8.7 9.0 656 88.7 8.6	ConductanceAlkalinitypHUraniummg/l μ mho/cmmg/l as CaCO3mg/l13.4777129.78.866289.38.79.065688.78.6

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW64

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date			····			
05 JAN 2005	9.1	677	95.8	8.4		4539.8
05 APR 2005	9.5	667	104.8	8.0		.4547.0
* Values Exceed	Upper Control Lim	it				MW64

1

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

-	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
U	pper Control Limit	13.6	823	121.3			
L	Date		<u> </u>				
	07 MAR 2005	9.5	667	97.3	8.8		4531.9
	21 JUN 2005	9.5	672	96.3	8.7		4524.0
	* Values Exceed	Upper Control Lim	it				MW73

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW74

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3		, git,, ' ', // ', g g (
Date						
07 MAR 2005	9.5	664	98.0	9.0		4532.1
21 JUN 2005	9.4	669	96.8	8.9		4538.4
* Values Exceed	Upper Control Lim	it				MW74

Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3			
Date						
07 MAR 2005	9.3	673	95.7	8.6		4530.5
21 JUN 2005	9.1	677	94.3	8.6		4537.4
* Values Exceed	Upper Control Lim	it				MW75

Negative U3O8 Grades Indicate Less Than Detection Limit.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Mine Unit 2 Well I.D. MW76

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3			
Date						
08 MAR 2005	8.7	729	95.8	8.6		4530.1
21 JUN 2005	8.8	730	98.7	8.5		4537.0
* Values Exceed	Unper Control Lin	nit				MW76

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Q Parame		Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
U	nits	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control	Limit	13.6	823	121.3			
LD	ate						······
07 N	IAR 2005	8.7	735	97.3	8.2		4529.4
21 J	UN 2005	8.4	743	93.3	8.3		4536.3
* `	Values Exceed	Upper Control L	imit				MW77
	N	andon Indianta I and TI	D + the tt t				

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW78

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3			
Date	<u> </u>					
07 MAR 2005	9.4	692	98.3	8.3		4526.8
21 JUN 2005	9.3	695	93.7	8.1		4512.0
* Values Exceed	Upper Control Lim	it				MW78

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3			
Date	·····		· · · · · · · · · · · · · · · · · · ·			
07 MAR 2005	8.7	719	96.2	8.3		4525.9
21 JUN 2005	8.5	721	91.7	8.0		4532.1
* Values Exceed	Upper Control Lin	nit		×		MW79

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW80

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3		<u>, , , , , , , , , , , , , , , , , , , </u>	
Date						
07 MAR 2005	9.8	686	93.7	8.3		4523.3
21 JUN 2005	9.4	686	97.8	8.1		4529.7
* Values Exceed	Upper Control Lim	it				MW80

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
13.6	823	121.3			
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		······	
9.2	669	93.1	8.5		4524.4
9.4	672	90.2	8.1		4529.1
Upper Control Li	imit				MW81
	9.2 9.4 Upper Control Li	mg/l μ mho/cm 13.6 823 9.2 669	mg/l μ mho/cm mg/l as CaCO ₃ 13.6 823 121.3 9.2 669 93.1 9.4 672 90.2 Upper Control Limit	mg/l μ mho/cm mg/l as CaCO ₃ 13.6 823 121.3 9.2 669 93.1 9.4 672 90.2 Upper Control Limit 8.5	mg/l μ mho/cm mg/l as CaCO3 mg/l 13.6 823 121.3 8.5 9.2 669 93.1 8.5 9.4 672 90.2 8.1 Upper Control Limit Upper Control Limit 90.2 8.1

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 ell I.D. MW82

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3			
Date					· · · · · · · · · · · · · · · · · · ·	
07 MAR 2005	9.8	653	91.0	8.4		4520.8
21 JUN 2005	10.4	663	93.0	8.4		4526.3
* Values Exceed	Upper Control L	imit				MW82

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3			
Date					·····	
07 MAR 2005	9.1	662	92.4	8.2		4520.9
21 JUN 2005	10.0	673	94.0	8.4		4527.2
* Values Exceed	Upper Control Li	imit				MW83

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW84

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3			
Date						
08 MAR 2005	9.7	665	98.1	8.4		4511.0
21 JUN 2005	10.0	671	95.4	8.3		4511.0
* Values Exceed	Upper Control Lim	ut				MW84

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3		· · · · · · · · · · · · · · · · · · ·	
Date	•				·	
08 MAR 2005	9.8	657	96.5	8.5	•	4520.7
21 JUN 2005	9.9	662	93.2	7.7	. *	4516.0
* Values Exceed	Upper Control I	limit			•••	MW85
	Grades Indicate Less T			2	· ·	

Mine Unit 2 Vell I.D. MW86

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3			. •
Date				······································		
08 MAR 2005	9.8	663	97.9	8.3		4522.8
21 JUN 2005	10.5	659	98.0	7.8		4529.3
* Values Exceed	Upper Control Lim	it				MW86

56

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

1	ater Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezom
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Co	ontrol Limit	13.6	823	121.3		·····	
L	Date						······································
	08 MAR 2005	9.7	664	93.0	8.3		4525.1
	21 JUN 2005	10.8	663	101.8	7.9		4531.2
	* Values Exceed	Upper Control Lin	uit				MW87

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. **MW88**

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3			
Date			-			
08 MAR 2005	9.0	665	94.5	8.3		4526.1
21 JUN 2005	9.7	664	95,1	7.9		4533.3
* Values Exceed	Upper Control Lim	it				MW88

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	iter Quality arameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Co	ntrol Limit	13.6	823	121.3			······································
L	Date						
	08 MAR 2005	12.3	702	, 1 11.5	8.4		4528.8
	21 JUN 2005	12.4	701	108.7	8.0		4535.1
	* Values Excee	d Upper Control L	imit				MW89

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 **MW90** ell I.D.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.6	823	121.3	<u></u> -	· · · · · · · · · · · · · · · · · · ·	
Date					- <u>-</u>	· · · · ·
08 MAR 2005	9.4	675	91.6	8.4		4522.0
21 JUN 2005	9.5	691	94.1	8.3		4527.5
* Values Exceed	Upper Control Lim	it				MW90

Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.6	778	124.6	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
Date	·					
08 MAR 2005	9.7	669	90.0	8.5		4520.7
21 JUN 2005	9.5	669	88.8	8.0		4527.2
* Values Exceed	Upper Control Limi	it				MW101
	ndes Indicate Less Than	Detection Limit		51		

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW102

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.6	778	124.6			
Date	· · ·					
08 MAR 2005	9.7	661	89.9	8.4		4518.9
21 JUN 2005	10.3	664	94.0	8.0		4524.6
* Values Exceed	Upper Control Lim	it				MW102

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.6	778	124.6			
Date		<u></u>	· · · · · · · · · · · · · · · · · · ·			
08 MAR 2005	9.5	661	92.3	8.6		4519.6
21 JUN 2005	9.7	674	92.1	8.6		4519.6
* Values Exceed	Upper Control L	imit				MW103

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW104

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.6	778	124.6			
Date						· · · · · · · · · · · · · · · · · · ·
08 MAR 2005	9.5	680	93.4	8.5		4516.7
21 JUN 2005	9.3	693	89.8	8.4		4522.7
* Values Exceed	Upper Control Lim	nit				MW104

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.6	778	124.6			
Date						
08 MAR 2005	9.4	672 .	93.4	8.5		4515.8
21 JUN 2005	9.8	693	92.2	8.3		4521.7
* Values Exceed	Upper Control Lin	nit				MW105

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW106

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.6	778	124.6			
Date			· · · · · · · · · · · · · · · · · · ·			
08 MAR 2005	9.7	661	91.9	8.5		4517.8
21 JUN 2005	9.8	670	90.4	8.3		4521.3
* Values Exceed	Upper Control Lim	iit				MW106

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

1	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upp	per Control Limit	11.6	778	124.6			
	Date						
	08 MAR 2005	9.8	657	91.5	8.5		4517.7
	21 JUN 2005	10.0	665 .	91.1	8.3		4522.7
	* Values Exceed	Upper Control Lim	it				MW107

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW108

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.6	778	124.6			·····
Date						······
08 MAR 2005	10.2	660	93.4	8.4		4516.5
21 JUN 2005	10.1	673	90.8	8.4		4522.1
* Values Exceed	Upper Control Lin	ut				MW108

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.6	778	124.6			
Date						
08 MAR 2005	10.2	713	88.8	8.2	·	4516.6
21 JUN 2005	10.5	754	83.7	8.2		4522.3
* Values Exceed	Upper Control Lim	it				MW109

Negative U3O8 Grades Indicate Less Than Detection Limit.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Mine Unit 2 Well I.D. MW110

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.6	778	124.6			
Date						
08 MAR 2005	10.2	653	92.4	8.4		4518.3
21 JUN 2005	10.2	661	91.4	8.3		4524.1
* Values Exceed	Une on Control Lin	nit				MW110

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
11.7	• •••• • • • • • • • • • • • • • • • •				11101
11.6	778	124.6			
			·····	·····	
9.8	657	93.8	8.4		4513.6
9.8	668	92.4	8.3		4513.6
per Control Lin	nit				MW111
	9.8 9.8 oper Control Lin	9.8 657	9.8 657 93.8 9.8 668 92.4 oper Control Limit	9.8 657 93.8 8.4 9.8 668 92.4 8.3 oper Control Limit	9.8 657 93.8 8.4 9.8 668 92.4 8.3 oper Control Limit

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW114

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7		······································	, ,
Date					······	
04 JAN 2005	9.6	674	96.0	8.8		4525.7
05 APR 2005	9.9	670	96.1	8.6		4529.5
* Values Exceed	Upper Control Lim	iit				MW114

Mine Unit 3CHRISTENSEN RANCHWell I.D. MW115PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date				an a		· · · · · · · · · · · · · · · · · · ·
06 JAN 2005	9.3	678	90.0	8.5		4526.3
05 APR 2005	9.2	668	98.2	8.4		4529.5
* Values Exceed	Upper Control Lim	uit				MW115

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW116

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometri Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.4	777	129.7			
Date	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
03 JAN 2005	9.4	663	96.0	8.6		4506.1
05 APR 2005	9.4	662	96.6	8.5		4508.1
* Values Exceed	d Upper Control Li	mit				MW116

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

لمقلب	Water Quality Parameters	Chlori	de	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg	g/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Up	oper Control Limit	11.1		825	116.9	k,, zk, zk, z		
	Date	_!						<u> </u>
	14 MAR 2005	15.1	*	678	100.9	8.4		4544.6
	21 JUN 2005	11.6	*	678	97.2	8.7		4550.1
	* Values Exceed	Upper Con	trol L	imit				4MW-1

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 4MW-2 Well I.D.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date						
14 MAR 2005	9.4	667	96.2	8.4		4545.9
21 JUN 2005	8.4	666	100.5	8.6		4551.6
* Values Exceed	Upper Control Lim	it				4MW-2

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date						
14 MAR 2005	12.7 *	675	97.5	8.5		4544.8
21 JUN 2005	15.1 *	679	98.7	8.6		4550.1
* Values Exceed	Upper Control L	imit				4MW-3

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. 4MW-4

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date						
14 MAR 2005	9.0	676	103.1	8.3		4548.6
21 JUN 2005	8.6	677	105.7	8.5		4554.2
* Values Exceed	Upper Control Lim	uit				4MW-4

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Up	per Control Limit	11.1	825	116.9			
L	Date					······································	····
	14 MAR 2005	9.6	671	99.8	8.4		4546.0
	21 JUN 2005	9.0	672	99.6	8.6		4551.7
	* Values Exceed	Upper Control Lim	it				4MW-5

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4

CHRISTENSEN RANCH

ell I.D. 4MW-6

PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	ms1
Upper Control Limit	11.1	825	116.9	•••••••••••••••••••••••		
Date						
14 MAR 2005	8.9	670	100.7	8.5		4551.2
21 JUN 2005	8.4	668	101.5	8.6		4556.9
* Values Exceed	Unner Control Lim	it				4MW-6

Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality. Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date		· · ·	· · · · · · · · · · · · · · · · · · ·	······	**** *** *****************************	
14 MAR 2005	9.5	652	92.5	8.8		4547.9
21 JUN 2005	8.6	659	91.7	8.9		4553.5
* Values Exceed	Upper Control Lim	ut				4MW-7
	1					

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. 4MW-8

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date			· · · · · · · · · · · · · · · · · · ·			······································
14 MAR 2005	9.2	673	103.7	8.4		4551.7
21 JUN 2005	8.4	668	102.7	8.6		4556.9
* Values Exceed	Upper Control Lim	uit				4MW-8

蔶

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upp	per Control Limit	11.1	825	116.9			
	Date						
	14 MAR 2005	9.0	666	98.3	8.2		4549.3
	21 JUN 2005	8.4	667	99.0	8.5		4554.3
	* Values Exceed	Upper Control Lim	it				4MW-9

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. 4MW-10

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date						
14 MAR 2005	9.5	676	103.6	8.4		4552.4
21 JUN 2005	8.4	670	100.4	8.6		4558.1
* Values Excee	d Upper Control Lin	nit				4MW-10

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			·······
Date				···		······
14 MAR 2005	9.5	668	96.4	8.3		4551.6
21 JUN 2005	8.7	664	93.7	8.5		4556.5
* Values Exceed	Upper Control Lim	uit				4MW-11

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. 4MW-12

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9		,	
Date						
14 MAR 2005	9.1	661	95.3	8.6		4549.6
22 JUN 2005	8.3	663	91.8	8.8		4559.3
* Values Exceed	Upper Control Lim	nit				4MW-12

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

فعجله	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
	Upper Control Limit	11.1	825	116.9			
Ļ	Date	<u>. </u>		· · · · · · · · · · · · · · · · · · ·			
	14 MAR 2005	9.4	668	96.6	8.2		4552.9
	21 JUN 2005	8.9	670	97.3	8.4		4558.2
	* Values Exceed	Upper Control L	imit			•	4MW-13

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 ell I.D. 4MW-14

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date						
15 MAR 2005	10.0	667	100.0	8.5		4556.9
21 JUN 2005	8.4	667	106.0	8.5		4561.7
* Values Exceed	Upper Control Lim	it				4MW-14

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date						· · ·
15 MAR 2005	9.4	670	101.0	8.5		4553.6
21 JUN 2005	9.0	676	100.8	8.5	v	4558.3
* Values Excee	d Upper Control Lin	uit				4MW-15

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. 4MW-16

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date				·		· · · · · · · · · · · · · · · · · · ·
15 MAR 2005	10.2	671	103.5	8.6		4558.6
21 JUN 2005	8.4	668	107.2	8.5		4563.1
* Values Exceed	Upper Control Lim	it				4MW-16

Mine Unit 4

Well I.D. 4MW-18

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Ì	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upp	er Control Limit	11.1	825	116.9	* * * * * * * * * * * * * * * * *		······································
	Date			· · · · · · · · · · · · · · · · · · ·			
	15 MAR 2005	10.2	667	99.5	8.6		4555.6
	21 JUN 2005	8.7	671	98.5	8.5		4560.2
	* Values Excee	d Upper Control L	imit				4MW-17

Negative U3O8 Grades Indicate Less Than Detection Limit.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date					···· •	· · · · · · · · · · · · · · · · · · ·
15 MAR 2005	9.9	675	99.7	8.5		4558.1
21 JUN 2005	8.6	674	101.4	8.5		4563.7
* Values Excee	d Unner Control I	imit				4MW-18

Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomer Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date		 , , - , - , - , - , - , 				·····
15 MAR 2005	9.4	670	104.2	8.5		4555.5
21 JUN 2005	8.9	673	99.8	8.4		4560.3
* Values Exceed	Upper Control Lim	цit				4MW-19

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. 4MW-20

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date						
15 MAR 2005	10.0	675	99.7	8.4		4560.9
21 JUN 2005	8.1	675	104.3	8.5		4565.5
* Values Exceed	Upper Control Lin	uit				4MW-20

Mine Unit 4CHRISTENSEN RANCHWell I.D.4MW-21PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date						
15 MAR 2005	9.5	665	101.7	8.5		4555.6
21 JUN 2005	9.0	669	97.5	8.4		4561.1
* Values Exceed	Upper Control Lin	nit				4MW-21

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Vell I.D. 4MW-22

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9		· · · · · · · · · · · · · · · · · · ·	
Date						
15 MAR 2005	9.8	676	101.5	8.4		4562.0
21 JUN 2005	8.4	673	102.7	8.5		4565.9
* Values Exceed	Upper Control Lim	it				4MW-22

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date			· · · · · · · · · · · · · · · · · · ·			
15 MAR 2005	9.8	673	101.1	8.5		4558.0
21 JUN 2005	8.8	675	99.1	8.4		4562.8
* Values Exceed	Upper Control Lin	mit				4MW-23

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. 4MW-24

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	11.1	825	116.9			
Date						
15 MAR 2005	9.8	673	101.1	8.4		4561.3
21 JUN 2005	8.4	670	99.3	8.5		4565.4
* Values Exceed	Upper Control Lim	uit				4MW-24

Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

-	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
U	pper Control Limit	11.1	825	116.9			
t	Date	1					
	15 MAR 2005	7.3	677	93.1	8.1		4559.8
	21 JUN 2005	8.6	675	102.2	8.4		4564.3
	* Values Exceed	Upper Control Lim	it				4MW-25

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Well	I.D.	5MW1	

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date				······		
11 JAN 2005	8.0	787	95.3	8.2		4578.9
18 APR 2005	8.6	768	96.6	8.0		4584.9
* Values Exceed	Upper Control Lim	it				5MW1

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3	:		
Date		<u></u>				
11 JAN 2005	9.0	909	94.8	8.1		4576.3
18 APR 2005	9.1	883	98.5	8.0		4582.0
* Values Exceed	Upper Control Li	mit				5MW2
Negative U3O8 C	Grades Indicate Less Th	an Detection Limit.				

Mine Unit 5 Well I.D. 5MW3

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date					<u></u>	·
11 JAN 2005	7.7	764	93.4	8.1		4577.6
18 APR 2005	8.2	750	101.9	8.1		4584.8
* Values Exceed	Upper Control Lin	uit				5MW3

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

N. C.	Water Quality Parameters	Chloride	Specifi Conducta		Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mh	o/cm	mg/l as CaCO ₃		mg/l	msl
Upp	per Control Limit	22.7	1004	1	134.3			
	Date		····			········	<u> </u>	
	11 JAN 2005	8.9	1125	*	104.6	8.1		4577.1
	18 APR 2005	9.4	1093	*	113.4	8.0		4583.0
	* Values Exceed	Upper Control Lim	it					5MW4

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 ll I.D. 5MW5

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date					········	
11 JAN 2005	7.3	810	91.7	8.2		4575.1
18 APR 2005	7.5	791	96.1	8.0		4580.0
* Values Exceed	Upper Control Lim	iit				5MW5

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date				<u></u>		
11 JAN 2005	11.5	981	99.6	8.2		4576.7
18 APR 2005	12.4	972	107.8	8.0		4583.2
* Values Exceed	Upper Control Lim	nit				5MW6

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW7

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
11 JAN 2005	7.2	827	87.0	8.3		4572.4
18 APR 2005	7.8	821	95.5	8.1		4578.8
* Values Exceed	Upper Control Lim	it				5MW7

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃	5.	mg/l	msl
Upper Control Limit	23	1423	122.5			
Date			<u>, , , , , , , , , , , , , , , , , , , </u>			
11 JAN 2005	20.5	1074	191.7 *	8.0		4575.4
18 APR 2005	20.6	1054	179.1 *	8.1		4581.8
* Values Exceed	Upper Control Lim	it				5MW8

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW10

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date					· · · · · · · · · · · · · · · · · · ·	
11 JAN 2005	11.2	815	137.7 *	8.2		4575.0
27 APR 2005	12.1	807	143.7 *	8.2		4582.7
* Values Exceed	Upper Control Lim	it				5MW10

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/1 as CaCO ₃	· .	mg/l	msl
Upper Control Limit	22.8	1725	145.4		· · · · · · · · · · · · · · · · · · ·	
Date						
11 JAN 2005	8.7	944	129.0	8.0		4570.2
18 APR 2005	8.8	935	126.1	8.1		4577.0
* Values Exceed	Upper Control Lim	uit .				5MW12

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW14

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date		<u> </u>		······	· <u> </u>	
11 JAN 2005	9.0	688	113.1	8.4		4568.8
18 APR 2005	8.8	677	109.5	8.1	•	4576.1
* Values Exceed	Upper Control Lim	it				5MW14

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date				<u> </u>		
11 JAN 2005	7.9	758	98.1	8.3		4568.0
18 APR 2005	8.4	736	104.2	8.0		4574.9
* Values Exceed	Upper Control L	imit				5MW16

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW18

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date	, <u>, , , , , , , , , , , , , , , , , , </u>				<u></u>	
11 JAN 2005	7.4	853	90.9	8.2		4565.6
18 APR 2005	7.4	840	94.1	8.0		4573.1
* Values Exceed	Upper Control Lin	nit				5MW18

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃	۰.	mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
11 JAN 2005	7.1	868	89.1	8.3		4569.3
18 APR 2005	7.5	855	94.3	8.0		4566.8
* Values Exceed	Upper Control Lin	nit				5MW20

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW30A

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date			······································			·····
10 JAN 2005	8.2	664	99.6	8.6		4572.0
18 APR 2005	8.3	670	100.3	8.4		4577.4
* Values Exceed	Upper Control Lin	nit				5MW30A

Mine Unit 5 5MW31 Well I.D.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	, Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date			· · ·			
10 JAN 2005	8.3	653	100.2	8.5		4574.4
18 APR 2005	8.7	659	104.1	8.3		4577.8
* Values Ex	ceed Upper Control L	imit				5MW31

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

ell I.D. 5MW32A

Specific Total Piezometric Water Quality Chloride Uranium pН Conductance Alkalinity Elevation Parameters mg/l as CaCO₃ Units µ mho/cm mg/l mˈg/l msl Upper Control Limit 22.7 1004 134.3 Date 672 10 JAN 2005 7.9 102.3 8.6 4570.5 18 APR 2005 8.2 666 105.8 8.4 4575.8 5MW32A

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃	.*	mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date	······				<u> </u>	
10 JAN 2005	8.2	672	99.3	.8.4		4575.2
18 APR 2005	8.6	669	103.8	8.2		4579.3
* Values Excee	d Upper Control L	Jimit				5MW33

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW34

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3	<u> </u>		
Date			······			
10 JAN 2005	8.0	675	103.6	8.4		4570.2
18 APR 2005	8.3	670	106.8	8.3		4577.1
* Values Exceed	Upper Control Lim	it				5MW34

Mine Unit 5 5MW35A Well I.D.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

۔ محلب	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
-	Units	mg/l	μ mho/cm	mg/l as CaCO ₃	.*	mg/l	msl
	Upper Control Limit	22.7	1004	134.3			
L	Date						
	10 JAN 2005	8.2	668	99.4	8.6		4575.1
	18 APR 2005	8.7	669	103.2	8.2		4580.5
	* Values Exceed	Upper Control Lim	it				5MW35A

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5

ell I.D. 5MW36

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
10 JAN 2005	8.0	677	104.9	8.5		4571.1
18 APR 2005	8.4	673	110.6	8.4		4578.5
* Values Exceed	Upper Control Lim	it				5MW36

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃	. *	mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
10 JAN 2005	8.2	635	107.6	8.7		4577.0
18 APR 2005	8.9	634	113.4	8.5		4586.3
* Values Exceed	Upper Control Lir	mit		•		5MW37

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW38

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7.	1004	134.3			
Date	•		······································		· · · · · · · · · · · · · · · · · · ·	
10 JAN 2005	8.0	683	106.3	8.4		4572.6
18 APR 2005	. 8.2	681	109.4	8.2 .		4578.8
* Values Exceed	Upper Control Lim	uit				5MW38

* Values Exceed Upper Control Limit

Mine Unit 5 5MW39A Well I.D.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

L. M. C. L.	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃	. •	mg/l	msl
Uŗ	oper Control Limit	22.7	1004	134.3			
	Date						
	10 JAN 2005	7.9	710	104.0	8.5		4583.6
	18 APR 2005	8.3	700	109.5	8.2		4583.6
	* Values Exceed	Upper Control Lim	it				5MW39A

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 740

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

We	311 I.L).	SIM	W40

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
10 JAN 2005	8.7	670	107.0	8.5		4572.6
18 APR 2005	9.0	665	110.3	8.2		4579.5
* Values Exceed	Unner Control Lim	it				5MW40

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometra Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃	:	mg/l	msl
Upper Control Limit	22.7	1004	134.3			·····
Date		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
10 JAN 2005	8.2	675	109.7	8.4		4582.9
27 APR 2005	8.4	667	105.6	8.4		4586.2
* Values Exceed	Upper Control Lim	ut .				5MW41A

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW42

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3	<u> </u>		
Date						
10 JAN 2005	8.1	682	106.3	8.4		4574.7
18 APR 2005	8.5	678	110.7	8.3		4581.0
* Values Exceed	Upper Control Lim	it				5MW42

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
	Upper Control Limit	22.7	1004	134.3			
L	Date	_1				· · · · · · · · · · · · · · · · · · ·	
	10 JAN 2005	7.9	681	111.2	8.8		4582.8
	18 APR 2005	8.2	681	109. l	8.8		4583.3
	* Values Exceed	Upper Control Li	mit				5MW43
	Na antina U208 C	and an Indianta I and Th	on Detection Limit				

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 5MW44 ell I.D.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3		······································	
Date						
10 JAN 2005	8.4	670	102.8	8.5		4575.8
18 APR 2005	9.0	667	111.7	8.7		4580.7
* Values Exceed	l Upper Control Lim	ut				5MW44

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezome. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3	<u> </u>		
Date	,			·		······
10 JAN 2005	8.1	682	110.4	8.4		4581.9
18 APR 2005	8.1	680	112.2	. 8.1	,	4588.4
* Values Excee	d Upper Control L	_imit				5MW45

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW46

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
10 JAN 2005	8.4	683	111.0	8.4		4578.0
18 APR 2005	8.3	676	112.4	8.2		4579.2
* Values Exceed	Upper Control Lim	it				5MW46

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

-	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upp	per Control Limit	22.7	1004	134.3			
L	Date	,	······································	· · · · · · · · · · · · · · · · · · ·			
	10 JAN 2005	8.0	689	109.2	8.4		4588.2
	18 APR 2005	8.2	683	113.9	8.1		4592.1
	* Values Exceed	Upper Control Lim	it			• .	5MW47B

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW48

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity		pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as C	aCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3		Ann ann an 		
Date						· · · · · · · · · · · · · · · · · · ·	<u> </u>
10 JAN 2005	15.6	654	165.5	•	8.2		4579.4
18 APR 2005	17.9	665	155.7	*	8.1		4584.3
* Values Excee	d Upper Control Lim	uit					5MW48

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date			•			
10 JAN 2005	7.7	686	105.4	8.3		4587.3
18 APR 2005	8.1	684	112.4	8.0		4591.9
* Values Exceed	Upper Control Lin	nit				5MW49

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW50

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date	, ,					
10 JAN 2005	8.6	676	105.3	8.4		4577.9
18 APR 2005	8.8	672	111.1	8.0		4579.3
* Values Exceed	1 Upper Control Li	imit				5MW50

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

-	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
τ	Jpper Control Limit	22.7	1004	134.3			
	Date						
	10 JAN 2005	7.9	686	108.1	8.3		4593.7
	18 APR 2005	8.2	684	1113.0 *	8.0		4596,8
	* Values Exceed	Upper Control Lim	ut				5MW51

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW52

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3	<u></u>		
Date				··· _· _· ·· · · ·· ·		· · · · · · · · · · · · · · · · · · ·
10 JAN 2005	8.9	693	111.4	8.3		4579.2
18 APR 2005	9.0	690	116.7	8.0		4585.3
* Values Exceed	Upper Control Lim	it				5MW52

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	.pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3		······································	
Date				. •		
10 JAN 2005	8.4	690	108.6	8.3		4589.0
18 APR 2005	8.4	687	114.0	8.1		4593.4
* Values Exceed	Upper Control Li	mit				5MW53

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW54

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						<u>-</u> - <u></u>
11 JAN 2005	12.4	759	133.4	8.2		4580.0
18 APR 2005	13.3	757	148.7 *	8.0		4585.3
* Values Exceed	Upper Control Lin	uit				5MW54

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

بمخطلينه	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃	۰.	mg/l	msl
Ū	pper Control Limit	22.7	1004	134.3		1	
L	Date		······································	· · · · · · · · · · · · · · · · · · ·		······································	
	31 JAN 2005	10.0	691	112.7	8.3		4586.2
	18 APR 2005	8.4	687	110.3	8.1		4591.1
	* Values Exceed	Upper Control Lim	it				5MW55

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW56

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
11 JAN 2005	11.0	726	120.5	8.3		4578.6
18 APR 2005	10.9	719	122.0	8.1		4584.1
* Values Exceed	Upper Control Li	mit				5MW56

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
10 JAN 2005	8.6	693	111.2	8.3		4586.0
18 APR 2005	8.5	691	112.2	8.0		4590.3
* Values Exceed	Upper Control Lim	it				5MW57

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW58

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
11 JAN 2005	7.9	705	107.5	8.1		4579.1
18 APR 2005	8.7	691	111.6	8.2		4583.7
* Values Exceed	Upper Control Lim	uit .				5MW58

* Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3	- -		
Date						
10 JAN 2005	8.4	690	107.5	8.4		4582.5
18 APR 2005	8.8	688	113.0	8.0		4587.7
* Values Exceed	Upper Control Lin	mit				5MW59

Negative U3O8 Grades Indicate Less Than Detection Limit.

.

Mine Unit 5 Well I.D. 5MW60

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	у	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as (CaCO ₃		mg/l	msl
Upper Control Limit	23.7	779	191.3			······	
Date				·····			
11 JAN 2005	10.9	512	235.5	*	8.3		4577.8
18 APR 2005	11.3	518	2.40.0	*	8.3		4583.6
* Values Exceed	Upper Control Lim	it					5MW60

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometri- Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3			······································
Date			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
10 JAN 2005	8.2	693	107.5	8.2		4583.6
18 APR 2005	8.8	689	113.0	8.0		4588.7
* Values Exceed	Upper Control Lim	uit				5MW61

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW62

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as $CaCO_3$		mg/l	msl
Upper Control Limit	22.7	1004	134.3			
Date						
11 JAN 2005	9.2	702	127.0	8.3		4576.1
18 APR 2005	9.9	719	122.0	8.0		4583.3
* Values Exceed	Upper Control Lim	ut				5MW62

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

- سب	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
T	Upper Control Limit	22.7	1004	134.3	-		
L	Date						
	11 JAN 2005	8.8	683	106.9	8.3		4582.0
	18 APR 2005	10.0	673	113.1	8.0		4587.8
	* Values Exceed	Upper Control Lin	nit				5MW63

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Vell I.D. 5MW64

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Conductance Alkalinity pH		Chiofide -F		Conductance		Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl			
Upper Control Limit	22.7	1004	134.3						
Date									
11 JAN 2005	8.5	750	107.4	8.4		4576.7			
18 APR 2005	9.0	735	111.2	8.1		4583.6			
* Values Exceed	Upper Control Lin	nit				5MW64			

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometra Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	24.9	734	128.1			
Date						
11 JAN 2005	8.9	699	105.3	8.1		4581.6
18 APR 2005	9.8	686	111.0	8.1		4588.2
* Values Exceed	¹ Upper Control Li	mit				5MW65

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW66

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chlori		Specif Conducta		Total Alkalini		pН	Uranium	Piezometric Elevation
Units	m	g/1	μ ml	no/cm	mg/l as	CaCO ₃		mg/l	msl
Upper Control Limit	22.7		100	4	134.3				
Date								······	
11 JAN 2005	31.1	*	1175	*	227.0	*	8.0		4577.4
18 APR 2005	33.5	*	1209	•	243.5	*	7.7		4583.1
* Values Exceed	Upper Con	trol Lim	it						5MW66

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

ľ	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
U	Ipper Control Limit	22.7	1004	134.3			
L	Date					<u></u>	······
	11 JAN 2005	8.2	739	98.5	8.2		4576.3
	20 APR 2005	8.2	730	104.0	8.2		4587.8
	* Values Exceed	Upper Control Lim	it				5MW67

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5MW69

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Total Conductance Alkalinity pH		Uranium	Piezometric Elevation	
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.7	1004	134.3	<u> </u>	1997	
Date						
11 JAN 2005	8.1	779	96.4	8.4		4579.9
20 APR 2005	8.1	781	99.9	8.6		4586.4
* Values Exceed	Upper Control Lin	nit				5MW69

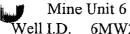
Mine Unit 6 Well I.D. 6MW17-2

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO.	3	mg/l	msl
Upper Control Limit	20	1576	95.2	· <u>·······</u> ······		
Date						
18 JAN 2005	5.0	1293	66.9	7.7	(4495.8
07 FEB 2005	6.8	1297	66.9	8.1		4503.4
21 MAR 2005	5.2	1303	72.7	7.8		4502.8
27 APR 2005	5.2	1274	68.2	7.8		4494.1
31 MAY 2005	4.7	1281	70.4	8.2		4494.4
* Values Exceed	l Upper Control Li	mit				6MW17-2

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW19


CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			· · · · · · · · · · · · · · · · · · ·
Date			· · · ·			
18 JAN 2005	5.0	1308	69.6	7.8		4539.3
07 FEB 2005	6.6	1310	69. l	8.2		4547.4
21 MAR 2005	5.1	1311	72.6	7.6		4544.8
27 APR 2005	5.2	1301	72.3	7.7		4540.9
23 MAY 2005	4.6	1310	72.5	8.1		4548.4
* Values Exceed	Upper Control Li	mit				6MW19

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2	<u></u>		
Date		<u> </u>			<u></u>	
18 JAN 2005	5.5	1286	70.9	7.8		4531.5
07 FEB 2005	6.8	1286	71.0	8.2		4543.1
21 MAR 2005	5.2	1283	74.0	7.7		4539.8
27 APR 2005	5.2	1263	78.0	7.7		4534.6
23 MAY 2005	4.7	1268	76.7	8.1		4547.9
* Values Exceed	Upper Control Lin	nit				6MW21

Negative U3O8 Grades Indicate Less Than Detection Limit.

Unit 6 6MW23 PER

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	hloride Specific Total Conductance Alkalinity pH		Uranium	Piezometric Elevation	
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date						
18 JAN 2005	5.5	1231	66.3	8.1		4537.8
07 FEB 2005	6.9	1250	69.5	8.1		4542.8
21 MAR 2005	5.3	1231	69.2	8.2		4540.8
27 APR 2005	5.6	1210	70.3	7.9		4541.2
23 MAY 2005	5.0	1230	70.9	8.3		4537.3
* Values Excee	d Upper Control Lin	nit				6MW23

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date						
20 JAN 2005	5.5	1261	69.6	8.2		4533.4
16 FEB 2005	5.4	1250	73.2	8.1		4542.0
23 MAR 2005	5.2	1259	73.2	8.0		4540.4
27 APR 2005	5.3	1252	73.6	7.8		4543.5
23 MAY 2005	5.0 .	1254	74.5	8.2		4532.1
* Values Exceed	Upper Control L	imit				6MW25

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW27

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalini		рН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as	CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2				
Date							
20 JAN 2005	6.8	1124	104.7	*	8.1		4525.4
16 FEB 2005	7.2	1139	113.5	*	7.9		4536.8
23 MAR 2005	6.7	1145	110.4	*	8.0		4534.6
27 APR 2005	. 6.4	1148	101.5	*	7.7		4534.2
23 MAY 2005	5.9	1168	95.4	*	8.2		4534.4
* Values Exceed	Upper Control Lim	uit					6MW27

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Up	oper Control Limit	20	1576	95.2			
L	Date						
	27 JAN 2005	8.4	1239	66.0	8.7		4523.2
	16 FEB 2005	5.7	1206	65.9	8.4		4530.1
	23 MAR 2005	5.6	1215	74.0	8.6		4526.4
	27 APR 2005	6.0	1199	71.4	8.8		4518.1
	31 MAY 2005	5.1	1202	73.2	8.5		4540.7
	* Values Exceed	Upper Control Lin	nit				6MW29

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW31

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity mg/l as CaCO ₃		рН	Uranium mg/l	Piezometric Elevation msl
Units	mg/l	μ mho/cm					
Upper Control Limit	20	1576	95.2	9			
Date							· · · · · · · · · · · · · · · · · · ·
17 JAN 2005	9.5	1346	95.3	*	8.1		4511.4
23 MAR 2005	11.2	1395	111.6	*	7.7		4514.5
27 APR 2005	9.9	1318	95.5	*	7.6		4514.5
23 MAY 2005	5.9	1293	94.6		8.1		4511.1
* Values Exceed	Upper Control Lim	it					6MW31

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet-
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date	I					
20 JAN 2005	5.5	1281	69.1	8.0		4489.1
07 FEB 2005	6.8	1279	66.9	8.1		4505.2
22 MAR 2005	5.1	1280	72.7	7.9		4507.8
27 APR 2005	5.2	1276	74.6	7.9		4505,6
23 MAY 2005	4.7	1270	74.8	8.1		4545.2
* Values Excee	d Upper Control L	imit				6MW33
						2

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW34

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2		<u> </u>	
Date		<u></u>	······			······································
18 JAN 2005	4.8	1346	64.0	7.8		4542.7
07 FEB 2005	6.4	1348	62.4	8.2		4550.6
21 MAR 2005	4.8	1340	66.6	7.6		4550.8
27 APR 2005	4.9	1325	68.5	7.8		4545.8
31 MAY 2005	4.6	1327	69.1	8.0		4547.8
* Values Exceed	Upper Control Lim	uit				6MW34

Values Exceed Upper Control Limit

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			· · · · · · · · · · · · · · · · · · ·
Date		<u> </u>	·····			
20 JAN 2005	5.4	1280	70.8	7.9		4496.6
07 FEB 2005	6.7	1278	68.5	8.2		4502.5
22 MAR 2005	5.1	1277	74.4	7.7		4499.1
27 APR 2005	5.1	1277	76.1	7.9		4507.2
23 MAY 2005	5.0	1271	79.5	8.0		4547.7
* Values Exceed	Upper Control Li	mit				6MW35

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 ell I.D. 6MW36

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2		<u></u>	
Date		<u> </u>	·····	······································	······	
20 JAN 2005	6.2	1217	69.6	8.0		4538.4
16 FEB 2005	6.0	1211	73.1	7.6		4547.8
22 MAR 2005	6.1	1213	74.6	7.9		4547.2
27 APR 2005	6.0	1196	74.5	7.8		4546.7
23 MAY 2005	5.7	1210	74.6	8.0		4538.3
* Values Exceed	Upper Control Lin	uit				6MW36

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometri-
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date	- I					
17 JAN 2005	5.8	1234	66.4	8.3		4496.7
07 FEB 2005	7.7	1236	63.3	8.1		4506.0
22 MAR 2005	5.7	1235	68.6	8.1		4507.2
27 APR 2005	5.7	1236	69.6	7.8		4508.3
23 MAY 2005	5.5	1230	72.1	8.2		4548.1
* Values Excee	ed Upper Control L	imit				6MW37

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW38

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date				······································	· · · · · · · · · · · · · · · · · · ·	<u></u>
20 JAN 2005	5.3	1327	67.1	8.0		4536.3
16 FEB 2005	4.9	1326	72.1	7.8		4543.7
21 MAR 2005	4.9	1323	72.2	7.9		4541.3
27 APR 2005	5.2	1304	66.2	7.8		4543.6
31 MAY 2005	4.7	1317	73.9	8.0		4542.4
* Values Exceed	Upper Control Lim	it				6MW38

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometrie Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date			· · · · · · · · · · · · · · · · · · ·		·· · · · · · · · · · · · · · · · · · ·	
17 JAN 2005	5.5	1248	62.4	8.3		4507.4
07 FEB 2005	7.3	1250	59.8	8.0		4516.9
21 MAR 2005	5.2	1252	66.4	7.9		4518.7
27 APR 2005	5.6	1249	64.2	8.3		4511.8
23 MAY 2005	4.8	1246	65.7	8.2	· .	4546.6
* Values Exceed	Upper Control Li	mit				6MW39

Negative U3O8 Grades Indicate Less Than Detection Limit.

Well I.D. 6MW40

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2		<u></u>	
Date					17 AF 27 2	
20 JAN 2005	5.3	1333	63.7	8.1		4531.9
16 FEB 2005	5.2	1323	68.7	7.7		4538.5
21 MAR 2005	5.1	1332	66.8	7.8		4537.7
27 APR 2005	5.0	1324	65.6	7.9		4541.8
23 MAY 2005	4.6	1333	68.4	8.1		4555.8
* Values Exceed	Upper Control Lim	it				6MW40

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomen Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			•
Date					· · · · · · · · · · · · · · · · · · ·	
20 JAN 2005	5.8	1276	76.5	8.0		4508.5
07 FEB 2005	6.8	1271	71.0	8.1		4515.9
21 MAR 2005	5.7	1277	80.0	7.7		4521.2
27 APR 2005	5.8	1260	80.8	7.9		4505.5
23 MAY 2005	5.2	1268	79.3	8.1		4547.9
* Values Exceed	Upper Control Li	mit				6MW41

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW42

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			······
Date						
20 JAN 2005	5.3	1331	64.3	8.0		4528.3
22 FBB 2005	5.2	1319	70.4	8.0		4537,3
22 MAR 2005	5.1	1333	68.3	7.8		4538.4
27 APR 2005	5.0	1330	66.4	7.9		4541.8
23 MAY 2005	4.7	1347	68.9	8.0		4559.4
* Values Exceed	Upper Control Lim	it		•		6MW42

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

الم	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Uppe	er Control Limit	20	1576	95.2	<u></u>		
L	Date	1				······································	
	20 JAN 2005	5.5	1281	70.8	8.0		4508.1
	07 FEB 2005	6.5	1278	68.6	8.2		4512.0
	22 MAR 2005	5.2	1274	74.3	7,8		4511.6
	27 APR 2005	5.1	1271	73.0	8.0		4501.6
	31 MAY 2005	5.0	1285	79.2	8.2		4547.2
	* Values Exceed	Upper Control Lim	it				6MW43

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 6MW44 ell I.D.

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductanc
Units	mg/l	μ mho/

Parameters	Chionde	Conductance	Alkalinity	pH	Uranium	Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date	<u> </u>					
18 JAN 2005	5.1	1317	62.5	8.2		4521.3
07 FEB 2005	6.8	1336	62.6	8.2		4525.9
22 MAR 2005	5.3	1307	66.8	7.8		4530.6
27 APR 2005	5.6	1267	58.9	7.8		4533.5
31 MAY 2005	4.7	1334	72.5	8.2		4541.5
* Values Exceed	Upper Control Lim	uit				6MW44

Total

Piezometric

Uranium

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date			······································		·	
17 JAN 2005	5.5	1278	69.4	8.0		4509.9
16 FEB 2005	5.1	1275	74.1	7.5		4525.3
22 MAR 2005	5.1	1280	72.5	7.6		4521.6
27 APR 2005	5.4	1263	69.9	7.8		4499.5
23 MAY 2005	5.0	1275	74.1	7.9		4546.4
* Values Exceed	Upper Control Lim	uit				6MW45

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW46

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20.6	2427	89.2	· ·		
Date		······································			· · · · · · · · · · · · · · · · · · ·	
. 18 JAN 2005	6.1	1380	74.5	7.9		4515.3
09 FEB 2005	7.7	1363	74.6	7.5		4525.5
22 MAR 2005	6.3	1367	79.0	7.7		4525.2
27 APR 2005	6.4	1341	75.6	7.6		4533.5
31 MAY 2005	5.6	1322	70.7	8.2		4550.4
* Values Exceed	H Upper Control Lin	uit				6MW46

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			· · · · · · · · · · · · · · · · · · ·
Date	/		· · · · · · · · · · · · · · · · · · ·	<u> </u>		· · · · · · · · · · · · · · · · · · ·
17 JAN 2005	5.8	1254	72.4	8.1	•	4508.3
16 FEB 2005	5.3	1269	74.7	7.7		4531.0
22 MAR 2005	5.4	1279	76.7	7.8		4523.9
27 APR 2005	5.4	1265	71.7	8.1		4499.5
31 MAY 2005	4.8	1265	73.1	8.0		4545.9
* Values Exce	eed Upper Control L	imit				6MW47

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW48-3

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2	······		
Date		·····			· · · · · · · · · · · · · · · · · · ·	
20 JAN 2005	5.5	1321	64.3	8.0		4512.3
15 FEB 2005	5.2	1319	68.4	7.9		4525.5
22 MAR 2005	5.3	1329	68.7	7.7		4520.3
27 APR 2005	5.7	1305	68.2	7.8		4534.2
31 MAY 2005	5.0	1310	68.7	8.0		4548.4
* Values Exceed	Upper Control Lim	it				6MW48-3

Negative U3O8 Grades Indicate Less Than Detection Limit.

116

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezome Elevation
mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
20	1576	95.2	<u> </u>		
5.6	1275	69.4	7.9		4507.8
6.7	1279	71.5	7.8		4531.1
5.7	1276	76.1	7.5		4521.0
5.3	1269	70.7	7.8		4497.6
5.1	1272	74.8	7.8	,	4546.5
Upper Control L	imit				6MW49
	mg/l 20	Conductance mg/l μ mho/cm 20 1576 5.6 1275 6.7 1279 5.7 1276 5.3 1269	$\begin{tabular}{ c c c c c c } \hline Conductance & Alkalinity \\ \hline mg/l & μ mho/cm & mg/l as CaCO_3 \\ \hline 20 & 1576 & 95.2 \\ \hline $5.6 & $1275 & 69.4 \\ 6.7 & $1279 & $71.5 \\ 5.7 & $1276 & $76.1 \\ 5.3 & $1269 & $70.7 \\ 5.1 & $1272 & $74.8 \\ \hline \end{tabular}$	Conductance Alkalinity pH mg/l μ mho/cm mg/l as CaCO ₃ 20 20 1576 95.2 5.6 1275 69.4 7.9 6.7 1279 71.5 7.8 5.7 1276 76.1 7.5 5.3 1269 70.7 7.8 5.1 1272 74.8 7.8	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW50

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date	·				·····	
17 JAN 2005	5.5	1315	65.3	8. i		4504.1
09 FEB 2005	6.4	1321	68.3	7.7		4514.5
22 MAR 2005	5.3	1317	70.5	7.7		4514.0
27 APR 2005	5.3	1316	70.5	8.0		4526.8
31 MAY 2005	4.7	1319	68.3	8.0		4536.8
* Values Exceed	Upper Control Lin	nit				6MW50

oppor connor blint

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2		···· ····	
Date					······································	
. 17 JAN 2005	5.6	1274	69.2	8.1		4510.1
09 FEB 2005	6.7	1276	71.9	7.8		4528.3
22 MAR 2005	5.4	1280	73.2	7.8		4521.1
27 APR 2005	5.7	1268	73.0	7.9		4505.4
31 MAY 2005	5.1	1272	75.1	8.0		4545.2
* Values Exceed	Upper Control Lin	nit				6MW51

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW52

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

	Quality meters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Contr	ol Limit	20	1576	95.2			
L	Date						<u>.</u>
	17 JAN 2005	5.9	1233	71.0	8.1		4511.5
	09 FEB 2005	7.1	1237	75.5	7.6		4520.8
	22 MAR 2005	5.7	1234	74.8	7.9		4520.8
	27 APR 2005	5.8	1229	74.0	8.1		4529.3
	31 MAY 2005	5.3	1233	74.8	8.1		4537.0
	* Values Exceed	Upper Control Lim	it				6MW52

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			· · · ·
Date						
20 JAN 2005	6.1	1201	67.2	8.5		4517.8
09 FEB 2005	7.1	1199	71.7	7.8		4531.3
22 MAR 2005	6.2	1201	76.3	8.1		4528.7
27 APR 2005	6.0	1193	70.0	8.5		4521.6
31 MAY 2005	5.6	1196	71.3	8.3		4539.8
* Values Exceed	1 Upper Control Li	imit				6MW53

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6MW54

CHRISTENSEN RANCH PERIMETER ORE ZONE MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	20	1576	95.2			
Date	· · · · · · · · · · · · · · · · · · ·	,			<u> </u>	··· <u>····</u> ·····························
20 JAN 2005	5.8	1254	68.3	8.1		4513.2
09 FEB 2005	7.0	1249	71.6	7.9		4522.7
22 MAR 2005	5.7	1243	71.4	8:0		4521.4
27 APR 2005	5.7	1246	69.0	8.0		4528.2
31 MAY 2005	5.5	1246	74.6	8.3		4540.4
* Values Exceed	d Upper Control Lim	it				6MW54

CHRISTENSEN PROJECT

Interior Shallow Sand Monitor Wells

Mine Unit 5 Well I.D. MW-11S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Jpper Control Limit	22.1	2922	316.6			
Date		<u></u>				
11 JAN 2005	6.5	1286	94.6	8.0	• .	4638.1
25 APR 2005	7.2	1310	102.7	7.7		4637.8
* Values Exceed	Upper Control L	imit			•	MW-11S
Negative U3O8 C	Frades Indicate Less T	han Detection Limit.				
· .						
			and the second		-	
· .		•				
			,			
			• •			
						•
			· •			

Mine Unit 3 Vell I.D. MW46S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.5	1087	184.4			
Date						·····
03 JAN 2005	10.2	1536 *	128.7	8.0		4550.5
05 APR 2005	10.6	1440 *	144.7	7.5		4551.0

MW46S

* Values Exceed Upper Control Limit

Mine Unit 3 Well I.D. MW48S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specifi Conducta		Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mh	o/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.2	1775	5	268.3			
Date							
03 JAN 2005	9.3	1811	•	125.5	7.9		4552.7
28 APR 2005	9.6	1850	*	122.4	7.4		4553.1
* Values Exceed	Upper Control Lim	it					MW48S

Negative U3O8 Grades Indicate Less Than Detection Limit.

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Mine Unit 3 MW50S Well I.D.

Piezometric Total Specific Water Quality Chloride Uranium pН Elevation Alkalinity Conductance Parameters msl mg/l as CaCO₂ mg/l Units mg/l µ mho/cm 268.3 Upper Control Limit 1775 22.2 Date 4554.6 1338 150.2 8.0 03 JAN 2005 8.7 4553.9 151.6 7.6 11 APR 2005 8.9 1305 MW50S

* Values Exceed Upper Control Limit

Mine Unit 3 Well I.D. MW52S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

- W	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
U	oper Control Limit	22.2	1775	268.3		<u> </u>	
L	Date	<u>.</u>			<u> </u>	<u> </u>	
	03 JAN 2005	7.4	1405	96.7	8.1		4547.0
	05 APR 2005	7.5	1378	96.3	7.7		4547.5
	* Values Exceed	Upper Control L	imit				MW52S
		1 T 11-14 T T					

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW54S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.2	1775	268.3		-	
Date		- <u></u>		······································		
04 JAN 2005	7.3	1481	116.3	8.0		4557.8
11 APR 2005	7.5	1479	121.0	7.6		4558.1
* Values Exceed	Upper Control Lim	it				MW54S

Mine Unit 3

MW56S

Well I.D.

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezomet. Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/1	msl
Upper Control Limit	13.5	1087	184.4			
Date			· · ·		· · · · · · · · · · · · · · · · · · ·	
04 JAN 2005	6.0	931	131.6	8.4		4555.9
11 APR 2005	6.5	943	140.2	8.0		4555.4
* Values Exceed	Upper Control Lim	uit				MW56S

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW58S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.5	1087	184.4			
Date		······································				
04 JAN 2005	6.9	952	103.1	8.6		4565.1
11 APR 2005	7.2	. 944	110.8	8.0		4566.3
* Values Exceed	Upper Control Lim	uit				MW58S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL Well I.D. MW66S-2

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Up	per Control Limit	22.2	1775	268.3	· · · · · · · · · · · · · · · · · · ·	······································	····
L	Date				<u> </u>		
	04 JAN 2005	6.9	1456	109.5	8.1		4571.0
	11 APR 2005	7.2	1477	115.5	7.6		4571.3
	* Values Exceed	Upper Control Lin	nit				MW66S-2

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 ell I.D. MW68S

Mine Unit 3

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	23.5	3560	304			
Date						
07 MAR 2005	16.9	2324	227.3	7.4		4574.1
21 JUN 2005	15.7	2351	215.3	7.4		4575.2
* Values Exceed	Upper Control Lin	nit				MW68S

Mine Unit 2 Well I.D. MW70S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	63.4	21365	5861.3			
Date						
07 MAR 2005	10.9	-1802	22.1	8.3		4559.0
21 JUN 2005	11.4	1691	25.9	7.9		4560.0
* Values Excee	d Upper Control L	imit				MW70S
Negative U3O8	Grades Indicate Less T	han Detection Limit.				

Mine Unit 2

Well I.D. MW72S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometr Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	63.4	21365	5861.3			
Date						
07 MAR 2005	12.0	2148	150.5	7.8		4564.9
21 JUN 2005	11.9	2123	154.1	7.6		4565.8
* Values Exceed	Upper Control Lir	nit				MW72S

Values Exceed Upper Control Limit

Mine Unit 2 Well I.D. MW92S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
-	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
-	Upper Control Limit	23.5	3560	304			
Ļ	Date	<u> </u>		- <u> </u>		·····	2
	08 MAR 2005	11.7	2296	144.5	7.4	•	4571.1
	21 JUN 2005	11.7	2308	139.4	7.3		4572.2
	* Values Exceed	Upper Control Lim	it				MW92S

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 /ell I.D. MW94S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	23.5	3560	304	· · · · · · · · · · · · · · · · · · ·		
Date						· · · · · · · · · · · · · · · · · · ·
08 MAR 2005	14.0	2517	183.4	7.3		4550.7
21 JUN 2005	14.0	2556	187.0	7.3		4552.2
* Values Exceed	Upper Control Lim	uit				MW94S

Mine Unit 2 Well I.D. MW96S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	23.5	3560	304			
Date						
08 MAR 2005	11.5	2586	227.5	7.4		4567.2
21 JUN 2005	11.4	2598	223.5	7.3		4568.8
* Values Exceed	Upper Control Lim	it				MW96S

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW98S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	63.4	21365	5861.3	·		
Date						
08 MAR 2005	13.0	2513	163.6	7.4		4557.5
21 JUN 2005	13.1	2570	162.4	7.4		4558.8
* Values Excee	d Upper Control L	imit				MW98S

Mine Unit 2 Well I.D. MW100S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

-	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Up	per Control Limit	23.5	3560	304	······································	· · ·	· · · · ·
	Date						
	08 MAR 2005	12.5	2399	150.5	7.5		4555.0
	21 JUN 2005	12.9	2525	168.4	7.4		4556.2
	* Values Exceed	Upper Control Lim	it				MW100S

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW112S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	63.4	21365	5861.3			······
Date					<u> </u>	
08 MAR 2005	13.8	3200	530.8	11.4		4552.9
21 JUN 2005	13.7	3290	541.2	11.2		4553.7
* Values Exceed	Upper Control Lim	it	*			MW112S

Mine Unit 2 Well I.D. MW117S

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomer Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		· mg/l	msl
Upper Control Limit	13.6	768	144.5			
Date						
08 MAR 2005	7.9	733	131.0	8.0		4530.9
21 JUN 2005	8.0	734	137.1	8.2		4532.8
* Values Exceed	Upper Control Lim	it			1	MW117S
Negative U3O8 (Grades Indicate Less Than	Detection Limit.				

Mine Unit 4 Well I.D. 4SM-1

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	8.8	1570	142.7			
Date	· · · · · · · · · · · · · · · · · · ·					<u> </u>
15 MAR 2005	6.7	1192	93.9	7.9		4607.3
21 JUN 2005	6.7	1252	92.4	8.1		4608.7
* Values Exceed	Upper Control Lim	it				4SM-1

Mine Unit 4 Well I.D. 4SM-4

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
τ	Ipper Control Limit	8.8	1570	142.7			· · · · ·
L	Date	······································	<u></u>	······································			
	15 MAR 2005	6.6	1069	104.3	7.6		4594.3
	21 JUN 2005	6.2	1059	101.4	7.9		4595.9
	* Values Exceed	Upper Control Lim	it				4SM-4

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Vell I.D. 4SM-8

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	8.8	1570	142.7	<u></u>		·····
Date			- · ·			
15 MAR 2005	6.7	855	125.7	7.8		4590.5
21 JUN 2005	6.1	830	116.3	8.0		4592.2
* Values Exceed	Upper Control Lim	it				4SM-8

Mine Unit 4 Well I.D. 4SRM-07

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	19.4	1175	447.1			
Date	· · ·					
15 MAR 2005	9.2	507	258.2	7.9		4578.2
21 JUN 2005	8.6	510	253.7	8.1		4579.5
* Values Exceed	d Upper Control L	imit				4SRM-07

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5SM1

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.1	2922	316.6			
Date					· · ·	
11 JAN 2005	7.5	1218	90.3	7.9		4627.1
25 APR 2005	8.0	1199	91.5	7.9		4628.0
* Values Exceed	Upper Control Lim	it				5SM1

values Exceed Upper Control Limit

Mine Unit 5 Well I.D. 5SM2

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Y	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Ū	Jpper Control Limit	22.1	2922	316.6			
L	Date	<u>_</u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
	11 JAN 2005	6.9	1183	97.5	8.0		4672.1
	25 APR 2005	7.1	1173	103.6	7.7		4673.8
	* Values Exceed	Upper Control L	imit				5SM2
	Negative U3O8	Grades Indicate Less T	han Detection Limit.		*		

Mine Unit 5

5SM3

ell I.D.

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.1	2922	316.6			
Date				· · · · · · · · · · · · · · · · · · ·		
11 JAN 2005	6.9	1413	82.4	8.3		4671.8
27 APR 2005	7.2	1390	87.0	8.5		4672.9
* Values Exceed	Upper Control Lim	it				5SM3

Values Exceed Upper Control Limit

Mine Unit 5 Well I.D. 5SM5

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezomen Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.1	2922	316.6	-		
Date		i		······	<u>,</u>	, <u> </u>
11 JAN 2005	6.0	1309	99.7	7.8		4678.0
25 APR 2005	6.5	1309	108.8	7.5		4682.9
* Values Exceed	Upper Control Lim	it				5SM5

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5SM6

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.1	2922	316.6			· · · · · · · · · · · · · · · · · · ·
Date			······			
11 JAN 2005	9.1	611	171.0	8.4		4667.2
27 APR 2005	9.7	607	168.2	8.6		4667.8
* Values Exceed	Upper Control Lim	nit				5SM6

Mine Unit 5 Well I.D. 5SM7

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

W-V	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upp	er Control Limit	22.1	2922	316.6			
L	Date		<u>,</u>	······································	·····		<u></u>
	11 JAN 2005	15.3	1093	248.9	8.1		4660.7
• •	27 APR 2005	16.2	1155	233.3	7.8		4662.2
	* Values Exceed	Upper Control Lin	nit				5SM7

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. WCOW-04

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.1	2922	316.6			
Date			· · · · · · · · · · · · · · · · · · ·			
11 JAN 2005	6.8	1533	103.0	8.0		4638.1
25 APR 2005	6.8	1323	108.1	7.9		4636.0
* Values Exceed	Upper Control Lin	nit				WCOW-04

Negative U3O8 Grades Indicate Less Than Detection Limit.

ł

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22	1966	289.1			
Date				·········	·····	
17 JAN 2005	6.8	1051	104.6	8.4		4701.8
15 FEB 2005	6.8	1068	112.8	8.3		4701.4
22 MAR 2005	6.8	1070	111.9	8.2	•	4700.9
27 APR 2005	6.6	1040	115.9	8.4		4701.5
23 MAY 2005	6.9	1116	114.2	8.2		4722.3
* Values Exceed	Upper Control Lim	it				6SM1

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6SM2

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	24.2	3574	238.2			
Date						·····
17 JAN 2005	8.0	1925	78.8	7,8		4705.0
09 FEB 2005	9.6	1931	83.2	7.1		4705.2
22 MAR 2005	8.0	1945	84.4	7.6		4705.4
27 APR 2005	8.0	1909	85.8	7.4		4706.6
31 MAY 2005	7.5	1935	85.2	7.8		4704.9
* Values Exceed	Upper Control Lin	uit				6SM2

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

لل	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upp	per Control Limit	24.2	3574	238.2			
	Date		9 9 1 - 1 ^{19 9}				
	17 JAN 2005	8.4	2040	63.7	7.7		4715.5
	09 FEB 2005	9.5	2058	65.3	7.1		4716.5
	22 MAR 2005	8.3	2097	67.7	7.4		4716.6
	27 APR 2005	8.5	2054	69.1	7.4		4717.6
	31 MAY 2005	8.0	2074	66.5	7.6		4716.6
	* Values Exceed	Upper Control Lim	it				6SM3

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 ll I.D. 6SM4

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	24.2	3574	238.2			
Date				·····		
17 JAN 2005	6.8	1692	65.8	8.0		4715.8
16 FEB 2005	7.1	1611	42.4	7.6		4716.8
22 MAR 2005	6.7	1714	63.6	7.7		4717.2
27 APR 2005	7.0	1700	54.5	7.7		4717.2
31 MAY 2005	6.1	1449	50.0	7.4		4716.8
* Values Exceed	Upper Control Lim	it				6SM4

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22	1966	289.1			······································
Date			······································			
17 JAN 2005	7.7	1613	89.7	8.0		4706.8
09 FEB 2005	9.3	1619	92.6	7.2		4706.8
22 MAR 2005	7.9	1623	94.7	7.8		4706.7
27 APR 2005	8.3	1571	93.5	7.4		4706.4
31 MAY 2005	6.8	1506	87.1	7.8		4706.4
* Values Exceed	d Upper Control L	imit				6SM5

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6SM6

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22	1966	289.1			
Date						
17 JAN 2005	11.6	499	245.1	8.3		4688.2
09 FEB 2005	13.1	499	255.1	7.5		4689.8
22 MAR 2005	11.7	499	251.4	8.1		4690.0
27 APR 2005	11.9	493	251.2	8.0		4690.3
31 MAY 2005	10.8	494	247.8	8.2		4689.4
* Values Exceed	Upper Control Lim	it				6SM6

Values Exceed Upper Control Limit

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometri Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	25,6	889	330	**************************************		
Date		· · · · · · · · · · · · · · · · · · ·	······································	·····		· · · <u>-</u> · · · · · · · · · · · · · · · · · · ·
17 JAN 2005	11.2	491	236.8	8.4		4689.1
16 FEB 2005	12.0	495	256.1	8.2		4707.4
22 MAR 2005	11.4	494	251.8	8.2		4690.4
27 APR 2005	11.6	489	248.8	8.3		4690.1
31 MAY 2005	10.6	483	243.9	7.9		4689.1
* Values Exceed	Upper Control Li	imit	·.			6SM7
Negative U3O8 G	rades Indicate Less Th	an Detection Limit.	94 - 194 1			
			×			
			• *			
			· · · ·			
: · · · ·						

Mine Unit 6 ell I.D. 6SM8

6SM8

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	24.2	3574	238.2			
Date						
17 JAN 2005	10.0	2187	51.5	7.8		4729.3
09 FEB 2005	11.6	2217	52.1	7.5		4731.5
22 MAR 2005	10.5	2214	55.5	7.1		4732.4
27 APR 2005	10.3	2179	53.7	7.0		4730.2
31 MAY 2005	9.5	2195	52.9	7.4		4730.1
* Values Exceed	Upper Control Lin	nit				6SM8

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezomet.
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	24.2	3574	238.2	· · · · · ·		
Date				· · · · · · · · · · · · · · · · · · ·		
17 JAN 2005	9.0	2043	19.1	8.I		4729.9
15 FEB 2005	7.9	2010	23.8	7.3		4731.1
22 MAR 2005	9.4	2062	20.4	7.9		4731.1
27 APR 2005	9.4	2026	16.8	8.0		4730.5
31 MAY 2005	9.0	1815	27.5	7.4		4731.0
* Values Exceed	Upper Control Lin	nit				6SM9

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6SM10

ſ

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	25.6	889	330			
Date						
17 JAN 2005	10.7	750	237.7	8.1		4678.0
15 FEB 2005	10.4	745	243.5	8.2		4678.4
23 MAR 2005	10.7	741	244.6	8.2		4679.7
27 APR 2005	10.9	754	244.8	8.2		4679.4
31 MAY 2005	9.8	752	250.8	8.0		4678.3
* Values Exceed	Upper Control Lin	nit				6SM10

Values Exceed Upper Control Limit

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water (Param		Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometrie Elevation
τ	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control	l Limit	24.2	3574	238.2			
I	Date				<u>-</u>		
20	JAN 2005	13.6	2571	81.0	8.3		4729.0
16	FEB 2005	13.2	2560	79.4	7.7		4730.1
22	MAR 2005	13.2	2602	80.2	7.7	· ·	4730.2
27	APR 2005	13.4	2531	71.9	8.0		4730.0
31	MAY 2005	12.1	2551	71.1	7.8		4730.0
*	Values Exceed	Upper Control Lim	it				6SM11

Negative U3O8 Grades Indicate Less Than Detection Limit.

. .

Mine Unit 6 Well I.D. 6SM12

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	24.2	3574	238.2	8.5		
Date		10.0000 augusta a anna				
17 JAN 2005	12.4	2690	98.8	7.8		4727.2
15 FEB 2005	12.0	2699	101.5	7.5		4730.0
22 MAR 2005	12.4	2714	102.9	7.4		4729.5
27 APR 2005	12.5	2654	102.3	7.4		4729.7
31 MAY 2005	11.3	2638	100.3	7.5		4729.7
* Values Exceed	Upper Control Lim	it				6SM12

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezome. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	24.2	3574	238.2			
Date						
17 JAN 2005	12.1	2230	70.5	7.8		4729.0
15 FEB 2005	12.0	2240	74.6	7.5		4729.8
22 MAR 2005	12.3	2247	75.0	7.3		4730.4
27 APR 2005	12.3	2232	72.1	7.7		4730.7
31 MAY 2005	11.5	2250	75.7 .	7.6		4730.3
* Values Exceed	Upper Control Lim	ıit				6SM13

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6SM14

CHRISTENSEN RANCH INTERIOR SHALLOW SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22	1966	289.1			· · · · · · · · · · · · · · · · · · ·
Date		·····		······		
17 JAN 2005	7.7	1154	125.6	8.1		4700.5
15 FEB 2005	7.8	1145	131.0	8.2		4704.2
23 MAR 2005	7.7	1147	132.4	8.4		4701.5
27 APR 2005	7.9	1145	130.0	7.9		4703.0
31 MAY 2005	7.0	1147	131.4	7.8		4703.1
* Values Exceed	Upper Control Lim	it				6SM14

CHRISTENSEN RANCH PROJECT

Interior Deep Sand Monitor Wells

Mine Unit 5 Well I.D. MW-12D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

م	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
τ	Upper Control Limit	22.8	1017	420.9			
· .	Date		<u> </u>				
	11 JAN 2005	10.3	592	156.9	B .3		4591.5
	25 APR 2005	10.2	587	158.5	8.2		4592.8
	* Values Exceed	Upper Control I	imit				MW-12D
	N C MOOD C		The Distantion Finish				

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW45D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.7	753	153.3	·······		······································
Date			· · · · · · · · · · · · · · · · · · ·			
03 JAN 2005	9.2	603	122.6	8.6		4527.9
05 APR 2005	9.8	586	137.6	8.2		4529.6
* Values Exceed	Upper Control Lim	it				MW45D

Mine Unit 3 Well I.D. MW47D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometr. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.7	753	153.5			·····
Date		<u></u>		· · ·		
03 JAN 2005	8.9	582	133.5	8.7		4529.8
28 APR 2005	9.3	578	140.0	8.6		4531.6
* Values Exceed	Upper Control Lin	nit				MW47D

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW49D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometrie Elevation
Units	mg/l	μ mho/cm	mg/l as CaCC) ₃	mg/l	msl
Upper Control Limit	13.7	753	153.3			
Date	<u> </u>					
03 JAN 2005	8.7	551	149.5	8.7		4531.8
11 APR 2005	9.4	560	159.6 *	8.4		4533.3
* Values Exceed	Upper Control Lim	it				MW49D

* Values Exceed Upper Control Limit

Mine Unit 3 Well I.D. MW51D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

لب	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
	Upper Control Limit	13.7	753	153.3			
-	Date				· · ·		
	03 JAN 2005	9.9	623	111.6	8.7		4526.7
	05 APR 2005	10.7	599	137.0	8.6		4527.8
	* Values Exceed	Upper Control Lim	út				MW51D

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW53D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.7	753	153.3			
Date				<u> </u>		
04 JAN 2005	9.7	648	94.7	8.6		4534.6
11 APR 2005	9.9	647	103.8	8.3		4535.8
* Values Exceed	Upper Control Lin	nit				MW53D

Mine Unit 3 Well I.D. MW55D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.7	753	153.3			
Date					· · · · · · · · · · · · · · · · · · ·	
04 JAN 2005	8.7	559	140.0	8.8		4534.0
11 APR 2005	9.1	532	163.3 *	8.6		4535.2
* Values Exceed	Upper Control Lim	uit				MW55D

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 3 Well I.D. MW57D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.7	753	153.3			
Date					<u> </u>	
04 JAN 2005	10.1	640	101.1	8.6		4538.8
28 APR 2005	12.0	636	103.7	8.4		4547.7
* Values Exceed	Upper Control Lim	it				MW57D

values Exceed Upper Control Limit

Mine Unit 3 Well I.D. MW65D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
-	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
	Upper Control Limit	13.7	753	153.3			· · · · · · · · · · · · · · · · · · ·
L	Date			, <u>, , , , , , , , , , , , , , , , , , </u>			
	04 JAN 2005	7.0	486	172.3 *	9.1		4543.7
	11 APR 2005	7.2	465	169.5 *	8.8		4544.5
	* Values Exceed	Upper Control Lim	it				MW65D

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Well I.D. MW67D

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaC	CO ₃	mg/l	msl
Upper Control Limit	12.9	789	134			
Date					· · · · · · · · · · · · · · · · · · ·	<u> </u>
07 MAR 2005	9.3	563	169.4 *	8.8		4523.0
21 JUN 2005	9.6	576	180.6 *	8.7		4526.0
* Values Exceed	Upper Control Lim	it				MW67D

* Values Exceed Upper Control Limit

Mine Unit 2 Well I.D. MW69D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet, Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	12.9	789	134			
Date						
07 MAR 2005	9.4	617	135.7 *	8.8		4524.4
21 JUN 2005	10.4	626	134.2 *	8.8		4527.2
* Values Exceed	d Upper Control Li	mit				MW69D

 $1 \le 1$

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW71D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	12.9	789	134			
Date						
07 MAR 2005	9.3	630	130.0	8.8		4526.2
21 JUN 2005	10.2	636	134.2 *	8.8		4526.2
* Values Exceed	Upper Control Lin	nit				MW71D

Mine Unit 2 Well I.D. MW91D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

للبيها	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as Ca	CO3	mg/l	msl
	Upper Control Limit	12.9	789	134			·····
L	Date	· · · · · · · · · · · · · · · · · · ·		s.	· · · · · · · · · · · · · · · · · · ·		
	08 MAR 2005	8.8	525	185.0 *	8.5		4522.8
	21 JUN 2005	9.5	521	190.4 *	8.4		4525.5
	* Values Exceed	Upper Control Lim	uit				MW91D

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW93D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	12.9	789	134			
Date						
08 MAR 2005	9.8	653	105.4	8.4		4521.5
21 JUN 2005	9.8	657	107.1	8.3		4524.3
* Values Exceed	1 Upper Control Lin	iit				MW93D

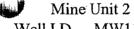
Mine Unit 2 Well I.D. MW95D CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezomet Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	12.9	789	134			······································
Date	- !			· · · · · <u></u>		
08 MAR 2005	9.7	648	111.8	8.3		4521.6
21 JUN 2005	9.5	653	111.1	8.2		4524.5
* Values Exceed	Upper Control Lim	it				MW95D

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Well I.D. MW97D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL


Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	13.8	723	143.3			
Date			· · · · · · · · · · · · · · · · · · ·	<u></u>		
08 MAR 2005	10.5	606	116.4	8.4		4521.1
21 JUN 2005	10.5	617	122.9	8.2		4523.6
* Values Exceed	Upper Control Lim	it				MW97D

Mine Unit 2 Well I.D. MW99D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO.	3	mg/l	msl
U	pper Control Limit	13.8	723	143.3	< <u></u>		
	Date	•	<u></u>	,			
	08 MAR 2005	10.3	489	211.9 *	8.7		4518.1
	21 JUN 2005	10.8	504	221.4 *	8.5		4520.4
	* Values Exceed	Upper Control Lim	it				MW99D

Negative U3O8 Grades Indicate Less Than Detection Limit.

Well I.D. MW113D

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinit	у	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as	CaCO ₃		mg/l	msl
Upper Control Limit	13.8	723	143.3				
Date						··	
08 MAR 2005	11.1	482	220.0	*	8.8		4518.5
21 JUN 2005	11.2	487	228.6	*	8.7		4520.9
* Values Exceed	Upper Control Lim	it					MW113D

Mine Unit 4 Well I.D. 4DM-1

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometre F
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	14.1	712	189.2			
Date			· · ·			
15 MAR 2005	8.8	566	125.8	8.7		4561.2
21 JUN 2005	8.1	565	123.9	8.6		4563.0
* Values Exceed	Upper Control Lim	nit				4DM-1

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. 4DM-4

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	14.1	712	189.2			
Date					<u></u> ·	
15 MAR 2005	9.4	514	146.5	8.7		4551.4
21 JUN 2005	7.9	515	150.6	8.7		4553.9
* Values Exceed	Upper Control Lim	ut				4DM-4

Values Exceed Upper Control Limit

Mine Unit 4 Well I.D. 4DM-8

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/1	msl
Upper Control Limit	14.1	712	189.2			
Date						
15 MAR 2005	9.3	511	141.0	8.6		4546.0
21 JUN 2005	8.0	513	151.3	8.6		4548.5
* Values Exceed	Upper Control Lim	it				4DM-8

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 4 Well I.D. 4DRM-07

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	14.1	712	189.2		<u></u>	
Date	<u> </u>				<u> </u>	
15 MAR 2005	9.5	528	123.5	8.5		4556.0
21 JUN 2005	7.7	530	134.7	8.5		4548.5
* Values Exceed	Upper Control Lim	uit				4DRM-07

Mine Unit 5 Well I.D. 5DM1A

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometr Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.8	1017	420.9		<u></u>	
Date					/	
10 JAN 2005	5.6	408	194.1	8.8		4595.4
25 APR 2005	5.3	403	198.7	8.8		4597.4
* Values Exceed	Upper Control Lim	it				5DM1A

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5DM2

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.8	1017	420.9		·······	·
Date		· ·····				
10 JAN 2005	10.1	624	110.7	8.9		4590.2
25 APR 2005	10.9	611	119.0	9.0		4591.2
* Values Exceed	Upper Control Lim	it			•	5DM2

Values Exceed Upper Control Limit

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

المسب	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper	Control Limit	22.8	1017	420.9			
<u> </u>	Date	· · · · · · · · · · · · · · · · · · ·			·······		
	10 JAN 2005	9.2	544	138.1	8.6		4593.6
	27 APR 2005	9.3	535	137.5	8.8		4590.7
	* Values Excee	d Upper Control L	imit				5DM3

Negative U3O8 Grades Indicate Less Than Detection Limit.

.

Mine Unit 5 Well I.D. 5DM4

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.8	1017	420.9			
Date		,		<u> </u>	····	· · · · · · · · · · · · · · · · · · ·
10 JAN 2005	5.6	427	211.8	8.7		4594.8
25 APR 2005	5.7	420	216.5	8.7		4595.9
* Values Exceed	Upper Control Lim	uit				5DM4

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.8	1017	420.9	<u></u>		
Date						
10 JAN 2005	5.9	448	225.0	8.6		4592.0
25 APR 2005	6.1	442	239.3	8.5		4593.4
* Values Exceed	Upper Control Lin	nit				5DM5

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5DM7

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.8	1017	420.9			
Date	·				·	
10 JAN 2005	7.8	532	238.2	8.4		4589.8
27 APR 2005	8.5	522	239.4	8.5		4590.9
* Values Exceed	Upper Control Lim	it				5DM7

Values Exceed Upper Control Limit

CHRISTENSEN RANCH Mine Unit 5 INTERIOR DEEP SAND MONITOR WELL Well I.D. WCOW-37D

نسب	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Up	per Control Limit	22.8	1017	420.9			
L	Date		<u></u>	·····		<u> </u>	
	11 JAN 2005	8.8	458	240.5	8.4		4585.0
	27 APR 2005	9.0	459	238.5	8.6		4591.0
	* Values Exceed	Upper Control Lim	nit				WCOW-37D

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6DM1

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4			
Date				·······		
17 JAN 2005	8.7	786	91.1	8.0		4521.3
07 FEB 2005	10.1	798	83.5	8.2		4527.1
21 MAR 2005	8.3	794	93.3	8.1		4529.0
27 APR 2005	8.4	797	96.6	7.9		4528.0
23 MAY 2005	7.8	793	94.7	8.1		4531.7
* Values Exceed	d Upper Control Lim	uit				6DM1

Values Exceed Upper Control Limit

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet.
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4			
Date						
17 JAN 2005	6.6	1117	65.0	8.8		4518.9
07 FEB 2005	7.7	1123	63.3	8.0		4526.9
21 MAR 2005	6.4	1119	67.9	8.8		4528.2
27 APR 2005	6.6	1122	71.9	8.6		4527.5
23 MAY 2005	6.2	1117	69.9	8.8		4532.7
* Values Exceed	Upper Control Lim	it				6DM2

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6DM3-2

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4			
Date				·····		
17 JAN 2005	6.6	1106	73.4	7.7		4517.9
07 FEB 2005	9.5	1109	70.8	. 7.9		4526.2
21 MAR 2005	6.4	1106	77.5	7.6	÷	4527.4
27 APR 2005	6.6	1104	79.1	7.5		4526.9
23 MAY 2005	6.2	1101	78.0	7.8		4534.7
* Values Exceed	Upper Control Lin	nit				6DM3-2

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4	<u> </u>	····, ···,	·
Date				. <u> </u>	·····	
17 JAN 2005	7.1	1058	82.4	8.4		4517.5
16 FEB 2005	6.7	1069	80.9	8.1		4541.9
21 MAR 2005	6.7	1097	80.9	8.2		4527.0
27 APR 2005	6.9	1092	83.4	8.0		4527.5
23 MAY 2005	6.6	1088	82.2	8.3		4533.6
* Values Exceed	Upper Control L	imit				6DM4-2

Negative U3O8 Grades Indicate Less Than Detection Limit.

Well I.D. 6DM5

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	µ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4			
Date		<u> </u>				
17 JAN 2005	6.5	1148	70.2	7.6		4516.1
07 FEB 2005	8.8	1161	72.8	7.9		4522.9
22 MAR 2005	6.3	1160	77.9	7.9		4524.5
27 APR 2005	6.8	1134	75.4	7.9		4526.8
23 MAY 2005	6.2	1153	76.6	7.6		4533.3
• * Values Exceed	d Upper Control Lin	nit				6DM5

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4		, <u></u> , <u></u> ,	
Date		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		······
27 JAN 2005	8.5	839	91.6	8.3		4523.2
16 FEB 2005	7.5	842	91.5	8.2		4533.1
23 MAR 2005	7.7	842	93.1	8.3		4533.1
27 APR 2005	7.5	841	91.0	8.2		4532.3
23 MAY 2005	7.1	840	92.4	8.3		4530.7
* Values Exceed	Upper Control Lim	it				6DM6

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6DM7

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4			
Date						· · · · · · · · · · · · · · · · · · ·
18 JAN 2005	7.3	858	83.6	8.0		4538.8
16 FEB 2005	7.3	867	88.6	8.0		4545.8
23 MAR 2005	7.4	870	89.2	8.1		4546.3
27 APR 2005	7.4	852	88.2	7.9		4541.3
23 MAY 2005	6.8	874	89.5	8.2		4541.6
* Values Exceed	Upper Control Lim	it				6DM7

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Ŵ	Water Quality Parameters	Chloride	Specific Conductance	Total	pH	Uranium	Piezometric Elevation
[Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
-	Upper Control Limit	21.9	1682	129.4			
Ļ	Date						····
	17 JAN 2005	7.5	846	82.1	8.4		4528.7
	07 FEB 2005	7.4	839	82.0	8.3		4529.9
	23 MAR 2005	7.4	830	81.8	8.2		4538.7
	27 APR 2005	7.5	813	84.1	8.1		4536.2
	23 MAY 2005	7.3	845	90,5	8.3		4533.1
	* Values Exceed	Upper Control Li	mit	×			6DM8

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6DM9

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	рН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4		····	
Date						
20 JAN 2005	8.2	829	84.0	7.7		4526.5
07 FEB 2005	7.9	825	87.5	7.8		4529.1
22 MAR 2005	7.6	826	89.3	7.9		4536.1
27 APR 2005	7.4	815	90.0	7.7		4534.7
23 MAY 2005	7.1	836	92.2	8.2		4534.0
* Values Exceed	Upper Control Lim	it				6DM9

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4			
Date						
17 JAN 2005	7.5	840	85.3	8.3		4526.8
07 FEB 2005	7.5	840	90.0	8.3		4533.7
23 MAR 2005	7.6	843	90.9	8.4		4535.7
27 APR 2005	7.4	827	90.1	8.2		4535.1
23 MAY 2005	7.1	822	90.2	8.2		4539.4
* Values Exceed	Upper Control L	imit			•	6DM10

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6DM11

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.9	1101	385.3			
Date						<u></u>
20 JAN 2005	8.6	580	254.0	8.6		4537.3
16 FEB 2005	9.1	584	251.5	8.6		4544.7
21 MAR 2005	8.9	586	245.7	8.6		4540.7
27 APR 2005	8.8	581	236.8	8.2		4547.0
23 MAY 2005	8.6	582	239.1	8.4		4541.7
* Values Exceed	Upper Control Lim	it				6DM11

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

- T	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
-	Upper Control Limit	22.9	1101	385.3			
Ĺ	Date			· · · · · · · · · · · · · · · · · · ·			
	17 JAN 2005	8.0	535	126.2	8.7		4537.7
•	07 FEB 2005	8.0	530	129.9	8.6		4546.5
	21 MAR 2005	8.0	533	132.2	8.6		4547.5
	27 APR 2005	8.6	527	138.5	8.5	۰. ۲	4547.8
	23 MAY 2005	7.3	534	140.0	8.6		4542.9
	* Values Exceed	Upper Control Lin	nit				6DM12

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6DM13

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	22.9	1101	385.3		<u> </u>	
Date						
17 JAN 2005	8.0	634	185.8	8.2		4535.6
07 FEB 2005	8.0	630	189.5	8.2		4543.2
21 MAR 2005	8.0	632	192.8	8.3		4545.5
27 APR 2005	7.8	622	192.2	8.2		4545.2
23 MAY 2005	7.3	634	192.6	8.1		4541.1
* Values Exceed	Upper Control Lim	it				6DM13

CHRISTENSEN RANCH INTERIOR DEEP SAND MONITOR WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometi Elevation
Units	mg/l	μ mho/cm	mho/cm mg/l as CaCO ₃		mg/l	msl
Upper Control Limit	21.9	1682	129.4			
Date						
17 JAN 2005	7.8	818	90.3	8.4		4522.5
07 FEB 2005	7.6	820	91.6	8.2		4533.0
23 MAR 2005	7.7	828	92.4	8.3		4531.9
27 APR 2005	7.9	805	96.0	7.9		4534.1
23 MAY 2005	7.4	827	93.5	8.2		4531.0
* Values Exceed	Upper Control Lim	uit				6DM14

CHRISTENSEN RANCH PROJECT

Perimeter Ore Zone Trend Wells

Mine Unit 2 Well I.D. MW78T

CHRISTENSEN RANCH PERIMETER ORE ZONE TREND WELL

	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Acti	on Level	13.6	823	121.3	·····	<u></u>	
L	Date	" <mark>I.</mark> "					
	07 MAR 2005	9.5	665	98.7	8.3		4526.1
	21 JUN 2005	9.3	666	91.7	8.0		4532.7
	* Values Exceed	Action Level					MW78T

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 2 Jell I.D. MW87T

CHRISTENSEN RANCH PERIMETER ORE ZONE TREND WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l μ mho		mg/l as CaCO ₃		mg/l	msl
Action Level	13.6	823	121.3		<u> </u>	
Date				<u> </u>		
08 MAR 2005	9.7	663	98.5	8.4		4525.1
21 JUN 2005	10.2	664	97.9	8.0		4531.7
* Values Exceed	Action Level					MW87T

Mine Unit 5 Well I.D. 5TW-1

CHRISTENSEN RANCH PERIMETER ORE ZONE TREND WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Action Level	22.7	1004	134.3	•		
Date	_ !		· · · · · · · · · · · · · · · · · · ·	·····		
11 JAN 2005	8.4	719	101.2	8.4		4564.7
27 APR 2005	9.0	708	100.8	8.5		4579.0
* Values Exceed	Action Level					5TW-1

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6TW1

CHRISTENSEN RANCH PERIMETER ORE ZONE TREND WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Action Level	20	1576	95.2			
Date	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , , 	
17 JAN 2005	7.3	1081	58.5	8.8		4516.4
15 FEB 2005	7.5	1139	69.9	7.9		4526.1
22 MAR 2005	7.6	1164	69.0	7.9		4526.1
27 APR 2005	8.3	1170	74.2	7.3		4533.6
31 MAY 2005	7.8	1179	76.1	8.2		4524.8
* Values Exceed	Action Level					6TW1

CHRISTENSEN RANCH PERIMETER ORE ZONE TREND WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometri Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Action Level	20	1576	95.2			······································
Date					• `	
17 JAN 2005	5.5	1319	66.7	8.3		4515.9
09 FEB 2005	6.8	1318	70.2	7.5		4525.6
23 MAR 2005	5.6	1312	71.1	8.0		4522.0
27 APR 2005	12.4	1386	107.5 *	7.7		4529.8
31 MAY 2005	13.5	1428	120.9 *	8.0		4530.1
* Values Exceed	Action Level					6TW2

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 ell I.D. 6TW3

6TW3

CHRISTENSEN RANCH PERIMETER ORE ZONE TREND WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Action Level	20	1576	95.2			
Date					· · · · · · · · · · · · · · · · · · ·	۰. ۱
18 JAN 2005	5.9	1309	66.2	7.8		4517.7
15 FEB 2005	5.9	1292	73.2	7.5		4527.6
23 MAR 2005	6.0	1301	70.8	8.0		4523.5
27 APR 2005	6.6	1303	69.4	7.8		4514.6
31 MAY 2005	4.8	1277	71.9	7.9		4541.1
* Values Exceed	Action Level					6TW3

CHRISTENSEN RANCH PERIMETER ORE ZONE TREND WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinit	y	pН	Uranium	Piezomet. Elevation
Units	mg/l	μ mho/cm	mg/l as (CaCO ₂		mg/l	msl
Action Level	20	1576	95.2	0			
Date	, <u></u> _, <u></u> , <u></u>				· · · · · · · · · · · · · · · · · · ·		
18 JAN 2005	16.6	1391	134.4	*	7.9		4517.5
07 FEB 2005	15.9	1349	139.0	*	8.1		4520.0
23 MAR 2005	15.2	1319	139.7	*	8.3		4524.0
27 APR 2005	19.2	1426	192.2	*	7.9		4525.5
31 MAY 2005	10.7	1189	119.8	* .	7.9		4534.5
* Values Exceed	Action Level						6TW4

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 6 Well I.D. 6TW5

CHRISTENSEN RANCH PERIMETER ORE ZONE TREND WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalini	ty	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as	CaCO3		mg/l	msl
Action Level	20	1576	95.2		<u></u>		
Date							· · · ·
18 JAN 2005	9.3	1306	107.6	*	8.0		4518.4
09 FEB 2005	13.2	1416	152.9	•	7.2		4534.3
23 MAR 2005	8.9	1270	109.0	*	8.2		4530.2
27 APR 2005	18.8	1776 *	312.2	*	7.3		4535.5
31 MAY 2005	7.9	1265	120.9	+	7.9		4529.9
* Values Exceed	Action Level						6TW5

CHRISTENSEN RANCH PROJECT

Interior Deep Sand Trend Wells

Mine Unit 5 Well I.D. 5DM8T

CHRISTENSEN RANCH INTERIOR DEEP SAND TREND WELL

-	Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezometric Elevation
	Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
A	ction Level	22.8	1017	420.9	· · · · · · · · · · · · · · · · · · ·		
[Date						
	10 JAN 2005	8.8	589	123.9	8.4		4581.6
	25 APR 2005	9.1	582	134.0	8.4		4584.4
	* Values Exceed	d Action Level					5DM8T

Negative U3O8 Grades Indicate Less Than Detection Limit.

Mine Unit 5 Well I.D. 5DM9T

CHRISTENSEN RANCH INTERIOR DEEP SAND TREND WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pН	Uranium	Piezometric Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Action Level	22.8	1017	420.9	<u></u>		
Date	,			<u> </u>	<u> </u>	
11 JAN 2005	10.5	518	137.7	8.6		4571.7
20 APR 2005	10.1	520	136.1	8.7		4584.2
* Values Exceed	Action Level					5DM9T

CHRISTENSEN RANCH INTERIOR DEEP SAND TREND WELL

Water Quality Parameters	Chloride	Specific Conductance	Total Alkalinity	pH	Uranium	Piezome Elevation
Units	mg/l	μ mho/cm	mg/l as CaCO ₃		mg/l	msl
Action Level	21.3	1802	121.7			
Date	. <u> </u>				·	
20 JAN 2005	8.7	812	93.7	8.3		4517.5
07 FEB 2005	9.8	819	86.3	8.3		4524.2
22 MAR 2005	8.0	813	94.6	8.2		4517.1
27 APR 2005	8.4	814	95.0	8.0		4529.0
23 MAY 2005	8.1	814	96.9	8.2		4532.0
* Values Exceed	Action Level					6DT1

APPENDIX 3

Reclamation/Restoration Bond Estimate 2005-2006

Reclamation Bond Assumptions Irigaray and Christensen Ranch ISL Projects WDEQ Permit to Mine No. 478 NRC License SUA-1341 2005-2006 Annual Report

This year's bond estimate is based upon the 2003 base-bond estimate where very detailed explanations were provided for the updated costs. Some minor changes were made in 2004 and an inflation factor of 2.6% was added to convert 2003\$ to 2004\$. For the 2005-2006 estimate, the inflation factor has increased to 5.9% to adjust from August 2003 to July 2005. This inflation rate equates to the difference between the Consumer Price Index (all urban customers) for August 2003 of 184.6 and the July 2005 value of 195.4.

Costs in the bond estimate are thoroughly detailed and were developed by using either 1) COGEMA's actual costs, 2) a published reference source, or 3) quotes from local third-party contractors. The method by which unit rates and costs were derived is provided in the explanation for each worksheet, below.

Table 1 – Summary of Reclamation/Restoration Bond Estimate

Table 1 is a summary of costs from individual bond worksheets. Added to the grand total of estimated spending are "miscellaneous" costs associated with the hiring of a third part contractor to actually perform the work. The specific miscellaneous costs are a requirement of the Wyoming Department of Environmental Quality (WDEQ), as outlined in the WDEQ Land Quality Division's Guideline No. 12, "Standardized Reclamation Performance Bond Format and Cost Calculation Methods", page 11. The U.S. Nuclear Regulatory Commission (NRC) also requires similar miscellaneous costs in NUREG-1569 and further mandates that a standard contingency, in this case 15%, be added to the overall bond cost.

The current miscellaneous costs and contingency on Table 1 for both the WDEQ and NRC adds up to 23.5%. COGEMA is proposing that this percentage be reduced to a total of 20% in this surety estimate. Table 1 is the only table that is affected by this proposed decrease. The decrease is proposed because a review of the miscellaneous costs associated with third party contractors seemed to be excessive considering the status of the reclamation project, i.e. all groundwater restoration has been completed and only the decommissioning of structures remains. An explanation of the various miscellaneous costs, proposed revisions to these costs, and contingency for Table 1 are as follows.

Project Design

This is the cost for an independent firm to design the final reclamation project. This includes all design and engineering work through production of construction documents. WDEQ reference sources place this category at 2 to 6.5% of the total bond cost.

The reclamation program has been in full progress for the past 5 years. Groundwater restoration has been completed for all wellfields at both Irigaray and Christensen Ranch. Surface decommissioning has commenced at Irigaray and is expected to be completed for both projects by mid-2007 (see attached schedule, Figure 1). The program is far enough along that a third party contractor would not be required to prepare an entire final reclamation project, and would most likely use the plan developed by COGEMA. NRC has required COGEMA to prepare a detailed Decommissioning Plan that will be used by any contractor to conduct the work. For these reasons, the project design cost has been eliminated from the NRC estimate and only 0.5% has been provided for the

WDEQ estimate. This would still provide \$42,868 the WDEQ for a third party engineering review of the NRC Decommissioning Plan.

Contractor Profit & Mobilization

This category covers contractor costs typically not found in the basic unit rates. This percentage specifically covers contractor profit, overhead costs, mobilization costs to the site and demobilization costs after job completion. According to WDEQ, assorted references place this cost from 8% to 15% of the total bond cost. COGEMA has been approved to use 8% by DEQ for this category.

For NRC purposes, this category is currently 4%. In NUREG-1569, NRC requires overhead costs for labor, equipment and contractor profit. Hourly rates are already included in this estimate for labor and equipment, and these are third party estimates that already include overhead. Therefore we are recommending a 1% reduction to 3% to cover contractor profit and mobilization/demobilization. As the ISL reclamation is not an equipment intensive type of reclamation, mobilization/demobilization costs should be minimal.

Pre-construction Investigation

This item addresses all fieldwork necessary to document and mitigate dangerous and/or quickly deteriorating conditions. Any assessment under this item will be based on the WDEQ's knowledge of specific site conditions and length of time between bond forfeiture (reason for a third party contractor) and initiation of the final reclamation project. WDEQ uses 1%, and has reference sources placing this cost between 1% and 2%. COGEMA has been asked by WDEQ to incorporate the 1% into our bond estimate.

No cost is included for NRC in this WDEQ required category. NRC required COGEMA to conduct a detailed site-decommissioning plan, and a part of this plan was a site characterization. No areas of potential hazardous conditions were identified. We believe that this study qualifies as a pre-construction investigation.

Project Management

This category includes the costs for an independent firm to manage the final reclamation project. It includes complete oversight of all demolition, construction and reclamation activities. Examples would include supervision of groundwater restoration, wellfield piping and structures removal, plant buildings and equipment demolition, soil sampling, byproduct waste shipments, etc. References place this cost at 3% to 4%. WDEQ typically uses 3%. However, WDEQ has in the past required a 4% project management cost for COGEMA due to the more technical aspects of groundwater restoration. Because active groundwater restoration processes have been completed at both Irigaray and Christensen Ranch, it is requested that WDEQ only require the 3%.

NRC's project management in NUREG-1569 includes costs associated with project management; engineering design, review and change; mobilization; power during reclamation; quality control; radiological safety; and any other costs not included in other estimation categories. Contractor mobilization is included as separate miscellaneous cost items, above, and the project design is completed. Furthermore, COGEMA already includes line items in the bond for the utilities during reclamation and radiological safety (gamma surveys and soil analysis, byproduct load surveys). The 2% for NRC project management includes 1% for a project RSO or equivalent (\$85,736), and another 1% for general project management (\$85,736), for the remaining project life (1.5 years).

2

On-site Monitoring

This category covers the costs for any miscellaneous monitoring felt necessary by the WDEQ after the final reclamation is completed. Costs of this item typically vary, depending upon the volume of monitoring already included in the bond or the type of reclamation activity required. The WDEQ typically uses 0.5%, and this is what COGEMA is bonded for.

NRC license termination will occur at the end of the project, therefore no costs will be necessary after final reclamation is completed. WDEQ requires the 0.5% to cover any miscellaneous monitoring they may incur during the 5-year reclamation/revegetation evaluation period prior to bond release.

Site Security & Liability Assurance

This category covers the cost for the WDEQ, or third party contractor, to provide any necessary site security measures during the reclamation program, and to purchase liability insurance to cover the timeframe of the reclamation program and full bonding period. WDEQ references place this cost at about 1% of the total bond amount. The WDEQ typically uses 1%, and this is what COGEMA is bonded for.

Because NRC does not have the same 5-year bonding period after reclamation is completed; no additional cost is provided in this category.

Longterm Administration

This category applies to the period between completion of the reclamation project and final bond release which is a minimum 5 year period for uranium mines. During this time the WDEQ will incur administrative costs prior to the final bond release. WDEQ typically uses 1% to 2% for this category depending upon the scale or complexity of the reclamation and post-reclamation monitoring. WDEQ has required COGEMA to use 2%.

Again, because NRC will terminate the license after reclamation completion, there is no final bond release period of 5 years. There is no need for a percentage in this category.

Contingency

Contingency is included in the bond estimate to cover unknown conditions that could occur during the reclamation project. The WDEQ references place this cost at 2% to 5% of the total bond cost. WDEQ has required COGEMA to post 4% for the contingency. NRC requires a contingency of 15% regardless of the detail of the bond estimate, so COGEMA has incorporated the 15%.

WDEQ Reference Sources: The reference sources used by WDEQ to establish the ranges of percentages used in the miscellaneous items are:

- Means Heavy Construction Cost Data (current edition), R.S. Means Company, Inc., Kingston MA
- Means Site Work Cost Data (current edition), R.S. Means Company, Inc.
- Building Construction Cost Data (current edition), R.S. Means Company, Inc.
- Handbook for Calculation of Reclamation Bond Costs, 1987, Department of Interior, Office of Surface Mining Reclamation and Enforcement, Washington, D.C.
- Wyoming DEQ Abandoned Mine Land Program contracting and reclamation practices and cumulative experience.

Worksheet 1 – Groundwater Restoration

Worksheet 1 provides the cost estimate to complete the groundwater restoration work at both the Irigaray and Christensen sites. Most of the input data and calculations are self-explanatory. Explanations for the various unit rates or factors used in the calculations are described below. No changes to Worksheet 1 have been made for the 2005 surety estimate.

Technical Assumptions:

All of the input data provided in the technical assumptions are actual site specific information. These data are used throughout the bond estimate as needed. No changes have been made for 2005.

Restoration Operating Assumptions:

Flowrates, pore volumes required, RO efficiencies and disposal well information are taken from the restoration plan. The remainder of the operating assumptions are calculated using the conversion factors listed and the technical assumptions. A new line has been added this year to account for the number of baseline wells in each mine unit. No changes have been made for 2005.

Restoration Cost Assumptions:

(Note: no changes in the 2003 bond assumptions for costs or technical plans have been made to the restoration cost section of the 2005 bond estimate).

Power costs are based on actual (average) installed horsepower and actual costs for electricity at each of the sites. A factor of 1.0 has been requested by WDEQ for use as the Kwh/Hp ratio to account for motor efficiencies. This factor is used for the Irigaray operations, because we do not have current data on pumping costs. COGEMA's actual ratio of Kwh/Hp is 0.83 Kwh/Hp for Christensen Ranch, where restoration operations continue. This includes all operating submersible pumps, reverse osmosis feed pumps, the plant injection pumps, the two disposal well pumps, and miscellaneous electricity used in the restoration plant (lights, etc.). The factor of 0.83 Kwh/Hp is based on actual data from Christensen operations during years 2002 and 2003 (see Attachment 1), and has been incorporated into the bond estimate. Using this number, a unit rate for power (\$/Kgal) is calculated.

Chemical costs are based on year 2003 spending as is included in the last bond submittal at the Christensen site. These costs have been applied to Irigaray, where appropriate. Repair and maintenance is also a unit rate based on actual spending for this category. These costs are outlined below:

Groundwater Sweep and Reverse Osmosis Phases - Other Operating Assumptions:

- BaCl (barium chloride) would not be used in the future; instead would use radium resin currently on site.
- Anti-scalent (is used at Christensen only for surface discharge during GWS):
 Purchase of 250 gallon tote = \$2,958

= \$11.832/gallonAddition target rate of 8 ppm <u>8 gallons X \$11.832</u> = \$0.0947/Kgal 1,000 Kgal H20 gallon

- Elution cost is based on actual spending of \$2,850 per average elution (includes labor and chemicals). \$2,850 divided by 28,800 Kgal/elution = \$0.099/Kgal.
- Sulfuric Acid, Hydrochloric acid and sodium sulfide are no longer used in the restoration process. Updated membranes for the RO units no longer need low pH feedwater, thus eliminating the need for acid addition prior to reverse osmosis. Hydrogen sulfide gas is now used instead of sodium sulfide.
- A unit rate of \$0.863/Kgal is used for hydrogen sulfide gas. This is based on actual spending at Christensen Mine Units 2 and 4 from October 2002 through July 2003. The cost includes purchase of the chemical (\$0.41/lb), an addition rate of 100 ppm, a flow rate of 100 gpm, one pore volume of use, plus a \$75/day trailer rental fee. This cost has been added as a separate line item below the Reverse Osmosis wellfield section, as only 1 PV of hydrogen sulfide per mine unit is assumed.
- The unit rate of \$0.0181/Kgal for caustic soda (reverse osmosis phase) is based on actual spending from August 2002 through July 2003.
- Restoration Plant repair and maintenance (GWS and RO) is based on actual spending from August 2002 through July 2003. These costs include purchase of piping, fittings, pump maintenance, filters and miscellaneous supplies.

Supplies	= \$0.0358 per Kgal
Outside Services	= \$0.0021 per Kgal
	= \$0.0379 per Kgal

 Restoration wellfield repair and maintenance (GWS and RO) is based on actual spending from August 2002 through July 2003. Costs include purchase of submersible pumps, piping, fittings, filters and miscellaneous supplies.

Supplies	= \$0.1185 per Kgal
Outside Services	= \$0.1709 per Kgal
	= \$0.2894 per Kgal

 Sampling and Analysis for Groundwater Sweep is based on taking a round of samples from each baseline well after the final GWS pore volume and analyzing the samples for a full suite Guideline 8 (26 parameters). This amount is then converted to a cost per Kgal for the pore volume:

Irigaray Units 6-9: <u>(27 baselines X \$150* = \$4,050)</u> = \$0.1025/Kgal 1 PV GWS = 39,525 Kgal

Christensen Unit 2: (24 baselines X \$150* = \$3,600) = \$0.131/Kgal 1 PV GWS = 27,414 Kgal

*\$150/Guideline 8 analysis is actual 2004 cost from Intermountain Laboratories, Sheridan, Wyoming.

Sampling and Analysis for the Reverse Osmosis phase is based on one round of Guideline 8 analyses for each baseline well at the end of RO; plus a recovery composite analyzed for Guideline 8 in each mine unit (or area for Irigaray) for each PV; and miscellaneous samples during the process. For Christensen miscellaneous, assume 10 wells in each wellfield module of each mine unit are analyzed for 4 parameters, each PV. The cost of analysis is \$10 each parameter, or \$40. Christensen Unit 2 has 4 modules, Unit 3: 5 modules, Unit 4: 3 modules, Unit 5: 5 modules; and Unit 6: 6 modules. For Irigaray, assume 15 wells per Units 1-5, and 15 wells for Units 6-9, each PV, for the 4 parameters. These costs are divided by the total Kgals in 5 PV of RO treatment:

Irigaray Units 6-9: 27 baselines X \$150 = \$4,050

Rec. Comp.: 5 PV X 1 wellfield area (Units 6-9) X \$150 = \$750 Misc.: 5 PV X 15 wells X (4 analytes, \$10 each) = \$3,000 Total = \$7,800/(197,624 Kgal/5 PV) = \$0.0395/Kgal

Christensen Unit 2: 24 baselines X \$150 = \$3,600 Rec. Comp.: 5 PV_X_1 mine unit X \$150 = \$750 Misc.: 5 PV X (10 wells/module*4 modules)*(4 analytes*\$10 each) = \$8,000 Total = \$12,350/(137,085 Kgal/5 PV) = \$0.091/Kgal

Utility costs listed are for electricity, heating and telephone for the offices during the restoration operations. The cost per month has been revised since last year. It was previously assumed that the main offices would continue operating if the work were contracted. In reality, to save costs during contracting, one of the on-site trailers would be used to office project management personnel during this time period. Powder River Energy Corp. (July 2003) has provided an average cost of \$65/month for a typical full electric house trailer (heating and lights), thus eliminating the need for propane. As power costs have not changed in 2005, this cost is still used in the bond. Current telephone costs at Irigaray and Christensen combined are approximately \$500/month (average 2003 actual spending to-date). Thus the new monthly unit rate of \$565 is more appropriate than the \$1000/month estimate in the previous bond estimate.

Waste Disposal Well Cost Assumptions:

No changes from the 2003 bond assumptions for unit costs or technical plans have been made to the wastewater management section of the 2005 bond estimate.

Operating assumptions for the waste disposal well are based on the restoration plan and historical experience (such as the brine concentration factor). Cost assumptions follow the same rationale as for restoration costs (unit rates are based on actual average 2002-2003 site spending for the power, chemicals, repair and maintenance).

- Electrical power costs are based on the average Kwh/Hp factor of 0.83, which is the actual ratio for Christensen (includes all site pumps).
- RO Antiscalent cost (RO processed feed water for disposal well): Purchase of 250 gallon tote (delivered) = \$4.758 (Chemico Int'l RO 9) = \$19.032/gallon Addition target rate of 10 ppm = \$0.1903/Kgal 10 gallons X \$19.032 1,000 Kgal H20 gallon Disposal Well Antiscalent cost: 440 gallons delivered = \$5,220.60 (Champion Tech Gyptron t-67) = \$11.865/gallon
 - Addition target rate of 20 ppm 20 gallons X \$11.865 = \$0.2373/Kgal
 - 1,000 Kgal H20 gallon
- Sulfuric Acid (used prior to RO to avoid precipitation). Actual spending in 2003 was \$22,243, divided by 41,662 Kgal = \$0.5339/Kgal.
- Corrosion inhibitor: no longer required.
- Algaecide: 2003 purchases = \$4,634; 2003 Kgal = 41,662; = \$0.111/Kgal

• Repair and maintenance is based on actual spending from August 2002 through July 2003 for bag filters, pump parts, oil and lube, fittings. The unit rate for this is equal to \$0.0116/Kgal as RO feed. Converted to Kgal of disposal well injection is:

\$0.0116 X 1000 Kgal RO feed

Kgal RO feed 150 Kgal disposal well feed

= \$0.0773/Kgal

Stabilization Monitoring:

Three sample sets will be taken during the 9-month stabilization-monitoring period. The first set is taken three months after the beginning of stabilization monitoring. The next set is taken after six months and the last after 9 months. The sampling cost per set is based on rental of a 30 Kw, 480 volt, 3-phase portable generator for a one week period at a rate of \$280/week (Industrial Engine Service, Casper WY, quote of August 2003). As each well is pumped for an hour period, and the generator can service 4 wells at a time, then it is possible to sample a maximum of 32 wells per day during 8 hours (assuming a 10-hour workday). A one-week rental is more than sufficient to sample all baseline wells in a mine unit, so this number is very conservative. The analytical cost is a calculation based on sampling all baseline wells in each wellfield with an analysis cost of \$150/well for a DEQ Guideline 8 analysis for uranium mines (August 19, 2003 guote from Intermountain Laboratories). For this calculation, a new line has been added to the technical assumptions to show the number of baseline wells per area. Labor is included at the end of Worksheet 1. Utilities (electricity, telephone) are included for maintaining the office open during stabilization monitoring. These costs were previously described under the groundwater sweep explanations, above.

Labor:

Labor costs for 1.6 years of restoration operations are included as per the 2004 bond estimate. In the 2003 bond estimate, 2.6 years of labor were included. The reduction in labor by one year was based on the schedule of restoration which shows that active groundwater restoration has been finished at all Irigaray wellfields, and all Christensen wellfields except Mine Unit 6 which would be completed by the end of 2004. Labor rates are based on typical 2003 Manpower, Inc. costs for skilled labor. The operations crew consists of 1 supervisor, 4 operators, and 2 maintenance personnel. Operating costs for 2 vehicles are also included in this category. Unit rates for each worker category are shown in the table. A higher labor rate is used for groundwater restoration than is used in the remainder of the surface reclamation portion of the bond. This is because more skilled labor is required for operating the restoration equipment. Management labor is included in the Miscellaneous category under Project Management in Table 1.

Restoration Capital Requirements:

The only capital requirement listed is the plugging and abandonment of the two wastewater disposal wells. An actual cost estimate for the plugging and abandonment of the two Class I disposal wells at Christensen was obtained in December 2003 from Petrotek Engineers. The estimate was prepared using December 2003 quotes from Wyoming vendors. The new estimate for plugging and abandonment of Christensen DW No. 1 and Christensen 18-3 is \$73,950 and \$66,250 respectively. This is a total of \$140,200 and has been incorporated into Worksheet 1. A copy of Petrotek's bid is attached.

Credit for Work Completed:

At the end of Worksheet 1 where items are totaled, lines have been inserted to show which groundwater restoration items have been completed and for which credit is requested. To date, the WDEQ has already approved the credit for groundwater sweep in all wellfields. In the 2004 submittal, COGEMA asked the WDEQ to additionally approve credit for reverse osmosis and stabilization monitoring for the Irigaray wellfields. The final Irigaray restoration report was submitted to the WDEQ at the end of July 2004. Approval of the restoration is expected in October 2005.

Due to NRC's unwillingness to recognize the WDEQ's approval of the groundwater sweep credit, or to approve any restoration work completed until the final project report is approved, we are showing an NRC line which includes all costs for the groundwater restoration with no credit provided.

Worksheet 2 - Plant Equipment Removal and Disposal

This worksheet calculates the costs to decontaminate, dismantle and remove, transport and dispose of plant process equipment. Explanations for the various unit rates or factors used in the 2003 bond calculations are described below. No changes to Worksheet 2 have been made for this 2005 bond submittal.

Decontamination Cost

The decontamination unit rate used in 2002 was \$550/load. However, checking local rental rates for equipment, the 2003 price for labor and hydrochloric acid, the decontamination unit rate has been revised downwards to \$435/load.

Assumptions:

 2 laborers can powerwash or sandblast 10 square feet per minute, or 1.7 cubic feet per minute = 102 cubic feet/hour

1 load = 540 cubic feet

Labor:

- 2 laborers @ \$15/hour = \$30/hour
- 540 cubic feet/load divided by 102 cubic feet/hour = 5.29 hours/load
- 5.29 hours/load x \$30/hour = \$158.7, say \$160
 Equipment Rental:
- 2 3500 psi pressure washers @ \$6/hour x 2 = \$12/hour* (\$60/day, 10 hr/day)
 - 1 185 cfm air compressor @ \$12.5/hour* (\$125/day, 10 hr/day)
- with sandblast pot, hood,

= \$24.5/hour

*rates based on 08-15-03 quote from Contractor's Equipment, Casper, WY

5.29 hours x \$24.5/hour = \$129.61, say \$130

Materials:

wand, hose

- Sand: 75 cubic feet @ \$1/foot** = \$75
- 10% HCl, 440 gallons @ \$0.155/gal*** = \$68

\$143. sav \$145

\$1/foot from 08-15-03 quote of \$19/ton for fine sand (100 lbs/ft3) from JTL, Casper * 10% HCI = 506 lbs/yd3, 202 gallons/yd3, \$124/ton = \$0.155/gal (Brenntag West, Inc. average 2003 prices)

Dismantling and Loading Cost

Using 2003 quotes, the unit rate for dismantling and loading is estimated at \$650/load:

Labor Crew: 1

 1 foreman
 @ \$20/hour

 4 laborers
 @ \$15/hour = \$60/hour

 1 truck
 @ \$10/hour

 1 welder
 <u>@ \$35/hour</u>

 \$125/hour

Estimate: 4 hours @ \$125/hour = \$500

Equipment Rental: 1 front-end loader with operator @ \$75/hour (CAT 988C, June 2003 quote from Rapid Construction)

Productivity: 1 load = 20 yd3, 10 yd3/hr Estimate: 2 hours @ \$75/hour = \$150

TOTAL = \$650/load

Oversize Charges

The cost of \$326/per truckload for oversize charges was provided to COGEMA by our former trucking firm, Key Trucking (Kaycee, Wyoming). This was their estimate of what they would be paying for permits for any loads that were larger than 15' wide, 15' high and 75' long. No other details are available. Standard charges from the Wyoming Department of Transportation, Port of Entry, are \$15 plus \$0.03/foot/mile for the oversized item. We believe that the \$326/load is very conservative based on the standard charges quoted.

Transportation & Disposal

- In January 2004, COGEMA hired McIntosh Contractors to transport byproduct material (pond sludge) from the Irigaray site to the Shirley Basin tailings impoundment for final disposal. The trucking firm charges \$65/hour and each round trip takes 10 hours. The round trip includes the time to drive from Casper to Irigaray, load and transport the material to Shirley Basin, unload, and return to Casper. This equates to \$650/load and is incorporated into this bond estimate.
- COGEMA also is using Brubaker Backhoe Services (BBS) to haul non-contaminated trash and debris to the Edgerton, Wyoming landfill. The 2004 charge for each load is \$160. This cost has also been incorporated into this 2004 bond estimate.
- Landfill costs of \$12.00/cubic yard are the actual rates charged by the Edgerton, Wyoming industrial landfill (July 2003 rate sheet).
- COGEMA Mining has a byproduct material disposal agreement with Pathfinder Mines Corporation's Shirley Basin tailings facility (expires December 31,2006). The disposal fee per cubic foot for piping, process equipment, demolition waste is \$11/cubic foot.

Worksheet 3 – Plant Building(s) Demolition and Disposal

This spreadsheet provides the costs for demolition and disposal of all buildings at Irigaray and Christensen, including concrete decontamination, demolition and disposal. Also included in the spreadsheet are costs for the removal and disposal of contaminated soils under the process buildings, and at the NPDES surface discharge points (one each site). Transportation charges for byproduct (\$650/load) and non-contaminated trash (\$160/load) were incorporated for the 2004 estimate (see Worksheet 2). No changes to Worksheet 3 have been made in 2005.

Structural Character

 Western Water Consultants, Sheridan, Wyoming, provided factors for gutting, and estimated material weights for the Irigaray process buildings volumes. Volumes, etc., for the Christensen buildings were estimated by COGEMA's in-house staff, using the Western Water Consultants work at Irigaray.

- The building demolition cost of \$0.165/cubic foot is taken directly from Appendix K of LQD's Guideline No. 12.
- The building demolition disposal cost of \$300/truckload (25 CY trailer) is from the July, 2003 rate sheet from the Edgerton, Wyoming industrial landfill.

Concrete Decontamination, Demolition & Disposal

- The decontamination costs of \$0.134/square foot is based on the decontamination estimate of \$435/load discussed above for Worksheet 2. One load = 540 cubic feet; assuming 1 cubic foot = 6 square feet (surface), then \$435/load divided by 3240 square feet per load = \$0.134 per square foot.
- The concrete demolition rate of \$3.05/square foot is taken directly from Appendix K of LQD's Guideline No. 12.
- The on-site disposal cost has been calculated as \$0.23/ft3, or \$6.25/yd3. This is based on the following:

1 988C loader with operator @ \$75/hour (Rapid Construction quote, 2003)

1 dump truck with operator @\$50/hour (Rapid, 2003)

\$125/hour

Productivity: 2 loads/hr (10 yd3 load) = 20 yd3, or 540 ft3

TOTAL = \$125/540 = \$0.23/ft3

• The disposal fee of \$3.70/cubic foot is based on the byproduct waste disposal agreement with Pathfinder Mines Corporation's Shirley Basin site. This rate is based on the agreement fee of \$100/cubic yard for soils and concrete rubble. (\$100/27 cubic feet per cubic yard = \$3.70 per cubic foot).

Soil Removal & Disposal

The estimate of contaminated soils is simply a contingency for unknowns. All unit rates associated with this contingency have previously been justified, except that the unit rate for a front end loader (with operator) has been increased from \$50/hr to \$75/hr (Rapid Construction guote for a 988C loader, 2003).

Radiation Survey

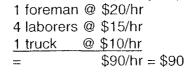
The cost for radiation surveys is detailed below:

Soil sampling and analysis cost:

- \$82.50/soil sample for digestion, U and Ra-226 analysis (Energy Lab, Casper 09-25-03 quote)
- \$3.75/soil sample for labor (\$15/hr for one laborer, 4 samples collected per hour)
- Total = \$86.25/sample, and an average of 4 samples per acre = \$345/acre
 Gamma characterization and verification survey
- \$175/acre (July 2003 quote from ERG, New Mexico) includes GPS survey, grid establishment, verification survey after excavation.

Grand Total = \$520/acre

Worksheet 4 – Pond Reclamation Costs


Worksheet 4 provides all costs for the decommissioning of evaporation ponds located at the Irigaray and Christensen site. No changes have been made to Worksheet 4 for the 2005 estimate.

Unit rates used for this work that have not been identified in detail for other worksheets are provided following:

Pond Sludge

Year 2003 sludge handling costs per load were \$238/load. Using 2003 rates, the sludge handling costs per load are given as \$240/load.:

- Front-end loader with operator @ \$75/hr (10 c.y./hr) for 2 hrs. = \$150 (Rapid, 2003)
- Labor crew (1 hour) =

TOTAL = \$240/load

Pond Liner

- Labor crew costs per hour for handling the pond liner are taken from the above estimate of \$90/hour.
- The \$11/ft3 for disposal is the current contract price for this type of material at Pathfinder's Shirley Basin tailings impoundment (agreement good through 2006)

Pond Backfill

• The unit rate for backfilling of \$1.00 per cubic yard is conservative. A third party contractor at Pathfinder's Shirley Basin facility is currently charging \$0.70 per cubic yard for backfilling/excavation work and \$0.54 per cubic yard for regrading (Rapid Construction, 2003).

Radiation Survey – See Worksheet 3

Leak Detection System Removal

This section assumes that contamination is found in the leak detection system wherever a leak has been detected in a pond during its operating life. This is why volumes are included for only Ponds C and D at Irigaray. The amounts from Pond 1 at the 5I7 site have been removed as this area has already been decontaminated and is ready for clean backfill. Handling costs for removal of these systems are included as \$240/load, or the same as the pond liner handling costs.

Transportation Costs – See Worksheet 2

Worksheet 5 – Well Abandonment

No changes have been made to Worksheet 5 for the 2005 bond estimate.

The method used for well abandonment in this bond calculation involves the placement of bentonite chips in the bottom 75 feet and upper 30 feet of each well, with the intermediate volume filled with gravel. A cement cone is placed two feet below the surface, then the surface casing is removed and the hole is backfilled with soil using a backhoe. The abandonment unit rate for 2003 has increased very slightly over last year's rate due to price changes, described as follows:

 Cost of bentonite chips - \$4.50/bag is a quote from Casper Well Products, Casper, Wyoming (August 2003).

- Cost of gravel/cubic yard two quotes were obtained in August 2003 for sand & gravel to fill the wells for final abandonment. The first was from JTL Group (Casper, WY) for screened, washed pea gravel. The quote was \$16.00/ton, with a 1.5 tons/yard conversion, or \$24.00 per yard. The second quote was from '71 Construction (Casper, WY) for a sand-pea gravel mix, suitable for well abandonment. This cost came in at \$16 per ton with a 1.25 tons/yard conversion, or \$20 per yard. This cost has been used to replace last year's cost of \$17.53 per cubic yard.
- Cost of cement cones/markers \$4.00 each from Casper Well Products, Wyoming (2003).
- An example of a typical well abandonment calculation for <u>Irigaray</u> is as follows: Assume: well volume = 27.6 ft3; well depth = 250 ft; casing diameter = 4.5 inches Materials per well:

Bentonite chips from 250' to 175' (Christensen = 410' to 3	335')
Sand/gravel from 175' to 30' (Christensen = 335' to 30')	
Bentonite chips from 30' to 2'	
Cement cone and backfill from 2' to surface	
Materials/well: 15 bags bentonite chips @ \$4.50/bag	= \$67.50
(65 lbs/ft3, 11.4 ft3/well, 50 lb. bags)	
0.58 c.y. gravel @ \$20/c.y.	= \$11.60
[Well T.D. – (105'-2') x 0.11 <u>(πr²)</u> /27] 144 in ² /ft ²	
144 in ² /ft ²	
Cement cone and marker @ \$4.00 each	= \$4.00
Labor: 1 hr./well	
1 – Foreman @ \$20.00/hour	
2 – Laborers @ \$15.00/hour	
1 – Vehicle @ \$10.00/hour	
\$60.00/hour	
\$60.00/hour x 1 hour/well	= \$60.00
Equipment Rental: 1 backhoe @ \$38.50/hour x 1 hour/well	= \$38.50
(Operator included – actual 2003 rental rate, Brubaker Ba	ckhoe Service)
TOTAL cost per well	= \$181.60

Worksheet 6 – Wellfield Equipment Removal & Disposal

This spreadsheet covers the removal & disposal of all wellfield piping, submersible pumps and tubing, trunklines running from the wellfields to the plant, and manholes along the trunklines. Unit rates not addressed previously are detailed below. No changes to Worksheet 6 have been made for the 2005 estimate.

Wellfield Piping Removal

The 2002 unit rate for wellfield piping removal was \$0.193/ft. This year costs have been updated, such as an increase in the backhoe and chainsaw rental charges, providing a new 2003 unit rate of \$0.202/ft of removal. An example of the calculation is provided as follows:

Open Trenches:

- 300'/well, 446 wells = 133,800 linear feet of pipe
- trenches: 300'/well x 2' deep x 2' wide = 1,200 ft³ = 44 c.y./well
- 44 c.y./well x 446 wells (Christensen Unit 6) = 19,624 c.y.

 19,624 c.y. @ 50 c.y/hour = 392 hours Equipment rental: 2 backhoes @ \$38.5/hour x 196 hours ea (operators included – Brubaker Backhoe) 	ch =	\$15,092 (\$0.113/ft)
Remove Pipe, Chip and Load: (assume approximately 20,000 fe Labor: 1 – Foreman @ \$20.00/hr.	et /day	chipped)
4 – Laborers @ \$15.00/hr. 1 – Vehicle @ \$10.00/hr.		
\$90.00/hr. x 6 days	=	\$ 4,320
 Equipment Rental: 2 chainsaws @ \$5.00/hr x 3 days 	=	\$ 30
(chainsaw rental = \$50/day, assume 10 hr day)	=	(\$0.0325/ft)
(08-15-03 Contractor Equipment rental quote)		
Backfill Trenches:		
 19,624 c.y. @100 c.y./hr. = 196 hrs. 		.
 Equipment rental: 2 backhoes @ \$38.50/hr. x 98 hrs each 	=	\$ 7,546
(operators included – Brubaker Backhoe)		(\$0.056/ft)
TOTAL=	\$0.20)2/linear foot

Non-contaminated landfill charges of \$12/yd3 throughout Worksheet 6 is from the July 2003 rate sheet from the Edgerton landfill (quote for demolition trash).

Pump Removal

Submersible pumps are set in each production well for mining and restoration. Year 2003 pump removal cost was \$21.44. This year, the pulling unit cost has been increased to a unit rate of \$40/hr based on an August 2003 quote from Alger Construction, thus increasing the unit rate per pump/well to \$22.50. Using Christensen Mine Unit 6 as an example, the details are as follows:

Pull pumps and tubing – 4 wells/hour, 202 production wells

Labor:	1 – Foreman	@ \$20.00/hour			
	2 – Laborers	@ \$15.00/hour			
		\$50.00/hour	x 50.5 hours	= '	\$ 2,525
Equipmen	it Rental: 1 pul	ling unit @ \$40.00/hr.	x 50.5 hours	=	<u>\$ 2,020</u>
					\$ 4,545
	TOTAL	$\Phi A = A = 1000$ wells	\$00 E0/ pum		

TOTAL = \$4,545 / 202 wells = \$22.50/ pump or well

Survey & Decontamination – see Worksheet 2

Tubing Volume Reduction and Loading

Using Christensen Mine Unit 6 as an example, the details of this cost are as follows:

Tubing: 300'/well average x 202 wells = 60,600 linear feet

- Chip and load: average O.D. (inches) = 3; chipped volume reduction (ft³/ft) = 0.016; chipped volume = 970 ft³; assume approximately 20,000 feet per day chipped.
- Labor: 1 Foreman @ \$20.00/hour
 - 2 Laborers @ \$15.00/hour

 $50.00/hour \times 3 days (30 hours) = $1,500$

Equipment: two shredders are owned by COGEMA

TOTAL = \$1,500 / 60,600 linear feet = \$0.025/linear foot

Surface Piping Removal

Surface piping exists at the Irigaray site. The cost for removing the Irigaray pipe is the same as the wellfield piping removal cost of \$0.202 above, but \$0.056/ft must be removed for the cost of backfilling. The \$0.113/ft. cost for opening trenches was kept,

because portions of the surface lines are partially covered with soil, and buried in some locations. So, the removal, chipping and loading costs for surface lines (only located at Irigaray) is \$0.146/ft.

Buried Trunkline Removal

Last year's unit rate for buried trunkline removal was \$2.80/ft. Using the buried 12" lines at Irigaray for an example, the updated unit cost for removal of buried trunklines is now estimated as \$3.12/ft. Increases in cost for backhoe rental and 10 hour days are incorporated. Year 2003 Equipment rates were provided by Rapid Construction, and actual rental rates from Brubaker Backhoe Service, and Contractor's Equipment.

Open Trenches:

- 7,300 linear feet of pipeline
- 2' deep x 4' wide = 29.6 c.y. soil per 100 feet of trench
- 29.6 c.y. x 7,300' / 100 = 2,163 c.y. soil to be removed
- Equipment Rental: 1 Trackhoe @ \$110.00/hour x 14.4 hours = \$ 1,586 (operator included, 150 c.y./hr rate) (\$0.22/ft)

Remove Pipe, Chip and Load: Assume 500' per day

	Labor:	1 – Foreman 4 – Laborers	@ \$20 @ \$15).00/hr 5.00/hr	,	
		1 – Vehicle	@\$10		x 14 6 dove /146	(hro) (12.140
			2 9(J.00/11	x 14.6 days (146	(\$1.80/ft)
•	Equipmer	nt Rental: 1 Ch 1 Bao	ainsaw ckhoe	@ \$5.00/hr @ \$38.50/hr		
	.a				x 14.6 days	= \$ 6,351 (\$0.87/ft)
Ba ∎	ackfill Trenc Assume 5	hes: 0 c.y./hr x 2,16	3 hours	= 43.3 hours		(\$0.07777)

 Equipment rental: 1 backhoe @ \$38.50/hr x 43.3 hours = \$ 1,667 (\$0.23/ft)

TOTAL = \$22,744 / 7,300 linear feet = \$3.12/linear foot

Manhole Removal

Manholes are present along each of the buried trunklines to permit access to valves. Removal is essentially the crushing of the 12' by 8' culvert in place and backfilling. Removal cost of \$110 per manhole is based on the following:

-	Labor:	1 – Foreman	@ \$20.00/hr		
		2 – Laborers	@ \$15.00/hr		
		1 – Vehicle	@ \$10.00/hr		
			\$60.00/hr	x 1.3 hour/manhole	= \$ 78.00
•	Equipmer	nt Rental: 1 Bad	ckhoe @ \$38.50/hr	x 1 hour/manhole	= <u>\$ 38.50</u>
					\$116.50
				sav	= \$117.00

In the 2002 bond estimate, it was assumed that the manhole culverts are contaminated. In reality, these culverts are not contaminated and will be demolished as stated, in place, or sold. Radiological surveys conducted in September 2003 confirmed that the culverts meet site release standards.

Transportation Costs – See Worksheet 2

Worksheet 7

Worksheet 7 provides to costs to replace topsoil in areas where topsoil was stripped and stockpiled, to conduct radiation surveys & soil analysis prior to topsoil placement, then the revegetation of the topsoil or ground surface without topsoil. Unit rates used in the calculations that have not been previously detailed are described below. No changes have been made to Worksheet 7 for the 2005 estimate.

Unit Cost – Grading

- A cost of \$1/yd3 is used to haul and place topsoil. This is conservative considering that Rapid Construction is hauling and placing topsoil at Pathfinder's Shirley Basin mine in July 2003 for a unit rate of \$0.80/yd3.
- \$38.45/acre WDEQ Guideline 12 places the cost for final grading using a Caterpillar 16H Motor Grader at \$38.45 per acre (\$102.28/hr, 2.66 acres/hr).

Wellfield - Spills

• Wellfield spill areal estimates are based on documentation of on-site spills. The handling cost of \$240/load is taken from Worksheet 4 for handling of pond sludge.

Transportation of Byproduct Material – See Worksheet 2.

Revegetation

\$491.71/acre – This cost has been used in past bond estimates and was taken from previous issues of the WDEQ Guideline 12. In the most recent edition of Guideline 12, operators are allowed to calculate their own revegetation costs, because the \$491.71/acre is very high. The last revegetation done at Christensen in year 2000 cost \$195/acre (seed plus drill costs). Mulching and crimping were not necessary, and will only be necessary on steep slopes. We have continued to use the \$491.71/acre as it is considered conservative.

Remedial Action

• An assumption is made that 50% of all surface areas that have been revegetated will require remedial action. The costs assume that these areas will be revegetated again at the same cost of \$491.71/acre.

Worksheet 8

Worksheet 8 provides all the remaining miscellaneous items that could be involved in the final reclamation. Unit rates are described below. No changes have been made to Worksheet 8 for the 2005 bond estimate.

Fence Removal & Disposal

The unit rate of \$0.68/ft is taken from Appendix H, WDEQ – LQD Guideline 12.

Powerline Removal & Disposal, Powerpole Removal & Disposal

Distribution lines and power poles are owned by Powder River Energy Corp. (PREC) and will be removed upon request at no charge. Transmission lines and power poles

which go from the main metering points to various electrical substations will also be removed by PREC at no cost for their salvage value.

Transformer Removal & Disposal

The costs for removal and disposal of transformers are based on a 1994 issue of WDEQ-LQD's Guideline No. 12, inflated by 23.8% to 2003 costs. The following unit rates are used:

٠	Large transformers:	\$2,525
• `	Small transformers:	\$619

Booster pump assemblies: \$248

• Guardrail removal: \$6.44/ft

Booster Pump Assembly Removal & Disposal

Removal of the booster pump assemblies along the trunklines at Christensen is based on labor, and the assemblies will be non-contaminated. An internal estimate of \$200/assembly was used in 1994, and has been inflated by 23.8% to 2003 costs. The 2003 unit cost is \$248 per assembly.

Culvert Removal & Disposal

The cost of \$3.48/foot of culvert is taken from the 2001 edition of WDEQ-LQD Guideline 12, Appendix J.

Guardrail Removal

The costs for guardrail removal of \$6.44/ft is based on a 1994 issue of WDEQ-LQD's Guideline No. 12, inflated by 23.8% to 2003 costs.

Low Water Stream Crossing

In 1994, this cost was estimated as the same as the construction cost (\$7,000). A 2003 cost has been estimated as \$4,500 per crossing. The cost is based on 3 days of rental of a trackhoe and operator at \$100/hr (10 hour days), plus 3 days of rental of a haul/dump truck and operator at \$50/hr. The trackhoe will simply dig up the sand, rocks and Tri-lock block and the haul/dump truck will take the materials to the on-site landfill (pond excavations at Irigaray) for disposal. The hourly rates are a September 25, 2003 quote obtained from Alger Construction (Kaycee, WY) for the trackhoe with operator rental and actual rates paid to L&L Oilfield Services (Linch, WY) in August 2003 for the rental of a haul/dump truck with operator.

Utilities Cost

This cost has been revised to show the cost of utilities for use of one of the on-site office trailers instead of operating the power system for the offices. An average cost of \$65/month for a full electric house trailer was obtained from Powder River Energy Corp. (July 2003) and is used for this estimate.

2005 SURETY ESTIMATE WORKSHEETS

COGEMA Mining, Inc.

SUMMARY OF RECLAMATION/RESTORATION BOND ESTIMATE, 2005 - 2006 WDEQ PERMIT NO. 478/USNRC LICENSE SUA-1341

TABLE 1

				WDEQ Estimate	NBC Estimato
مر المرابع الم				August 2003\$	August 2003\$
	GROUNDWATER RESTORATION - Work	sheet 1:		\$3,124,253	\$3,938,547
I				<u> </u>	
	DECOMMISSIONING AND SURFACE RE	CLAMATION:			
•	A. Process Plant(s) Equipment Remov	al and Disposal		\$212,081	\$212,081
	Worksheet 2				
	B. Plant Building(s) Demolition and Dis	sposal		\$734,007	\$734,007
	Worksheet 3				•
	C. Process Pond Sludge and Liner Har	ndling		\$749,999	\$749,999
	Worksheet 4 D. Well Abandonment			\$744,573	¢744 E70
	Worksheet 5			φ744 ₁ 073	\$744,573
	E. Wellfield Equipment Removal and D	Disposal		\$866,581	\$866,581
	Worksheet 6				+- 30,001
	F. Topsoil Replacement and Revegation	on		\$732,131	\$732,131
	Worksheet 7				
	G. Miscellaneous Reclamation Activitie	S		\$121,836	\$121,836
	Worksheet 8	Declemation		¢4 101 000	£4.1C1.000
	Sub Total - Decommissioning and Surface	Reclamation		\$4,161,208	\$4,161,208
[TOTAL RESTORATION AND RECLAMAT	ION		\$7,285,462	\$8,099,755
•				Lan increase for the	
	5.9% Adjustment for inflation (CPI August	2003 of 184.6		\$426,235	\$473,875
	through July 2005 CPI of 195.4)				
		SUBTOTAL		\$7,711,697	\$8,573,630
	Miscellaneous Costs Associated with Third	Party Contractors			
	Wiscelianeous Costs Associated with Third	WDEQ	NRC		
	Project Design	0.5%	0%		
	Contractor Profit & Mobilization	8%	3%		
	Pre-construction Investigation	1%			
	Project Management	3%	2%		
	On-site monitoring	0.5%			
	Site Security & Liability Assurance	1%	0.0%		
	Longterm Administration	2%			_
	Subtotal miscellaneous additions to bond	16.0%	5.0%	\$1,233,871	\$428,681.51
		SUBTOTAL		\$9.045.569	\$0,002,212
				\$8,945,568	\$9,002,312
		WDEQ	NRC		
	Contingency	4%	15%	\$357,823	\$1,350,347
	<u> </u>				
GR,	AND TOTAL RESTORATION AND RECLAM	IATION.		\$9,303,391	\$10,352,659

ORKSHEET	·		······						
	Ingaray	Irigaray	Christensen	Christensen	Christensen	Christensen	Christensen	Christensen	Christensei
ROUNDWATER RESTORATION	Mine Unit(s) #1 Thru #5	Mine Unit(s) #6 Thru #9	Mine Unit #2	Mine Unit #3	Mine Unit #4	Mine Unit #5	Mine Unit #6	Mine Unit #7	Mine Unit #8
100NDWATER RESTONATION		#011/10/#5	<u> </u>	#5	*4	#5	#0	H /	+0
echnical Assumptions									
Wellfield Area (Ft ²)	522720	784080	890000	798944	510088	1210968	2021243	1332936	160000
Wellfield Area (Acres)	12.00	18.00	20.43	18.34	11.71	27.80	46.40	30.6	36.3
Affected Ore Zone Area (Ft ²)	522720	784080	890000	798944	550193	1346004	2058344	1	Í
Avg Completed Thickness (Ft)	15.0	18.0	11.0	10.0	12.7	19.9	21.8	l . '	Í
Affected Volume:	ł							· ·	Í
Factor For Vertical Flare	20%	20%	20%	20%	20%	20%	20%	1	1
Factor For Horizontal Flare	20%	20%	20%	20%	20%	20%	20%	1	1
Total Volume (Ft ³)	11290752	20323353.6	14097600	11504793.6	10061929.6	38593685.7	64615534.85	(Í
Porosity	26.0%	26.0%	26.0%	26.0%	26.0%	26.0%	26 0%	1	l
Gallons Per Cubic Foot	7.48	7.48	7 48	7.48	7.48	7.48	7.48	Į I	1
Gallons Per Pore Volume	21958254.49	39524858.1	27417012.5			75057000			
Number of Wells in Unit(s)		000210000.7	2.4.70.2.0	2201 4022.0	10000440.7	/ 303/ 000	120004202.2	1	
Production Wells	150	274	153	185	105	217	202	155	
Injection Wells	310		173	277	128	277	202	170	
Monitor Wells	150	165	50	46	44	70	65		
Baseline Water Quality wells (prod or in)	19	27	24	19	15	25	47	00	
Average Well Spacing (Ft)	35	35	85	70	-				
Average Well Depth (FI)	250	250			85 430	85	100		1
Average Weit Deptit (Et)	250	250	1345	300	430	450	520	550	<u>.</u>
GROUNDWATER SWEEP									
A PLANT & OFFICE		1	l	1		1		r	[
Operating Assumptions:									1
Flowrate (gpm)	200	200	200	200	200	200	200		
PV's Required	4	1	1	1	1	1	1		
Total Gallons For Treatment	87833017.96	39524858.1	27417012.5	22374522.6	19568440.7	75057000	125664292.2		
Total KGais for Treatment	87833	39525	27417	22375	19568	75057	125664		
Cost Assumptions:	127358	00020				, , , , , , , , , , , , , , , , , , , ,	120004		
Power			}	1					
Avg Connected Hp	51,30	51.30	40.00	40.00	40.00	40.00	40.00		
Kwh's/Ho	1.00	1.00	0.83	0.83	0.83	0.83	0.83	İ	
S/Kwh	\$0.051	\$0.051	\$0.0365	\$0.0365	\$0.0365	\$0.0365	\$0.0365		
Gallons Per Minute	200	200		200	200		100		
Gallons Per Hour	12000	12000		12000	12000		6000		
Cost Per Hour	2.62	2.62	1.21	1,21	1.21	121	1 21		
Cost Per Gallon	0.00022	0.00022	0 00010	0.00010	0.00010	0.00010	0.00020		
Cost Per KGal (\$)	\$0.218	\$0.218	\$0.101	\$0.101	\$0.101	\$0.101	\$0.202	1	
Chemicals							1		
Antiscalent (\$/Kgals)	\$0.0947	\$0 0947	\$0.0947	\$0.0947	\$0 0947	\$0.0947	\$0.0947		
Elution (\$/KGals)	\$0.099	\$0.099	\$0.099	\$0.099	\$0.099	\$0.099	\$0 099	1	
Repair & Maintenance (\$/KGals)	\$0.0379	\$0.0379	\$0.0379	\$0.0379	\$0.0379	\$0.0379	\$0.0379	1	1
Analysis (\$/KGals)	\$0.032	\$0,102	\$0.131	\$0,127	\$0.115	\$0,050	\$0.056	1	
Total Cost Per KGal	\$0.482	\$0.552	\$0.464	\$0.460	\$0.448	\$0.383	\$0.490	1	
Total Treatment Cost	\$42,342	\$21,821	\$12,718	\$10,291	\$8,758	\$28,713	\$61,534	1	
Utilities	0.2,042			0.0,201	00,100		\$0,,004	ł	
Power (\$/Month)	\$65	\$ \$65	\$65	\$65	\$65	\$65	\$65	1	
Telephone (\$/Month	\$500	\$500	\$500	\$500	\$500	\$500	\$500		
Time For Treatment	1			1 0000	0000		0000	ł	
Minutes For Treatment	439165	197624	137085	111873	97842	375285	628321		
Hours For Treatment	7319	3294	2285	1865	97642	6255	10472	1	
Days For Treatment	305	137	2285	78	68	261	436	1	
	30.4	30.4	30 4	30.4	30.4	30.4	1	1	
Average Days Per Month Months For Treatment	10.0	4.5	30.4	2.6	30.4	8.6	30.4		
	10.0	4.5	1 .51	1 261	2.2	1 8.6	14.3	1	1
Utilities Cost (\$)	\$5,665	\$2,549	\$1,768	\$1,443	\$1,262	\$4,841	\$8,105		1

2

1

、

	Irigaray	Irigaray	Christensen						
	Mine Unit(s)	Mine Unit(s)	Mine Unit	Mine Unit .	Mine Unit				
GROUNDWATER RESTORATION	#1 Thru #5	#6 Thru #9	#2	#3	#4	#5	#6	#7	#8
I GROUNDWATER SWEEP (Continued)									
B. WELLFIELD		}							
Cost Assumptions:									
Power									
Avg Flow/Pump (gpm)	3.86	3.86	20	20	20	20	20		
Avg Hp/Pump	1.50	1.50	3.00	3.00	3.00	3.00	3.00		
Avg # of Pumps Required	51.8	51.8	10.0	10.0	10.0	10.0	10.0		
Avg Connected Hp	77.8	77.8	25	25	25	25	25		
Kwh's/Hp	1.000	1 000	0.830	0.830	0.830	0.830	0.830		
\$/Kwh	\$0.051	\$0.051	\$0.0365	\$0.0365	\$0.0365	\$0.0365	\$0.0365		
Gallons Per Minute	200	200	200	200	200	200	200		
Gallons Per Hour	12000	12000	12000	12000	12000	12000	12000		
Cost Per Hour (\$)	\$3.97	\$3.97	\$0.76	\$0.76	\$0.76	\$0.76	\$0.76		
Cost Per Gallon (\$)	\$0.0003	\$0.0003	\$0.0001	\$0.0001	\$0.0001	\$0.0001	\$0.0001		
Cost Per KGal (\$)	0.331	0.331	0.063	0.063	0.063	0.063	0 063		
Repair & Maintenance (\$/KGals)	\$0.289	\$0.289	\$0.289	\$0.289	\$0.289	\$0.289	\$0.289		
Total Cost Per KGal	\$0.620	\$0.620	\$0.353	\$0.353	\$0.353	\$0.353	\$0.353	1	
TOTAL WELLFIELD COST	\$54,426	\$24,492	\$9,665	\$7,887	\$6,898	\$26,459	\$44.298	\$0	\$0
TOTAL GROUND WATER SWEEP COST	\$102,433	\$48,862	\$24,152	\$19.622	\$16,918	\$60,012	\$113.937	\$0	\$0

IL REVERSE OSMOSIS

IL REVERSE USINUSIS	1								
A. PLANT & OFFICE	1								
Operating Assumptions:									
Flowrate (gpm)	300	300	500	500	500	500	500		
PV's Required	3.0	5.0	5.0	5.0	5.0	5.0	5.0		
Total Gallons For Treatment	65874763.47	197624290	137085062	111872613	97842203.3	375285000	628321460.9		
Total KGals for Treatment	65875	197624	137085	111873	97842	375285	628321		
Feed to RO (gpm)	300	300	500	500	500	500	500		
Permeate Flow (gpm)	240	240	375	375	375	· 375	375		
Brine Flow (gpm)	60	60	125	125	125	125	125		
Average RO Recovery	80.0%	80.0%	75.0%	75.0%	75.0%	75 0%	75.0%		
Cost Assumptions:									
Power									
Avg Connected Hp	120.00	120.00	560.00	560.00	560.00	560.00	560.00		
Kwh's/Hp	1.000	1.000	0.830	0.830	0.830	0.830	0.830		
\$/Kwh	\$0 051	\$0.051	\$0.0365	\$0.0365	\$0.0365	\$0.0365	\$0.0365		
Gallons Per Minute	300	300	500	500	500	500	500		
Gallons Per Hour	18000	18000	30000	30000	30000	30000	30000		
Cost Per Hour (\$)	\$6.12	\$6.12	\$16.97	\$16.97	\$16.97	\$16.97	\$16.97		
Cost Per Gallon (\$)	\$0.00034	\$0.00034	\$0.00057	\$0.00057	\$0.00057	\$0.00057	\$0.00057		
Cost Per KGal (\$)	\$0.340	\$0.340	\$0.566	\$0.566	\$0.566	\$0.566	\$0.566		
Chemicals									
Caustic Soda (\$/KGals)	\$0.018	\$0.018	\$0.018	\$0.018	\$0.018	\$0.018	\$0.018		
Antiscalent (\$/Kgals)	\$0 0947	\$0.0947	\$0.0947	\$0.0947	\$0.0947	\$0.0947	\$0.0947	1	
Elution (\$/Kgals)	\$0.099	\$0.099	\$0.099	\$0.099	\$0.099	\$0.099	\$0.099		
Repair & Maintenance (\$/KGals)	\$0.038	\$0.038	\$0.038	\$0.038	\$0.038	\$0.038	\$0.038		
Sampling & Analysis (\$/KGals)	\$0.077	\$0.039	\$0.090	\$0.122	\$0.092	\$0.039	\$0.032		
Total Cost Per KGal (\$)	\$0.667	\$0.629	\$0 905	\$0.937	\$0.907	\$0.854	\$0.847		
Total Pumping Cost (\$)	\$43,940	\$124,319	\$124,089	\$104,788	\$88,752	\$320,397	\$531,949		
Utilities	1.								
Power (\$/Month)	. \$65	\$65	\$65	\$65	\$65	\$65	\$65		
Propane (\$/Month	\$500	\$500	\$500	\$500	\$500	\$500	\$500		
Time For Treatment									
Minutes For Treatment	219583	658748	274170	223745	195684	750570	1256643		
Hours For Treatment	3660	10979	4570	3729	3261	12510	20944		
Days For Treatment	152	457	190	155	136	521	873		
Average Days Per Month	. 30.4	30 4	30.4	30.4	30.4	30.4	30.4		
Months For Treatment	5.0	15.0	6.3	5.1	4.5	17 1	28.7		
Utilities Cost (\$)	\$2.825	\$8.475	\$3,560	\$2,882	\$2,543	\$9,662	\$16,216		
TOTAL PLANT & OFFICE COST	\$46.765	\$132,794	\$127.648	\$107,670	\$91,294	\$330,059	\$548,165	\$0	SO

З

	Irigaray	Irigaray	Christensen	Christensen	Christensen	Christensen	Christensen	Christensen	Christense
	Mine Unit(s)	Mine Unit(s)	Mine Unit	Mine Uni					
OUNDWATER RESTORATION	#1 Thru #5	#6 Thru #9	#2	#3	#4	. #5	#6	#7	#8
REVERSE OSMOSIS (Continued)									
B. WELLFIELD									
Cost Assumptions:									
Power		1							
Avg Flow/Pump (gpm)	3.86	3.86	20.00	20.00	20.00	20.00	20.00]	}
Avg Hp/Pump	1.50	1.50	3.00	3 00	3.00	3.00	3.00		
Avg # of Pumps Required	77.7	77.7	25.0	25.0	25.0	25.0	25.0		
Avg Connected Hp	116.6	116.6	75.0	75.0	75.0	75.0	75.0		
Kwh's/Hp	1.000	1.000	0.830	0.830	0 830	0.830	0.830		
\$/Kwh	\$0.051	\$0.051	\$0.0365	\$0 0365	\$0.0365	\$0.0365	\$0 0365		}
Gallons Per Minute	300	300	500	500	500	500	500		1
Gallons Per Hour	18000	18000	30000	30000	30000	30000	30000		1
Cost Per Hour (\$)	\$5.95	\$5.95	\$2.27	\$2.27	\$2.27	\$2.27	\$2.27		
Cost Per Gallon (\$)	\$0.0003	\$0.0003	\$0.0001	\$0 0001	\$0.0001	\$0.0001	\$0.0001		
Cost Per KGal (\$)	\$0.330	\$0.330	\$0.076	\$0.076	\$0.076	\$0.076	\$0.076		
Repair & Maintenance (\$/KGals)	\$0.289	\$0.289	\$0.289	\$0.289	\$0.289	\$0.289	\$0.289		
Total Cost Per KGal	\$0.619	\$0.619	\$0.365	\$0.365	\$0.365	\$0.365	\$0.365		
TOTAL WELLFIELD COST	\$40.797	\$122,391	\$50,000	\$40,804	\$35,687	\$136,881	\$229,172	\$0	9
Add for 1 PV of Hydrogen Sulfide gas reductant	\$18,950	\$34,110	\$23,661	\$19,309	\$16,888	\$64,774	\$108,448	1	
\$0.863 per Kgal	1]				1]]]
TOTAL REVERSE OSMOSIS COST	\$106,512	\$289,295	\$201.309	\$167,783	\$143,869	\$531,714	\$885,785	\$0	

VURNOREETT									
	Irigaray	Irigaray	Christensen	Christensen	Christensen	Christensen	Christensen	Christensen	Christense
		Mine Unit(s)	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Mine Unit
ROUNDWATER RESTORATION	#1 Thru #5	#6 Thru #9	#2	#3	#4	#5	#6	#7	#8
III WASTE DISPOSAL WELL		r	T	·			·		
Operating Assumptions:									
Annual Evaporation Capacity (Gals)			1,917,612	1,917,612		1,917.612			
Avg. Monthly Evap. Capacity (Gais)			159,801	159,801	159,801	159.801	159.801		
Total Disposal Requirement									
RO Brine Total Gallons			34,271,266			93.821.250			
RO Brine Total KGallons			34.271	27,968		93,821	157,080		
Brine Concentration Factor		}	60%	60%		60%	60%		
Total Concentrated Brine (Gals)			20,562,759						
Months of RO Operation			6.3	5.1	4.5	17.1	28.7		
Average Monthly Reqm't (Gallons)	1		3,263,930	3,290.371		3,291,974			
Monthly Balance for DDW (Gals)			3,104,129	3,130,570		3,132,173			
Total WDW Disposal (Gallons)			19.556.013						
Total WDW Disposal (KGals)			19,556	15.966	13.957	53,560	89.662		
Cost Assumptions:					Į				
Power Avg Connected Hp	ł		100.00	100.00		100.00			
WDW Avg Connected Hp				3	100.00	100.00	100.00		
Kwh's/Hp			180.00	180.00	180.00	180.00	180.00		
S/Kwh			0.830	0.830	0.830	0.830	0.830		
Gallons Per Minute	1		\$0.0365	\$0.0365	\$0.0365	\$0.0365	\$0.0365		
Gallons Per Hour	1	1	150			150	(
Cost Per Hour (\$)	1	İ	9000 \$8.48	9000 \$8.48		9000			
Cost Per Galion (\$)			\$0.0009	\$0.0009	\$8.48 \$0.0009	\$8.48	\$8.48		
Cost Per KGal (\$)			\$0.0009	\$0.0009	\$0.0009	\$0.0009 \$0.943	\$0.0009		
Chemicals (\$/Kgals)	ţ		50.943	50.943	\$0.943	50.945	\$0.943		
RO Antiscalent (\$/Kgals)			\$0,190	\$0,190	\$0,190	60.100	00.000		
WDW Antiscalent (\$/Kgals)		}	\$0.190	\$0.190		\$0.190	\$0.190		
Sulfuric Acid (\$/Kgals)			\$0.237	\$0.237	\$0.237	\$0.237	\$0.237		
Corrosion Inhibitor			\$0.534		\$0.534	\$0.534	\$0.534		
Algacide			\$0.000	\$0.000	\$0.000	\$0.000	\$0.000		
Repair & Maint (\$/Kgais)			\$0.077	\$0.111 \$0.077	\$0.111	\$0.111	\$0.111		
Total Cost Per KGal		-	\$2 092	\$2.092	\$0.077 \$2.092	\$0.077 \$2.092	\$0.077 \$2.092		
TOTAL WASTE DISPOSAL WELL COST			\$40,902	\$33,393	\$29,192	\$112,022	\$187.529	\$0	
	J			000,000	020,102	0112,022	0101.020	1	``````````````````````````````````````
V STABILIZATION MONITORING]			_					
Operating Assumptions.								1	
Time of Stabilization (mos),	9	-	-	9	9				
Frequency of Analysis (mos)	. 3	-		3		3	-		
Total Sets of Analysis	3	s 3	3	3	3	3	3		
Cost Assumptions:									1
Generator Rental per sample set	\$280	\$280	\$280	\$280	\$280	\$280	\$280		
Analytical costs per set	\$2,850	\$4,050	\$3,600	\$2,850	\$2,250	\$3.750	\$7.050		ł
Total Sampling & Analysis Cost (\$)	\$9,390	\$12,990	\$11,640	\$9,390	\$7,590	\$12,090	\$21,990		
Utilities (Power + Telephone per month)	\$565	\$565	\$565	\$565	\$565	\$565	\$565		
Total Utilities Cost (\$)	\$5,085	\$5.085	\$5.085	\$5.085	\$5,085	\$5.085	\$5,085		
TOTAL STABILIZATION COST	\$14,475		\$16,725	\$14,475	\$12,675	\$17,175	\$27.075	\$0	

Irigaray	Irigaray	Christensen	Christensen	Christensen	Christensen	Christensen	Christensen	Christens
Mine Unit(s)	Mine Unit(s)	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Mine Ur
#1 Thru #5	#6 Thru #9	#2	#3	#4	#5	#6	#7	#8
Cost/Hour	Hours/Year	Cost						
\$25.00	2080	\$52,000						
\$20.00	2080	\$166,400						
\$20.00	2080	\$83,200						
\$12.00	2080	\$49,920						
		\$351,520						
16	ן							
\$562,432	1							
Irigaray	Christensen	Total						
Mine Unit(s)	Mine Unit	Christensen						
#1 Thru #9	#2 Thru #4	& Ingaray						
	Mine Unit(s) #1 Thru #5 Cost/Hour \$25.00 \$20.00 \$12.00 16 \$562,432 Irigaray Mine Unit(s)	Mine Unit(s) Mine Unit(s) #1 Thru #5 #6 Thru #9 Cost/Hour Hours/Year \$25.00 2080 \$20.00 2080 \$20.00 2080 \$20.00 2080 \$20.00 2080 \$25.00 2080 \$20.00 2080 \$20.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$12.00 2080 \$13.00 \$10.00 \$14.00 \$10.00 \$15.00 \$10.00 \$10.00 \$10.00	Mine Unit(s) Mine Unit(s) Mine Unit(s) Mine Unit(s) Mine Unit(s) Mine Unit(s) Mine Unit(s) Mine Unit Mine	Mine Unit(s) Mine Unit(s) Mine Unit Mine Unit #1 Thru #5 #6 Thru #9 #2 #3 Cost/Hour Hours/Year Cost \$25.00 2080 \$52.000 \$20.00 2080 \$166.400 \$20.00 2080 \$49.920 \$12.00 2080 \$49.920 \$16 \$5562.432 Total Mine Unit(s) Mine Unit Christensen	Mine Unit(s) Mine Unit(s) Mine Unit Mine Unit Mine Unit #4 Cost/Hour Hours/Year Cost #3 #4 Cost/Hour Hours/Year Cost #4 #4 S25.00 2080 \$52.000 \$52.000 \$52.000 \$52.000 S20.00 2080 \$166.400 \$20.00 \$351.520 \$351.520 1.6 \$552.432 \$16 \$16 \$16 \$16 Mine Unit(s) Mine Unit Total \$16 \$16 \$16	Mine Unit(s) Mine Unit(s) Mine Unit(s) Mine Unit #4 #5 Cost/Hour Hours/Year Cost Cost Example #6 #6 #5 #6 400 \$20.00 \$2080 \$\$49,920 \$351,520 \$351,520 \$355,200 \$355,200 \$355,200 \$355,200 \$355,200 \$351,520 <t< td=""><td>Mine Unit(s) Mine Unit #4 #5 #6 Cost/Hour Hours/Year Cost #3 #4 #5 #6 \$25.00 2080 \$52.000 \$280.00 \$2080 \$366.400 \$20.00 2080 \$369.920 \$351.520 \$351.520 1 6 \$552.432 Total Total Mine Unit(s) Mine Unit Christensen Total</td><td>Mine Unit(s) Mine Unit #3 #4 Mine Unit Mine Unit #7 Cost/Hour Hours/Year Cost Cost #6 #7 #7 S25.00 2080 \$52.000</td></t<>	Mine Unit(s) Mine Unit #4 #5 #6 Cost/Hour Hours/Year Cost #3 #4 #5 #6 \$25.00 2080 \$52.000 \$280.00 \$2080 \$366.400 \$20.00 2080 \$369.920 \$351.520 \$351.520 1 6 \$552.432 Total Total Mine Unit(s) Mine Unit Christensen Total	Mine Unit(s) Mine Unit #3 #4 Mine Unit Mine Unit #7 Cost/Hour Hours/Year Cost Cost #6 #7 #7 S25.00 2080 \$52.000

VI RESTORATION CAPITAL REQUIREMENTS

TT	Deep Disposal Well(s) • new		\$0
11	Plug and Abandon CR DW-1		\$73,950
- 10	Plug and Abandon CR 18-3		\$66,250
IV	500 GPM Reverse Osmosis Unit		\$0
Tot	al	\$0	\$140,200

Irigaray Mine Unit(s) Irigaray Mine Unit(s) Irigaray Mine Unit(s) Irigaray Mine Unit(s) Christensen Mine Unit Mine Unit	
#1 Thru #5 #6 Thru #5 #2 #3 #4 #5 #6 #7 #8 SUMMARY I GROUNDWATER SWEEP \$102,433 \$48,862 \$24,152 \$19,622 \$16,918 \$60,012 \$113,937 \$0 II REVERSE OSMOSIS \$106,512 \$289,295 \$201,309 \$167,783 \$143,869 \$531,714 \$885,785 \$0 III WASTE DISPOSAL WELL \$0 \$0 \$40,902 \$33,393 \$29,192 \$112,022 \$187,529 \$0 VI STABILIZATION \$14,475 \$18,075 \$16,725 \$14,475 \$12,675 \$17,175 \$27,075 \$0 VI ABOR \$223,419 \$356,232 \$283,088 \$235,273 \$202,654 \$720,923 \$1,214,327 \$0 \$3 VI CAPITAL \$223,419 \$356,232 \$283,088 \$235,273 \$202,654 \$720,923 \$1,214,327 \$0 \$3 VI CAPITAL \$214,475 \$12,433 \$48,862 \$24,152 \$19,622 \$16,918 \$60,012 \$113,937 \$3 Credit fo	
SUMMARY I GROUNDWATER SWEEP \$102.433 \$48.862 \$24.152 \$19.622 \$16.918 \$60,012 \$113.937 \$0 II REVERSE OSMOSIS \$106.512 \$289.295 \$201.309 \$167.783 \$143.869 \$531.714 \$885.785 \$0 III WASTE DISPOSAL WELL \$0 \$0 \$40.902 \$33.393 \$29.192 \$112.022 \$187.529 \$0 IV STABILIZATION \$14.475 \$18.075 \$16.725 \$14.475 \$12.7075 \$0 \$27.075 \$0 \$3 V SUB TOTAL \$223.419 \$356.232 \$283.088 \$235.273 \$202.654 \$720.923 \$1.214.327 \$0 \$3 V LABOR \$356.232 \$283.088 \$235.273 \$202.654 \$720.923 \$1.214.327 \$0 \$3 V CAPITAL \$356.232 \$283.088 \$235.273 \$202.654 \$720.923 \$1.214.327 \$0 \$3 TOTAL GROUNDWATER RESTORATION COST Credit for Completion of Groundwater Sweep (WDEC	
I GROUNDWATER SWEEP \$102.433 \$48.862 \$24.152 \$19.622 \$16.918 \$60.012 \$113.937 \$0 II REVERSE OSMOSIS \$106.512 \$289.295 \$201.309 \$167.783 \$143.869 \$531,714 \$885,785 \$0 III WASTE DISPOSAL WELL \$0 \$0 \$40.902 \$33.393 \$29.192 \$112.022 \$187.529 \$0 IV STABILIZATION \$14.475 \$18.075 \$16.725 \$14.475 \$12.675 \$17.175 \$27.075 \$0 V LABOR \$223.419 \$356.232 \$283.088 \$223.5273 \$202.654 \$720.923 \$1.214.327 \$0 \$35 V LABOR \$12.435 \$18.075 \$16.725 \$14.475 \$12.022 \$12.14.327 \$0 \$35 V LABOR \$223.419 \$356.232 \$283.088 \$225.273 \$202.654 \$720.923 \$1.214.327 \$0 \$35 V LABOR V CAPITAL \$356.232 \$283.088 </th <th></th>	
II REVERSE OSMOSIS \$106,512 \$289,295 \$201,309 \$167,783 \$143,869 \$531,714 \$885,785 \$0 III WASTE DISPOSAL WELL \$0 \$0 \$40,902 \$33,393 \$29,192 \$112,022 \$187,529 \$0 IV STABILIZATION \$14,475 \$18,075 \$16,725 \$14,475 \$12,675 \$17,175 \$27,075 \$0 V SABI TOTAL \$223,419 \$356,232 \$283,088 \$223,5273 \$202,654 \$720,923 \$1,214,327 \$0 \$33 V LABOR VI CAPITAL \$223,419 \$356,232 \$283,088 \$223,5273 \$202,654 \$720,923 \$1,214,327 \$0 \$33 V LABOR VI CAPITAL \$356,232 \$283,088 \$223,5273 \$202,654 \$720,923 \$1,214,327 \$0 \$33 TOTAL \$326,232 \$283,088 \$223,5273 \$202,654 \$720,923 \$1,214,327 \$0 \$33 TOTAL GROUNDWATER RESTORATION COST	SUMMARY
III WASTE DISPOSAL WELL \$0 \$0 \$40,902 \$33,393 \$29,192 \$112,022 \$187,529 \$0 IV STABILIZATION \$14,475 \$18,075 \$16,725 \$14,475 \$12,675 \$17,175 \$27,075 \$0 SUB TOTAL \$223,419 \$356,232 \$283,088 \$235,273 \$202,654 \$720,923 \$1,214,327 \$0 \$33 V LABOR VI CAPITAL \$356,232 \$283,088 \$235,273 \$202,654 \$720,923 \$1,214,327 \$0 \$33 TOTAL GROUNDWATER RESTORATION COST \$356,232 \$283,088 \$235,273 \$202,654 \$720,923 \$1,214,327 \$0 \$33 TOTAL GROUNDWATER RESTORATION COST \$336,622 \$24,152 \$19,622 \$16,918 \$60,012 \$113,937 \$0 Credit for Completion of Groundwater Sweep (WDE(\$102,433 \$48,862 \$24,152 \$19,622 \$16,918 \$60,012 \$113,937 \$0	I GROUNDWATER SWEEP
IV STABILIZATION \$14,475 \$18,075 \$14,475 \$12,675 \$17,175 \$27,075 \$0 SUB TOTAL \$223,419 \$356,232 \$283,088 \$235,273 \$202,654 \$720,923 \$1,214,327 \$0 \$33 V LABOR VI CAPITAL \$202,654 \$720,923 \$1,214,327 \$0 \$33 TOTAL GROUNDWATER RESTORATION COST \$202,654 \$720,923 \$1,214,327 \$0 \$33 Credit for Completion of Groundwater Sweep (WDEC \$102,433 \$48,862 \$24,152 \$19,622 \$16,918 \$60,012 \$113,937 \$0 Credit for Completion of Reverse Osmosis (WDEO) \$106,512 \$289,295 \$10,918 \$60,012 \$113,937 \$0 \$10	11 REVERSE OSMOSIS
SUB TOTAL \$223,419 \$356,232 \$283,088 \$235,273 \$202,654 \$720,923 \$1,214,327 \$0 \$33 V LABOR VI CAPITAL TOTAL GROUNDWATER RESTORATION COST 1	III WASTE DISPOSAL WELL
V LABOR VI CABITAL Status	IV STABILIZATION
VI_CAPITAL \$3 TOTAL GROUNDWATER RESTORATION COST \$3 Credit for Completion of Groundwater Sweep (WDEC \$102,433 \$48,862 \$24,152 \$19,622 \$16,918 \$60,012 \$113,937 \$0 Credit for Completion of Reverse Osmosis (WDEO) \$106,512 \$289,295 \$10,012 \$113,937 \$0	SUB TOTAL
TOTAL GROUNDWATER RESTORATION COST \$3 Credit for Completion of Groundwater Sweep (WDE(\$102,433 \$48,862 \$24,152 \$19,622 \$16,918 \$60,012 \$113,937 \$0 \$0 Credit for Completion of Reverse Osmosis (WDEO) \$106,512 \$289,295 \$106,512 \$106,512 \$289,295	V LABOR
Credit for Completion of Groundwater Sweep (WDEC \$102,433 \$48,862 \$24,152 \$19,622 \$16,918 \$60,012 \$113,937 \$0 Credit for Completion of Reverse Osmosis (WDEO) \$106,512 \$289,295	
Credit for Completion of Reverse Osmosis (WDEO) \$106,512 \$289,295	TOTAL GROUNDWATER RESTORATION COS
	Credit for Completion of Groundwater Sweep
	Credit for Completion of Reverse Osmosis (W
Credit Completion of Stabilization Monitoring (WDE(\$14,475 \$18.075	Credit Completion of Stabilization Monitoring
Credit Subtotal \$223,419 \$356,232 \$24,152 \$19,622 \$16,918 \$60,012 \$113,937 \$0 \$0	Credit Su
GRAND TOTAL WDEQ \$0 \$0 \$258,936 \$215.651 \$185.735 \$660,910 \$1,100,389 \$0 \$0 \$33	GRAND TOTAL WDEQ
GRAND TOTAL NRC (no cred \$223,419 \$356,232 \$283,088 \$235,273 \$202,654 \$720,923 \$1,214,327 \$0 \$0 \$3	GRAND TOTAL NRC (no

		·····		Irigaray						Christensen		
	Maint Area &	Main Process	Expansion	Resin +Sand	Dry Pack	Restoration		Satellite	Resin + Sand	Restoration	Wellfield	
PLANT EQUIPMENT REMOVAL AND DISPOSAL	Laboratory	Building	Building	Filter Media	Area	Building	Sub Total	Plant	Filter Media	Extension	Modules	Sub Tota
	· · · · · ·								·····			
/olume (Yds³)	40	200	180					91		42	55	
Quantity Per Truck Load (Yds ^a)	20	20	20	20				20		20	20	1
Number of Truck Loads	20	10.0	90	5.5	2.0	2.0		4 55	9.9	2.1	2.8	
I Decontamination Cost												1
Decontamination Cost (\$/Load)	\$435	\$435	\$435	\$435	\$435	\$435		\$435	\$435	\$435	\$435	1
Percent Requiring Decontamination	20.0%	100.0%	100.0%	1	100.0%			100 0%	0.0%	100.0%	100.0%	1
Total Cost	\$174	\$4,350	\$3,915	\$0	\$870	· \$870	\$10,179	\$1,979	\$0	\$914	\$1,196	\$4.08
II Dismantle and Loading Cost												
Cost Per Truck Load (\$)	\$650	\$650	\$650	\$650	\$650	\$650		\$650	\$650	\$650	\$650	1
Total Cost	\$1,300	\$6,500	\$5,850	\$3,575	\$1,300	\$1,300	\$19,825	\$2,958	\$6,403	\$1,365	\$1,788	\$12,51
III Oversize Charges												
Percent Requiring Permits	40 0%	40.0%	40.0%	0.0%	60.0%	40.0%		40 0%	0.0%	40.0%	0.0%	1
Cost Per Truck Load (\$)	\$326	\$326	\$326	\$326	\$326	\$326		\$326	\$326	\$326	\$326	1
Total Cost	\$261	\$1,304	\$1,174	\$0	\$391	\$261	\$3.390	\$593	\$0	\$274	\$020 \$0	\$86
IV Transportation & Disposal								0000				
A. Landfill												
Percent To Be Shipped	80.0%	80.0%	80.0%	0.0%	50.0%	80.0%		80.0%	0.0%	80.0%	80.0%	ł
Transportation Cost Per Truck Load	\$160	\$160	\$160	\$160	\$160	\$160		\$160	\$160	\$160	\$160	i -
Transportation Cost	\$256	\$1,280	\$1,152	\$0	\$160	\$256		\$582	50	\$269	\$352	í.
Disposal Fee Per Cubic Yard	\$12.00	\$12.00	\$12.00	\$12.00	\$12.00	\$12.00		\$12.00	\$12.00	\$12.00	\$12.00	i -
Disposal Cost (\$)	\$384	\$1,920	\$1,728	\$0	\$240	\$384		\$874	\$0	\$403	\$528	i -
Total Cost	\$640	\$3,200	\$2,880	\$0	\$400	\$640		\$1,456	\$0	\$672	\$880	i -
B. Licensed Site			02.000		0,100	0040	<u> </u>	01,400				ſ
Percent To Be Shipped	20.0%	20.0%	20.0%	100.0%	50.0%	20.0%		20.0%	100.0%	20.0%	20.0%	i -
Transportation Cost Per Truck Load		\$650	\$650	\$650	\$650	\$650		\$650	\$650	\$650	20.078 \$650	1
Transportation Cost	\$260	\$1,300	\$1 170	\$3,575	\$650	\$260		\$592	\$6,403	\$273	\$358	1
Disposal Cost Per Cubic Foot (\$)	\$11.00	\$1,000	\$11.00	\$11.00	\$11.00	\$11.00	ļ.	\$11.00	\$11.00	\$11.00	\$358 \$11.00	1
Quantity Per Truck Load (Yds ³)	20.0	20.0	20.0	20.0	20.0	20.0		20.0	20.0	20.0	20.0	1
Quantity Per Truck Load (Ft3)	540		540				1	20.0 540		1	20.0 540	1
Disposal Cost	\$2.376	\$11.880	\$10.692	\$32,670	\$5,940	\$2.376	1	\$5.405	\$58,509	\$2,495	540 \$3,267	I
Total Cost Licensed Site	\$2.636	\$13,180	\$11,862	\$36,245	\$6,590	\$2,636		\$5,405	\$64,912	\$2,495	\$3,267 \$3,625	i
Total Cost Transportation & Disposal	\$3,276	\$16,380	\$14,742	\$36,245	\$6,990	\$3,276	\$80,909	\$7,453	\$64,912	\$2.768	\$3,625	\$80.30
						•	A		1	·	27,000	
TOTAL COST	\$5,011	\$28,534	\$25,681	\$39,820	\$9,551	\$5,707	\$114,303	\$12,983	\$71.314	\$5,992	\$7.488	\$97,77
TOTAL COST - IRIGARAY AND CHRISTENSEN	٦											\$212,08

[Irigaray					Christensen		-		
- [7	Maint Area &	Warehouse	Main Process	Expansion	Dry Pack	Restoration	Satellite	Wellfield	Booster	Restoration	Office'		
L	Laboratory	& Offices	Building	Building	Area	Building Sub Total	Plant	Modules	Pump Bldgs.	Extension	Building	Warehouse	Sub Total

BUILDING DEMOLITION AND DISPOSAL

Structural Character	1 Story	1 Story	1 Story	1 Story	3 Story	1 Story		2 Story	1 Story	1 Story	2 Story	1 Story	1 Story	
	Steel Frame	Steel Frame	Steel Frame	Steel Frame	Steel/Masonry	Steel Frame		Steel Frame	Pre Fab (22)	Pre Fab (4)	Steel Frame	Pre-Fab	Steel Frame	
Demolition Volume (FI ³)	179400	108720	430400	386400	126000	69640		192000	95040	46720	72000	64800	11000	
Cost of Demolition Per Ft ³	\$0.1650	\$0.1650	\$0.1650	\$0.1650	\$0.1650	\$0.1650		\$0.1650	\$0.1650	\$0.1650	\$0.1650	\$0.1650	\$0.1650	
Demolition Cost (\$)	\$29,601	\$17,939	\$71,016	\$63,756	\$20.790	\$11,491	\$214,592	\$31,680	\$15.682	\$7,709	\$11,880	\$10,692	\$1,815	\$79.457
Factor For Gutting	15 0%	10.0%	30 0%	10.0%	20.0%	10 0%		20.0%	0.0%	0.0%	20.0%	10.0%	10.0%	-
Cost For Gutting (\$)	\$4,440	\$1,794	\$21,305	\$6.376	\$4.158	\$1,149	\$39,221	\$6,336	\$0	\$0	\$2,376	\$1.069	\$182	\$9,963
Weight (pounds)	158761	96212	380885	341947	111504	61628		169912	66660	28032	63717	38802	9735	
Weight per Truckload	40000	40000	40000	40000	40000	40000		40000	40000	40000	40000	40000	40000	
Number of Truckloads	4.0	2.4	9.5	8.5	2.8	1.5		4.2	1.7	0.7	1.6	1.0	0.2	
Transportation Cost per Truckload	\$160	\$160	\$160	\$160	\$160	\$160		\$160	\$160	\$160	\$160	\$2.58	\$2.58	
Transportation Cost (\$)	\$635	\$385	\$1,524	\$1,368	\$446	\$247	\$4,604	\$680	\$267	\$112	\$255	\$3	\$1	\$1,316
Disposal Cost per Truckload (25 CY)	\$300.00	\$300.00	\$300.00	\$300.00	\$300.00	\$300.00		\$300.00	\$300.00	\$300.00	\$300.00	\$300.00	\$300.00	
Disposal Cost (\$)	\$1,191	\$722	\$2,857	\$2,565	\$836	\$462	\$8,632	\$1,274	\$500	\$210	\$478	\$291	\$73	\$2,826
TOTAL COST	\$35.867	\$20,839	\$96,701	\$74.064	\$26,230	\$13.348	\$267,050	\$39,970	\$16,448	\$8.031	\$14,989	\$12.055	\$2,070	\$93,563
TOTAL COST IRIGARAY AND CHRISTENSEN	J							•						\$360.613

CONCRETE DECONTAMINATION, DEMOLITION & DISPOSAL

Area (FI ²)	8020	7100	17600	18400	5600	3600	1	9600	0	1440	3600		1000	
. ,	1 1				5600				0	- 1	1			14
Average Thickness (Ft)	0.5	0.5	0.5	0.5	'	0.5		0.5	0.0	0.5	0.5	0.0	0.5	
Volume (Ft ³)	4010	3550	8800	9200	5600	1800		4800	0	720	1800	0	500	
Percent Requiring Decontamination	0.0%	0.0%	100.0%	100.0%	100.0%	100.0%		100.0%	0.0%	100.0%	100.0%	0.0%	0.0%	
Percent Decontaminated	0.0%	0.0%	75.0%	75.0%	40.0%	75.0%		75.0%	0.0%	100.0%	100.0%	0.0%	0.0%	1
Decontamination (\$/Ft ²)	\$0.134	\$0.134	\$0.134	\$0.134	\$0.134	\$0.134		\$0.134	\$0.134	\$0.134	\$0.134	\$0.134	\$0.134	1
Decontamination Cost	\$0	\$0	\$1,769	\$1,849	\$300	\$362	\$4,280	\$965	\$0	\$193	\$482	\$0	\$0	\$1,640
Demolition (\$/Ft ²)	\$3.05	\$3.05	\$3.05	\$3.05	\$3.05	\$3.05		\$3.05	\$3.05	\$3.05	\$3.05	\$3.05	\$3.05	l
Demolition Cost	\$24,461	\$21,655	\$53.680	\$56,120	\$17,080	\$10,980	\$183,976	\$29,280	50	\$4,392	\$10,980	\$0	\$3.050	\$47,702
Transportation & Disposal														1
A. Onsite Disposal					1									
Percent to be Disposed Onsite	100%	100%	90%	90%	40%	90%		90%	0%	100%	100%	0%	100%	
Transportation Cost	\$0	\$0	\$0	so	\$0	\$0		\$0	\$0	\$0	so	so	\$0	
Disposal Cost per Cubic Foot	\$0.230	\$0.230	\$0.230	\$0 230	\$0.230	\$0.230		\$0 230	\$0.230	\$0 230	\$0 230	\$0.230	\$0 230	
Disposal Cost (\$)	\$922	\$817	\$1,822	\$1,904	\$515	\$373	\$6,353	\$994	so	\$166	\$414	\$0	\$115	\$1,688
B Licensed Site														
Percent to be Shipped	0%	0%	10%	10%	60%	10%		10%	100%	0%	0%	100%	0%	
Transportation Cost per Truckload	\$650	\$650	\$650	\$650	\$650	\$650		\$650	\$650	\$650	\$650	\$650	\$650	
Transportation Cost (\$)	\$0	\$0	\$1.059	\$1,107	\$4,044	\$217	\$6.428	\$578	\$0	sol	so	\$0	\$0	\$578
Disposal Cost per Cubic Foot	\$3.70	\$3.70	\$3.70	\$3.70	\$3.70	\$3,70		\$3 70	\$3.70	\$3 70	\$3.70	\$3.70	\$3.70	
Quantily Per Truck Load (Yds3)	20	20	20	20	20	20		20	20	20	20	20	20	ĺ
Quantity Per Truck Load (Ft ³)	540	540	540	540	540	540	1	540	540	540	540	540	540	
Disposal Cost (\$)	\$0	\$0	\$3,256	\$3,404	\$12,432	\$666	\$19,758	\$1,776	\$0	\$0	\$0	\$0	\$0	\$1.776
TOTAL COST	\$25,383	\$22,472	\$61,586	\$64,385	\$34,372	\$12,597	\$220,794	\$33,592	\$0	\$4,751	\$11,876		\$3,165	\$53,384
TOTAL COST IRIGARAY AND CHRISTENSEN	020.000	VCC, 416	001,000		<u>•04.072</u>	• ·2,007	0220,704	400,002			\$1.,070			\$274,178
TOTAL COOT MIGAINE AND CHAISTENSEN	1												l	<u></u>

col hing, Inc. 2005 Autoration and Reclamation Costs Wyoming Operations WORKSHEET 3

• •

	L			Irigaray				Christensen						
	Maint Area &			Expansion	Dry Pack	Restoration		Satellite	Wellfield	Booster	Restoration	Office		
	Laboratory	& Offices	Building	Building	Area	Building	Sub Total	Plant	Moaules	Pump Bidgs.	Extension	Building	Warehouse	Sub Tot
OIL REMOVAL & DISPOSAL]													
ssume removal of 3" of Contaminated Soil under	1													
rimary Areas, Disposal at a Licensed facility.	1													
Removal with Loader (\$75/hr) \$75	SO	\$0	\$1,222	\$1,278	\$389	\$250	\$3,139	\$667	\$0	\$0	\$0	\$0	\$0	\$66
Quantity to be Shipped (Ft ^a)	0	0	4400	4600	1400	900		2400	0	0	0	0	0	
Transportation Cost per Truckload	\$650	\$650	\$650	\$650	\$650	\$650		\$650	\$650	\$650	\$650	\$650	\$650	
Transportation Cost (\$)	\$0	\$0	\$5,296	\$5,537	\$1,685	\$1,083	\$13.602	\$2,889	\$0	\$0	\$0	\$0	\$0	\$2.88
Disposal fee Per Cubic Foot(\$)	\$3.70	\$3.70	\$3.70	\$3.70	\$3.70	\$3.70	••••••	\$3 70	\$3.70	\$3.70	\$3.70	\$3.70	\$3.70	02,00
Quantity per Truckload (Ft ³)	540	540	540	540	540	540		540	540	540	540	540	540	
Disposal Cost (\$)	\$0	\$0	\$16.280	\$17,020	\$5,180	\$3,330	\$41,810	\$8,880	\$0	\$0		\$0	\$0	\$8,88
Removal, NPDES Pts.														
Quantity to be Shipped (Ft3)			559					5,030					}	
Transportation Cost per Truckload	\$650	\$650	\$650	\$650	\$650	\$650		\$650	\$650	\$650	\$650	\$650	\$650	
Transportation Cost (\$)	\$0	\$0	\$673	\$0	\$0	\$0	\$673	\$6,055	\$0	\$0		\$0		\$6.05
Disposal fee Per Cubic Foot(\$)	\$3.70	\$3.70	\$3,70	\$3.70	\$3.70	\$3.70		\$3.70	\$3,70	\$3,70	\$3.70	\$3.70		
Quantity per Truckload (Ft3)	540	540	540	540	540	540		540	540	540		540		
Disposal Cost (\$)	\$0	\$0	\$2.068	\$0	\$0	\$0	\$2,068	\$18.611	\$0	\$0		. SO	1	\$18.6
Total Cost	\$0	\$0	\$25,539	\$23,835	\$7,254	\$4,663	\$61,291	\$37,102	50	\$0	\$0	\$0	\$0	\$37.1
OTAL COST	\$0	\$0	\$25,539	\$23,835	\$7,254	\$4,663	\$61,291	\$37,102	\$0	\$0	\$0	\$0	\$0	\$37,10
DTAL COST IRIGARAY AND CHRISTENSEN]					•	<u> </u>			<u></u>				\$98,3
ADIATION SURVEY											1	<u> </u>		
Area required (acres)	0.18	0.16	0.40	0.42	0.13	0.08		0.22	0.00	0.03		0.00		
Survey Cost (\$/acre)	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00		\$520.00	\$520.00	\$520.00		\$520.00		
OTAL SURVEY COST (\$)	\$96		\$210	\$220	\$67	\$43	\$636	\$115	\$0	\$17	\$43	\$0	\$12	\$1
OTAL COST	\$61,346	\$43,311	\$184,036	\$162,504	\$67.923	\$30.652	\$549,771	\$110.779	\$16,448	\$12,799	\$26,908	\$12,055	\$5,247	\$184,2
OTAL COST IDICADAY AND CUDICTENICEN										****	لمثا متعصيم بالمراجع			07040

TOTAL COST TOTAL COST IRIGARAY AND CHRISTENSEN

\$5,247 \$184,236 \$734.007

.

- 39e

-

	r			1.1					· · ·	517	· · · · · ·	Brine	Brine	0			
POND RECLAMATION COST	Pond A	Pond B	Pond C	Irigaray Pond D	Pond E	Pond RA	Pond RB	Pond 1	Pond 2A	517 Pond 2B	Pond 3	Pond 1	Pond 2	Brine Pond 3	Brine Pond 4	Permeate Pond	
POND RECEAMATION COST	FUNDA	Fond D	Ond C	2010 0	PUNCE	FOLD HA	PONU HB	Ponul	Ponu 2A	POILU 2B	FUNDS		PONU 2	Pond 3 1	Pond 4	Pond	
POND SLUDGE:	I				1									T			
Average Sludge Depth (Ft)	1	0.156		0,135			0 156					0.166	0.222	0.143	0.068	0.000	
Average Area of Sludge (Ft ²)		50,604		62.291			50.604			J		20.909	20,909	20,909	20,909	0.000	
Volume of Sludge (Fr ³)		7,907		8,435			7,907		-			3.466	4.651	2,983	1,414		
Volume of Sludge (Yds3)	0	293	0	312	0	0	293	0	0	o	ol	128	172	110	52	0	
Volume of Sludge Per Truck Load (Yds ³)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	
# of Truck Loads of Sludge	0.0	14,7	0.0	15.6	0.0	0.0	14.7	0.0	0.0	0.0	0.0	6.4	8.6	5.5	2.6	0.0	
Sludge Handling Cost Per Load (\$)	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	\$240.00	
Total Sludge Handling Cost (\$)	\$0	\$3:528	\$0	\$3,744	\$0	\$0	\$3,528	\$0	\$0	\$0	\$0	\$1,536	\$2,064	\$1,320	\$624	\$0	
Transportation & Disposal													02,004	01,000			
Percent To Be Shipped to Licensed Site	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100 0%	100.0%	100.0%	100.0%	100.0%	
Transportation Cost per Truckload	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	
Transportation Cost (\$)	\$0	\$9.555	\$0	\$10,140	ŝõ	\$0	\$9,555	\$0	\$0	\$0	so	\$4,160	\$5,590	\$3.575	\$1,690	SO	
Disposal Cost Per Cubic Foot (\$)	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	
Quantity Per Truck Load (Yds ³)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	
Quantity Per Truck Load (Ft3)	540	540	540	540	540	540	540	540	540	540	540	540	540	540	540	540	
Disposal Cost (\$)	\$0	\$87.318	\$0	\$92,664	\$0	\$0	\$87,318	\$0	\$0	\$0	\$0	\$38,016	\$51,084	\$32,670	\$15,444	\$0	
Total Transportation & Disposal (\$)	so	\$96,873	\$0	\$102,804	\$0	\$0	\$96,873	\$0	\$0	\$0	\$0	\$42,176	\$56.674	\$36,245	\$17,134	\$0	-
TOTAL SLUDGE COST (\$)	SO	\$100,401	\$0	\$106,548	\$0	\$0	\$100,401	\$0	\$0	\$0	\$0	\$43,712	\$58,738	\$37,565	\$17,758	\$0	\$465,123
PONDLINER	4									ĺ					4		
Total Pond Area (Acres)		1.72		1.72			2.17				1	1.10	1.10	1.10	1.10	0.00	
Total Pond Area (Ft ²)	0	74923.2	0	74923.2	0	0	94525.2	0	0	0	0	47916	47916				
Factor For Sloping Sides	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	0.0%	
Total Liner Area (Ft ²)	0	89908	0	89908	0	0	113430	0	. 0	0	0	57499	57499				
Liner Thickness (Millimeters)	30	30	30	30	30	30	•	30	30	30	30	30	30	30	30	0	
Liner Thickness (Inches)	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0.1181	0	
Liner Thickness (Ft)	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0.0098	0	
"Swell" Factor	25 0%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%	25 0%	25 0%	25.0%	25.0%	25.0%	25.0%	0.0%	
Liner Volume (Fl ³)	0	1101	0	1101	0	0	1390	0	0	0	0	704	704	704		0	
Truck Loads of Liner	0.0	2.0	0.0	2.0	0.0	0.0	2.6	0.0	0.0	0.0	• 0.0	1.3	1.3	1.3	1.3	0.0	
Liner Handling Cost (\$)	4 .					_									'		
Labor Crew Cost per Hour (\$)	\$90	\$90	\$90	\$90	\$90	\$90	\$90	\$90	\$90	\$90	\$90	\$90	\$90	\$90	\$90	\$0	
Hours per Load	2.0	2.0	2.0	20	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.0	
Liner Handling Cost Per Load (\$)	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$180.00	\$0.00	
Total Liner Handling Cost (\$)	\$0	\$360	\$0	\$360	\$0	\$0	\$468	\$0	\$0	\$0	\$0	\$234	\$234	\$234	\$234	\$0	
Transportation & Disposal			100.53	100.01	100.00			100.00	400.00	100.00	100.00	100.001	100.00	100.00	1 100 00	1 100 00	
Percent To Be Shipped to Licensed Site	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	
Transportation Cost per Truckload	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	\$650	
Transportation Cost (\$)	\$0	\$1,300	\$0	\$1,300	\$0	\$0	\$1,690	\$0	\$0	\$0	\$0	\$845	\$845	\$845	\$845	\$0	
Disposal Cost Per Cubic Foot (\$)	\$11.00	\$11.00	\$11.00	\$11.00	\$11 00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	\$11.00	
Quantity Per Truck Load (Ft ^a)	540	540	540	540	540	540			540	540	540	540	540				
Disposal Cost (\$)	\$0	\$11,880	\$0	\$11,880	\$0	\$0	\$15,444	\$0	\$0	\$0	\$0	\$7,722	\$7,722	\$7,722	\$7.722	\$0	
Total Transportation & Disposal (\$)	\$0	\$13,180	\$0	\$13,180	\$0	\$0	\$17,134	\$0	\$0	\$0	\$0	\$8,567	\$8,567	\$8,567	\$8,567	\$0	
TOTAL LINER COST (\$)	\$0	\$13,540	\$0	\$13.540	\$0	\$0	\$17,602	\$0	\$0	\$0	\$0	\$8,801	\$8,801	\$8,801	\$8,801	\$0	\$79,886
POND BACKFILL	T	<u> </u>		·····		r	Γ	I	r	[]	<u></u>					·	
	-	0500	07.40	8580	2517	14617	16319					9048	9048	9048	9048	18070	
· · · · · · · · · · · · · · · · · · ·	87/0																
Backfill required (Yds3) Backfill Cost (\$/Yd3)	8740 \$1.00	8580 S1 00	8740 \$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	

			Irigaray						517		Brine	Brine	Brine	Brine	Permeate	
ond A	Pond B	Pond C	Pond D	Pond E	Pond RA	Pond RB	Pond 1	Pond 2A	Pond 2B	Pond 3	Pond 1	Pond 2	Pond 3	Pond 4	Pond	
				1		T						1			T	
1.75	1.72	1.75	1.72	0.78	2.17	2.17	0.00	0.00	0.00	0.00	1.10	1.10	1.10	1.10	0	
\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	\$520 00	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	
\$910	\$894	\$910	\$894	\$406	\$1,128	\$1,128	\$0	\$0	\$0	\$0	\$572	\$572	\$572	\$572	\$0	\$8,558
r	1		13851			T		[TJ	
			12951			·····	·····					r			T	
		540	540					1								
		0.0	25.7			i i									1	
1		\$650	\$650												1	
		\$0	\$16,673						ļ							
		\$0	\$6,156					1								
		\$3.70	\$3.70													
1		\$0	\$51,249													
\$0	\$0	\$0	\$74,077	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$74,077
	1.75 520.00 \$910	1.75 1.72 520.00 \$520.00 \$910 \$894	1.75 520.00 \$910 \$910 \$894 \$910 \$894 \$910 \$650 \$650 \$0 \$0 \$3.70 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	nd A Pond B Pond C Pond D 1.75 1.72 1.75 1.72 520.00 \$520.00 \$520.00 \$520.00 \$910 \$894 \$910 \$894 0.0.0 25.7 \$650 \$650 \$0 \$16.673 \$0 \$6.156 \$3.70 \$3.70 \$0 \$51.249	Ind A Pond B Pond C Pond D Pond E 1.75 1.72 1.75 1.72 0.78 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$910 \$894 \$910 \$884 \$406 0.0 25.7 \$650 \$650 \$650 \$0 \$16.673 \$0 \$16.673 \$3.70 \$0 \$51.249 \$51.249 \$51.249	Ind A Pond B Pond C Pond D Pond E Pond RA 1.75 1.72 1.75 1.72 0.78 2.17 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$910 \$894 \$910 \$894 \$406 \$1,128 13851	Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB 1.75 1.72 1.75 1.72 0.78 2.17 2.17 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$910 \$894 \$910 \$894 \$406 \$1,128 \$1,128 540 540 540 0.0 2.57 \$650 \$650 \$0 \$16.673 \$0 \$1,51 \$0 \$6,156 \$3.70 \$3.70 \$0 \$51,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249 \$1,249	Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00	Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$500.00 \$500.00 \$50.00 \$50.00 \$50.00 \$50.00 \$50.00 \$50.00 \$50.00 \$50.00 \$50.00 \$50.	Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 2B 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$500.00 \$50 \$50 \$50 \$50	Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 2B Pond 3 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 0.00 0.00 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$50.00 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 <td>Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 2B Pond 3 Pond 1 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 0.00 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$50 \$0 \$50</td> <td>Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 2B Pond 3 Pond 1 Pond 2 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$500.00 \$50.0 \$50.0<td>Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2B Pond 3 Pond 1 Pond 2 Pond 3 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$50 \$572 \$572 <td< td=""><td>Ind A Pond B Pond C Pond D Pond E Pond RB Pond RB Pond 1 Pond 2A Pond 2B Pond 3 Pond 1 Pond 2 Pond 3 Pond 4 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10</td><td>Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 3 Pond 1 Pond 3 Pond 4 Pond 4 Pond 4 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00</td></td<></td></td>	Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 2B Pond 3 Pond 1 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 0.00 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$50 \$0 \$50	Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 2B Pond 3 Pond 1 Pond 2 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$500.00 \$50.0 \$50.0 <td>Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2B Pond 3 Pond 1 Pond 2 Pond 3 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$50 \$572 \$572 <td< td=""><td>Ind A Pond B Pond C Pond D Pond E Pond RB Pond RB Pond 1 Pond 2A Pond 2B Pond 3 Pond 1 Pond 2 Pond 3 Pond 4 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10</td><td>Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 3 Pond 1 Pond 3 Pond 4 Pond 4 Pond 4 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00</td></td<></td>	Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2B Pond 3 Pond 1 Pond 2 Pond 3 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$50 \$572 \$572 <td< td=""><td>Ind A Pond B Pond C Pond D Pond E Pond RB Pond RB Pond 1 Pond 2A Pond 2B Pond 3 Pond 1 Pond 2 Pond 3 Pond 4 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10</td><td>Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 3 Pond 1 Pond 3 Pond 4 Pond 4 Pond 4 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00</td></td<>	Ind A Pond B Pond C Pond D Pond E Pond RB Pond RB Pond 1 Pond 2A Pond 2B Pond 3 Pond 1 Pond 2 Pond 3 Pond 4 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	Ind A Pond B Pond C Pond D Pond E Pond RA Pond RB Pond 1 Pond 2A Pond 3 Pond 1 Pond 3 Pond 4 Pond 4 Pond 4 1.75 1.72 1.75 1.72 0.78 2.17 2.17 0.00 0.00 0.00 1.10 1.10 1.10 1.10 1.10 1.10 520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00 \$520.00

SUMMARY - IRIGARAY.

TOTAL SLUDGE COST (\$)	\$307,350
TOTAL LINER COST (\$)	\$44.682
TOTAL BACKFILL COST (\$)	\$68,093
TOTAL RADIATION SURVEY COST (\$)	\$6,270
LEAK DETECTION SYSTEM REMOVAL	\$74,077
TOTAL POND RECLAMATION COST	\$500,472

SUMMARY - CHRISTENSEN:

TOTAL SLUDGE COST (\$)	\$157,773
TOTAL LINER COST (\$)	\$35,204
TOTAL BACKFILL COST (\$)	\$54,262
TOTAL RADIATION SURVEY COST (\$)	\$2,288
LEAK DETECTION SYSTEM REMOVAL	\$0
TOTAL POND RECLAMATION COST	\$249,527
TOTAL PROJECT COST - CR and IR (\$)	\$749,999

	1	Irigaray				Christ	ensen	
	Mine Units	517 USMT	Monitor/		Mine Units	Monitor/	Misc.	
WELL PLUGGING AND ABANDONMENT	#1 Thru #9	Test Sites	Trend	Sub Total	#2 Thru #7	Trena	Regional	Sub Tota
Number of Wells	1064	11	314	1389	2062	327	137	252
Average Depth	250	250	250		410	410	410	
Average Diameter	4.5	4.5	4.5		4 5	4.5	4,5	
Materials		·····						
Bentonite Chips Required (Ft ³ /Well)	11.4	11.4	11.4		11.4	11.4	11.4	
Bags of Chips Required/Well	15.0	15.0	• 15.0		15.0	15 0	15.0	
Cost Per Bag (\$)	\$4.50	\$4.50	\$4.50		\$4.50	\$4.50	\$4.50	
Cost/Well Bentonite Chips (\$)	\$67.50	\$67.50	\$67.50		\$67.50	\$67.50	\$67.50	
Gravet Fill Required (Ft ³ /Well)	15.7	15.7	15,7		33.6	33.6	33.6	
Gravel Fill Required (Yd3/Well)	0.58	0.58	0 58		1,24	1,24	1,24	
Cost of Gravel/Yd3 (\$)	\$20.00	\$20.00	\$20.00		\$20.00	\$20.00	\$20.00	
Cost/Well Gravel Fill (\$)	\$11.63	\$11.63	\$11.63		\$24.89	\$24.89	\$24.89	
Cement Cone/Markers Reg/d/Well	1.0	1.0	1.0		1.0	1.0	1.0	
Cost of Cement Cones/Markers (\$)	\$4.00	\$4.00	\$4.00		\$4 00	\$4.00	\$4.00	
Total Materials Cost per Well	\$83.13	\$83.13	\$83.13		\$96.39	\$96.39	\$96.39	
Labor								
Hours Required per Well	1.0	10	10		1.0	10	1.0	
Labor Cost per Hour	\$60.00	\$60.00	\$60.00		\$60.00	\$60.00	\$60.00	
Total Labor Cost per Well (\$)	\$60.00	\$60.00	\$60.00		\$60.00	\$60.00	\$60.00	
Equipment Rental								
Hours Required per Well	1.0	1.0	10		1.0	1.0	1.0	ļ
Backhoe w/Operator Cost/Hr (\$)	\$38.50	\$38.50	\$38.50		\$38 50	\$38.50	\$38.50	1
Total Equipment Cost per Well (\$)	\$38 50	\$38.50	\$38.50		\$38.50	\$38.50	\$38.50	
Total Cost per Well (\$)	\$181.63	\$181.63	\$181.63		\$194.89	\$194.89	\$194.89	
TOTAL WELL ABANDONMENT COST (\$)	\$193,254	\$1,998	\$57.032	\$252,284	\$401.861	\$63,729	\$26,700	\$492.28

12

GRAND TOTAL IRIGARAY AND CHRISTENSEN

.

\$744,573

	Irigaray	Christensen	Christensen	Christensen	Christensen	Christensen	Total
	Mine Unit(s)	Mine Units	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Christensen
ELLFIELD EQUIPMENT REMOVAL & DISPOSAL	#1 Thru #9	#2 Thru #4	#5	#6	#7	#8	& Irigaray
Wellfield Piping							
A. Removal							
Length/Well (Ft)	100	300	300	300			
Total Number of Wells	1064	1021	494	446			
Total Quantity (Ft)	106400	306300	148200	133800			
Cost of Removal (\$/Ft)	\$0.202	\$0.202	\$0.202	\$0.202			
Cost of Removal (\$)	\$21,493	\$61,873	\$29,936	\$27,028			\$140,329
Average OD (Inches)	3.0	3.0	3.0	3.0			
Chipped Volume Reduction (Ft ³ /Ft)	0.016	0.016	0.016	0.016			
Chipped Volume (FI3)	1,702	4,901	2.371	2,141			
Quantity Per Truck Load (Ft3)	540	540	540	540			1
Total Number of Truck Loads	3.2	9.1	4.4	4.0			
B. Survey & Decontamination							
Percent Requiring Decontamination	0%	0%	0%	0%			
Loads for Decontamination	0.0	0.0	0.0	00			
Cost for Decontamination (\$/Load)	\$435.00	\$435.00	\$435.00	\$435.00		1	
Cost for Decontamination (\$)	\$0	\$0	\$0	\$0	1		\$
C. Transport & Disposal						1	
1) Landfill				ŀ	· ·		
a Transportation						1	
Percent To Be Shipped	0.0%	0.0%	0.0%	0.0%			ļ
Loads To Be Shipped	00	0.0	00	. 0.0			
Transportation Cost per Load	\$160	\$160	\$160	\$160		-	1
Transportation Cost (\$)	50	\$0	\$0	\$0			\$
b. Disposal							
Disposal Fee Per Yd ³	\$12.00	\$12.00	\$12.00	\$12.00			
Yds ³ Per Load	20	20		20			
Disposal Cost (\$)	SO	\$0	\$0	\$0			
Total Cost - Landfill	\$0	\$0	\$0	\$0			S
2) Licensed Site		•••		1	ł		1
a Transportation			1				
Percent To Be Shipped	100.0%	100.0%	100.0%	100.0%	1		
Loads To Be Shipped	3.2	9.1	4.4	4.0	1		1
Transportation Cost per Load	\$650	\$650	\$650	\$650			
Transportation Cost (\$)	\$2,080	\$5,915	\$2,860	\$2,600		1	\$13,45
b. Disposal			11,000	1			
Disposal Cost Per Ft ^a	\$11.00	\$11.00	\$11.00	\$11.00			
Disposal Fee Per Yd3	\$297.00	\$297.00	\$297.00	\$297.00			
Quantity Per Truck Load (Yds3)	20		1		-		
Disposal Cost (\$)	\$19,008	\$54,054	\$26,136	\$23,760		1	\$122.95
Total Cost - Licensed Site	\$21,088	\$59,969	\$28,996	\$26,360	1		\$136,41
	I \$21,000	003,903	1 450,990	20,300		1	
Total Cost - Transport & Disposal	\$21,088	\$59,969	\$28,996	\$26,360	[\$136,41

ORIGINELI U	Irigaray	Christensen	Christensen	Christensen	Christensen	Christensen	Total
	Mine Unit(s)	Mine Units	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Christense
ELLFIELD EQUIPMENT REMOVAL & DISPOSAL	#1 Thru #9	#2 Thru #4	#5	#6	#7	#8	& Irigaray
II Production Well Pumps			·			L.,,	
A. Pump and Tubing Removal				1	1		[
Number of Production Wells	424	443	217	202			
Cost of Removal (\$/well)	\$22.50	\$22.50	\$22.50	\$22 50			
Cost of Removal (\$)	\$9,540	\$9,968	\$4,883	\$4,545			\$28,93
Number of Pumps Per Truck Load	180		180	180			
Number of Truck Loads (Pumps)	2.4	2.5	1.2	1.1			
B Survey & Decontamination (Pumps)							
					1		
Percent Requiring Decontamination	50.0%		50.0%	50.0%			
Loads for Decontamination	1.2	1.3	0.6	0.6			
Cost for Decontamination (\$/Load)	\$435.00	\$435.00	\$435.00	\$435.00			
Cost for Decontamination (\$)	\$522	\$566	\$261	\$261			\$1,6
C. Tubing Volume Reduction & Loading							
Length per Well (Ft)	100	300	300	450			
Total Quantity (Ft)	42,400	132,900	65,100	90,900			
Cost of Removal (\$/Ft)	\$0.025	\$0.025	\$0.025	\$0.025			
Cost of Removal (\$)	\$1.060	\$3.323	\$1,628	\$2,273			\$8.2
Average OD (Inches)	3.0	3.0	3.0	3.0	1		
Chipped Volume Reduction (Ft%Ft)	0.016	0.016	0.016	0.016			
Chipped Volume (Ft ^a)	678	2.126	1,042	1,454			1
Quantity per Truckload (FP)	540	540	540	540			
Number of Truck Loads	1.3	3.9	1.9	2.7			
D. Transport & Disposal						1	
1.) Landfill							1
 a. Transportation 							
Percent To Be Shipped (Pumps)	50.0%	50.0%	50.0%	50.0%	,		
Loads To Be Shipped	1.2	1.3	0.6	0.6			
Transportation Cost per Load	\$160	\$160	\$160	\$160			
Transportation Cost (\$)	\$192	\$208	\$96	\$96			\$5
b. Disposal			1	1			
Disposal Fee Per Yd ³	\$12.00	\$12.00	\$12.00	* \$12.00		1	
Yds∘ Per Load	20			20	9	1	
Disposal Cost (\$)	\$288	\$312	\$144	\$144			\$8
Total Cost - Landfill	\$480	\$520	\$240	\$240			\$1,4
2.) Licensed Site							
a. Transportation						1	
Percent To Be Shipped (Pumps)	50.0%			50.0%			
Percent To Be Shipped (Tubing)	100.0%			100.0%			
Loads To Be Shipped	2.5	5.2	2.5	3.2			
Transportation Cost per Load	. \$650	\$650	\$650	\$650			
 Transportation Cost (\$) 	\$1,597	\$3,372	\$1,644	\$2,108	1		\$8,7
b. Disposal			1				
Disposal Cost Per Ft ³	\$11.00	\$11.00	\$11.00	\$11.00			1
Disposal Fee Per Yd ^a	\$297.00	\$297.00	\$297.00	\$297.00			
Quantity Per Truck Load (Yds3)	20	20	20	20			
Disposal Cost (\$)	\$14,590	\$30,815	\$15.022	\$19,265			\$79.6
Total Cost - Licensed Site	\$16.187	\$34,187	\$16,665	\$21,374			\$88,4
Total Cost - Transport & Disposal	\$16.667	\$34,707	\$16,905	\$21,614			\$89,8
Total Cost - Pump Removal & Disposal	\$27,789	\$48,563	\$23,676	\$28,692	\$0	\$0	\$128,7

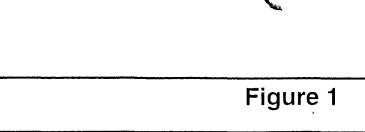
.

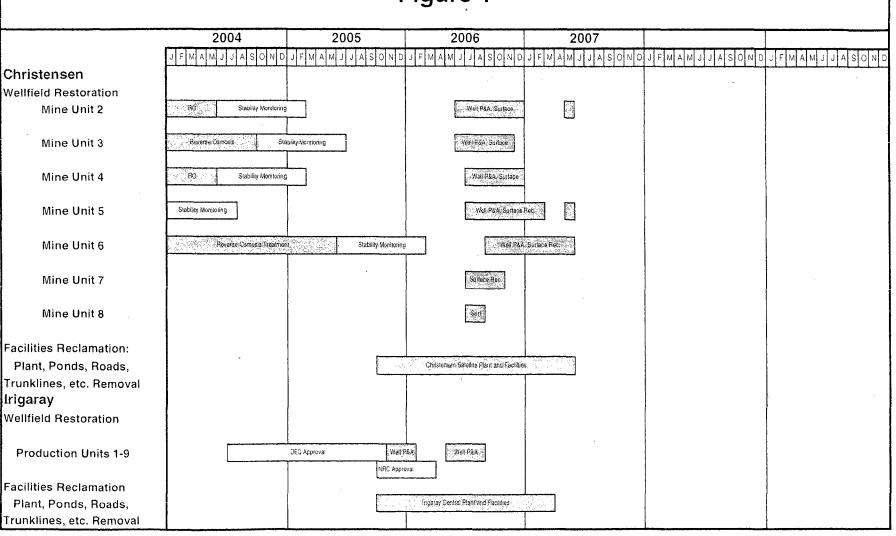
.

VORKORECO							
	Irigaray	Christensen	Christensen	Christensen	Christensen		Total
	Mine Unit(s)	Mine Units	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Christensei
VELLFIELD EQUIPMENT REMOVAL & DISPOSAL	#1 Thru #9	#2 Thru #4	#5	#6	#7	#8	& trigaray
III Surface Trunkline Piping	_						
A. Removal						1	
Total Quantity (Ft)	44700	0	0	0	0	0	
Cost of Removal (\$/Ft)	\$0.146	. \$0.146	\$0.146	\$0.146	\$0.146	\$0.146	
Cost of Removal (\$)	\$6.526	\$0	\$0	\$0	\$0	S0	\$6,52
Average OD (Inches)	8.750	8.750	0.000	0.000	0.000	0.000	
Chipped Volume Reduction (Ft ³ /Ft)	0.088	0.088	0.088	0.088	0.088	0.088	
. Chipped Volume (Ft ^a)	3934	0	0	0	0	0	
Quantity Per Truck Load (FI3)	540	540	540	540	0	0	1
Total Number of Truck Loads	7.3	0.0	0.0	0.0	0.0	0.0	
B. Survey & Decontamination							
Percent Requiring Decontamination	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Loads for Decontamination	0.0	0.0	0.0	0.0	0.0	0.0	
Cost for Decontamination (\$/Load)	\$435.00	\$435.00	\$435.00	\$435.00	\$0.00	\$0.00	
Cost for Decontamination (\$)	\$0	S0	\$0	\$0	\$0	\$0	
C. Transport & Disposal							
1.) Landfill					1		
a. Transportation							ļ
Percent To Be Shipped	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1
Loads To Be Shipped	0.0	0.0	0.0	0.0	0.0	0.0	
Transportation Cost per Load	\$160	\$160	\$160	\$160	\$0	\$0	
Transportation Cost (\$)	\$0	\$0	\$0	\$0	\$0	\$0	
b. Disposal							
Disposal Fee Per Yd ³	\$12.00	\$12.00	\$12.00	\$12.00	\$0.00	\$0.00	
Yds ³ Per Load	20	1	1]
Disposal Cost (\$)	50	\$0	\$0	50	\$0	ടര്	} .
Total Cost - Landfill	SO	\$0	\$0	\$0	\$0	50	
2.) Licensed Site				ļ , , , , , , , , , , , , , , , , , , ,	1	1	
a. Transportation	1				1	1	
Percent To Be Shipped	100.0%	100.0%	100.0%	100.0%	100.0%	100 0%	
Loads To Be Shipped	7.3	0.0	0.0	0.0	0.0	0.0	
Transportation Cost per Load	\$650	\$650	\$650	\$650	30	\$0.0 \$0	
Transportation Cost (\$)	\$4,735	\$0	\$050	\$030	50 S0	\$0	\$4,7
b. Disposal	ų/00	1 00	30		30		04,0
Disposal Cost Per Ft ^a	\$11.00	\$11.00	\$11.00	\$11.00	\$0.00	\$0.00	
Disposal Fee Per Yda	\$297.00	\$297.00	\$297.00	\$297.00	\$0.00	\$0.00	
Quantity Per Truck Load (Yds ³)	20			{ · · · · · · · · · · · · · · · · · · ·			
Disposal Cost (\$)	\$43,270		\$0 \$0	\$0		-	1
					SO		\$43.2
Total Cost - Licensed Sile	\$48,004	\$0	\$0	\$0	\$0	\$0	\$48.00
Total Cost - Transport & Disposal	\$48,004	\$0	\$0	<u>\$0</u>	\$0	\$0	\$48.00
Total Cost - Surface Trunkline Removal & Disposal	\$54,531	\$0	\$0	\$0	\$0	\$0	\$54.5

-

	manufacture and a second second second second second second second second second second second second second se						
	Irigaray	Christensen	Christensen	Christensen	Christensen	Christensen	Total
	Mine Unit(s)	Mine Units	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Christensei
LEFELD EQUIPMENT REMOVAL & DISPOSAL	#1 Thru #9	#2 Thru #4	#5	#6	#7	#8	& Irigaray
Buried Trunkline							
A. Removal							
Total Quantity (Ft)	7300		24500		0	•	Į
Cost of Removal (\$/Ft)	\$3.12	\$3.12	\$3.12	\$3.12	\$3.12	\$3.12	[
Cost of Removal (\$)	\$22,776	\$36,083	\$76,440	\$146,640	\$0	\$0	\$281.93
Average OD (Inches)	8.750	8.750	8.750	12.000	12.000	12.000	
Chipped Volume Reduction (Ft3/Ft)	0.088	0.088	0 088	0.130	-0.130	0.130	
Chipped Volume (Ft ³)	642	1018	2156	6110	0	0	
Quantity Per Truck Load (FI3)	540	540	540	540	0	0	
Number of Truck Loads	1.2	1.9	4.0	11.3	0.0	0.0	
B. Survey & Decontamination							
Percent Requiring Decontamination	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Loads for Decontamination	0.0	0.0	0.0	0.0	0.0	0.0	ļ
Cost for Decontamination. (\$/Load)	\$435.00	\$435.00	\$435.00	\$435.00	\$0.00		1
Cost for Decontamination. (\$)	\$0	\$0	\$0	\$0	\$0		9
C. Transport & Disposal					1]
1.) Landfill]
a. Transportation							
Percent To Be Shipped	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	}
Loads To Be Shipped	0.0	0.0	0.0	0.0	0.0		
Transportation Cost per Load	\$160	\$160	\$160	\$160	\$0	\$0	
Transportation Cost (\$)	\$0	\$0	\$0	\$0	\$0	\$0	
b. Disposal							
Disposal Fee Per Yo	\$12.00	\$12.00	\$12.00	\$12.00	\$0.00	\$0.00	
Yds ³ Per Load	20	20	20	20	C	0	
Disposal Cost (\$)	\$0	\$0	l so	\$0	so	\$0	
Total Cost - Landfill	\$0	\$0	so	\$0	\$0	\$0	
2.) Licensed Site]		
a. Transportation		ļ					
Percent To Be Shipped	100.0%	100.0%	100.0%	100.0%	100.0%	100 0%	
Loads To Be Shipped	1.2	19	4.0	11.3	0.0	0.0	
Transportation Cost per Load	\$650	\$650	\$650	\$650	\$0	\$0	1
Transportation Cost (\$)	\$780	\$1,235	\$2,600	\$7,345	\$0	\$0	\$11,96
b. Disposal							
Disposal Cost Per Ft ³	\$11.00	\$11.00	\$11.00	\$11.00	\$0.00	\$0.00	
Disposal Fee Per Yd ³	\$297 00	\$297.00	\$297.00	\$297.00	\$0.00	\$0.00	
Quantity Per Truck Load (Yds ³)	20	20	20	20	0	0	
Disposal Cost (\$)	\$7,128	\$11,286	\$23,760	\$67,122	SO SO	\$0	\$109,2
Total Cost - Licensed Site	\$7,908	\$12,521	\$26,360	\$74,467	SO	50	\$121,2
Total Cost - Transport & Disposal	\$7,908	\$12,521	\$26.360	\$74,467	50	\$0	\$121.2
Total Cost - Buried Trunkline Removal & Disposal	\$30,684	\$48,604	\$102,800	\$221,107	\$0	\$0	\$403.19


JANGHEELU							
	Ingaray	Christensen	Christensen	Christensen	Christensen	Christensen	Total
	Mine Unit(s)	Mine Units	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Christenser
ELLFIELD EQUIPMENT REMOVAL & DISPOSAL	#1 Thru #9	#2 Thru #4	#5	#6	#7	#8	& Irigaray
Manholes							
A. Removal							
Total Quantity	5	8	5	11	0		
Cost of Removal (\$ Each)	\$117.00	\$117.00	\$117.00	\$117.00	\$117.00	\$117.00	
Cost of Removal (\$)	\$585	\$936	\$585	\$1,287	\$0	\$0	\$3,39:
Quantity Per Truck Load	10	10	10	10			
Number of Truck Loads	0.5	0.8	0.5	11	0.0	0.0	
B. Survey & Decontamination							
Percent Requiring Decontamination	0.0%	0.0%	0.0%	0.0%	0.0%		
Loads for Decontamination	0.0	0.0	0.0	0.0	0.0	0.0	
Cost for Decontamination (\$/Load)	\$435.00	\$435.00	\$435.00	\$435.00	\$0.00	\$0.00	
Cost for Decontamination (\$)	\$0	\$0	\$0	\$0	\$0	\$0	\$
C. Transport & Disposal							
1.) Landfill							
a. Transportation					1		
Percent To Be Shipped	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Loads To Be Shipped	0.0	0.0	0.0	0.0	00	0.0	
Transportation Cost per Load	\$160	\$160	\$160	\$160	\$0	\$0	
Transportation Cost (\$)	\$0	\$0	\$0	\$0	\$0	\$0	5
b Disposal		ļ					
Disposal Fee Per Yd ³ (\$)	\$12.00	\$12.00	\$12.00	\$12.00	\$0.00	\$0.00	
Yds ³ Per Load	20			20	0		
Disposal Cost (\$)	\$0	\$0	\$0	\$0	\$0	\$0	
Total Cost - Landfill	\$0	\$0	\$0	\$0	\$0	\$0	
2.) Licensed Site							}
a. Transportation							
Percent To Be Shipped	0.0%						
Loads To Be Shipped	0.0	0.0	0.0	. 0.0	0.0	0.0	
Transportation Cost per Load	\$650	\$650	\$650	\$650	\$0	\$0	
Transportation Cost (\$)	\$0	\$0	\$0	\$0	\$0	\$0	
b. Disposal							
Disposal Cost Per Ft ^a	\$11.00	\$11.00	\$11.00	\$11.00	\$0.00	\$0.00	
Disposal Fee Per Yd3	\$297.00	\$297.00	\$297.00	\$297.00	\$0.00	\$0.00	
Quantity Per Truck Load (Yds3)	20	20	20	20	0	0	
Disposal Cost (\$)	\$0	\$0	\$0	\$0	\$0	\$0	1
Total Cost - Licensed Site	\$0	\$0	\$0	SO	\$0	\$0	
Total Cost - Transport & Disposal	\$0	\$0	\$0	\$0	\$0	\$0	
Total Cost Manhole Removal & Disposal	\$585	\$936	\$585	\$1,287	\$0	\$0	\$3,39


					10		
	Irigaray	Christensen	Christensen	Christensen	Christensen		Total
	Mine Unit(s)	Mine Units	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Christensen
PSOIL REPLACEMENT & REVEGETATION	#1 Thru #9	#2 Thru #4	#5	#6	#7	#8	& Irigaray
Process Plant and Office Building	Γ.						
A. Topsoil Handling & Grading					1		
Affected Area (Acres)	5.0	2.5	00	0.0	0.0	0.0	
Average Affected Thickness (Ins)	12.0	12.0	0.0	0.0	0.0	0.0	
Topsoil Volume (Yds ³)	8067	4033	0	0	0	0	
Unit Cost - Haul/Place (\$/Yd3)	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	
Topsoil Handling Cost (\$)	\$8,067	\$4,033	\$0	\$0	\$0	\$0	
Unit Cost - Grading (\$/Ac)	\$38.45	\$38.45	\$38.45	\$38.45	\$38.45	\$38.45	
Grading Cost (\$)	\$192	\$96	\$0	\$0	\$0	\$0	
Sub Total - Topsoil	\$8,259	\$4,129	\$0	so	\$0	\$0	\$12,38
B. Radiation Survey & Soil Analysis						1	
Unit Cost (S/Ac)	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	\$520.00	
Sub Total - Survey & Analysis	\$2,600	\$1,300	\$0	\$0	\$0	\$0	\$3,90
C. Revegetation							
Fertilizer (\$/Ac)	\$46.49	\$46.49	\$46.49	\$46.49	\$46.49	\$46.49	
Seeding Prep & Seeding (\$/Ac)	\$168.68	\$168.68	\$168.68	\$168.68	\$168.68	\$168.68	
Mulching & Crimping (\$/Ac)	\$276.54	\$276.54	\$276.54	\$276.54	\$276.54	\$276.54	
Sub Total Cost/Acre	\$491.71	\$491.71	\$491.71	\$491.71	\$491.71	\$491.71	
Sub Total - Revegation	\$2,459	\$1,229	\$0	\$0	\$0	\$0	\$3,68
Sub Total - Process Plant and Office Bldg.	\$13.317	\$6 659	\$0	\$0	\$0	\$0	\$19.97
Ponds							
A. Topsoil Handling & Grading							
Affected Area (Acres)	20.0	12.0	0.0	0.0	00	0.0	
Average Affected Thickness (Ins)	12	12	0	0		0 0	
Topsoil Volume (Yds ²)	32267	19360	0	0	0	0	
Unit Cost - Haul/Place (\$/Yd3)	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1 00	
Topsoil Handling Cost (\$)	\$32,267	\$19,360	\$0	\$0	SO	\$0	
Unit Cost - Grading (\$/Ac)	\$38.45	\$38.45	\$38.45	\$38.45	\$38.45	\$38.45	
Grading Cost (\$)	\$769	\$461	\$0,	\$0			
Sub Total - Topsoil	\$33,036	\$19,821	\$0	\$0	\$0	\$0	\$52,85
B. Radiation Survey & Soil Analysis			1				
Unit Cost (S/Ac)	\$520.00	\$520.00	\$520.00	\$520.00			1
Sub Total - Survey & Analysis	\$10;400	\$6,240	\$0	\$0	\$0	\$0	\$16,64
C. Revegation						-	
Fertilizer (\$/Ac)	\$46.49	\$46 49	\$46.49	\$46.49			1
Seeding Prep & Seeding (\$/Ac)	\$168.68	\$168.68	\$168.68	\$168.68			1
Mulching & Crimping (\$/Ac)	\$276.54	\$276.54	\$276.54	\$276.54			
Sub Total Cost/Acre	\$491.71	\$491.71	\$491.71	\$491.71			
Sub Total - Revegation	\$9,834	\$5,901	. \$0	\$0			\$15,73
Sub Total - Ponds	\$53,270	\$31,962	\$0	\$0	\$0	\$0	\$85,23

PSOIL								
PSOIL		Irigaray	Christensen	Christensen	Christensen	Christensen	Christensen	Total
PSOIL		Mine Unit(s)	Mine Units	Mine Unit	Mine Unit	Mine Unit	Mine Unit	Christensen
141-1	L REPLACEMENT & REVEGETATION	#1 Thru #9	#2 Thru #4	#5	#6	#7	#8	& Ir.garay
Well	Topsoil Handling & Grading			· · · · · · · · · · · · · · · · · · ·			······	·
A.	Affected Area (Acres)	10.0			50.0	35.0	40.0	
		40.0	55 O 0 O	30.0	50.0	0.0	40.0	
	Average Affected Thickness (Ins)	3.5		00	0.0		}	
	Topsoil Volume (Yds3)	18822	0	0	0	0	0	
	Unit Cost - Haul/Place (\$/Yd3)	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	
1	Topsoil Handling Cost (\$)	\$18,822	\$0	\$0	\$0	\$0	\$0	
	Unit Cost - Grading (\$/Ac)	\$38.45	\$38.45	\$38 45	\$38.45	\$38.45	\$0.00	
1	Grading Cost (\$)	\$1,538	\$2.115	\$1,154	\$1,923	\$1,346	\$0	
-	Sub Total - Topsoil	\$20,360	\$2,115	\$1,154	\$1,923	\$1,346	\$0	\$26.89
8.	Radiation Survey & Soil Analysis	\$520.00		0000 00		* ••••		
	Unit Cost (\$/Ac)		\$520.00	\$520.00	\$520.00	\$0.00	\$0 00	201.00
-	Sub Total - Survey & Analysis	\$20,800	\$28,600	\$15.600	\$26.000	\$0	\$0	\$91.00
U:	Spill Cleanup	0.054	0.000					
1	Affected Area (Acres)	0.054	0.036	0	0	0	0	
	Affected Area (ft ²)	2.352	1,568	0	0	0	0	
1	Average Affected Thickness (ft)	0.25	0.25	0	0	. 0	0	
i	Affected Volume (It ^a)	588	392	0	0	0	0	
	Quantity per Truckload (#3)	540	540	540	540	540	540	
	Quantity to be Shipped (Loads)	1.1	07	- 0.0	00	0.0	0.0	
	Transportation Cost per Load	\$650	\$650	\$650	\$650	\$650	\$650	
	Transportation Cost (\$)	\$708	\$472	\$0	\$0	\$0	\$0	
	Handling Cost (\$240/load)	\$261	\$174	\$0	\$0	\$0	\$0	
	Disposal Fee per Cubic Foot (\$)	\$3.70	\$3.70	\$3.70	\$3.70	\$3.70	\$3.70	
	Disposal Cost (\$)	\$2,176	\$1,450	S0	\$0	\$0	so	
	Sub Total - Spill Cleanup	\$3,145	\$2,096	\$0	\$0	\$0	\$0	\$5.24
D.	Revegation					†		
	Fertilizer (\$/Ac)	\$46 49	\$46.49	\$46.49	\$46.49	\$46.49	\$46.49	
	Seeding Prep & Seeding (\$/Ac)	\$168.68	\$168.68	\$168.68	\$168.68	\$168.68	\$168.68	
	Mulching & Crimping (\$/Ac)	\$276.54	\$276.54	\$276.54	\$276 54	\$276.54	\$276.54	
	Sub Total Cost/Acre	\$491.71	\$491.71	\$491.71	\$491.71	\$491.71	\$491.71	
	Sub Total - Revegation	\$19,668	\$27,044	\$14,751	\$24,586	\$17,210	\$19,668	\$122,92
	o Total - Wellfields (\$)	\$63,973	\$59,855	\$31,505	\$52,508	\$18,556	\$19,668	\$246,06
Roa			······					
A	Topsoil Handling & Grading	t in the second s					ļ	
	Affected Area (Acres)	25.0	20.0	15.0	21.0	0.0	0.0	
	Average Affected Thickness (Ins)	12		12				
1	Topsoil Volume (Yds ³)	40333	32267	24200	33880	0	0	
1	Unit Cost - Haul/Place (\$/Yd3)	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00	
	Topsoil Handling Cost (\$)	\$40,333	\$32,267	\$24.200	\$33,880	\$0	\$0	
	Unit Cost - Grading (\$/Ac)	\$38.45	\$38.45	\$38.45	\$38.45	\$38.45	\$38.45	
	Grading Cost (\$)	\$961	\$769	\$577	\$807	\$0	\$0	
	Sub Total - Topsoil	\$41,295	\$33,036	\$24,777	\$34,687	\$0	\$0	\$133.79
B.	Radiation Survey & Soil Analysis							
	Unit Cost (\$/Ac)	\$520.00	\$520.00	\$520.00	\$520.00	\$0.00	\$0.00	
	Sub Total - Survey & Analysis	\$13,000	\$10.400	\$7.800	\$10,920	\$0	\$0	\$42.12
C.	Revegation							
	Fertilizer (\$/Ac)	\$46.49	\$46.49	\$46.49	\$46.49			
	Seeding Prep & Seeding (\$/Ac)	\$168.68	\$168.68	\$168.68	\$168.68			
					\$276.54	1	1	•
	Mulching & Crimping (\$/Ac)	\$276.54	\$276.54	\$276.54				
	Mulching & Crimping (\$Ac) Sub Total Cost/Acre Sub Total - Revegation	\$276.54 \$491 71 \$12,293	\$276.54 \$491.71 \$9,834	\$491.71 \$7,376	\$491.71 \$10.326	\$0	\$0	\$39,82

n Christenser	n Christensen	Total
Mine Unit		Christenser
#7	#8	& Irigaray
	1	1
.0 0.0	0.0	
	0 0	
	0 0	1
51.00		
50 S0		
\$38.45		
92 \$0		1
2 \$0		
50.00	o \$0.00	
00 · \$0		
19 \$0.00	o \$0.00	
58 \$0.00		
54 \$0.00		
50.00		
59 \$0		
51 \$0		
	<u></u>	
1	1	T
.0 17.5	5 20.0	
0.0 0.0	0 0.0	
	0 0	oi
ool so.oo	o so.oo	
\$0 \$C	0 \$0	
00 \$0.00	0 \$0.00	1
\$0 \$C	0 \$0	
so so	o \$0	
1		
00 \$0.00	0 \$0.00	
so so	0 50	
49 \$46.49	9 \$46.49	
68 \$0.00		
54 \$0.00	0 \$0.00	
71 \$46.49		
85 \$814		
85 \$814	4 \$930	

RKSHEET 8							
	irigaray	Christensen	Christensen	Christensen	Christensen	Christensen	Total
	Mine Unit(s)	Mine Units	, Mine Unit	Mine Unit	Mine Unit	Mine Unit	Christenser
MISCELLANEOUS RECLAMATION	#1 Thru #9	#2 Thru #4	#5	#6	#7	#8	& Irigaray
	-						
I Fence Removal & Disposal							
Quantity (Feet)	15240	35260	20000	9000	0	0	
Cost of Removal/Disposal (\$/Ft)	\$0.68	\$0.68	\$0.68	\$0.68	\$0.68	\$0.68	
Cost of Removal/Disposal (\$)	\$10,363	\$23,977	\$13.600	\$6,120	\$0	\$0	\$54,060
Il Powerline Removal & Disposal							
Quantity (Feet)	9450	10565	18000	18000	0	0	
Cost of Removal/Disposal (\$/FI)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
Cost of Removal/Disposal (\$)	\$0	\$0	\$0	\$0	\$0	\$0	\$0
III Powerpole Removal & Disposal							
Quantity	25	30	60	60	0	0	
Cost of Removal/Disposal (\$/Each)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
Cost of Removal/Disposal (S)	\$0	\$0	\$0	\$0	\$0	S0	SC
IV/Transformer Removal & Disposal		,	<u> </u>			.	
Quantity	3	1	0	18	0	0	
Cost of Removal/Disposal (\$/Each)	\$2,525	\$2,525	\$2,525	\$6:9	\$619	\$619	
Cost of Removal/Disposal (\$)	\$7,575	\$2,525	\$0	\$11,142	\$0	50	\$21,242
V Booster Pump Assembly Removal &					<u>.</u>	·····	
Quantity	0	6	5	5	0	0	
Cost of Removal/Disposal (\$/Each)	\$248	\$248	\$248	\$248	\$248	\$248	
Cost of Removal/Disposal (\$)	\$0	\$1,488	\$1,240	\$1,240	\$0	\$0	\$3,968
VI Culvert Removal & Disposal							
Quantity (Feet)	150	1200	1000	1000	0	0	[
Cost of Removal/Disposal (\$/Ft)	\$3.48	\$3.48	\$3.48	\$3.48	\$3.48	\$3.48	
Cost of Removal/Disposal (\$)	\$522	\$4,176	\$3,480	\$3,480	\$0	\$0	\$11,658
VII Guardrail Removal	1				· · · · · · · · · · · · · · · · · · ·	1	
Quantity (Feet)	200	3000	0	0	0	0	
Cost of Removal/Disposal (\$/Ft)	\$6.44	\$6.44	\$6.44	\$6.44	\$6.44	\$6.44	
Cost of Removal/Disposal (\$)	\$1,288	\$19,320	\$0	\$0	\$0	\$0	\$20,608
VIII Low Water Stream Crossing				····			
Quantity	0	1	1	0	0	0]
Cost of Removal/Disposal (\$/Each)	\$4,500	\$4,500	\$4,500	\$4,500	\$4,500	\$4,500	
Cost of Removal/Disposal (\$)	50	\$4,500	\$4,500	\$0	SO	\$0	\$9,000
IX Utilities Cost	1		·				وت فكر تعاليه من مع
Quantity (Mos)	4	8	4	4	0	Ó	1
Cost Per Month (\$/Month)	\$65	\$65	\$65	\$65	\$65		1
Total Cost (\$)	\$260	\$520	\$260	\$260	\$0	so	\$1,30
·····					4	1	
TOTAL MISCELLANEOUS COST	\$20,008	\$56,506	\$23,080	\$22,242	50	\$0	\$121,836

10/04/2005

2005 SURETY ESTIMATE SUPPORTING ATTACHMENTS

Labor

Search | A-2 Index

Bureau of Labor Statistics Bureau of Labor Statistics Data

www.bls.gov

BLS Home | Programs & Surveys | Get Detailed Statistics | Glossary | What's New | Find It! In DOL

Change Output Options: From: 1995 - To: 2005 -

☐ include graphs NEW!

More Formatting Options

Data extracted on: October 3, 2005 (1:41:05 PM)

Consumer Price Index - All Urban Consumers

U.S. Department of

Not Area Item		ally A U-1 A-1	<u> </u>	d .y aver .s	rage				· · ·						
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	HALF1	HALF2
1995	150.3	150.9	151.4	151.9	152.2	152.5	152.5	152.9	153.2	153.7	153.6	153.5	152.4	151.5	153.2
1996	154.4	154.9	155.7	156.3	156.6	156.7	157.0	157.3	157.8	158.3	158.6	158.6	156.9	155.8	157.9
1997	159.1	159.6	160.0	160.2	160.1	160.3	160.5	160.8	161.2	161.6	161.5	161.3	160.5	159.9	161.2
1998	161.6	161.9	162.2	162.5	162.8	163.0	163.2	163.4	163.6	164.0	164.0	163.9	163.0	162.3	163.7
1999	164.3	164.5	165.0	166.2	166.2	166.2	166.7	167.1	167.9	168.2	168.3	168.3	166.6	165.4	167.8
2000	168.8	169.8	171.2	171.3	171.5	172.4	172.8	172.8	173.7	174.0	174.1	174.0	172.2	170.8	173.6
201	175.1	175.8	176.2	176.9	177.7	178.0	177.5	177.5	178.3	177.7	177.4	176.7	177.1	176.6	177.5
602	177.1	177.8	178.8	179.8	179.8	179.9	180.1	180.7	181.0	181.3	181.3	180.9	179.9	178.9	180.9
2003	181.7	183.1	184.2	183.8	183.5	183.7	183.9	184.6	185.2	185.0	184.5	184.3	184.0	183.3	184.6
2004	185.2	186.2	187.4	188.0	189.1	189.7	189.4	189.5	189.9	190.9	191.0	190.3	188.9	187.6	190.2
2005	190.7	191.8	193.3	194.6	194.4	194.5	195.4	196.4						193.2	

Frequently Asked Questions | Freedom of Information Act | Customer Survey Privacy & Security Statement | Linking to Our Site | Accessibility

U.S. Bureau of Labor Statistics Postal Square Building 2 Massachusetts Ave., NE Washington, DC 20212-0001

Phone: (202) 691-5200 Fax-on-demand: (202) 691-6325 Data questions: **blsdata_staff@bls.gov** Technical (web) questions: **webmaster@bls.gov** Other comments: **feedback@bls.gov**

ATTACHMENT 1 POWER BILL HISTORY Christensen Ranch Mine

.

Month	Billed Days	Billed Hours	Billed KWH	Active HP	KWH/HP*	\$/KWH
Jan-02	30	720	820,800	1,225	0.93	0.0380
Feb-02	33	792	974,400	1,346	0.91	0.0358
Mar-02	29	696	868,800	1,347	0.93	0.0374
Apr-02	27	648	793,200	1,385	0.88	0.0391
May-02	30	720	798,000	1,387	0.80	0.0381
Jun-02	29	696	760,800	1,377	0.79	0.0371
Jul-02	33	792	838,800	1,375	0.77	0.0350
Aug-02	30	720	746,400	1,340	0.77	0.0363
Sep-02	32	768	724,800	1,345	0.70	0.0365
Oct-02	35	840	840,000	1,345	0.74	0.0341
Nov-02	25	600	740,400	1,345	0.92	0.0374
Dec-02	38	912	900,000	1,345	0.73	0.0355
Jan-03	31	744	950,400	1,353	0.94	0.0343
Feb-03	28	672	792,000	1,353	0.87	0.0369
Mar-03	27	648	775,200	1,353	0.88	0.0377
Apr-03	29	696	708,000	1,288	0.79	0.0388
May-03	28	672	760,800	1,288	0.88	0.0366
Jun-03	29	696	723,600	1,299	0.80	0.0375
Jul-03	35	840	937,200	1,299	0.86	0.0329
Aug-03	33	792	805,200	1,301	0.78	0.0344 .
TOTAL	611	14664	16,258,800	1,317	0.842	0.0364

* Note:

KWH/HP = Billed KWH / Billed Hours / Active HP

CL:

COGEMA Mining, Inc. 935 Pendell Boulevard Mills, WY 82644

Attention: Donna Wichers

Subject: Class I Disposal Well Plugging and Abandonment Cost Estimate Christensen Ranch ISL Mine; Johnson County, Wyoming

Dear Donna:

Per your request, Petrotek Engineering Corporation (Petrotek) has prepared plugging and abandonment procedures and cost estimates for COGEMA's Class I wells located at Christensen Ranch (DW No. 1 and Christensen 18-3).

The procedures included herein are based on the Wyoming Department of Environmental Quality (WDEQ) UIC Permit 00-340 which applies to both wells, and WDEQ regulations and guidance.

Time and materials cost estimates for the wells are presented in Tables 1 and 2. The costs are based on information provided by COGEMA, WDEQ requirements, our field experience, and recent quotes from applicable vendors.

The costs are based on the following assumptions:

- A falloff test and Radioactive Tracer log (RAT) may be required. Based on discussions with Mr. Bob Lucht of WDEQ, (1) a falloff test would be required if more than six months has elapsed since the last falloff test, and (2) a Part II mechanical integrity test (e.g., a RAT log) would be required if more than 2 years had elapsed since the last RAT log.
- Materials disposal (e.g., tubing, packer, wellhead and other debris) will be the responsibility of COGEMA;
- Subcontractor costs are billed directly to COGEMA (no markup by Petrotek).
- Cementing costs were based on verbal quotes from Rocky Mountain Cementers in Casper, Wyoming.

COGEMA Mining 12/30/03

General plugging procedures are summarized below.

DW No. 1 (6733' RKB)

Move in rig & rig up. Pull packer and lay down 4 ½" tubing. Rig up stripping head. Pick up 2 7/8" workstring. Run in hole to 6700'.

Mix & pump 480 sacks 50/50 Poz cement + 2% bentonite (14.15#/gal). Displace with 20 bbl water. POOH to 3000', reverse clean, squeeze 100 sx cement into formation and WOC. Est. TOC 3400'.

RIH with tubing and tag cement. Mix & pump 580 sx 50/50 Poz cement + 2% bentonite in two or three stages till cement stands to surface. WOC.

Cut off casing and top of cement. Weld on cap and place marker. Rig down rig.

Christensen 18-3 (6577' RKB)

Move in rig. Rig up. Pull packer and lay down same. Rig up stripping head. Pick up 3,000 feet of 2 7/8" workstring. Run in hole to 6520'.

Mix & pump 280 sacks 50/50 Poz cement + 2% bentonite (14.15#/gal). Displace with 21 bbl water. POOH to 3200', reverse clean, squeeze 100 sx cement into formation and WOC. Est. TOC 3600'.

RIH with tubing and tag cement. Mix & pump 410 sx 50/50 Poz cement + 2% bentonite in two or three stages till cement stands to surface. WOC.

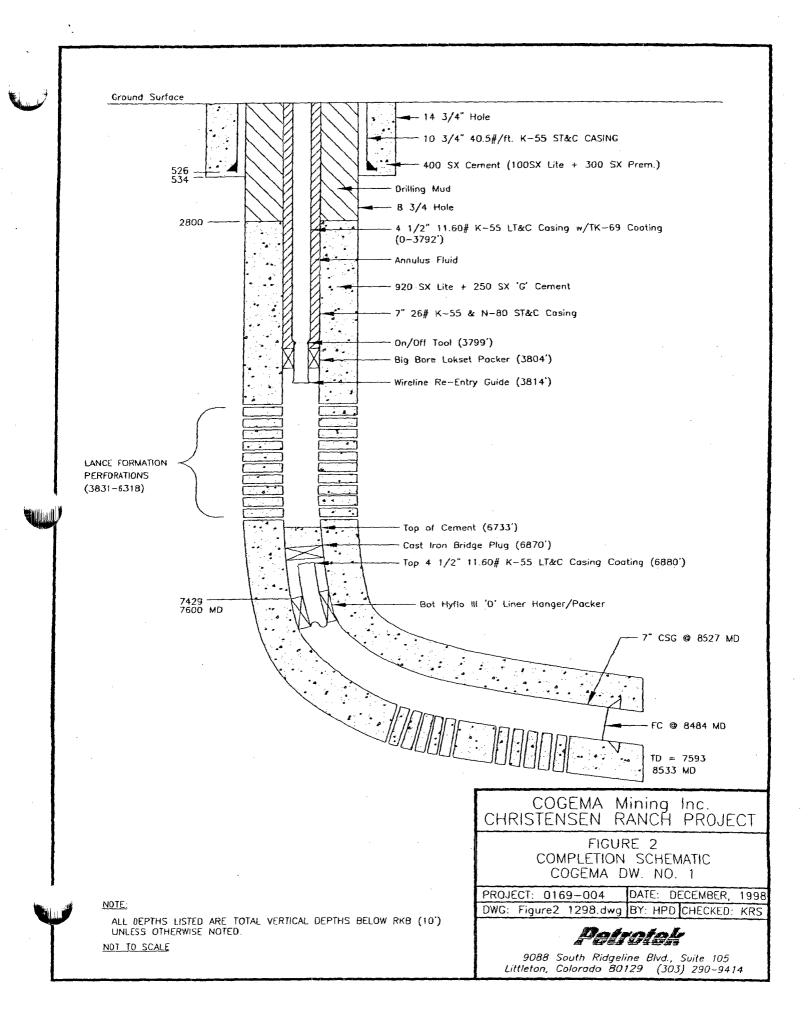
Cut off casing and top of cement. Weld on cap and place marker. Rig down rig.

Please contact the undersigned or Ken Cooper if you have any questions or comments regarding the plugging procedures, cost estimates, or other matters.

Sincerely,

Petrotek Engineering Corporation Hal Demuth

Table 1		
Plugging and Abandonment Cost Estimate:	DW No.	1
COGEMA Mining Christensen Ran	ch	


FIELD OPERATIONS Subcontractors - Direct bill to COGEMA Mob/demob & Location Preparation Workover Rig and Associated Equipment (days) Rental Tools (days) Rental Tubing Inspection	Cost \$3,600 \$3,300	Req'd.	Cost
Mob/demob & Location Preparation Workover Rig and Associated Equipment (days) Rental Tools (days) Rental Tubing Inspection	\$3,300		
Workover Rig and Associated Equipment (days) Rental Tools (days) Rental Tubing Inspection	\$3,300		
Workover Rig and Associated Equipment (days) Rental Tools (days) Rental Tubing Inspection			\$3,600
Rental Tools (days) Rental Tubing Inspection	61 200	4	\$13,200
Rental Tubing Inspection	\$1,200	4	\$4,800
	\$4,000	1	\$4,000
Falloff Test	\$5,500	1	\$5,500
RAT Log	\$2,800	1	\$2,800
Trucking	\$3,000	1	\$3,000
Contract Labor	\$500	2	\$1,000
Cement (1100 sx), pumping & equipment	\$22,000	1	\$22,000
Contingency	\$4,000	1	\$4,000
Total Estimated Subcontractor Gharges			\$63,900
Test Design and Project Management (hours)	\$80	24	\$1,920
Supervision (days)	\$700	5	\$3,500
Fravel (hours)	\$80	8	\$640
Field Truck and Fuel (days)	\$95	6	\$570
Per Diem (days)	\$100	6	\$600
Data Analysis (lump sum)	\$900	1	\$900
Report Preparation (hours)	\$80	24	\$1,920
otal Estimated Petrotek Charges			\$10,050
OTAL ESTIMATED COST		·	\$73,950
Assumptions:			
ubcontractors will bill COGEMA directly - otherwise a ield activities can be completed in 5 days; otherwise T	•		

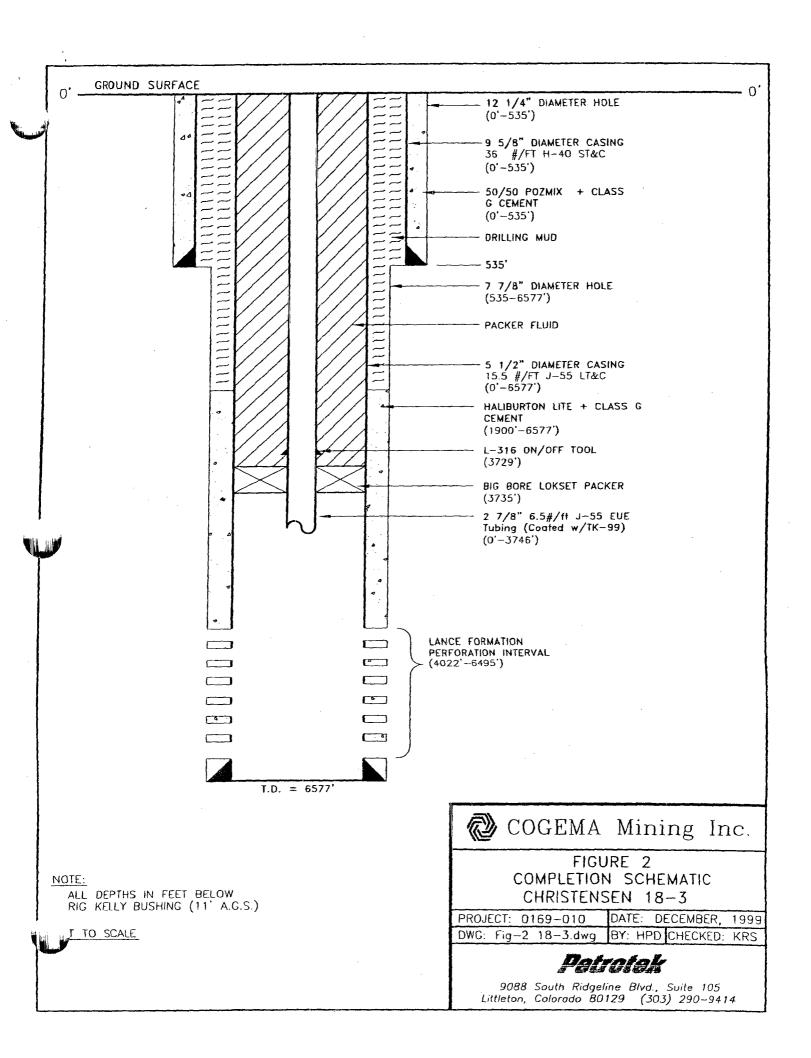

Two cement plugs are set; one to plug injection interval; the second (3 stages) to fill the casing COGEMA will be responsible for disposal of all well equipment.

Table 2 Plugging and Abandonment Cost Estimate: Christensen 18-3 COGEMA Mining Christensen Ranch

\$3,600 \$13,200 \$3,600 \$3,000 \$5,500 \$2,800 \$3,000 \$1,000 \$17,500 \$3,000
\$13,200 \$3,600 \$3,000 \$5,500 \$2,800 \$3,000 \$1,000 \$17,500 \$3,000
\$3,600 \$3,000 \$5,500 \$2,800 \$3,000 \$1,000 \$17,500 \$3,000
\$3,000 \$5,500 \$2,800 \$3,000 \$1,000 \$17,500 \$3,000
\$5,500 \$2,800 \$3,000 \$1,000 \$17,500 \$3,000
\$5,500 \$2,800 \$3,000 \$1,000 \$17,500 \$3,000
\$3,000 \$1,000 \$17,500 \$3,000
\$1,000 \$17,500 \$3,000
\$1,000 \$17,500 \$3,000
\$3,000
AFO 045
\$56,200
\$1,920
\$3,500
\$640
\$570
\$600
\$900
\$1,920
\$10,050
\$66,250

December 2003

APPENDIX 4

General Location & Environmental Monitoring Maps

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: "CHRISTENSEN RANCH AREA FACILITIES LOCATION M AP."

WITHIN THIS PACKAGE...

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: MAP ID: /IRIGARAY/IRALL82005.DWG, "IRIGARAY PROJECT GENERAL LOCATION MAP MINE UNIT 1 THRU 9."

WITHIN THIS PACKAGE... OR, BY SEARCHING USING THE DOCUMENT/REPORT MAP ID: /IRIGARAY/IRALL82005.DWG

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: FIGURE 5.5, "IRIGARAY AND CHRISTENSEN RANCH ENVIRONMENTAL MONITORING STATION LOCATION."

WITHIN THIS PACKAGE... OR, BY SEARCHING USING THE DOCUMENT/REPORT NO.: FIGURE 5.5

APPENDIX 5

Groundwater Restoration Maps

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: "CHRISTENSEN RANCH RESTORATION LOCATION MAP OF MINE UNITS 2 THRU 6."

WITHIN THIS PACKAGE...

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: MAP ID: N:\IRIGARAY\ENVIRO\IR69RES.DWG, "IRIGARAY LOCATION MAP PRODUCTION UNITS 1 - 9."

WITHIN THIS PACKAGE... OR, BY SEARCHING USING THE DOCUMENT/REPORT MAP ID: N:\IRIGARAY\ENVIRO\IR69RES.DWG

APPENDIX 6

Piezometric Contour Maps

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: "CHRISTENSEN RANCH SHALLOW ZONE PIEZOMETRIC MAP MINE UNITS 2 THRU 6"

WITHIN THIS PACKAGE...

CHRISTENSEN RANCH PROJECT SHALLOW ZONE PIEZOMETRIC ELEVATIONS

• •

Ji	une 2005	
Well #	Piezometric	Elev
MU2		
MW068S	4523.0	
MW070S	4550.3	
MW072S	4556.4	
MW092S	4571.1	
MW094S	4550.7	
MW096S	4567.2	
MW098S	4557.5	
MW100S	4555.0	
MW112S	4552.9	
MW1120 MW117S	4530.9	
MU3	4000.0	
MW46S	4551.0	
MW48S	4553.1	
MW50S	4553.9	
MW52S	4535.9	
MW54S	4558.1	
MW56S	4555.4	
MW58S	4555.4	
MW66S-2	4500.3	
	4071.3	
MU4 4SM-01	4607.2	
4SM-01 4SM-04	4607.3 4594.3	
4SIVI-04 4SM-08		
4310-08 4SRM-07	4590.5 4578.2	
	4070.2	
MU5 5SM1	1620 0	
5SM2	4628.0 4673.8	
5SM3 5SM5	4672.9	
	4682.9	
5SM6 5SM7	4667.8	
551017 MW-11S	4662.2 4637.8	
WCOW-04	4637.8	
MU6	4030.0	
6SM01	4701.5	
6SM02	4701.5	
6SM02	4717.6	
6SM03		
6SM04 6SM05	4717.2	
	4706.4	
6SM06	4690.3	
6SM07	4690.1	
6SM08	4730.2	
6SM09	4730.5	
6SM10	4699.4	
6SM11	4730.0	
6SM12	4729.7	
6SM13	4730.7	•
6SM14	. 4703.0	

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: "CHRISTENSEN RANCH ORE ZONE PIEZOMETRIC MAP MINE UNITS 2 THRU 6"

WITHIN THIS PACKAGE...

CHRISTENSEN RANCH PROJECT ORE ZONE PIEZOMETRIC ELEVATIONS June 2005

Well # MU2	Piezometric Elevations	Well #	Piezometric Elevations	Well #	Piezometric Elevations	Well #	Piezometric Elevations
MW073	4535.2	MW41	4541.1	5MW16	4574.9	6MW25	4543.5
MW074	4536.2	MW42	4543.4	5MW18	4573.1	6MW27	4534.2
MW075	4538.0	MW43	4544.2	5MW20	4566.8	6MW29	4538.1
MW076	4533.6	MW44	4535.9	5MW30A	4577.4	6MW31	4514.5
MW077	4532.7	MW45	4538.7	5MW31	4577.8	6MW33	4505.6
MW078	4529.5	MW62	4542.7	5MW32A	4575.8	6MW34	4545.8
MW078T	4521.0	MW63	4544.5	5MW33	4579.3	6MW35	4507.2
MW079	4545.2	MW64	4547.0	5MIV/34	4577.1	6MW36	4546.7
MW080	4548.7	MW114	4529.5	5MW35A	4580.5	6MW37	4508.3
MW081	4535.6	MW115	4529.5	5MW36	4578.5	6MW38	4543.6
MW082	4520.5	MW116	4525.6	5MW37	4586.3	6MW39	4511.8
MW083	4523.3	3F10-1	4533.7	5MW38	4578.8	6MW40	4541.8
MW084	4511.7	3J25-2	4536.1	5MW39A	4583.6	6MW41	4505.5
MW085	4516.0	3W66-2	4537.3	5MW40	4579.5	6MW42	4541.8
MW086	4533.3	MU4	,001.0	5MW41A	4586.2	6MW43	4501.6
MW087	4520.3	4MW-01	4544.6	5MW42	4581.0	6MW44	4533.5
MW087T	4528.5	4MW-02	4545.9	5MW43	4583.3	6MW45	4499.5
MW088	4526.1	4MW-03	4544.8	5MW44	4580.7	6MW46	4533.5
MW089	4528.8	4MW-04	4548.6	5MW45	4588.4	6MW47	4499.5
MW090	4522.0	4MW-05	4546.0	5MW46	4579:2	6MW48-3	4534.2
MW101	4520.7	4MW-06	4551.2	5MW47B	4592.1	6MW49	4497.6
MW102	4518.9	4MW-07	4547.9	5MW48	4584.3	6MW50	4526.8
MW103	4519.6	4MW-08	4551.7	5MW49	4591.9	6MW51	4505.4
MW104	4516.7	4MW-09	4549.3	5MW50	4579.3	6MW52	4529.3
MW105	4515.8	4MW-10	4552.4	5MW51	4596.8	6MW53	4521.6
MW106	4517.8	4MW-11	4551.6	5MW52	4585.3	6MW54	4528.2
MW107	4517.7	4MW-12	4549.6	5MW53	4593.4	6TW1	4533.6
MW108	4516.5	4MW-13	4552.9	5MW54	4585.3	6TW2	4529.8
MVV109	4516.6	4MW-14	4556.9	5MW55	4591.1	6TW3	4534.6
MW110	4518.3	4MW-15	4553.6	5MW56	4584.1	6TW4	4525.5
MW111	4513.6	4 M W-16	4558.6	5MW57	4590.3	6TW5	4535.5
2AE30-1	4534.6	4MW-17	4555.6	5MW58	4583.7	6AG49-3	4523.31
2S106-2	4520.8	4MW-18	4558.1	5MW59	4587.7	6AK48-3	4528.3
2X54-1	4529.1	4MW-19	4555.5	5MW60	4583.6	6AM41-1	4536.7
2Z35-1	4530.4	4MW-20	4560.9	5MW61	4588.7	6U28-2	4535.5
MU3		4MW-21	4555.6	5MW62	4583.3	6Z28-1	4534.1
MW17-2	4535.2	4MW-22	4562.0	5MW63	4587.8		
MW18	4534.3	4MW-23	4558.0	5MW64	4583.6		
MW19	4533.3	4MW-24	4561.3	5MW65	4588.2		
MW20	4532.6	4MW-25	4559.8	5MW66	4583.1		
MW23	4529.0	4L36-2	4551.5	5 M W67	4587.8		
MVV24	4522.0	4Q73-1	4556.9	5MW69	4586.4		
MW25	4527.6	4T110-1	4561.6	5TW-1	4579.0		
MVV26	4529.8	MU5		5AG63-1	4582.3		
MW27	4531.4	5MW01	4584.9	5AO60-1	4584.0		
MVV28	4533.9	5MW02	4582.0	5AV/54-1	4587.2		
MW29	4535.0	5MW03	4584.8	5AV55-1	4587.2		
MVV30	4536.9	5MW04	4583.0	5BB45-2	4587.8		
MW31	4539.7	5MW05	4580.0	5BJ55-1	4590.0		
MW32	4539.8	5MW06	4583.2	5BP155-1	4581.4		
MW35	4538.7	5MW07	4578.8	5BR117-1	4588.1		
MW36	4541.4	5MW08	4581.8	MU6			
MW37	4537.1	5MW10	4582.7	6MW17-2	4543.6		
MW38	4536.1	5MW12	4577.0	6MW19	4540.9		
MW39	4536.2	5MW14	4576.1	6MW21	4534.6		
MVV40	4536.4			6M\V23	4541.2		

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE

RECORD TITLED: "CHRISTENSEN RANCH DEEP ZONE PIEZOMETRIC MAP MINE UNITS 2 THRU 6"

WITHIN THIS PACKAGE...

CHRISTENSEN RANCH PROJECT DEEP ZONE PIEZOMETRIC ELEVATIONS

	June 2005	
Well #	Piezometric	Elev
MU2		
MW067D	4526.1	
MW069D	4527.6	
MW071D	4529.8	
MW091D	4522.8	
MW093D	4521.5	
MW095D	4521.6	
MW097D	4521.1	
MW099D	4518.1	
MW113D	4518.5	
MU3		
MW45D	4529.6	
MW47D	4531.6	
MW49D	4533.3	
MW51D	4527.8	
MW53D	4535.8	
MW55D	4535.2	
MW57D	4547.7	
MW65D	4544.5	
MU4	101110	
4DM-01	4561.2	
4DM-04	4551.4	
4DM-08	4546.0	
4DRM-07		
MU5		
5DM1A	4597.4	
5DM2	4591.2	
5DM3	4590.7	
5DM4	4595.9	
5DM5	4593.4	
5DM7	4590.9	
5DM8T	4584.4	
5DM9T	4584.2	
MW-12D	4592.8	
WCOW-3	7 4591.0	
MU6		
6DM01	4528.0	
6DM02	4527.5	
6DM03-2	4526.9	
6DM04-2	4527.5	
6DM05	4526.8	
6DM06	4532.3	
6DM07	4541.3	
6DM08	4536.2	
6DM09	4534.7	
6DM10	4535.1	
6DM11	4547.0	
6DM12	4547.8	
6DM12	4545.2	
6DM14	4534.1	
6DT01	4529.0	
	4020.0	

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: "IRIGARAY PROJECT SHALLOW ZONE PIEZOMETRIC MAP PRODUCTION UNITS 1 - 9"

WITHIN THIS PACKAGE...

IRIGARAY PROJECT SHALLOW ZONE PIEZOMETRIC ELEVATIONS JUNE 2005

Well #	Piezometric Eleva
SSM02	4,309.9
SSM03	4,311.7
SSM04	4,302.8
SSM05	4,312.7
SSM06	4,312.1
SSM07	4,312.4
SSM08	4,312.3
SSM09	4,318.6
SSM10	4,314.2
SSM11	4,316.0
SSM18	4,315.0
SSM19	4,315.7
SSM34	4,315.5
SSM35	4,316.0
SSM36	4,317.6
SSM37	4,311.8
SSM38	4,314.0
SSM39	4,312.4
SSM40	4,317.4
SSM41	4,336.4
SSM42	4,304.1
SSM43	4,311.0

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED:

"IRIGARAY PROJECT COAL ZONE PIEZOMETRIC MAP PRODUCTION UNITS 1 - 9"

WITHIN THIS PACKAGE...

IRIGARAY PROJECT COAL ZONE PIEZOMETRIC ELEVATIONS JUNE 2005

Well #	Piezo Elevation	
SM01	4,306.1	
SM02	4,306.4	
SM04	4,306.2	
SM09	4,308.0	
SM10	4,312.7	
SM11	4,312.0	
SM15	4,318.1	
SM16	4,313.3	
SM17	4,305.7	
SM18	4,313.9	
SM19	4,312.2	
SM23	4,314.3	
SM24	4,314.1	
SM25	4,318.4	
SM26	4,313.4	
SM27	4,316.5	
SM28	4,306.3	

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: "IRIGARAY PROJECT ORE ZONE PIEZOMETRIC MAP PRODUCTION UNITS 1 - 9"

WITHIN THIS PACKAGE...

IRIGARAY PROJECT ORE ZONE PIEZOMETRIC ELEVATIONS JUNE 2005

Well #	Piezometric Elevation	Well #	Piezometric Elevation
16-151	4,323.5	Т03	4,304.1
AP05	4,308.9	T08	4,305.5
F140	4,309.2	T12	4,299.5
GI76	4,309.7	T18	4,310.3
HI50	4,312.1	T24	4,305.2
JI57	4,315.7	T25	4,302.0
KI86	4,304.2	T26	4,309.1
L103	4,318.8	T27	4,313.0
LI118	4,320.1	T31	4,296.0
LP43	4,318.3	Т32	4,306.8
M02	4,297.3	Т33	4,309.8
M04	4,310.2	Т34	4,315.1
M07	4,309.8	Т35	4,308.5
M10	4,302.4	T36	4,310.2
M17	4,323.1	Т38	4,312.6
M18	4,310.3	Т39	4,313.1
M19	4,311.2	T40	4,313.9
M23	4,314.9	T41	4,313.4
M24	4,316.3	T43	4,314.4
M25	4,307.7	T44	4,315.0
M26	4,314.7	T46	4,316.1
M27	4,310.5	T 47	4,315.4
M28	4,319.6	T48	4,317.0
M29	4,317.5	T49	4,316.4
M30	4,322.9	T 50	4,319.7
M31	4,319.1	T52	4,320.7
M32	4,325.4	T54	4,322.0
M33	4,319.1	T 55	4,317.2
RS19	4,305.5	T56	4,323.5
RS27	4,307.1	T57	4,320.0
RS34	4,302.7	T58	4,323.6
RS39	4,306.5	T59	4,319.8
RS84	4,308.6	T61	4,321.7

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE

RECORD TITLED: "IRIGARAY PROJECT DEEP ZONE PIEZOMETRIC MAP PRODUCTION UNITS 1 - 9"

WITHIN THIS PACKAGE...

IRIGARAY PROJECT DEEP ZONE PIEZOMETRIC ELEVATIONS JUNE 2005

Well #	Piezo Elvtn
DM01	4,313.5
DM02	4,305.7
DM03	4,310.1
DM04	4,308.8
DM05	4,301.7
DM09	4,312.8
DM10	4,318.2
DM11	4,313.9
DM13	4,320.0
DM14	4,317.3
DM15	4,322.8
DM16	4,320.5
DM17	4,313.6
DM18	4,309.0
DM19	4,306.7
DM20	4,313.4
DM21	4,320.1
DM22	4,317.9