

Final Status Survey Final Report Phase VII

Appendix A12
Survey Unit Release Record
9312-0010, Radiologically Controlled
Area East Trench South / MWST A&B

CYAPCO FINAL STATUS SURVEY RELEASE RECORD NORTHEAST PROTECTED AREA GROUNDS **SURVEY UNIT 9312-0010**

Prepared By:

FSS Engineer

Reviewed By:

DWOJKOWIAK

Approved By: Clycle T. Heures Technical Support Manager

RELEASE RECORD

TABLE OF CONTENTS

1.	SURVEY UNIT DESCRIPTION	3
2.	CLASSIFICATION BASIS	
3.	DATA QUALITY OBJECTIVES (DQO)	
4.	SURVEY DESIGN	
5.	SURVEY IMPLEMENTATION	
6.	SURVEY RESULTS	14
7.	QUALITY CONTROL	20
8.	INVESTIGATIONS AND RESULTS	20
9.	REMEDIATION AND RESULTS	21
10.	CHANGES FROM THE FINAL STATUS SURVEY PLAN	21
11.	DATA QUALITY ASSESSMENT (DQA)	22
	ANOMALIES	
	CONCLUSION	
14.	ATTACHMENTS	23
14.	.1 Attachment 1 – Figures (10 pages including cover)	
14.	.2 Attachment 2 – Scan Results (6 pages including cover)	
14.	.3 Attachment 3 – Laboratory Data (151 pages including cover)	
14.	.4 Attachment 4 – DQA Results (17 pages including covers)	
To	tal 208	

RELEASE RECORD

1. SURVEY UNIT DESCRIPTION

Survey Unit 9312-0010 (Radiologically Controlled Area, East Trench South / MWST A&B) is designated as Final Status Survey (FSS) Class 1 and consists of approximately one thousand three hundred sixty five square meters (1,365 m²) of uninhabited land and is located approximately fifteen hundred twenty nine feet (1,529 ft) from the reference coordinate system benchmark used at Haddam Neck Plant (HNP) (see Attachment 1). The survey unit is bounded as follows: land Survey Unit 9312-0009 to the north (called north as oriented with the north to south flow of the Connecticut River), land Survey Units 9312-0009 and 9527-0005 to the east, land Survey Units 9522-0007 to the south, and land Survey Unit 9312-0002 and 9312-0007 to the west. The survey unit is located along the east boundary of Survey Area 9312. It is comprised of flat gravel terrain. The eastern boundary is bordered by a steep rock cliff that transitions to a steep soil bank from north to south.

The reference coordinates associated with this survey unit are E013 through E014 by S067 through S071 (refer to "HNP License Termination Plan" (LTP) Section 5.4.4). The reference coordinates provide the maximum dimensions of a rectangle containing this survey unit. Some areas contained in this rectangle may not be part of this survey unit. The boundary of the survey unit was defined using a Global Positioning System (GPS) based on the Connecticut State Plane System North American Datum (NAD) 1927.

2. CLASSIFICATION BASIS

The survey unit was classified in accordance with Procedure RPM 5.1-10, "Survey Unit Classification."

The "Classification Basis Summary" conducted for Survey Unit 9312-0010 consisted of:

- a) A review of the 10CFR50.75 (g) (1) database,
- b) A review of the "Initial Characterization Report" and the "Historic Site Assessment Supplement,"
- c) Historic and current survey records review,
- d) Visual inspections and a "walkdown."

A review of the "Initial and Supplemental Characterization Reports" as well as the previous "Classification Basis Summaries" was performed.

The source documents, the "Connecticut Yankee Haddam Neck Characterization Report" and "Initial Classification for Survey Areas at Connecticut Yankee", were incorporated by reference in LTP, Revision 0.

During plant operation, Survey Unit 9312-0010 was a part of the radiological controlled area and the location of significant, radiologically contaminated structures and systems. Structures included the yard crane, primary water

Revision 0

3

RELEASE RECORD

storage tank and backup primary water storage tank.

Major demolition and remediation activities began in 2002. All radioactive systems and components located inside the Containment Building, including the reactor vessel, were removed and appropriately packaged and shipped to an approved off-site disposal facility. Interior structural surfaces inside the Containment Building were decontaminated to ensure contamination levels were acceptable for controlled demolition. Interior walls and floors were then demolished and removed. The Containment liner was removed with the exception of the Incore Sump. The dose from residual radioactivity on the remaining steel and concrete in the sump was accounted for in the "Basement Fill Model". The Incore Sump was then filled with grout to the basement floor elevation. The remaining interior surfaces inside the Containment shell were decontaminated.

Following decontamination, the Containment basement was filled with clean soil to the grade of the exterior open land. The above grade portion of the Containment structure was then demolished and removed. Confirmatory radiological surveys were performed throughout the demolition process. No above grade structures currently reside within Survey Area 9312.

Outside of the containment shell, soil remediation began around the northeast, northwest and southeast quadrants of the survey unit. A large excavation was created to the north of the Containment that was designated as Excavation #1. This excavation included the area in the vicinity of the Refueling Water Storage Tank and the Primary Auxillary Building (PAB) corrider. A second large excavation, also designated as Excavation #2 was located over the Service Building footprint. A third excavation, designated as Excavation #3 was located in the area between the Containment Building and Spent Fuel Building (SFB). As adjacent structures were demolished, soil was excavated and removed. This process continued until bedrock was exposed. Subsurface structures and footings that remained following demolition and excavation include the Containment Mat, the Cable Vault wall, the Service Building east wall, a remnant of the PAB northwest wall, Waste Disposal Building footing and miscellaneous fragments of footings and slabs on the bedrock. As with the Containment basement shell, all excavations were backfilled with clean fill following the performance of a radiological assessment.

This report represents the second of two (2) attempts to FSS this survey unit. An initial FSS survey was performed starting on 01-22-07. Subsequent to the completion of this FSS Survey, but prior to the submittal of its Release Record, a remediation campaign was performed on the steep hillside in adjacent survey unit 9312-0009. The remediation efforts were followed by heavy rains that washed a portion of the hill side soils into the portion of the eastern end of this survey unit.

A surveillance of the affected area was performed on 03-15-07. Four (4) biased samples were collected at the location of the highest observed scan readings.

Revision 0 4

RELEASE RECORD

Two (2) of the four (4) samples had on-site sample results in excess of the DCGL, primarily due to the presence of Cs-137, which was determined to be present at concentrations up to 7 pCi/g.

A remediation was performed over the affected area, the remediation survey results indicated that the area was cleaned to levels below the DCGL.

Table 1 – Basic Statistical Quantities for Cs-137, Co-60 and Sr-90 from the Initial Final Status Survey & Surveillance Soil Sample Population				
Cs-137 Co-60 Sr-90				
	(ρCi/g)	(ρCi/g)	(ρCi/g)	
Minimum Value :	-6.60E-03	-1.09E-02	-2.61E-03	
Maximum Value :	1.85E+00	1.08E-01	1.15E+00	
Mean:	4.15E-01	2.32E-02	1.09E-01	
Median:	6.21E-02	1.23E-02	4.51E-02	
Standard Deviation:	6.52E-01	3.43E-02	2.78E-01	

A review of this sample data shows Cs-137, Co-60 and Sr-90 to be the primary radionuclides of concern, with both Cs-137 and Co-60 reported at fairly low concentrations. Sr-90 was the predominant nuclide primarily due to one scan investigation sample result from the initial FSS (sample 9312-0010-016I). The sample population as a whole was evaluated to assess the distribution of the detected radionuclides. The radionuclide distribution percentage for each sample in the population was calculated by dividing the concentration of each detected radionuclide by the total activity concentration in the sample, expressing the abundance of the specific nuclide in the sample compared against the total activity. The mean radionuclide distribution was then calculated by taking the average of the individual sample distribution fractions. The results are provided in Table 2.

RELEASE RECORD

Table 2 – Distribution Fraction for Detectable Radionuclides in Soil Sample Population		
Detected Radionuclide	Distribution Fraction	
Cs-137	0.408	
Co-60	0.047	
Sr-90	0.545	

No additional HTD radionuclides were positively identified in concentrations meeting the accepted criteria for detection (i.e., a result greater than two (2) standard deviations uncertainty). Radionuclide screening or de-selection is a process where an individual radionuclide or aggregates may be considered insignificant and eliminated from the FSS. The criteria for de-selection are concentrations less than 5% for individual radionuclides and less than 10% for aggregates.

The FSS Engineer performed a visual inspection and walk-down during March 2007 to assess the physical condition of the survey unit, evaluate access points, travel paths and identify potentially hazardous conditions.

This survey area is affected by existing and future groundwater (reference CY memo ISC 06-024) which will be a source of dose from residual radioactivity, as discussed in Section 3 under the Data Quality Objectives.

Based upon the identification of radioactive material above the Derived Concentration Guideline Levels (DCGLs), and the need for radiological remediation, it was concluded that there was some probability for residual radioactivity in concentrations greater than the DCGLs, justifying a final survey unit classification of Class 1 (refer to Section 3).

3. DATA QUALITY OBJECTIVES (DQO)

FSS design and planning used the Data Quality Objective (DQO) process as described by the LTP, Procedure RPM 5.1-11, "Preparation of Final Status Survey Plan," and the "Multi-Agency Radiation Survey and Site Investigation Manual" (MARSSIM). A summary of the main features of the DQO process are provided herein.

The DQO process incorporated hypothesis testing and probabilistic sampling distributions to control decision errors during data analysis. Hypothesis testing is a process based on the scientific method that compares a baseline condition to an alternate condition. The baseline condition is technically known as the null hypothesis.

Hypothesis testing rests on the premise that the null hypothesis is true and that sufficient evidence must be provided for rejection. In designing the survey plan,

Revision 0 6

RELEASE RECORD

the underlying assumption, or null hypothesis was that residual activity in the survey unit exceeded the release criteria. Rejection of the null hypothesis would indicate that residual activity within the survey unit does not exceed the release criteria.

The primary objective of the FSS plan was to demonstrate that the level of residual radioactivity in Survey Unit 9312-0010 did not exceed the release criteria specified in the LTP and that the potential dose from residual radioactivity is As Low As Reasonably Achievable (ALARA).

A fundamental precursor to survey design is to establish a relationship between the release criteria and some measurable quantity. This is done through the development of DCGLs. The DCGLs represent average levels of radioactivity above background levels and are presented in terms of surface or mass activity concentrations. Chapter 6 of the LTP describes in detail the modeling used to develop the DCGLs for soil (called Base Case Soil DCGL), existing groundwater radioactivity and future groundwater radioactivity that will be contributed by building basements and footings.

The DCGLs presented in Chapter 6 of the LTP were developed for exposures from three (3) components, that is, residual radioactivity in soil, existing groundwater radioactivity, and future groundwater radioactivity from the burial of concrete foundations or footings from site buildings containing residual radioactivity. Equation 1 shows the mathematical relationship between the three (3) components and the total dose.

Equation 1

$$H_{Total} = H_{Soil} + H_{ExistingGW} + H_{FutureGW}$$

The total dose under the LTP criteria is twenty-five (25) mrem/yr Total Effective Dose Equivalent (TEDE) from all three (3) components. The allowable total dose under the Connecticut Department of Environmental Protection (CTDEP) radiological remediation standard for CY is nineteen (19) mrem/yr TEDE. To satisfy both the LTP and CY CTDEP criteria, the dose from soil must be reduced when using the existing and future groundwater dose values discussed above.

This survey area is affected by existing groundwater (reference CY memo ISC 06-024). Therefore, the dose contribution from existing groundwater is bounded by two (2) mrem/yr TEDE.

This survey unit is considered impacted by future groundwater radioactive contamination, as there are underground foundations containing residual radioactive material within the groundwater saturated zone in the area (reference CY memo ISC 06-024). The dose contribution from future groundwater, the third dose component, is bounded by two (2) mrem/yr TEDE.

Equation 2

19 mrem/yr_{Total} = 15 mrem/yr_{Soil} + 2 mrem/yr_{Existing GW}+ 2 mrem/yr_{FutureGW}

Revision 0

7

RELEASE RECORD

The allowable dose for soil in this survey unit is fifteen (15) mrem/yr TEDE as shown by Equation 2 above. The concentration of residual radioactivity resulting in fifteen (15) mrem/yr TEDE is designated as the Operational DCGL (DCGL $_{op}$), and has been established for the radionuclides of concern as provided in Table 3.

Revision 0

RELEASE RECORD

Table 3 – Radionuclide Specific Base Case Soil DCGLs, Operational DCGLs and Required Minimum Detectable Concentrations (MDCs)

Radionuclide (1)	Base Case Soil DCGL (ρC/g) ⁽²⁾	Operational DCGL (ρC/g) (3)	Required MDC (ρC/g) (4)
Н-3	4.12E+02	2.47E+02	1.65E+01
C-14	5.66E+00	3.40E+00	2.26E-01
Mn-54	1.74E+01	1.04E+01	6.96E-01
Fe-55	2.74E+04	1.64E+04	1.10E+03
Co-60	3.81E+00	2.29E+00	1.52E-01
Ni-63	7.23E+02	4.34E+02	2.89E+01
Sr-90	1.55E+00	9.30E-01	6.20E-02
Nb-94	7.12E+00	4.27E+00	2.85E-01
Тс-99	1.26E+01	7.56E+00	5.04E-01
Ag-108m	7.14E+00	4.28E+00	2.86E-01
Cs-134	4.67E+00	2.80E+00	1.87E-01
Cs-137	7.91E+00	4.75E+00	3.16E-01
Eu-152	1.01E+01	6.06E+00	4.04E-01
Eu-154	9.29E+00	5.57E+00	3.72E-01
Eu-155	3.92E+02	2.35E+02	1.57E+01
Pu-238	2.96E+01	1.78E+01	1.18E+00
Pu-239/240	2.67E+01	1.60E+01	1.07E+00
Am-241 (5)	2.58E+01	1.55E+01	1.03E+00
Pu-241	8.70E+02	5.22E+02	3.48E+01
Cm-243/244	2.90E+01	1.74E+01	1.16E+00

- (1) Bold indicates those radionucldies considered Hard to Detect (HTD)
- (2) The Base Case Soil DCGL(s) are specified by the LTP in Chapter 6 and are equivalent to twenty-five (25) mrem/yr TEDE
- (3) The Operational DCGL is equivalent to achieving fifteen (15) mrem/yr TEDE
- (4) The required MDC is equivalent to achieving one (1) mrem/yr TEDE
- (5) Americium-241 can be analyzed by gamma and alpha spectroscopy and is considered to be Easy to Detect (ETD). The preferred result is the alpha spectroscopy's when both analyses are performed

RELEASE RECORD

Another important facet of the DQO process is to identify the radionuclides of concern and determine the concentration variability. Soil samples were collected in 2006 to establish the radiological condition of Survey Unit 9312-0010 for FSS. Cs-137, Co-60 and Sr-90 were the three (3) radionuclides reported in concentrations with the potential for exceeding the release criteria. The characterization data were used for the survey design and are provided in Table 1.

Instrument DQOs included a verification of the ability of the survey instrument to detect the radiation(s) of interest relative to the DCGL. Survey instrument response checks were required prior to issue and after the instrument had been used. Control and accountability of survey instruments was required to assure the quality and prevent the loss of data.

As part of the DQOs applied to laboratory processes, analysis results were reported as actual calculated results. Results reported as less than Minimum Detectable Concentration (MDC) were not accepted for FSS. Sample report summaries included unique sample identification, analytical method, radionuclide, result, and uncertainty to two (2) standard deviations, laboratory data qualifiers, units, and the required and observed MDC.

4. SURVEY DESIGN

The level of effort associated with planning a survey is based on the complexity of the survey and nature of the hazards. Guidance for preparing FSS plans is provided in Procedure RPM 5.1-11, "Preparation of Final Status Survey Plans". The FSS plan uses an integrated sample design that combines scanning surveys and sampling which can be either random or biased.

The DQO process determined that Cs-137, Co-60 and Sr-90 would be the radionuclides of concern in Survey Unit 9312-0010 (refer to Section 3). The characterization surveys did not include any additional HTD radionuclides of concern for this survey unit. As Sr-90 concentrations were determined by direct analysis, surrogate DCGLs were not required as part of the survey design for this survey unit via screening under LTP Section 5.4.7.2, "Gross Activity DCGLs". Other radionuclides that were positively identified in concentrations greater than the screening criteria during the performance of this FSS would be evaluated to ensure adequate survey design.

As the survey unit is classified as a Class 1 surface soils area, and discrete, elevated areas of contamination was possible, the application of the Elevated Measurement Comparison (EMC) remained an option.

The Sign Test was selected as the non-parametric statistical test. The use of the Sign Test did not require the selection or use of a background reference area, which simplified survey design and implementation. This approach was conservative since it included background Cs-137 as part of the sample set.

The number of soil samples for FSS was determined in accordance with Procedure RPM 5.1-12, "Determination of the Number of Surface Samples for

Revision 0 10

RELEASE RECORD

Final Status Survey." The Lower Bound of the Gray Region (LBGR) was set in accordance with Procedure RPM 5.1-11 to 0.5 to achieve a relative shift (Δ/σ) in the range of 1 and 3. The resulting relative shift was 1.5. A Prospective Power Curve was generated using COMPASS, a software package developed under the sponsorship of the United States Nuclear Regulatory Commission (USNRC) for implementation of the MARSSIM in support of the decommissioning license termination rule (10CFR20, Subpart E). The result of the COMPASS computer run showed adequate power for the survey design. The survey design specified eighteen (18) surface soil samples for non-parametric statistical testing. Based upon a review of the historical information and Characterization Survey data, the acquisition of five (5) judgmental surface soil samples from two (2) areas within this survey unit was deemed appropriate. These two (2) areas included where the remediation was performed and the sample location that indicated an elevated Sr-90 concentration, based on the initial FSS sample results.

The grid pattern and locations of the soil samples were determined using Visual Sample Plan (VSP) in accordance with Procedure RPM 5.1-14, "Identifying, and Marking Surface Sample Locations for Final Status Survey." Visual Sample Plan was created by Pacific Northwest National Laboratory (PNNL) for the United States Department of Energy. A systematic triangular grid pattern with a random starting point was selected for sample design, which is appropriate for a Class 1 area.

Sample locations were identified using AutoCAD-LT, a commercially available plotting software package with coordinates consistent with the Connecticut State Plane System. These coordinates were integrated with a GPS to locate sample locations in the field. Sample Measurement Locations for the design are listed with the GPS coordinates in Table 4.

Table 4 - Sample Measurement Locations with Associated GPS Coordinates			
Designation	Northing	Easting	
9312-0010-101F	236722.97	668813.41	
9312-0010-102F	236696.79	668858.76	
9312-0010-103F	236670.61	668904.10	
9312-0010-104F	236670.61	668934.33	
9312-0010-105F	236670.61	668964.55	
9312-0010-106F	236644.43	668919.21	
9312-0010-107F	236644.43	668949.44	
9312-0010-108F	236644.43	668979.67	

RELEASE RECORD

Table 4 - (continued)			
Designation	Northing	Easting	
9312-0010-109F	236644.43	669009.89	
9312-0010-110F	236644.43	669040.12	
9312-0010-111F	236618.25	668964.55	
9312-0010-112F	236618.25	668994.78	
9312-0010-113F	236618.25	669025.01	
9312-0010-114F	236618.25	669055.24	
9312-0010-115F	236592.07	668979.67	
9312-0010-116F	236592.07	669009.89	
9312-0010-117F	236592.07	669040.12	
9312-0010-118F	236565.90	669025.01	

Procedure RPM 5.1-11 specifies that 5% of the samples are required to be selected for HTD analysis. Two (2) soil samples, or about 10% of the number of samples that would be used for non-parametric statistical testing were randomly selected for HTD radionuclide analysis using the Microsoft Excel "RAND" function. Each sample was sent off-site for a full suite analysis of the HTD radionuclides specified in the LTP, Table 2-12, "Radionuclides Potentially Present at Haddam Neck Plant" and as provided in Table 3.

The LTP requires a minimum of 5% of the samples taken for non-parametric statistical testing be selected for QC evaluation. The implementation of quality control measures as referenced by Procedure RPM 5.1-24, "Split Sample Assessment for Final Status Survey," included the collection of one (1) soil sample for "split sample" analysis by the off-site laboratory. This location was selected randomly using the Microsoft Excel "RAND" function.

The LTP specifies a required scanning coverage of 100% for outdoor Class 1 areas.

For this Class 1 survey unit, the "Investigation Level" for area scanning and soil sample measurement results are those levels specified in LTP, Table 5-8. Table 5 provides a synopsis of the survey design.

Revision 0 12

RELEASE RECORD

Table 5 – Synopsis of the Survey Design			
Feature Design Criteria		Basis	
Survey Unit Land Area	1,365 m ²	Based on AutoCAD-LT	
Number of Measurements	23 (18 systematic grid) (5 judgmental)	Type 1 and Type 2 errors were 0.05, sigma was 0.33 the LBGR was set at 0.5 to achieve a Relative Shift in the range of 1 and 3	
Grid Spacing	9.36 m	Based on triangular grid	
Operational DCGL	4.75 pCi/g Cs-137 2.29 pCi/g Co-60 0.93 pCi/g Sr-90	Administratively set to achieve fifteen (15) mrem/yr TEDE (1)	
Soil Investigation Level 4.75 pCi/g Cs-137 2.29 pCi/g Co-60 0.93 pCi/g Sr-90		The Operational DCGL meets the LTP criteria for a Class 1 survey unit	
Scan Survey Area Coverage	Approximately 100% of the area	The LTP requires 100% area coverage for Class 1 survey units	
Scan Investigation Level	An instrument response greater than the 2,000 cpm plus ambient background	This is the recommended investigation level value from Technical Support Document CY-HP-0239	

⁽¹⁾ The allowable dose for soil in this survey unit is fifteen (15) mrem/yr TEDE as the bounding dose from existing and future groundwater has been established based on field data (reference CY memo ISC 06-024)

5. SURVEY IMPLEMENTATION

Final status survey field activities were conducted under the Final Status Survey Plan (FSSP). The FSSP contained a job safety analysis, job planning checklist and related procedures for reference. Daily briefings were conducted to discuss the expectations for job performance and the safety aspects of the survey. The "Daily Survey Journal" was used to document field activities and other information pertaining to the FSS.

A single scan area was established that constituted approximately 100% of the surface area of Survey Unit 9312-0010. Grid lines, one (1) meter wide, were painted on the ground of the scan area. A background survey was performed around the survey unit and it was determined that, using an Eberline E-600 with a SPA-3 sodium iodide detector, background ranged from 8,240 counts per minute (cpm) up to 14,000 cpm.

The scan area was established and scanned for elevated readings (see Attachment 2 for all scan results). Scanning was performed with an Eberline E-600 using a SPA-3 sodium iodide detector. The E-600 was operated in the rate-meter mode

RELEASE RECORD

and used with audio response. The probe was positioned as close to the ground as possible and was moved at a scan speed of about 0.5 meters per second. Approximately 100% of the survey unit was scanned.

Measurement locations were identified in North American Datum (NAD) 1927 coordinates using GPS coordinates; sample locations were identified and marked with a surveyor's flag or paint for identification. At each sample location, a one (1) meter radius circle was established around the sample flag or paint mark was scanned for elevated radiation levels.

Eighteen (18) surface soil samples were collected and packaged in accordance with Haddam Neck Plant (HNP) Procedure RPM 5.1-3, "Collection of Sample Media for Final Status Survey" and FSS design. Samples were controlled, transported, stored, and transferred to the off-site laboratory using Chain-of-Custody (COC) protocol in accordance with Procedure RPM 5.1-5, "Chain of Custody for Final Status Survey Samples."

Two (2) samples (9312-0010-102F and 9312-0010-111F) were randomly selected for HTD radionuclide analysis.

The implementation of survey specific quality control measures included the collection of one (1) sample (9312-0010-114F) for "split sample" analysis.

6. SURVEY RESULTS

All field survey activities were conducted from March 26, 2007 to March 29, 2007.

The sample locations identified in the FSS plan were scanned over approximately a one (1) meter radius for elevated radiation levels. Table 5 provides an overview of the scan results for sample measurement locations. Scan results are provided in Attachment 2.

Table 5 - Scan Results for Sample Measurement Locations			
Sample Measurement Location	Highest Logged Reading (kcpm)	Action Level (1) (kcpm)	> Action Level (2)
101	14.8	15.2	NO
102	12.9	13.4	NO
103	12.9	14.3	NO
104	10.3	12.0	NO

14

RELEASE RECORD

Table 5 - (continued)			
Sample Measurement Location	Highest Logged Reading (kcpm)	Action Level (1) (kcpm)	> Action Level (2)
105	9.49	11.5	NO
106	8.79	11.2	NO
107	9.53	11.2	NO
108	12.2	13.4	NO
109	13.1	13.4	NO
110	9.37	9.88	NO
111	11.0	12.1	NO
112	11.1	12.1	NO
113	10.2	11.7	NO
114	10.2	10.5	NO
115	11.6	12.4	NO
116	11.0	12.4	NO
117	11.2	12.2	NO
118	11.5	12.3	NO
119	13.1	14.0	NO
120	14.8	15.7	NO
121	13.1	12.7	YES ⁽³⁾
122	10.8	12.8	NO
123	11.0	14.1	NO

⁽¹⁾ The action level is based on a measurement above ambient background.

The scan areas, that comprised approximately 100% of the total surface area for the survey unit, were scanned for elevated radiation levels. The areas were scanned in accordance with the FSS plan on March 28, 2007.

⁽²⁾ The FSS plan requires movement of the sample measurement location to the area within the 1 meter radius yielding the response above the action level.

⁽³⁾ This sample location was moved to the highest observed gamma reading within the 1-m scan circle.

RELEASE RECORD

Sixty six (66) scan strips were initially established in this survey unit. Three (3) elevated measurement locations were identified during scanning. Table 6 provides an overview of the scan area survey. Scan results are provided in Attachment 2.

Table 6 - Scan Area Results				
Scan Strips	Highest Logged Reading (kcpm)	Action Level (1) (kcpm)	Elevated Reading Identification ⁽²⁾	Investigation Sample
1 thru 13	14.43	12.9	9312-10-ER-00-13-1	9312-0010-124-I
14 thru 20	22.4	12.0	9312-10-ER-00-20-1	9312-0010-125-I
21 thru 49	12.38	11.9	9312-10-ER-00-49-1	9312-0010-126-I
49 thru 66	11.5	13.8	N/A	N/A

- (1) The action level is based on a measurement above ambient background plus 2,000 cpm
- (2) ER is an abbreviation associated with the barcodes used in the field where ER stands for Elevated Reading.

The off-site laboratory employed for the radiological analyses of samples was General Engineering Laboratories, LLC. The laboratory analyzed the eighteen (18) samples collected for non-parametric statistical testing, the associated field splits using gamma spectroscopy. Gamma spectroscopy analysis was performed to the required MDCs. Gamma spectroscopy results identified some radionuclides meeting the accepted criteria for detection (i.e., a result greater than two (2) standard deviations uncertainty). However, Cs-137 was the only gamma-emitting radionuclide reported in concentrations exceeding the de-selection criteria.

Cs-137 was identified in twelve (12), Co-60 was identified in one (1) and Sr-90 in two (2) of the eighteen (18) samples collected for non-parametric statistical testing. The mean of the gamma spectroscopic analysis results for the sample population indicated that Cs-137 was present at levels higher than expected environmental levels for Cs-137 within the vicinity of the HNP as presented in the Health Physics TSD BCY-HP-0063. A summary of the eighteen (18) samples collected for non-parametric statistical testing results is provided in Table 7.

RELEASE RECORD

Table 7 - Summary of Gamma Spectroscopy Results for Surface Soil Samples Comprising the Statistical Sample Population			
Sample Number	Cs-137 ρCi/g	Co-60 pCi/g	
9312-0010-101F	2.56E-01	3.48E-02	
9312-0010-102F	1.60E+00	0.00E+00	
9312-0010-103F	1.91E+00	0.00E+00	
9312-0010-104F	1.44E-01	8.09E-03	
9312-0010-105F	8.70E-02	-5.15E-03	
9312-0010-106F	2.88E-02	1.74E-02	
9312-0010-107F	0.00E+00	-9.39E-03	
9312-0010-108F	4.18E-02	2.13E-02	
9312-0010-109F	2.76E-01	2.92E-02	
9312-0010-110F	4.30E-01	1.63E-02	
9312-0010-111F	1.91E-02	-5.55E-03	
9312-0010-112F	-2.35E-02	-2.30E-03	
9312-0010-113F	6.26E-02	-1.72E-02	
9312-0010-114F	4.96E-01	0.00E+00	
9312-0010-115F	7.48E-03	1.65E-03	
9312-0010-116F	-3.85E-03	2.50E-03	
9312-0010-117F	2.91E-01	2.21E-02	
9312-0010-118F	6.19E-02	-2.46E-03	

In addition to Cs-137 and Co-60, Sr-90 was also identified during the DQO process as a radionuclide of concern. Subsequently, all samples were subjected to analysis by gas proportional counting for Sr-90. All analyses met the required minimum MDC.

Sr-90 was positively identified (i.e., a result greater than two (2) standard deviations uncertainty) in two (2) of the eighteen (18) samples collected for non-parametric statistical testing. The results of the Sr-90 analysis for the statistical sample population are provided below in Table 8.

RELEASE RECORD

Table 8 - Summary of Sr-90 Analysis Results for Surface Soil
Samples Comprising the Statistical Sample Population

Samples Comprising the Statistical Sample Population				
Sample Number	Sr-90 ρCi/g			
9312-0010-101F	-1.97E-02			
9312-0010-102F	2.53E-02			
9312-0010-103F	2.54E-02			
9312-0010-104F	3.70E-02			
9312-0010-105F	-1.05E-02			
9312-0010-106F	-2.23E-02			
9312-0010-107F	-1.55E-02			
9312-0010-108F	8.14E-03			
9312-0010-109F	1.91E-02			
9312-0010-110F	-1.05E-02			
9312-0010-111F	2.40E-03			
9312-0010-112F	1.05E-02			
9312-0010-113F	-1.63E-02			
9312-0010-114F	2.75E-02			
9312-0010-115F	-6.57E-03			
9312-0010-116F	1.16E-03			
9312-0010-117F	1.30E-02			
9312-0010-118F	5.96E-03			

In addition to Sr-90, the off-site laboratory also processed, as required by the sample plan, two (2) samples for the full suite of HTD radionuclides as specified in LTP, Table 2-12, "Radionuclides Potentially Present at Haddam Neck Plant" and as provided in Table 3. The requested analyses included alpha spectroscopy, gas proportional counting, and liquid scintillation depending on the radionuclide

RELEASE RECORD

and the measurement method. All analyses performed met the required minimum MDC. In one (1) sample, C-14 was detected at two (2) percent of the DCGL which is below the selection criteria discussed in Section 2. No additional HTD radionuclides were positively identified (i.e., a result greater than two (2) standard deviations uncertainty). The "sum-of-fractions" or "unity rule" is the mathematical test used to evaluate compliance with radiological criteria for license termination when more than one radionuclide has been determined to be potentially present. The combination of the fractions of each detected radionuclide against their respective Operational DCGL must be less than or equal to one (1). The unity rule is:

Equation 3

$$\frac{C_1}{DCGL_1} + \frac{C_2}{DCGL_2} + \dots \frac{C_n}{DCGL_n} \le 1$$

Where: $C_n = \text{concentration of radionuclide } n$ and $DCGL_n = DCGL$ of radionuclide n.

The results of the unity rule calculation for the radionuclides of concern in the statistical sample population for Survey Unit 9312-0010 are provided in Table 9 below.

Table 9 – Results	•	Calculation f		Soil Samples				
Comprising the Statistical Sample Population								
Sample Number	Fraction o	Unity						
Sample Number	Cs-137	Co-60	Sr-90	Unity				
9312-0010-101F	2.56E-01	3.48E-02	0.00E+00	6.92E-02				
9312-0010-102F	1.60E+00	0.00E+00	2.53E-02	3.64E-01				
9312-0010-103F	1.91E+00	0.00E+00	2.54E-02	4.30E-01				
9312-0010-104F	1.44E-01	8.09E-03	3.70E-02	7.37E-02				
9312-0010-105F	8.70E-02	0.00E+00	0.00E+00	1.83E-02				
9312-0010-106F	2.88E-02	1.74E-02	0.00E+00	1.37E-02				
9312-0010-107F	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
9312-0010-108F	4.18E-02	2.13E-02	8.14E-03	2.69E-02				
9312-0010-109F	2.76E-01	2.92E-02	1.91E-02	9.15E-02				
9312-0010-110F	4.30E-01	1.63E-02	0.00E+00	8.64E-02				

RELEASE RECORD

9312-0010-111F	1.91E-02	0.00E+00	2.40E-03	6.61E-03
9312-0010-112F	0.00E+00	0.00E+00	1.05E-02	1.13E-02
9312-0010-113F	6.26E-02	0.00E+00	0.00E+00	1.32E-02
9312-0010-114F	4.96E-01	0.00E+00	2.75E-02	1.34E-01
9312-0010-115F	7.48E-03	1.65E-03	0.00E+00	2.30E-03
9312-0010-116F	0.00E+00	2.50E-03	1.16E-03	1.09E-03
9312-0010-117F	2.91E-01	2.21E-02	1.30E-02	8.50E-02
9312-0010-118F	6.19E-02	0.00E+00	5.96E-03	1.84E-02

⁽¹⁾ The Operational DCGL from Table 2 is 4.75 ρCi/g for Cs-137, 2.29 ρCi/g for Co-60 and 0.93 ρCi/g for Sr-90 to achieve fifteen (15) mrem/yr TEDE respectively.

7. QUALITY CONTROL

The off-site laboratory processed the split samples and performed gamma spectroscopy analysis. One sample location was selected for analysis, which exceeds the 5% minimum required by the LTP. The data were evaluated using USNRC acceptance criteria specified in Inspection Procedure 84750 as detailed in HNP Procedure RPM 5.1-24, "Split Sample Assessment for Final Status Survey". There was acceptable agreement between the field split results.

The sample analysis vendor, General Engineering Laboratories, LLC, maintains quality control and quality assurance plans as part of normal operation. Refer to Attachments 3 and 4 for data and data quality analysis results

8. INVESTIGATIONS AND RESULTS

Three (3) investigative samples were collected from locations exhibiting elevated scan measurements and (5) judgmental samples were taken from the survey area. Four (4) of the judgmental samples were taken from the vicinity of the area that was subjected to remediation. The remaining judgmental sample was taken from the location where an elevated level of Sr-90 had been detected in the initial FSS. The investigation samples are denoted as shown in Table 6, with the investigative sample results, and judgmental sample results shown in Table 10 below.

⁽²⁾ Negative results (results whose values were less than zero) were set to zero.

RELEASE RECORD

Table 10 - Investigative and Biased Sample Results					
Sample Number	Cs-137 pCi/g	Co-60 ρCi/g	Sr-90 ρCi/g	Unity Fraction (1)	
9312-0010-119B	2.25E+00	1.25E-01	7.53E-03	5.37E-01	
9312-0010-120B	3.71E-01	1.50E-02	1.28E-04	8.49E-02	
9312-0010-121B	2.34E-01	1.35E-02	1.58E-02	7.22E-02	
9312-0010-122B	3.35E-02	1.02E-02	9.06E-03	2.13E-02	
9312-0010-123B	3.40E-01	8.95E-03	2.29E-02	1.00E-01	
9312-0010-124I	1.63E-01	1.95E-02	1.99E-02	6.43E-02	
9312-0010-1251	3.54E-01	1.48E-02	6.32E-02	1.49E-01	
9312-0010-126I	2.86E-02	-2.91E-02	-9.05E-03	-1.64E-02	

⁽¹⁾ The Operational DCGL from Table 2 is 4.75 ρ Ci/g for Cs-137, 2.29 ρ Ci/g for Co-60 and 0.93 ρ Ci/g for Sr-90 to achieve seventeen (15) mrem/yr TEDE respectively.

9. REMEDIATION AND RESULTS

Radiological remedial action as described by MARSSIM Section 5.4 was performed in this survey unit prior to FSS. All excavations were characterized and backfilled with "clean" fill prior to performing FSS. In the area where remediation occurred, the ground area is comprised of barren dirt with no vegetation, and the soils have been graded relatively flat to the corresponding elevation of the adjacent survey units. The results for Cs-137 following remediation were well below the Operational DCGL provided in Table 3. Health Physics TSD BCY-HP-0078, "ALARA Evaluation of Soil Remediation in Support of Final Status Survey," determined that remediation beyond that required to meet the release criteria is unnecessary and that the remaining residual radioactivity in soil was ALARA.

10. CHANGES FROM THE FINAL STATUS SURVEY PLAN

No changes were made to the Final Status Survey Plan.

RELEASE RECORD

11. DATA QUALITY ASSESSMENT (DQA)

The DQO sample design and data were reviewed in accordance with Procedure RPM 5.1-23, "Data Quality Assessment," for completeness and consistency. The sampling design had adequate power as indicated by the Retrospective Power Curve. The Sign Test was performed on the data and compared to the original assumptions of the DQOs. The evaluation of the Sign Test results demonstrates that the survey unit passes the unrestricted release criteria, thus, the null hypothesis is rejected.

Documentation was complete and legible. Surveys and sample collection were consistent with the DQOs and were sufficient to ensure that the survey unit was properly designated as Class 1.

The preliminary data review consisted of calculating basic statistical quantities (e.g., mean, median, standard deviation). The mean and median values are well below the Operational DCGL. Also, the retrospective power curve shows that a sufficient number of samples were collected to achieve the desired power. Therefore, the survey unit meets the unrestricted release criteria with adequate power as required by the DQOs. The basic statistical quantities for the statistical sample population are provided below in Table 11.

Table 11 – Basic Statistical Quantities for	· Cs-137, Co-60 and Sr-90 from
the Final Status Survey	

	Cs-137 ρCi/g	Co-60 ρCi/g	Sr-90 pCi/g
DCGL _{op} :	4.75	2.29	0.93
Minimum Value:	-2.35E-02	-1.72E-02	-2.23E-02
Maximum Value:	1.91E+00	3.48E-02	3.70E-02
Mean:	3.16E-01	6.18E-03	3.28E-03
Median:	7.48E-02	8.25E-04	4.18E-03
Standard Deviation:	5.48E-01	1.42E-02	1.85E-02

The range of the data, about 3.0 to 3.5 standard deviations for both radionuclides, was not a particularly large variation. The difference between the mean and median was about 40% to 60% of the standard deviation which indicates some skewness in the data. The data was represented graphically through posting plots, a frequency plot, and a quantile plot. The frequency plot indicates a slight to diminishing skewness as confirmed by the calculated skew of 2.13, 0.58 and 0.26 for Cs-137, Co-60 and Sr-90 respectively.

RELEASE RECORD

All data, assessments, and graphical representations are provided in Attachment 4.

12. ANOMALIES

No anomalies were noted in the performance of this Final Status Survey.

13. CONCLUSION

Survey Unit 9312-0010 has met the final DQOs of the FSS plan. The ALARA criteria for soils as specified in Chapter 4 of the LTP were achieved.

All identified radionuclides of concern were used for statistical testing to determine the adequacy of the survey unit for FSS.

The sample data passed the Sign Test. The null hypothesis was rejected. The Retrospective Power Curve generated using COMPASS shows adequate power was achieved. The survey unit is properly designated as Class 1.

The dose contribution from soil is 1.2 mrem/yr TEDE based on the average concentration of the samples used for non-parametric statistical sampling.

This survey area is affected by existing groundwater (reference CY memo ISC 06-024); therefore the dose contribution from existing groundwater is bounded at two (2) mrem/yr TEDE.

This survey unit is considered impacted by future groundwater radioactive contamination, as there are underground foundations containing residual radioactive material within the groundwater saturated zone in the area (reference CY memo ISC 06-024). The dose contribution from future groundwater, the third dose component, is bounded by two (2) mrem/yr TEDE.

The average total dose from residual radioactivity in this survey unit, including exposures from the three (3) components as described in Section 3, that is, residual radioactivity in soil, existing groundwater radioactivity, and future groundwater radioactivity from the burial of concrete foundations or footings from site buildings containing residual radioactivity will not exceed 5.2 mrem/yr TEDE. Therefore, Survey Unit 9312-0010 is acceptable for unrestricted release

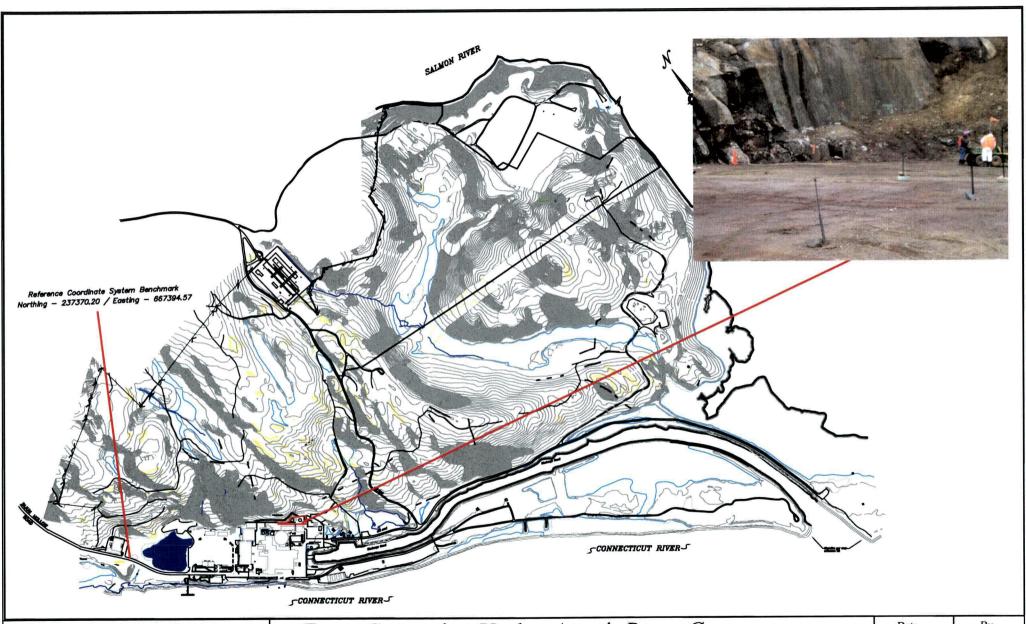
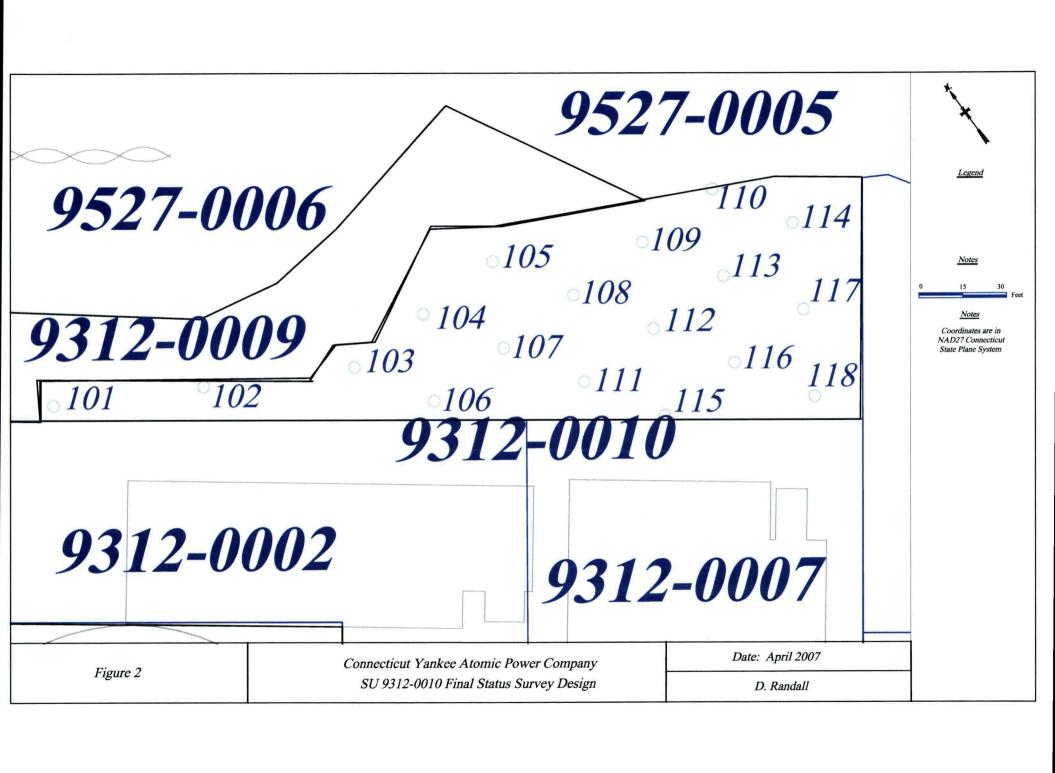
14. ATTACHMENTS

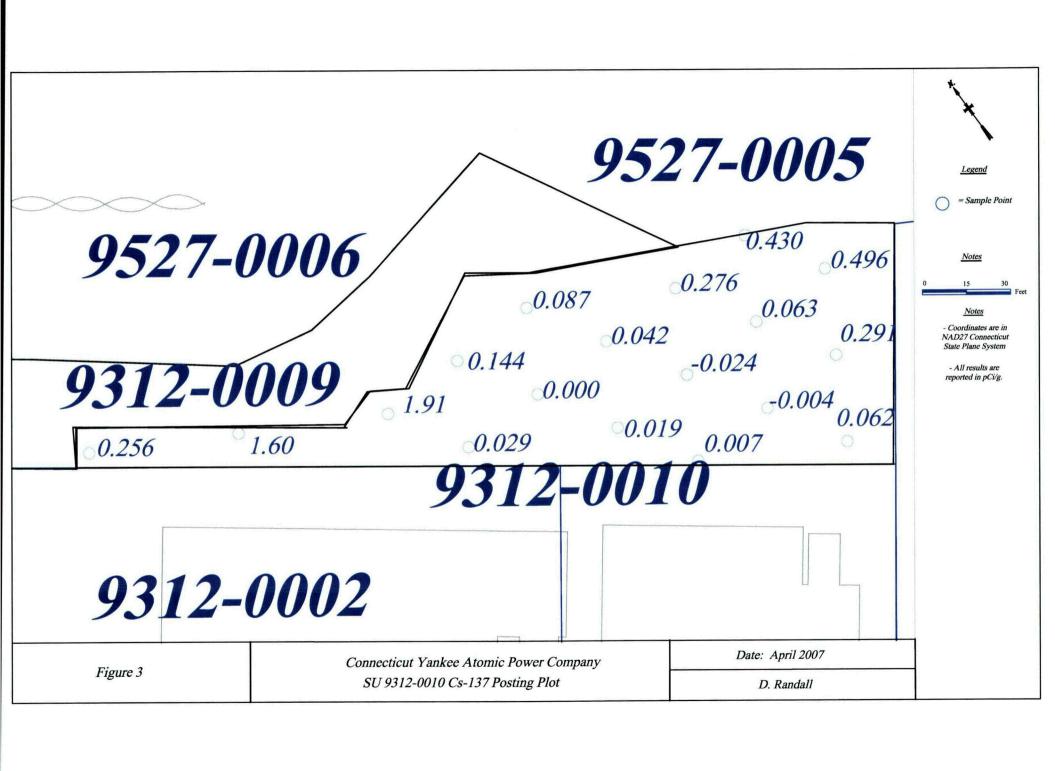
- 14.1 Attachment 1 Figures
- 14.2 Attachment 2 Scan Results
- 14.3 Attachment 3 Laboratory Results
- 14.4 Attachment 4 DQA Results

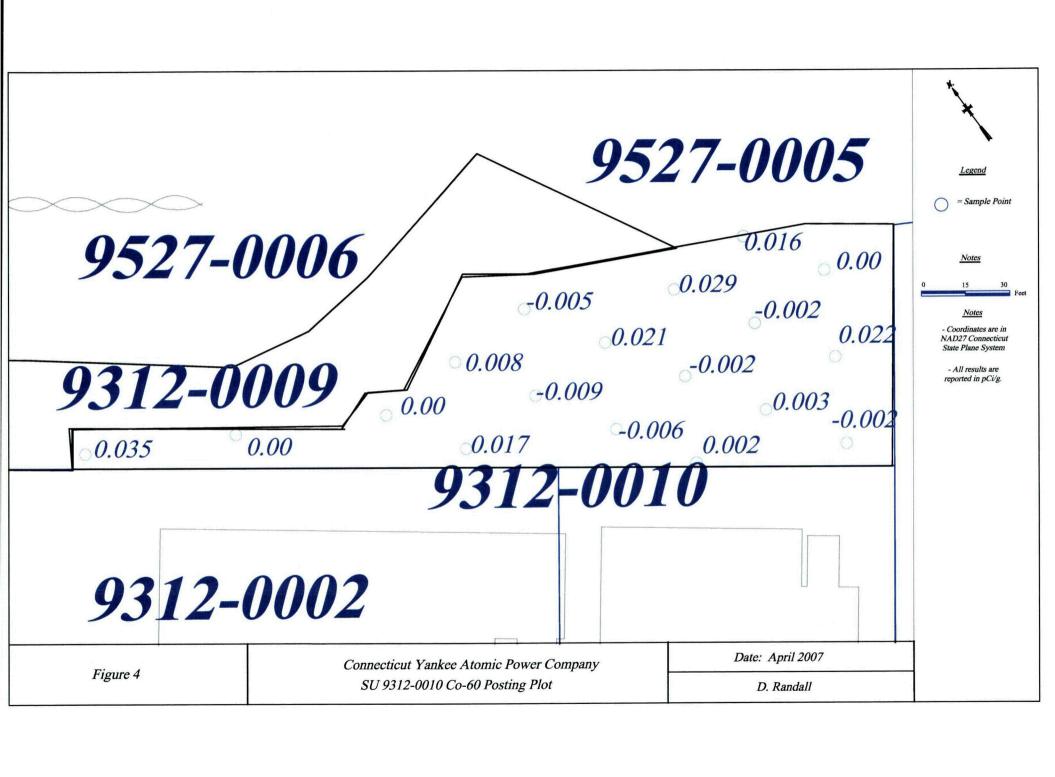
23

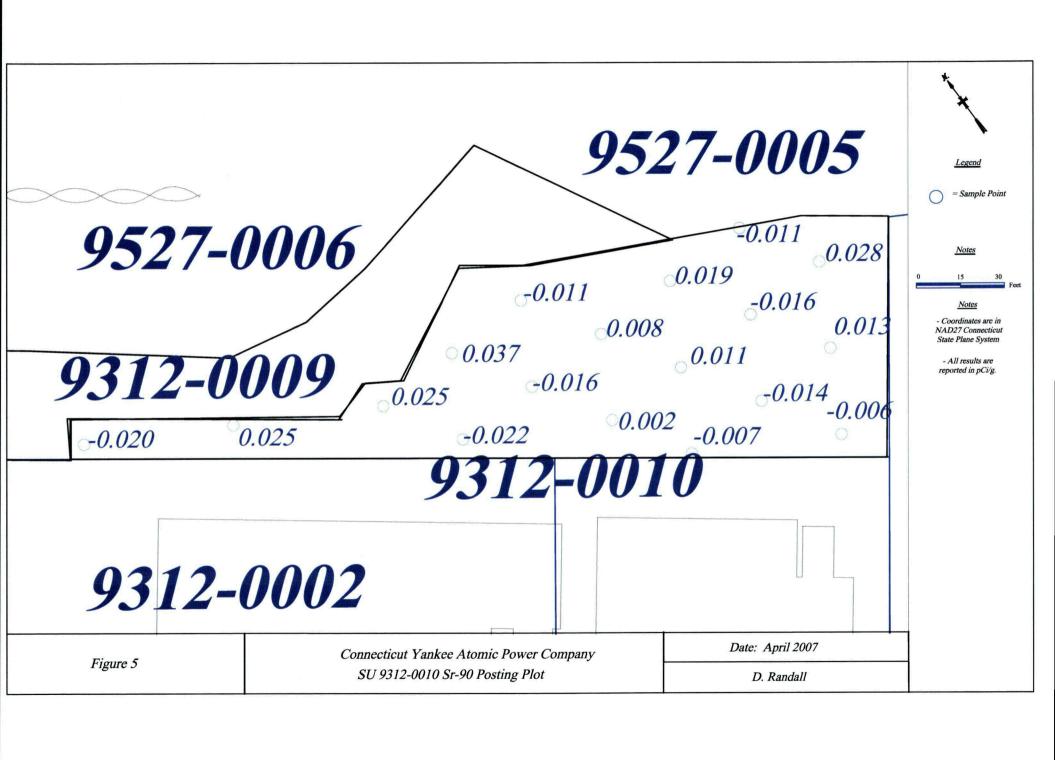
RELEASE RECORD

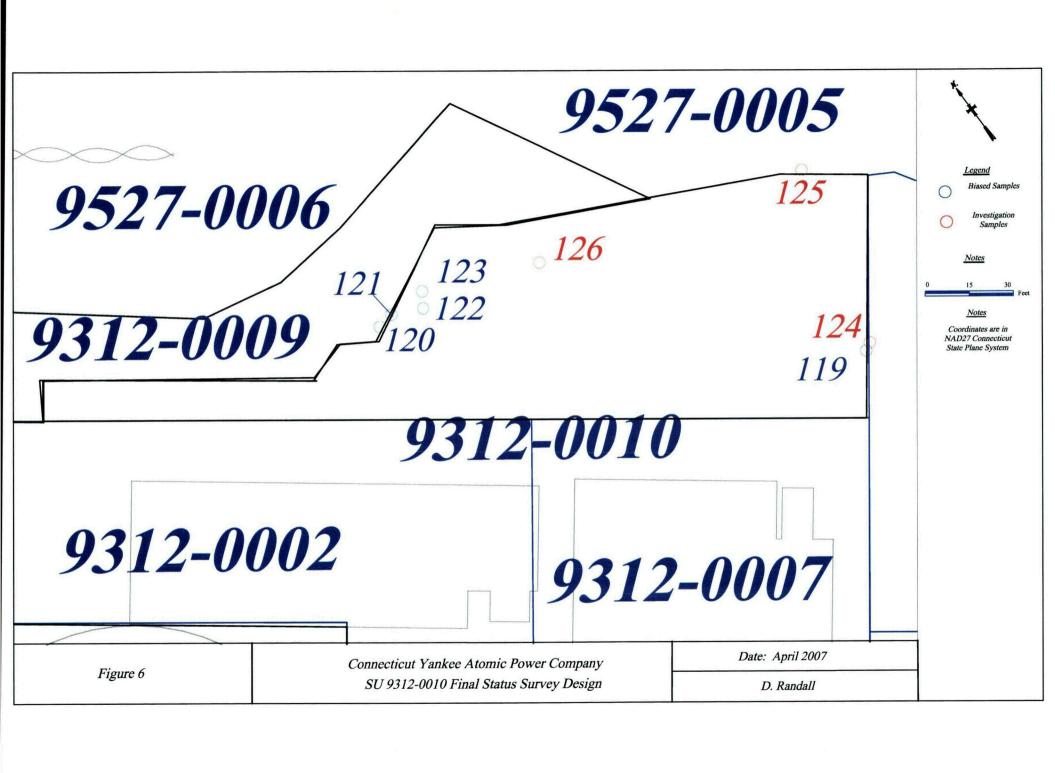
ATTACHMENT 1 (FIGURES)

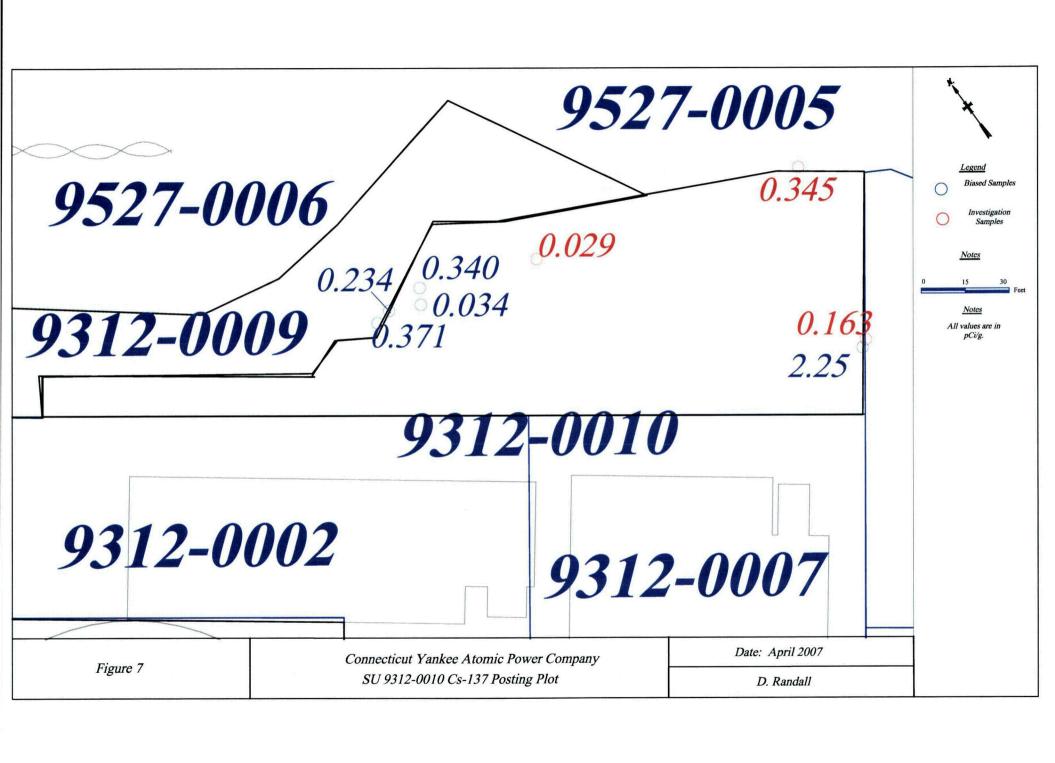



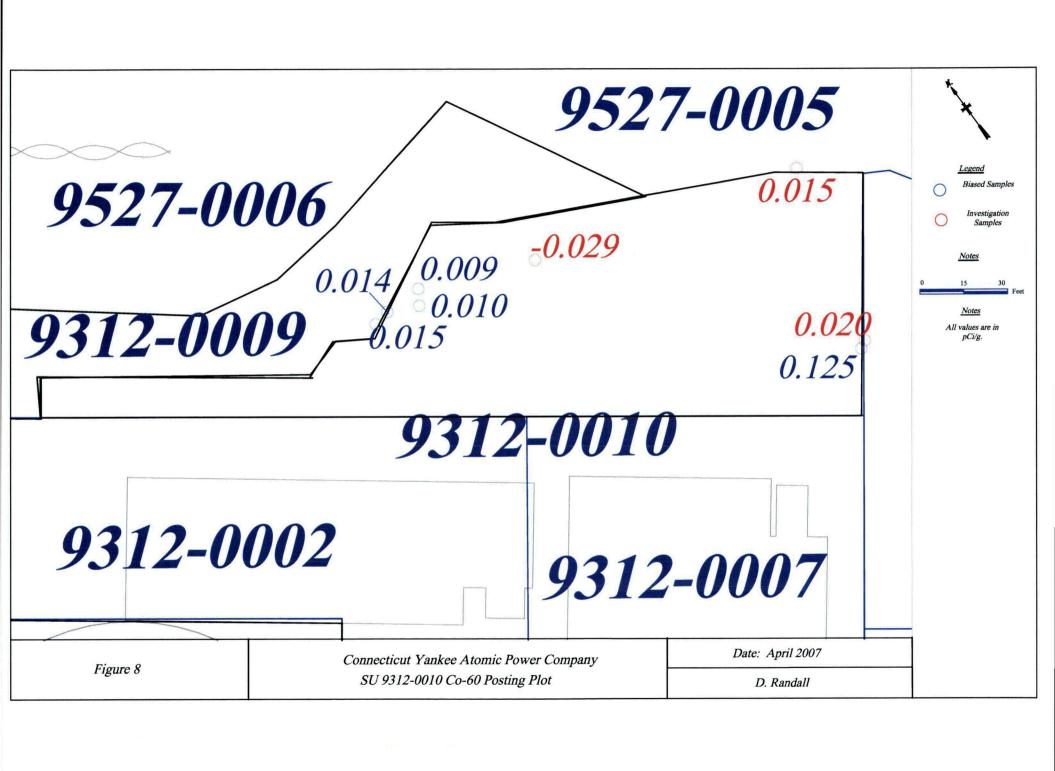

Figure 1

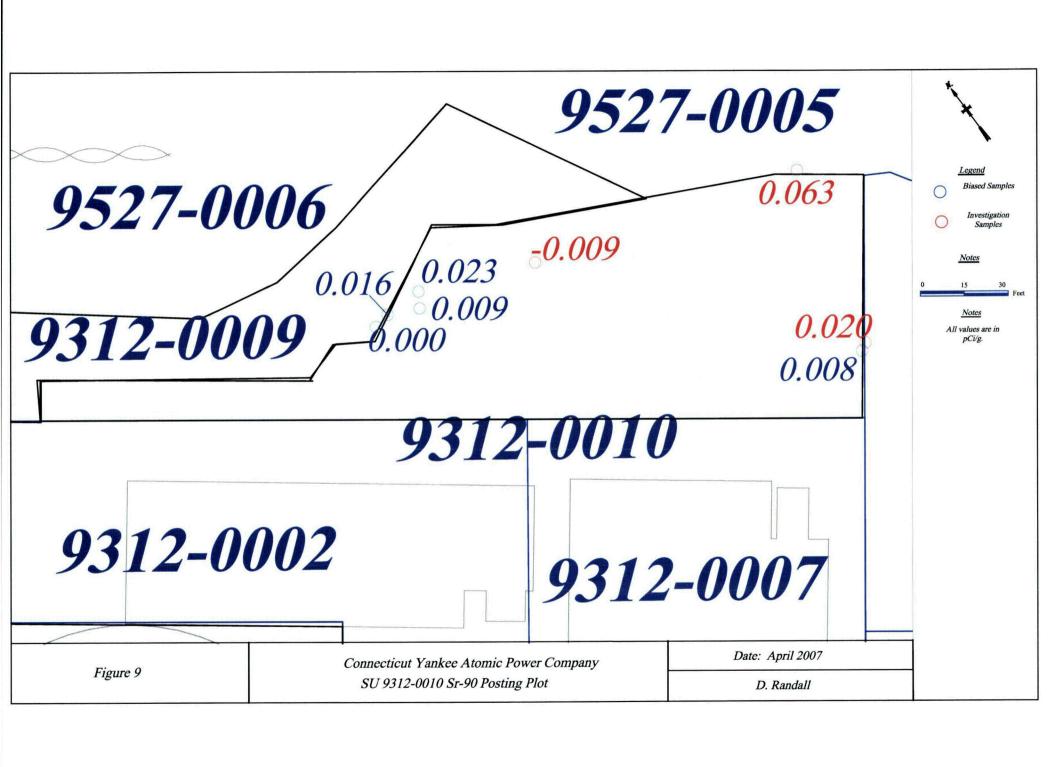



Connecticut Yankee Atomic Power Company Site MapWith Reference To Survey Unit 9312-0010


Date	By			
April 2007	D. Randall			







RELEASE RECORD

ATTACHMENT 2 (SCAN RESULTS)

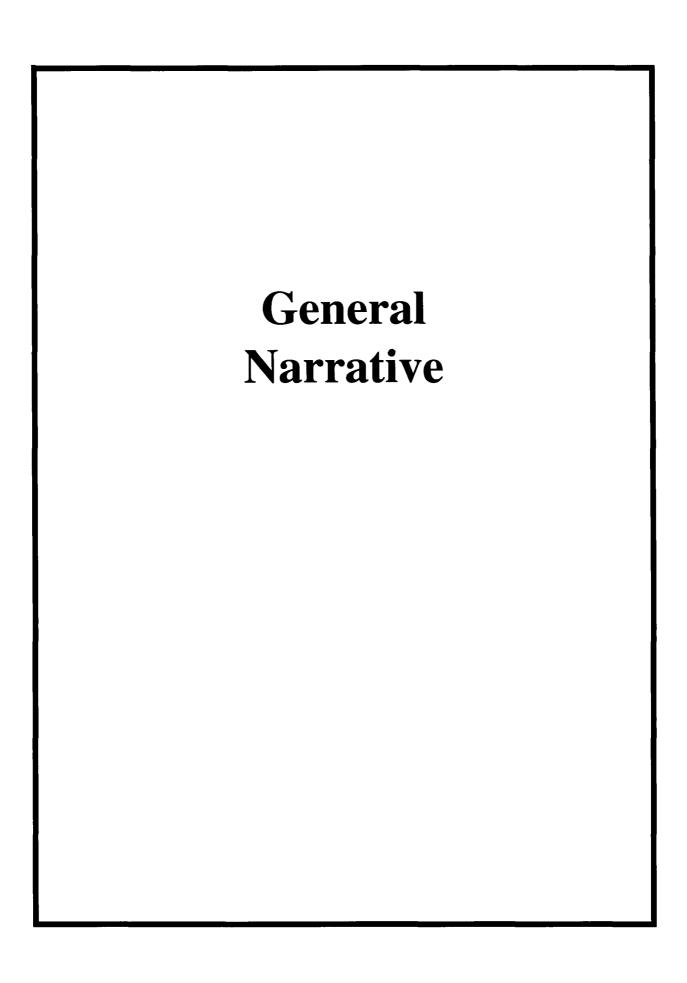
		Log		Alarm Level	>Alarm Level	E-600	Probe
Survey Location	Log Date	Time	Reading	Level	Level	S/N	S/N
9312-10-BL-00-101-0	3/26/2007	10:31	1.35E+04			1117	1014
9312-10-SL-00-101-0	3/26/2007	10:32	1.48E+04	1.52E+04		1117	1014
9312-10-BL-00-102-0	3/26/2007	10:33	1.18E+04	enders of a house time between the second control of the property of the		1117	1014
9312-10-SL-00-102-0	3/26/2007	10:35	1.29E+04	1.34E+04		1117	1014
9312-10-BL-00-103-0	3/26/2007	10:35	1.27E+04			1117	1014
9312-10-SL-00-103-0	3/26/2007	10:37	1.29E+04	1.43E+04		1117	1014
9312-10-BL-00-104-0	3/26/2007	10:37	1.05E+04	·····		1117	1014
9312-10-SL-00-104-0	3/26/2007	10:40	1.03E+04	1.20E+04		1117	1014
9312-10-BL-00-105-0	3/26/2007	10:41	1.01E+04			1117	1014
9312-10-SL-00-105-0	3/26/2007	10:43	9.49E+03	1.15E+04		1117	1014
9312-10-BL-00-106-0	3/26/2007	10:45	9.75E+03			1117	1014
9312-10-SL-00-106-0	3/26/2007	10:46	8.79E+03	1.12E+04		1117	1014
9312-10-BL-00-107-0	3/26/2007	10:48	9.83E+03			1117	1014
9312-10-SL-00-107-0	3/26/2007	10:50	9.53E+03	1.12E+04		1117	1014
9312-10-BL-00-108-0	3/26/2007	10:52	1.18E+04			1117	1014
9312-10-SL-00-108-0	3/26/2007	10:54	1.22E+04	1.34E+04		1117	1014
9312-10-BL-00-109-0	3/26/2007	10:55	1.18E+04			1117	1014
9312-10-SL-00-109-0	3/26/2007	10:57	1.31E+04	1.34E+04		1117	1014
9312-10-BL-00-110-0	3/26/2007	10:58	8.56E+03			1117	1014
9312-10-SL-00-110-0	3/26/2007	10:59	9.37E+03	9.88E+03		1117	1014
9312-10-BL-00-111-0	3/26/2007					1117	
9312-10-SL-00-111-0	3/26/2007	11:02	1.10E+04	1.21E+04		1117	1014
9312-10-BL-00-112-0	3/26/2007					1117	
9312-10-SL-00-112-0	3/26/2007			1.21E+04		1117	
9312-10-BL-00-113-0	3/26/2007					1117	
9312-10-SL-00-113-0	3/26/2007			1.17E+04		1117	
9312-10-BL-00-114-0	3/26/2007					1117	
9312-10-SL-00-114-0	3/26/2007	11:09	1.02E+04	1.05E+04		1117	1014

9312-0010 Sample Location Scans

9312-10-BL-00-115-0	3/26/2007	11:10	1.09E+04		1117	1014
9312-10-SL-00-115-0	3/26/2007	11:12	1.16E+04	1.24E+04	1117	1014
9312-10-BL-00-116-0	3/26/2007	11:12	1.09E+04		1117	1014
 9312-10-SL-00-116-0	3/26/2007	11:14	1.10E+04	1.24E+04	1117	1014
 9312-10-BL-00-117-0	3/26/2007	11:15	1.07E+04		1117	1014
9312-10-SL-00-117-0	3/26/2007	11:17	1.12E+04	1.22E+04	1117	1014
9312-10-BL-00-118-0	3/26/2007	11:17	1.08E+04		1117	1014
9312-10-SL-00-118-0	3/26/2007	11:19	1.15E+04	1.23E+04	1117	1014
9312-10-BL-00-119-0	3/26/2007	11:20	1.24E+04		1117	1014
9312-10-SL-00-119-0	3/26/2007	11:21	1.31E+04	1.40E+04	1117	1014
9312-10-BL-00-120-0	3/26/2007	14:37	1.40E+04		1117	1014
9312-10-SL-00-120-0	3/26/2007	14:37	1.48E+04	1.57E+04	1117	1014
9312-10-BL-00-121-0	3/26/2007	14:38	1.12E+04		1117	1014
9312-10-SL-00-121-0	3/26/2007	14:39	1.31E+04	1.27E+04	1117	1014
9312-10-BL-00-122-0	3/26/2007	14:39	1.13E+04		1117	1014
9312-10-SL-00-122-0	3/26/2007	14:39	1.08E+04	1.28E+04	1117	1014
9312-10-BL-00-123-0	3/26/2007	14:40	1.25E+04		1117	1014
9312-10-SL-00-123-0	3/26/2007	14:41	1.10E+04	1.41E+04	1117	1014

		Log			Action		
Survey Location		Time	Probe S/N	Reading	Level	Units	E-600 S/N
9312-10-BC-00-01-0	3/28/2007	8:04:00	1004	1.33E+04		cpm	1111
9312-10-SC-00-01-0	3/28/2007	8:05:00	1004	1.15E+04	1.53E+04	cpm	1111
9312-10-BC-00-02-0	3/28/2007	8:05:00	1004	1.12E+04		cpm	1111
9312-10-SC-00-02-0	3/28/2007	8:07:00	1004	1.07E+04	1.32E+04		1111
9312-10-BC-00-03-0	3/28/2007	8:07:00	1004	8.24E+03		cpm	1111
9312-10-SC-00-03-0	3/28/2007	8:11:00	1004	9.80E+03	1.02E+04		1111
9312-10-BC-00-04-0	3/28/2007	8:12:00	1004	9.74E+03	***************************************	cpm	1111
9312-10-SC-00-04-0	3/28/2007	8:17:00	1004	1.16E+04	1.17E+04	cpm	1111
9312-10-BC-00-05-0	3/28/2007	8:18:00	1004	1.24E+04		cpm	1111
9312-10-SC-00-05-0	3/28/2007	8:19:00	1004	1.43E+04	1.44E+04	cpm	1111
9312-10-BC-00-06-0	3/28/2007	8:21:00	1004	1.25E+04		cpm	1111
9312-10-SC-00-06-0	3/28/2007	8:23:00	1004	1.22E+04	1.45E+04	cpm	1111
9312-10-BC-00-07-0	3/28/2007	8:24:00	1004	_1.05E±04	المساور والمستدر والمساور والمساورة	_cpm_	1111
9312-10-SC-00-07-0	3/28/2007	8:27:00	1004	1.10E+04	1.25E+04	cpm	1111
9312-10-BC-00-08-0	3/28/2007	8:28:00	1004	1.03E+04		cpm	1111
9312-10-SC-00-08-0	3/28/2007	8:31:00	1004	1.15E+04	1.23E+04	cpm	1111
9312-10-BC-00-09-0	3/28/2007	8:32:00	1004	1.22E+04		cpm	1111
9312-10-SC-00-09-0	3/28/2007	8:34:00	1004	1.32E+04	1.42E+04	cpm	1111
9312-10-BC-00-10-0	3/28/2007	8:37:00	1004	1.40E+04		cpm	1111
9312-10-SC-00-10-0	3/28/2007	8:40:00	1004	1.23E+04	1.60E+04	cpm	1111
9312-10-BC-00-11-0	3/28/2007	8:41:00	1004	1.09E+04		cpm	1111
9312-10-SC-00-11-0	3/28/2007	8:42:00	1004	1.08E+04	1.29E+04	cpm	1111
9312-10-BC-00-12-0	3/28/2007	9:50:00	1004	1.23E+04		cpm	1111
9312-10-SC-00-12-0	3/28/2007	9:53:00	1004	1.22E+04	1.43E+04	cpm	1111
9312-10-BC-00-13-0	3/28/2007	10:14:00	1004	1.09E+04		cpm	1111
9312-10-SC-00-13-0	3/28/2007	10:20:00	1004	1.02E+04	1.29E+04	cpm	1111
9312-10-ER-00-13-1	3/29/2007	7:16:00	1004	1.44E+04	,	cpm	1111
9312-10-BC-00-14-0	3/28/2007	10:21:00		1.07E+04	•	cpm	1111
9312-10-SC-00-14-0	3/28/2007	10:25:00	1004	1.09E+04	1.27E+04	cpm	1111
9312-10-BC-00-15-0	3/28/2007	10:26:00	1004	1.03E+04		cpm	1111
9312-10-SC-00-15-0	3/28/2007	10:29:00	1004	1.00E+04	1.23E+04	cpm	1111
9312-10-BC-00-16-0	3/28/2007	10:31:00	1004			cpm	1111
9312-10-SC-00-16-0	3/28/2007	10:36:00				cpm	1111
9312-10-BC-00-17-0	3/28/2007	10:38:00		1.01E+04		cpm	1111
9312-10-SC-00-17-0	3/28/2007	10:40:00		9.82E+03		cpm	1111
9312-10-BC-00-18-0	3/28/2007	10:41:00		1.03E+04		cpm	1111
9312-10-SC-00-18-0	3/28/2007	10:48:00		9.64E+03		cpm	1111
9312-10-BC-00-19-0	3/28/2007	10:49:00		9.46E+03		cpm	1111
9312-10-SC-00-19-0	3/28/2007	10:54:00		9.10E+03		cpm	1111
9312-10-BC-00-20-0	3/28/2007	10:56:00		9.98E+03		cpm	1111
9312-10-SC-00-20-0	3/28/2007	11:02:00		9.63E+03		cpm	1111
9312-10-ER-00-20-1	3/29/2007	7:17:00		2.24E+04		cpm	1111
9312-10-BC-00-21-0	3/28/2007	11:04:00		1.08E+04		cpm	1111
9312-10-SC-00-21-0	3/28/2007	11:10:00		9.73E+03		-	1111
9312-10-BC-00-22-0	3/28/2007	11:11:00		9.96E+03		cpm	1111
9312-10-SC-00-22-0	3/28/2007	11:16:00		9.73E+03		•	1111
9312-10-BC-00-23-0	3/28/2007	11:18:00		9.99E+03		cpm	1111
9312-10-SC-00-23-0	3/28/2007	11:21:00		9.53E+03		-	1111
9312-10-BC-00-24-0	3/28/2007	11:23:00		9.69E+03		cpm	1111
9312-10-SC-00-24-0	3/28/2007	11:27:00	1004	9.55E+03	3 1.17E+04	cpm	1111

9312-10-BC-00-25-0	3/28/2007	11:30:00	1004	1.04E+04		cpm	1111	
9312-10-SC-00-25-0	3/28/2007	11:32:00	1004	9.81E+03	1.24E+04	cpm	1111	
 9312-10-BC-00-26-0	3/28/2007	11:33:00	1004	9.42E+03		cpm	1111	
9312-10-SC-00-26-0	3/28/2007	11:36:00	1004	9.01E+03	1.14E+04	cpm	1111	
9312-10-BC-00-27-0	3/28/2007	12:55:00	1004	9.38E+03		cpm	1111	
9312-10-SC-00-27-0	3/28/2007	13:01:00	1004	9.51E+03	1.14E+04	cpm	1111	
9312-10-BC-00-28-0	3/28/2007	13:03:00	1004	1.02E+04		cpm	1111	
9312-10-SC-00-28-0	3/28/2007	13:07:00	1004	9.91E+03	1.22E+04		1111	
 9312-10-BC-00-29-0	3/28/2007	13:09:00	1004	1.08E+04		cpm	1111	
9312-10-SC-00-29-0	3/28/2007	13:17:00	1004	9.91E+03	1.28E+04	cpm	1111	
9312-10-BC-00-30-0	3/28/2007	13:19:00	1004	1.08E+04		cpm	1111	
9312-10-SC-00-30-0	3/28/2007	13:23:00	1004	1.13E+04	1.28E+04	cpm	1111	
9312-10-BC-00-31-0	3/28/2007	13:24:00	1004	9.80E+03		cpm	1111	
9312-10-SC-00-31-0	3/28/2007	13:28:00	1004	9.92E+03	1.18E+04	cpm	1111	
 9312-10-BC-00-32-0	3/28/2007	13:29:00	1004	9.87E+03_		cpm	1111	
9312-10-SC-00-32-0	3/28/2007	13:33:00	1004	1.03E+04	1.19E+04	cpm	1111	
9312-10-BC-00-33-0	3/28/2007	13:34:00	1004	1.01E+04		cpm	1111	
9312-10-SC-00-33-0	3/28/2007	13:39:00	1004	1.02E+04	1.22E+04		1111	
9312-10-BC-00-34-0	3/28/2007	13:40:00	1004	9.93E+03		cpm	1111	
9312-10-SC-00-34-0	3/28/2007	13:44:00	1004	1.01E+04	1.21E+04		1111	
9312-10-BC-00-35-0	3/28/2007	13:46:00	1004	1.03E+04		cpm		
9312-10-SC-00-35-0	3/28/2007	13:50:00	1004	1.10E+04	1.23E+04			
9312-10-BC-00-36-0	3/28/2007	13:50:00	1004	1.03E+04		cpm	1111	
9312-10-SC-00-36-0	3/28/2007		1004	1.06E+04	1.23E+04	cpm	1111	
9312-10-BC-00-37-0	3/28/2007	13:55:00	1004	1.05E+04		cpm	1111	
9312-10-SC-00-37-0	3/28/2007	13:59:00	1004	1.09E+04	1.25E+04	cpm	1111	
9312-10-BC-00-38-0	3/28/2007	13:59:00	1004	1.04E+04		cpm	1111	
9312-10-SC-00-38-0	3/28/2007	14:02:00	1004	1.05E+04	1.24E+04	cpm	1111	
9312-10-BC-00-39-0	3/28/2007	14:04:00	1004	1.01E+04		cpm	1111	
9312-10-SC-00-39-0	3/28/2007	14:05:00	1004	1.00E+04	1.21E+04	cpm	1111	
9312-10-BC-00-40-0	3/28/2007	14:06:00	1004	1.01E+04		cpm	1111	
9312-10-SC-00-40-0	3/28/2007	14:08:00	1004	1.03E+04	1.21E+04	cpm	1111	
9312-10-BC-00-41-0	3/28/2007	14:08:00	1004	1.00E+04		cpm	1111	
9312-10-SC-00-41-0	3/28/2007	14:10:00	1004	1.15E+04	1.20E+04	cpm	1111	
9312-10-BC-00-42-0	3/28/2007	14:11:00	1004	1.09E+04		cpm	1111	
9312-10-SC-00-42-0	3/28/2007	14:13:00	1004	1.06E+04	1.29E+04	cpm	1111	
9312-10-BC-00-43-0	3/28/2007	14:13:00	1004	1.07E+04		cpm	1111	
9312-10-SC-00-43-0	3/28/2007	14:16:00	1004	1.22E+04	1.27E+04	cpm	1111	
9312-10-BC-00-44-0	3/28/2007	14:16:00	1004	1.14E+04		cpm	1111	
9312-10-SC-00-44-0	3/28/2007	14:18:00	1004	1.08E+04	1.34E+04	cpm	1111	
9312-10-BC-00-45-0	3/28/2007	14:19:00	1004	1.09E+04		cpm	1111	
9312-10-SC-00-45-0	3/28/2007	14:20:00	1004	1.10E+04	1.30E+04	cpm	1111	
9312-10-BC-00-46-0	3/28/2007	14:21:00	1004	1.05E+04		cpm	1111	
9312-10-SC-00-46-0	3/28/2007	14:23:00	1004	1.13E+04	1.33E+04	cpm	1111	
9312-10-BC-00-47-0	3/28/2007	14:23:00	1004	1.05E+04		cpm	1111	
9312-10-SC-00-47-0	3/28/2007	14:25:00	1004	1.05E+04	1.25E+04	cpm	1111	
9312-10-BC-00-48-0	3/28/2007	14:25:00	1004	1.07E+04		cpm	1111	
9312-10-SC-00-48-0	3/28/2007	14:28:00	1004	1.08E+04	1.27E+04	cpm	1111	
9312-10-BC-00-49-0	3/28/2007	14:29:00	1004	9.91E+03		cpm	1111	
9312-10-SC-00-49-0	3/28/2007	14:36:00	1004	1.10E+04	1.19E+04	cpm	1111	
9312-10-ER-00-49-1	3/29/2007	7:19:00	1004	1.24E+04		cpm	1111	
 9312-10-BC-00-50-0	3/28/2007	14:37:00	1004	1.06E+04		cpm	1111	


9312-0010 Scan Results

9312-10-SC-00-50-0	3/28/2007	14:39:00	1004	1.08E+04	1.26E+04	cpm	1111	
9312-10-BC-00-51-0	3/28/2007	14:40:00	1004	1.00E+04		cpm	1111	
 9312-10-SC-00-51-0	3/28/2007	14:43:00	1004	1.08E+04	1.20E+04	cpm		
9312-10-BC-00-52-0	3/28/2007	14:43:00	1004	1.18E+04		cpm	1111	
9312-10-SC-00-52-0	3/28/2007	14:44:00		1.15E+04		cpm		
9312-10-BC-00-53-0	3/28/2007	14:46:00		1.02E+04		cpm	1111	
9312-10-SC-00-53-0	3/28/2007	14:48:00		1.03E+04		cpm	1111	
9312-10-BC-00-54-0	3/28/2007	14:48:00		1.02E+04		cpm	1111	
 9312-10-SC-00-54-0				1.06E+04		*****		
9312-10-BC-00-55-0	3/28/2007	14:53:00		9.47E+03		cpm	1111	
9312-10-SC-00-55-0	3/28/2007	14:54:00		1.01E+04		•		
9312-10-BC-00-56-0	3/28/2007	14:55:00		9.68E+03		cpm		
9312-10-SC-00-56-0	3/28/2007	14:56:00		1.02E+04		•		
9312-10-BC-00-57-0	3/28/2007	14:57:00		1.07E+04		cpm	1111	
 9312-10-SC-00-57-0	3/28/2007	14:59:00		1.08E+04		•		
9312-10-BC-00-58-0	3/28/2007	14:59:00		9.56E+03		cpm		
9312-10-SC-00-58-0	3/28/2007	15:01:00		9.57E+03		•	1111	
9312-10-BC-00-59-0	3/28/2007	15:01:00		1.03E+04		cpm	1111	
9312-10-SC-00-59-0	3/28/2007	15:03:00		1.02E+04		•		
9312-10-BC-00-60-0	3/28/2007	15:03:00		9.96E+03		cpm		
9312-10-SC-00-60-0	3/28/2007	15:05:00		9.60E+03		•		
9312-10-BC-00-61-0	3/28/2007	15:06:00		9.78E+03		cpm		
9312-10-SC-00-61-0	3/28/2007	15:07:00		1.00E+04		•		
9312-10-BC-00-62-0	3/28/2007	15:08:00		1.01E+04		cpm		
9312-10-SC-00-62-0	3/28/2007	15:09:00		1.01E+04		•		
9312-10-BC-00-63-0	3/28/2007	15:10:00		1.04E+04		cpm		
9312-10-SC-00-63-0	3/28/2007	15:12:00		1.07E+04		•		
9312-10-BC-00-64-0	3/28/2007	15:13:00		9.39E+03		cpm		
9312-10-SC-00-64-0	3/28/2007	15:14:00		1.01E+04		•		
9312-10-BC-00-65-0	3/28/2007			1.05E+04		cpm		
9312-10-SC-00-65-0	3/28/2007	15:17:00		9.85E+03		-		
9312-10-BC-00-66-0	3/28/2007	15:17:00		9.83E+03		cpm		
9312-10-SC-00-66-0	3/28/2007	15:19:00	1004	1.08E+04	1.18E+04	cpm	1111	

NORTHEAST PROTECTED AREA GROUNDS SURVEY UNIT 9312-0010

RELEASE RECORD

ATTACHMENT 3	(LABORATORY DATA)
---------------------	-------------------

General Narrative for

Connecticut Yankee Atomic Power Co. Work Order: 183243 SDG: MSR#07-0130

April 04, 2007

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary

Sample receipt

The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on March 29, 2007 for analysis. Shipping container temperatures were checked, documented, and within specifications. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage.

Sample Identification The laboratory received the following samples:

Laboratory	Sample
Identification	Description
183243001	9312-0010-101F
183243002	9312-0010-102F
183243003	9312-0010-103F
183243004	9312-0010-104F
183243005	9312-0010-105F
183243006	9312-0010-106F
183243007	9312-0010-107F
183243008	9312-0010-108F
183243009	9312-0010-109F
183243010	9312-0010-110F
183243011	9312-0010-111F
183243012	9312-0010-112F
183243013	9312-0010-113F
183243014	9312-0010-114F
183243015	9312-0010-114FS
183243016	9312-0010-115F
183243017	9312-0010-116F
183243018	9312-0010-117F
183243019	9312-0010-118F
183243020	9312-0010-119B
183243021	9312-0010-120B
183243022	9312-0010-121B
183243023	9312-0010-122B
183243024	9312-0010-123B
183243025	9312-0010-I-017-B

183243026	9312-0010-I-018-B
183243027	9312-0010-I-019-B
183243028	9312-0010-I-020-B
183243029	9312-0010-I-021-B
183243030	9312-0010-I-022-B
183243031	9312-0010-I-023-B
183243032	9312-0010-I-024-B
183243033	9312-0010-I-025-B

Items of Note

There are no items to note.

Case Narrative

Sample analyses were conducted using methodology as outlined in GEL Laboratories, LLC (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Analytical Request

Thirty-one soil samples were analyzed for FSSGAM and Strontium-90. Two soil samples were analyzed for FSSALL.

Data Package

The enclosed data package contains the following sections: General Narrative, Chain of Custody and Supporting Documentation, Data Review Qualifier Definitions, and data from the following fractions: Radiochemistry.

I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

Cheryl Jones
Project Manager

List of current GEL Certifications as of 03 April 2007

State	Certification
Alaska	UST-062
Arizona	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California	01151CA
Colorado	GenEngLabs
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA	WG-15J
Florida/NELAP	E87156
Georgia	E87156 (FL/NELAP)
Hawaii	N/A
Idaho	N/A
Illinois	200029
Indiana	C-SC-01
Kansas	E-10332
Kentucky	90129
Louisiana	03046
Maryland	270
Massachusetts	M-SC012
Michigan	9903
Nevada	SC12
New Jersey	SC002
New Mexico	FL NELAP E87156
New York	11501
North Carolina	233
North Carolina Drinking W	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania	68-00485
South Carolina	10120001/10585001/10120002
Tennessee	02934
Texas	TX213-2006A
Texas NELAP	T104704235-06-TX
U.S. Dept. of Agriculture	S-52597
US Army Corps of Engineer	N/A
Utah	8037697376 GEL
Vermont	VT87156
Virginia	00151
Washington	C1641
	<u> </u>

Chain of Custody and Supporting Documentation

		7-2556										10.00	
Project Name: Haddam N	eck Decomn	nissioning	ļ				A	nalyses	Reque	ested		Lab Use Only	
Contact Name & Phone: Jack McCarthy 860-267-3	924		Media Code	Sample Type	Container Size-							Comments:	
Analytical Lab (Name, Control Engineering Laborates) 2040 Savage Road Charleston, SC 29407 ATT: Cheryl Jones (843-	ratories			Code	&Type Code	Sr-90							
Priority: 30 D. 15	D. 🛛 7 D.					AM &	CL					1832	143
Sample Designation	Date	Time				FSSGAM	FSSALL					Comment, Preservation	Lab Sample ID
9312-0010-101F	3/26/07	1316	TS	G	BP	X					<u> </u>		
9312-0010-102F	3/26/07	1316	TS	G	BP		X						
9312-0010-103F	3/26/07	1317	TS	G	BP	X							
9312-0010-104F	3/26/07	1320	TS	G	BP	X							
9312-0010-105F	3/26/07	1325	TS	G	BP	X							
9312-0010-106F	3/26/07	1325	TS	G	BP	X							
9312-0010-107F	3/26/07	1330	TS	G	BP	X					<u> </u>		
9312-0010-108F	3/26/07	1330	TS	G	BP	X					<u> </u>		
9312-0010-109F	3/26/07	1335	TS	G	BP	X					<u> </u>		<u></u>
9312-0010-110F	3/26/07	1335	TS	G	BP	X					<u> </u>		
9312-0010-111F	3/26/07	1340	TS	G	BP	<u> </u>	Х			<u></u>	<u> </u>		
NOTES: PO #: 002332	MSR i	#: 07-0130		⊠ LT	TP QA		Radwa	iste QA	ļ	□ Non	QA	Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp.: Deg. (
1) Relinquished By Date/Time 2) Received 3/28/07 /030				man 19	lito			312	e/Time 1/57	9130	Other	Custody Seal Intact	
3) Relinquished By		Date/Tim	e	4) Regeived By					Ďate	Time		Bill of Lading #	Y D N D
5) Relinquished By		Date/Tim	ie	6) Rece	ived By				Date	e/Time			

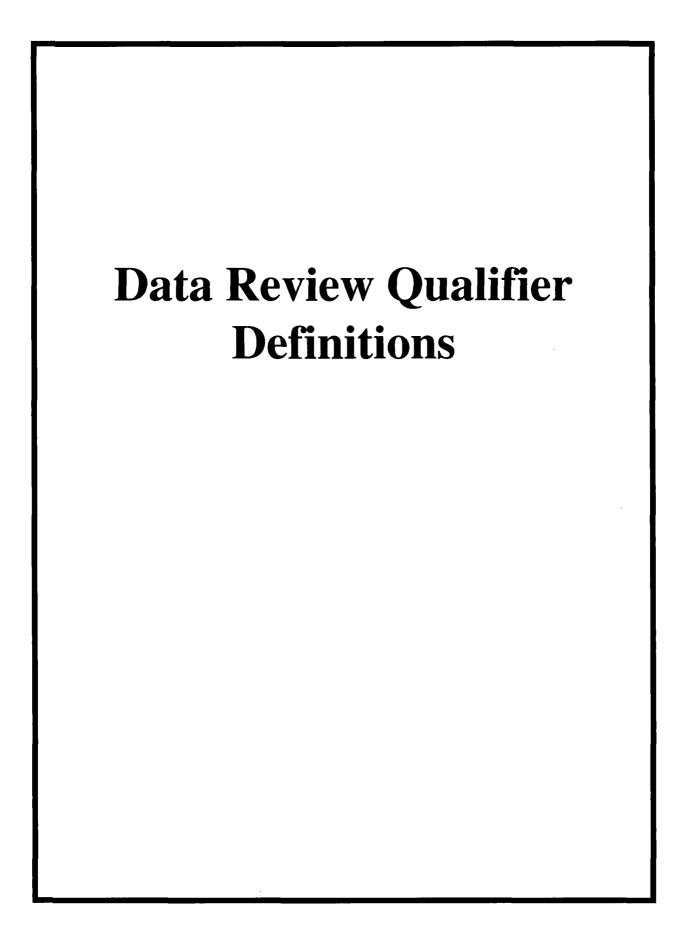
	Connecticut Yankee Atomic Power Company 362 Injun Hollow Road, East Hampton, CT 06424 860-267-2556										stody	y Form	No. 2007-00101
Project Name: Haddam I							A	nalyses	Reque	sted		Lab Use Only	
Contact Name & Phone: Jack McCarthy 860-267-			Media Code	Sample Type	Container Size-							Comments:	
Analytical Lab (Name, C General Engineering Lab 2040 Savage Road Charleston, SC 29407 ATT: Cheryl Jones (843	ooratories			Code	&Type Code	Sr-90							
Priority: 30 D. 15	5 D. 🛛 7 D.					AM &	177					1832	43
Sample Designation	Date	Time				FSSGAM	FSSALL					Comment, Preservation	Lab Sample ID
93·12-0010-112F	3/26/07	1340	TS	G	BP	X							†
9312-0010-113F	3/26/07	1345	TS	G	BP	X							
9312-0010-114F	3/26/07	1345	TS	G	BP	X							
9312-0010-114FS	3/26/07	1345	TS	G	BP	X	1						
9312-0010-115F	3/26/07	1350	TS	G	BP	X							
9312-0010-116F	3/26/07	1350	TS	G	BP	X							
9312-0010-117F	3/26/07	1355	TS	G	BP	X							
9312-0010-118F	3/26/07	1355	TS	G	BP	X							
9312-0010-119B	3/26/07	1400	TS	G	BP	X							
9312-0010-120B	3/26/07	1437	TS	G	BP	X	<u> </u>				<u> </u>		
9312-0010-121B	3/26/07	1438	TS	G	BP	X	<u> </u>			<u> </u>			
NOTES: PO #: 002332	MSR a	#: 07-0130		⊠ LT	P QA		Radwa	ste QA] Non	QA	Samples Shipped Via: ☐ Fed Ex ☐ UPS ☐ Hand	Internal Container Temp.: Deg. C Custody Sealed?
1) Reliminshed By Date/Time 2) Received By 3/28/07 1040					ived By	oft	<u>/</u>	3		Time	30	Other	Custody Seal Intact?
3) Relinquished By	,	Date/Tim	ie	4) Dece	ived By	• -			Date/	Time		Bill of Lading #	Y O N O
5) Relinquished By		Date/Tim	ıe	6) Rece	ived By				Date	Time		1	

Connecticut 3 362 Injun	Yankee A Hollow Road, 1 860-26	East Hampton			ıy			Ch	ain o	f Cu	stody	y Form	No. 2007-00102				
Project Name: Haddam N	leck Decomn	nissioning					A	nalyses	Reque	sted		Lab Use Only					
Contact Name & Phone: Jack McCarthy 860-267-3	3924		Media Code	Sample Type	Container Size-							Comments:					
General Engineering Labo 2040 Savage Road Charleston, SC 29407	Charleston, SC 29407 ATT: Cheryl Jones (843-556-8171)		Engineering Laboratories vage Road ton, SC 29407 heryl Jones (843-556-8171)			Code	&Type Code	Sr-90									
Priority: 30 D. 15 Other:				FSSGAM &						183243							
Sample Designation	Date	Time			}	FSSG.	FSSALL					Comment, Preservation	Lab Sample ID				
9312-0010-122B	3/26/07	1439	TS	G	BP	X			†								
9312-0010-123B	3/26/07	1440	TS	G	BP	X											
NOTES: PO #: 002332	MSR	#: 07-130		□ LTP	QA	☐ R	adwast	e QA		Non Q	A	Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp.: Deg. C				
1) Relinquisher By	X 3/	Date/Tim	10 40	2) Rede	ived By	116		,	Date/		1730	Other	Custody Seal Intact?				
3) Relinquished By	3) Relinquished By Date/I					V			Date/			Bill of Lading #	Y G N O				
5) Relinquished By		Date/Tin	ne	6) Rece	ived By				Date/	Time	<u> </u>]					
												<u> </u>					

	Connecticut Yankee Atomic Power Company 362 Injun Hollow Road, East Hampton, CT 06424 860-267-2556										Chain of Custody Form							
Project Name: Haddam N							A	nalyses	Reques	sted		Lab Use Only						
Contact Name & Phone: Jack McCarthy 860-267-3	3924		Media Code	Sample Type	Container Size-							Comments:						
Analytical Lab (Name, C General Engineering Lab 2040 Savage Road Charleston, SC 29407 ATT: Cheryl Jones (843- Priority: 30 D. 15 Other:	oratories 556-8171)			Code	&Type Code	1 & Sr-90						18324	13					
Sample Designation	Date	Time				FSSGAM &	;			:		Comment, Preservation	Lab Sample ID					
9312-0010-I-017-B	3/22/07	1350	TS	G	BP	X												
9312-0010-I-018-B	3/22/07	1355	TS	G	BP	X												
9312-0010-I-019-B	3/22/07	1400	TS	G	BP	X												
9312-0010-I-020-B	3/22/07	1405	TS	G	BP	X												
9312-0010-I-021-B	3/22/07	1410	TS	G	BP	X		<u> </u>		<u> </u>								
9312-0010-I-022-B	3/22/07	1415	TS	G	BP	X												
9312-0010-I-023-B	3/22/07	1420	TS	G	BP	X					_							
9312-0010-I-024-B	3/22/07	1425	TS	G	BP	X					<u> </u>							
9312-0010-I-025-B	3/22/07	1430	TS	G	BP	X		-					 					
NOTES: PO #: 002332	MSR	#: 07-0130		⊠ LTP	QA	F	Radwas	te QA		Non Ç	QΑ	Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp.: Deg. C Custody Sealed?					
1) Religipled By	3	Date/Tim	e 0 3 6	2) Rece	ived By	lol	its		Date/		9`,30	 	Custody Seal Intact?					
3) Relinquished By		Date/Tim		4) Roce					Date/	ν	-	Bill of Lading #	Y D N D					
5) Relinquished By		Date/Tim	e	6) Rece	ived By				Date/	Time								

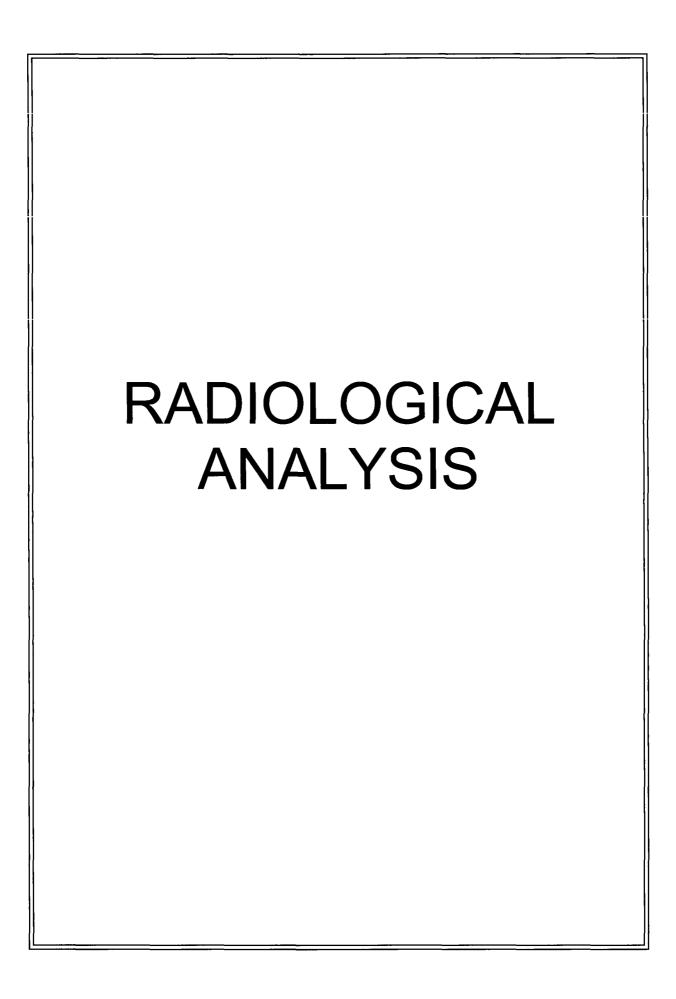
٠.	Figure 1. Sample C	heck-in List
Date	te/Time Received: 3/29/07 9/30)
SDC	G#: MSR#07-0129,	0130 0131
Wor	ork Order Number: 183245, 183	243, 183255
	pping Container ID: <u>See GEL SRR</u> Cha	
1.	Custody Seals on shipping container intact?	Yes [>] No []
2.	Custody Seals dated and signed?	Yes [X] No []
3.	Chain-of-Custody record present?	Yes [X] No []
4.	Cooler temperature See GEL	SRR
5. .	Vermiculite/packing materials is:	Wet [] Dry []
6.	Number of samples in shipping container:	9:
7.	Sample holding times exceeded?	Yes [] No [3]
8.	Samples have:	s ample labels
9.	Samples are:in good conditionleakingbrokenhave air b	ubbles
0. 1.	Were any anomalies identified in sample receipt? Description of anomalies (include sample numbers)	Yes [] No [X]
-•		
;		
ampl	le Custodian/Laboratory: Javan College	Date: 3/29/07
eleni	honed to:	By

SAMPLE RECEIPT & REVIEW FORM


PM use only

Client: VANK					SDG/ARCOC/Work Order: 188243, 183245, 183255		
Date Received: 3 29 07					PM(A) Review (ensure non-conforming items are resolved prior to signing):		
Re	ceived By: JP				Cull		
		T	ī	1			
	Sample Receipt Criteria	Yes	NA	Š	Comments/Qualifiers (Required for Non-Conforming Items)		
1	Shipping containers received intact and sealed?				Circle Applicable: seals broken damaged container leaking container other (describe)		
2	Samples requiring cold preservation within (4 +/- 2 6)? Record preservation method.				Circle Coolant # ice bags blue ice dry ice none other describe)		
3	Chain of custody documents included with shipment?		1 4 L				
4	Sample containers intact and sealed?				Circle Applicable: seals broken damaged container leaking container other (describe)		
5	Samples requiring chemical preservation at proper pH?				Sample ID's, containers affected and observed pH:		
6	VOA vials free of headspace (defined as < 6mm bubble)?				Sample ID's and containers affected:		
7	Are Encore containers present? (If yes, immediately deliver to VOA laboratory)						
8	Samples received within holding time?				Id's and tests affected:		
9	Sample ID's on COC match ID's on bottles?				Sample ID's and containers affected.		
10	Date & time on COC match date & time on bottles?		, ,		Sample ID's affected:		
11	Number of containers received match number indicated on COC?	·		v.	Sample ID's affected:		
12	COC form is properly signed in relinquished/received sections?						
14	Air Bill ,Tracking #'s, & Additional Comments	F	elE	×	790212159620-23° 791659268142-20° 791659268130-20° 792957895843-19° 792957895532-18°		
	Suspected Hazard Information	Non- Regulated	Regulated	High Level	RSO RAD Receipt #		
	Radiological Classification?	X,			Maximum Counts Observed*: 2009M		
B	PCB Regulated? Shipped as DOT Hazardous	X					
С	Material? If yes, contact Waste Manager or ESH Manager.	X		1.	Hazard Class Shipped: UN#:		
D	Regulated as a Foreign Soil?	X					
	PM (or PMA) review of Hazard class	sificat	ion:		Initials Date: 3 2907		

SAMPLE RECEIPT & REVIEW FORM CONTINUATION FORM


Client:	YANK	Date Received:	0/2710 f			Page / of /
	COC #				· :	
	2-007-000					
	2007-0008	9				
	2007-00100					
	2007-00103					
	2007-00091					
	2007-00092					
	2007-00102					
	2007-00101				<u> </u>	
	007-00099		`			
	:		· · · · · · · · · · · · · · · · · · ·			
		·	<u> </u>		·	·
			· - · · · · · · · · · · · · · · · · · ·			
	. _Э	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·			<u></u>	,	
			<u>:</u>	······································	· · · · · · · · · · · · · · · · · · ·	·
			···		;	
						
						
	······································					
· · · · · · · · · · · · · · · · · · ·						
						
		-			÷	
	The state of the s					· · · · · · · · · · · · · · · · · · ·
· ·			· · · · · · · · · · · · · · · · · · ·			
	The state of the s				· · · · · · · · · · · · · · · · · · ·	
						•
				. 1		

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- Result is less than value reported
- > Result is greater than value reported
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL</p>
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or ${\tt MDL/IDL} \, < \, {\tt sample} \, \, {\tt value} \, < \, {\tt PQL}$
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

Radiochemistry Case Narrative Connecticut Yankee Atomic Power Co. (YANK) Work Order 183243

Method/Analysis Information

Product: Alphaspec Am241, Cm, Solid ALL FSS

Analytical Method: DOE EML HASL-300, Am-05-RC Modified

Prep Method: Ash Soil Prep

Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep

Analytical Batch Number: 621107

Prep Batch Number: 621100

Dry Soil Prep GL-RAD-A-021 Batch Number: 621099

Sample ID	Client ID
183243002	9312-0010-102F
183243011	9312-0010-111F
1201305240	Method Blank (MB)
1201305241	183245006(9312-0001-005F) Sample Duplicate (DUP)
1201305242	183245006(9312-0001-005F) Matrix Spike (MS)
1201305243	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 15.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183245006 (9312-0001-005F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Product: Liquid Scint Pu241, Solid-ALL FSS

Analytical Method: DOE EML HASL-300, Pu-11-RC Modified

Prep Method: Ash Soil Prep

Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep

Analytical Batch Number: 622105

Prep Batch Number: 621100

Dry Soil Prep GL-RAD-A-021 Batch Number: 621099

Sample ID	Client ID
183243002	9312-0010-102F
183243011	9312-0010-111F
1201307488	Method Blank (MB)
1201307489	183245006(9312-0001-005F) Sample Duplicate (DUP)
1201307490	183245006(9312-0001-005F) Matrix Spike (MS)
1201307491	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-035 REV# 9.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183245006 (9312-0001-005F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples 183243002 (9312-0010-102F) and 183243011 (9312-0010-111F) were reprepped due to low/high carrier/tracer yield.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Product:	Alphaspec Pu, Solid-ALL FSS
Analytical Method:	DOE EML HASL-300, Pu-11-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	622351
Prep Batch Number:	621100
Dry Soil Prep GL-RAD-A-021 Batch Number:	621099

Sample ID	Client ID
183243002	9312-0010-102F
183243011	9312-0010-111F
1201308034	Method Blank (MB)
1201308035	183245006(9312-0001-005F) Sample Duplicate (DUP)
1201308036	183245006(9312-0001-005F) Matrix Spike (MS)
1201308037	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 15.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183245006 (9312-0001-005F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples were reprepped due to low/high carrier/tracer yield.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from

referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived

Analytical Method: EML HASL 300, 4.5.2.3

Prep Method: Dry Soil Prep

Analytical Batch Number: 621149

Prep Batch Number: 621101

Sample ID	Client ID
183243021	9312-0010-120B
183243022	9312-0010-121B
183243023	9312-0010-122B
183243024	9312-0010-123B
183243025	9312-0010-I-017-B
183243026	9312-0010-I-018-B
183243027	9312-0010-I-019-B
183243028	9312-0010-I-020-B
183243029	9312-0010-I-021-B
183243030	9312-0010-I-022-B
183243031	9312-0010-I-023-B
183243032	9312-0010-I-024-B
183243033	9312-0010-I-025-B
1201305347	Method Blank (MB)
1201305348	183245021(9312-0001-020-I) Sample Duplicate (DUP)
1201305349	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183245021 (9312-0001-020-I).

OC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to low abundance.	Bismuth-214	183243022
		Cesium-134	183243021
			183243026
			183243029
			183243033
			1201305348

Method/Analysis Information

Product: Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived

Analytical Method: EML HASL 300, 4.5.2.3

Prep Method: Dry Soil Prep

Analytical Batch Number: 621152

Prep Batch Number: 621099

Sample ID	Client ID
183243001	9312-0010-101F
183243002	9312-0010-102F
183243003	9312-0010-103F
183243004	9312-0010-104F
183243005	9312-0010-105F
183243006	9312-0010-106F
183243007	9312-0010-107F
183243008	9312-0010-108F
183243009	9312-0010-109F
183243010	9312-0010-110F
183243011	9312-0010-111F
183243012	9312-0010-112F
183243013	9312-0010-113F
183243014	9312-0010-114F
183243015	9312-0010-114FS
183243016	9312-0010-115F
183243017	9312-0010-116F
183243018	9312-0010-117F
183243019	9312-0010-118F
183243020	9312-0010-119B
1201305354	Method Blank (MB)
1201305355	183243001(9312-0010-101F) Sample Duplicate (DUP)
1201305356	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183243001 (9312-0010-101F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to high counting uncertainty.	Cobalt-60	183243015
UI	Data rejected due to high peak width.	Bismuth-212	183243005
		Cesium-137	183243007
		Thallium-208	1201305354
UI	Data rejected due to interference.	Manganese-54	183243003
			183243007
			183243015
			183243016
UI	Data rejected due to low abundance.	Bismuth-214	183243009
		Cesium-134	183243007
			183243011
			183243013
			183243014
			183243015
			183243016
			183243017
			183243018
			183243019
			1201305355
		Cobalt-60	183243002
			183243003
		Europium-152	183243016
		Thallium-208	183243006
UI	Data rejected due to no valid peak.	Cobalt-60	183243014

Product: GFPC, Sr90, solid-ALL FSS

Analytical Method: EPA 905.0 Modified

Prep Method: Ash Soil Prep

Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep

Analytical Batch Number: 621125

Prep Batch Number: 621100

Dry Soil Prep GL-RAD-A-021 Batch Number: 621099

Sample ID	Client ID
183243001	9312-0010-101F
183243002	9312-0010-102F
183243003	9312-0010-103F
183243004	9312-0010-104F
183243005	9312-0010-105F
183243006	9312-0010-106F
183243007	9312-0010-107F
183243008	9312-0010-108F
183243009	9312-0010-109F
183243010	9312-0010-110F
183243011	9312-0010-111F
183243012	9312-0010-112F
183243013	9312-0010-113F
1201305281	Method Blank (MB)
1201305282	183245021(9312-0001-020-I) Sample Duplicate (DUP)
1201305283	183245021(9312-0001-020-I) Matrix Spike (MS)
1201305284	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-004 REV# 11.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183245021 (9312-0001-020-I).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples 183243007 (9312-0010-107F) and 183243009 (9312-0010-109F) were recounted due to high MDAs.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Product: GFPC, Sr90, solid-ALL FSS

Analytical Method: EPA 905.0 Modified

Prep Method: Ash Soil Prep

Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep

Analytical Batch Number: 621126

Prep Batch Number: 621102

Dry Soil Prep GL-RAD-A-021 Batch Number: 621101

Client ID
9312-0010-114F
9312-0010-114FS
9312-0010-115F
9312-0010-116F
9312-0010-117F
9312-0010-118F
9312-0010-119B
9312-0010-120B
9312-0010-121B
9312-0010-122B
9312-0010-123B
9312-0010-I-017-B
9312-0010-I-018-B
9312-0010-I-019-B
9312-0010-I-020-B
9312-0010-I-021-B
9312-0010-I-022-B
9312-0010-I-023-B
9312-0010-I-024-B
9312-0010-I-025-B
Method Blank (MB)
183243014(9312-0010-114F) Sample Duplicate (DUP)
183243014(9312-0010-114F) Matrix Spike (MS)
Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-004 REV# 11.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183243014 (9312-0010-114F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples 183243016 (9312-0010-115F), 183243025 (9312-0010-I-017-B) and 183243029 (9312-0010-I-021-B) were recounted due to a negative result greater than three times the error.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Product: Liquid Scint Tc99, Solid-ALL FSS

Analytical Method: DOE EML HASL-300, Tc-02-RC Modified

Analytical Batch Number: 621139

Sample ID	Client ID
183243002	9312-0010-102F
183243011	9312-0010-111F
1201305310	Method Blank (MB)
1201305311	183245006(9312-0001-005F) Sample Duplicate (DUP)
1201305312	183245006(9312-0001-005F) Matrix Spike (MS)
1201305313	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-005 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183245006 (9312-0001-005F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Sample 1201305312 (9312-0001-005F) was recounted due to low/high recovery.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Liquid Scint Fe55, Solid-ALL FSS

Analytical Method: DOE RESL Fe-1, Modified

Prep Method: Ash Soil Prep

Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep

Analytical Batch Number: 621136

Prep Batch Number: 621100

Dry Soil Prep GL-RAD-A-021 Batch Number: 621099

Sample ID	Client ID
183243002	9312-0010-102F
183243011	9312-0010-111F
1201305300	Method Blank (MB)
1201305301	183245006(9312-0001-005F) Sample Duplicate (DUP)
1201305302	183245006(9312-0001-005F) Matrix Spike (MS)
1201305303	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-040 REV# 4.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183245006 (9312-0001-005F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Liquid Scint Ni63, Solid-ALL FSS

Analytical Method: DOE RESL Ni-1, Modified

Prep Method: Ash Soil Prep

Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep

Analytical Batch Number: 621137

Prep Batch Number: 621100

Dry Soil Prep GL-RAD-A-021 Batch Number: 621099

Sample ID	Client ID
183243002	9312-0010-102F
183243011	9312-0010-111F
1201305304	Method Blank (MB)
1201305305	183245006(9312-0001-005F) Sample Duplicate (DUP)
1201305306	183245006(9312-0001-005F) Matrix Spike (MS)
1201305307	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-022 REV# 8.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183245006 (9312-0001-005F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	LSC, Tritium	Dist. Solid .	3 nCi/g
IIVuuci.		Dist Duila .	. 2 0006

Analytical Method: EPA 906.0 Modified

Analytical Batch Number: 621141

Sample ID	Client ID
183243002	9312-0010-102F
183243011	9312-0010-111F
1201305316	Method Blank (MB)
1201305317	183255002(9312-0003-002F) Sample Duplicate (DUP)
1201305318	183255002(9312-0003-002F) Matrix Spike (MS)
1201305319	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-002 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183255002 (9312-0003-002F).

OC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Liquid Scint C14, Solid All,FSS

Analytical Method: EPA EERF C-01 Modified

Analytical Batch Number: 621144

Sample ID	Client ID
183243002	9312-0010-102F
183243011	9312-0010-111F
1201305324	Method Blank (MB)
1201305325	183245006(9312-0001-005F) Sample Duplicate (DUP)
1201305326	183245006(9312-0001-005F) Matrix Spike (MS)
1201305327	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-003 REV# 9.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183245006 (9312-0001-005F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples 1201305324 (MB), 1201305325 (9312-0001-005F), 1201305326 (9312-0001-005F) and 1201305327 (LCS) were recounted due to detector error.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

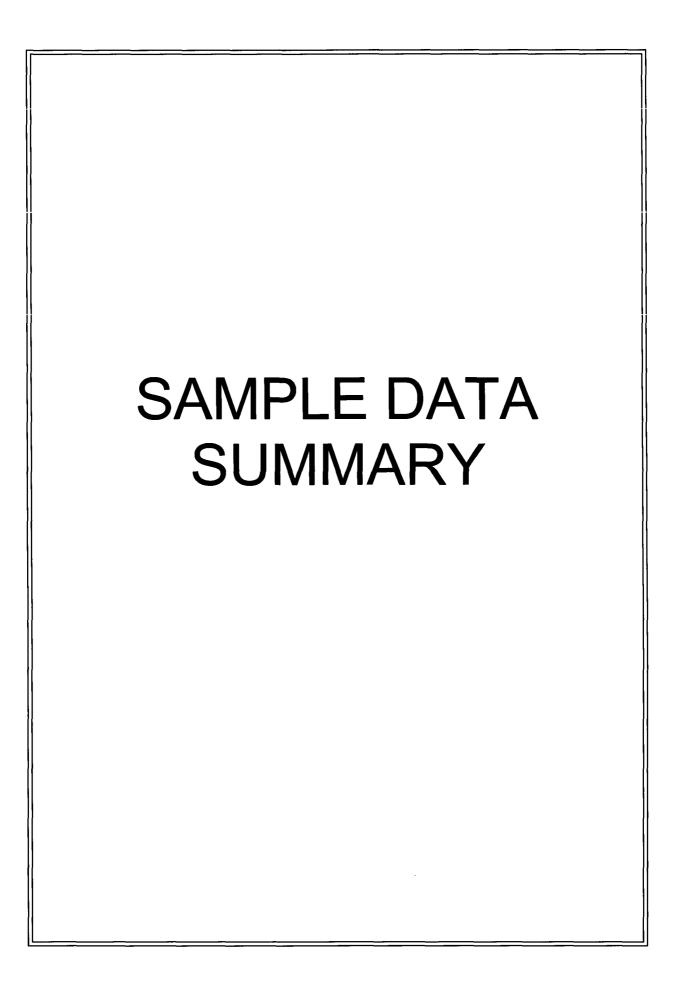
Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Certification Statement


Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative: $\sqrt{1 - \frac{1}{2}} \sqrt{\frac{1}{2}}$

	/	lá i	the I	Mas	11/5	-/17	
Reviewer/Date:	- (umi	'lU/l	Maria	910	60/	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

YANK001 Connecticut Yankee Atomic Power Co. Client SDG: MSR#07-0130 GEL Work Order: 183243

The Qualifiers in this report are defined as follows:

- A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- ND The analyte concentration is not detected above the detection limit.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204 YANK001

Project: Client ID:

Vol. Recv.:

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project: Soils PO# 002332

Matrix: Collect Date: Receive Date: Collector:

Client 5.52%

Client Sample ID: Sample ID: 9312-0010-101F 183243001 TS

26-MAR-07 29-MAR-07

	Moisture:			5.52%							
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time	Batch N
Rad Gamma Spec Analysi	s										
Gamma, Solid - FSS GAM	& ALL FSS	226 Ingro	wth								
Waived											
Actinium-228		1.13	+/-0.237	0.0753	+/-0.237	0.151	pCi/g	MJH1	04/03/0	7 1303	621152
Americium-241	U	-0.0022	+/-0.0988	0.0764	+/-0.0988	0.153	pCi/g				
Bismuth-212		1.09	+/-0.345	0.134	+/-0.345	0.268	pCi/g				
Bismuth-214		1.09	+/-0.145	0.0422	+/-0.145	0.0844	pCi/g				
Cesium-134	U	0.0454	+/-0.0666	0.0262	+/-0.0666	0.0523	pCi/g				
Cesium-137		0.256	+/-0.0555	0.0227	+/-0.0555	0.0453	pCi/g				
Cobalt-60	U	0.0348	+/-0.0451	0.0202	+/-0.0451	0.0404	pCi/g				
Europium-152	U	0.0544	+/-0.103	0.056	+/-0.103	0.112	pCi/g				
Europium-154	U	0.0802	+/-0.0857	0.0774	+/-0.0857	0.155	pCi/g				
Europium-155	U	0.0543	+/-0.0742	0.0658	+/-0.0742	0.132	pCi/g				
Lead-212		1.25	+/-0.121	0.0336	+/-0.121	0.0672	pCi/g				
Lead-214		1.34	+/-0.161	0.0406	+/-0.161	0.0812	pCi/g				
Manganese-54	U	-0.0131	+/-0.0311	0.0223	+/-0.0311	0.0445	pCi/g				
Niobium-94	U	0.00411	+/-0.0281	0.0205	+/-0.0281	0.041	pCi/g				
Potassium-40		18.0	+/~1.49	0.177	+/-1.49	0.353	pCi/g				
Radium-226		1.09	+/-0.145	0.0422	+/-0.145	0.0844	pCi/g				
Silver-108m	U	-0.00485	+/-0.024	0.0204	+/-0.024	0.0409	pCi/g				
Thallium-208		0.363	+/-0.0601	0.0204	+/-0.0601	0.0408	pCi/g				
Rad Gas Flow Proportions	al Counting	;									
GFPC, Sr90, solid-ALL I	FSS										
Strontium-90	U	-0.0197	+/-0.0136	0.015	+/-0.0136	0.0352	pCi/g	NXL3	04/03/0)7 1450	621125

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method	Description
1	EML HASL 300, 4.5.2.3
2	EPA 905.0 Modified

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-101F 183243001

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Acc	eptable Limits		
Strontium Carrier	GFP	C, Sr90, so	olid-ALL FSS		85	((25%–125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Ą
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- Λ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID: Vol. Recv.:

Certificate of Analysis

9312-0010-102F

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Mr. Jack McCarthy Contact:

Project: Soils PO# 002332

Client Sample ID: Sample ID: Matrix:

183243002 TS

26-MAR-07 29-MAR-07 Collect Date: Receive Date:

Collector: Client Moisture: 668%

	Moisture:			.668%				
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Alpha Spec Analys	sis							
Alphaspec Am241, Cm	, Solid ALL FS	SS						
Americium-241	U	0.0564	+/-0.123	0.0791	+/-0.124	0.238	pCi/g	GXR1 04/03/07 0933 621107
Curium-242	U	0.00852	+/-0.0646	0.0473	+/-0.0646	0.177	pCi/g	
Curium-243/244	U	-0.0411	+/0.0723	0.0834	+/-0.0724	0.246	pCi/g	
Alphaspec Pu, Solid-A	ALL FSS							
Plutonium-238	U	0.036	+/-0.101	0.0621	+/-0.101	0.218	pCi/g	GXR1 04/04/07 2258 622351
Plutonium-239/240	U	-0.0083	+/-0.0697	0.031	+/-0.0697	0.156	pCi/g	
Liquid Scint Pu241, Sc	olid-ALL FSS							
Plutonium-241	U	-1.5	+/-7.55	6.40	+/-7.55	13.4	pCi/g	BXL1 04/05/07 1319 622105
Rad Gamma Spec Anal	lysis							
Gamma,Solid-FSS GA	AM & ALL FS	S 226 Ingro	wth					
Waived		0						
Actinium-228		0.854	+/-0.170	0.0628	+/-0.170	0.126	pCi/g	MJH1 04/03/07 1304 621152
Americium-241	U	0.0524	+/-0.0784	0.0675	+/-0.0784	0.135	pCi/g	
Bismuth-212		0.834	+/-0.268	0.125	+/-0.268	0.251	pCi/g	
Bismuth-214		0.818	+/-0.110	0.0357	+/-0.110	0.0713	pCi/g	
Cesium-134	U	0.0381	+/-0.0311	0.0221	+/-0.0311	0.0442	pCi/g	
Cesium-137		1.60	+/-0.153	0.0172	+/-0.153	0.0345	pCi/g	
Cobalt-60	UI	0.00	+/-0.0282	0.025	+/-0.0282	0.050	pCi/g	
Europium-152	U	-0.0137	+/-0.0654	0.0533	+/-0.0654	0.107	pCi/g	
Europium-154	U	-0.0149	+/-0.0599	0.0494	+/-0.0599	0.0988	pCi/g	
Europium-155	U	0.0282	+/-0.0606	0.0568	+/-0.0606	0.114	pCi/g	
Lead-212		0.827	+/-0.0819	0.0294	+/-0.0819	0.0588	pCi/g	
Lead-214		0.795	+/-0.107	0.0398	+/-0.107	0.0795	pCi/g	
Manganese-54		-0.00937	+/-0.0193	0.0164	+/-0.0193	0.0327	pCi/g	
Niobium-94	U	0.000741	+/-0.0183	0.0157	+/-0.0183	0.0314	pCi/g	
Potassium-40		14.3	+/-1.21	0.144	+/-1.21	0.288	pCi/g	
Radium-226		0.818	+/-0.110	0.0357	+/-0.110	0.0713	pCi/g	
Silver-108m	U	0.0079	+/-0.0212		+/-0.0212	0.0383	pCi/g	
Thallium-208		0.238	+/-0.0495	0.0175	+/-0.0495	0.035	pCi/g	
Rad Gas Flow Proporti	ional Countin	g						
GFPC, Sr90, solid-Al	LL FSS							
Strontium-90	U	0.0253	+/-0.0291	0.0202	+/-0.0291	0.0487	pCi/g	NXL3 04/03/07 1450 621125
Rad Liquid Scintillation	n Analysis							
LSC, Tritium Dist, Sol	id - 3 pCi/g							
Tritium	U	-0.597	+/-1.06	0.918	+/-1.06	1.93	pCi/g	AXD2 03/31/07 1045 621141

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project: Soils PO# 002332

Client Sample ID: Sample ID:

9312-0010-102F 183243002

Project: Client ID: Vol. Recv.:

YANK01204 YANK001

Report Date: April 5, 2007

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch N
Rad Liquid Scintillat	ion Analysis				-			
Liquid Scint C14, So	olid All,FSS							
Carbon-14	U	0.0932	+/-0.0929	0.0759	+/-0.0929	0.156	pCi/g	AXD2 03/30/07 1642 621144
Liquid Scint Fe55, S	olid-ALL FSS							
Iron-55	U	-23	+/-35.2	25.7	+/-35.2	54.0	pCi/g	MXP1 04/02/07 2008 621136
Liquid Scint Ni63, Sc	olid–ALL FSS							
Nickel-63	U	-3.03	+/-10.1	8.62	+/-10.1	18.1	pCi/g	MXPI 04/02/07 1516 621137
Liquid Scint Tc99, S	olid–ALL FSS							
Technetium-99	· U	-0.298	+/-0.244	0.212	+/-0.244	0.434	pCi/g	MXP1 04/03/07 1142 621139

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method	Description
1	DOE EML HASL-300, Am-05-RC Modified
2	DOE EML HASL-300, Pu-11-RC Modified
3	DOE EML HASL~300, Pu-11-RC Modified
4	DOE EML HASL-300, Pu-11-RC Modified
5	DOE EML HASL-300, Pu-11-RC Modified
6	DOE EML HASL-300, Pu-11-RC Modified
7	EML HASL 300, 4.5.2.3
8	EPA 905.0 Modified
9	EPA 906.0 Modified
10	EPA EERF C-01 Modified
11	DOE RESL Fe-1, Modified
12	DOE RESL Ni-1, Modified
13	DOE EML HASL-300, Tc-02-RC Modified

Surrogate/Tracer recovery	Test	Recovery%	Acceptable Limits	
Americium-243 Tracer	Alphaspec Am241, Cm, Solid ALL	92	(15%-125%)	
Plutonium-242 Tracer	Alphaspec Pu, Solid-ALL FSS	80	(15%–125%)	
Plutonium-242 Tracer	Liquid Scint Pu241, Solid-ALL FS	92	(25%-125%)	
Strontium Carrier	GFPC, Sr90, solid-ALL FSS	55	(25%–125%)	
			(15%–125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Liquid Scint Tc99, Solid-ALL FS

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-102F 183243002

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

(15% - 125%)

Parameter Qualifier Result Uncertainty LC TPU **MDA** Units **DF** Analyst Date Time Batch N Iron-59 Tracer Liquid Scint Fe55, Solid-ALL FS 65 79 (25% - 125%)Nickel Carrier Liquid Scint Ni63, Solid-ALL FS

78

Notes:

Technetium-99m Tracer

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- Analyte has been confirmed by GC/MS analysis \mathbf{C}
- D Results are reported from a diluted aliquot of the sample
- Η Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. U
- UI Gamma Spectroscopy—Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID: Matrix:

Moisture:

Collect Date: Receive Date: Collector:

9312-0010-103F

183243003 TS

26-MAR-07 29-MAR-07

Client .886% Project: Client ID: Vol. Recv.: YANK001

YANK01204

Report Date: April 5, 2007

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch N
Rad Gamma Spec Analysis							·	
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		0.545	+/-0.210	0.0746	+/-0.210	0.149	pCi/g	MJH1 04/03/07 1305 621152
Americium-241	U	0.0959	+/-0.104	0.0872	+/-0.104	0.174	pCi/g	
Bismuth-212		0.599	+/-0.264	0.131	+/-0.264	0.263	pCi/g	
Bismuth-214		0.667	+/-0.118	0.0414	+/-0.118	0.0828	pCi/g	
Cesium-134	U	0.020	+/-0.0288	0.0254	+/-0.0288	0.0508	pCi/g	
Cesium-137		1.91	+/-0.177	0.0222	+/-0.177	0.0444	pCi/g	
Cobalt-60	UI	0.00	+/-0.0317	0.0317	+/-0.0317	0.0634	pCi/g	
Europium-152	U	-0.0373	+/-0.0855	0.0607	+/-0.0855	0.121	pCi/g	
Europium-154	U	-0.0102	+/-0.0755	0.0635	+/-0.0755	0.127	pCi/g	
Europium-155	U	0.0766	+/-0.0969	0.0649	+/-0.0969	0.130	pCi/g	
Lead-212		0.924	+/-0.0981	0.0334	+/-0.0981	0.0667	pCi/g	
Lead-214		0.655	+/-0.124	0.0462	+/-0.124	0.0924	pCi/g	
Manganese-54	UI	0.00	+/-0.0285	0.0179	+/-0.0285	0.0357	pCi/g	
Niobium-94	U	0.00931	+/-0.0218	0.0191	+/-0.0218	0.0381	pCi/g	
Potassium-40		16.4	+/-1.47	0.158	+/-1.47	0.316	pCi/g	
Radium-226		0.667	+/-0.118	0.0414	+/-0.118	0.0828	pCi/g	
Silver-108m	U	0.00333	+/-0.0243	0.0215	+/-0.0243	0.0429	pCi/g	
Thallium-208		0.364	+/-0.0635	0.0205	+/-0.0635	0.041	pCi/g	
Rad Gas Flow Proportiona	l Counting	5						
GFPC, Sr90, solid-ALL F	SS							
Strontium-90	U	0.0254	+/-0.0292	0.0206	+/-0.0292	0.049	pCi/g	NXL3 04/03/07 1450 621125

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method Description 1 EML HASL 300, 4.5.2.3

2 EPA 905.0 Modified

Surrogate/Tracer recovery Recovery% **Acceptable Limits**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-103F

183243003

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recovery Test				Recovery%	Acc	eptable Limits			
Strontium Carrier	GFP	C, Sr90, sc	olid-ALL FSS		55	(25%–125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- Analyte has been confirmed by GC/MS analysis C
- D Results are reported from a diluted aliquot of the sample
- Analytical holding time was exceeded Η
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. U
- UI Gamma Spectroscopy—Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

Contact:

East Hampton, Connecticut 06424

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

Matrix:

Collect Date: Receive Date:

Collector:

Moisture:

9312-0010-104F 183243004 TS

26-MAR-07 29-MAR-07

Client 9.14%

Project: Client ID:

Vol. Recv.:

Report Date: April 5, 2007

YANK01204

YANK001

	Moisture.			9.1470				
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch N
Rad Gamma Spec Analysi	is							
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		0.440	+/-0.152	0.0514	+/-0.152	0.103	pCi/g	MJH1 04/03/07 1306 621152
Americium-241	U	0.0491	+/-0.0632	0.0534	+/-0.0632	0.107	pCi/g	
Bismuth-212		0.340	+/-0.231	0.143	+/-0.231	0.285	pCi/g	
Bismuth-214		0.333	+/-0.0811	0.031	+/-0.0811	0.0619	pCi/g	
Cesium-134	U	0.00984	+/-0.0251	0.0211	+/-0.0251	0.0421	pCi/g	
Cesium-137		0.144	+/-0.0383	0.0195	+/-0.0383	0.039	pCi/g	
Cobalt-60	U	0.00809	+/-0.0206	0.018	+/-0.0206	0.036	pCi/g	
Europium-152	U	-0.0162	+/-0.0635	0.0482	+/-0.0635	0.0963	pCi/g	
Europium-154	U	0.0103	+/-0.0521	0.0449	+/-0.0521	0.0897	pCi/g	
Europium-155	U	-0.00511	+/-0.0593	0.0494	+/-0.0593	0.0987	pCi/g	
Lead-212		0.607	+/-0.0738	0.0281	+/-0.0738	0.0562	pCi/g	
Lead-214		0.411	+/-0.0962	0.0362		0.0723	pCi/g	
Manganese-54	U	0.00815	+/-0.0213	0.019	+/-0.0213	0.038	pCi/g	
Niobium-94	U	0.00626	+/-0.0193	0.0166	+/-0.0193	0.0333	pCi/g	
Potassium-40		10.2	+/-0.983	0.142	+/-0.983	0.285	pCi/g	
Radium-226		0.333	+/-0.0811	0.031	+/-0.0811	0.0619	pCi/g	
Silver-108m	U	-0.0186	+/-0.0216	0.0169	+/-0.0216	0.0338	pCi/g	
Thallium-208		0.207	+/-0.0483	0.0162	+/-0.0483	0.0323	pCi/g	
Rad Gas Flow Proportion	al Counting	3						
GFPC, Sr90, solid-ALL	FSS							
Strontium-90	U	0.037	+/-0.0299	0.0231	+/-0.0299	0.0491	pCi/g	NXL3 04/03/07 1450 621125

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method Description 1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Surrogate/Tracer recovery Recovery% **Acceptable Limits**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-104F

183243004

Project: Client ID:

YANK01204

Report Date: April 5, 2007

YANK001 Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recovery Test					Recovery%	A	cceptable Limits		
Strontium Carrier	GFPC	C, Sr90, so	olid-ALL FSS		69		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- The TIC is a suspected aldol–condensation product
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- Analyte has been confirmed by GC/MS analysis C
- Results are reported from a diluted aliquot of the sample D
- Analytical holding time was exceeded Η
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. U
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID:

Vol. Recv.:

Certificate of Analysis

Company:

Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID: Sample ID:

Matrix:

Collect Date: Receive Date:

Collector: Moisture:

9312-0010-105F

183243005

TS 26-MAR-07 29-MAR-07

Client

2.35%

Parameter Qualifier Result Uncertainty LC TPU **MDA** Units **DF** Analyst Date Time Batch N Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 +/-0.215 +/-0.215 0.155 pCi/g MJH1 04/03/07 1418 621152 0.674 0.0773 U -0.00664 Americium-241 +/-0.0423 0.0346 +/-0.0423 0.0691 pCi/g pCi/g Bismuth-212 UI 0.00 +/-0.266 0.166 +/-0.266 0.331 +/-0.119 0.0907 pCi/g Bismuth-214 0.435 +/-0.119 0.0454 Cesium-134 U 0.033 +/-0.0334 0.0317 +/-0.0334 0.0633 pCi/g Cesium-137 0.087 +/-0.0343 0.0226 +/-0.0343 0.0453 pCi/g U -0.00515 0.0216 +/-0.0266 Cobalt-60 +/-0.0266 0.0431 pCi/g Europium-152 0.0677 +/-0.0821 H 0.0985 +/-0.0821 pCi/g 0.135 Europium-154 П -0.0906+/-0.0954 0.0696 +/-0.0954 0.139 pCi/g Europium-155 -0.0211+/-0.0656 0.0588 +/-0.0656 0.118 pCi/g Lead-212 0.0344 +/-0.0958 0.585 +/-0.0958 0.0687 pCi/g Lead-214 0.593 +/-0.118 0.0396 +/-0.118 0.0792 pCi/g Manganese-54 U 0.0246 +/-0.0295 0.0276 +/-0.0295 0.0552 pCi/g +/-0.028 0.0492 Niobium-94 IJ 0.0116 +/-0.028 0.0246 pCi/g Potassium-40 +/-1.26 0.229 +/-1.26 0.457 11.5 pCi/g Radium-226 0.435 +/-0.119 0.0454 +/-0.119 0.0907 pCi/g Silver-108m U -0.00602 +/-0.02330.0201 +/-0.0233 0.0401 pCi/g 0.0257 +/-0.0567 0.0514 Thallium-208 0.222 +/-0.0567 pCi/g **Rad Gas Flow Proportional Counting** GFPC, Sr90, solid-ALL FSS Strontium-90 U -0.0105 +/-0.0178 0.0168 +/-0.0178 0.0401 NXL3 04/03/07 1450 621125 pCi/g

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed Description

1 EML HASL 300, 4.5,2,3

Method

2 EPA 905.0 Modified

Test **Acceptable Limits** Surrogate/Tracer recovery Recovery %

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID:

183243005

9312-0010-105F Project:

YANK01204 Client ID: YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recovery Test				Recovery%	A	cceptable Limits			
Strontium Carrier	GFP	C, Sr90, sc	olid-ALL FSS		79	-	(25%-125%)	-	

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported
- > Result is greater than value reported
- The TIC is a suspected aldol-condensation product Α
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Η Analytical holding time was exceeded
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Soils PO# 002332 Project:

Client Sample ID: Sample ID: Matrix:

Collect Date: Receive Date: Collector:

Moisture:

9312-0010-106F

183243006 TS

26-MAR-07 29-MAR-07

Client 8.58% Report Date: April 5, 2007

Project: Client ID: YANK01204 YANK001

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch N
Rad Gamma Spec Analysis	S							
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived		_						
Actinium-228		0.587	+/-0.174	0.0561	+/-0.174	0.112	pCi/g	MJH1 04/03/07 1419 621152
Americium-241	U	-0.054	+/-0.0925	0.0714	+/-0.0925	0.143	pCi/g	
Bismuth-212		0.416	+/-0.212	0.121	+/-0.212	0.241	pCi/g	
Bismuth-214		0.404	+/-0.0884	0.0303	+/-0.0884	0.0605	pCi/g	
Cesium-134	U	0.0383	+/-0.0373	0.0203	+/-0.0373	0.0405	pCi/g	
Cesium-137	U	0.0288	+/-0.0251	0.0178	+/-0.0251	0.0356	pCi/g	
Cobalt-60	U	0.0174	+/-0.0236	0.0164	+/-0.0236	0.0328	pCi/g	
Europium-152	U	0.0111	+/-0.0674	0.0482	+/-0.0674	0.0963	pCi/g	
Europium-154	U	0.0379	+/-0.0591	0.0542	+/-0.0591	0.108	pCi/g	
Europium-155	U	0.0229	+/-0.0547	0.0519	+/-0.0547	0.104	pCi/g	
Lead-212		0.497	+/-0.0646	0.0268	+/-0.0646	0.0536	pCi/g	
Lead-214		0.483	+/-0.104	0.0323	+/-0.104	0.0645	pCi/g	
Manganese-54	U	0.0137	+/-0.0191	0.0173	+/-0.0191	0.0346	pCi/g	
Niobium-94	U	0.00727	+/-0.017	0.0152	+/-0.017	0.0305	pCi/g	
Potassium-40		10.7	+/-1.06	0.161	+/-1.06	0.321	pCi/g	
Radium-226		0.404	+/-0.0884	0.0303	+/-0.0884	0.0605	pCi/g	
Silver-108m	U ·	-0.00899	+/-0.0188	0.0154	+/-0.0188	0.0308	pCi/g	
Thallium-208	UI	0.00	+/-0.0409	0.0324	+/-0.0409	0.0648	pCi/g	
Rad Gas Flow Proportiona	al Counting	,						
GFPC, Sr90, solid-ALL I	7SS							
Strontium-90	U	-0.0223	+/-0.0227	0.0214	+/-0.0227	0.0475	pCi/g	NXL3 04/03/07 1450 621125

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed Description

1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Method

Test Acceptable Limits Surrogate/Tracer recovery Recovery%

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Report Date: April 5, 2007

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

9312-0010-106F

Proiect: Client ID:

YANK01204 YANK001

Sample ID:

183243006

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recove	ry Test				Recovery%	Acc	eptable Limits		
Strontium Carrier	GFPC	C, Sr90, so	lid-ALL FSS		82	(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded h

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Mr. Jack McCarthy Contact:

Project: Soils PO# 002332

> Client Sample ID: Sample ID: Matrix:

Collect Date: Receive Date:

Collector: Moisture:

9312-0010-107F

183243007 TS 26-MAR-07

29-MAR-07 Client 5.37%

Project: Client ID: YANK01204

Report Date: April 5, 2007

YANK001 Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Rad Gamma Spec Analysis	 ;			· · · · ·					
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth						
Waived									
Actinium-228		1.14	+/-0.304	0.096	+/-0.304	0.192	pCi/g	MJH1 04/03/0	7 1420 621152
Americium-241	U	0.024	+/-0.0594	0.0503	+/-0.0594	0.101	pCi/g		
Bismuth-212		0.894	+/-0.519	0.228	+/-0.519	0.455	pCi/g		
Bismuth-214		0.677	+/-0.141	0.0568	+/-0.141	0.113	pCi/g		
Cesium-134	UI	0.00	+/-0.0507	0.0409	+/-0.0507	0.0817	pCi/g		
Cesium-137	UI	0.00	+/-0.103	0.0304	+/-0.103	0.0608	pCi/g		
Cobalt-60	U	-0.00939	+/-0.0363	0.0296	+/-0.0363	0.0591	pCi/g		
Europium-152	U	-0.0441	+/-0.104	0.0741	+/-0.104	0.148	pCi/g		
Europium-154	U	0.0534	+/-0.129	0.099	+/-0.129	0.198	pCi/g		
Europium-155	U	0.0566	+/-0.107	0.0742	+/-0.107	0.148	pCi/g		
Lead-212		0.990	+/-0.123	0.044	+/-0.123	0.088	pCi/g		
Lead-214		0.706	+/-0.134	0.0552	+/-0.134	0.110	pCi/g		
Manganese-54	UI	0.00	+/-0.0443	0.0295	+/-0.0443	0.059	pCi/g		
Niobium-94	U	0.0175	+/-0.0363	0.0319	+/-0.0363	0.0637	pCi/g		
Potassium-40		15.8	+/-1.67	0.268	+/-1.67	0.535	pCi/g		
Radium-226		0.677	+/-0.141	0.0568	+/-0.141	0.113	pCi/g		
Silver-108m	U	-0.00602	+/-0.0321	0.0281	+/-0.0321	0.0561	pCi/g		
Thallium-208		0.333	+/-0.0748	0.0311	+/-0.0748	0.0623	pCi/g		
Rad Gas Flow Proportiona	d Counting	g							
GFPC, Sr90, solid-ALL F	SS								
Strontium-90	U	-0.0155	+/-0.016	0.0165	+/-0.016	0.0395	pCi/g	NXL3 04/04/0	7 1202 621125

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL–RAD–A–021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Metnoa	Description
1	EML HASL 300, 4.5.2.3
2	EPA 905.0 Modified
3	EPA 905.0 Modified

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-107F

183243007

Project: Client ID: YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	ry Test				Recovery%	Acc	ceptable Limits		
Strontium Carrier	GFP	C, Sr90, sc	olid-ALL FSS		64		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL</p>
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204 YANK001

Project: Client ID:

Vol. Recv.:

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID: Sample ID:

Matrix: Collect Date: Receive Date:

Collector: Moisture:

9312-0010-108F

183243008

26-MAR-07 29-MAR-07

Client 4.07%

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysis	<u> </u>				 		· · · · · · · · · · · · · · · · · · ·	
Gamma, Solid - FSS GAM	& ALL FSS	226 Ingro	wth					
Waived		_						
Actinium-228		0.574	+/-0.180	0.0891	+/-0.180	0.178	pCi/g	MJH1 04/03/07 1421 621152
Americium-241	U	0.0246	+/-0.0383	0.034	+/-0.0383	0.0679	pCi/g	
Bismuth-212	U	0.370	+/-0.275	0.203	+/-0.275	0.405	pCi/g	
Bismuth-214		0.441	+/-0.104	0.0377	+/-0.104	0.0754	pCi/g	
Cesium-134	U	0.0366	+/-0.0308	0.0302	+/-0.0308	0.0604	pCi/g	
Cesium-137	U	0.0418	+/-0.0429	0.0247	+/-0.0429	0.0494	pCi/g	
Cobalt-60	U	0.0213	+/-0.0279	0.0262	+/-0.0279	0.0523	pCi/g	
Europium-152	U	0.0665	+/-0.0646	0.061	+/-0.0646	0.122	pCi/g	
Europium-154	U	0.018	+/-0.0994	0.0849	+/-0.0994	0.170	pCi/g	
Europium-155	U	0.0401	+/-0.0569	0.0546	+/-0.0569	0.109	pCi/g	
Lead-212		0.553	+/-0.0805	0.0288	+/-0.0805	0.0575	pCi/g	
Lead-214		0.429	+/-0.0981	0.0356	+/-0.0981	0.0711	pCi/g	
Manganese-54	U	-0.019	+/-0.030	0.0238	+/-0.030	0.0476	pCi/g	
Niobium-94	U	0.000509	+/-0.026	0.022	+/-0.026	0.0439	pCi/g	
Potassium-40		9.10	+/-1.15	0.202	+/-1.15	0.403	pCi/g	
Radium-226		0.441	+/-0.104	0.0377	+/-0.104	0.0754	pCi/g	
Silver-108m	U	-0.00662	+/-0.023	0.0198	+/-0.023	0.0397	pCi/g	
Thallium-208		0.191	+/-0.0511	0.0215	+/-0.0511	0.043	pCi/g	
Rad Gas Flow Proportiona	al Counting	;						
GFPC, Sr90, solid-ALL I	FSS							
Strontium-90	U	0.00814	+/-0.0206	0.0158	+/-0.0206	0.0384	pCi/g	NXL3 04/03/07 1601 621125

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed Description

1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Method

Test **Acceptable Limits** Surrogate/Tracer recovery Recovery %

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-108F 183243008

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Ac	ceptable Limits		
Strontium Carrier	GFPC	C, Sr90, so	olid-ALL FSS		72		(25%-125%)	· · · · · ·	

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- Α The TIC is a suspected aldol-condensation product
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- Results are reported from a diluted aliquot of the sample D
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID: Sample ID: Matrix:

Collect Date:
Receive Date:
Collector:

9312-0010-109F

183243009 TS

26-MAR-07 29-MAR-07 Client Project: YANK01204 Client ID: YANK001 Vol. Recv.:

Report Date: April 5, 2007

Moisture: 2.71% Parameter Qualifier Result Uncertainty LC **TPU MDA** Units **DF** Analyst Date Time Batch N Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 1.21 +/-0.278 0.110 +/-0.278 0.220 pCi/g MJH1 04/03/07 1422 621152 0.0458 +/-0.0564 0.0916 Americium-241 U 0.0266 +/-0.0564 pCi/g Bismuth-212 0.940 +/-0.498 0.261 +/-0.498 0.522 pCi/g +/-0.202 Bismuth-214 0.00 +/-0.202 0.288 pCi/g UI 0.144 Cesium-134 0.0604 +/-0.0458 0.044 +/-0.0458 0.0879 pCi/g U 0.0352 +/-0.074 pCi/g Cesium-137 0.276 +/-0.074 0.0704 Cobalt-60 U 0.0292 +/-0.0413 0.0382 + -0.04130.0764 pCi/g Europium-152 U -0.026+/-0.114 0.0736 +/-0.114 0.147 pCi/g Europium-154 U 0.0784 +/-0.164 0.127 +/-0.164 0.254 pCi/g Europium-155 0.0718 +/-0.0799 U 0.031 +/-0.0799 0.144 pCi/g Lead-212 +/-0.129 +/-0.129 1.04 0.0419 0.0837 pCi/g Lead-214 +/-0.169 0.0551 +/-0.169 0.110 pCi/g 1.11 Manganese-54 -0.012+/-0.0457 0.0328 +/-0.0457 U 0.0656 pCi/g Niobium-94 0.0293 +/-0.0334 0.0314 +/-0.0334 0.0627 pCi/g Potassium-40 17.4 +/-1.61 0.266 +/-1.61 0.531 pCi/g 0.110 Radium-226 0.0552 +/-0.202 1.05 +/-0.202 pCi/g Silver-108m -0.0154+/-0.0304 0.0253 +/-0.0304 0.0506 pCi/g

The following Prep Methods were performed

Rad Gas Flow Proportional Counting GFPC, Sr90, solid-ALL FSS

Thallium-208

Strontium-90

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

0.0307 + -0.0853

0.0188 +/-0.0259

0.0613

0.0445

pCi/g

pCi/g

NXL3 04/04/07 1202 621125

+/-0.0853

+/-0.0259

0.451

0.0191

U

The following Analytical Methods were performed

Method	Description		
1	EML HASL 300, 4.5.2.3		
2	EPA 905.0 Modified		
3	EPA 905.0 Modified		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project: Soils PO# 002332

Client Sample ID: Sample ID:

9312-0010-109F 183243009

Project: Client ID: YANK01204

Report Date: April 5, 2007

YANK001 Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recovery Test			Recovery%	Ac	ceptable Limits				
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		57		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Η Analytical holding time was exceeded
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- Ù Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded h

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

> Client Sample ID: Sample ID:

Matrix:

Collect Date: Receive Date: 9312-0010-110F 183243010 TS

26-MAR-07 29-MAR-07

Report Date: April 5, 2007

Project: Client ID: YANK01204 Vol. Recv.: YANK001

Collector: Client Moisture: 10.9%

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch N
Rad Gamma Spec Analysis	<u> </u>							
Gamma,Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		0.864	+/0.207	0.0632	+/-0.207	0.126	pCi/g	MJH1 04/03/07 1458 621152
Americium-241	U	0.000144	+/~0.117	0.0926	+/-0.117	0.185	pCi/g	
Bismuth-212		0.695	+/-0.286	0.141	+/-0.286	0.281	pCi/g	
Bismuth-214		0.732	+/-0.122	0.0399	+/-0.122	0.0797	pCi/g	
Cesium-134	U	0.0303	+/-0.0269	0.025	+/-0.0269	0.0499	pCi/g	
Cesium-137		0.430	+/-0.0566	0.0181	+/-0.0566	0.0362	pCi/g	
Cobalt-60	U	0.0163	+/-0.0265	0.0236	+/-0.0265	0.0471	pCi/g	
Europium-152	U	0.018	+/-0.107	0.0549	+/-0.107	0.110	pCi/g	
Europium-154	U	-0.0424	+/-0.0687	0.0558	+/-0.0687	0.112	pCi/g	
Europium-155	U	0.0121	+/-0.0948	0.0615	+/-0.0948	0.123	pCi/g	
Lead-212		0.807	+/-0.0967	0.0319	+/-0.0967	0.0637	pCi/g	
Lead-214		0.841	+/-0.129	0.0372	+/-0.129	0.0744	pCi/g	
Manganese-54	U	-0.0134	+/-0.0264	0.0184	+/-0.0264	0.0368	pCi/g	
Niobium-94	U	0.0144	+/-0.0224	0.0203	+/-0.0224	0.0406	pCi/g	
Potassium-40		9.69	+/-0.999	0.152	+/-0.999	0.303	pCi/g	
Radium-226		0.732	+/-0.122	0.0399	+/-0.122	0.0797	pCi/g	
Silver-108m	U	-0.00301	+/-0.0224	0.0192	+/-0.0224	0.0385	pCi/g	
Thallium-208		0.287	+/-0.0563	0.0197	+/-0.0563	0.0393	pCi/g	
Rad Gas Flow Proportiona	d Counting	3						
GFPC, Sr90, solid-ALL F	TSS .							
Strontium-90	U	-0.0105	+/-0.0185	0.0176	+/-0.0185	0.0425	pCi/g	NXL3 04/03/07 1602 621125

The following Prep Methods were performed										
Method	Description	Analyst	Date	Time	Prep Batch					
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099					

The following Analytical Methods were performed

Method Description 1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Test **Acceptable Limits** Surrogate/Tracer recovery Recovery%

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy Soils PO# 002332

Project:

Client Sample ID:

Sample ID:

9312-0010-110F

183243010

Project: Client ID:

YANK01204

Report Date: April 5, 2007

YANK001 Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test	,			Recovery%	Acc	eptable Limits		
Strontium Carrier	GFPC	C, Sr90 , so	olid-ALL FSS		67	(25%–125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- < Result is less than value reported
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Η Analytical holding time was exceeded
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- \mathbf{X} Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204 YANK001

Project: Client ID: Vol. Recv.:

Certificate of Analysis

Connecticut Yankee Atomic Power Company:

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Soils PO# 002332 Project:

Client Sample ID: Sample ID: Matrix:

Collect Date: Receive Date:

Collector:

9312-0010-111F 183243011 TS

26-MAR-07 29-MAR-07

Client 4.44%

	Moisture:			4.44%				
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch N
Rad Alpha Spec Analysi	s							
Alphaspec Am241, Cm,	Solid ALL FS	SS						
Americium-241	U	0.0126	+/-0.146	0.117	+/-0.146	0.337	pCi/g	GXR1 04/03/07 0933 621107
Curium-242	U	-0.0375	+/-0.085	0.0702	+/-0.085	0.246	pCi/g	
Curium-243/244	U	-0.0136	+/-0.144	0.127	+/-0.144	0.356	pCi/g	
Alphaspec Pu, Solid-A.	LL FSS							
Plutonium-238	U	0.0746	+/-0.148	0.091	+/-0.149	0.279	pCi/g	GXR1 04/04/07 2258 622351
Plutonium-239/240	U	-0.00717	+/-0.0798	0.072	+/-0.0798	0.241	pCi/g	
Liquid Scint Pu241, Sol	id-ALL FSS							
Plutonium-241	U	-3.35	+/-7.83	6.73	+/~7.83	14.1	pCi/g	BXL1 04/05/07 1335 622105
Rad Gamma Spec Analy	_	2,00	7.03	0.70	7.00		pog	5.121 0,,05,07 1335 022103
Gamma, Solid – FSS GA		S 226 Inoro	wth					
Waived	W W TILL I DO	220 111610						
Actinium-228		0.729	+/-0.197	0.0626	+/-0.197	0.125	pCi/g	MJH1 04/03/07 1513 621152
Americium-241	U	0.073	+/-0.109	0.0823	+/-0.109	0.165	pCi/g	
Bismuth-212	· ·	0.337	+/-0.232	0.139	+/-0.232	0.278	pCi/g	
Bismuth-214		0.488	+/-0.0902		+/-0.0902	0.0669	pCi/g	
Cesium-134	UI	0.00	+/-0.0371	0.0237	+/-0.0371	0.0474	pCi/g	
Cesium-137	U	0.0191	+/-0.0239		+/-0.0239	0.0429	pCi/g	
Cobalt-60	U	-0.00555	+/-0.0231	0.019	+/-0.0231	0.0381	pCi/g	
Europium-152	U	0.0446	+/-0.0894	0.0484	+/-0.0894	0.0967	pCi/g	
Europium-154	U	-0.0162	+/-0.0721	0.0601	+/-0.0721	0.120	pCi/g	
Europium-155	U	0.0198	+/-0.0598	0.0554	+/-0.0598	0.111	pCi/g	
Lead-212		0.636	+/-0.0765	0.0278	+/-0.0765	0.0556	pCi/g	
Lead-214		0.513	+/-0.099	0.0337	+/-0.099	0.0674	pCi/g	
Manganese-54	U	0.00587	+/-0.0236		+/-0.0236	0.0416	pCi/g	
Niobium-94	U	0.00202	+/-0.0198	0.0176	+/-0.0198	0.0351	pCi/g	
Potassium-40		10.4	+/-1.18	0.173	+/-1.18	0.346	pCi/g	
Radium-226		0.488	+/-0.0902	0.0335	+/-0.0902	0.0669	pCi/g	
Silver-108m	U	-0.0155	+/-0.0179		+/-0.0179	0.0303	pCi/g	
Thallium–208		0.221	+/-0.0446	0.0181	+/-0.0446	0.0361	pCi/g	
Rad Gas Flow Proportion	onal Counting	g						
GFPC, Sr90, solid-AL	L FSS							
Strontium-90	U	0.0024	+/-0.0217	0.0178	+/-0.0217	0.0417	pCi/g	NXL3 04/03/07 1641 621125
Rad Liquid Scintillation	Analysis							
LSC, Tritium Dist, Solid	d - 3 pCi/g							
Tritium	Ü	-0.325	+/-1.07	0.916	+/-1.07	1.92	pCi/g	AXD2 03/31/07 1146 621141

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Mr. Jack McCarthy Contact: Project: Soils PO# 002332

Client Sample ID: Sample ID:

9312-0010-111F 183243011

Project: YANK0129 Client ID: YANK001 Vol. Recv.:

YANK01204

Report Date: April 5, 2007

							. 01. 100		
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Rad Liquid Scintillati	on Analysis								
Liquid Scint C14, Sol	lid All,FSS								
Carbon-14	U	-0.00732	+/-0.0887	0.0746	+/-0.0887	0.153	pCi/g	AXD2 03/30/0	7 1744 621144
Liquid Scint Fe55, Sc	olid-ALL FSS								
Iron-55	U	-2.17	+/-30.8	22.0	+/-30.8	46.2	pCi/g	MXP1 04/02/0	7 2024 621136
Liquid Scint Ni63, So	lid-ALL FSS								
Nickel-63	U	-1.61	+/-10.0	8.49	+/-10.0	17.8	pCi/g	MXP1 04/02/0	7 1532 621137
Liquid Scint Tc99, So	olid-ALL FSS								
Technetium-99	U	-0.20	+/-0.237	0.203	+/-0.237	0.416	pCi/g	MXP1 04/03/0	7 1214 621139

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method	Description
1	DOE EML HASL-300, Am-05-RC Modified
2	DOE EML HASL-300, Pu-11-RC Modified
3	DOE EML HASL-300, Pu-11-RC Modified
4	DOE EML HASL-300, Pu-11-RC Modified
5	DOE EML HASL-300, Pu-11-RC Modified
6	EML HASL 300, 4.5.2.3
7	EPA 905.0 Modified
8	EPA 906.0 Modified
9	EPA EERF C-01 Modified
10	DOE RESL Fe-1, Modified
11	DOE RESL Ni-1, Modified
12	DOE EML HASL-300. Tc-02-RC Modified

Surrogate/Tracer recovery	Test	Recovery%	Acceptable Limits	
Americium-243 Tracer	Alphaspec Am241, Cm, Solid ALL	77	(15%–125%)	
Plutonium-242 Tracer	Alphaspec Pu, Solid-ALL FSS	85	(15%–125%)	
Plutonium-242 Tracer	Liquid Scint Pu241, Solid-ALL FS	86	(25%–125%)	
Strontium Carrier	GFPC, Sr90, solid-ALL FSS	66	(25%–125%)	
Iron-59 Tracer	Liquid Scint Fe55, Solid-ALL FS	66	(15%–125%)	
Nickel Carrier	Liquid Scint Ni63, Solid-ALL FS	79	(25%–125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

Contact:

East Hampton, Connecticut 06424

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-111F

183243011

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Technetium-99m Tracer	Liqui	id Scint To	99, Solid-ALL FS		82		(15%–125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- Results are reported from a diluted aliquot of the sample D
- Analytical holding time was exceeded Η
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID: Matrix:

Collect Date: Receive Date:

Collector:

9312-0010-112F

183243012

26-MAR-07 29-MAR-07

Client

Moisture: 8.25% **Parameter Qualifier** Result LC **TPU MDA** Units **DF** Analyst Date Time Batch N Uncertainty Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 +/-0.251 0.133 MJH1 04/03/07 1514 621152 1.18 +/-0.251 0.0665 pCi/g Americium-241 0.0532 +/-0.109 0.094 +/-0.109 0.188 pCi/g Bismuth-212 0.538 +/-0.3320.152 +/-0.3320.304 pCi/g +/-0.105 Bismuth-214 0.620 +/-0.105 0.0362 0.0723 pCi/g U 0.0268 +/-0.0429 Cesium-134 0.0519 +/-0.0429 0.0535 pCi/g 0.0386 Cesium-137 11 -0.0235+/-0.0239 0.0193 + -0.0239pCi/g pCi/g Cobalt-60 U -0.0023+/-0.03050.0219 + -0.03050.0438 Europium-152 -0.0438+/-0.0689 0.0537 +/-0.0689 0.107 pCi/g U Europium-154 U -0.0443+/-0.0793 0.0637 + -0.07930.127 pCi/g Europium-155 U 0.0459 +/-0.093 0.0632 +/-0.093 0.126 pCi/g Lead-212 0.921 +/-0.0971 0.0305 +/-0.0971 0.061 pCi/g +/-0.120 Lead-214 0.0388 +/-0.120 0.0776 pCi/g 0.665 Manganese-54 0.00571 +/-0.025 0.0217 +/-0.025 0.0434 pCi/g Niobium-94 +/-0.0224 0.0191 +/-0.0224 U -0.00695 0.0381 pCi/g Potassium-40 16.2 +/-1.53 0.163 +/-1.53 0.325 pCi/g Radium-226 0.620 +/-0.105 0.0362 +/-0.105 0.0723 pCi/g Silver-108m 0.00705 +/-0.0211 0.0186 +/-0.0211 0.0372 pCi/g Thallium-208 0.320 +/-0.0523 0.0193 +/-0.0523 0.0387 pCi/g **Rad Gas Flow Proportional Counting** GFPC, Sr90, solid-ALL FSS Strontium-90 U 0.0105 +/-0.0257 0.0201 +/-0.0257 0.0465 pCi/g NXL3 04/03/07 1641 621125

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method Description

EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Surrogate/Tracer recovery

Test

Recovery%

Acceptable Limits

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID:

Vol. Recv.:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-112F

183243012

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recovery Test				Recovery%	Acc	eptable Limits			
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		57	(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- Α The TIC is a suspected aldol-condensation product
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y OC Samples were not spiked with this compound
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project: Soils PO# 002332

Client Sample ID:

Sample ID: Matrix: Collect Date: Receive Date:

Collector: Maistura

9312-0010-113F

183243013 26-MAR-07

29-MAR-07 Client

Report Date: April 5, 2007

Project: Client ID: YANK01204 YANK001 Vol. Recv.:

	Moisture:			2.4%							
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst	Date	Time	Batch N
Rad Gamma Spec Ana	alysis										
Gamma,Solid-FSS C	GAM & ALL FSS	S 226 Ingro	wth								
Waived		_									
Actinium-228		0.989	+/-0.213	0.0792	+/-0.213	0.158	pCi/g	MJH1	04/03/0	7 1529	621152
Americium-241	U	0.0362	+/-0.0392	0.0346	+/-0.0392	0.0691	pCi/g				
Bismuth-212		0.622	+/-0.294	0.157	+/-0.294	0.314	pCi/g				
Bismuth-214		0.682	+/-0.115	0.0403	+/-0.115	0.0805	pCi/g				
Cesium-134	UI	0.00	+/-0.0504	0.0303	+/-0.0504	0.0606	pCi/g				
Cesium-137		0.0626	+/-0.0304	0.0234	+/-0.0304	0.0468	pCi/g				
Cobalt-60	U	-0.0172	+/-0.028	0.0217	+/-0.028	0.0434	pCi/g				
Europium-152	U	-0.00738	+/-0.0872	0.0538	+/-0.0872	0.108	pCi/g				
Europium-154	U	-0.0346	+/-0.0918	0.0706	+/-0.0918	0.141	pCi/g				
Europium-155	U	0.0479	+/-0.0683	0.0544	+/-0.0683	0.109	pCi/g				
Lead-212		0.845	+/-0.109	0.0317	+/-0.109	0.0633	pCi/g				
Lead-214		0.719	+/-0.118	0.0378	+/-0.118	0.0755	pCi/g				
Manganese–54	U	0.0115	+/-0.0261	0.0239	+/-0.0261	0.0477	pCi/g				
Niobium-94	U	-0.0092	+/-0.0231	0.0191	+/-0.0231	0.0382	pCi/g				
Potassium-40		17.0	+/-1.51	0.151	+/-1.51	0.302	pCi/g				
Radium-226		0.682	+/-0.115	0.0403	+/-0.115	0.0805	pCi/g				
Silver-108m	U	-0.00232	+/-0.0208	0.0185	+/-0.0208	0.037	pCi/g				
Thallium-208		0.281	+/-0.0536	0.0225	+/-0.0536	0.045	pCi/g				

The following Prep Methods were performed

U -0.0163

Rad Gas Flow Proportional Counting GFPC, Sr90, solid-ALL FSS

Strontium-90

Method

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

0.019 + -0.0207

0.0419

pCi/g

NXL3 04/03/07 1641 621125

The following Analytical Methods were performed

Description EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Surrogate/Tracer recovery **Acceptable Limits** Recovery%

+/-0.0207

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

9312-0010-113F 183243013

Sample ID:

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	ry Test				Recovery%	Acc	eptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		64	(25%–125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- > Result is greater than value reported
- Α The TIC is a suspected aldol-condensation product
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Η Analytical holding time was exceeded
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

Matrix: Collect Date:

Receive Date: Collector:

Moisture:

9312-0010-114F

183243014 TS

26-MAR-07 29-MAR-07

Client

4.58%

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysi	s					···		
Gamma,Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived		Ü						
Actinium-228		0.841	+/-0.151	0.0398	+/-0.151	0.0796	pCi/g	MJH1 04/03/07 1912 621152
Americium-241	U	0.0652	+/-0.0679	0.0557	+/-0.0679	0.111	pCi/g	
Bismuth-212		0.516	+/0.170	0.0838	+/-0.170	0.168	pCi/g	
Bismuth-214		0.769	+/-0.0931	0.0225	+/-0.0931	0.0449	pCi/g	
Cesium-134	UI	0.00	+/-0.0224	0.0149	+/-0.0224	0.0297	pCi/g	
Cesium-137		0.496	+/-0.0512	0.0115	+/-0.0512	0.0229	pCi/g	
Cobalt-60	UI	0.00	+/-0.0243	0.0126	+/-0.0243	0.0252	pCi/g	
Europium-152	U	-0.0279	+/-0.0488	0.0313	+/-0.0488	0.0626	pCi/g	
Europium-154	U	0.0176	+/-0.0478	0.0354	+/-0.0478	0.0708	pCi/g	
Europium-155	U	0.0448	+/-0.0628	0.0371	+/-0.0628	0.0742	pCi/g	
Lead-212		0.829	+/-0.0798	0.0187	+/-0.0798	0.0374	pCi/g	
Lead-214		0.788	+/-0.0897	0.0225	+/-0.0897	0.0451	pCi/g	
Manganese-54	U	0.00481	+/-0.0157	0.0119	+/-0.0157	0.0239	pCi/g	
Niobium-94	U	-0.0118	+/-0.0121	0.0101	+/-0.0121	0.0203	pCi/g	
Potassium-40		10.6	+/-0.809	0.0885	+/-0.809	0.177	pCi/g	
Radium-226		0.769	+/-0.0931	0.0225	+/-0.0931	0.0449	pCi/g	
Silver-108m	U	0.00263	+/-0.0131	0.0115	+/-0.0131	0.0229	pCi/g	
Thallium-208		0.273	+/-0.0346	0.0112	+/-0.0346	0.0224	pCi/g	
Rad Gas Flow Proportion	al Counting	3						
GFPC, Sr90, solid-ALL								
Strontium-90	U	0.0275	+/-0.020	0.0133	+/-0.020	0.0308	pCi/g	NXL3 04/02/07 1905 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method Description

EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Surrogate/Tracer recovery

Test

Recovery%

Acceptable Limits

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID:

Vol. Recv.:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

Contact:

East Hampton, Connecticut 06424

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID: Sample ID:

9312-0010-114F

183243014

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recovery Test			Recovery%	Acc	ceptable Limits				
Strontium Carrier	GFPC	C, Sr 90, so	olid-ALL FSS		79		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- < Result is less than value reported
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Analytical holding time was exceeded Η
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. U
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- QC Samples were not spiked with this compound Y
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID:

Vol. Recv.:

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy
Project: Soils PO# 002332

Client Sample ID: Sample ID: Matrix: Collect Date:

Collect Date:
Receive Date:
Collector:
Moisture:

9312-0010-114FS

183243015 TS 26-MAR-07

29-MAR-07 Client 4.83%

Parameter **Qualifier** Time Batch N Result **TPU MDA** Units Uncertainty LC **DF** Analyst Date Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 +/-0.137 0.0728 MJH1 04/03/07 1914 621152 0.872 +/-0.137 0.0364 pCi/g +/-0.0808 0.0682 +/-0.0808 0.136 Americium-241 U 0.0245 pCi/g 0.165 Bismuth-212 0.526 +/-0.155 0.0825 +/-0.155 pCi/g pCi/g Bismuth-214 +/-0.087 0.022 +/-0.087 0.044 0.731 0.0139 +/-0.0231 0.0278 pCi/g Cesium-134 UI 0.00 +/-0.0231 Cesium-137 0.458 +/-0.0465 0.0113 + -0.04650.0225 pCi/g Cobalt-60 UI 0.00 +/-0.0281 0.0117 +/-0.0281 0.0233 pCi/g Europium-152 U -0.00870.0316 +/-0.0516 +/-0.0516 0.0631 pCi/g Europium-154 U 0.0398 +/-0.0701 0.0372 +/-0.0701 0.0744 pCi/g 0.0746 Europium-155 U 0.0526 +/-0.0449 0.0373 +/-0.0449 pCi/g Lead-212 0.783 +/-0.0719 0.0182 +/-0.0719 0.0364 pCi/g Lead-214 0.0213 +/-0.0898 0.816 +/-0.0898 0.0425 pCi/g Manganese-54 UI 0.00 +/-0.0167 0.0102 +/-0.0167 0.0204 pCi/g Niobium-94 U -0.00182 +/-0.0123 0.0104 +/-0.0123 0.0208 pCi/g Potassium-40 10.7 +/-0.877 0.0936 + -0.8770.187 pCi/g Radium-226 +/-0.087 0.731 +/-0.087 0.022 0.044 pCi/g Silver-108m +/-0.0126 0.0228 U 0.00747 0.0114 +/-0.0126 pCi/g Thallium-208 0.236 +/-0.0335 0.0113 +/-0.0335 0.0225 pCi/g **Rad Gas Flow Proportional Counting** GFPC, Sr90, solid-ALL FSS Strontium-90 U 0.0145 +/-0.0191 0.0332 NXL3 04/02/07 1906 621126 0.012 +/-0.0191 pCi/g

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method	Description	
1	EML HASL 300, 4.5.2.3	
2	EPA 905.0 Modified	

Surrogate/Tracer recovery Test Recovery% Acceptable Limits

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-114FS

183243015

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	ry Test				Recovery%	Ac	ceptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		79		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- Α The TIC is a suspected aldol-condensation product
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Analytical holding time was exceeded H
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project: Soils PO# 002332

Client Sample ID: Sample ID: Matrix:

Collect Date: Receive Date: Collector: Moisture:

9312-0010-115F

183243016 TS 26-MAR-07 29-MAR-07

Client 1.87%

YANK01204

Report Date: April 5, 2007

Project: Client ID: Vol. Recv.: YANK001

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysis	5		··					
Gamma, Solid - FSS GAM	& ALL FSS	226 Ingro	wth					
Waived		J						
Actinium-228		0.920	+/-0.167	0.0435	+/-0.167	0.0869	pCi/g	MJH1 04/03/07 1915 621152
Americium-241	U	0.0344	+/-0.0601	0.0525	+/-0.0601	0.105	pCi/g	
Bismuth-212		0.385	+/-0.167	0.0913	+/-0.167	0.183	pCi/g	
Bismuth-214		0.640	+/-0.0811	0.0214	+/-0.0811	0.0427	pCi/g	
Cesium-134	UI	0.00	+/-0.0236	0.0154	+/-0.0236	0.0307	pCi/g	
Cesium-137	U	0.00748	+/-0.0147	0.0129	+/-0.0147	0.0259	pCi/g	
Cobalt-60	U	0.00165	+/-0.0148		+/-0.0148	0.0253	pCi/g	
Europium-152	UI	0.00	+/-0.0555	0.0308	+/0.0555	0.0616	pCi/g	
Europium-154	U	-0.00662	+/0.0475	0.0405	+/-0.0475	0.0809	pCi/g	
Europium-155	U	0.0376	+/-0.0423	0.0351	+/-0.0423	0.0701	pCi/g	
Lead-212		0.939	+/-0.0822	0.0176	+/-0.0822	0.0352	pCi/g	
Lead-214		0.706	+/-0.0815	0.0216	+/-0.0815	0.0431	pCi/g	
Manganese-54	UI	0.00	+/-0.0161	0.011	+/-0.0161	0.0219	pCi/g	
Niobium-94	U	0.00551	+/-0.013	0.0117	+/-0.013	0.0235	pCi/g	
Potassium-40		16.4	+/-1.15	0.104	+/-1.15	0.208	pCi/g	
Radium-226		0.640	+/-0.0811	0.0214	+/-0.0811	0.0427	pCi/g	
Silver-108m	U	0.00539	+/-0.0129	0.0103	+/-0.0129	0.0206	pCi/g	
Thallium-208		0.281	+/-0.0377	0.0113	+/-0.0377	0.0226	pCi/g	
Rad Gas Flow Proportiona	d Counting	g					_	
GFPC, Sr90, solid-ALL F	FSS							
Strontium-90	U	-0.00657	+/-0.0159	0.0146	+/-0.0159	0.035	pCi/g	NXL3 04/03/07 1421 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed Method

Method	Description	
1	EML HASL 300, 4.5.2.3	
2	EPA 905.0 Modified	
3	EPA 905.0 Modified	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID: 183243016

9312-0010-115F

Project: Client ID: YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Ac	ceptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		74		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy---Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL</p>
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Connecticut Yankee Atomic Power Company:

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID: Matrix:

Collect Date: Receive Date: Collector:

Moisture:

9312-0010-116F

183243017 TS

26-MAR-07 29-MAR-07

Client 4.56% Report Date: April 5, 2007

Project: Client ID: Vol. Recv.: YANK01204 YANK001

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch
Rad Gamma Spec Analysis	s							
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived		_						
Actinium-228		1.05	+/-0.173	0.0428	+/-0.173	0.0855	pCi/g	MJH1 04/03/07 1918 62115
Americium-241	U	0.0107	+/-0.0917	0.0745	+/-0.0917	0.149	pCi/g	
Bismuth-212		0.554	+/-0.185	0.0899	+/-0.185	0.180	pCi/g	
Bismuth-214		0.662	+/-0.0843	0.0235	+/-0.0843	0.047	pCi/g	
Cesium-134	UI	0.00	+/-0.026	0.0158	+/~0.026	0.0316	pCi/g	
Cesium-137	U	-0.00385	+/-0.0142	0.012	+/-0.0142	0.024	pCi/g	
Cobalt-60	U	0.0025	+/-0.0149	0.0126	+/-0.0149	0.0252	pCi/g	
Europium-152	U	-0.0139	+/-0.0509	0.0315	+/-0.0509	0.063	pCi/g	
Europium-154	U	-0.00395	+/-0.0516	0.0412	+/-0.0516	0.0823	pCi/g	
Europium-155	U	0.0722	+/-0.054	0.0396	+/~0.054	0.0792	pCi/g	
Lead-212		1.01	+/-0.118	0.0198	+/~0.118	0.0395	pCi/g	
Lead-214		0.821	+/-0.0995	0.0227	+/-0.0995	0.0453	pCi/g	
Manganese-54	U	0.0231	+/-0.0239	0.0119	+/-0.0239	0.0237	pCi/g	
Niobium-94	U	0.00574	+/-0.0131	0.0114	+/-0.0131	0.0228	pCi/g	
Potassium-40		16.6	+/-1.24	0.101	+/-1.24	0.203	pCi/g	
Radium-226		0.662	+/-0.0843	0.0235	+/-0.0843	0.047	pCi/g	
Silver-108m	U	0.00197	+/-0.0123	0.011	+/-0.0123	0.022	pCi/g	
Thallium-208		0.319	+/-0.0372	0.011	+/-0.0372	0.0221	pCi/g	
Rad Gas Flow Proportiona	al Counting	3					_	
GFPC, Sr90, solid-ALL I	FSS							
Strontium-90	U	0.00116	+/-0.015	0.0125	+/-0.015	0.0286	pCi/g	NXL3 04/02/07 1906 62112

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed Description

Method

EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Test **Acceptable Limits** Surrogate/Tracer recovery Recovery%

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-116F

183243017

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	A	cceptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		84		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- Α The TIC is a suspected aldol-condensation product
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- Analyte has been confirmed by GC/MS analysis \mathbf{C}
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Connecticut Yankee Atomic Power Company:

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Mr. Jack McCarthy Contact: Soils PO# 002332 Project:

Client Sample ID: Sample ID:

Collect Date: Receive Date: Collector:

Moisture:

Matrix:

29-MAR-07 Client 3.01%

TS

9312-0010-117F

183243018 26-MAR-07

Project: Client ID: YANK01204 YANK001 Vol. Recv.:

Report Date: April 5, 2007

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Rad Gamma Spec An	alysis					· <u>-</u> -			
Gamma, Solid - FSS C	GAM & ALL FSS	226 Ingro	wth						
Waived		Ü							
Actinium-228		1.09	+/-0.166	0.0459	+/-0.166	0.0917	pCi/g	MJH1 04/03/0	07 1919 621152
Americium-241	U	0.0304	+/-0.0252	0.0211	+/-0.0252	0.0421	pCi/g		
Bismuth-212		0.700	+/-0.252	0.106	+/-0.252	0.212	pCi/g		

Bismuth-214 0.798 +/-0.112 0.0263 +/-0.112 0.0525 pCi/g Cesium-134 UI 0.00 +/-0.024 0.0176 +/-0.024 0.0351 pCi/g Cesium-137 0.291 +/-0.0424 0.0134 +/-0.0424 0.0267 pCi/g 0.0161 +/-0.0179 0.0322 Cobalt-60 U 0.0221 +/-0.0179 pCi/g Europium-152 U 0.00358 +/-0.0514 0.035 +/-0.0514 0.070 pCi/g Europium-154 U -0.0221+/-0.0521 0.0427 + -0.05210.0853 pCi/g Europium-155 +/-0.0466 0.0342 +/-0.0466 0.0684 pCi/g 0.0609 Lead-212 0.982 +/-0.117 0.0193 +/-0.117 0.0385 pCi/g Lead-214 +/-0.106 0.886 +/-0.106 0.0252 0.0503 pCi/g 0.0146 +/-0.0186 Manganese-54 U 0.0142 +/-0.0186 0.0292 pCi/g Niobium-94 0.00509 0.0137 +/-0.016 +/-0.016 0.0274 pCi/g Potassium-40 15.6 +/-1.11 0.131 +/-1.11 0.262 pCi/g Radium-226 0.798 +/-0.112 0.0263 +/-0.112 0.0525 pCi/g Silver-108m 0.00373 +/-0.0141 0.0125 + -0.01410.0249 pCi/g 0.0139 +/-0.0426 0.295 +/-0.0426 0.0278 pCi/g

Thallium-208 **Rad Gas Flow Proportional Counting**

GFPC, Sr90, solid-ALL FSS

Method

Strontium-90 0.013 +/-0.0166 0.0122 +/-0.0166 0.0283 pCi/g NXL3 04/02/07 1906 621126

The following Prep Methods were performed

Method	Description Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed Description

1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Acceptable Limits Surrogate/Tracer recovery Test Recovery%

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project: Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-117F

183243018

Project: Client ID: Vol. Recv.:

YANK01204 YANK001

Report Date: April 5, 2007

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	ry Test				Recovery%	Acc	ceptable Limits		
Strontium Carrier	GFPC	C, Sr90, so	olid-ALL FSS		87		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Analytical holding time was exceeded H
- Value is estimated Ĵ
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project:

Soils PO# 002332

Sample ID: Matrix:

26-MAR-07 Collect Date: 29-MAR-07 Receive Date: Collector: Client

Project: Client ID: Client Sample ID: YANK01204 9312-0010-118F 183243019 TS YANK001 Vol. Recv.:

Report Date: April 5, 2007

Moisture: 3.88%

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysis								
Gamma, Solid - FSS GAM &	& ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		0.995	+/-0.175	0.0419	+/-0.175	0.0838	pCi/g	MJH1 04/03/07 1920 621152
Americium-241	U	0.0161	+/-0.0597	0.0559	+/-0.0597	0.112	pCi/g	
Bismuth-212		0.494	+/-0.181	0.0975	+/-0.181	0.195	pCi/g	
Bismuth-214		0.632	+/-0.0851	0.0231	+/-0.0851	0.0463	pCi/g	
Cesium-134	UI	0.00	+/-0.0225	0.0156	+/-0.0225	0.0312	pCi/g	
Cesium-137		0.0619	+/-0.0238	0.0136	+/-0.0238	0.0271	pCi/g	
Cobalt-60	U	-0.00246	+/-0.0151	0.0126	+/-0.0151	0.0253	pCi/g	
Europium-152	U	-0.0371	+/-0.0421	0.0329	+/-0.0421	0.0657	pCi/g	
Europium-154	U	-0.0107	+/-0.0475	0.0399	+/-0.0475	0.0797	pCi/g	
Europium-155	U	0.0313	+/-0.0591	0.0356	+/-0.0591	0.0712	pCi/g	
Lead-212		0.978	+/-0.0867	0.019	+/-0.0867	0.0379	pCi/g	
Lead-214		0.713	+/-0.087	0.024	+/-0.087	0.048	pCi/g	
Manganese-54	U	0.0159	+/-0.0166	0.013	+/-0.0166	0.0261	pCi/g	
Niobium-94	U	0.0126	+/-0.0132	0.0119	+/-0.0132	0.0238	pCi/g	
Potassium-40		16.0	+/-1.25	0.111	+/-1.25	0.223	pCi/g	
Radium-226		0.632	+/-0.0851	0.0231	+/-0.0851	0.0463	pCi/g	
Silver-108m	U	0.00018	+/-0.0132	0.0114	+/-0.0132	0.0227	pCi/g	
Thallium-208		0.319	+/-0.0391	0.0122	+/-0.0391	0.0244	pCi/g	
Rad Gas Flow Proportiona	l Counting	3						
GFPC, Sr90, solid-ALL F	SS							
Strontium-90	U	0.00596	+/-0.020	0.0161	+/-0.020	0.0364	pCi/g	NXL3 04/02/07 1906 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method Description 1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Surrogate/Tracer recovery Test **Acceptable Limits** Recovery %

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Soils PO# 002332 Project:

Client Sample ID: Sample ID:

9312-0010-118F

183243019

Project: Client ID: YANK01204 YANK001 Vol. Recv.:

Report Date: April 5, 2007

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Ac	cceptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		80		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- Α The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- Analyte has been confirmed by GC/MS analysis C
- D Results are reported from a diluted aliquot of the sample
- Analytical holding time was exceeded Η
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy
Project: Soils PO# 002332

Client Sample ID: Sample ID: Matrix:

Matrix:
Collect Date:
Receive Date:
Collector:
Moisture:

9312-0010-119B 183243020 TS

26-MAR-07 29-MAR-07 Client 6.09% Report Date: April 5, 2007

Project: YANK01204 Client ID: YANK001 Vol. Recv.:

				0.0770				
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysis	s							
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		0.594	+/-0.121	0.0367	+/-0.121	0.0734	pCi/g	MJH1 04/03/07 1921 621152
Americium-241	U	0.043	+/-0.0726	0.0572	+/-0.0726	0.114	pCi/g	
Bismuth-212		0.394	+/-0.148	0.0825	+/-0.148	0.165	pCi/g	
Bismuth-214		0.525	+/-0.0762	0.0227	+/-0.0762	0.0454	pCi/g	
Cesium-134	U	0.0241	+/-0.022	0.0132	+/-0.022	0.0264	pCi/g	
Cesium-137		2.25	+/-0.210	0.012	+/-0.210	0.024	pCi/g	
Cobalt-60		0.125	+/-0.0239	0.0103	+/-0.0239	0.0205	pCi/g	
Europium-152	U	-0.0403	+/-0.0412	0.0338	+/-0.0412	0.0675	pCi/g	
Europium-154	U	0.000828	+/-0.0424	0.0358	+/-0.0424	0.0715	pCi/g	
Europium-155	U	0.0101	+/-0.0409	0.0376	+/-0.0409	0.0751	pCi/g	
Lead-212		0.481	+/-0.0497	0.0188	+/-0.0497	0.0376	pCi/g	
Lead-214		0.548	+/-0.0711	0.0245	+/-0.0711	0.049	pCi/g	
Manganese-54	U	0.00432	+/-0.0127	0.0113	+/-0.0127	0.0225	pCi/g	
Niobium-94	U	0.000943	+/-0.0121	0.0103	+/-0.0121	0.0206	pCi/g	
Potassium-40		10.2	+/-0.798	0.0877	+/-0.798	0.175	pCi/g	
Radium-226		0.525	+/-0.0762	0.0227	+/-0.0762	0.0454	pCi/g	
Silver-108m	U	-0.00736	+/-0.0149	0.013	+/-0.0149	0.026	pCi/g	
Thallium-208		0.156	+/-0.0324	0.0115	+/-0.0324	0.023	pCi/g	
Rad Gas Flow Proportiona	al Counting	3						
GFPC, Sr90, solid-ALL F	FSS							
Strontium-90	U	0.00753	+/-0.0192	0.0151	+/-0.0192	0.0349	pCi/g	NXL3 04/02/07 1906 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1120	621099

The following Analytical Methods were performed

Method	Description
1	EML HASL 300, 4.5.2.3
2	EPA 905.0 Modified

Surrogate/Tracer recovery Test Recovery% Acceptable Limits

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company:

Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-119B

183243020

Project: Client ID: YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	. A c	cceptable Limits			
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		68		(25%-125%)			

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- A RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Connecticut Yankee Atomic Power Company:

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Mr. Jack McCarthy Contact:

Project: Soils PO# 002332

Client Sample ID:

Sample ID:

Matrix: Collect Date: Receive Date: 183243021 TS 26-MAR-07

29-MAR-07 Client

9312-0010-120B

Collector: Moisture:

Report Date: April 5, 2007

Project: Client ID: YANK01204 YANK001 Vol. Recv.:

	Moisture:			14.8%				
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysi	s							
Gamma,Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		1.39	+/-0.246	0.0674	+/-0.246	0.135	pCi/g	MJH1 04/03/07 0945 621149
Americium-241	U	0.0979	+/-0.115	0.0889	+/-0.115	0.178	pCi/g	
Bismuth-212		1.12	+/-0.377	0.146	+/-0.377	0.292	pCi/g	
Bismuth-214		1.59	+/-0.174	0.0361	+/-0.174	0.0721	pCi/g	
Cesium-134	UI	0.00	+/-0.032	0.0253	+/-0.032	0.0505	pCi/g	
Cesium-137		0.371	+/-0.053	0.0204	+/-0.053	0.0408	pCi/g	
Cobalt-60	U	0.015	+/-0.0272	0.0227	+/-0.0272	0.0454	pCi/g	
Europium-152	U	-0.056	+/-0.0832	0.0513	+/-0.0832	0.102	pCi/g	
Europium-154	U	-0.0347	+/-0.0774	0.0587	+/-0.0774	0.117	pCi/g	
Europium-155	U	0.0665	+/-0.0746	0.0563	+/-0.0746	0.113	pCi/g	
Lead-212		1.45	+/-0.139	0.0312	+/-0.139	0.0623	pCi/g	
Lead-214		1.76	+/-0.188	0.0362	+/-0.188	0.0723	pCi/g	
Manganese-54	U	0.00759	+/-0.0267	0.0199	+/-0.0267	0.0397	pCi/g	
Niobium-94	U	0.00613	+/-0.0219	0.019	+/-0.0219	0.038	pCi/g	
Potassium-40		22.5	+/-1.65	0.146	+/-1.65	0.291	pCi/g	
Radium-226		1.59	+/-0.174	0.0361	+/-0.174	0.0721	pCi/g	
Silver-108m	U	-0.0115	+/-0.0212	0.0175	+/-0.0212	0.0349	pCi/g	
Thallium-208		0.471	+/-0.0633	0.0188	+/-0.0633	0.0376	pCi/g	
Rad Gas Flow Proportion	al Counting	g						
GFPC, Sr90, solid-ALL I	FSS							
Strontium-90	U	0.000128	+/-0.0193	0.0162	+/-0.0193	0.0371	pCi/g	NXL3 04/02/07 1906 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed

Method	Description Description	
1	EML HASL 300, 4.5.2.3	
2	EPA 905.0 Modified	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-120B

183243021

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	ry Test				Recovery%	A	cceptable Limits		
Strontium Carrier	GFPC	C, Sr90, so	olid-ALL FSS		74		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- Α The TIC is a suspected aldol–condensation product
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- Results are reported from a diluted aliquot of the sample D
- Analytical holding time was exceeded Η
- Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID: Vol. Recv.:

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Soils PO# 002332 Project:

> Client Sample ID: Sample ID:

Matrix:

Collect Date: Receive Date: Collector:

Moisture:

9312-0010-121B

183243022 TS

26-MAR-07 29-MAR-07 Client

8.55%

				0.5570				
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysi	is				•			
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived		-						
Actinium-228		0.470	+/-0.163	0.0659	+/-0.163	0.132	pCi/g	MJH1 04/03/07 0946 621149
Americium-241	U	-0.0359	+/-0.0852	0.0715	+/-0.0852	0.143	pCi/g	
Bismuth-212		0.432	+/-0.272	0.134	+/-0.272	0.267	pCi/g	
Bismuth-214	UI	0.00	+/-0.102	0.070	+/-0.102	0.140	pCi/g	
Cesium-134	U	0.0183	+/-0.0287	0.0228	+/-0.0287	0.0455	pCi/g	
Cesium-137		0.234	+/-0.0446	0.0183	+/-0.0446	0.0367	pCi/g	
Cobalt-60	U	0.0135	+/-0.0189	0.0178	+/-0.0189	0.0356	pCi/g	
Europium-152	U	0.0184	+/-0.0759	0.0466	+/-0.0759	0.093	pCi/g	
Europium-154	U	0.0854	+/-0.0666	0.0631	+/-0.0666	0.126	pCi/g	
Europium-155	U	0.0542	+/-0.0658	0.0514	+/-0.0658	0.103	pCi/g	
Lead-212		0.508	+/-0.0751	0.0287	+/-0.0751	0.0573	pCi/g	
Lead-214		0.555	+/-0.101	0.0319	+/-0.101	0.0638	pCi/g	
Manganese-54	U	-0.0232	+/-0.0209	0.0166	+/-0.0209	0.0331	pCi/g	
Niobium-94	U	0.00826	+/-0.0182	0.0167	+/-0.0182	0.0333	pCi/g	
Potassium-40		11.1	+/-1.05	0.110	+/-1.05	0.220	pCi/g	
Radium-226		0.520	+/-0.102	0.0308	+/-0.102	0.0615	pCi/g	
Silver-108m	U	-0.0101	+/-0.0188	0.0164	+/-0.0188	0.0328	pCi/g	
Thallium-208		0.186	+/-0.0468	0.0163	+/-0.0468	0.0326	pCi/g	
Rad Gas Flow Proportion	al Counting	g						
GFPC, Sr90, solid-ALL	FSS							
Strontium-90	U	0.0158	+/-0.021	0.0157	+/-0.021	0.0359	pCi/g	NXL3 04/02/07 1906 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed Description Method

1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Surrogate/Tracer recovery Recovery% **Acceptable Limits**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

183243022 Sample ID:

9312-0010-121B Project: Client ID:

YANK001 Vol. Recv.:

Report Date: April 5, 2007

YANK01204

Parameter Qualifier Result Uncertainty LC **TPU MDA** Units **DF** Analyst Date Time Batch N Surrogate/Tracer recovery **Acceptable Limits** Recovery% Strontium Carrier GFPC, Sr90, solid-ALL FSS 72 (25% - 125%)

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. B
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Η Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

9.91

0.557

0.189

0.00906

U-0.000262

+/-1.13

+/-0.125

+/-0.0225

+/-0.0633

+/-0.0223

Contact: Mr. Jack McCarthy Soils PO# 002332 Project:

> Client Sample ID: Sample ID:

Matrix: Collect Date: Receive Date:

Collector:

9312-0010-122B

183243023 TS 26-MAR-07

29-MAR-07 Client

Report Date: April 5, 2007

Project: Client ID: YANK01204 YANK001 Vol. Recv.:

Moisture: 6.73% **Parameter** Qualifier Result Uncertainty LC **TPU MDA** Units **DF** Analyst Date Time Batch N Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 +/-0.224 0.0792 +/-0.224 0.158 pCi/g MJH1 04/03/07 0947 621149 0.684 0.0353 +/-0.0414 0.0705 Americium-241 U 0.0194 +/-0.0414 pCi/g +/-0.296 Bismuth-212 0.349 0.447 +/-0.296 0.175 pCi/g Bismuth-214 +/-0.125 0.0921 0.557 +/-0.1250.0461 pCi/g Cesium-134 IJ 0.048 $\pm /-0.0373$ 0.0301 + -0.03730.0602 pCi/g 0.0257 + -0.0533Cesium-137 U 0.0335 +/-0.0533 0.0515 pCi/g Cobalt-60 U 0.0102 +/-0.0374 0.0271 + -0.03740.0542 pCi/g Europium-152 U -0.0157+/-0.0751 0.0575 + -0.07510.115 pCi/g Europium-154 U 0.0132 +/-0.0845 0.0728 +/-0.0845 0.145 pCi/g 0.0596 +/-0.0629 U 0.0541 +/-0.0629 Europium-155 0.119 pCi/g 0.0337 +/-0.0783 Lead-212 0.457 +/-0.0783 0.0673 pCi/g Lead-214 0.0433 +/-0.0983 pCi/g 0.522 +/-0.0983 0.0865 0.0218 +/-0.0249 Manganese-54 U1.900E-05 +/-0.0249 0.0436 pCi/g pCi/g 0.0217 +/-0.0258 Niobium-94 U -0.00193 +/-0.02580.0435 +/-1.13 pCi/g

0.194

+/-0.125

0.0198 +/-0.0225

0.0211 +/-0.0633

0.0176 + -0.0223

0.0461

0.387

pCi/g

pCi/g

pCi/g

pCi/g

NXL3 04/02/07 1906 621126

0.0921

0.0397

0.0421

0.0403

Rad Gas Flow Proportional Counting GFPC, Sr90, solid-ALL FSS

Strontium-90

Potassium-40

Radium-226

Silver-108m

Thallium-208

Method

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed Description

1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Surrogate/Tracer recovery Recovery% **Acceptable Limits**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-122B

183243023

Project: Client ID:

YANK01204

Report Date: April 5, 2007

Client ID: YANK001 Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	A	cceptable Limits		
Strontium Carrier	GFPC	C, Sr90, so	olid-ALL FSS		59		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID:

Vol. Recv.:

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID: Matrix:

Collect Date: Receive Date:

Collector: Moisture: 9312-0010-123B

183243024 TS

26-MAR-07 29-MAR-07

Client .45%

Parameter Qualifier Result **TPU MDA** Units Time Batch N Uncertainty LC **DF** Analyst Date Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 0.593 +/-0.163 0.0561 +/-0.1630.112 pCi/g MJH1 04/03/07 0948 621149 U -0.00132 0.0808 + -0.0951Americium-241 +/-0.09510.162 pCi/g Bismuth-212 0.273 +/-0.169 0.164 +/-0.169 0.327 pCi/g U Bismuth-214 0.400 +/-0.101 0.0326 +/-0.101 0.0653 pCi/g Cesium-134 U 0.015 +/-0.0236 0.0207 +/-0.0236 0.0414 pCi/g 0.0184 +/-0.0526 Cesium-137 0.340 +/-0.0526 0.0368 pCi/g Cobalt-60 U 0.00895 +/-0.0243 0.0216 +/-0.0243 0.0431 pCi/g Europium-152 U 0.00468 +/-0.0598 0.0494 +/-0.0598 0.0987 pCi/g Europium-154 U 0.00596 +/-0.07430.0576 + -0.07430.115 pCi/g Europium-155 0.0515 +/-0.0654 pCi/g U -0.00709 +/-0.0654 0.103 Lead-212 +/-0.0732 0.0286 +/-0.0732 0.0572 0.616 pCi/g Lead-214 0.560 +/-0.095 0.0348 +/-0.095 0.0695 pCi/g Manganese-54 U 0.027 +/-0.0219 0.0206 + -0.02190.0412 pCi/g U-0.000645 0.0158 +/-0.0182 Niobium-94 +/-0.0182 0.0316 pCi/g 0.404 Potassium-40 +/-1.11 0.202 +/-1.11 104 pCi/g Radium-226 0.400 +/-0.101 0.0326 +/-0.101 0.0653 pCi/g Silver-108m U -0.00929 +/-0.0199 0.0167 +/-0.0199 0.0333 pCi/g Thallium-208 0.215 +/-0.0421 0.0183 +/-0.0421 0.0366 pCi/g **Rad Gas Flow Proportional Counting** GFPC, Sr90, solid-ALL FSS Strontium-90 0.0229 +/-0.0235 0.0171 +/-0.0235 0.0389 pCi/g NXL3 04/02/07 1906 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed Description

1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Method

Surrogate/Tracer recovery Test Recovery % **Acceptable Limits**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy
Project: Soils PO# 002332

30118 T O# 002332

Client Sample ID: Sample ID: 9312-0010-123B 183243024 Project: Client ID: YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Ac	ceptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		75		(25%–125%)		-

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID:

Vol. Recv.:

Certificate of Analysis

9312-0010-I-017-B

183243025

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy
Project: Soils PO# 002332

Client Sample ID: Sample ID: Matrix:

Matrix: TS
Collect Date: 22–MAR–07
Receive Date: 29–MAR–07

Collector: Client Moisture: 6.86%

Parameter Qualifier Result **TPU MDA** Units Uncertainty LC **DF** Analyst Date Time Batch N Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 +/-0.185 0.0998 MJH1 04/03/07 0949 621149 1.01 +/-0.185 0.0499 pCi/g Americium-241 0.0389 +/-0.0942 0.0798 +/-0.0942 0.159 pCi/g Bismuth-212 0.383 +/-0.256 0.124 +/-0.256 0.247 pCi/g Bismuth-214 +/-0.0843 0.0292 +/-0.0843 0.0584 0.516 pCi/g Cesium-134 U 0.0295 +/-0.0254 0.0202 +/-0.0254 0.0403 pCi/g Cesium-137 0.017 +/-0.0522 0.354 +/-0.05220.0339 pCi/g Cobalt-60 U 0.00544 +/-0.021 0.0181 +/-0.021 0.0362 pCi/g 0.0411 +/-0.0532 Europium-152 U -0.0111+/-0.0532 0.0821 pCi/g Europium-154 0.0511 +/-0.0639 U -0.0381+/-0.0639 0.102 pCi/g Europium-155 0.0132 +/-0.0624 0.0508 +/-0.0624 0.102 pCi/g Lead-212 0.700 +/-0.0737 0.0266 +/-0.0737 0.0531 pCi/g Lead-214 0.599 +/-0.0875 0.0309 +/-0.0875 0.0618 pCi/g 0.0169 +/-0.0194 Manganese-54 U -0.00129 +/-0.0194 0.0338 pCi/g Niobium-94 U 0.000743 +/-0.0169 0.0145 +/-0.0169 0.0289 pCi/g Potassium-40 12.5 +/-1.120.149 +/-1.120.299 pCi/g +/-0.0843 0.0292 +/-0.0843 Radium-226 0.516 0.0584 pCi/g Silver-108m U-0.000208 0.015 +/-0.017 +/-0.017 0.030 pCi/g 0.196 Thallium-208 +/-0.0415 0.0158 +/-0.0415 0.0316 pCi/g **Rad Gas Flow Proportional Counting** GFPC, Sr90, solid-ALL FSS 0.0168 +/-0.0227 Strontium-90 U 0.0151 +/-0.0227 NXL3 04/03/07 1421 621126 0.0397 pCi/g

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed

Method	Description		
1	EML HASL 300, 4.5.2.3		
2	EPA 905.0 Modified		
3	EPA 905.0 Modified		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-I-017-B

183243025

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	ry Test				Recovery%	A	cceptable Limits		
Strontium Carrier	GFPC	C, Sr90, so	olid-ALL FSS		70		(25%–125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- Α The TIC is a suspected aldol-condensation product
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- Results are reported from a diluted aliquot of the sample D
- Η Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project: Soils PO# 002332

Client Sample ID: Sample ID: Matrix:

Collect Date: Receive Date: Collector: Moisture:

9312-0010-I-018-B 183243026

22-MAR-07 29-MAR-07 Client

3.63%

Project: Client ID: Vol. Recv.:

YANK01204 YANK001

Report Date: April 5, 2007

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysi	s							
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived		-						
Actinium-228		0.928	+/-0.203	0.0687	+/-0.203	0.137	pCi/g	MJH1 04/03/07 0950 621149
Americium-241	U	0.0652	+/-0.0622	0.0986	+/-0.0622	0.197	pCi/g	
Bismuth-212		0.683	+/-0.260	0.161	+/-0.260	0.321	pCi/g	
Bismuth-214		0.760	+/-0.134	0.0426	+/-0.134	0.0852	pCi/g	
Cesium-134	UI	0.00	+/-0.0445	0.0266	+/-0.0445	0.0531	pCi/g	
Cesium-137		2.45	+/-0.206	0.0209	+/-0.206	0.0417	pCi/g	
Cobalt-60		0.109	+/-0.0424	0.0192	+/-0.0424	0.0383	pCi/g	
Europium-152	U	0.0857	+/-0.0846	0.0657	+/-0.0846	0.131	pCi/g	
Europium-154	U	-0.00911	+/-0.0731	0.0606	+/-0.0731	0.121	pCi/g	
Europium-155	U	-0.0132	+/-0.077	0.0691	+/-0.077	0.138	pCi/g	
Lead-212		0.957	+/-0.101	0.0366	+/-0.101	0.0732	pCi/g	
Lead-214		0.937	+/-0.133	0.0446	+/-0.133	0.0892	pCi/g	
Manganese-54	U	0.0105	+/-0.0274	0.0213	+/-0.0274	0.0427	pCi/g	
Niobium-94	U	0.032	+/-0.0263	0.0189	+/-0.0263	0.0378	pCi/g	
Potassium-40		16.0	+/-1.47	0.165	+/-1.47	0.330	pCi/g	
Radium-226		0.760	+/-0.134	0.0426	+/-0.134	0.0852	pCi/g	
Silver-108m	U	0.0105	+/-0.0269	0.0239	+/-0.0269	0.0477	pCi/g	
Thallium-208		0.281	+/-0.062	0.021	+/-0.062	0.042	pCi/g	
Rad Gas Flow Proportions	al Counting	3						
GFPC, Sr90, solid-ALL I	FSS							
Strontium-90	U	0.0237	+/-0.0208	0.0145	+/-0.0208	0.0334	pCi/g	NXL3 04/02/07 1907 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed

Method	Description
1	EML HASL 300, 4.5.2.3
2	EPA 905.0 Modified

Test Acceptable Limits Surrogate/Tracer recovery Recovery%

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-I-018-B

183243026

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Ac	ceptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	lid-ALL FSS		77		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- Α The TIC is a suspected aldol-condensation product
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Η Analytical holding time was exceeded
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded h

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID:

Vol. Recv.:

Certificate of Analysis

Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID: Matrix:

Collect Date: Receive Date: Collector:

Moisture:

9312-0010-I-019-B

183243027 TS

22-MAR-07 29-MAR-07

Client 8.88%

Parameter Qualifier Result Uncertainty LC **TPU MDA** Units **DF** Analyst Date Time Batch N Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 0.821 +/-0.169 0.0637 +/-0.169 0.127 pCi/g MJH1 04/03/07 0951 621149 0.065 +/-0.0781 Americium-241 U 0.0306 +/-0.0781 0.130 pCi/g Bismuth-212 +/-0.265 0.437 +/-0.265 0.122 0.243 pCi/g +/-0.100 +/-0.100 Bismuth-214 0.582 0.0377 0.0753 pCi/g 0.0226 +/-0.0276 Cesium-134 U 0.0427 +/-0.0276 0.0452 pCi/g pCi/g Cesium-137 3.84 +/-0.3400.0189 +/-0.340 0.0378 Cobalt-60 0.158 +/-0.0381 0.0169 +/-0.0381 0.0337 pCi/g Europium-152 -0.0449+/-0.0766 0.0613 +/-0.0766 0.122 pCi/g Europium-154 U 0.0341 +/-0.0746 0.0579 +/-0.0746 0.116 pCi/g Europium-155 U 0.0192 +/-0.0611 0.0569 +/-0.0611 0.114 pCi/g Lead-212 0.0316 +/-0.0754 0.634 +/-0.0754 0.0631 pCi/g 0.688 Lead-214 +/-0.103 0.0466 +/-0.103 0.0932 pCi/g Manganese-54 0.0167 +/-0.0264 U 0.0331 +/-0.0264 0.0335 pCi/g Niobium-94 0.016 +/-0.018 0.0163 +/-0.018 0.0326 pCi/g Potassium-40 13.0 +/-1.100.138 +/-1.10 0.275 pCi/g Radium-226 +/-0.100 0.582 +/-0.100 0.0377 0.0753 pCi/g Silver-108m U 0.0282 +/-0.026 0.0478 +/-0.026 0.0239 pCi/g Thallium-208 0.0193 +/-0.0521 0.196 +/-0.0521 0.0386 pCi/g **Rad Gas Flow Proportional Counting** GFPC, Sr90, solid-ALL FSS Strontium-90 U 0.00514 +/-0.0203 0.0164 +/-0.0203 0.0374 pCi/g NXL3 04/02/07 1907 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed

Description 1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Method

Surrogate/Tracer recovery Test **Acceptable Limits** Recovery %

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-I-019-B

183243027

Project: Client ID: Vol. Recv.:

YANK01204

Report Date: April 5, 2007

YANK001

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	A	cceptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	lid-ALL FSS		72		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- The TIC is a suspected aldol-condensation product Α
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- Results are reported from a diluted aliquot of the sample D
- Analytical holding time was exceeded Η
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded h

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company:

Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

Contact:

East Hampton, Connecticut 06424

Mr. Jack McCarthy

Project:

Soils PO# 002332

Matrix: Collect Date:

Receive Date: Collector:

Moisture:

Client Sample ID: Sample ID:

183243028 TS

22-MAR-07 29-MAR-07

Client

9312-0010-I-020-B

Project: Client ID: YANK01204 YANK001 Vol. Recv.:

Report Date: April 5, 2007

6.34%

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch
Rad Gamma Spec Analysis		-		•••				
Gamma, Solid-FSS GAM &	& ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		0.828	+/-0.216	0.079	+/-0.216	0.158	pCi/g	MJH1 04/03/07 0952 621149
Americium-241	U	0.0314	+/-0.119	0.0935	+/-0.119	0.187	pCi/g	
Bismuth-212		0.560	+/-0.313	0.150	+/-0.313	0.299	pCi/g	
Bismuth-214		0.609	+/-0.121	0.0421	+/-0.121	0.0842	pCi/g	
Cesium-134	U	0.0342	+/-0.0453	0.0257	+/-0.0453	0.0513	pCi/g	
Cesium-137		3.02	+/-0.288	0.0216	+/-0.288	0.0431	pCi/g	
Cobalt-60		0.136	+/-0.0524	0.0213	+/-0.0524	0.0425	pCi/g	
Europium-152	U-	0.000804	+/-0.0884	0.0613	+/-0.0884	0.123	pCi/g	
Europium-154	U-	0.000203	+/-0.083	0.0634	+/-0.083	0.127	pCi/g	
Europium-155	U	0.0529	+/-0.0743	0.0693	+/-0.0743	0.139	pCi/g	
Lead-212		0.809	+/-0.0942	0.0353	+/-0.0942	0.0706	pCi/g	
Lead-214		0.674	+/-0.122	0.0449	+/-0.122	0.0898	pCi/g	
Manganese-54	U ·	-0.00454	+/-0.0256	0.0182	+/-0.0256	0.0364	pCi/g	
Niobium-94	U ·	-0.00751	+/-0.0263	0.019	+/-0.0263	0.0379	pCi/g	
Potassium-40		14.0	+/-1.30	0.172	+/-1.30	0.343	pCi/g	
Radium-226		0.609	+/-0.121	0.0421	+/-0.121	0.0842	pCi/g	
Silver-108m	U ·	-0.00137	+/-0.0272	0.0227	+/-0.0272	0.0455	pCi/g	
Thallium-208		0.198	+/-0.0529	0.0214	+/-0.0529	0.0428	pCi/g	
Rad Gas Flow Proportiona	l Counting	,						
GFPC, Sr90, solid-ALL F	SS							
Strontium-90	U	0.0182	+/-0.0226	0.0168	+/-0.0226	0.0383	pCi/g	NXL3 04/02/07 1907 621126

The following Prep Methods were performed

Method	Description	Analyst Date		Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed Description

1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Method

Surrogate/Tracer recovery **Test Acceptable Limits** Recovery %

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID: 183243028

9312-0010-I-020-B

Project: Client ID: YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	ry Test				Recovery %	Ac	ceptable Limits		
Strontium Carrier	GFP	C, Sr90, sc	olid-ALL FSS		75		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

Project: YANK0120 Client ID: YANK001 Vol. Recv.:

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

Contact:

East Hampton, Connecticut 06424

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID: Sample ID: Matrix:

Collect Date: Receive Date:

Collector: Moisture:

9312-0010-I-021-B

183243029 TS

22-MAR-07 29-MAR-07 Client

	Moisture:			5.65%				
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysi	s					 		
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		0.853	+/-0.275	0.127	+/-0.275	0.254	pCi/g	MJH1 04/03/07 0953 621149
Americium-241	\mathbf{U}	0.0717	+/-0.0856	0.0535	+/-0.0856	0.107	pCi/g	
Bismuth-212		0.537	+/-0.506	0.260	+/-0.506	0.519	pCi/g	
Bismuth-214		0.755	+/-0.178	0.0694	+/-0.178	0.139	pCi/g	
Cesium-134	UI	0.00	+/-0.0701	0.0458	+/-0.0701	0.0915	pCi/g	
Cesium-137		1.46	+/-0.173	0.0346	+/-0.173	0.0692	pCi/g	
Cobalt-60		0.134	+/-0.0723	0.040	+/-0.0723	0.0799	pCi/g	
Europium-152	U	0.0181	+/-0.153	0.0936	+/-0.153	0.187	pCi/g	
Europium-154	U	0.00983	+/-0.116	0.0979	+/-0.116	0.196	pCi/g	
Europium-155	U	0.053	+/-0.102	0.088	+/-0.102	0.176	pCi/g	
Lead-212		0.877	+/-0.121	0.0487	+/-0.121	0.0974	pCi/g	
Lead-214		0.825	+/-0.161	0.0664	+/-0.161	0.133	pCi/g	
Manganese-54	U	0.0234	+/-0.0491	0.0328	+/-0.0491	0.0656	pCi/g	
Niobium-94	Ù	-0.0147	+/-0.0404	0.033	+/-0.0404	0.0659	pCi/g	
Potassium-40		15.0	+/-1.57	0.274	+/-1.57	0.548	pCi/g	
Radium-226		0.755	+/-0.178	0.0694	+/-0.178	0.139	pCi/g	
Silver-108m	U	0.000363	+/-0.0373	0.0325	+/-0.0373	0.0649	pCi/g	
Thallium-208		0.214	+/-0.0878	0.0348	+/-0.0878	0.0696	pCi/g	
Rad Gas Flow Proportion	al Counting	;						
GFPC, Sr90, solid-ALL	FSS							
Strontium-90	U	0.00118	+/-0.023	0.0191	+/-0.023	0.0442	pCi/g	NXL3 04/03/07 1421 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed

Method	Description	
1	EML HASL 300, 4.5.2.3	
2	EPA 905.0 Modified	
3	EPA 905.0 Modified	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Project:

Mr. Jack McCarthy

Soils PO# 002332 Client Sample ID:

Sample ID:

9312-0010-I-021-B

183243029

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	A	cceptable Limits		
Strontium Carrier	GFP(C, Sr90, so	olid-ALL FSS	,,	72	·	(25%-125%)	7	

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- < Result is less than value reported
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- \mathbf{C} Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Н Analytical holding time was exceeded
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

9312-0010-I-022-B

183243030 TS 22-MAR-07 29-MAR-07

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID: Sample ID: Matrix:

Collect Date: Receive Date: Collector:

Client Moisture: 8.81% Report Date: April 5, 2007

Project: Client ID: Vol. Recv.: YANK01204 YANK001

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysis	 S							
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived		Ū						
Actinium-228		0.532	+/-0.133	0.0518	+/-0.133	0.104	pCi/g	MJH1 04/03/07 0954 621149
Americium-241	U	0.0558	+/-0.0699	0.0584	+/-0.0699	0.117	pCi/g	
Bismuth-212		0.387	+/-0.209	0.105	+/-0.209	0.210	pCi/g	
Bismuth-214		0.423	+/-0.0796	0.0284	+/-0.0796	0.0568	pCi/g	
Cesium-134	U	0.0206	+/-0.0189	0.018	+/-0.0189	0.036	pCi/g	
Cesium-137		1.78	+/-0.156	0.0155	+/-0.156	0.031	pCi/g	
Cobalt-60		0.0753	+/-0.0397	0.015	+/-0.0397	0.030	pCi/g	
Europium-152	U -	-0.00864	+/-0.0644	0.0495	+/-0.0644	0.099	pCi/g	
Europium-154	U	0.00388	+/-0.0554	0.0474	+/-0.0554	0.0948	pCi/g	
Europium-155	U	0.00277	+/-0.054	0.0489	+/-0.054	0.0977	pCi/g	
Lead-212		0.371	+/-0.0671	0.0295	+/-0.0671	0.059	pCi/g	
Lead-214		0.551	+/-0.0865	0.0348	+/-0.0865	0.0695	pCi/g	
Manganese-54	U	-0.0102	+/-0.0177	0.0148	+/-0.0177	0.0297	pCi/g	
Niobium-94	\mathbf{U}	0.000419	+/-0.0173	0.0127	+/-0.0173	0.0253	pCi/g	
Potassium-40		9.68	+/-0.914	0.145	+/-0.914	0.290	pCi/g	
Radium-226		0.423	+/-0.0796	0.0284	+/-0.0796	0.0568	pCi/g	
Silver-108m	U ·	-0.00973	+/-0.0195	0.0167	+/-0.0195	0.0335	pCi/g	
Thallium-208		0.124	+/-0.0397	0.0163	+/-0.0397	0.0325	pCi/g	
Rad Gas Flow Proportiona	d Counting	5						
GFPC, Sr90, solid-ALL F	TSS -							
Strontium-90		0.0319	+/-0.0202	0.0128	+/-0.0203	0.0299	pCi/g	NXL3 04/02/07 1907 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed Description

Method	Description
1	EML HASL 300, 4.5.2.3
2	EPA 905.0 Modified

Surrogate/Tracer recovery Test $\textbf{Recovery}\,\%$ **Acceptable Limits**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project:

Soils PO# 002332

Client Sample ID:

9312-0010-I-022-B Sample ID:

183243030

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Acc	eptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		78		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- Α The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Analytical holding time was exceeded Η
- Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected R
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded h

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID:

Vol. Recv.:

Certificate of Analysis

Connecticut Yankee Atomic Power Company:

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Soils PO# 002332 Project:

Client Sample ID:

Sample ID: Matrix:

Moisture:

Collect Date: Receive Date:

Collector:

9312-0010-I-023-B

183243031 TS

22-MAR-07 29-MAR-07

Client 2.28%

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysis	. <u>. </u>							
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		0.836	+/-0.231	0.0702	+/-0.231	0.140	pCi/g	MJH1 04/03/07 0955 621149
Americium-241	U	-0.0172	+/-0.040	0.0319	+/-0.040	0.0638	pCi/g	
Bismuth-212	U	0.228	+/-0.336	0.176	+/-0.336	0.352	pCi/g	
Bismuth-214		0.473	+/-0.101	0.042	+/-0.101	0.0839	pCi/g	
Cesium-134	U	0.0536	+/-0.037	0.0269	+/-0.037	0.0537	pCi/g	
Cesium-137		0.397	+/-0.0664	0.024	+/-0.0664	0.048	pCi/g	
Cobalt-60	U	0.0132	+/-0.0303	0.0268	+/-0.0303	0.0536	pCi/g	
Europium-152	U	-0.0329	+/-0.0668	0.054	+/-0.0668	0.108	pCi/g	
Europium-154	U	0.0192	+/-0.0852	0.0736	+/-0.0852	0.147	pCi/g	
Europium-155	U	0.0558	+/-0.0592	0.0554	+/-0.0592	0.111	pCi/g	
Lead-212		0.640	+/-0.0907	0.0322	+/-0.0907	0.0643	pCi/g	
Lead-214		0.596	+/-0.116	0.0395	+/-0.116	0.079	pCi/g	
Manganese-54	U	0.0225	+/-0.0268	0.025	+/-0.0268	0.0501	pCi/g	
Niobium-94	U	0.000493	+/-0.0273	0.0231	+/-0.0273	0.0461	pCi/g	
Potassium-40		11.3	+/-1.35	0.221	+/-1.35	0.441	pCi/g	
Radium-226		0.473	+/-0.101	0.042	+/-0.101	0.0839	pCi/g	
Silver-108m	U	-0.0128	+/-0.0236	0.0199	+/-0.0236	0.0397	pCi/g	
Thallium-208		0.173	+/-0.0613	0.0214	+/-0.0613	0.0428	pCi/g	
Rad Gas Flow Proportiona	l Counting	3						
GFPC, Sr90, solid-ALL F	SS							
Strontium-90	U	0.010	+/-0.0181	0.0138	+/-0.0181	0.0321	pCi/g	NXL3 04/02/07 1907 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed

Method	Description	
1	EML HASL 300, 4.5.2.3	
2	EPA 905.0 Modified	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Soils PO# 002332 Project:

> Client Sample ID: Sample ID:

9312-0010-I-023-B 183243031

Project: Client ID:

YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	ry Test				Recovery%	Ac	cceptable Limits		•
Strontium Carrier	GFP	C, Sr90, sc	olid-ALL FSS		75		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- The TIC is a suspected aldol-condensation product Α
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Analytical holding time was exceeded H
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project: Client ID:

Vol. Recv.:

Certificate of Analysis

9312-0010-I-024-B

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Mr. Jack McCarthy Contact:

Project: Soils PO# 002332

> Client Sample ID: Sample ID:

Matrix:

183243032 TS Collect Date: 22-MAR-07 29-MAR-07 Receive Date:

Collector: Client Moisture: 8.07%

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analysis	3		· · · · · · · · · · · · · · · · · · ·				·	
Gamma, Solid-FSS GAM	& ALL FSS	226 Ingro	wth					
Waived		Ū						
Actinium-228		0.498	+/-0.157	0.0576	+/-0.157	0.115	pCi/g	MJH1 04/03/07 0956 621149
Americium-241	U	0.0409	+/-0.0693	0.0579	+/-0.0693	0.116	pCi/g	
Bismuth-212		0.393	+/-0.231	0.130	+/-0.231	0.260	pCi/g	
Bismuth-214		0.473	+/-0.0906	0.030	+/-0.0906	0.0599	pCi/g	
Cesium-134	U	0.0232	+/-0.0214	0.0201	+/-0.0214	0.0402	pCi/g	
Cesium-137		0.0567	+/-0.0306	0.0169	+/-0.0306	0.0337	pCi/g	
Cobalt-60	U	0.00249	+/-0.0198	0.0168	+/-0.0198	0.0336	pCi/g	
Europium-152	U	-0.0972	+/-0.0599	0.0399	+/-0.0599	0.0797	pCi/g	
Europium-154	U	-0.0145	+/-0.0721	0.0593	+/-0.0721	0.119	pCi/g	
Europium-155	U	0.0481	+/-0.0539	0.050	+/-0.0539	0.0999	pCi/g	
Lead-212		0.592	+/-0.0673	0.0257	+/-0.0673	0.0513	pCi/g	
Lead-214		0.528	+/-0.0887	0.0318	+/-0.0887	0.0635	pCi/g	
Manganese-54	U	-0.00393	+/-0.0198	0.0169	+/-0.0198	0.0339	pCi/g	
Niobium-94	U	0.00555	+/-0.0184	0.0159	+/-0.0184	0.0318	pCi/g	
Potassium-40		10.8	+/-1.03	0.126	+/-1.03	0.253	pCi/g	
Radium-226		0.473	+/-0.0906	0.030	+/-0.0906	0.0599	pCi/g	
Silver-108m	U	0.00365	+/-0.0184	0.0142	+/-0.0184	0.0284	pCi/g	
Thallium-208		0.221	+/-0.0445	0.017	+/-0.0445	0.034	pCi/g	
Rad Gas Flow Proportiona	l Counting	3						
GFPC, Sr90, solid-ALL F	'SS							
Strontium-90	U	0.00338	+/-0.0198	0.0161	+/-0.0198	0.0372	pCi/g	NXL3 04/02/07 1907 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed Description

1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Method

Surrogate/Tracer recovery Recovery % **Acceptable Limits**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-I-024-B

183243032

Project:

YANK01204

Report Date: April 5, 2007

Client ID: YANK001 Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	ry Test				Recovery%	Acc	eptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		64		(25%–125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- The TIC is a suspected aldol-condensation product Α
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Η Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Λ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204

YANK001

Project:

Client ID:

Vol. Recv.:

Certificate of Analysis

Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy Project: Soils PO# 002332

Client Sample ID:

Sample ID: Matrix: Collect Date: Receive Date:

Collector: Moisture: 9312-0010-I-025-B

183243033 TS

22-MAR-07 29-MAR-07 Client

.528%

Qualifier **Parameter** Result Uncertainty LC **TPU MDA** Units **DF** Analyst Date Time Batch N Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 0.746 +/-0.183 0.0879+/-0.183 0.176 pCi/g MJH1 04/03/07 0957 621149 Americium-241 0.0369 +/-0.0438 0.00275 +/-0.0438 0.0738 H pCi/g Bismuth-212 0.477 +/-0.3310.201 +/-0.331 0.402 pCi/g +/-0.123 Bismuth-214 0.486 +/-0.1230.0435 0.087 pCi/g Cesium-134 UI 0.00 +/-0.0638 0.0241 +/-0.0638 0.0481 pCi/g 0.0273 +/-0.0463 Cesium-137 U 0.041 +/-0.0463 0.0546 pCi/g +/-0.0349 0.0317 +/-0.0349 Cobalt-60 U 0.0225 0.0633 pCi/g 0.0646 +/-0.0773 U 0.00721 +/-0.0773 Europium-152 0.129 pCi/g +/-0.102 +/-0.102 Europium-154 U 0.035 0.0884 0.177 pCi/g 0.0557 +/-0.0611 U -0.00105 +/-0.0611 pCi/g Europium-155 0,111 Lead-212 0.525 +/-0.0815 0.0337 + -0.08150.0674 pCi/g pCi/g Lead-214 0.499 +/-0.101 0.041 +/-0.101 0.0819 Manganese-54 U -0.0133+/-0.03140.0254 + -0.03140.0507 pCi/g 0.0256 + -0.0272Niobium-94 0.0234 +/-0.02720.0511 pCi/g pCi/g Potassium-40 10.2 +/-1.25 0.264 +/-1.25 0.527 Radium-226 0.486 +/~0.123 0.0435 +/-0.123 0.087 pCi/g Silver-108m 0.00475 +/-0.023 0.0205 +/-0.023 0.0409 pCi/g Thallium-208 0.182 +/-0.0617 0.0223 + -0.06170.0446 pCi/g **Rad Gas Flow Proportional Counting** GFPC, Sr90, solid-ALL FSS Strontium-90 0.0183 +/-0.0181 0.0128 +/-0.0181 0.0296 pCi/g NXL3 04/02/07 2051 621126

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/29/07	1125	621101

The following Analytical Methods were performed

Description 1 EML HASL 300, 4.5.2.3 EPA 905.0 Modified 2

Method

Surrogate/Tracer recovery Test Recovery% **Acceptable Limits**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact:

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-I-025-B

183243033

Project: Client ID: YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Ac	ceptable Limits		
Strontium Carrier	GFPC	C, Sr90, so	olid-ALL FSS		75		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- Α The TIC is a suspected aldol-condensation product
- For General Chemistry and Organic analysis the target analyte was detected in the associated blank. В
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Analytical holding time was exceeded Η
- Value is estimated J
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy—Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

Report Date: April 5, 2007

Page 1 of 13

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

lient:

Connecticut Yankee Atomic Power

362 Injun Hollow Rd

East Hampton, Connecticut

Contact: Mr. Jack McCarthy

Vorkorder: 183243

armname			NOM	Sample (Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
ad Alpha Spec											
atch 62	1107										
QC1201305241	183245006	DUP									
mericium-241			U	-0.0394	U	-0.0452	pCi/g	g 14		(0% - 100%) GXR1	04/03/07 09:33
			Uncert:	+/-0.0816		+/-0.0683					
			TPU:	+/-0.0818		+/-0.0684					
'urium-242			U	0.00	U	0.00	pCi/g	g 0		(0% - 100%)	
			Uncert:	+/-0.083		+/-0.0676					
			TPU:	+/-0.083		+/-0.0676					
'urium-243/244			U	0.00	U	-0.0555	pCi/g	g 200		(0% - 100%)	
			Uncert:	+/-0.0794		+/-0.0411					
			TPU:	+/-0.0794		+/-0.0418					
QC1201305243	LCS										
mericium-241			12.4			11.2	pCi/g	3	90	(75%-125%)	
			Uncert:			+/-1.06					
			TPU:			+/-1.79					
Surium-242					U	0.00	pCi/g	g			
			Uncert:			+/-0.0518					
			TPU:			+/-0.0518					
Surium-243/244			14.8			14.2	pCi/s	3	96	(75%-125%)	
			Uncert:			+/-1.19					
			TPU:			+/-2.18					
QC1201305240	MB					0.0407	0.7				
mericium-241					U	-0.0487	pCi/g	g			
			Uncert:			+/-0.0641					
1 : 040			TPU:		* *	+/-0.0641	0.1				
Surium-242					U	0.00	pCi/s	g			
			Uncert:			+/-0.0603					
			TPU:			+/-0.0603	~ :4				
!urium-243/244					U	0.0459	pCi/g	g			
			Uncert:			+/-0.0861					
			TPU:			+/-0.0863					
QC1201305242	183245006	MS	12.5	0.0204		12.0	-C:1	_	90	(750) 1050)	
mericium-241			13.5 U	-0.0394		12.0	pCi/	g	89	(75%-125%)	
			Uncert:	+/-0.0816		+/-1.16					
5-min 242			TPU:	+/-0.0818	T T	+/-1.94	-C:/				
'urium-242			U	0.00	U	0.0303 +/-0.0594	pCi/	g			
			Uncert:	+/-0.083							
Seminaria 0.42/0.44			TPU:	+/-0.083		+/-0.0595	-0:/	_	02	(750/ 1050/)	
urium-243/244			16.1 U	0.00		14.9	pCi/	g	93	(75%-125%)	
			Uncert:	+/-0.0794		+/-1.29					
atch 62	2105		TPU:	+/-0.0794		+/-2.33					
лец 02	4103										
QC1201307489	183245006	DUP						_			
lutonium-241			U	-3.12	U	-8.22	pCi/	g 0		(0% - 100%) BXL1	04/05/07 15:31

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorbandoni 192242		<u>V</u> C	<u> </u>	illillar y					
Vorkorder: 183243						777 ~		Page 2 of 13	
armname	NOM	Sample_C	<u> </u>	QC	Units	RPD%	REC%	Range Anlst	Date Time
ad Alpha Spec atch 622105									
	Uncert:	+/-10.1		+/-9.75					
	TPU:	+/-10.1		+/-9.75					
QC1201307491 LCS	120			112	0.1		00	(750 1050)	04/05/07 17 04
lutonium-241	138			113	pCi/g	3	82	(75%-125%)	04/05/07 16:04
	Uncert:			+/-14.9 +/-19.1					
QC1201307488 MB	TPU:			+/-19.1					
lutonium-241			U	-1.9	pCi/g	3			04/05/07 15:15
	Uncert:			+/-11.3					
	TPU:			+/-11.3					
QC1201307490 183245006 MS									
lutonium-241	140 U	-3.12		120	pCi/g	3	86	(75%-125%)	04/05/07 15:48
	Uncert:	+/-10.1		+/-13.1					
atch 622351	TPU:	+/-10.1		+/-17.4					
QC1201308035 183245006 DUP		0.0420	T T	0.0147	-C:/	- 400		(00/ 1000/) CVD1	04/04/07 22.59
lutonium-238	U Uncert:	0.0429 +/-0.0969	U	-0.0147 +/-0.0204	pCi/s	g 409		(0% - 100%) GXR1	04/04/07 22.36
	TPU:	+/-0.0909		+/-0.0204					
lutonium-239/240	U U	0.059	U	0.0306	pCi/g	g 63		(0% - 100%)	
257,270	Uncert:	+/-0.0943	Ü	+/-0.060	Pont	,		(0,0 100,0)	
	TPU:	+/-0.0946		+/-0.0601					
QC1201308037 LCS									
lutonium-238			U	0.0151	pCi/	g		(75%-125%)	
	Uncert:			+/-0.0602					
luto-ium 220/240	TPU:			+/-0.0603 12.9	nC:/	~	102	(750) 1250()	
lutonium-239/240	12.7 Uncert:			+/-1.20	pCi/ ₂	3	102	(75%-125%)	
	TPU:			+/-1.20					
QC1201308034 MB	IFO.			47-1.21					
lutonium-238			U	-0.00689	pCi/s	g			
	Uncert:			+/-0.0135	•	_			
	TPU:			+/-0.0135					
lutonium-239/240			U	-0.0138	pCi/	3			
	Uncert:			+/-0.0191					
0.0100100000000000000000000000000000000	TPU:			+/-0.0192					
QC1201308036 183245006 MS lutonium-238	* 1	0.0429	U	0.0767	pCi/	or .		(75%-125%)	
intomum-256	U Uncert:	+/-0.0969	U	+/-0.105	релу	5		(1370-12370)	
	TPU:	+/-0.0971		+/-0.106					
lutonium-239/240	13.7 U	0.059		14.9	pCi/	ğ	109	(75%-125%)	
	Uncert:	+/-0.0943		+/-1.32	•			,	
	TPU:	+/-0.0946		+/-2.15					
ad Gamma Spec									
atch 621149									
QC1201305348 183245021 DUP									
ctinium-228		1.53		1.59	pCi/	g 4		(0% - 100%) MJH1	04/03/07 12:58
	Uncert:	+/-0.273		+/-0.286					
				+/-0.286					

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder: 183243 Page 3 of 13 armname NOM Sample Qual OC Units RPD% REC% Range Anlst Date Time ad Gamma Spec 621149 atch TPU: +/-0.273 mericium-241 -0.0412U 0.0296 pCi/g 1220 (0% - 100%)U +/-0.127 +/-0.0983 Uncert: +/-0.127 +/-0.0983 TPU: ismuth-212 13 (0% - 100%)1.24 1.09 pCi/g +/-0.343 +/-0.394 Uncert: +/-0.343 +/-0.394 TPU: ismuth-214 4 (0% - 20%)1.72 1.65 pCi/g Uncert: +/-0.201 +/-0.195 +/-0.201 +/-0.195 TPU: 'esium-134 0.00 UI 0.00 pCi/g 9 (0% - 100%)Uncert: +/-0.0391 +/-0.0442 +/-0.0391 +/-0.0442 TPU: !esium-137 0.00215 U -0.00812 pCi/g 344 (0% - 100%)U Uncert: +/-0.0314 +/-0.0328 TPU: +/-0.0314 +/-0.0328 'obalt-60 0.0276 0.00443 145 (0% - 100%)U pCi/g Uncert: +/-0.0282 +/-0.0349 +/-0.0349 TPU: +/-0.0282 uropium-152 -0.0264U 0.0111 pCi/g 492 (0% - 100%)U +/-0.0925 Uncert: +/-0.094 +/-0.094 +/-0.0925 TPU: pCi/g 22900 uropium-154 0.0221 U -0.0225(0% - 100%)U +/-0.100 +/-0.0951 Uncert: +/-0.100 +/-0.0951 TPU: uropium-155 0.119 U 0.123 pCi/g 31 (0% - 100%) U Uncert: +/-0.114 +/-0.120 +/-0.120 TPU: +/-0.114 ead-212 1.71 1.72 pCi/g 1 (0% - 20%) Uncert: +/-0.159 +/-0.155 TPU: +/-0.159 +/-0.155 ead-214 1.68 1.94 pCi/g 15 (0% - 20%)+/-0.205 Uncert: +/-0.189 +/-0.189 +/-0.205 TPU: 1anganese-54 0.0119 U -0.00151 258 (0% - 100%)pCi/g U +/-0.0268 Uncert: +/-0.0307 TPU: +/-0.0307 +/-0.0268 liobium-94 0.0126 0.0123 pCi/g 3 (0% - 100%)U Uncert: +/-0.026 +/-0.0256 +/-0.0256 +/-0.026 TPU: otassium-40 6 (0% - 20%)25.6 24.1 pCi/g Uncert: +/-2.07 +/-1.82 +/-2.07 +/-1.82 TPU: .adium-226 1.72 1.65 4 (0% - 100%)pCi/g Uncert: +/-0.201 +/-0.195 TPU: +/-0.201 +/-0.195 ilver-108m -0.00652 -0.00625 U (0% - 100%)pCi/g U

Uncert:

+/-0.0249

+/-0.0235

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder: 183243 Page 4 of 13

armname	NOM	Sample Q	ual	QC	Units	RPD%	REC%	Range Anlst	Date Time
ad Gamma Spec			<u> </u>						
atch 621149									
	TDYN Y	100010		10.0005					
hallium-208	TPU:	+/-0.0249		+/-0.0235 0.506	ъCi	g 11		(0% - 20%)	
namum-208	I Imponts	0.564 +/-0.0846		+/-0.0705	pCi/	g II		(0% - 20%)	
	Uncert:								
QC1201305349 LCS	TPU:	+/-0.0846		+/-0.0705					
ctinium-228				1.50	pCi/	g			04/03/07 13:00
	Uncert:			+/-0.705	P	6			0 11 001 01 10100
•	TPU:			+/-0.705					
mericium-241	16.0			14.2	pCi/	g	89	(75%-125%)	
	Uncert:			+/-1.49	r	0		(,	
	TPU:			+/-1.49					
ismuth-212			U	0.645	pCi/	'g			
	Uncert:			+/-0.763	•	Č			
	TPU:			+/-0.763					
ismuth-214				0.697	pCi/	g			
	Uncert:			+/-0.253	•	Ö			
	TPU:			+/-0.253					
lesium-134			U	0.0839	pCi/	'g			
	Uncert:			+/-0.105	•	Ü			
	TPU:			+/-0.105					
lesium-137	6.20			5.80	pCi/	' g	94	(75%-125%)	
	Uncert:			+/-0.571	Γ -	0		(
	TPU:			+/-0.571					
obalt-60	9.32			9.36	pCi/	' g	100	(75%-125%)	
	Uncert:			+/-0.701	•	U		,	
	TPU:			+/-0.701					
uropium-152			U	-0.176	pCi/	' g			
•	Uncert:			+/-0.243	•	Ü			
	TPU:			+/-0.243					
uropium-154			U	0.00147	pCi/	'g			
-	Uncert:			+/-0.242	•	_			
	TPU:			+/-0.242					
uropium-155			U	0.0771	pCi.	′g			
•	Uncert:			+/-0.250	•				
	TPU:			+/-0.250					
ead-212	•- •-			0.907	pCi	′g			
	Uncert:			+/-0.176	•	C			
	TPU:			+/-0.176					
ead-214				0.454	pCi	′g			
	Uncert:			+/-0.238	•	•			
	TPU:			+/-0.238					
1anganese-54			U	0.0229	pCi	′g			
	Uncert:			+/-0.0932	•	-			
	TPU:			+/-0.0932					
liobium-94			U	-0.0465	pCi	′g			
	Uncert:			+/-0.084	•	-			
	TPU:			+/-0.084					
otassium-40			U	0.383	pCi,	′g			
					•	-			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder: 183243		<u> </u>	Page 5 of 13								
Vorkorder: 183243						Page 5 of 13					
armname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	<u>Time</u>	
ad Gamma Spec											
atch 621149											
	Uncert:		+/-0.835								
	TPU:		+/-0.835								
.adium-226			0.697	pCi/g	Ţ.	ĺ	(75%-125%)				
	Uncert:		+/-0.253								
	TPU:		+/-0.253								
ilver-108m		U	-0.0512	pCi/g	Ţ,						
	Uncert:		+/-0.0813								
	TPU:		+/-0.0813								
'hallium-208			0.328	pCi/g	5						
	Uncert:		+/-0.152								
	TPU:		+/-0.152								
QC1201305347 MB				~							
ctinium-228		U	-0.00165	pCi/g	5				04/03/0	7 12:57	
	Uncert:		+/-0.0486								
	TPU:		+/-0.0486								
mericium-241	••	U	0.0179	pCi/g	5						
	Uncert:		+/-0.0243								
	TPU:		+/-0.0243								
ismuth-212	**	U	-0.0577	pCi/g	5						
	Uncert:		+/-0.110								
	TPU:	• •	+/-0.110	G: 1							
ismuth-214	**	U	0.0128	pCi/g	,						
	Uncert:		+/-0.0306								
Sections 124	TPU:	T T	+/-0.0306	C''							
'esium-134	I I a a sast.	U	0.00507	pCi/g	,						
	Uncert:		+/-0.0126								
'esium-137	TPU:	U	+/-0.0126 0.00189	ъCi/o	_						
esium-13/	Uncert:	U	+/-0.012	pCi/g	3						
	TPU:		+/-0.012								
'obalt-60	IPU:	U	0.00173	pCi/g	-						
Joban - Og	Uncert:	O	+/-0.0135	peng	5						
	TPU:		+/-0.0135								
uropium-152	IFO.	U	0.00881	pCi/g	r						
Miopiani 132	Uncert:	O	+/-0.0314	pen g	>						
	TPU:		+/-0.0314								
uropium-154	11 0.	U	-0.0162	pCi/g	ī						
alopialit 15 i	Uncert:	O	+/-0.040	POME	•						
	TPU:		+/-0.040								
uropium-155	110.	U	0.0195	pCi/g	r						
	Uncert:	· ·	+/-0.032	702	•						
	TPU:		+/-0.032								
ead-212	0.	U	-0.0286	pCi/g	Ţ						
	Uncert:	· ·	+/-0.0274	r	•						
	TPU:		+/-0.0274								
ead-214		U	-0.0156	pCi/g	g						
	Uncert:		+/-0.0217		-						
	TPU:		+/-0.0217								

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

		<u>QC 50</u>	ummini y							
Vorkorder: 183243							Page 6 of 13			
armname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time	
ad Gamma Spec										
atch 621149										
1anganese-54		U	0.00042	pCi/s	g					
3	Uncert:		+/-0.0108	1	9					
	TPU:		+/-0.0108							
liobium-94		U	-0.00626	pCi/s	g					
	Uncert:		+/-0.012							
	TPU:		+/-0.012							
otassium-40		U		pCi/	g					
	Uncert:		+/-0.186							
	TPU:		+/-0.186							
.adium-226		U		pCi/	g					
	Uncert:		+/-0.0306							
	TPU:		+/-0.0306							
ilver-108m		U		pCi/	g					
	Uncert:		+/-0.0111							
H 11' . 200	TPU:	**	+/-0.0111	G: I						
hallium-208	T.T	U		pCi/	g					
	Uncert:		+/-0.0177							
atch 621152	TPU:		+/-0.0177							
QC1201305355 183243001 DUP		1 12	1.20	· C:1	-		(00/ 1000/)	N # TT T 1	04/02/07 10 24	
ctinium-228	TT	1.13	1.20	pCi/	g 5		(0% - 100%)	MJHI	04/03/07 19:24	
	Uncert:	+/-0.237	+/-0.196							
mericium-241	TPU:	+/-0.237	+/-0.196 0.0326	pCi/	g 229		(0% - 100%)			
menejum-241	U	-0.0022 U +/-0.0988	+/-0.0574	pCI/	g 229		(0% - 100%)			
	Uncert:	+/-0.0988	+/-0.0574							
ismuth-212	TPU:	1.09	0.920	pCi/	g 17		(0% - 100%)			
//Sinut(-212	Uncert:	+/-0.345	+/-0.274	pcn,	g 17		(0% - 100%)			
	TPU:	+/-0.345	+/-0.274							
sismuth-214	11 0.	1.09	1.16	pCi/	g 6		(0% - 20%)			
	Uncert:	+/-0.145	+/-0.129	Po.,	5		(476 2676)			
	TPU:	+/-0.145	+/-0.129							
'esium-134	U. U.	0.0454 UI		pCi/	g 53		(0% - 100%)			
	Uncert:	+/-0.0666	+/-0.0215	-	-					
	TPU:	+/-0.0666	+/-0.0215							
lesium-137		0.256	0.241	pCi/	g 6		(0% - 100%)			
	Uncert:	+/-0.0555	+/-0.0301							
	TPU:	+/-0.0555	+/-0.0301							
Sobalt-60	U	0.0348 U	0.0179	pCi/	g 64		(0% - 100%)			
	Uncert:	+/-0.0451	+/-0.0227							
	TPU:	+/-0.0451	+/-0.0227							
uropium-152	U	0.0544 U		pCi/	g 144		(0% - 100%)			
	Uncert:	+/-0.103	+/-0.0479							
	TPU:	+/-0.103	+/-0.0479	_			/nev 15==:			
uropium-154	U	0.0802 U		pCi/	g 446		(0% - 100%)			
	Uncert:	+/-0.0857	+/-0.0507							
venium 155	TPU:	+/-0.0857	+/-0.0507		~ 20		(00/ 1000)			
uropium-155	U	0.0543 U	0.037	pCi/	g 38		(0% - 100%)			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder: 183243 Page 7 of 13

NOM	OM Sample Qual		QC	Units	RPD%	REC%	Range An	st Date Time
Uncert:	+/-0.0742		+/-0.0415					
TPU:	+/-0.0742		+/-0.0415					
	1.25		1.24	pCi/	g 0		(0% - 20%)	
Uncert:	+/-0.121		+/-0.106					
TPU:	+/-0.121		+/-0.106					
	1.34		1.27	pCi/	g 6		(0% - 20%)	
Uncert:	+/-0.161		+/-0.123					
TPU:	+/-0.161							
U		U		pCi/	g 231		(0% - 100%)	
Uncert:			+/-0.015					
TPU:	+/-0.0311		+/-0.015					
U		U		pCi/	g 109		(0% - 100%)	
Uncert:								
TPU:								
				pCi/	g 2		(0% - 20%)	
TPU:								
				pCi/	g 6		(0% - 100%)	
				~				
		U		pCi/	g 22		(0% - 100%)	
TPU:				~			(00 1000)	
				pCı/	g 0		(0% - 100%)	
TPU:	+/-0.0601		+/-0.0447					
			1 10	~C:/	~			04/03/07 14:24
Uncort				pCi/	g			04/03/07 14:24
				nCi/	œ	01	(75% 125%)	
				pCi/	g	71	(1370-12370)	
IFU.		II		nCi/	o			
Uncert:				рси	5			
11 0.				nCi/	σ			
Uncert:				pen	6			
110.		II		nCi/	ø			
Uncert:		Ü		PO.	ь			
				nCi/	Q	95	(75%-125%)	
				pon	D	,,	(.5 /5 125 /6)	
				nCi/	Q	99	(75%-125%)	
				r On	0		(.2.2.2270)	
11 0.			0.,03					
	TPU: Uncert: TPU: Uncert: TPU: Uncert: TPU: Uncert: TPU:	Uncert: +/-0.0742 TPU: +/-0.0742 1.25 Uncert: +/-0.121 TPU: +/-0.121 1.34 Uncert: +/-0.161 TPU: +/-0.161 U -0.0131 Uncert: +/-0.0311 TPU: +/-0.0281 TPU: +/-0.0281 TPU: +/-0.0281 TPU: +/-0.0281 TPU: +/-1.49 TPU: +/-1.49 TPU: +/-0.145 TPU: +/-0.145 TPU: +/-0.024 TPU: +/-0.024 TPU: +/-0.024 TPU: +/-0.024 TPU: +/-0.0601 TPU: +/-0.0601 Uncert: TPU:	Uncert: +/-0.0742 TPU: +/-0.0742 1.25 Uncert: +/-0.121 TPU: +/-0.121 1.34 Uncert: +/-0.161 TPU: +/-0.161 U -0.0131 Uncert: +/-0.0311 TPU: +/-0.0311 TPU: +/-0.0281 TPU: +/-0.0281 TPU: +/-0.0281 TPU: +/-1.49 TPU: +/-1.49 TPU: +/-1.49 TPU: +/-0.145 TPU: +/-0.145 TPU: +/-0.024 TPU: +/-0.024 TPU: +/-0.0601 Uncert: +/-0.0601 Uncert: TPU: TPU: U Uncert: TPU: O.322 Uncert: TPU: 9.32 Uncert:	Uncert: +/-0.0742	Uncert: +/-0.0742 +/-0.0415 TPU: +/-0.0742 +/-0.0415 1.25 1.24 pCi/; Uncert: +/-0.121 +/-0.106 TPU: +/-0.121 +/-0.106 TPU: +/-0.121 +/-0.106 1.34 1.27 pCi/; Uncert: +/-0.161 +/-0.123 TPU: +/-0.161 +/-0.123 U -0.0131 U 0.000953 pCi/; Uncert: +/-0.0311 +/-0.015 TPU: +/-0.0311 +/-0.015 U 0.00411 U 0.014 pCi/; Uncert: +/-0.0281 +/-0.0145 TPU: +/-0.0281 +/-0.0145 TPU: +/-0.0281 +/-0.0145 TPU: +/-1.49 +/-1.24 TPU: +/-1.49 +/-1.24 TPU: +/-1.49 +/-1.24 TPU: +/-0.145 +/-0.129 TPU: +/-0.145 +/-0.129 TPU: +/-0.045 U -0.00602 pCi/; Uncert: +/-0.024 +/-0.0132 TPU: +/-0.024 +/-0.0132 TPU: +/-0.0601 +/-0.0447 TPU: +/-0.0831 TPU: +/-0.0831 TPU: +/-0.0831 TPU: +/-0.093 TPU: +/-0.293 TPU: +/-0.518 TPU: +/-0.518 TPU: +/-0.518 TPU: +/-0.518 TPU: +/-0.518 TPU: +/-0.518	Uncert: +/-0.0742	Uncert: +/-0.0742 +/-0.0415 TPU: +/-0.0742 +/-0.0415 1.25 1.24 pCi/g 0 Uncert: +/-0.121 +/-0.106 TPU: +/-0.121 +/-0.106 TPU: +/-0.121 +/-0.106 TPU: +/-0.121 +/-0.106 TPU: +/-0.161 +/-0.123 TPU: +/-0.161 +/-0.123 U -0.0131 U 0.000953 pCi/g 231 Uncert: +/-0.0311 +/-0.015 TPU: +/-0.0311 +/-0.015 TPU: +/-0.0311 +/-0.015 TPU: +/-0.0281 +/-0.0145 TPU: +/-0.0281 +/-0.0145 TPU: +/-0.0281 +/-0.0145 TPU: +/-1.49 +/-1.24 TPU: +/-1.49 +/-1.24 TPU: +/-1.49 +/-1.24 TPU: +/-0.045 +/-0.129 Uncert: +/-0.145 +/-0.129 U -0.00485 U -0.00602 pCi/g 6 Uncert: +/-0.024 +/-0.0132 TPU: +/-0.024 +/-0.0132 TPU: +/-0.024 +/-0.0132 TPU: +/-0.024 +/-0.0132 TPU: +/-0.0601 +/-0.0447 TPU: +/-0.0601 +/-0.0447 TPU: +/-0.6601 +/-0.0447 TPU: +/-0.589 16.0 14.5 pCi/g 91 Uncert: +/-0.589 16.0 14.5 pCi/g 91 Uncert: +/-0.589 TPU: +/-0.6831 TPU: +/-0.831 TPU: +/-0.831 TPU: +/-0.831 TPU: +/-0.831 TPU: +/-0.831 TPU: +/-0.831 TPU: +/-0.93 TPU: +/-0.114 TPU: +/-0.1	Uncert: +/-0.0742

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder:

183243

Page 8 of 13

armname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
ad Gamma Spec										
atch 621152										
uropium-152		U	0.128	pCi/	'n					
uropium-132	Uncert:	U	+/-0.312	pCI/	g					
	TPU:		+/-0.312							
uropium-154	IFU.	U	0.206	pCi/	σ					
oropium 15 i	Uncert:	C	+/-0.285	PO.	6					
	TPU:		+/-0.285							
uropium-155	110.	U	-0.14	pCi/	·g					
•	Uncert:		+/-0.293	•	Ü					
	TPU:		+/-0.293							
ead-212			0.835	pCi/	'g					
	Uncert:		+/-0.232	•	C					
	TPU:		+/-0.232							
ead-214			1.03	pCi/	'g					
	Uncert:		+/-0.352	_	-					
	TPU:		+/-0.352							
1anganese-54		U	0.0289	pCi/	'g					
	Uncert:		+/-0.103							
	TPU:		+/-0.103							
liobium-94		U	0.022	pCi/	g					
	Uncert:		+/-0.106							
	TPU:		+/-0.106							
otassium-40		U	0.272	pCi/	g					
	Uncert:		+/-0.992							
	TPU:		+/-0.992							
adium-226	**		0.784	pCi/	g	((75%-125%)		
	Uncert:		+/-0.293							
:l 100	TPU:	* 7	+/-0.293	- C'	<i>i</i> .					
ilver-108m	TT	U	-0.0421	pCi/	g					
	Uncert:		+/-0.086							
'hallium-208	TPU:		+/-0.086 0.387	nC:	/~					
namun-208	Uncert:		+/-0.196	pCi/	g					
	TPU:		+/-0.196							
QC1201305354 MB	IPO:		- 7-0.190							
ctinium-228		U	0.0135	pCi/	′ α				04/03/0	7 19:22
	Uncert:	_	+/-0.043	F	8				* ***	,,
	TPU:		+/-0.043							
mericium-241		U	0.0143	pCi/	′g					
	Uncert:		+/-0.0304	•	Ü					
	TPU:		+/-0.0304							
ismuth-212		U	0.0396	pCi/	/g					
	Uncert:		+/-0.0567	-						
	TPU:		+/-0.0567							
ismuth-214		U	0.0047	pCi/	′g					
	Uncert:		+/-0.0238	-						
	TPU:		+/-0.0238							
'esium-134		U	0.00123	pCi/	′g					
	Uncert:		+/-0.00762							

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

		<u>VC b</u>	ullilliai y					
Vorkorder: 183243						Page	9 of 13	
armname	NOM	Sample Qua	d QC	Units RP	D% REC	C% Rang	e Anlst	Date Time
ad Gamma Spec								
atch 621152								
	TPU:		+/-0.00762					
lesium-137		Ţ		pCi/g				
	Uncert:		+/-0.0074					
	TPU:		+/-0.0074					
lobalt-60		Ţ		pCi/g				
	Uncert:		+/-0.00725					
	TPU:	_	+/-0.00725					
uropium-152	**	Ţ		pCi/g				
	Uncert:		+/-0.0177					
uropium-154	TPU:	Ţ	+/-0.0177 J 0.00151	nCi/a				
aropium-134	Uncert:	•	+/-0.0211	pCi/g				
	TPU:		+/-0.0211					
uropium-155	IPU.	Ţ		pCi/g				
aropiani-133	Uncert:	•	+/-0.0178	peng				
	TPU:		+/-0.0178					
.ead-212	11 0.	Ţ		pCi/g				
	Uncert:		+/-0.0206	1 - 5				
	TPU:		+/-0.0206					
ead-214		Ţ	J 0.0229	pCi/g				
	Uncert:		+/-0.0222					
	TPU:		+/-0.0222					
1anganese-54		Ţ		pCi/g				
	Uncert:		+/-0.00691					
	TPU:		+/-0.00691	_				
liobium-94		Į	J 0.000744	pCi/g				
	Uncert:		+/-0.00807					
atanaine, 40	TPU:	T	+/-0.00807	~ 6:4				
otassium-40	77	τ		pCi/g				
	Uncert:		+/-0.137					
.adium-226	TPU:	τ	+/-0.137 J 0.0047	pCi/g				
.adium-220	Uncert:	,	+/-0.0238	pci/g				
	TPU:		+/-0.0238					
ilver-108m	11 0.	Į	J 0.000961	pCi/g				
	Uncert:	`	+/-0.0063	Pons				
	TPU:		+/-0.0063					
hallium-208		U		pCi/g				
	Uncert:		+/-0.0181					
	TPU:		+/-0.0181					
ad Gas Flow								
atch 621125								
QC1201305282 183245021 DUP								
trontium-90	U	-0.0124 U	J 0.013	pCi/g	0	(0% - 100	%) NXL3	04/03/07 17:11
	Uncert:	+/-0.0237	+/-0.0268	-				
	TPU:	+/-0.0237	+/-0.0268					
QC1201305284 LCS								
trontium-90	1.40		1.38	pCi/g		99 (75%-125	%)	04/03/07 17:53

Page 10 of 13

102 (75%-125%)

04/02/07 20:52

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time armname ad Gas Flow atch 621125 Uncert: +/-0.0937 TPU: +/-0.103 OC1201305281 MB trontium-90 U -0.00552 pCi/g 04/03/07 17:11 +/-0.0133 Uncert: +/-0.0133 TPU: QC1201305283 183245021 MS 1.17 83 (75%-125%) 04/03/07 17:11 trontium-90 1.41 U -0.0124pCi/g Uncert: +/-0.0237 +/-0.127

+/-0.132

1.45

+/-0.099

pCi/g

+/-0.0237

TPU:

1.43

Uncert:

TPU: +/-0.104

QC1201305285 MB

trontium-90 U -0.00764 pCi/g 04/02/07 20:51

Uncert: +/-0.0133

TPU: +/-0.0133

QC1201305287 183243014 MS

trontium-90 1.63 U 0.0275 1.62 pCi/g 99 (75%-125%) 04/02/07 20:52

Uncert: +/-0.020 +/-0.123

TPU; +/-0.020 +/-0.129

ad Liquid Scintillation
atch 621136

QC1201305301 183245006 DUP

on-55 -26.4U 2.65 pCi/g 0 (0% - 100%) MXP1 04/02/07 22:19 U Uncert: +/-34.3 +/-34.0 TPU: +/-34.3 +/-34.0 QC1201305303 LCS on-55 1180 1130 pCi/g 96 (75%-125%) 04/02/07 22:51 Uncert: +/-61.3

TPU: +/-98.0

QC1201305300 MB

ron-55 U -26.4 pCi/g 04/02/07 22:02

Uncert: +/-28.2

TPU: +/-28.2

QC1201305302 183245006 MS ron-55 1230 U -26.4 1180 pCi/g 96 (75%-125%) 04/02/07 22:35 Uncert: +/-34.3 +/-69.4

TPU: +/-34.3 +/-110

atch 621137

QC1201305305 183245006 DUP

lickel-63 U -11.2 U -8.44 pCi/g 0 (0% - 100%) MXP1 04/02/07 17:27

Vorkorder:

QC1201305288

trontium-90

LCS

183243

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder: 183243 Page 11 of 13

armname			NOM	Sample (Qual	QC	Units RP	D%	REC%	Range Anlst	Date Time
ad Liquid Scintilla	tion			•	-						
atch 621											
			Uncert:	+/-9.41		+/-10.1					
			TPU:	+/-9.41		+/-10.1					
QC1201305307	LCS		11 0.			.,					
lickel-63			556			477	pCi/g		86	(75%-125%)	04/02/07 17:59
			Uncert:			+/-25.4					
			TPU:			+/-30.6					
QC1201305304 lickel-63	MB				U	2.75	pCi/g				04/02/07 17:10
nekei-03			Uncert:		U	+/-11.6	pc//g				04/02/07 17.10
			TPU:			+/-11.6					
QC1201305306	183245006	MS	110.			17 11.0					
lickel-63			591 U	-11.2		505	pCi/g		85	(75%-125%)	04/02/07 17:43
			Uncert:	+/-9.41		+/-27.3					
			TPU:	+/-9.41		+/-33.0					
atch 621	139										
QC1201305311	183245006	DUP									
echnetium-99			U	-0.155	U	-0.139	pCi/g	0		(0% - 100%) MXP1	04/03/07 15:56
			Uncert:	+/-0.229		+/-0.236					
0.01201205212	1.00		TPU:	+/-0.229		+/-0.236					
QC1201305313 'echnetium-99	LCS		19.6			16.4	pCi/g		84	(75%-125%)	04/03/07 17:00
comedani-			Uncert:			+/-0.466	peng		04	(1370-12370)	04/05/07 17:00
			TPU:			+/-0.623					
QC1201305310	MB										
'echnetium-99					U	-0.281	pCi/g				04/03/07 15:25
			Uncert:			+/-0.210					
0.01001205010	102015007		TPU:			+/-0.210					
QC1201305312 'echnetium-99	183245006	MS	20.0 U	-0.155		15.0	pCi/g		75	(75%-125%)	04/05/07 09:59
cennedani-			Uncert:	+/-0.229		+/-0.676	peng		7.5	(1370-12370)	04/03/07 07.37
			TPU:	+/-0.229		+/-0.776					
atch 621	141		11 0.	., 0.02							
QC1201305317	183255002	DHP									
ritium	103233002	DOI	U	-0.106	U	0.451	pCi/g	0		(0% - 100%) AXD2	03/31/07 18:55
			Uncert:	+/-1.06		+/-1.03	1 0			(
			TPU:	+/-1.06		+/-1.03					
QC1201305319	LCS										
'ritium			11.7			12.0	pCi/g		102	(75%-125%)	03/31/07 20:57
			Uncert:			+/-1.54					
QC1201305316	МВ		TPU:			+/-1.55					
ritium	MD				U	-0.232	pCi/g				03/31/07 17:53
			Uncert:		~	+/-0.991	r ~ 8				
			TPU:			+/-0.991					
QC1201305318	183255002	MS									
'ritium			11.9 U	-0.106		13.2	pCi/g		111	(75%-125%)	03/31/07 19:56
			Uncert:	+/-1.06		+/-1.63					
			TPU:	+/-1.06		+/-1.65					
atch 621	144										

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder:

183243

Page 12 of 13

armname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range Anls	t Date Time
ad Liquid Scintilla atch 621	tion 144									
QC1201305325 'arbon-14	183245006 DUP	U Uncert: TPU:	0.0236 +/-0.090 +/-0.090	U	-0.0162 +/-0.0934 +/-0.0934	pCi/g	0		(0% - 100%) AXD	2 04/02/07 15:22
QC1201305327 'arbon-14	LCS	7.09 Uncert: TPU:	47-0.090		7.02 +/-0.203 +/-0.231	pCi/g	;	99	(75%-125%)	04/02/07 17:28
QC1201305324 :arbon-14	МВ	Uncert:		U	-0.0233 +/-0.0925 +/-0.0925	pCi/g	;			04/02/07 14:19
QC1201305326 larbon-14	183245006 MS	7.16 U Uncert: TPU:	0.0236 +/-0.090 +/-0.090		6.92 +/-0.202 +/-0.229	pCi/g	Ş	97	(75%-125%)	04/02/07 16:25

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

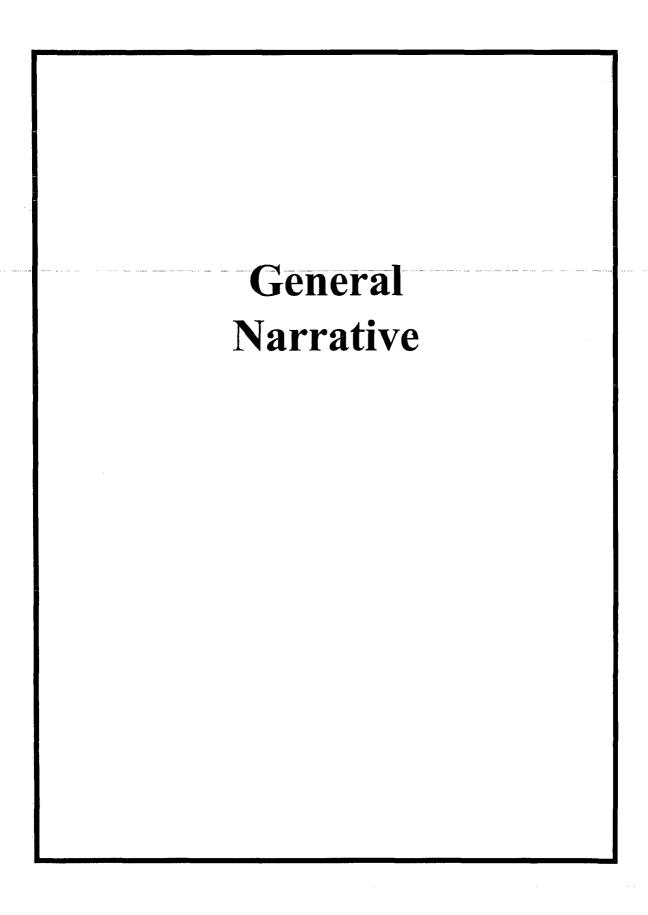
2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder: 183243

armname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

Page 13 of 13


J/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

* Indicates analyte is a surrogate compound.

The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the ample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is ess than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

or PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Vhere the analytical method has been performed under NELAP certification, the analysis has met all of the equirements of the NELAC standard unless qualified on the QC Summary.

General Narrative for

Connecticut Yankee Atomic Power Co. Work Order: 183321 SDG: MSR#07-0134

April 04, 2007

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary

Sample receipt

The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on March 30, 2007 for analysis. Shipping container temperatures were checked, documented, and within specifications. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage.

Sample Identification The laboratory received the following samples:

Laboratory	Sample
Identification	Description
183321001	9312-0010-124 - I
183321002	9312-0010-125-I
183321003	9312-0010-126-I

Items of Note

There are no items to note.

Case Narrative

Sample analyses were conducted using methodology as outlined in GEL Laboratories, LLC (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Analytical Request

Three soil samples were analyzed for FSSGAM and Strontium-90.

Data Package

The enclosed data package contains the following sections: General Narrative, Chain of Custody and Supporting Documentation, Data Review Qualifier Definitions, and data from the following fractions: Radiochemistry.

I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

Cheryl Jones

Project Manager

List of current GEL Certifications as of 04 April 2007

State	Certification
Alaska	UST-062
Arizona	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California	01151CA
Colorado	GenEngLabs
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA	WG-15J
Florida/NELAP	E87156
Georgia	E87156 (FL/NELAP)
Hawaii	N/A
Idaho	N/A
Illinois	200029
Indiana	C-SC-01
Kansas	E-10332
Kentucky	90129
Louisiana	03046
Maryland	270
Massachusetts	M-SC012
Michigan	9903
Nevada	SC12
New Jersey	SC002
New Mexico	FL NELAP E87156
New York	11501
North Carolina	233
North Carolina Drinking W	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania	68-00485
South Carolina	10120001/10585001/10120002
Tennessee	02934
Texas	TX213-2006A
Texas NELAP	T104704235-06-TX
U.S. Dept. of Agriculture	S-52597
US Army Corps of Engineer	N/A
Utah	8037697376 GEL
Vermont	VT87156
Virginia	00151
Washington	C1641

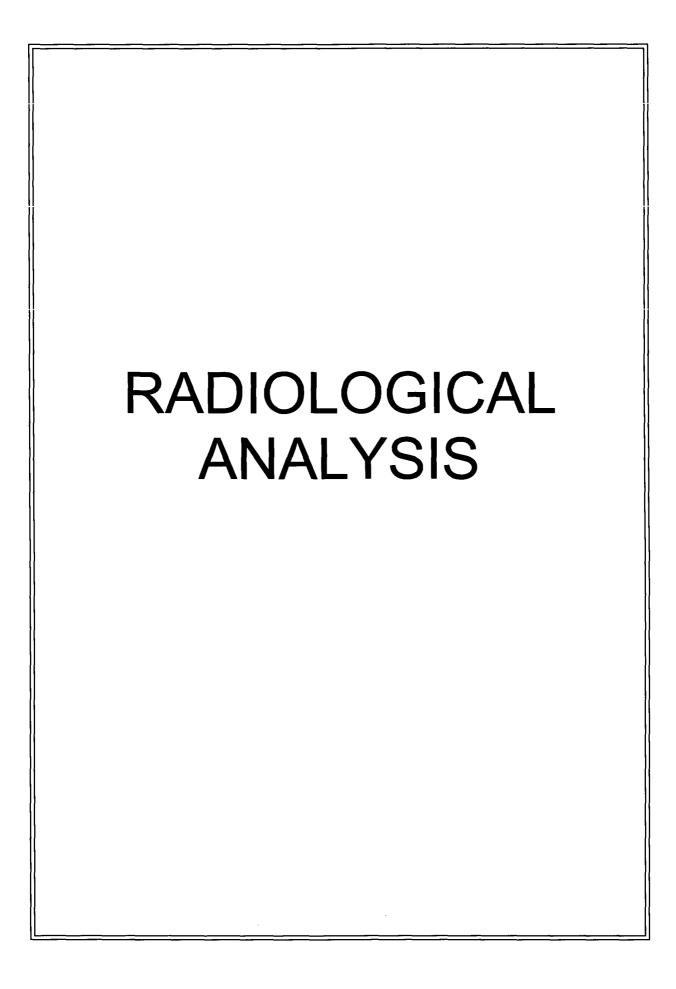
Chain of Custody and Supporting Documentation

Connecticut 362 Inj	wer C , CT 0642		ıy			Ch	ain o	of Cus	stody	Form	No. 2007-00104																										
Project Name: Haddam	Neck Decomn	nissioning					Analyses Requested					Lab Use Only																									
Contact Name & Phone Jack McCarthy 860-267			Media Code	, , ,								Comments:																									
Analytical Lab (Name, City, State): General Engineering Laboratories 2040 Savage Road Charleston, SC 29407 ATT: Cheryl Jones (843-556-8171) Priority: 30 D. 15 D. 7 D. Other:		atories		ng Laboratories		Laboratories		boratories		poratories		atories		ratories		oratories		ing Laboratories		tories		ories		ories		ories		Code	&Type Code	Sr-90							
						જ						183	3211.																								
Sample Designation	Date	Time				FSSGAM						Comment, Preservation	Lab Sample ID																								
9312-0010-124-I	3/29/07	0715	TS	G	BP	X																															
9312-001:0-125-I	3/29/07	0717	TS	G	BP	X																															
9312-0010-126-1	3/29/07	0720	TS	G	BP	X																															
			<u></u>																																		
NOTES: PO #: 002332	2 MSR :	#: 07-0134		∠TP	F	Radwaste QA Non QA					Samples Shipped Via: ☑ Fed Ex ☐ UPS ☐ Hand	Internal Container Temp.: 17° Deg. C Custody Sealed?																									
1) Relinquished By	0	Date/Tim	e 1430	2) Recei	ived By		-	3.30	Date/	Time 930		Other	Custody Seal Intact?																								
3) Relinquished By		Date/Tim		4) Recei				00	Date/			Bill of Lading #	YIZ N 🗆																								
5) Relinquished By		Date/Tim	e	6) Recei	ived By				Date/	Time																											

	rigun	e I. Sample Che	ck-in List		•
Date/Time Received:	3-30-07	930			
SDG#:	MSRHU7	-0133,	0134		
Work Order Number:	183327	2, 18332	1		•
Shipping Container ID	79070475444 : 79295890	16 9973 Chain	of Custody #	2007 - 10096 2007 - 10095	24 31 -16
	on shipping contains			(es [] No []	
•	dated and signed?			es [/ No []	•
•					
	ody record present?		Y	es [] No []	•
	ture 17°	<u>.</u>			
	cking materials is:			et [] Dry [4]	
. Number of sam	ples in shipping cont	ainer:	and al		
Sample holding	times exceeded?		Ye	s [] NoUT	
8. Samples have:					
		_hazard labels			
custody se	-1-		.		
custody se	RIS	appropriate sam	ple labels		
9. Samples are:					
in good co	ondition	leaking			
broken		have air bubb	laa		
		THAT CALL DUOD	162		
Were any anomal	ies identified in samp	le receipt?	Yes I] No ₁ []	
	malies (include samp				
ple Custodian/Laborat	me Ten S'L				Gas
phoned to:		, .	Date:	<u> 3 30-07</u>	930
huanan m.		On	By		

SAMPLE RECEIPT & REVIEW FORM

PM use only


Client: Competicut yes	viee	-		SDG/ARCOC/Work Order: 183322, 18332/					
Date Received: 3 36	07			PM(A) Review (ensure non-conforming items are resolved prior to signing):					
Received By:				Chras					
	$\overline{1}$								
Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (Required for Non-Conforming Items)					
Shipping containers received intact and sealed?	V			Circle Applicable: seals broken damaged container leaking container ther (describe)					
Samples requiring cold preservation within (4 +/- 2 C)? Record preservation method.		/		Circle Coolant # ice bags blue ice dry ice none (other describe) See below Moderi a					
Chain of custody documents included with shipment?	V								
Sample containers intact and sealed?	V			Circle Applicable: seals broken damaged container leaking container other (describe)					
5 Samples requiring chemical preservation at proper pH?		V		Sample ID's, containers affected and observed pH:					
6 VOA vials free of headspace (defined as < 6mm bubble)?		V		Sample ID's and containers affected:					
Are Encore containers present? 7 (If yes, immediately deliver to VOA laboratory)			V						
8 Samples received within holding time?	V			Id's and tests affected:					
9 Sample ID's on COC match ID's on bottles?	V			Sample ID's and containers affected:					
Date & time on COC match date & time on bottles?	V			Sample ID's affected:					
Number of containers received match number indicated on COC	? 🗸			Sample ID's affected:					
COC form is properly signed in relinquished/received sections?	V								
Air Bill ,Tracking #'s, & Additional Comments		7	107 92'	0475 4446 17° 9 5890 9973 16°					
Suspected Hazard Information	Non- Regulated	Regulated	_	RSO RAD Receipt #* *If > x2 area background is observed on samples identified as "non-regulated/non-radioactive", contact the Radiation Safety group for further investigation.					
A Radiological Classification?	V			Maximum Counts Observed*: 80 COM					
B PCB Regulated?	I								
Shipped as DOT Hazardous C Material? If yes, contact Waste Manager or ESH Manager.	V			Hazard Class Shipped: UN#:					
D Regulated as a Foreign Soil?	V								
PM (or PMA) review of Hazard cl	assificati	ion:		/ Initials CAY Date: 3/30/07					

Data Review Qualifier Definitions

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

Radiochemistry Case Narrative Connecticut Yankee Atomic Power Co. (YANK) Work Order 183321

Method/Analysis Information

Product: Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived

Analytical Method: EML HASL 300, 4.5.2.3

Prep Method: Dry Soil Prep

Analytical Batch Number: 622281

Prep Batch Number: 621413

Sample ID	Client ID
183321001	9312-0010-124-I
183321002	9312-0010-125-I
183321003	9312-0010-126-I
1201307871	Method Blank (MB)
1201307872	183322021(9306-0000-019B) Sample Duplicate (DUP)
1201307873	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183322021 (9306-0000-019B).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to low abundance.	Cesium-134	183321001
UI	Data rejected due to no valid peak.	Americium-241	183321001

Method/Analysis Information

Product: GFPC, Sr90, solid-ALL FSS

Analytical Method: EPA 905.0 Modified

Prep Method: Ash Soil Prep

Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep

Analytical Batch Number: 621435

Prep Batch Number: 621414

Dry Soil Prep GL-RAD-A-021 Batch Number: 621413

Sample ID	Client ID
183321001	9312-0010-124-I
183321002	9312-0010-125-I
183321003	9312-0010-126-I
1201305974	Method Blank (MB)
1201305975	183322004(9306-0000-004F) Sample Duplicate (DUP)
1201305976	183322004(9306-0000-004F) Matrix Spike (MS)
1201305977	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-004 REV# 11.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183322004 (9306-0000-004F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Sample 183321003 (9312-0010-126-I) was recounted due to a detector lock out condition.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

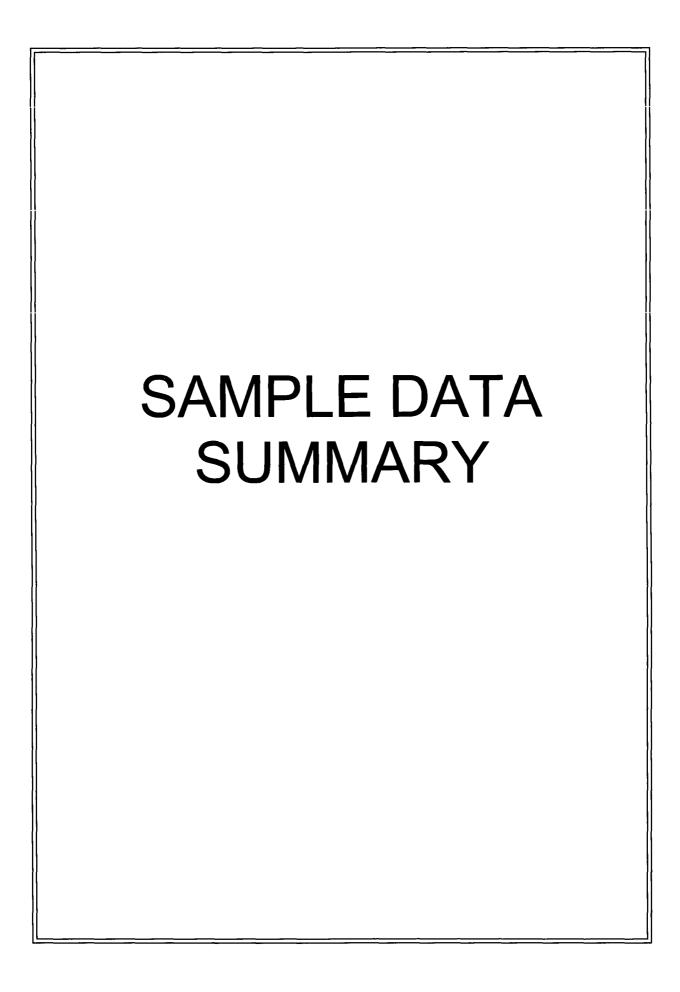
Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Certification Statement


Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer/Date: Unla William 4/5/67	
------------------------------------	--

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

YANK001 Connecticut Yankee Atomic Power Co.

Client SDG: MSR#07-0134 GEL Work Order: 183321

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- ND The analyte concentration is not detected above the detection limit.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 5, 2007

YANK01204 YANK001

Project: Client ID: Vol. Recv.:

Certificate of Analysis

Company:

Connecticut Yankee Atomic Power

Address:

362 Injun Hollow Rd

Contact:

East Hampton, Connecticut 06424

Mr. Jack McCarthy

Project:

Soils PO# 002332

Client Sample ID:

Sample ID: Matrix:

Collect Date: Receive Date:

Collector: Moisture:

9312-0010-124-I

183321001 TS 29-MAR-07 30-MAR-07

Client

5.01%

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch M
Rad Gamma Spec Analys	sis							
Gamma,Solid-FSS GAM	1 & ALL FSS	226 Ingro	wth					
Waived								
Actinium-228		1.55	+/-0.303	0.0947	+/-0.303	0.189	pCi/g	MJH1 04/03/07 1754 622281
Americium-241	UI	0.00	+/-0.165	0.0952	+/-0.165	0.190	pCi/g	
Bismuth-212		0.934	+/-0.393	0.202	+/-0.393	0.404	pCi/g	
Bismuth-214		1.83	+/-0.220	0.0519	+/-0.220	0.104	pCi/g	
Cesium-134	UI	0.00	+/-0.0452	0.0331	+/-0.0452	0.0662	pCi/g	
Cesium-137		0.163	+/-0.0526	0.0261	+/-0.0526	0.0521	pCi/g	
Cobalt-60	U	0.0195	+/-0.0338	0.0292	+/-0.0338	0.0583	pCi/g	
Europium-152	U	-0.0563	+/-0.118	0.0757	+/-0.118	0.151	pCi/g	
Europium-154	U	-0.0255	+/-0.116	0.0803	+/-0.116	0.161	pCi/g	
Europium-155	U	0.0372	+/-0.105	0.092	+/-0.105	0.184	pCi/g	
Lead-212		1.53	+/-0.156	0.0466	+/-0.156	0.0931	pCi/g	
Lead-214		2.18	+/-0.244	0.0556	+/-0.244	0.111	pCi/g	
Manganese-54	U	-0.029	+/-0.0315	0.0255	+/-0.0315	0.0509	pCi/g	
Niobium-94	U	0.028	+/-0.0296	0.0257	+/-0.0296	0.0513	pCi/g	
Potassium-40		27.1	+/-2.14	0.237	+/-2.14	0.473	pCi/g	
Radium-226		1.83	+/-0.220	0.0519	+/-0.220	0.104	pCi/g	
Silver-108m	U	0.0285	+/-0.0301	0.0267	+/-0.0301	0.0534	pCi/g	
Thallium-208		0.540	+/-0.0804	0.028	+/0.0804	0.056	pCi/g	
Rad Gas Flow Proportion	nal Counting	3						
GFPC, Sr90, solid-ALL	FSS							
Strontium-90	U	0.0199	+/-0.0276	0.0206	+/-0.0276	0.0474	pCi/g	KSD1 04/04/07 1305 621435

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/30/07	1052	621413

The following Analytical Methods were performed

Method	Description				
1	EML HASL 300, 4.5.2.3				
2	EPA 905.0 Modified				

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-124-I 183321001

Project:

YANK01204 YANK001

Report Date: April 5, 2007

Client ID: Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Ac	cceptable Limits		
Strontium Carrier	GFPC	C, Sr90, so	lid-ALL FSS		78		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- Result is greater than value reported >
- Α The TIC is a suspected aldol-condensation product
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- Analytical holding time was exceeded Н
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. U
- UI Gamma Spectroscopy—Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- Preparation or preservation holding time was exceeded h

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Connecticut Yankee Atomic Power Company:

362 Injun Hollow Rd Address:

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

> Client Sample ID: Sample ID:

> > U -0.00504

0.327

0.0632

Matrix: Collect Date: Receive Date: Collector:

9312-0010-125-I

183321002 TS 29-MAR-07

30-MAR-07 Client 7.69%

Report Date: April 5, 2007

Project: Client ID: YANK01204 YANK001 Vol. Recv.:

	Moisture:			7.69%					
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Rad Gamma Spec An	alysis				<u> </u>				
Gamma,Solid-FSS G	SAM & ALL FSS	226 Ingro	wth						
Waived		_							
Actinium-228		0.872	+/-0.213	0.0753	+/-0.213	0.151	pCi/g	MJH1 04/03/0	07 2159 622281
Americium-241	U	0.0781	+/-0.0976	0.0835	+/-0.0976	0.167	pCi/g		
Bismuth-212		0.653	+/-0.315	0.172	+/-0.315	0.343	pCi/g		
Bismuth-214		0.927	+/-0.142	0.0436	+/-0.142	0.0871	pCi/g		
Cesium-134	U	0.0388	+/-0.0451	0.0295	+/-0.0451	0.0591	pCi/g		
Cesium-137		0.354	+/-0.0678	0.0257	+/-0.0678	0.0515	pCi/g		
Cobalt-60	U	0.0148	+/-0.0261	0.0227	+/-0.0261	0.0454	pCi/g		
Europium-152	U	0.0365	+/-0.099	0.0633	+/-0.099	0.127	pCi/g		
Europium-154	U	-0.0775	+/-0.0991	0.0631	+/-0.0991	0.126	pCi/g		
Europium-155	U	0.0338	+/-0.0832	0.0769	+/-0.0832	0.154	pCi/g		
Lead-212		0.919	+/-0.109	0.0385	+/-0.109	0.077	pCi/g		
Lead-214		0.992	+/-0.147	0.0464	+/-0.147	0.0928	pCi/g		
Manganese-54	U	0.0176	+/-0.0274	0.022	+/-0.0274	0.0439	pCi/g		
Niobium-94	U	-0.00378	+/-0.0244	0.0204	+/-0.0244	0.0408	pCi/g		
Potassium-40		11.1	+/-1.11	0.190	+/-1.11	0.380	pCi/g		
Radium-226		0.927	+/-0.142	0.0436	+/-0.142	0.0871	pCi/g		

The following Prep Methods were performed

Rad Gas Flow Proportional Counting GFPC, Sr90, solid-ALL FSS

Silver-108m

Thallium-208

Strontium-90

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/30/07	1052	621413

0.0212 +/-0.0243

0.0218 +/-0.0584

0.0176 +/-0.0311

0.0423

0.0436

0.0417

pCi/g

pCi/g

pCi/g

KSD1 04/04/07 1305 621435

The following Analytical Methods were performed

Method Description EML HASL 300, 4.5.2.3 1 2 EPA 905.0 Modified

Test Surrogate/Tracer recovery Recovery % **Acceptable Limits**

+/-0.0243

+/-0.0584

+/-0.031

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID:

9312-0010-125-I 183321002 Project: Client ID: YANK01204 YANK001

Report Date: April 5, 2007

Vol. Recv.:

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recove	ery Test				Recovery%	Acc	ceptable Limits		
Strontium Carrier	GFPC	C, Sr90, sc	olid-ALL FSS		80		(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Project: Soils PO# 002332

Client Sample ID:

Sample ID:

Matrix: Collect Date:

Collect Date: Receive Date: Collector: 183321003 TS

29-MAR-07 30-MAR-07

9312-0010-126-I

Client .359%

Report Date: April 5, 2007

Project: YANK01204 Client ID: YANK001 Vol. Recv.:

Moisture: **Parameter** Qualifier Units Result Uncertainty LC **TPU MDA DF** Analyst Date Time Batch N Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived +/-0.203 0.139 Actinium-228 MJH1 04/04/07 0104 622281 0.901 +/-0.203 0.0693 pCi/g Americium-241 +/-0.095 0.0967 +/-0.095 0.0826 0.165 pCi/g 0.339 Bismuth-212 0.716 +/-0.375 0.170 +/-0.375 pCi/g Bismuth-214 0.692 pCi/g +/-0.1160.0436 +/-0.116 0.0872 Cesium-134 U +/-0.0275 0.0256 +/-0.0275 pCi/g 0.0265 0.0511 Cesium-137 U 0.0286 +/-0.0453 0.0231 +/-0.0453 0.0461 pCi/g Cobalt-60 U -0.0291+/-0.0304 0.0182 +/-0.0304 0.0364 pCi/g Europium-152 U -0.0939+/-0.108 0.0602 +/-0.108 0.120 pCi/g Europium-154 0.0693 +/-0.0833 U -0.00962 +/-0.0833 0.139 pCi/g Europium-155 U +/-0.0789 0.072 + -0.07890.144 -0.021pCi/g Lead-212 0.959 +/-0.108 0.0363 +/-0.108 0.0725 pCi/g Lead-214 +/-0.119 0.0447 +/-0.119 0.0893 pCi/g 0.644 0.0218 +/-0.0322 Manganese-54 U 0.0326 +/-0.0322 0.0436 pCi/g Niobium-94 -0.003210.0216 +/-0.0298 +/-0.0298 0.0431 pCi/g

0.205

0.0436

+/-1.49

+/-0.116

0.0197 +/-0.0229

0.0198 +/-0.0601

0.410

0.0872

0.0394

0.0395

pCi/g

pCi/g

pCi/g

pCi/g

Rad Gas Flow Proportional Counting

GFPC, Sr90, solid-ALL FSS

Potassium-40

Radium-226

Silver-108m

Thallium-208

Strontium-90 U -0.00905 +/-0.0187 0.0174 +/-0.0187 0.0413 pCi/g

+/-1.49

+/-0.116

+/-0.0229

+/-0.0601

16.9

0.692

0.312

-0.0109

KSD1 04/04/07 1841 621435

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	JMB1	03/30/07	1052	621413

The following Analytical Methods were performed

Method Description

1 EML HASL 300, 4.5.2.3 2 EPA 905.0 Modified

Surrogate/Tracer recovery Test Recovery% Acceptable Limits

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Connecticut Yankee Atomic Power

Address: 362 Injun Hollow Rd

East Hampton, Connecticut 06424

Contact: Mr. Jack McCarthy

Soils PO# 002332 Project:

Client Sample ID:

Sample ID:

9312-0010-126-I

183321003

Project: Client ID: Vol. Recv.:

YANK01204 YANK001

Report Date: April 5, 2007

Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
Surrogate/Tracer recover	y Test				Recovery%	Acc	eptable Limits		
Strontium Carrier	GFPC	C, S r90, so	olid–ALL FSS		72	(25%-125%)		

Notes:

The Qualifiers in this report are defined as follows:

- Analyte is a surrogate compound
- Result is less than value reported <
- > Result is greater than value reported
- The TIC is a suspected aldol-condensation product Α
- В For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- Results are reported from a diluted aliquot of the sample D
- Η Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: April 5, 2007

Page 1 of 5

lient:

Connecticut Yankee Atomic Power

362 Injun Hollow Rd

East Hampton, Connecticut

Contact: Mr. Jack McCarthy

Vorkorder:

183321

armname	NOM	Sample (Qual	QC	Units	RPD%	REC% Range Anlst	Date Time
ad Gamma Spec								
atch 622281								
QC1201307872 183322021 DUP								
actinium-228		0.750		0.746	pCi/g	, 1	(0% - 100%) MJH1	04/04/07 10:30
	Uncert:	+/-0.190		+/-0.211	, .	,	,	
	TPU:	+/-0.190		+/-0.211				
mericium-241	U	0.0469	U	0.0308	pCi/g	42	(0% - 100%)	
	Uncert:	+/-0.0916		+/-0.0391				
	TPU:	+/-0.0916		+/-0.0391				
ismuth-212		0.738		0.679	pCi/g	; 8	(0% - 100%)	
	Uncert:	+/-0.351		+/-0.309				
	TPU:	+/-0.351		+/-0.309				
ismuth-214		0.634		0.616	pCi/g	g 3	(0% - 100%)	
	Uncert:	+/-0.117		+/-0.119				
	TPU:	+/-0.117		+/-0.119				
lesium-134	U	0.0503	U	0.0121	pCi/g	123	(0% - 100%)	
	Uncert:	+/-0.0327		+/-0.032				
	TPU:	+/-0.0327		+/-0.032				
lesium-137	U	-0.033	U	0.0358	pCi/g	g 4980	(0% - 100%)	
	Uncert:	+/-0.0315		+/-0.0276				
	TPU:	+/-0.0315		+/-0.0276				
lobalt-60	U	0.0197	U	-0.0106	pCi/g	g 665	(0% - 100%)	
	Uncert:	+/-0.0269		+/-0.0264				
	TPU:	+/-0.0269		+/-0.0264				
uropium-152	U	0.0308	U	0.00845	pCi/g	g 114	(0% - 100%)	
	Uncert:	+/-0.0737		+/-0.067				
	TPU:	+/-0.0737		+/-0.067				
uropium-154	U	-0.00474	U	0.0134	pCi/g	g 420	(0% - 100%)	
	Uncert:	+/-0.0849		+/-0.0771				
	TPU:	+/-0.0849		+/-0.0771				
uropium-155	U	0.0261	U	0.0164	pCi/g	g 45	(0% - 100%)	
	Uncert:	+/-0.0784		+/-0.0571				
	TPU:	+/-0.0784		+/-0.0571	~		(0.5)	
ead-212		0.767		0.891	pCi/g	g 15	(0% - 20%)	
	Uncert:	+/-0.0966		+/-0.119				
	TPU:	+/-0.0966		+/-0.119				
ead-214		0.568		0.634	pCi/g	g 11	(0% - 20%)	
	Uncert:	+/-0.117		+/-0.121				
	TPU:	+/-0.117		+/-0.121	~	00 =	(0.00	
1anganese-54	U	-0.0118	U	0.0177	pCi/g	g 987	(0% - 100%)	
	Uncert:	+/-0.0242		+/-0.0275				
	TPU:	+/-0.0242		+/-0.0275	~ :	27.4	(000 1000)	
liobium-94	U	-0.00311	U	0.0103	pCi/g	g 374	(0% - 100%)	
	Uncert:	+/-0.0228		+/-0.0234				
	TPU:	+/-0.0228		+/-0.0234				

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder: 183321 Page 2 of 5

								rage 2 01 3	
armname	NOM	Sample ()ual	QC	Units	RPD%	REC%	Range Anlst	Date Time
ad Gamma Spec									
atch 622281									
otassium-40		12.5		14.2	pCi/s	g 13		(0% - 20%)	
	Uncert:	+/-1.21		+/-1.29					
	TPU:	+/-1.21		+/-1.29					
.adium-226		0.634		0.616	pCi/g	g 3		(0% - 100%)	
	Uncert:	+/-0.117		+/-0.119					
	TPU:	+/-0.117		+/-0.119					
ilver-108m	U	0.00407	U	-0.00551	pCi/s	g 1330		(0% - 100%)	
	Uncert:	+/-0.0247		+/-0.0219					
	TPU:	+/-0.0247		+/-0.0219					
'hallium-208		0.266		0.269	pCi/s	g 1		(0% - 100%)	
	Uncert:	+/-0.0599		+/-0.0584					
	TPU:	+/-0.0599		+/-0.0584					
QC1201307873 LCS				0.705	G: 1				04/04/07 10 10
ctinium-228	**			0.795	pCi/	g			04/04/07 10:19
	Uncert:			+/-0.718			* •		
	TPU:			+/-0.718	-C:/	~	85	(75%-125%)	
mericium-241	16.4			14.0	pCi/	g	63	(73%-123%)	
	Uncert:			+/-1.52					
Samuel 212	TPU:		U	+/-1.52 1.15	nCi/	~			
ismuth-212	Uncert:		U	+/-0.883	pCi/	g			
				+/-0.883					
ismuth-214	TPU:			0.777	pCi/	œ			
48mun-214	Uncert:			+/-0.311	pcn,	B			
	TPU:			+/-0.311					
'esium-134	IPU:		U	0.092	pCi/	~			
Csium-134	Uncert:		U	+/-0.112	pen,	5			
	TPU:			+/-0.112					
'esium-137	6.35			6.09	pCi/	ø	96	(75%-125%)	
Csium-137	Uncert:			+/-0.577	реи	6	70	(1370 12370)	
	TPU:			+/-0.577					
cobalt-60	9.55			9.26	pCi/	Q	97	(75%-125%)	
ocult of	Uncert:			+/-0.685	p C	5		(,,,,,	
	TPU:			+/-0.685					
uropium-152			U	-0.0231	pCi/	g			
1	Uncert:			+/-0.282	•	Ü			
	TPU:			+/-0.282					
uropium-154			U	-0.0844	pCi/	g			
•	Uncert:			+/-0.238	•	-			
	TPU:			+/-0.238					
uropium-155			U	0.123	pCi/	g			
-	Uncert:			+/-0.319					
	TPU:			+/-0.319					
ead-212				1.30	pCi/	g			
	Uncert:			+/-0.258	-				
	TPU:			+/-0.258					
.ead-214				1.05	pCi/	g			
	Uncert:			+/-0.316					

GEL LABORATORIES LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder: 183321					Page 3 of 5				
armname	NOM	Sample Qual	QC	Units RPD%	REC%	Range Anlst	t Date Time		
ad Gamma Spec									
atch 622281									
	TPU:		+/-0.316						
1anganese-54	11 0.	U	0.036	pCi/g					
1411.941.1000 5 7	Uncert:		+/-0.0981	r 8					
	TPU:		+/-0.0981						
liobium-94		U	0.0841	pCi/g					
	Uncert:		+/-0.0973						
	TPU:		+/-0.0973						
otassium-40			4.73	pCi/g					
	Uncert:		+/-3.49						
	TPU:		+/-3.49						
.adium-226			0.777	pCi/g		(75%-125%)			
	Uncert:		+/-0.311						
	TPU:		+/-0.311						
ilver-108m		U	-0.0118	pCi/g					
	Uncert:		+/-0.0942						
	TPU:		+/-0.0942						
hallium-208			0.420	pCi/g					
	Uncert:		+/-0.178						
	TPU:		+/-0.178						
QC1201307871 MB									
ctinium-228		U	-0.0653	pCi/g			04/04/07 07:14		
	Uncert:		+/-0.0772						
	TPU:		+/-0.0772						
mericium-241		U	0.036	pCi/g					
	Uncert:		+/-0.0585						
	TPU:		+/-0.0585						
ismuth-212		U	-0.12	pCi/g					
	Uncert:		+/-0.191						
	TPU:		+/-0.191						
ismuth-214		U	0.034	pCi/g					
	Uncert:		+/-0.0581						
	TPU:		+/-0.0581						
lesium-134		U	0.00123	pCi/g					
	Uncert:		+/-0.0192						
	TPU:		+/-0.0192						
esium-137		U	0.00558	pCi/g					
	Uncert:		+/-0.0392						
	TPU:		+/-0.0392						
cobalt-60		U	0.00413	pCi/g					
	Uncert:		+/-0.0209						
	TPU:		+/-0.0209						
uropium-152		U	-0.0206	pCi/g					
	Uncert:		+/-0.0539						
	TPU:		+/-0.0539						
uropium-154		U	-0.0213	pCi/g					
	Uncert:		+/-0.0507						
	TPU:		+/-0.0507						
uropium-155		U	0.0442	pCi/g					

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Vorkorder: 183321 Page 4 of 5 QC **NOM** Units RPD% REC% armname Sample Qual Range Anlst Date Time ad Gamma Spec atch 622281 +/-0.0515 Uncert: TPU: +/-0.0515 ead-212 U 0.038 pCi/g Uncert: +/-0.0644 TPU: +/-0.0644 ead-214 U 0.080pCi/g Uncert: +/-0.0602 TPU: +/-0.0602 1anganese-54 U 0.0255 pCi/g Uncert: +/-0.0213 TPU: +/-0.0213 liobium-94 U 0.0222 pCi/g Uncert: +/-0.0194 +/-0.0194 TPU: U otassium-40 0.123 pCi/g Uncert: +/-0.296 TPU: +/-0.296 U .adium-226 0.034 pCi/g Uncert: +/-0.0581 TPU: +/-0.0581 ilver-108m U 0.00882pCi/g Uncert: +/-0.0201 TPU: +/-0.0201 hallium-208 U 0.00326 pCi/g Uncert: +/-0.0332 TPU: +/-0.0332 ad Gas Flow atch 621435 QC1201305975 183322004 DUP 0.00529 trontium-90 U 0.0189 pCi/g 0 (0% - 100%) KSD1 04/04/07 13:09 U Uncert: +/-0.022 +/-0.0233 TPU: +/-0.022 +/-0.0233 QC1201305977 LCS 1.45 trontium-90 1.42 pCi/g (75%-125%)04/04/07 13:10 Uncert: +/-0.0995 TPU: +/-0.108 OC1201305974 MB trontium-90 -0.000898 pCi/g 04/04/07 13:09 Uncert: +/-0.0194 +/-0.0194 TPU:

Notes:

trontium-90

The Qualifiers in this report are defined as follows:

QC1201305976 183322004 MS

1.66

Uncert:

TPU:

U

0.00529

+/-0.022

+/-0.022

1.45

+/-0.111

+/-0.120

pCi/g

(75%-125%)

04/04/07 13:09

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

NOM Sample Qual OC Units PPD% PFC% Pange Aplet Date Tir

armname	NOM	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
offsale A N	 	 								

Page 5 of 5

** Analyte is a surrogate compound

183321

- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

Vorkorder:

- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

I/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

* Indicates analyte is a surrogate compound.

The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the ample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is ess than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

Or PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Vhere the analytical method has been performed under NELAP certification, the analysis has met all of the equirements of the NELAC standard unless qualified on the QC Summary.

NORTHEAST PROTECTED AREA GROUNDS SURVEY UNIT 9312-0010

RELEASE RECORD

ATTACHMENT 4 (DQA RESULTS)

NORTHEAST PROTECTED AREA GROUNDS SURVEY UNIT 9312-0010

RELEASE RECORD

ATTACHMENT 4A (PRELIMINARY DATA REVIEW)

Preliminary Data Review Form - Samples for the Sign Test

Survey Unit:

9312-0010

Survey Unit Name: Northeast Protected Area Grounds

Classification:

1

Survey Media:

Soil

Type of Survey: Final Status Survey

Type of Measurement:

Gross Measurement

Number of Measurements:

18

Operational DCGL:

1

BASIC STATISTICAL QUANTITIES

	Cs-137	Co-60	Sr-90
Minimum Value:	-2.35E-02	-1.72E-02	-2.23E-02
Maximum Value:	1.91E+00	3.48E-02	3.70E-02
Mean:	3.16E-01	6.18E-03	4.12E-03
Median:	7.48E-02	8.25E-04	4.18E-03
andard Deviation:	5.48E-01	1.42E-02	1.80E-02

RADIONUCLIDE CONCENTRATION (pCi/g)								
	NUMBER	Cs-137	Co-60	Sr-90	Identified?	Identified?	Identified?	
	9312-0010-101F	2.56E-01	3.48E-02	-1.97E-02	Y	N	N	
	9312-0010-102F	1.60E+00	0.00E+00	2.53E-02	Y	N	N	
	9312-0010-103F	1.91E+00	0.00E+00	2.54E-02	Y	N	N	
	9312-0010-104F	1.44E-01	8.09E-03	3.70E-02	Y	N	Y	
	9312-0010-105F	8.70E-02	-5.15E-03	-1.05E-02	Y	N	N	
	9312-0010-106F	2.88E-02	1.74E-02	-2.23E-02	Y	N	N	
	9312-0010-107F	0.00E+00	-9.39E-03	-1.55E-02	N	N	N	
	9312-0010-108F	4.18E-02	2.13E-02	8.14E-03	N	N	N	
	9312-0010-109F	2.76E-01	2.92E-02	1.91E-02	Y	N	N	
	9312-0010-110F	4.30E-01	1.63E-02	-1.05E-02	Y	N	N	
	9312-0010-111F	1.91E-02	-5.55E-03	2.40E-03	N	N	N	
	9312-0010-112F	-2.35E-02	-2.30E-03	1.05E-02	N	N	N	
	9312-0010-113F	6.26E-02	-1.72E-02	-1.63E-02	Y	N	N	
	9312-0010-114F	4.96E-01	0.00E+00	2.75E-02	Y	N	Y	
	9312-0010-115F	7.48E-03	1.65E-03	-6.57E-03	N	N	N	
	9312-0010-116F	-3.85E-03	2.50E-03	1.16E-03	N	N	' N	
	9312-0010-117F	2.91E-01	2.21E-02	1.30E-02	Y	Y	N	
	9312-0010-118F	6.19E-02	-2.46E-03	5.96E-03	Y	N	N	

Performed By: Dal Rankell

Independent Review:

DWOJIKOWIAK

Preliminary Data Review Form - Judgemental Samples

Survey Unit:

9312-0010

Survey Unit Name:

Northeast Protected Area Grounds

Classification:

1

Survey Media:

Soil

Type of Survey:

Final Status Survey

Type of Measurement:

Gross Measurement

Number of Measurements:

8

Operational DCGL:

1

BASIC STATISTICAL QUANTITIES

	Cs-137	Co-60	Sr-90
Minimum Value:	2.86E-02	-2.91E-02	-9.05E-03
Maximum Value:	2.25E+00	1.25E-01	6.32E-02
Mean:	4.72E-01	2.22E-02	1.62E-02
Median:	2.87E-01	1.42E-02	1.24E-02
tandard Deviation:	7.31E-01	4.43E-02	2.17E-02

	RA	ADIONUCLII	DE CONCENT	ΓRATION (ρCi/g)	
NUMBER	Cs-137	Co-60	Sr-90	Identified?		
9312-0010-119B	2.25E+00	1.25E-01	7.53E-03	Υ	Y	N
9312-0010-120B	3.71E-01	1.50E-02	1.28E-04	Υ	N	N
9312-0010-121B	2.34E-01	1.35E-02	1.58E-02	Υ	N	N
9312-0010-122B	3.35E-02	1.02E-02	9.06E-03	N	N	N
9312-0010-123B	3.40E-01	8.95E-03	2.29E-02	Υ	N	N
9312-0010-124I	1.63E-01	1.95E-02	1.99E-02	Υ	N	N
9312-0010-125I	3.54E-01	1.48E-02	6.32E-02	Υ	N	Y
9312-0010-126I	2.86E-02	-2.91E-02	-9.05E-03	N	N	N

Performed By:

Date

11-24-97

Independent Review

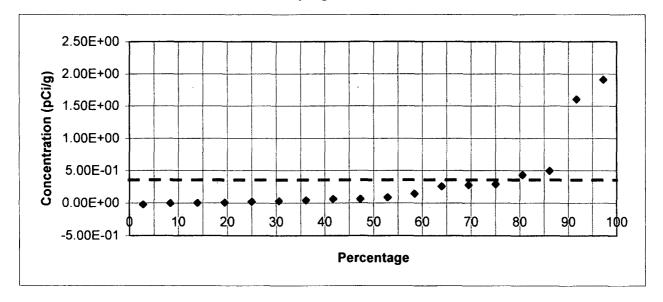
D WOSTKOWIAK

NORTHEAST PROTECTED AREA GROUNDS SURVEY UNIT 9312-0010

RELEASE RECORD

ATTACHMENT 4B (GRAPHICAL REPRESENTATION OF DATA)

Quantile Plot For Cesium - 137


Survey Unit:

9312-0010

Survey Unit Name: Northeast Protected Area Grounds

Mean:

3.16E-01 pCi/g

Cs-137	Rank	Percentage
-2.35E-02	1	3 %
-3.85E-03	2	8 %
0.00E+00	3	14 %
7.48E-03	4	19 %
1.91E-02	5	25 %
2.88E-02	• 6	31 %
4.18E-02	7	36 %
6.19E-02	8	42 %
6.26E-02	9	47 %
8.70E-02	10	53 %
1.44E-01	11	58 %
2.56E-01	12	64 %
2.76E-01	13	69 %
2.91E-01	14	75 %
4.30E-01	15	81 %
4.96E-01	16	86 %
1.60E+00	17	92 %
1.91E+00	18	97 %

Prepared By: ___

Del Fredal

Reviewed By:

Date: 4-24-07

Date: 4 24 07

Frequency Plot For Cesium-137


Survey Unit:

9312-0010

Survey Unit Name: Northeast Protected Area Grounds

Mean:

0.316 pCi/g

Upper End	Observation	Observation %
Value	Frequency	Frequency
0.00	3	17%
0.40	11	61%
0.80	2	11%
1.20	0	0%
1.60	1	6%
2.00	1	6%
Total	18	100%

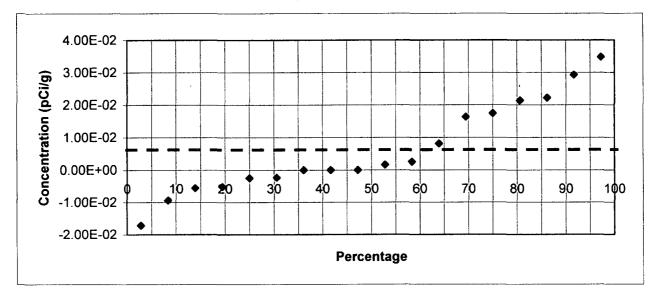
Prepared By:

Och Mulell

Date: 4-24-07

Reviewed By:

Quantile Plot For Cobalt - 60


Survey Unit:

9312-0010

Survey Unit Name: Northeast Protected Area Grounds

Mean:

6.18E-03 pCi/g

Co-60	Rank	Percentage
-1.72E-02	1	3 %
-9.39E-03	2	8 %
-5.55E-03	3	14 %
-5.15E-03	4	19 %
-2.46E-03	5	25 %
-2.30E-03	• 6	31 %
0.00E+00	7	36 %
0.00E+00	8	42 %
0.00E+00	9	47 %
1.65E-03	10	53 %
2.50E-03	11	58 %
8.09E-03	12	64 %
1.63E-02	13	69 %
1.74E-02	14	75 %
2.13E-02	15	81 %
2.21E-02	16	86 %
2.92E-02	17	92 %
3.48E-02	18	97 %

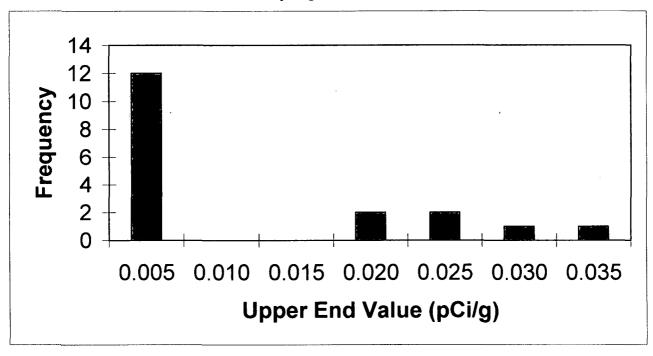
Prepared By:

Oal Rulall

Reviewed By:

Date: <u>4 - 2 4 - 0 7</u>

Frequency Plot For Cobalt - 60


Survey Unit:

9312-0010

Survey Unit Name: Northeast Protected Area Grounds

Mean:

0.006 pCi/g

Upper End	Observation	Observation %
Value	Frequency	Frequency
0.005	12	67%
0.010	0	0%
0.015	0	0%
0.020	2	11%
0.025	2	11%
0.030	1	6%
0.035	1	6%
Total	18	100%

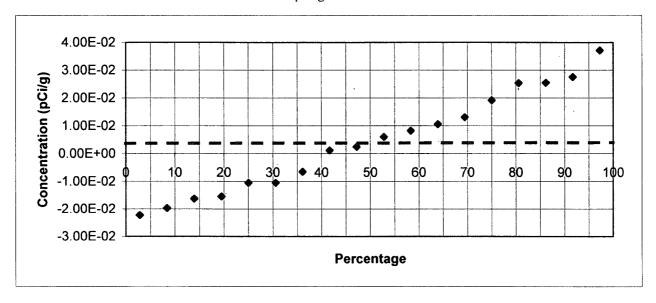
Prepared By:

D. O Thursday

Date: 4-24-07

Reviewed By:

Quantile Plot For Strontium - 90


Survey Unit:

9312-0010

Survey Unit Name: Northeast Protected Area Grounds

Mean:

4.12E-03 pCi/g

Sr-90	Rank	Percentage
-2.23E-02	1	3 %
-1.97E-02	2	8 %
-1.63E-02	3	14 %
-1.55E-02	4	19 %
-1.05E-02	5	25 %
-1.05E-02	• 6	31 %
-6.57E-03	7	36 %
1.16E-03	8	42 %
2.40E-03	9	47 %
5.96E-03	10	53 %
8.14E-03	11	58 %
1.05E-02	12	64 %
1.30E-02	13	69 %
1.91E-02	14	75 %
2.53E-02	15	81 %
2.54E-02	16	86 %
2.75E-02	17	92 %
3.70E-02	18	97 %

Gal Rudall

Prepared By:

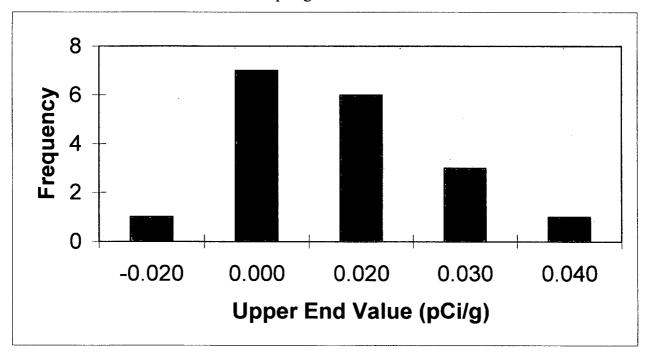
D

4-24-07

Reviewed By:

Date: 4 24 07

Frequency Plot For Srontium - 90


Survey Unit:

9312-0010

Survey Unit Name: Northeast Protected Area Grounds

Mean:

0.004 pCi/g

Upper End	Observation	Observation %
Value	Frequency	Frequency
-0.020	1	6%
0.000	7	39%
0.020	6	33%
0.030	3	17%
0.040	1	6%
Total	18	100%

Prepared By:

Del Knolall

Date: 4-29-07

Reviewed Byz

Date: 4 24 07

NORTHEAST PROTECTED AREA GROUNDS SURVEY UNIT 9312-0010

RELEASE RECORD

ATTACHMENT 4C (SIGN TEST)

Health Physics Procedure

GPP-GGGR-R5121-000 Attachment A, Rev. CY-001 MAJOR

Sign Test Calculation Sheet For Multiple Radionuclisdes

Survey Unit Number: 9312-0010

Classification: 1

Survey Unit Name: Northeast Protected Area Grounds

WP&IR#: 9312-0010

			-
Radionuclides:	Cs-137	Co-60	Sr-90

Survey Design DCGL (pCi/g): 4.75 2.29 0.93

TYPE I (α error):0.05 | TYPE I (β error):0.05

2.56E-01 3.48E-02 -1.97E-02 6.92E-02 9.31E-01 1.60E+00 0.00E+00 2.53E-02 3.37E-01 6.63E-01 1.91E+00 0.00E+00 2.54E-02 4.02E-01 5.98E-01 1.44E-01 8.09E-03 3.70E-02 3.39E-02 9.66E-01 8.70E-02 -5.15E-03 -1.05E-02 1.61E-02 9.84E-01 2.88E-02 1.74E-02 -2.23E-02 1.37E-02 9.86E-01 0.00E+00 -9.39E-03 -1.55E-02 -4.11E-03 1.00E+00 4.18E-02 2.13E-02 8.14E-03 1.81E-02 9.82E-01 2.76E-01 2.92E-02 1.91E-02 7.09E-02 9.29E-01 4.30E-01 1.63E-03 1.05E-03 0.77E-03 0.07E-01	Sign
1.91E+00 0.00E+00 2.54E-02 4.02E-01 5.98E-01 1.44E-01 8.09E-03 3.70E-02 3.39E-02 9.66E-01 8.70E-02 -5.15E-03 -1.05E-02 1.61E-02 9.84E-01 2.88E-02 1.74E-02 -2.23E-02 1.37E-02 9.86E-01 0.00E+00 -9.39E-03 -1.55E-02 -4.11E-03 1.00E+00 4.18E-02 2.13E-02 8.14E-03 1.81E-02 9.82E-01 2.76E-01 2.92E-02 1.91E-02 7.09E-02 9.29E-01	1
1.44E-01 8.09E-03 3.70E-02 3.39E-02 9.66E-01 8.70E-02 -5.15E-03 -1.05E-02 1.61E-02 9.84E-01 2.88E-02 1.74E-02 -2.23E-02 1.37E-02 9.86E-01 0.00E+00 -9.39E-03 -1.55E-02 -4.11E-03 1.00E+00 4.18E-02 2.13E-02 8.14E-03 1.81E-02 9.82E-01 2.76E-01 2.92E-02 1.91E-02 7.09E-02 9.29E-01	1
8.70E-02 -5.15E-03 -1.05E-02 1.61E-02 9.84E-01 2.88E-02 1.74E-02 -2.23E-02 1.37E-02 9.86E-01 0.00E+00 -9.39E-03 -1.55E-02 -4.11E-03 1.00E+00 4.18E-02 2.13E-02 8.14E-03 1.81E-02 9.82E-01 2.76E-01 2.92E-02 1.91E-02 7.09E-02 9.29E-01	1
2.88E-02 1.74E-02 -2.23E-02 1.37E-02 9.86E-01 0.00E+00 -9.39E-03 -1.55E-02 -4.11E-03 1.00E+00 4.18E-02 2.13E-02 8.14E-03 1.81E-02 9.82E-01 2.76E-01 2.92E-02 1.91E-02 7.09E-02 9.29E-01	1
0.00E+00 -9.39E-03 -1.55E-02 -4.11E-03 1.00E+00 4.18E-02 2.13E-02 8.14E-03 1.81E-02 9.82E-01 2.76E-01 2.92E-02 1.91E-02 7.09E-02 9.29E-01	1
4.18E-02 2.13E-02 8.14E-03 1.81E-02 9.82E-01 2.76E-01 2.92E-02 1.91E-02 7.09E-02 9.29E-01	1
2.76E-01 2.92E-02 1.91E-02 7.09E-02 9.29E-01	1
	1
4 2 0 E 0 1	1
4.30E-01 1.63E-02 -1.05E-02 9.77E-02 9.02E-01	1
1.91E-02 -5.55E-03 2.40E-03 1.60E-03 9.98E-01	1
-2.35E-02 -2.30E-03 1.05E-02 -5.96E-03 1.01E+00	1
6.26E-02 -1.72E-02 -1.63E-02 5.67E-03 9.94E-01	1
4.96E-01 0.00E+00 2.75E-02 1.05E-01 8.95E-01	1
7.48E-03 1.65E-03 -6.57E-03 2.30E-03 9.98E-01	1
-3.85E-03 2.50E-03 1.16E-03 2.82E-04 1.00E+00	1
2.91E-01 2.21E-02 1.30E-02 7.10E-02 9.29E-01	1
6.19E-02 -2.46E-03 5.96E-03 1.20E-02 9.88E-01	1

Critical Value: 12	Survey Unit:	Meets Acceptance Criterion
--------------------	--------------	----------------------------

18

Number of Positive Differences (S+):

Performed By: Del Rayland

Date: 4 - 24 - 07

 Date: 4 24 07

NORTHEAST PROTECTED AREA GROUNDS **SURVEY UNIT 9312-0010** RELEASE RECORD **ATTACHMENT 4D (QC SPLIT RESULTS)**

Split Sample Assessment Form

			- Spin	E Da	mpic A	396391	ient Forn			
Survey Area #:	9312	Survey Unit #:	(111) (1) 1	Surv Unit	vey t Name:	Northe	ast Protecte	d Area Grou	ınds	
Sample Plan or WPIR#: 9312-0010						SML#:	9312-0010-1	14		
_	a spectros	copy by an	off-site	e ve	ndor lal		_			<u>#3</u> and analyzed 9312-0010-114F
		STANDARI	D					CC	MPARISON	-
Radionuclide	Activity Value	Standard Error	Resolu	ition	Agree Ran		Activity Value	Standard Error	Comparison Ratio	Acceptable (Y/N)
Cs-137	4.96E-01	2.56E-02	19		0.75 -	1.33	4.58E-01	2.33E-02	0.92	Y
Co-60	0.00E+00	1.22E-02	0		NONE -		0.00E+00	1.41E-02	N/A	N/A
K-40	1.06E+01	4.05E-01	26	·	0.75 -	1.33	1.07E+01	4.39E-01	1.01	Y
_									i	
Comments/C									_	ance criteria used
results, guida	_	_	-				to assess s	plit sample	es.	
Inspection Pr less than 4, th							Reso	lution	Agree	ement Range
rations canno	-			-	•		4	7	0.50	2.00
found to be p	resent at an	acceptable l	evel of	agre	ement, n	.0	8	15	0.60	1.66
further action	n is warrant	ed.					16	50	0.75	1.33
							51	200	0.80	1.25
							>	200	0.85	1.18
							i			
Performed B	y:			Dat	e:		Reviewed	By:		Date:
0	I K	mball	// 		4-19	-07	10			4/23/07

WPIR - Work Plan and Inspection Record

SML - Sample Measurement Location designation

NORTHEAST PROTECTED AREA GROUNDS SURVEY UNIT 9312-0010

RELEASE RECORD

ATTACHMENT 4E (COMPASS POWER CURVE)

Assessment Summary

Site:

Radiological Control Area

Planner(s):

Dale Randall

Survey Unit Name:

9312-0010

Report Number:

1

Survey Unit Samples:

18

Reference Area Samples:

0

Test Performed:

Sign

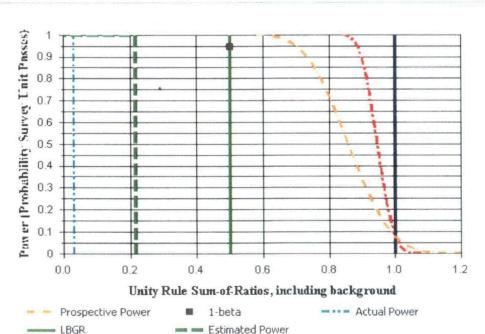
Test Result:

Not Performed

Judgmental Samples:

0

EMC Result:


Not Performed

Assessment Conclusion:

Reject Null Hypothesis (Survey Unit PASSES)

Retrospective Power Curve

■ DCGL

--- Retrospective Power