

Final Status Survey Final Report Phase VII

Appendix A17

Survey Unit Release Record 9802-0000, Subsurface Area Associated with the West Industrial Site Grounds (non-protected area)

May 2007

CYAPCO FINAL STATUS SURVEY RELEASE RECORD SUBSURFACE AREA ASSOCIATED WITH THE WEST INDUSTRIAL SITE GROUNDS - (NON-PROTECTED AREA) SURVEY UNIT 9802-0000

Ocl Mulal Date: <u>4-30-07</u> Prepared By: FSS Engineer DWarkowick Date: 5/1/07 Ingineer T. Newsen Date: 5/2/17 Support Manager Reviewed By: 1 (FSS Engineer Approved By: UycelT. Technical Support Manager

Revision 0

RELEASE RECORD

TABLE OF CONTENTS

1.	SURVEY UNIT DESCRIPTION	3
2.	CLASSIFICATION BASIS	3
3.	DATA QUALITY OBJECTIVES	5
4.	SURVEY DESIGN	9
5.	SURVEY IMPLEMENTATION	13
6.	SURVEY RESULTS	14
7.	QUALITY CONTROL	
8.	INVESTIGATIONS AND RESULTS	18
9.	REMEDIATION AND RESULTS	18
10.	CHANGES FROM THE FINAL STATUS SURVEY PLAN	19
11.	DATA QUALITY ASSESSMENT (DQA)	19
12.	ANOMALIES	20
13.	CONCLUSION	20
14.	ATTACHMENTS	21
14	.1 Attachment 1 – Figures (5 pages including cover)	
14	.2 Attachment 2 – Laboratory Data (115 pages including cover)	
14	.3 Attachment 3 – DQA Results (18 pages including covers)	

TOTAL 160

RELEASE RECORD

1. SURVEY UNIT DESCRIPTION

Survey Unit 9802-0000 (Subsurface Area Associated with the West Industrial Site Grounds (non-protected area) is designated as Final Status Survey (FSS) Class "B" subsurface soils area and consists of approximately eighteen thousand two hundred and ninety two (18,292 m²) square meters of area under uninhabited land and is located approximately eleven hundred and eighty eight feet (1,188 ft) from the reference coordinate system benchmark used at Haddam Neck Plant (HNP) (see Attachment 1). Survey Unit 9802-0000 includes the subsurface soils located under open land area Survey Units 9304-0001, 9304-0002 and 9306-0000. Additionally parts of survey areas 9302, 9313 and 9512 are located over the footprint of Survey Unit 9802-0000. The southeast quadrant of the survey unit is comprised mostly of rock outcroppings, rock ledge, underbrush and trees. The survey unit has a moderate slope running from southeast to northwest.

The reference coordinates associated with this survey unit are E002 through E008 by S065 through S072 (refer to "*HNP License Termination Plan*" (LTP) Section 5.4.4). The reference coordinates provide the maximum dimensions of a rectangle containing this survey unit. Some areas contained in this rectangle may not be part of this survey unit. The boundary of the survey unit was defined using a Global Positioning System (GPS) based on the Connecticut State Plane System North American Datum (NAD) 1927.

2. CLASSIFICATION BASIS

The survey unit was classified in accordance with Procedure RPM 5.1-10, "Survey Unit Classification."

The "Classification Basis Summary" conducted for Survey Unit 9802-0000 consisted of:

- a) A review of the 10CFR50.75 (g) (1) database,
- b) A review of the "Initial Characterization Report" and the "Historic Site Assessment Supplement,"
- c) Historic and current survey records review,

These documents identified a number of events that may have impacted this survey area:

- ACR #-95-509-Particle found near West gate during routine survey.
- Plant survey #10-Spot frisk survey performed in southwest protected area indicated some valves appeared to have residual contamination up to 150 corrected counts per minute (ccpm).
- CR# 98-0240- Contamination found in the sludge at the bottom of manhole #3, southwest of the 115kev yard.
- CR# 98-0992-During a clean-up outside the Radiological Control Area

RELEASE RECORD

(RCA), sand was inadvertently scooped up and placed in a dumpster. Follow-up analysis indicated that the sand contained low levels of radioactive material above the environmental release levels.

- CR# 03-0450-Fixed contamination (3,400 ccpm) was found in the asphalt outside the North RCA gate.
- CR# 05-0509-Several Barrels were identified during excavation of the southwest portion of the former Service Building.
- CR# 05-0736-The north waste storage tent area was leaking through the north berm.

In July of 2006, the Circulation Water Piping system was excavated from this survey unit (in surface survey area 9306). During the backfill and survey of the excavation, a discrete area of radioactive soil contamination was observed. The area was remediated and re-surveyed and sampled and all post remediation surveys and samples did not indicate radioactive contamination above detection limits. However, because remediation was conducted within the boundaries of survey unit 9304-0001, it was re-classified as a Class 1 area.

The radiological assessments and characterization surveys of subsurface soil in this area to support decommissioning activities commenced in 2005 and continued through 2006 as work progressed. Sampling was performed in the footprints of the Control Building, Turbine Building, Service Building (excavations II and IV), and Discharge Tunnel (or Circulating Water) excavations. All soil samples were either analyzed at the on-site laboratory or at an approved off-site laboratory for all radionuclides of concern, including HTD radionuclides. Within the subsurface survey area 9802, samples were collected from surface survey units 9302-0000, 9313-0000, 9304-0001, 9304-0002 and 9306-0000. A total of one hundred and forty (140) samples were identified as either post remediation or subsurface characterization samples from this survey area. All of these samples were utilized to determine both the radionuclide(s) of concern and the standard deviation of the sample population for FSS plan development. A summary of the one hundred and forty (140) post remediation or subsurface characterization sample results are provided in Table 1. Following the removal of all above grade commodities, below grade systems and soils identified by previous surveys as contaminated, post-remediation soil samples were taken prior to backfill and grading.

Table 1 – Sample Analysis Results from Characterization Soil SamplesTaken Post-Remediation & Prior to Backfill				
Cs-137 Co-60 (ρCi/g) (ρCi/g)				
Minimum Value:	-2.48E+00	-4.61E-02		
Maximum Value:	4.56E-01	4.03E-01		
Mean:	-2.07E-03	3.76E-03		
Median:	6.25E-03	-4.30E-04		
Standard Deviation:	2.17E-01	3.85E-02		

RELEASE RECORD

The sample results indicate that Cs-137 and Co-60 were the primary radionuclides detected in the sample population and were detected in concentrations up to 21.2% of the Operational Derived Concentration Guideline Level (DCGL) when incorporating the "sum of fractions". Cs-137 was the predominant radionuclide over Co-60 by a factor of 5 to 1. Cs-137 was positively identified (i.e. a result greater than two (2) standard deviations uncertainty) in thirty-three (33) samples where the sample results were predominantly at very low concentrations that were frequently approaching or below detection limits. Co-60 was positively identified (i.e. a result greater than two (2) standard deviations uncertainty) in thirteen (13) samples where the sample results were predominantly at very low concentrations that were frequently approaching or below detection limits. Therefore, both Cs-137 and Co-60 are both identified as radionuclides of concern for FSS.

Thirty-three (33) samples in this group were also sent to an approved off-site laboratory for HTD analysis. Other than Sr-90 and H-3, no additional HTD radionuclides were positively identified. Sr-90 and H-3 were positively identified (i.e. a result greater than two (2) standard deviations uncertainty) in seven (7) and ten (10) samples respectively. However, none of the thirty-three (33) samples analyzed for HTD were identified at levels above 5% or 10% of the Operational DCGL either individually or in combination. Therefore, Sr-90 and H-3 were deselected as radionuclides of concern for FSS.

3. DATA QUALITY OBJECTIVES

FSS design and planning used the Data Quality Objective (DQO) process as described by the LTP, Procedure RPM 5.1-11, "*Preparation of Final Status Survey Plan*," and the "*Multi-Agency Radiation Survey and Site Investigation Manual*" (MARSSIM). A summary of the main features of the DQO process are provided herein.

RELEASE RECORD

The DQO process incorporated hypothesis testing and probabilistic sampling distributions to control decision errors during data analysis. Hypothesis testing is a process based on the scientific method that compares a baseline condition to an alternate condition. The baseline condition is technically known as the null hypothesis. Hypothesis testing rests on the premise that the null hypothesis is true and that sufficient evidence must be provided for rejection. In designing the survey plan, the underlying assumption, or null hypothesis was that residual activity in the survey unit exceeded the release criteria. Rejection of the null hypothesis would indicate that residual activity within the survey unit does not exceed the release criteria. Therefore, the survey unit does satisfy the primary objective of the FSS plan.

The primary objective of the FSS plan was to demonstrate that the level of residual radioactivity in Survey Unit 9802-0000 did not exceed the release criteria specified in the LTP and that the potential dose from residual radioactivity is As Low As Reasonably Achievable (ALARA).

A fundamental precursor to survey design is to establish a relationship between the release criteria and some measurable quantity. This is done through the development of DCGLs. The DCGLs represent average levels of radioactivity above background levels and are presented in terms of surface or mass activity concentrations. Chapter 6 of the LTP describes in detail the modeling used to develop the DCGLs for soil (called Base Case Soil DCGL), existing groundwater radioactivity and future groundwater radioactivity that will be contributed by building basements and footings.

The DCGLs presented in Chapter 6 of the LTP were developed for exposures from three (3) components, that is, residual radioactivity in soil, existing groundwater radioactivity, and future groundwater radioactivity from the burial of concrete foundations or footings from site buildings containing residual radioactivity. Equation 1 shows the mathematical relationship between the three (3) components and the total dose.

Equation 1

$H_{Total} = H_{Soil} + H_{ExistingGW} + H_{FutureGW}$

The total dose under the LTP criteria is twenty-five (25) mrem/yr Total Effective Dose Equivalent (TEDE) from all three (3) components. The allowable total dose under the Connecticut Department of Environmental Protection (CTDEP) radiological remediation standard for CY is nineteen (19) mrem/yr TEDE. To satisfy both the LTP and CY CTDEP criteria, the dose from soil must be reduced when using the existing and future groundwater dose values discussed above.

RELEASE RECORD

This survey area is affected by existing groundwater (reference CY memo ISC 06-024). Therefore, the dose contribution from existing groundwater is bounded by two (2) mrem/yr TEDE.

This survey unit is considered impacted by future groundwater radioactive contamination, as there are underground foundations containing residual radioactive material within the groundwater saturated zone in the area (reference CY memo ISC 06-024). The dose contribution from future groundwater, the third dose component, is bounded by two (2) mrem/yr TEDE.

Equation 2

19 mrem/yr_{Total} = 15 mrem/yr_{Soil} + 2 mrem/yr_{Existing GW}+ 2 mrem/yr_{FutureGW}

The allowable dose for soil in this survey unit is fifteen (15) mrem/yr TEDE as shown by Equation 2 above. The concentration of residual radioactivity resulting in fifteen (15) mrem/yr TEDE is designated as the Operational DCGL, and has been established for the radionuclides of concern as provided in Table 2.

RELEASE RECORD

Table 2 -Radionuclide Specific Base Case Soil DCGLs, Operational DCGLs and Required Minimum Detectable Concentrations (MDCs)			
Radionuclide ⁽¹⁾	Base Case Soil DCGL (ρC/g) ⁽²⁾	Operational DCGL (pC/g) ⁽³⁾	Required MDC (ρC/g) ⁽⁴⁾
Н-3	4.12E+02	2.47E+02	1.65E+01
C-14	5.66E+00	3.40E+00	2.26E-01
Mn-54	1.74E+01	1.04E+01	6.96E-01
Fe-55	2.74E+04	1.64E+04	1.10E+03
Co-60	3.81E+00	2.29E+00	1.52E-01
Ni-63	7.23E+02	4.34E+02	2.89E+01
Sr-90	1.55E+00	9.30E-01	6.20E-02
Nb-94	7.12E+00	4.27E+00	2.85E-01
Тс-99	1.26E+01	7.56E+00	5.04E-01
Ag-108m	7.14E+00	4.28E+00	2.86E-01
Cs-134	4.67E+00	2.80E+00	1.87E-01
Cs-137	7.91E+00	4.75E+00	3.16E-01
Eu-152	1.01E+01	6.06E+00	4.04E-01
Eu-154	9.29E+00	5.57E+00	3.72E-01
Eu-155	3.92E+02	2.35E+02	1.57E+01
Pu-238	2.96E+01	1.78E+01	1.18E+00
Pu-239/240	2.67E+01	1.60E+01	1.07E+00
Am-241 ⁽⁵⁾	2.58E+01	1.55E+01	1.03E+00
Pu-241	8.70E+02	5.22E+02	3.48E+01
Cm-243/244	2.90E+01	1.74E+01	1.16E+00

(1) Bold indicates those radionucldies considered Hard to Detect (HTD)

(2) The Base Case Soil DCGL(s) are specified by the LTP in Chapter 6 and are equivalent to twenty-five (25) mrem/yr TEDE

(3) The Operational DCGL is equivalent to achieving fifteen (15) mrem/yr TEDE

(4) The required MDC is equivalent to achieving one (1) mrem/yr TEDE

(5) Americium-241 can be analyzed by gamma and alpha spectroscopy and is considered to be Easy to Detect (ETD). The preferred result is the alpha spectroscopy's when both analyses are performed

RELEASE RECORD

Another important facet of the DQO process is to identify the radionuclides of concern and determine the concentration variability. During the characterization of the subsurface soils in this survey unit, Cs-137 and Co-60 were identified as the principle gamma emitting radionuclides which were present in sufficient concentrations that could potentially exceed the screening criteria.

Two (2) soil samples were selected to be analyzed by an approved off-site laboratory for all radionuclides specified in Table 2. This exceeds the LTP requirement that a minimum of 5% of the subsurface soil samples be analyzed by an approved off-site laboratory for all HTD radionuclides of concern as specified by the LTP.

As part of the DQOs applied to laboratory processes, analysis results were reported as actual calculated results. Sample report summaries included unique sample identification, analytical method, radionuclide, result, and uncertainty to two (2) standard deviations, laboratory data qualifiers, units, and the required and observed MDC.

4. SURVEY DESIGN

The level of effort associated with planning a survey is based on the complexity of the survey and nature of the hazards. Guidance for preparing FSS plans is provided in Procedure RPM 5.1-11, "*Preparation of Final Status Survey Plans*". The FSS plan uses a sample design that includes either random or biased media sampling.

The DQO process determined that both Cs-137 and Co-60 would be the primary radionuclides of concern in Survey Unit 9802-0000. Other radionuclides positively identified in concentrations greater than the screening criteria during the performance of this FSS were evaluated to ensure adequate survey design. Radionuclide screening or de-selection is a process where an individual radionuclide or aggregates may be considered insignificant and eliminated from the FSS. The criteria for de-selection are concentrations less than 5% for individual radionuclides and less than 10% for aggregates.

The survey unit was classified as a Class B subsurface soils area as individual sample measurements exceeding the unitized DCGL were not expected.

The Sign Test was selected as the non-parametric statistical test. The use of the Sign Test did not require the selection or use of a background reference area, which simplified survey design and implementation. This approach was conservative since it included background Cs-137 as part of the sample set.

LTP Section 5.7.3.2.2 states that there will be a minimum of twenty five (25) measurement locations in a Class B subsurface soils survey unit. In addition, four (4) biased measurements or samples were obtained at the locations of localized remediation efforts where there was the potential for soil contamination. LTP Section 5.7.3.2.2 states that the range of the number of measurements in Class B

RELEASE RECORD

areas corresponds to the range of values for N (for Sign test), considering $\alpha = 0$.05, $\beta = 0.05$, and a relative shift of < 3.0.

The grid pattern and locations of the soil samples were determined using Visual Sample Plan (VSP) in accordance with Procedure RPM 5.1-14, "*Identifying, and Marking Surface Sample Locations for Final Status Survey*." Visual Sample Plan was created by Pacific Northwest National Laboratory (PNNL) for the United States Department of Energy. A systematic triangular grid pattern with a random starting point was selected for sample design, which is appropriate for a Class B subsurface survey area.

Sample locations were identified using AutoCAD-LT, a commercially available plotting software package with coordinates consistent with the Connecticut State Plane System. These coordinates were integrated with a GPS to locate sample locations in the field. Sample Measurement Locations for the design are listed with the GPS coordinates in Table 3.

Table 3 -Sample Measurement Locations with Associated GPS Coordinates for Non-parametric Sample Population		
Designation	Northing	Easting
9802-0000-001F	236636.45	668409.26
9802-0000-002F	236553.03	668361.10
9802-0000-003F	236553.03	668457.42
9802-0000-004F	236553.03	668553.75
9802-0000-005F	236469.61	668312.93
9802-0000-006F	236469.61	668409.26
9802-0000-007F	236469.61	668505.59
9802-0000-008F	236469.61	668601.91
9802-0000-009F	236386.18	668264.77
9802-0000-010F	236386.18	668361.10
9802-0000-011F	236386.18	668457.42
9802-0000-012F	236386.18	668553.75

RELEASE RECORD

Table 3 -Sample Measurement Locations with Associated GPS Coordinates for Non-parametric Sample Population				
9802-0000-013F	236386.18	668650.08		
9802-0000-014F	236386.18	668746.40		
9802-0000-015F	236302.76	668409.26		
9802-0000-016F	236302.76	668505.59		
9802-0000-017F	236302.76	668601.91		
9802-0000-019F	236302.76	668698.24		
9802-0000-020F	236302.76	668794.57		
9802-0000-021F	236219.34	668553.75		
9802-0000-022F	236219.34	668650.08		
9802-0000-023F	236219.34	668746.40		
9802-0000-025F	236135.92	668601.91		

During the performance of the survey, it was discovered that four (4) of the twenty-five (25) sample locations identified for non-parametric testing were deemed to be inaccessible due to the rapid change in elevation from east to west toward the canal, changes to the discharge structure, removal of the rip-rap, and area restoration to the banks of the discharge canal. The four (4) locations identified were 9802-0000-002F, 9802-0000-009F, 9802-000-015F and 9802-0000-023F. Subsequently, four (4) additional sample measurement locations were designated to replace the locations that were deemed to be inaccessible. The location of the samples were determined using Visual Sample Plan (VSP) in accordance with RPM 5.1-14, "*Identifying and Marking Surface Sample Locations for FSS in Open Land Areas*" using a random selection which is appropriate for relocating a small number of sample locations in a Class B area. Sample Measurement Locations for the additional samples are listed with the GPS coordinates in Table 4.

RELEASE RECORD

Table 4 -Sample Measurement Locations with Associated GPS Coordinates for Replacement Sample Locations		
Northing	Easting	
236423.94	668525.90	
236372.76	668545.97	
236177.90	668706.11	
236267.54	668779.86	
	es for Replacement Samp Northing 236423.94 236372.76 236177.90	

In accordance with LTP Section 5.7.3.2.2, four (4) judgmental (biased) samples were collected in this survey area. One (1) judgmental sample was located in the vicinity of the former control building, one (1) judgmental sample was situated at the vicinity of the Circulating Water piping excavation and two (2) judgmental samples were taken along the former location of the Service Building (next to the radiological control area). Sample Measurement Locations for the judgmental samples are listed with the GPS coordinates in Table 5.

Table 5 -Sample Measurement Locations with Associated GPS Coordinates for Judgmental Sample Locations		
Designation	Northing	Easting
9802-0000-026B	236562.45	668535.99
9802-0000-027B	236352.79	668557.07
9802-0000-028B	236501.75	668624.65
9802-0000-029B	236424.41	668725.38

Procedure RPM 5.1-11 specifies that 5% of the samples are required to be selected for HTD analysis. Two (2) soil samples, or about 10% of the number of samples that would be used for non-parametric statistical testing were randomly selected for HTD radionuclide analysis using the Microsoft Excel "RAND" function. Each sample was sent off-site for a full suite analysis of the HTD radionuclides specified in the LTP, Table 2-12, "*Radionuclides Potentially Present at Haddam Neck Plant*" and as provided in Table 2.

The implementation of quality control measures as referenced by Procedure RPM 5.1-24, "Split Sample Assessment for Final Status Survey," included the collection

RELEASE RECORD

of two (2) soil samples for "split sample" analysis by the off-site laboratory. This location was selected randomly using the Microsoft Excel "RAND" function.

Survey Unit 9802-0000 is a subsurface survey unit. Subsequently, no scanning was required.

For this Class B survey unit, the "Investigation Level" for soil sample measurement results are those levels specified in LTP, Table 5-8. Table 6 provides a synopsis of the survey design.

Table 6 – Synopsis of the Survey Design				
Feature	Design Criteria	Basis		
Subsurface Survey Unit Land Area	18,292 m ²	Based on AutoCAD-LT		
Number of Measurements	29 (25 Systematic grid) (4 Judgmental)	IAW LTP Section 5.7.3.2.2 for a Class B Subsurface Soil Survey Unit		
Grid Spacing	29.07 m	Based on triangular grid		
Operational DCGL	4.75 ρCi/g Cs-137 2.29 ρCi/g Co-60	Administratively set to achieve 15 mrem/yr TEDE		
Soil Investigation Level	4.75 ρCi/g Cs-137 2.29 ρCi/g Co-60	IAW Table 5-8 of the LTP		

(1) The allowable dose for soil in this survey unit is fifteen (15) mrem/yr TEDE as the bounding dose from existing and future groundwater has been established based on field data (reference CY memo ISC 06-024).

5. SURVEY IMPLEMENTATION

Final status survey field activities were conducted under Work Plan and Inspection Record (WP&IR) 2006-0007. The WP&IR package included a detailed FSS plan, job safety analysis, job planning checklist and related procedures for reference. Daily briefings were conducted to discuss the expectations for job performance and the safety aspects of the survey. The "Daily Survey Journal" was used to document field activities and other information pertaining to the FSS.

Measurement locations were identified in North American Datum (NAD) 1927 coordinates using GPS coordinates; sample locations were identified and marked with a surveyor's flag or paint for identification.

Twenty-nine (29) subsurface soil samples were collected and packaged in accordance with Haddam Neck Plant (HNP) Procedure RPM 5.1-3, "Collection of

RELEASE RECORD

Sample Media for Final Status Survey" and FSS design. Samples were collected using direct push probe technology (GeoProbe[®]).

All samples were obtained to a depth of three (3) meters or where refusal was encountered due to the presence of bedrock prior to reaching a three (3) meter depth. In addition, four (4) sample locations 9802-0000-002F, 9802-0000-009F, 9802-0000-015F and 9802-0000-023F were relocated using the VSP software due to accessibility issues. Large stones, wood and/or root pieces were removed and the soil matrix was homogenized from each 3 meter soil column. Samples were controlled, transported, stored, and transferred to the off-site laboratory using Chain-of-Custody (COC) protocol in accordance with Procedure RPM 5.1-5, "Chain of Custody for Final Status Survey Samples."

Two (2) samples (9802-0000-008F and 9802-0000-022F) were randomly selected for HTD radionuclide analysis.

The implementation of survey specific quality control measures included the collection of two (2) samples (9802-0000-011F and 9802-0000-013F) for "split sample" analysis.

6. SURVEY RESULTS

All field survey activities were conducted between April 3, 2007 and April 7, 2007.

The off-site laboratory employed for the radiological analyses of samples was General Engineering Laboratories, LLC. The laboratory analyzed the twenty-five (25) samples collected for non-parametric statistical testing, the associated field splits and the four (4) judgmental samples using gamma spectroscopy. Gamma spectroscopy analysis was performed to the required MDCs. Gamma spectroscopy results identified some radionuclides meeting the accepted criteria for detection (i.e., a result greater than two standard deviations uncertainty). However, Cs-137 and Co-60 were the only gamma-emitting radionuclides reported in concentrations exceeding the de-selection criteria.

Cs-137 was identified in six (6) and Co-60 was identified in three (3) of the twenty-five (25) samples collected for non-parametric statistical testing. The mean of the gamma spectroscopic analysis results for the sample population indicated that Cs-137 was present at levels lower than the concentrations of Cs-137 found in surface soil at off-site locations within the vicinity of the HNP as presented in the Health Physics TSD BCY-HP-0063. A summary of the twenty-five (25) samples collected for non-parametric statistical testing results is provided in Table 7.

RELEASE RECORD

Table 7 - Summary of Gamma Spectroscopy Results for Surface Soil Summary of Gamma Spectroscopy Results for Surface Soil					
Samples Comprising the Statistical Sample Population Cs-137 Co-60					
Sample Number	ρCi/g	ρCi/g			
9802-0000-001F	2.09E-02	-4.84E-03			
9802-0000-003F	6.63E-03	9.14E-04			
9802-0000-004F	-8.41E-03	4.07E-03			
9802-0000-005F	9.13E-03	3.34E-03			
9802-0000-006F	1.90E-02	-1.14E-02			
9802-0000-007F	3.96E-03	5.71E-03			
9802-0000-008F	1.42E-02	-5.70E-03			
9802-0000-010F	1.41E-02	1.95E-02			
9802-0000-011F	7.98E-03	2.86E-03			
9802-0000-012F	-2.33E-03	6.22E-03			
9802-0000-013F	5.04E-02	4.90E-02			
9802-0000-014F	5.30E-03	7.41E-04			
9802-0000-016F	1.53E-02	-5.21E-05			
9802-0000-017F	5.65E-03	5.14E-03			
9802-0000-018F	-4.41E-05	-5.22E-03			
9802-0000-019F	4.15E-03	6.44E-03			
9802-0000-020F	9.80E-03	-5.79E-03			
9802-0000-021F	1.66E-02	-1.34E-05			
9802-0000-022F	1.26E-02	-8.10E-03			
9802-0000-024F	2.33E-02	1.46E-02			
9802-0000-025F	1.11E-02	1.06E-02			
9802-0000-030F	2.56E-02	2.82E-02			
9802-0000-031F	5.93E-03	1.84E-02			
9802-0000-032F	2.39E-02	-1.22E-02			
9802-0000-033F	-5.51E-03	9.73E-03			

The off-site laboratory also processed two (2) samples for HTD analysis as required by the sample plan. The requested analyses included alpha spectroscopy, gas proportional counting, and liquid scintillation depending on the radionuclide and the measurement method. All analyses met the required MDC.

RELEASE RECORD

The "sum-of-fractions" or "unity rule" is the mathematical test used to evaluate compliance with radiological criteria for license termination when more than one radionuclide has been determined to be potentially present. The unity rule is:

Equation 3

$$\frac{C_1}{DCGL_1} + \frac{C_2}{DCGL_2} + \frac{C_n}{DCGL_n} \le 1$$

Where: $C_n = \text{concentration of radionuclide } n$ and $DCGL_n = DCGL$ of radionuclide n.

The results of the unity rule calculation for the radionuclides of concern in the statistical sample population for Survey Unit 9802-0000 are provided in Table 8 below.

Table 8 – Results of Unity Calculation for Subsurface Soil Samples Comprising the Statistical Sample Population ⁽³⁾				
Sample Number	Fraction of the Operational DCGL ⁽¹⁾		Unity	
Sample Number	Cs-137	Co-60	Onity	
9802-0000-001F	2.09E-02	-	4.40E-03	
9802-0000-003F	6.63E-03	9.14E-04	1.80E-03	
9802-0000-004F	-	4.07E-03	1.78E-03	
9802-0000-005F	9.13E-03	3.34E-03	3.38E-03	
9802-0000-006F	1.90E-02	-	4.00E-03	
9802-0000-007F	3.96E-03	5.71E-03	3.33E-03	
9802-0000-008F	1.42E-02	-	2.99E-03	
9802-0000-010F	1.41E-02	1.95E-02	1.15E-02	
9802-0000-011F	7.98E-03	2.86E-03	2.93E-03	
9802-0000-012F	-	6.22E-03	2.72E-03	
9802-0000-013F	5.04E-02	4.90E-02	2.12E-02	
9802-0000-014F	5.30E-03	7.41E-04	1.44E-03	

RELEASE RECORD

Table 8 – Results of Unity Calculation for Subsurface Soil Samples Comprising the Statistical Sample Population ⁽²⁾				
Sample Number				
	Cs-137	Cs-137	Unity	
9802-0000-016F	1.53E-02	-	3.22E-03	
9802-0000-017F	5.65E-03	5.14E-03	3.44E-03	
9802-0000-018F	-	-	0.00E+00	
9802-0000-019F	4.15E-03	6.44E-03	3.69E-03	
9802-0000-020F	9.80E-03	-	2.06E-03	
9802-0000-021F	1.66E-02	-	3.50E-03	
9802-0000-022F	1.26E-02	-	2.65E-03	
9802-0000-024F	2.33E-02	1.46E-02	1.13E-02	
9802-0000-025F	1.11E-02	1.06E-02	6.98E-03	
9802-0000-030F	2.56E-02	2.82E-02	1.77E-02	
9802-0000-031F	5.93E-03	1.84E-02	9.30E-03	
9802-0000-032F	2.39E-02	-	5.04E-03	
9802-0000-033F	-	9.73E-03	4.26E-03	

(1) The Operational DCGL is 4.75 ρ Ci/g for Cs-137 and 2.29 ρ Ci/g for Co-60 to achieve fifteen (15) mrem/yr TEDE respectively.

(2) Blank cells indicate that the radionuclide was reported at a negative value in the sample results.

Four (4) biased judgmental subsurface soil samples were collected. The judgmental soil samples were analyzed for Cs-137 and Co-60 in accordance with the DQOs used during the survey design. The samples are denoted as shown in location Table 6, with the sample results shown in Table 9 below.

RELEASE RECORD

Table 9 - Judgmental Sample Results (2)				
Sample Number	Cs-137 ρCi/g	Co-60 ρCi/g	Fraction of the Operational DCGL ⁽¹⁾	
9802-0000-026B	2.29E-03	5.30E-03	2.80E-03	
9802-0000-027B	-	-	0.00E+00	
9802-0000-028B	1.46E-02		3.08E-03	
9802-0000-029B	1.33E-02	2.37E-02	1.32E-02	

(1) The Operational DCGL is 4.75 ρ Ci/g for Cs-137 and 2.29 ρ Ci/g for Co-60 to achieve fifteen (15) mrem/yr TEDE respectively.

(2) Blank cells indicate that the radionuclide was reported at a negative value in the sample results.

7. **QUALITY CONTROL**

The off-site laboratory processed the split samples and performed gamma spectroscopy analysis. Ten percent (10%) of the samples were selected for analysis, which exceeds the 5% minimum required by the LTP. The data were evaluated using USNRC acceptance criteria specified in Inspection Procedure 84750 as detailed in HNP Procedure RPM 5.1-24, "Split Sample Assessment for Final Status Survey".

Cs-137 and Co-60 were not detected in sufficient quantities in the field split results at location 9802-0000-011 to evaluate in accordance with procedure. Evaluation using the reported results for naturally occurring K-40 resulted in acceptable agreement between the field-split results at these locations. An acceptable level of agreement was achieved for both radionuclides of concern in the other field-split sample result (9802-0000-013).

The sample analysis vendor, GEL, maintains quality control and quality assurance plans as part of normal operation. Refer to Attachment 3 for data and data quality analysis results.

8. INVESTIGATIONS AND RESULTS

No investigations were conducted within this survey unit.

9. **REMEDIATION AND RESULTS**

Some minor remediation activities occurred in this survey unit prior to FSS. All above grade and below grade commodities and facility systems were removed and

RELEASE RECORD

properly dispositioned. Contaminated soils were identified, excavated and removed. All excavations were characterized and backfilled with "clean" fill prior to performing FSS. Health Physics TSD BCY-HP-0078, "ALARA Evaluation of Soil Remediation in Support of Final Status Survey," determined that remediation beyond that required to meet the release criteria is unnecessary and that the remaining residual radioactivity in soil was ALARA.

10. CHANGES FROM THE FINAL STATUS SURVEY PLAN

During the performance of the survey, it was discovered that four (4) of the twenty-five (25) sample locations identified for non-parametric testing were deemed to be inaccessible. The four (4) locations identified were 9802-0000-002F, 9802-0000-009F, 9802-0000-015F and 9802-0000-023F. Subsequently, four (4) additional sample measurement locations (9802-0000-030F, 9802-0000-031F, 9802-0000-032F and 9802-0000-033F) were designated to replace the locations that were deemed to be inaccessible. This was accomplished through an addendum to the FSS Plan.

11. DATA QUALITY ASSESSMENT (DQA)

The DQO sample design and data were reviewed in accordance with Procedure RPM 5.1-23, "Data Quality Assessment," for completeness and consistency. The Sign Test was performed on the data and compared to the original assumptions of the DQOs. The evaluation of the Sign Test results demonstrates that the survey unit passes the unrestricted release criteria, thus, the null hypothesis is rejected.

Documentation was complete and legible. Surveys and sample collection were consistent with the DQOs and were sufficient to ensure that the survey unit was properly designated as Class B.

The preliminary data review consisted of calculating basic statistical quantities (e.g., mean, median, standard deviation). The mean and median values are well below the Operational DCGL. Therefore, the survey unit meets the unrestricted release criteria with adequate power as required by the DQOs. The basic statistical quantities for the statistical sample population are provided below in Table 12.

RELEASE RECORD

Table 12 -Basic Statistical Quantities for Cs-137 and Co-60 from the Final Status Survey										
	Cs-137 ρCi/g	Co-60 ρCi/g								
DCGL _{op} :	4.75E+00	2.29E+00								
Minimum Value:	-8.41E-03	-1.22E-02								
Maximum Value:	5.04E-02	2.82E-02								
Mean:	1.16E-02	4.29E-03								
Median:	9.80E-03	3.34E-03								
Standard Deviation:	1.20E-02	1.06E-02								

For both Cs-137 and Co-60, the range of the data, was about four (4) standard deviations, was not a particularly large variation considering that the levels were essentially at existing environmental levels where such variation is to be expected. The difference between the mean and median for both Cs-137 and Co-60 were about 20% of the standard deviation which indicates some skewness in the data. The data was represented graphically through posting plots, a frequency plot, and a quantile plot. The frequency plot indicates positive skewness for both isotopes, as confirmed by the calculated skew of 1.74 for Cs-137 and 0.99 for Co-60.

All data, assessments, and graphical representations are provided in Attachment 4.

12. ANOMALIES

No anomalies were noted.

13. CONCLUSION

Subsurface soils Survey Unit 9802-0000 has met the final DQOs of the FSS plan. The ALARA criteria for soils as specified in Chapter 4 of the LTP were achieved. Elevated Measurement Comparison was not required.

Cs-137 was used for statistical testing to determine the adequacy of the survey unit for FSS.

The sample data passed the Sign Test. The null hypothesis was rejected. The survey unit is properly designated as Class B.

RELEASE RECORD

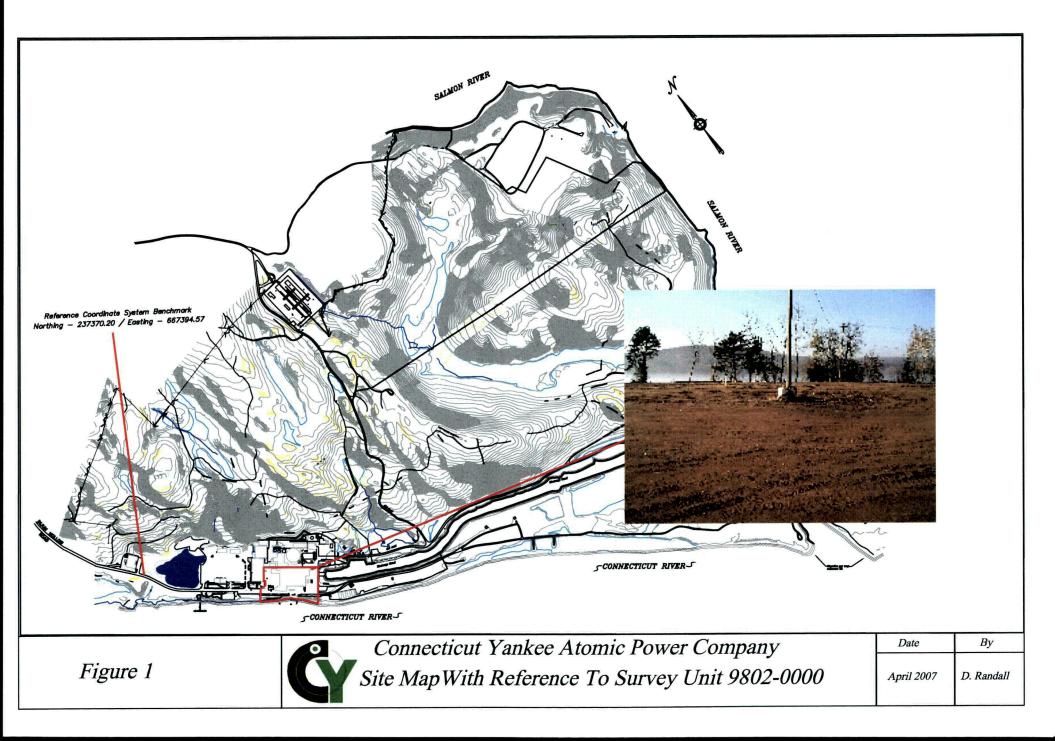
The dose contribution from soil is 0.1 mrem/yr TEDE based on the average radionuclide concentrations in the samples used for non-parametric statistical sampling.

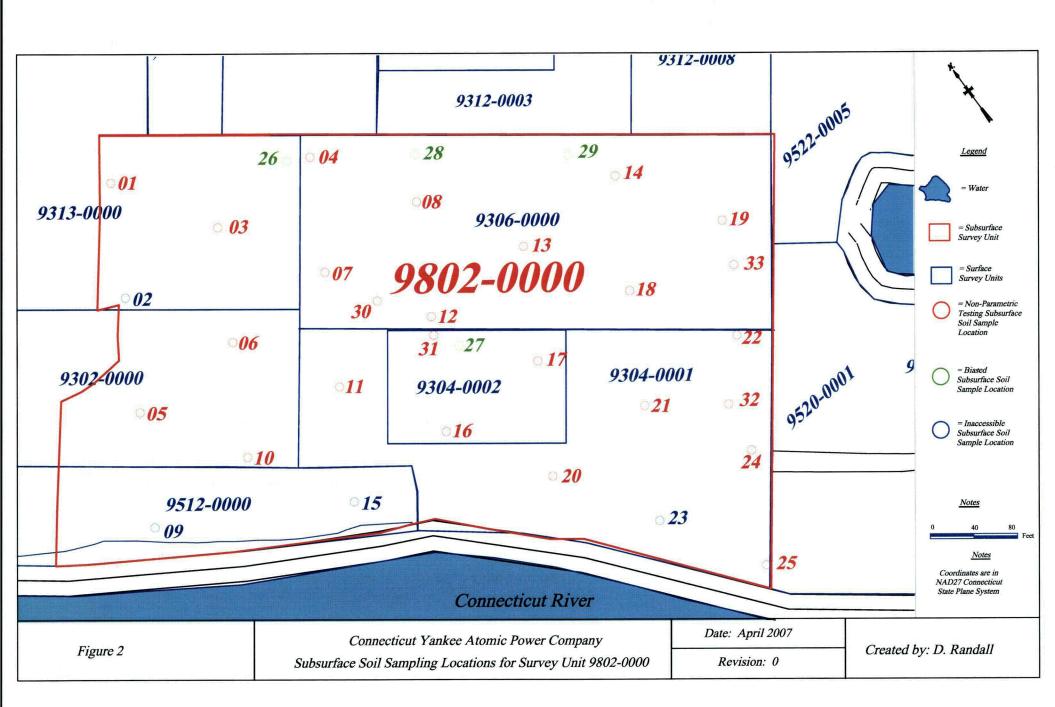
This survey area is affected by existing groundwater (reference CY memo ISC 06-024); therefore the dose contribution from existing groundwater is bounded at two (2) mrem/yr TEDE.

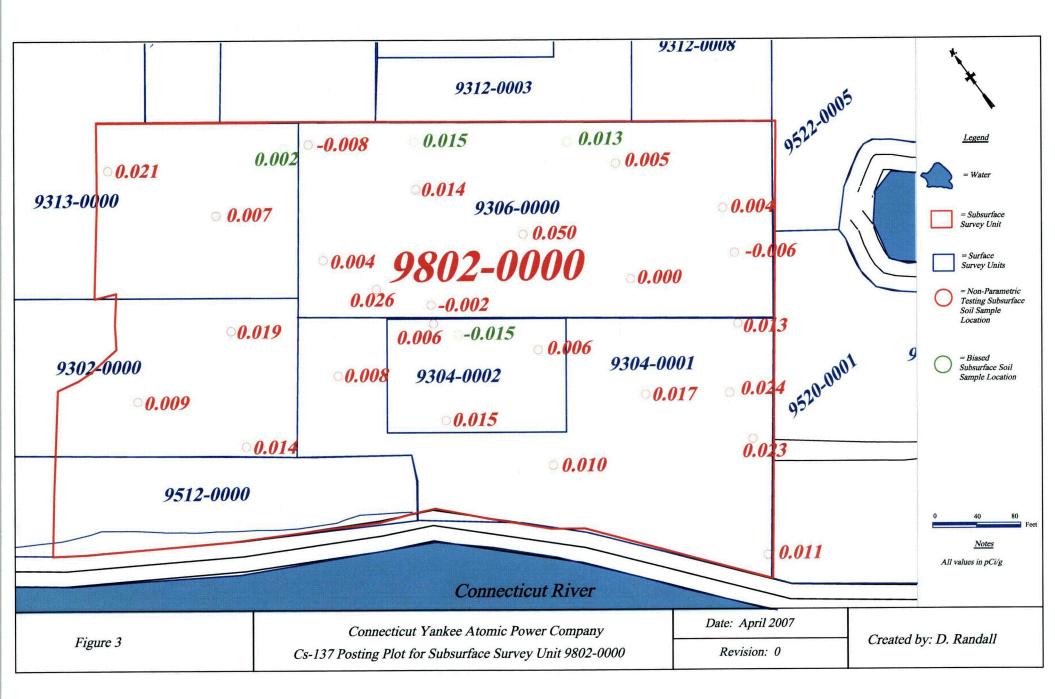
This survey unit is considered impacted by future groundwater radioactive contamination, as there are underground foundations containing residual radioactive material within the groundwater saturated zone in the area (reference CY memo ISC 06-024). The dose contribution from future groundwater, the third dose component, is bounded by two (2) mrem/yr TEDE.

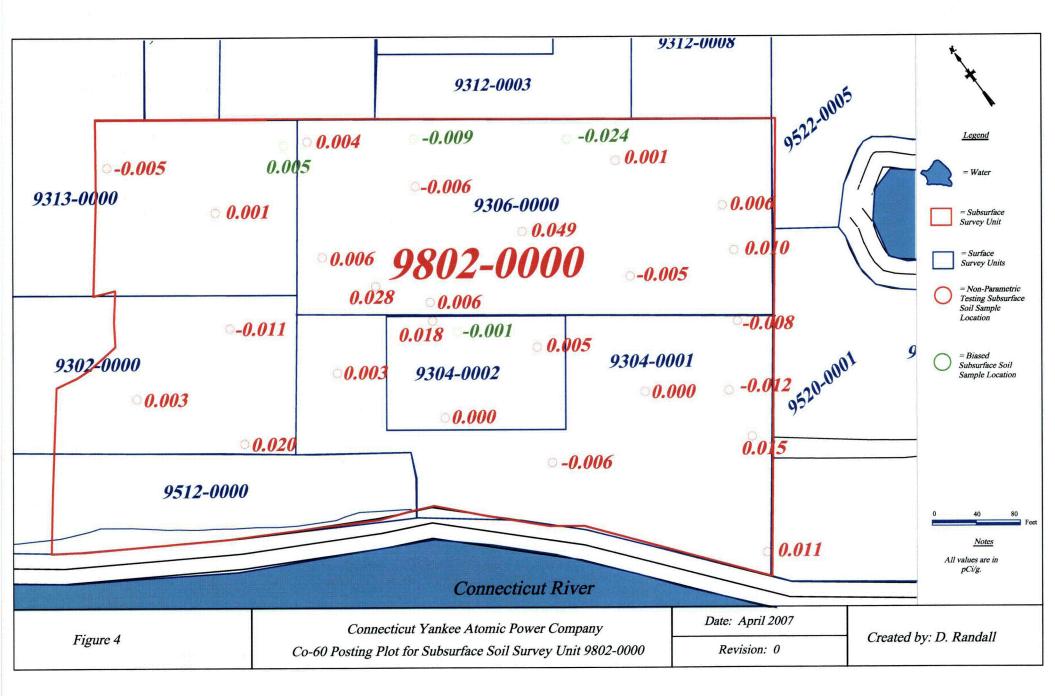
The average total dose from residual radioactivity in this survey unit, including exposures from the three (3) components as described in Section 3, that is, residual radioactivity in soil, existing groundwater radioactivity, and future groundwater radioactivity from the burial of concrete foundations or footings from site buildings containing residual radioactivity, will not exceed 4.1 mrem/yr TEDE. Therefore, Survey Unit 9802-0000 is acceptable for unrestricted release.

14. ATTACHMENTS

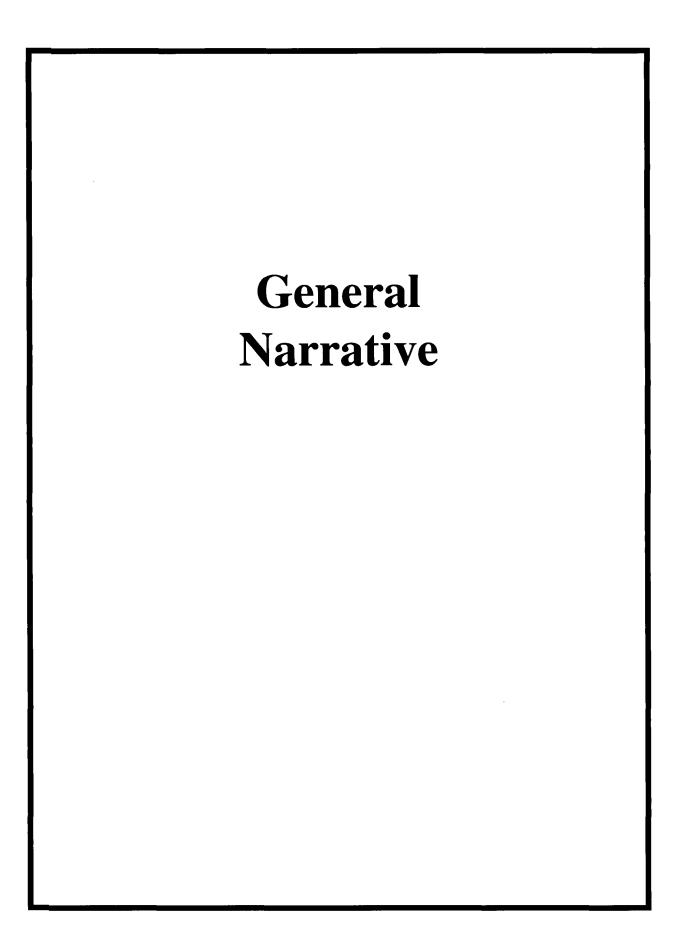

14.1 Attachment 1 – Survey Unit Location Map


14.3 Attachment 2 – Laboratory Results


14.4 Attachment 3 – DQA Results


RELEASE RECORD

ATTACHMENT 1 (FIGURES)



RELEASE RECORD

ATTACHMENT 2 (LABORATORY DATA)

General Narrative for Connecticut Yankee Atomic Power Co. Work Order: 183857 SDG: MSR#07-0143

April 16, 2007

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary

Sample receipt

The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on April 10, 2007 for analysis. Shipping container temperatures were checked, documented, and within specifications. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage.

Sample Identification The laboratory received the following samples:

Laboratory	Sample
Identification	Description
183857001	9802-0000-001F
183857002	9802-0000-003F
183857003	9802-0000-004F
183857004	9802-0000-005F
183857005	9802-0000-006F
183857006	9802-0000-007F
183857007	9802-0000-008F
183857008	9802-0000-010F
183857009	9802-0000-011F
183857010	9802-0000-011FS
183857011	9802-0000-012F
183857012	9802-0000-013F
183857013	9802-0000-013FS
183857014	9802-0000-014F
183857015	9802-0000-016F
183857016	9802-0000-017F
183857017	9802-0000-018F
183857018	9802-0000-019F
183857019	9802-0000-020F
183857020	9802-0000-021F
183857021	9802-0000-022F
183857022	9802-0000-024F
183857023	9802-0000-025F
183857024	9802-0000-026B
183857025	9802-0000-027B

183857026	9802-0000-028B
183857027	9802-0000-029B
183857028	9802-0000-030F
183857029	9802-0000-031F
183857030	9802-0000-032F
183857031	9802-0000-033F

Items of Note

There are no items to note.

Case Narrative

Sample analyses were conducted using methodology as outlined in GEL Laboratories, LLC (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Analytical Request

Twenty-nine samples were analyzed for FSSGAM. Two samples were analyzed for FSSALL.

Data Package

The enclosed data package contains the following sections: General Narrative, Chain of Custody and Supporting Documentation, Data Review Qualifier Definitions, and data from the following fractions: Radiochemistry.

I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

Cley A for Cheryl Jones

Project Manager

State	Certification
Alaska	UST-062
Arizona	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California	01151CA
Colorado	GenEngLabs
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA	WG-15J
Florida/NELAP	E87156
Georgia	E87156 (FL/NELAP)
Hawaii	N/A
Idaho	N/A
Illinois	200029
Indiana	C-SC-01
Kansas	E-10332
Kentucky	90129
Louisiana	03046
Maryland	270
Massachusetts	M-SC012
Michigan	9903
Nevada	SC12
New Jersey	SC002
New Mexico	FL NELAP E87156
New York	11501
North Carolina	233
North Carolina Drinking W	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania	68-00485
South Carolina	10120001/10585001/10120002
Tennessee	02934
Texas NELAP	T104704235-06-TX
U.S. Dept. of Agriculture	<u>S-52597</u>
US Army Corps of Engineer	N/A
Utah	8037697376 GEL
Vermont	VT87156
Virginia	00151
Washington	C1641

List of current GEL Certifications as of 16 April 2007

Chain of Custody and Supporting Documentation

Connecticut Yankee Atomic Power Company 362 Injun Hollow Road, East Hampton, CT 06424 860-267-2556 Chain of Custody												No. 2007-00115
Project Name: Haddam Ne	roject Name: Haddam Neck Decommissioning						A	nalyses	Reques	sted	Lab Use Only	
Contact Name & Phone: Jack McCarthy 860-267-39	924		Media Code	Sample Type	Container Size-						Comments:	
Analytical Lab (Name, Cit General Engineering Labor 2040 Savage Road Charleston, SC 29407 ATT: Cheryl Jones (843-5	ratories			Code	&Type Code							
Priority: 30 D. 14 D Other:	D. 🛛 7 D.					AM	LL				183	8571,
Sample Designation	Date	Time				FSSGAM	FSSALL				Comment, Preservation	Lab Sample ID
9802-0000-001F	4/5/07	1030	TS	С	BP	X						
9802-0000-003F	4/5/07	0945	TS	С	BP	X						
9802-0000-004F	4/5/07	0815	TS	С	BP	X						
9802-0000-005F	4/5/07	1300	TS	С	BP	X						
9802-0000-006F	4/5/07	1055	TS	C	BP	X						· ·
9802-0000-007F	4/5/07	0755	TS	C	BP	X						
9802-0000-008F	4/4/07	1305	TS	C	BP		X					
9802-0000-010F	4/5/07	1120	TS	C	BP	X						
9802-0000-011F	4/4/07	0810	TS	C	BP	X						
9802-0000-011FS	4/4/07	0810	TS	C	BP	X						
9802-0000-012F	4/4/07	1110	TS	C	BP	X			1			
NOTES: PO #: 002332	MSR	#: 07-0143		🛛 LTP	QA	Ē	Radwas	te QA		Non QA	Samples Shipped Via:	Internal Container Temp.:]3 Deg. C Custody Sealed?
1) Refine Ished By		Date/Tim 4/9/07 /		2) Rece		John	1	Date/Time 4/10/07 9: /6		5 9:15	Hand Other	Custody Seal Intact?
3) Relinquished By		Date/Tim	e	4) Rece	ived By	Date/Time					Bill of Lading #	Y N O
5) Relinquished By		Date/Tim	le	6) Rece	ived By	Date/Time						

.

.

Page 6 of 114

•

Connecticut Y 362 Injun	l y								No. 2007-00116				
Project Name: Haddam Neck Decommissioning							A	nalyse	s Reque	sted		Lab Use Only	
Contact Name & Phone: Jack McCarthy 860-267-3	924		Media Code	Sample Type	Container Size-							Comments:	
Analytical Lab (Name, Ci General Engineering Labo 2040 Savage Road Charleston, SC 29407 ATT: Cheryl Jones (843-5	ratories			Code	&Type Code								
Priority: 30 D. 14 I Other:	D. 🛛 7 D.]			AM	LLL					18	3857 /
Sample Designation	Date	Time				FSSGAM	FSSALL					Comment, Preservation	Lab Sample ID
9802-0000-013F	4/4/07	1035	TS	С	BP	X							
9802-0000-013FS	4/4/07	1035	TS	С	BP	X							
9802-0000-014F	4/4/07	0950	TS	С	BP	X					1		
9802-0000-016F	4/4/07	0730	TS	C	BP	X							
9802-0000-017F	4/3/07	1422	TS	C	BP	X	[
9802-0000-018F	4/4/07	0830	TS	C	BP	X							
9802-0000-019F	4/3/07	1025	TS	C	BP	X							
9802-0000-020F	4/3/07	1534	TS	C	BP	X							
9802-0000-021F	4/3/07	1400	TS	C	BP	X							
9802-0000-022F	4/3/07	1050	TS	C	BP		X	<u> </u>	<u> </u>				
9802-0000-024F	4/3/07	1110	TS	C	BP	X				<u> </u>			
NOTES: PO #: 002332	MSR #	#: 07-0143		🛛 LT	LTP QA Radwaste QA Non QA						Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp.: <u>15</u> Deg. C Custody Sealed?	
1) Relinquisted By		Date/Tim		2) Rece	ed By	Date/Time 4/10/07 9.15					9:15	Other	Custody Seal Intact?
3) Relinquished By		Date/Tim	e	4) Rece	ved By	Date/Time						Bill of Lading #	Y N D
5) Relinquished By		Date/Tim	e	6) Recei	ved By	Date/Time							

.

Page 7 of 114

.

Connecticut Y 362 Injun		ıy			Ch	ain o	of Cu	stody	y Form	No. 2007-00117			
Project Name: Haddam N	eck Decomn	nissioning					A	nalyses	Reques	sted		Lab Use Only	
Contact Name & Phone: Jack McCarthy 860-267-3	924		Media Code	Sample Type	Container Size-							Comments:	
Analytical Lab (Name, Ci General Engineering Labo 2040 Savage Road Charleston, SC 29407 ATT: Cheryl Jones (843-5	ratories			Code	&Type Code								
Priority: 30 D. 14 I Other:	D. 🛛 7 D.					AM						l (83857/
Sample Designation	Date	Time				FSSGAM						Comment, Preservation	Lab Sample ID
9802-0000-025F	4/3/07	1313	TS	С	BP	X						· · · · · · · · · · · · · · · · · · ·	
9802-0000-026B	4/5/07	0840	TS	С	BP	X			<u> </u>	<u> </u>			
9802-0000-027B	4/3/07	1452	TS	С	BP	X				<u> </u>			
9802-0000-028B	4/4/07	1330	TS	C	BP	X							
9802-0000-029B	4/4/07	1010	TS	С	BP	X							
9802-0000-030F	4/5/07	1330	TS	C	BP	X							
9802-0000-031F	4/5/07	1350	TS	C	BP	X					_		
9802-0000-032F	4/5/07	1410	TS	C	BP	X							
9802-0000-033F	4/5/07	1430	TS	C	BP	X							
······													
				<u> </u>					L				
NOTES: PO #: 002332	MSR a	¥: 07-0143		🛛 LTF	'QA		Radwa	ste QA		Non ()A	Samples Shipped Via: Fed Ex UPS Hand	Internal Container Temp.: <u>15</u> Deg. C Custody Sealed?
1) Relinquished By	*	Date/Tim 4/9/07	e 1015	2) Recei	ved By	Date/Time 4/10/07 9:15						Other	Custody Seal Intact?
3) Relinquished By		Date/Tim		4) Rece	ved By	<i>(</i>	- v	·	Date/			Bill of Lading #	Y 🎾 N 🗆
5) Relinquished By		Date/Tim	e	6) Recei	ived By	Date/Time							

Page 8 of 114

Connecticut Yankee Statement of Work for Analytical Lab Services

CY-ISC-SOW-001

Work Order Number: [83857] Shipping Cehtainer ID: Sec GEL SRR Chain of Custody # 2007-00/17, 2007-00/16, 2007 1. Custody Seals on shipping container intact? Yes [A] No [] 2. Custody Seals dated and signed? Yes [A] No [] 3. Chain-of-Custody record present? Yes [A] No [] 4. Cooler temperature See GEL SRR 5. Vermiculite/packing materials is: Wet [] Dry [A] 6. Number of samples in shipping container: 31 . 7. Sample holding times exceeded? Yes [] No [A] 8. Samples have: Xappropriate sample labels X_tape	SDG#:MSR#c	07-0143		
Shipping Cohtainer ID: <u>Sec GEL SRR</u> Chain of Custody # <u>2007-00117</u> 2007-00116 2007 1. Custody Seals on shipping container intact? Yes [] No [] 2. Custody Seals dated and signed? Yes [] No [] 3. Chain-of-Custody record present? Yes [] No [] 4. Cooler temperature <u>Sec GEL SRR</u> 5. Vermiculite/packing materials is: Wet [] Dry [A] 6. Vermiculite/packing materials is: Wet [] Dry [A] 7. Sample holding times exceeded? Yes [] No [A] 8. Samples have: X_tapehazard labels X_custody seals X_appropriate sample labels 9. Samples are: X_in good conditionleaking brokenhave air bubbles 0. Were any anomalies identified in sample receipt? Yes [] No [A] 1. Description of anomalies (include sample numbers):	19	63857		
1. Custody Seals on shipping container intact? Yes [\$\vec{1}\$] No [] 2. Custody Seals dated and signed? Yes [\$\vec{1}\$] No [] 3. Chain-of-Custody record present? Yes [\$\vec{1}\$] No [] 4. Cooler temperature		SRR Chain of Custo	dy #_2007-06 117, 200	7-00116 2007-0
3. Chain-of-Custody record present? Yes [↓] No [] 4. Cooler temperatureSEC_GEL_SRR 5. Vermiculite/packing materials is: Wet [] Dry [↓] 5. Number of samples in shipping container:31 7. Sample holding times exceeded? Yes [] No [Å] 8. Samples have: X_tapehazard labels X_custody seals X_appropriate sample labels 9. Samples are: X_in good conditionleaking hrave air bubbles 0. Were any anomalies identified in sample receipt? Yes [] No [Å]				•
4. Cooler temperature 5. Vermiculite/packing materials is: 5. Wet [] Dry M 6. Number of samples in shipping container: 7. Sample holding times exceeded? 7. Sample holding times exceeded? 8. Samples have: ▲ tapehazard labels ▲ tapehazard labels ④ custody seals ▲ appropriate sample labels 9. Samples are: ▲ in good conditionleaking	2. Custody Seals dated and signed?		Yes [X No []	
5. Vermiculite/packing materials is: Wet [] Dry M 6. Number of samples in shipping container: 31 7. Sample holding times exceeded? Yes [] No D 8. Samples have:	3. Chain-of-Custody record present?	?	Yes [] No []	• • •
5. Number of samples in shipping container: 31 7. Sample holding times exceeded? Yes [] No [Å] 8. Samples have:	I. Cooler temperature <u>See</u>	GEL SRR	·····	
Sample holding times exceeded? Yes [] No p? 8. Samples have:		71	Wet [] Dry [4]	
A tapehazard labels A custody seals A appropriate sample labels 9. Samples are: A in good conditionleaking brokenhave air bubbles 0. Were any anomalies identified in sample receipt? Yes [] No [A] 1. Description of anomalies (include sample numbers):			Yes [] No [2]	
			els	
	9. Samples are:			
 0. Were any anomalies identified in sample receipt? Yes [] No [] 1. Description of anomalies (include sample numbers):		leaking		
1. Description of anomalies (include sample numbers):	broken	have air bubbles		
<u> </u>). Were any anomalies identified in s	ample receipt?	Yes [] No [4	
ample Custodian/I shoretory: NMA Pull- Date: 4/10/1/7	I. Description of anomalies (include s	sample numbers):		
ample Custodian/I shoretory: NMA P. Jul- Date: 4/10/107				
ample Custodian/I shorstory: With Y Jul Date: 4/10/117		<u> </u>		••••••••••••••••••••••••••••••••••••••
anifite community and be that a state of the second state of the s	ample Custodian/Laboratory:	n Yolaba	_ Date: 4/10/07	
elephoned to:OnBy	alashanad ta	OnE	By	

SAMPLE RECEIPT & REVIEW FORM

	PM use only					
Clien	Client: VANK SDG/ARCOC/Work Order: 183857					
					PM(A) Review-(ensure non-conforming items are resolved prior to signing):	
Received By: JP					Christian	
·						
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (Required for Non-Conforming Items)	
	hipping containers received nect and sealed?				Circle Applicable: seals broken damaged container leaking container other (describe)	
2 pi R	amples requiring cold reservation within (4 +/- 2 C)? ecord preservation method.				Circle Coolant # ice bags blue ice dry ice none other describe)	
	hain of custody documents cluded with shipment?					
	ample containers intact and caled?				Circle Applicable: seals broken damaged container leaking container other (describe)	
5 5	amples requiring chemical reservation at proper pH?				Sample ID's, containers affected and observed pH:	
6 V	OA vials free of headspace leftined as < 6 mm bubble)?				Sample ID's and containers affected:	
7 (1	re Encore containers present? f yes, immediately deliver to OA laboratory)					
	amples received within holding me?				Id's and tests affected:	
191	ample ID's on COC match ID's n bottles?				Sample ID's and containers affected:	
1101	ate & time on COC match date time on bottles?				Sample ID's affected:	
	umber of containers received atch number indicated on COC?				Sample ID's affected:	
	OC form is properly signed in linguished/received sections?					
	ir Bill ,Tracking #'s, & dditional Comments	FelEx 791665929273-15° 9295-13°				
	uspected Hazard Information	Non- Regulated	Regulated	High Level	RSO RAD Receipt #	
	adiological Classification?	X			Maximum Counts Observed*: 40 CPM	
	CB Regulated?	\boldsymbol{X}				
C M M	nipped as DOT Hazardous (aterial? If yes, contact Waste (anager or ESH Manager.	X			Hazard Class Shipped: UN#:	
	egulated as a Foreign Soil?	X				
Pl	M (Hage 1A) at it 40f Hazard clas	sificat	ion:_		Initials Date: 4/10/07	

Subject: Area 9802 From: "Rick E. Gault" <Gault@CYAPCO.com> Date: Mon, 9 Apr 2007 12:25:45 -0400 To: "Cheryl Jones" <cj@gel.com>

Cheryl;

We're sending 31 samples under MSR 07-0143 to GEL today. All of the samples have a 7 day TAT request. It is acceptable for GEL to use the traced/untraced Tc-99 process for these quick TAT requests. See attached COC for requested analyses.

We will be sending another batch toward the end of the week (about 17-21 samples).

Thanks; Rick Gault CYAPCO 860-267-3903

	Content-Description:	COC 07_00115_00116_00117.pdf
COC 07_00115_00116_00117.pdf	Content-Type:	application/octet-stream
	Content-Encoding:	base64

~

Data Review Qualifier Definitions

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL</p>
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL</p>
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- $N/A\,$ Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

RADIOLOGICAL ANALYSIS

Radiochemistry Case Narrative Connecticut Yankee Atomic Power Co. (YANK) Work Order 183857

Method/Analysis Information

Product:	Alphaspec Am241, Cm, Solid ALL FSS
Analytical Method:	DOE EML HASL-300, Am-05-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	624202
Prep Batch Number:	624162
Dry Soil Prep GL-RAD-A-021 Batch Number:	624161

Sample ID	Client ID
183857007	9802-0000-008F
183857021	9802-0000-022F
1201312066	Method Blank (MB)
1201312067	183857007(9802-0000-008F) Sample Duplicate (DUP)
1201312068	183857007(9802-0000-008F) Matrix Spike (MS)
1201312069	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 15.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC The following sample was used for QC: 183857007 (9802-0000-008F).

QC Information All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Alphaspec Pu, Solid-ALL FSS
Analytical Method:	DOE EML HASL-300, Pu-11-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	624203
Prep Batch Number:	624162
Dry Soil Prep GL-RAD-A-021 Batch Number:	624161

Sample ID	Client ID
183857007	9802-0000-008F
183857021	9802-0000-022F
1201312070	Method Blank (MB)
1201312071	183857007(9802-0000-008F) Sample Duplicate (DUP)
1201312072	183857007(9802-0000-008F) Matrix Spike (MS)
1201312073	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 15.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857007 (9802-0000-008F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Pu241, Solid-ALL FSS
Analytical Method:	DOE EML HASL-300, Pu-11-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	624204
Prep Batch Number:	624162
Dry Soil Prep GL-RAD-A-021 Batch Number:	624161

Sample ID	Client ID
183857007	9802-0000-008F
183857021	9802-0000-022F
1201312074	Method Blank (MB)
1201312075	183857007(9802-0000-008F) Sample Duplicate (DUP)
1201312076	183857007(9802-0000-008F) Matrix Spike (MS)
1201312077	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-035 REV# 9.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857007 (9802-0000-008F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from

referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Gamma,Solid-FSS GAM & ALL FSS 226 Ingrowth Waived
Analytical Method:	EML HASL 300, 4.5.2.3
Prep Method:	Dry Soil Prep
Analytical Batch Number:	624576
Prep Batch Number:	624159

Client ID
9802-0000-001F
9802-0000-003F
9802-0000-004F
9802-0000-005F
9802-0000-006F
9802-0000-007F
9802-0000-008F
9802-0000-010F
9802-0000-011F
9802-0000-011FS
9802-0000-012F
9802-0000-013F
9802-0000-013FS
9802-0000-014F
9802-0000-016F
9802-0000-017F
9802-0000-018F
9802-0000-019F
9802-0000-020F
9802-0000-021F
Method Blank (MB)
183857002(9802-0000-003F) Sample Duplicate (DUP)
Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857002 (9802-0000-003F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to interference.	Cesium-134	183857016
		Europium-155	183857008
			183857010
			183857017
		Manganese-54	183857004
			183857017
UI	Data rejected due to low abundance.	Americium-241	183857002
			183857004
			183857007
			183857013
		Bismuth-212	183857003
			183857013
			1201312935
		Cesium-134	183857002
			183857003
			183857004
			183857005
			183857006
			183857007
			183857009
			183857011
			183857012
			183857013
			183857014
			183857015
			183857017
			183857018
			183857020
			1201312935

Method/Analysis Information

Product:	Gamma,Solid-FSS GAM & ALL FSS 226 Ingrowth Waived
Analytical Method:	EML HASL 300, 4.5.2.3
Prep Method:	Dry Soil Prep
Analytical Batch Number:	624577
Prep Batch Number:	624161

Sample ID	Client ID
183857021	9802-0000-022F
183857022	9802-0000-024F
183857023	9802-0000-025F
183857024	9802-0000-026B
183857025	9802-0000-027B
183857026	9802-0000-028B
183857027	9802-0000-029B
183857028	9802-0000-030F
183857029	9802-0000-031F
183857030	9802-0000-032F
183857031	9802-0000-033F
1201312937	Method Blank (MB)
1201312938	183857022(9802-0000-024F) Sample Duplicate (DUP)
1201312939	Laboratory Control Sample (LCS)

SOP Reference

•

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857022 (9802-0000-024F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

The sample and the duplicate, 1201312938 (9802-0000-024F) and 183857022 (9802-0000-024F), did not meet the relative percent difference requirement for Ra-226 and Bi-214, however they do meet the relative error ratio requirement with value of 2.50269.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to low abundance.	Bismuth-212	183857026
			183857027
			183857028
			183857031
		Cesium-134	183857021
			183857030
			183857031
			1201312938
		Europium-154	183857022
			1201312938
UI	Data rejected due to no valid peak.	Cesium-134	183857026

Method/Analysis Information

Product:	GFPC, Sr90, solid-ALL FSS
Analytical Method:	EPA 905.0 Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	624234
Prep Batch Number:	624162
Dry Soil Prep GL-RAD-A-021 Batch Number:	624161

Sample ID	Client ID
183857007	9802-0000-008F
183857021	9802-0000-022F
1201312111	Method Blank (MB)
1201312112	183857007(9802-0000-008F) Sample Duplicate (DUP)
1201312113	183857007(9802-0000-008F) Matrix Spike (MS)
1201312114	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-004 REV# 11.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857007 (9802-0000-008F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Tc99, Solid-ALL FSS
Analytical Method:	DOE EML HASL-300, Tc-02-RC Modified
Analytical Batch Number:	624178

Sample ID	Client ID
183857007	9802-0000-008F
183857021	9802-0000-022F
1201311992	Method Blank (MB)
1201311993	183857007(9802-0000-008F) Sample Duplicate (DUP)
1201311994	183857007(9802-0000-008F) Matrix Spike (MS)
1201311995	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-005 REV# 14.

<u>Calibration Information:</u>

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857007 (9802-0000-008F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Fe55, Solid-ALL FSS
Analytical Method:	DOE RESL Fe-1, Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	624176
Prep Batch Number:	624162
Dry Soil Prep GL-RAD-A-021 Batch Number:	624161

Sample ID	Client ID
183857007	9802-0000-008F
183857021	9802-0000-022F
1201311984	Method Blank (MB)
1201311985	183857007(9802-0000-008F) Sample Duplicate (DUP)
1201311986	183857007(9802-0000-008F) Matrix Spike (MS)
1201311987	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-040 REV# 4.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857007 (9802-0000-008F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Ni63, Solid-ALL FSS
Analytical Method:	DOE RESL Ni-1, Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	625941
Prep Batch Number:	624162
Dry Soil Prep GL-RAD-A-021 Batch Number:	624159

Sample ID	Client ID
183857007	9802-0000-008F
183857021	9802-0000-022F
1201316374	Method Blank (MB)
1201316375	183857021(9802-0000-022F) Sample Duplicate (DUP)
1201316376	183857021(9802-0000-022F) Matrix Spike (MS)
1201316377	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-022 REV# 8.

<u>Calibration Information:</u>

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857021 (9802-0000-022F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples 183857007 (9802-0000-008F) and 183857021 (9802-0000-022F) were reprepped due to low/high recovery.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	LSC, Tritium Dist, Solid - 3 pCi/g
Analytical Method:	EPA 906.0 Modified
Analytical Batch Number:	624179

Sample ID	Client ID
183857007	9802-0000-008F
183857021	9802-0000-022F
1201311996	Method Blank (MB)
1201311997	183857021(9802-0000-022F) Sample Duplicate (DUP)
1201311998	183857021(9802-0000-022F) Matrix Spike (MS)
1201311999	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-002 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857021 (9802-0000-022F).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint C14, Solid All,FSS
Analytical Method:	EPA EERF C-01 Modified
Analytical Batch Number:	624180

Sample ID	Client ID
183857007	9802-0000-008F
183857021	9802-0000-022F
1201312000	Method Blank (MB)
1201312001	183857021(9802-0000-022F) Sample Duplicate (DUP)
1201312002	183857021(9802-0000-022F) Matrix Spike (MS)
1201312003	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-003 REV# 9.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 183857021 (9802-0000-022F).

QC Information

All of the QC samples met the required acceptance limits.

<u>Technical Information:</u>

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. A nonconformance report (NCR) was not generated for this SDG.

Additional Comments

Additional comments were not required for this sample set.

Qualifier information

Manual qualifiers were not required.

<u>Certification Statement</u>

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer/Date:

- 4/17/07 # Vellat

SAMPLE DATA SUMMARY

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

YANK001 Connecticut Yankee Atomic Power Co.

Client SDG: MSR#07-0143 GEL Work Order: 183857

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- ND The analyte concentration is not detected above the detection limit.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones.

the Yellat

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	mpany : dress :	Connecticut 362 Injun Ho		tomic Power						
	ntact:	East Hampto Mr. Jack Mc Soils PO# 00	-							007
PIQ	ject:	50115 PO# 00	12332							
		Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date:				000-001F 001 2-07 2-07	F Project: YANK01204 Client ID: YANK001 Vol. Recv.:			
		Collector: Moisture:			Client 7.16%					
Parameter		Qualifier	Result	Uncertainty		TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Sp	ec Analy	-								
Gamma,Solid-	-		226 Ingro	wth						
Waived			0.600	(0.110	0.0000	(0.110	0.0470	<u> </u>		
Actinium-228			0.680	+/-0.119	0.0339		0.0678	pCi/g	MJH1 04/13/0	07 1827 624576
Americium-24	41	U	0.0251	+/-0.0754		+/-0.0754	0.125	pCi/g		
Bismuth-212			0.360	+/-0.180	0.0803	+/-0.180	0.161	pCi/g		
Bismuth-214			0.699	+/-0.085	0.019		0.0379	pCi/g		
Cesium-134		U	0.0248	+/-0.0151		+/-0.0151	0.0253	pCi/g		
Cesium-137		U	0.0209	+/-0.0135		+/-0.0135	0.0245	pCi/g		
Cobalt-60		U -	-0.00484	+/-0.0122		+/-0.0122	0.0199	pCi/g		
Europium-152		U	-0.0161	+/-0.0429		+/-0.0429	0.0581	pCi/g		
Europium-154		U	0.00874	+/-0.0427	0.0317	+/0.0427	0.0633	pCi/g		
Europium-15	5	U	0.0397	+/-0.0462		+/-0.0462	0.0696	pCi/g		
Lead-212			0.668	+/-0.0618	0.0165	+/-0.0618	0.0331	pCi/g		
Lead-214			0.725	+/-0.080	0.0191	+/-0.080	0.0381	pCi/g		
Manganese-54	4	U -	-0.00121	+/-0.0138		+/-0.0138	0.0209	pCi/g		
Niobium–94		U	0.0025	+/0.0116	0.010	+/-0.0116	0.0201	pCi/g		
Potassium-40)		9.90	+/-0.821	0.0883		0.176	pCi/g		
Radium–226			0.699	+/-0.085	0.019	+/-0.085	0.0379	pCi/g		
Silver-108m		U-(0.000562	+/0.011	0.00977	+/0.011	0.0195	pCi/g		
Thallium–208	5		0.193	+/-0.0284	0.00979	+/-0.0284	0.0196	pCi/g		
The following F	Pron Mo	thads were no	rformed							
Method			inined			Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry S	Soil Prep GL-F	RAD-A-0	21		LXM2	04/10/0	1040	624159	
The following A	Analytica	al Methods we	re perfor	med						
Method		ription	•							
l	EML	HASL 300, 4.	5.2.3							
Notes:										
The Qualifier	s in this	report are de	efined as	follows :						
-		rrogate comp								
7 mary 0	- 15 a su	in ogute comp	Gunu							

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch N
		Client Sample ID: Sample ID:	9802–0000–001F 183857001	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
	Project:	Mr. Jack McCarthy Soils PO# 002332		
	Contact:	East Hampton, Connecticut 06424		Report Date: April 17, 2007
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

tact:	& ALL FSS UI	Carthy 02332 nple ID: : te: ate: Result	Uncertainty	9802–00 1838570 TS 05–APR 10–APR Client 5.86% LC	-07	(Project:	Ý ANK Ý ANK	te: April 17, 20 01204 001 Analyst Date	007 Time Batch
ect: c Analysi FSS GAM	Soils PO# 00 Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture: Qualifier is & ALL FSS	02332 nple ID: : te: ate: Result 226 Ingrov		1838570 TS 05–APR 10–APR Client 5.86%	02 07 07		Client ID: Yol. Recv.:	YANK	.001	Time Batch
c Analysi FSS GAM	Sample ID Matrix: Collect Da Receive Da Collector: Moisture: Qualifier is & ALL FSS UI	: te: ate: Result 226 Ingrow		1838570 TS 05–APR 10–APR Client 5.86%	02 07 07		Client ID: Yol. Recv.:	YANK	.001	Time Batch
FSS GAM	is & ALL FSS UI	226 Ingrov		LC	TPU	MDA	Units	DF	Analyst Date	Time Ratch
FSS GAM	& ALL FSS UI	-	wth						•	Time Daten
	UI	-	wth							
1		0.756								
1		0.750	+/0.128	0.0367	+/-0.128	0.0733	pCi/g		MJH1 04/13/0	7 1827 62457
1		0.00	+/-0.0201		+/-0.0201	0.0351	pCi/g pCi/g		WIJIII 04/15/0	1021 02451
	TT									
	U	0.00	+/-0.183	0.0865	+/-0.183	0.173	pCi/g			
	U									
	U									
	U ·		+/-0.0413	0.0345	+/-0.0413	0.069				
	U	0.0514	+/-0.0371	0.0286	+/-0.0371	0.0572	pCi/g			
		0.648	+/-0.0795	0.0164	+/-0.0795	0.0328	pCi/g			
		0.641	+/-0.0829	0.0206	+/-0.0829	0.0411	pCi/g			
	U	0.0131	+/-0.0159	0.0113	+/-0.0159	0.0226	pCi/g			
	U									
					+/-0.0841					
	П									
	Ũ	0.230	+/-0.0369			0.0206	pCi/g			
ren Meth	ods were pe	erformed								
			1		Analyst	Date	Time	Pre	ep Batch	
Dry So	il Prep GL-I	RAD-A-0	21		LXM2	04/10/0	7 1040	62	4159	
nalytical	Methods we	ere perfor	med					_		
Descrip	otion									
EML H	IASL 300, 4.	.5.2.3								
	rep Meth Descrip Dry So nalytical Descrip EML H in this r	UI U U U U U U U U U U U U Trep Methods were po Description Dry Soil Prep GL- malytical Methods were Description EML HASL 300, 4.	0.565 UI 0.00 U 0.00663 U 0.000914 U -0.0131 U -0.00914 U 0.0514 0.648 0.641 U 0.0131 U 0.000478 9.95 0.565 U -0.0058 0.230 rep Methods were performed Description Dry Soil Prep GL-RAD-A-0 nalytical Methods were perfor Description EML HASL 300, 4.5.2.3	0.565 +/-0.0841 UI 0.00 +/-0.0213 U 0.00663 +/-0.0152 U 0.000914 +/-0.0157 U -0.0131 +/-0.0408 U -0.00914 +/-0.0413 U 0.0514 +/-0.0371 0.648 +/-0.0795 0.641 +/-0.0829 U 0.0131 +/-0.0159 U 0.000478 +/-0.0125 9.95 +/-0.774 0.565 +/-0.0841 U -0.0058 +/-0.0131 0.230 +/-0.0369 rep Methods were performed Description Dry Soil Prep GL-RAD-A-021 malytical Methods were performed Description	0.565 +/-0.0841 0.0216 UI 0.00 +/-0.0213 0.0137 U 0.00663 +/-0.0152 0.0116 U 0.000914 +/-0.0157 0.0114 U -0.0131 +/-0.0408 0.0286 U -0.00914 +/-0.0413 0.0345 U 0.0514 +/-0.0371 0.0286 0.648 +/-0.0795 0.0164 0.641 +/-0.0829 0.0206 U 0.0131 +/-0.0159 0.0113 U 0.000478 +/-0.0125 0.0107 9.95 +/-0.774 0.0861 0.565 +/-0.0841 0.0216 U -0.0058 +/-0.0131 0.0099 0.230 +/-0.0369 0.0103	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

** Analyte is a surrogate compound

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802-000 18385700			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mo Soils PO# 00	Carthy	cticut 06424				Ą	Report Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut 362 Injun Ho		tomic Power							
		East Hampto	on, Connec	ticut 06424		il 17, 2007					
	Contact:	Mr. Jack Mc	Carthy								
	Project:	Soils PO# 00	02332								
		Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture:			9802-0000-004F 183857003 TS 05-APR-07 10-APR-07 Client 5.35%			Project: YANK01204 Client ID: YANK001 Vol. Recv.:			
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst	Date Time B	Batch]
Rad Gamma	Spec Anal						·				
	-	M & ALL FSS	226 Ingro	wth							
Actinium-	-228		0.735	+/-0.137	0.0515	+/-0.137	0.103	pCi/g	MJH1	04/13/07 1828 6	24576
Americiu		U	0.045	+/-0.0274		+/-0.0274	0.047	pCi/g		0.110,07 1020 0	
Bismuth-		Ŭ	0.00	+/-0.181	0.139	+/-0.181	0.278	pCi/g			
Bismuth-		01	0.671	+/-0.0948		+/-0.0948	0.0538	pCi/g			
Cesium-1		UI	0.00	+/-0.0272		+/-0.0272	0.0369	pCi/g			
Cesium-1	* *		-0.00841	+/-0.0176		+/-0.0176	0.0296	pCi/g			
Cobalt-6		Ŭ	0.00407	+/-0.0172		+/-0.0172	0.0293	pCi/g			
Europium		U	-0.0287	+/-0.0471		+/-0.0471	0.0293	pCi/g pCi/g			
Europium		U	-0.0287	+/-0.0524		+/-0.0524	0.0837	pCi/g pCi/g			
Europium		U	0.0572	+/-0.0419		+/-0.0324	0.0681	pCi/g			
Lead-212		U	0.0372	+/-0.0772		+/-0.0772	0.0393	pCi/g			
Lead-212 Lead-214			0.722	+/-0.0837		+/-0.0837	0.0593	pCi/g pCi/g			
Manganes		ŢŢ	0.000577			+/-0.0837 +/-0.0192					
Niobium-			0.000377	+/-0.0192		+/-0.0192	0.0291	pCi/g pCi/g			
		U		+/-0.0166			0.0279				
Potassium Radium-2			11.4 0.671	+/-0.869	0.115	+/-0.869 +/-0.0948	0.230 0.0538	pCi/g			
Silver-10		T	-0.00182	+/-0.0948		+/0.0948	0.0338	pCi/g pCi/g			
Thallium-		0	0.264	+/-0.0146 +/-0.0427		+/-0.0427	0.0238	pCi/g pCi/g			
The followi	ng Pren M	ethods were pe	rformed								
Method		cription				Analyst	Date	Time	Prep Batch	1	
Dry Soil Pre	p Dry	Soil Prep GL-I	RAD-A-0	21		LXM2	04/10/0)7 1040	624159		
The followi	ng Anglytic	al Methods we	ere nerfor	med							
Method		ription	cre perior								
1	EML	HASL 300, 4.	5.2.3								

** Analyte is a surrogate compound

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch N			
		Client Sample ID: Sample ID:	9802-0000-004F 183857003	Project: YANK01204 Client ID: YANK001 Vol. Recv.:			
F	Project:	Soils PO# 002332					
C	Contact:	East Hampton, Connecticut 06424 Mr. Jack McCarthy		Report Date: April 17, 2007			
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd					

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	npany : Iress :	Connecticut 362 Injun He		omic Power							
Con Proj	itact: ject:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424	Report Date: April 17, 2007						
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	te:		9802-00 1838570 TS 05-APR 10-APR Client 4.23%	-07	1		ZANK01204 ZANK001		
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch	
Rad Gamma Spe	ec Analy	vsis			·						
Gamma,Solid-I			226 Ingro	wth							
Waived			0.492		0.0000		0.0509	C'I.	MILLI 04/12/	7 1000 (0457)	
Actinium-228			0.483	+/-0.0869		+/-0.0869	0.0598	pCi/g	MJH1 04/13/0	07 1828 624576	
Americium-24	ŧ I	UI	0.00	+/-0.0391		+/-0.0391	0.0645	pCi/g			
Bismuth-212			0.346	+/-0.131	0.0669	+/-0.131	0.134	pCi/g			
Bismuth-214			0.469	+/-0.0635		+/-0.0635	0.0318	pCi/g			
Cesium-134		UI	0.00	+/-0.0149		+/-0.0149	0.022	pCi/g			
Cesium-137		U	0.00913	+/-0.012	0.00902	+/-0.012	0.018	pCi/g			
Cobalt-60		U	0.00334	+/-0.011	0.00947	+/-0.011	0.0189	pCi/g			
Europium-152		-	-0.00331	+/-0.0287		+/-0.0287	0.0451	pCi/g			
Europium-154		U	0.00444	+/-0.0312		+/-0.0312	0.0532	pCi/g			
Europium-155	5	U	0.00668	+/-0.0274		+/0.0274	0.0513	pCi/g			
Lead-212			0.498	+/-0.0461	0.0136	+/-0.0461	0.0273	pCi/g			
Lead-214			0.436	+/-0.0536	0.0161	+/-0.0536	0.0323	pCi/g			
Manganese-54	1	UI	0.00	+/-0.00847	0.00662 ·	+/-0.00847	0.0132	pCi/g			
Niobium-94		U	-0.00443	+/-0.0098	0.0082	+/-0.0098	0.0164	pCi/g			
Potassium-40			9.40	+/-0.714	0.0749	+/-0.714	0.150	pCi/g			
Radium-226			0.469	+/0.0635	0.0159	+/-0.0635	0.0318	pCi/g			
Silver-108m		U	0.00286	+/-0.0094	0.0074	+/-0.0094	0.0148	pCi/g			
Thallium–208			0.180	+/-0.0265	0.00785	+/-0.0265	0.0157	pCi/g			
The following P	rep Me	thods were po	erformed								
Method		ription				Analyst	Date	Time	Prep Batch		
Dry Soil Prep	Dry S	Soil Prep GL-	RAD-A-0	21		LXM2	04/10/0	07 1040	624159		
The following A	nalytica	al Methods we	ere perfor	med							
Method	Descr	iption									
1	EML	HASL 300, 4	.5.2.3								

Notes:

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Parameter	Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch N
	Client Sample ID: Sample ID:	9802–0000–005F 183857004	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Report Date: April 17, 2007
Company : Address :	362 Injun Hollow Rd		Barart Data: Arril 17, 2007

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Connecticut 362 Injun Ho		comic Power							
Contact:	East Hampto Mr. Jack Mc		ticut 06424				Rep	ort Date: Ap	ril 17, 20	07
Project:	Soils PO# 00	02332								
	Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	: te:		9802-00 1838570 TS 05-APR 10-APR Client 5.89%	2–07	C		ANK01204 ANK001		
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analys	t Date	Time Batch N
Rad Gamma Spec Ana	lysis						,			
Gamma,Solid–FSS GA Waived	AM & ALL FSS	226 Ingro	wth							
Actinium-228		0.654	+/-0.103	0.0272	+/-0.103	0.0544	pCi/g	MJH1	04/13/07	7 1828 624576
Americium-241	U	0.0302	+/-0.0557	0.0481	+/-0.0557	0.0962	pCi/g			
Bismuth-212		0.453	+/-0.136	0.0601	+/-0.136	0.120	pCi/g			
Bismuth-214		0.525	+/-0.0634	0.0156	+/-0.0634	0.0312	pCi/g			
Cesium-134	UI	0.00	+/-0.0147	0.00997	+/-0.0147	0.0199	pCi/g			
Cesium-137		0.019	+/-0.0118		+/-0.0118	0.0158	pCi/g			
Cobalt-60	U	-0.0114	+/-0.00914		+/-0.00914	0.0146	pCi/g			
Europium-152	U	-0.0108	+/-0.0283	0.0213	+/-0.0283	0.0425	pCi/g			
Europium-154	Ū	0.0175	+/-0.031	0.0254	+/-0.031	0.0508	pCi/g			
Europium-155	Ŭ	0.0371	+/-0.0425		+/-0.0425	0.0537	pCi/g			
Lead-212	-	0.657	+/-0.0592		+/-0.0592	0.0251	pCi/g			
Lead-214		0.614	+/-0.065	0.015	+/0.065	0.0301	pCi/g			
Manganese-54	U	0.0155	+/-0.014	0.00798	+/-0.014	0.016	pCi/g			
Niobium–94	Ū	0.0111	+/-0.00952		+/-0.00952	0.0152	pCi/g			
Potassium-40		10.4	+/-0.720	0.0709	+/-0.720	0.142	pCi/g			
Radium-226		0.525	+/-0.0634	0.0156	+/-0.0634	0.0312	pCi/g			
Silver-108m	U ·	-0.00192	+/-0.00794	0.00711 -	+/-0.00794	0.0142	pCi/g			
Thallium-208		0.204	+/-0.0282	0.00753	+/-0.0282	0.0151	pCi/g			
The following Prep M	ethods were pe	erformed								
	cription				Analyst	Date	Time	Prep Batc	h	
Dry Soil Prep Dry	Soil Prep GL-I	RAD-A-0	21		LXM2	04/10/0	7 1040	624159		
The following Analytic	cal Methods we	ere perfor	med							
Method Desc	cription		_							
1 EMI	L HASL 300, 4.	5.2.3								_
Notes:										

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Parameter		Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch N
		Client Sample ID: Sample ID:	9802–0000–006F 183857005	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
	Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Report Date: April 17, 2007
	Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

East Hampto Mr. Jack Mc Soils PO# 0 Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture: Qualifier analysis GAM & ALL FSS	Carthy 02332 nple ID: : te: ate: Result	Uncertainty	9802–00 1838570 TS 05–APR- 10–APR- Client 5.29% LC	06 07		roiect: Y lient ID: Y /ol. Recv.:	(ANK		007	
Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture: Qualifier analysis GAM & ALL FSS	nple ID: :: te: ate: Result 226 Ingrow		1838570 TS 05-APR 10-APR Client 5.29%	06 07 07		Client ID: Y				
Sample ID Matrix: Collect Da Receive Da Collector: Moisture: Qualifier nalysis GAM & ALL FSS	te: ate: Result 226 Ingrov		1838570 TS 05-APR 10-APR Client 5.29%	06 07 07		Client ID: Y				
nalysis GAM & ALL FSS	226 Ingro		LC	TPU	MDA	~~ .		Project: YANK01204 Client ID: YANK001 Vol. Recv.:		
GAM & ALL FSS	-	wth			MDA	Units	DF A	Analyst Date	Time Batch	
GAM & ALL FSS	-	wth					-			
U	0.624									
U	11.0.74	+/-0.108	0.030	+/-0.108	0.060	pCi/g	ו	MJH1 04/13/0	7 1828 624576	
0	0.027	+/-0.0465		+/-0.0465	0.0799	pCi/g	-	00150	1020 024570	
	0.383	+/-0.148	0.0703	+/-0.148	0.141	pCi/g				
						• •				
UI										
	0.00571									
	-0.0347		0.0249	+/-0.0349						
U	-0.0121		0.0294	+/-0.0349						
Ū										
	0.574	+/-0.0664	0.0173	+/-0.0664	0.0346					
U										
U	0.0171	+/-0.0128								
	10.4	+/0.812	0.0784	+/-0.812	0.157	pCi/g				
	0.454	+/-0.0622	0.0179	+/-0.0622	0.0358	pCi/g				
U	-0.00336	+/-0.00924	0.0082 +	-/-0.00924	0.0164	pCi/g				
	0.168	+/-0.027	0.00929	+/-0.027	0.0186	pCi/g				
Methods were po	erformed									
Description				Analyst	Date	Time	Pre	p Batch		
Dry Soil Prep GL-	RAD-A-0	21		LXM2	04/10/0	7 1040	624	159		
	ere perfor	med							·	
	523									
2012 TH 10E 500, 4	····									
	U U U U Wethods were pro- bescription Dry Soil Prep GL- vtical Methods were scription ML HASL 300, 4	0.454 UI 0.00 U 0.00396 U 0.00571 U -0.0347 U -0.0121 U 0.0166 0.555 0.574 U -0.00721 U 0.0171 10.4 0.454 U -0.00336 0.168 Methods were performed vescription Pry Soil Prep GL-RAD-A-0 vitical Methods were performed	0.454 +/-0.0622 UI 0.00 +/-0.0187 U 0.00396 +/-0.012 U 0.00571 +/-0.0184 U -0.0347 +/-0.0349 U -0.0121 +/-0.0349 U 0.0166 +/-0.0334 0.555 +/-0.0525 0.574 +/-0.0664 U -0.00721 +/-0.0111 U 0.0171 +/-0.0128 10.4 +/-0.812 0.454 +/-0.0622 U -0.00336 +/-0.00924 0.168 +/-0.027 Methods were performed ry Soil Prep GL-RAD-A-021 ytical Methods were performed escription ML HASL 300, 4.5.2.3	$\begin{array}{r cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

**

Analyte is a surrogate compound Result is less than value reported <

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802-000 18385700			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				R	Report Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: April 17, 2007 Report Date: April 17, 2007 Contract: Mr. Jack McCarthy Project: Soils PO# 002332 Sign PO# 002332 Contract Microsoft Sign Sign Sign Contract Microsoft Sign Sign Sign Contract Microsoft Sign Sign Sign Sign Sign Sign Sign Sign	Company : Address :	Connecticut 362 Injun H		tomic Power							
Project: Soils PO# 002332 Sample ID: 1802-0008F IS3857007 TS Project: VANK01204 VANK001 Matrix: OI-APR-07 Collecto: OI-APR-07 Collecto: Project: VANK01204 Rad Alpha Spec Analysis Moisture: 5.66% Project: VANK01204 Rad Alpha Spec Analysis Moisture: 5.66% BX1 Out1307 1015 624202 Curiom-241 U 0.00458 #-0.0552 0.0399 #-0.0552 0.200 pC/g C/g BX1 O4/1307 1015 624202 Curiom-242 U 0.00 #-0.0982 0.009 #-0.0552 0.121 pC/g PC/g BX1 04/1307 1015 624202 Curiom-242 U 0.00 #-0.0982 0.009 #-0.0552 0.121 pC/g BX1 04/1307 1015 624202 Curiom-243 U 0.00773 #-0.0152 0.145 pC/g BX1 04/1307 1015 624203 Plutonium-241 U 0.00773 #-0.0152 0.145 pC/g BX1 04/1307 1015 624203 Receive Analysis Mathemathemathemathemathemathemathemathem				ticut 06424				F	Report Date: Apr	il 17, 20	007
Client Sample ID: Matrix: Collect Date: Collect Date: Collect Date: Collector: Collecto	Contact:	Mr. Jack Mo	Carthy								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Project:	Soils PO# 0	02332								
Rad Alpha Spec Analysis Alphaspee Am241, Cm, Solid ALL FSS Americium=241 U 0.000 #/-0.0908 0.00 +/-0.0552 0.200 pCi/g BXJ1 04/13/07 1015 624202 Curium=242 U 0.000 +/-0.0908 0.00 +/-0.0972 0.121 pCi/g BXJ1 04/13/07 1015 624202 Curium=242 U 0.000 +/-0.0972 0.0289 +/-0.0152 0.145 pCi/g BXJ1 04/13/07 1015 624203 Plutonium=239/240 U -0.00773 +/-0.0152 0.0289 +/-0.0152 0.145 pCi/g BXJ1 04/13/07 1015 624203 Izind Scinta Did=ALL FSS Plutonium=239/240 U -0.0152 0.0289 +/-0.0152 0.145 pCi/g BXJ1 04/13/07 102 524204 Rad Gamma Spec Analysis Gamma Spid=FSS GAM & ALL FSS Plutonium=238 1.56 +/-0.221 0.0396 +/-0.221 0.0791 pCi/g MJH1 04/13/07 1829 624576 Rad Gamma Spid=FSS GAM & ALL FSS 200 0.0306		Sample ID Matrix: Collect Da Receive Da Collector:	nte:		1838570 TS 04-APF 10-APF Client	007 R-07		Client ID:	YANK001		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst	Date	Time Batch N
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rad Alpha Spec Analys	is									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									BXJ1	04/13/0	7 1015 624202
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	0.00	+/-0.0872	0.00	+/-0.0872	0.121	pCi/g			
Plutonium-239/240 U -0.0173 $+/-0.0152$ 0.0289 $+/-0.0152$ 0.145 pCi/g Liquid Scint Pu241, Solid-ALL FSS Plutonium-241 U 6.49 $+/-6.73$ 5.31 $+/-6.76$ 11.3 pCi/g BXJ1 $04/16/07$ 1247 624204 Rad Gamma Spec Analysis Gamma, Solid-FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 1.56 $+/-0.221$ 0.0396 $+/-0.221$ 0.0791 pCi/g MJH1 $04/13/07$ 1829 624576 Americium-241 UI 0.00 $+/-0.0604$ 0.0485 $+/-0.023$ 0.0791 pCi/g MJH1 $04/13/07$ 1829 624576 Americium-241 UI 0.00 $+/-0.023$ 0.0208 $+/-0.233$ 0.0751 pCi/g MJH1 $04/13/07$ 1829 624576 Americium-241 UI 0.00 $+/-0.023$ 0.028 $t/-0.028$ 0.0298 pCi/g Bismuth-214 1.53 $t/-0.0154$ 0.0117 $t/-0.0154$ 0.0236 pCi/g Cobal-60 U 0.0057 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td></td>								~			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									BXJ1	04/13/0	7 1015 624203
Plutonium-241U6.49+/-6.735.31+/-6.7611.3pCi/gBX1104/16/071247624204Rad Gamma Spec AnalysisGamma, Solid-FSS GAM & ALL FSS 226 IngrowthWaivedActinium-2281.56+/-0.2210.0396+/-0.2210.0791pCi/gMJH104/13/071829624576Americium-241UI0.00+/-0.0200.0867+/-0.2030.0173pCi/gMJH104/13/071829624576Bismuth-2141.53+/-0.1580.0208+/-0.1580.0416pCi/g </td <td></td> <td></td> <td>-0.00773</td> <td>+/-0.0152</td> <td>0.0289</td> <td>+/-0.0152</td> <td>0.145</td> <td>pC1/g</td> <td></td> <td></td> <td></td>			-0.00773	+/-0.0152	0.0289	+/-0.0152	0.145	pC1/g			
Rad Gamma Spec Analysis Gamma, Solid–FSS GAM & ALL FSS 226 Ingrowth Waived Actinium-228 1.56 +/-0.221 0.0396 +/-0.221 0.0791 pCi/g MJH1 0//13/07 1829 624576 Americium-241 UI 0.00 +/-0.020 0.0867 +/-0.203 0.173 pCi/g Bismuth-212 1.00 +/-0.028 0.0867 +/-0.023 0.173 pCi/g Cesium-134 UI 0.00 +/-0.028 0.049 +/-0.028 0.0298 pCi/g Cesium-137 U 0.0142 +/-0.0154 0.0117 +/-0.0154 0.0236 pCi/g Cobalt-60 U -0.0057 +/-0.0166 0.0138 +/-0.0154 0.0236 pCi/g Europium-154 U 0.0128 +/-0.0519 0.0374 +/-0.0154 0.0174 pCi/g Lead-214 1.82 +/-0.0121 0.0184 +/-0.0124 0.0048 pCi/g Manganese-54 U 0.00988 +/-0.0154 0.0214 pCi/g pCi/g Nibobium-94	-		<i>c</i> 10		5.01			<i></i>	51114	0.4.4.6.10	
		-	6.49	+/-6.73	5.31	+/-6.76	11.3	pC1/g	BXJI	04/16/0	7 1247 624204
WaivedActinium-2281.56+/-0.2210.0396+/-0.2210.0791pCi/gMJH104/13/071829624576Americium-241UI0.00+/-0.06040.0485+/-0.0200.0173pCi/gDismuth-2141.53+/-0.1580.0208+/-0.1580.0416pCi/gC//g<	_	-									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Waived	M & ALL FSS	226 Ingro								
Bismuth-2121.00 $+/-0.203$ 0.0867 $+/-0.203$ 0.173pCi/gBismuth-2141.53 $+/-0.158$ 0.0208 $+/-0.158$ 0.0416pCi/gCesium-134UI0.00 $+/-0.028$ 0.019 $+/-0.028$ 0.0298pCi/gCosium-137U0.0142 $+/-0.0154$ 0.0117 $+/-0.0154$ 0.0233pCi/gCobalt-60U -0.0057 $+/-0.0156$ 0.0236pCi/gEuropium-152U0.00652 $+/-0.0519$ 0.0334 $+/-0.0519$ 0.0765Europium-154U0.0128 $+/-0.0519$ 0.0374 $+/-0.0519$ 0.0765Europium-155U0.0385 $+/-0.0519$ 0.0374 $+/-0.0519$ 0.0747Europium-155U0.0385 $+/-0.0160$ 0.0219 $+/-0.0160$ 0.0218Lead-2121.53 $+/-0.121$ 0.0188 $+/-0.121$ 0.0374pCi/gManganese-54U0.00988 $+/-0.0154$ 0.012 $+/-1.61$ 0.204Nobium-94U0.00735 $+/-0.0126$ 0.0218pCi/gNatiour-2261.53 $+/-0.0512$ 0.0107 $+/-0.0512$ 0.0213pCi/gSilver-108mU -0.0223 $+/-0.0512$ 0.0107 $+/-0.0512$ 0.0213pCi/gRad Gas Flow Proportional CountingGFPC, Sr90, solid-ALL FSSStrontium-90U0.00647 $+/-0.0225$ 0.0421pCi/gRad Liquid Scintillation AnalysisLSC, Tritium Dist, Solid - 3 pCi/gSilver-10946624234<									MJH1	04/13/0	7 1829 624576
Bismuth-2141.53 $+/-0.158$ 0.0208 $+/-0.158$ 0.0416pCi/gCesium-134UI0.00 $+/-0.028$ 0.0149 $+/-0.028$ 0.0298pCi/gCesium-137U0.0142 $+/-0.0154$ 0.0117 $+/-0.0154$ 0.0233pCi/gCobalt-60U -0.0057 $+/-0.0156$ 0.0118 $+/-0.0166$ 0.0236pCi/gEuropium-152U0.00652 $+/-0.0525$ 0.0312 $+/-0.0525$ 0.0624pCi/gEuropium-154U0.0128 $+/-0.032$ 0.0374 $+/-0.0422$ 0.0747pCi/gLead-2121.53 $+/-0.121$ 0.0388 $+/-0.121$ 0.0376pCi/gLead-2141.82 $+/-0.0126$ 0.0219 $+/-0.0126$ 0.0234pCi/gManganese-54U0.00735 $+/-0.0126$ 0.0218pCi/gNiobium-94U0.00735 $+/-0.0126$ 0.0218pCi/gNatisium-2261.53 $+/-0.0126$ 0.0218pCi/gSilver-108mU -0.00203 $+/-0.0118$ 0.0201pCi/gThallium-2080.494 $+/-0.0512$ 0.0107 $+/-0.0512$ 0.0213pCi/gRad Gas Flow Proportional CountingGFPC, Sr90, solid-ALL FSSStrontium-90U0.00647 $+/-0.0225$ 0.0421pCi/gNXL3Rad Liquid Scintillation AnalysisLSC, Tritium Dist, Solid - 3 pCi/gLSC, Tritium Dist, Solid - 3 pCi/gLSCNXL304/12/07		UI									
Cesium-134UI0.00+/-0.0280.0149+/-0.0280.0298pCi/gCesium-137U0.0142+/-0.01540.0117+/-0.01540.0233pCi/gCobalt-60U-0.0057+/-0.01660.0118+/-0.01660.0236pCi/gEuropium-152U0.00652+/-0.05250.0312+/-0.0550pCi/gEuropium-154U0.0128+/-0.05190.0383+/-0.0519pCi/gEuropium-155U0.0385+/-0.04320.0747pCi/gLead-2121.53+/-0.1210.0188+/-0.1210.0376pCi/gManganese-54U0.00735+/-0.01540.0234pCi/gNiobium-94U0.00735+/-0.01260.0109+/-0.0128pCi/gPotassium-4024.4+/-1.610.102+/-1.610.204pCi/gSilver-108mU-0.0023+/-0.01180.0107+/-0.05120.0213pCi/gThallium-2080.494+/-0.05120.0107+/-0.05120.0213pCi/gRad Gas Flow Proportional CountingGFPC, Sr90, solid-ALL FSSStrontium-90U0.00647+/-0.02250.0178+/-0.02250.0421pCi/gRad Liquid Scintillation AnalysisLSC, Tritium Dist, Solid - 3 pCi/gStrontium-90V0.00647+/-0.02250.0178+/-0.02250.0421pCi/g								· ·			
Cesium-137U 0.0142 $+/-0.0154$ 0.0117 $+/-0.0154$ 0.0233 pCi/gCobalt-60U -0.0057 $+/-0.0166$ 0.0118 $+/-0.0166$ 0.0236 pCi/gEuropium-152U 0.00652 $+/-0.0525$ 0.0624 pCi/gEuropium-154U 0.0128 $+/-0.0519$ 0.0383 $+/-0.0519$ 0.0765 pCi/gEuropium-155U 0.0385 $+/-0.0432$ 0.0747 pCi/gLead-212 1.53 $+/-0.121$ 0.0188 $+/-0.121$ 0.0376 pCi/gLead-214 1.82 $+/-0.0126$ 0.0219 $+/-0.0126$ 0.0218 pCi/gManganese-54U 0.00988 $+/-0.0126$ 0.0218 pCi/gNiobium-94U 0.00735 $+/-0.0126$ 0.0109 $+/-0.0126$ 0.0218 Potassium-40 24.4 $+/-1.61$ 0.0208 $+/-0.158$ 0.0416 pCi/gSilver-108mU -0.00203 $+/-0.0118$ 0.010 $+/-0.0512$ 0.0211 pCi/gThallium-208 0.494 $+/-0.0512$ 0.017 $+/-0.0512$ 0.0213 pCi/gRad Gas Flow Proportional Counting $GFPC$, $Sr90$, $solid-ALL FSS$ $Strontium-90$ U 0.00647 $+/-0.0225$ 0.0178 $+/-0.0225$ 0.0421 pCi/gNXL3 $04/12/07$ 0.946 624234 $Addition Analysis$ LSC , $Tritium Dist$, $Solid - 3$ pCi/g $Strontiun-90$ U 0.00647 $+/-0.0225$ 0.0178 $+/-0.0225$ <td></td> <td>1.11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1.11									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Europium-152U 0.00652 $+/-0.0525$ 0.0312 $+/-0.0525$ 0.0624 pCi/gEuropium-154U 0.0128 $+/-0.0519$ 0.0383 $+/-0.0519$ 0.0765 pCi/gEuropium-155U 0.0385 $+/-0.0432$ 0.0747 pCi/gLead-2121.53 $+/-0.121$ 0.0188 $+/-0.121$ 0.0376 pCi/gLead-2141.82 $+/-0.160$ 0.0219 $+/-0.160$ 0.0438 pCi/gManganese-54U 0.00988 $+/-0.0154$ 0.0117 $+/-0.0126$ 0.0218 pCi/gNiobium-94U 0.00735 $+/-0.0126$ 0.0109 $+/-0.0126$ 0.0218 pCi/gPotassium-4024.4 $+/-1.61$ 0.102 $+/-1.61$ 0.204 pCi/gRadium-2261.53 $+/-0.0118$ 0.010 $+/-0.0118$ 0.0201 pCi/gSilver-108mU -0.00203 $+/-0.0512$ 0.0107 $+/-0.0512$ 0.0213 pCi/gRad Gas Flow Proportional Counting $GFPC$, $Sr90$, $solid-ALL FSS$ $Strontium-90$ U 0.00647 $+/-0.0225$ 0.0178 $+/-0.0225$ 0.0421 pCi/gNXL3Rad Liquid Scintillation Analysis LSC , Tritium Dist, Solid - 3 pCi/g $+/-0.0225$ 0.0178 $+/-0.0225$ 0.0421 pCi/gNXL3											
Europium-154U 0.0128 $+/-0.0519$ 0.0383 $+/-0.0519$ 0.0765 pCi/gEuropium-155U 0.0385 $+/-0.0432$ 0.0374 $+/-0.0432$ 0.0747 pCi/gLead-2121.53 $+/-0.121$ 0.0188 $+/-0.121$ 0.0376 pCi/gLead-2141.82 $+/-0.160$ 0.0219 $+/-0.160$ 0.0438 pCi/gManganese-54U 0.000988 $+/-0.0154$ 0.0117 $+/-0.0154$ 0.0234 pCi/gNiobium-94U 0.00735 $+/-0.0126$ 0.0109 $+/-0.0126$ 0.0218 pCi/gPotassium-4024.4 $+/-1.61$ 0.102 $+/-1.61$ 0.204 pCi/gRadium-2261.53 $+/-0.0118$ 0.0208 $+/-0.0118$ 0.0201 pCi/gSilver-108mU -0.00203 $+/-0.0118$ 0.0107 $+/-0.0512$ 0.0213 pCi/gRad Gas Flow Proportional Counting $GFPC$, Sr90, solid-ALL FSSStrontium-90U 0.00647 $+/-0.0225$ 0.0178 $+/-0.0225$ 0.0421 pCi/gRad Liquid Scintillation Analysis LSC , Tritium Dist, Solid - 3 pCi/g $SII + -0.0225$ $SII +$											
Europium-155U 0.0385 $+/-0.0432$ 0.0374 $+/-0.0432$ 0.0747 pCi/gLead-212 1.53 $+/-0.121$ 0.0188 $+/-0.121$ 0.0376 pCi/gLead-214 1.82 $+/-0.160$ 0.0219 $+/-0.160$ 0.0438 pCi/gManganese-54U 0.00988 $+/-0.0154$ 0.0117 $+/-0.0154$ 0.0234 pCi/gNiobium-94U 0.00735 $+/-0.0126$ 0.0218 pCi/gpCi/gPotassium-4024.4 $+/-1.61$ 0.102 $+/-1.61$ 0.204 pCi/gRadium-226 1.53 $+/-0.158$ 0.0208 $+/-0.158$ 0.0416 pCi/gSilver-108mU -0.00203 $+/-0.0118$ 0.010 $+/-0.0512$ 0.0213 pCi/gThallium-208 0.494 $+/-0.0512$ 0.0107 $+/-0.0512$ 0.0213 pCi/gRad Gas Flow Proportional Counting $GFPC$, Sr90, solid-ALL FSSStrontium-90U 0.00647 $+/-0.0225$ 0.0178 $+/-0.0225$ 0.0421 pCi/gRad Liquid Scintillation Analysis LSC , Tritium Dist, Solid - 3 pCi/g I I I I I I	-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0.0374	+/-0.0432					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lead-212		1.53	+/-0.121	0.0188						
Niobium-94U 0.00735 $+/-0.0126$ 0.0109 $+/-0.0126$ 0.0218 pCi/g Potassium-40 24.4 $+/-1.61$ 0.102 $+/-1.61$ 0.204 pCi/g Radium-226 1.53 $+/-0.158$ 0.0208 $+/-0.158$ 0.0416 pCi/g Silver-108mU -0.00203 $+/-0.0118$ 0.010 $+/-0.0118$ 0.0201 pCi/g Thallium-208 0.494 $+/-0.0512$ 0.0107 $+/-0.0512$ 0.0213 pCi/g Rad Gas Flow Proportional Counting <i>GFPC, Sr90, solid-ALL FSS</i> Strontium-90U 0.00647 $+/-0.0225$ 0.0178 $+/-0.0225$ 0.0421 pCi/g Rad Liquid Scintillation Analysis <i>LSC, Tritium Dist, Solid</i> - $3 pCi/g$											
Potassium-40 24.4 +/-1.61 0.102 +/-1.61 0.204 pCi/g Radium-226 1.53 +/-0.158 0.0208 +/-0.158 0.0416 pCi/g Silver-108m U -0.00203 +/-0.0118 0.010 +/-0.0118 0.0201 pCi/g Thallium-208 0.494 +/-0.0512 0.0107 +/-0.0512 0.0213 pCi/g Rad Gas Flow Proportional Counting GFPC, Sr90, solid-ALL FSS Strontium-90 U 0.00647 +/-0.0225 0.0178 +/-0.0225 0.0421 pCi/g NXL3 04/12/07 0946 624234 Rad Liquid Scintillation Analysis LSC, Tritium Dist, Solid - 3 pCi/g J <thj< th=""> <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thj<>											
Radium-226 1.53 +/-0.158 0.0208 +/-0.158 0.0416 pCi/g Silver-108m U -0.00203 +/-0.0118 0.010 +/-0.0118 0.0201 pCi/g Thallium-208 0.494 +/-0.0512 0.0107 +/-0.0512 0.0213 pCi/g Rad Gas Flow Proportional Counting 0.00647 +/-0.0225 0.0178 +/-0.0225 0.0421 pCi/g Strontium-90 U 0.00647 +/-0.0225 0.0178 +/-0.0225 0.0421 pCi/g Rad Liquid Scintillation Analysis LSC, Tritium Dist, Solid - 3 pCi/g - - - -		U									
Silver-108m U -0.00203 +/-0.0118 0.010 +/-0.0118 0.0201 pCi/g Thallium-208 0.494 +/-0.0512 0.0107 +/-0.0512 0.0213 pCi/g Rad Gas Flow Proportional Counting 0.0104 -/-0.0512 0.0107 +/-0.0512 0.0213 pCi/g GFPC, Sr90, solid-ALL FSS Strontium-90 U 0.00647 +/-0.0225 0.0178 +/-0.0225 0.0421 pCi/g NXL3 04/12/07 0946 624234 Rad Liquid Scintillation Analysis LSC, Tritium Dist, Solid - 3 pCi/g V											
Thallium-208 0.494 +/-0.0512 0.0107 +/-0.0512 0.0213 pCi/g Rad Gas Flow Proportional Counting GFPC, Sr90, solid-ALL FSS Distribution Distr		ŢŢ									
Rad Gas Flow Proportional Counting GFPC, Sr90, solid-ALL FSS Strontium-90 U 0.00647 +/-0.0225 0.0178 +/-0.0225 0.0421 pCi/g NXL3 04/12/07 0946 624234 Rad Liquid Scintillation Analysis LSC, Tritium Dist, Solid - 3 pCi/g LSC, Tritium Dist, Solid - 3 pCi/g LSC LSC </td <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		U									
GFPC, Sr90, solid-ALL FSS Strontium-90 U 0.00647 +/-0.0225 0.0178 +/-0.0225 0.0421 pCi/g NXL3 04/12/07 0946 624234 Rad Liquid Scintillation Analysis LSC, Tritium Dist, Solid - 3 pCi/g		onal Counting		11 0.0512	0.0107	17 0.0312	0.0215	peng			
Strontium-90 U 0.00647 +/-0.0225 0.0178 +/-0.0225 0.0421 pCi/g NXL3 04/12/07 0946 624234 Rad Liquid Scintillation Analysis LSC, Tritium Dist, Solid - 3 pCi/g V <thv< th=""> V <thv< th=""></thv<></thv<>	-										
Rad Liquid Scintillation Analysis LSC, Tritium Dist, Solid – 3 pCi/g			0.00647	+/-0 0225	0.0178	+/-0.0225	0.0421	nCi/a	NXL3	04/12/0	7 0946 624234
LSC, Tritium Dist, Solid – 3 pCi/g			0.000+7	0.0220	5.0170	0.0220	0.0721	r~"5		5 11 2010	
			0.443	+/-1.49	1.23	+/-1.49	2.56	pCi/g	AXD2	04/12/0	07 0030 624179

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

.

Certificate of Analysis

Address :	362 Injun H	ollow Rd						
Contact: Project:	East Hampto Mr. Jack Mo Soils PO# 0	Carthy	ticut 06424				न	Report Date: April 17, 2007
	Client San Sample ID			9802–00 1838570	000–008F 007		Project: Client ID: Vol. Recv.:	YANK01204 YANK001
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date Time Batch N
Rad Liquid Scintillation	n Analysis							
Liquid Scint C14, Solid	d All,FSS							
Carbon-14	U	-0.0221	+/-0.0901	0.076	+/-0.0901	0.155	pCi/g	AXD2 04/11/07 1001 624180
Liquid Scint Fe55, Soli	id–ALL FSS							
Iron-55	U	20.4	+/-29.0	19.7	+/-29.1	41.6	pCi/g	MXP1 04/13/07 1011 624176
Liquid Scint Ni63, Soli	id–ALL FSS							
Nickel-63	U	3.51	+/-10.1	8.30	+/-10.1	17.4	pCi/g	MXP1 04/17/07 1143 625941
Liquid Scint Tc99, Soli	id-ALL FSS							
Technetium-99	U	0.131	+/-0.250	0.207	+/-0.250	0.423	pCi/g	MXP1 04/16/07 1051 624178

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL-RAD-A-021	LXM2	04/10/07	1040	624159

The following Analytical Methods were performed

Company : Connecticut Yankee Atomic Power

Method	Description
1	DOE EML HASL-300, Am-05-RC Modified
2	DOE EML HASL-300, Pu-11-RC Modified
3	DOE EML HASL-300, Pu-11-RC Modified
4	EML HASL 300, 4.5.2.3
5	EPA 905.0 Modified
6	EPA 906.0 Modified
7	EPA EERF C-01 Modified
8	DOE RESL Fe-1, Modified
9	DOE RESL Ni-1, Modified
10	DOE RESL Ni-1, Modified
11	DOE EML HASL-300, Tc-02-RC Modified

Surrogate/Tracer recovery	Test	Recovery%	Acceptable Limits	
Americium–243 Tracer	Alphaspec Am241, Cm, Solid ALL	58	(15%-125%)	
Plutonium-242 Tracer	Alphaspec Pu, Solid-ALL FSS	83	(15%-125%)	
Plutonium–242 Tracer	Liquid Scint Pu241, Solid-ALL FS	95	(25%-125%)	
Strontium Carrier	GFPC, Sr90, solid-ALL FSS	79	(25%-125%)	
Iron-59 Tracer	Liquid Scint Fe55, Solid-ALL FS	73	(15%-125%)	
Nickel Carrier	Liquid Scint Ni63, Solid-ALL FS	73	(25%-125%)	
Technetium–99m Tracer	Liquid Scint Tc99, Solid-ALL FS	76	(15%–125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385700			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				Re	eport Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

Notes:

The Qualifiers in this report are defined as follows :

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company Address :	: Connecticut 362 Injun Ho		tomic Power						
Contact:	East Hampto Mr. Jack Mc		ticut 06424				Rep	ort Date: April 17, 2	007
Project:	Soils PO# 00	02332							
	Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	: te:		9802–00 1838570 TS 05–APR 10–APR Client 5.64%	-07	(ANK01204 ANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spec Ana	alysis								
Gamma,Solid–FSS G Waived	AM & ALL FSS	226 Ingro	wth						
Actinium-228		0.639	+/-0.123	0.0399	+/-0.123	0.0797	pCi/g	MJH1 04/14/0	07 0553 624576
Americium-241	U	0.0169	+/-0.0243	0.0159	+/-0.0243	0.0317	pCi/g		
Bismuth-212		0.397	+/0.167	0.0893	+/-0.167	0.179	pCi/g		
Bismuth-214		0.468	+/-0.0733	0.0204	+/-0.0733	0.0407	pCi/g		
Cesium-134	U	0.0267	+/-0.023	0.014	+/-0.023	0.028	pCi/g		
Cesium-137	Ū	0.0141	+/-0.0164	0.0118	+/-0.0164	0.0236	pCi/g		
Cobalt-60	U	0.0195	+/-0.0137	0.0127	+/-0.0137	0.0253	pCi/g		
Europium-152	U	0.00112	+/-0.0385	0.0298	+/-0.0385	0.0595	pCi/g		
Europium-154	U	-0.0315	+/-0.0428	0.0344	+/-0.0428	0.0688	pCi/g		
Europium-155	UI	0.00	+/-0.040	0.0274	+/-0.040	0.0547	pCi/g		
Lead-212		0.582	+/-0.0725	0.016	+/-0.0725	0.032	pCi/g		
Lead-214		0.547	+/-0.0742	0.0204	+/-0.0742	0.0409	pCi/g		
Manganese-54	U	0.00229	+/-0.0129	0.0114	+/-0.0129	0.0229	pCi/g		
Niobium–94	U	0.0121	+/-0.0123	0.0109	+/-0.0123	0.0218	pCi/g		
Potassium-40		9.34	+/-0.724	0.0936	+/-0.724	0.187	pCi/g		
Radium–226		0.468	+/-0.0733	0.0204	+/-0.0733	0.0407	pCi/g		
Silver-108m	U ·	-0.00754	+/-0.0109	0.00941	+/-0.0109	0.0188	pCi/g		
Thallium–208		0.180	+/-0.0366	0.0115	+/0.0366	0.0229	pCi/g		
The following Prep M	lethods were pe	erformed							
Method Des	scription				Analyst	Date	Time	Prep Batch	
Dry Soil Prep Dry	/ Soil Prep GL-I	RAD-A-0	21		LXM2	04/10/0	7 1040	624159	
The following Analyti Method Des	ical Methods we	ere perfor	med						
1 EM	L HASL 300, 4.	5.2.3							
Notes:									

.

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385700			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				F	Report Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

		Report Da	te: April 17, 20	07
802–0000–011F 83857009 'S 4–APR–07 0–APR–07 Client %	Project: Client II Vol. Red	YANK D: YANK ev.:		
LC TPU	MDA Unit	ts DF	Analyst Date	Time Batch]
	0.0719 pCi/		MJH1 04/14/07	0554 624576
0.0474 +/-0.0539	0.0948 pCi/			
0.077 +/-0.139	0.154 pCi/			
0.0194 +/-0.0688	0.0387 pCi/			
	0.0262 pCi/			
	0.0216 pCi/			
	0.0228 pCi/			
	0.0572 pCi/			
0.0345 +/-0.0393	0.069 pCi/			
	0.0592 pCi/			
	0.0329 pCi/			
	0.0403 pCi/			
	0.0203 pCi/			
	0.0208 pCi/			
0.0878 +/-0.829	0.176 pCi/			
	0.0387 pCi/			
.00917 +/-0.0108 .00999 +/-0.0287	0.0183 pCi/ 0.020 pCi/			
Analyst	Date	Time Pro	ep Batch	
LXM2	04/10/07	1040 624	4159	
				<u> </u>

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch N
	Client Sample ID: Sample ID:	9802–0000–011F 183857009	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332		Report Date: April 17, 2007
Company Address :	362 Injun Hollow Rd		Depart Date: April 17, 2007

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Compa: Address	5		tomic Power						
Contact	East Hampt : Mr. Jack M		ticut 06424				Rep	ort Date: April 17, 2	007
Project		-							
	Client Sar Sample II Matrix: Collect Da Receive D Collector: Moisture:	D: ate:		9802–00 1838570 TS 04–APR 10–APR Client 5.06%	-07			ANK01204 ANK001	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spec A	nalysis								
Gamma,Solid-FSS Waived	GAM & ALL FSS	S 226 Ingro	wth						
Actinium-228		0.622	+/-0.126	0.0365	+/-0.126	0.073	pCi/g	MJH1 04/14/0	07 0554 624576
Americium-241	U	0.0691	+/-0.0609	0.0522	+/-0.0609	0.104	pCi/g		
Bismuth-212	Ŭ	0.569	+/-0.185	0.0752	+/-0.185	0.150	pCi/g		
Bismuth-214		0.503	+/-0.0743		+/-0.0743	0.0396	pCi/g		
Cesium-134	U	0.0141	+/-0.0167		+/-0.0167	0.0264	pCi/g		
Cesium-137	Ŭ	-0.0146	+/-0.0153		+/-0.0153	0.0209	pCi/g		
Cobalt-60	Ū	0.00343	+/-0.0127		+/-0.0127	0.0217	pCi/g		
Europium-152	Ū	-0.0148	+/-0.0371		+/-0.0371	0.0535	pCi/g		
Europium-154	Ū	-0.0506	+/-0.0496		+/-0.0496	0.0643	pCi/g		
Europium-155	UI	0.00	+/-0.0477	0.0323	+/-0.0477	0.0645	pCi/g		
Lead-212		0.557	+/-0.0533	0.0152	+/-0.0533	0.0304	pCi/g		
Lead-214		0.495	+/-0.0653	0.0194	+/-0.0653	0.0387	pCi/g		
Manganese-54	U	-0.00108	+/-0.012	0.0104	+/-0.012	0.0209	pCi/g		
Niobium-94	U	0.00535	+/-0.0113	0.00981	+/-0.0113	0.0196	pCi/g		
Potassium-40		10.2	+/-0.805	0.086	+/-0.805	0.172	pCi/g		
Radium-226		0.503	+/-0.0743	0.0198	+/-0.0743	0.0396	pCi/g		
Silver-108m	U	-0.00513	+/-0.0104	0.00903	+/-0.0104	0.018	pCi/g		
Thallium-208		0.208	+/-0.0312	0.00992	+/-0.0312	0.0198	pCi/g		
The following Prep	Methods were n	erformed							
	Description				Analyst	Date	Time	Prep Batch	
Dry Soil Prep I	Dry Soil Prep GL-	RAD-A-0	021		LXM2	04/10/	07 1040	624159	
The following Anal Method D	ytical Methods w Description	ere perfor	med						
	-							a	
I E	ML HASL 300, 4	.5.2.3							
Notes:									
110105.									

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sample ID: Sample ID:		9802-000 18385701			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampton, Connect Mr. Jack McCarthy Soils PO# 002332	icut 06424				F	Report Date: April 17, 2	007
	Company : Address :	Connecticut Yankee Ate 362 Injun Hollow Rd	omic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Address :362 Injun Hollow RdEast Hampton, ConnecContact:Mr. Jack McCarthyProject:Soils PO# 002332Client Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture:ParameterQualifierResultRad Gamma Spec AnalysisGamma, Solid – FSS GAM & ALL FSS 226 Ingra WaivedActinium=2281.22Americium=241U0.042Bismuth=2120.771Bismuth=2140.860Cesium=137U-0.00233Cobalt=60U0.000208Europium=152U-0.00482Europium=154U0.00788Lead=2121.17Lead=2140.956Manganese=54U0.00982Niobium=94U0.0121Potassium=4016.0Radium=2260.860Silver=108mU-0.00777Thallium=2080.344	:ticut 06424	9802–0000– 183857011 TS	-012F		Rep	oort Date: April 17, 24)07
Contact:Mr. Jack McCarthy Project:Project:Soils PO# 002332Client Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture:ParameterQualifierResultRad Gamma Spec AnalysisGamma, Solid – FSS GAM & ALL FSS 226 Ingra 		<u>183857011</u>	-012F		Кер	ort Date: April 17, 20	JU 7
Project:Soils PO# 002332Client Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture:Matrix: Collector: Moisture:ParameterQualifier ResultResultRad Gamma Spec AnalysisGamma, Solid – FSS GAM & ALL FSS 226 Ingra WaivedActinium-2281.22Americium-241UU0.042Bismuth-2120.771Bismuth-2140.860Cesium-134UI0.000Cesium-137U-0.00233Cobalt-60UU0.00622Europium-152UEuropium-154U0.00208Europium-155U0.0578Lead-2121.17Lead-2140.956Manganese-54U0.00982Niobium-94U0.0121Potassium-4016.0Radium-2260.860Silver-108mU-0.00777Thallium-2080.344		<u>183857011</u>	-012F				
Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture:ParameterQualifierResultRad Gamma Spec AnalysisGamma, Solid – FSS GAM & ALL FSS 226 Ingra WaivedGamma, Solid – FSS GAM & ALL FSS 226 Ingra Waived1.22Actinium – 2281.22Americium – 241UDismuth – 2120.771Bismuth – 2140.860Cesium – 134UI0.000Cesium – 134Europium – 152U–0.00482Europium – 155U0.00578Lead – 2121.17Lead – 2121.17Lead – 2140.956Manganese – 54U0.00982Niobium – 94Niobium – 94U0.0121Potassium – 4016.0Radium – 2260.860Silver – 108mU0.344The following Prep Methods were performed MethodMethodDescription		<u>183857011</u>	-012F				
Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture:ParameterQualifierResultRad Gamma Spec AnalysisGamma, Solid-FSS GAM & ALL FSS 226 Ingra WaivedGamma, Solid-FSS GAM & ALL FSS 226 Ingra Waived1.22Americium-2281.22Americium-241U0.042Bismuth-2120.771Bismuth-2140.860Cesium-134UI0.000Cesium-137U-0.00233Cobalt-60U0.000208Europium-152UEuropium-154U0.000208Europium-155U0.0578Lead-2121.17Lead-2140.956Manganese-54U0.00982Niobium-94U0.0121Potassium-4016.0Radium-2260.860Silver-108mU-0.00777Thallium-2080.344		<u>183857011</u>	-012F				
Rad Gamma Spec Analysis Gamma, Solid – FSS GAM & ALL FSS 226 Ingra Waived Actinium–228 1.22 Americium–241 U 0.042 Bismuth–212 0.771 Bismuth–214 0.860 Cesium–134 UI 0.00 Cesium–137 U -0.00233 Cobalt–60 U 0.00622 Europium–152 U -0.00482 Europium–155 U 0.0578 Lead–212 1.17 Lead–212 Niobium–94 U 0.0121 Potassium–40 16.0 Radium–226 0.860 Silver–108m U -0.00777 Thallium–208 0.344		04-APR-07 10-APR-07 Client 3.02%	7	Cl	piect: Y ient ID: Y l. Recv.:	ANK01204 ANK001	
Gamma, Solid – FSS GAM & ALL FSS 226 Ingra Waived 1.22 Actinium–228 1.22 Americium–241 U 0.042 Bismuth–212 0.771 Bismuth–214 0.860 Cesium–134 UI 0.000 Cesium–134 UI 0.000233 Cobalt–60 U -0.00482 Europium–152 U -0.00482 Europium–155 U 0.000208 Europium–154 U 0.000208 Europium–154 U 0.00982 Niobium–94 U 0.0121 Potassium–40 16.0 Radium–226 0.860 Silver–108m U -0.00777 Thallium–208 0.344 The following Prep Methods were performed Method Description Description	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Waived Actinium-228 1.22 Americium-241 U 0.042 Bismuth-212 0.771 Bismuth-214 0.860 Cesium-134 UI 0.00 Cesium-137 U -0.00233 Cobalt-60 U 0.00622 Europium-152 U -0.00482 Europium-154 U 0.000208 Europium-155 U 0.0578 Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344							
Americium-241 U 0.042 Bismuth-212 0.771 Bismuth-214 0.860 Cesium-134 UI 0.00 Cesium-137 U -0.00233 Cobalt-60 U 0.00622 Europium-152 U -0.00482 Europium-154 U 0.000208 Europium-155 U 0.00778 Lead-212 1.17 1.60 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 860 Silver-108m U -0.00777 Thallium-208 0.344	wth						
Bismuth-212 0.771 Bismuth-214 0.860 Cesium-134 UI 0.00 Cesium-137 U -0.00233 0.00622 Europium-152 U -0.00482 0.000208 Europium-154 U 0.000208 0.0578 Lead-212 1.17 1.4 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344	+/-0.181	0.0422 +/-	-0.181	0.0844	pCi/g	MJH1 04/14/0	7 0555 624576
Bismuth-214 0.860 Cesium-134 UI 0.00 Cesium-137 U -0.00233 Cobalt-60 U 0.00622 Europium-152 U -0.00482 Europium-154 U 0.000208 Europium-155 U 0.0578 Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 Silver-108m U -0.00777 Thallium-208 0.344	+/-0.0699	0.0588 +/-0	0.0699	0.118	pCi/g		
Cesium-134 UI 0.00 Cesium-137 U -0.00233 Cobalt-60 U 0.00622 Europium-152 U -0.00482 Europium-154 U 0.000208 Europium-155 U 0.0578 Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344	+/-0.207	0.0876 +/-	-0.207	0.175	pCi/g		
Cesium-134 UI 0.00 Cesium-137 U -0.00233 Cobalt-60 U 0.00622 Europium-152 U -0.00482 Europium-154 U 0.000208 Europium-155 U 0.0578 Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344	+/-0.0965	0.0223 +/-0	0.0965	0.0446	pCi/g		
Cesium-137 U -0.00233 Cobalt-60 U 0.00622 Europium-152 U -0.00482 Europium-154 U 0.000208 Europium-155 U 0.0578 Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344	+/-0.0295	0.0158 +/-0	0.0295	0.0316	pCi/g		
Cobalt-60 U 0.00622 Europium-152 U -0.00482 Europium-154 U 0.000208 Europium-155 U 0.0578 Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344 Description -0.344	+/-0.0164	0.012 +/-0		0.024	pCi/g		
Europium-152 U -0.00482 Europium-154 U 0.000208 Europium-155 U 0.0578 Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344	+/-0.0148	0.0127 +/-0		0.0254	pCi/g		
Europium-154 U 0.000208 Europium-155 U 0.0578 Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344	+/0.0457	0.0311 +/-(0.0621	pCi/g		
Europium-155 U 0.0578 Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344 The following Prep Methods were performed Method Description	+/-0.0521	0.0376 +/-0		0.0752	pCi/g pCi/g		
Lead-212 1.17 Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344	+/-0.0512	0.0369 +/-(0.0737	pCi/g pCi/g		
Lead-214 0.956 Manganese-54 U 0.00982 Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344	+/-0.0959	0.0189 +/-(0.0737	pCi/g pCi/g		
Manganese–54 U 0.00982 Niobium–94 U 0.0121 Potassium–40 16.0 Radium–226 0.860 Silver–108m U -0.00777 Thallium–208 0.344 The following Prep Methods were performed Method Description							
Niobium-94 U 0.0121 Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344 The following Prep Methods were performed Method Description	+/-0.102		-0.102	0.045	pCi/g		
Potassium-40 16.0 Radium-226 0.860 Silver-108m U -0.00777 Thallium-208 0.344 The following Prep Methods were performed Method Description	+/-0.025		-0.025	0.0225	pCi/g		
Radium-2260.860Silver-108mU-0.00777Thallium-2080.344The following Prep Methods were performedMethodDescription	+/-0.0134	0.0118 +/-0		0.0235	pCi/g		
Silver-108mU-0.00777Thallium-2080.344The following Prep Methods were performed MethodDescription	+/-1.23		-/-1.23	0.204	pCi/g		
Thallium-208 0.344 The following Prep Methods were performed Method Description	+/-0.0965	0.0223 +/-0		0.0446	pCi/g		
The following Prep Methods were performed Method Description	+/-0.012		-0.012	0.0207	pCi/g		
Method Description	+/-0.0392	0.012 +/-0	0.0392	0.024	pCi/g		
Method Description							
Dry Soil Prep Dry Soil Prep GL-RAD-A-			Analyst	Date	Time	Prep Batch	
)21	J	LXM2	04/10/07	1040	624159	
The following Analytical Methods were perfor	med						
Method Description							
EML HASL 300, 4.5.2.3							
Notes:							
The Qualifiers in this report are defined as							

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

rameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID:			9802–000 18385701			Project: Client ID: Vol. Recv.:		
]	Project:	Soils PO# 00	2332							
(Contact:	East Hampton Mr. Jack McG	,	ticut 06424				I	Report Date: April 17, 20	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

Par

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Analys		cCarthy 02332 nple ID: 0: nte:	ticut 06424 Uncertainty	1838570 TS 04–APR 10–APR Client 5.57%	R-07	(roiect:	oort Date: April 17, 20 YANK01204 YANK001	007
Analys	Client San Sample ID Matrix: Collect Da Receive D Collector: Moisture: Qualifier	nple ID:): ate: ate:	Uncertainty	1838570 TS 04–APR 10–APR Client 5.57%	012 R-07	(Client ID: Y		
-	Sample ID Matrix: Collect Da Receive D Collector: Moisture: Qualifier	o: ate: ate:	Uncertainty	1838570 TS 04–APR 10–APR Client 5.57%	012 R-07	(Client ID: Y		
-	sis	Result	Uncertainty						
-				LC	TPU	MDA	Units	DF Analyst Date	Time Batch 1
SS GAM	l & ALL FSS								
		226 Ingrov	wth						
		0.593	+/-0.125	0.0363	+/-0.125	0.0726	pCi/g	MJH1 04/14/0	7 0555 624576
	U	0.0269	+/-0.058	0.0467	+/-0.058	0.0933	pCi/g		
		0.512	+/-0.192	0.082	+/-0.192	0.164	pCi/g		
		0.630	+/-0.0834	0.0202	+/-0.0834	0.0404	pCi/g		
	UI	0.00	+/-0.0244	0.0136	+/-0.0244	0.0271	pCi/g		
		0.0504	+/-0.0242	0.0115	+/-0.0242	0.023	pCi/g		
		0.049	+/-0.0182	0.0149	+/-0.0182	0.0299	pCi/g		
	U	0.00456	+/-0.0355	0.0285	+/-0.0355	0.0569	pCi/g		
	U	0.0259	+/-0.0405	0.036	+/-0.0405	0.0719	pCi/g		
	U	0.0191	+/-0.0355	0.0334	+/-0.0355	0.0667	pCi/g		
		0.654	+/-0.0612	0.017	+/-0.0612	0.0339	pCi/g		
		0.666	+/-0.0795	0.0202	+/-0.0795	0.0404	pCi/g		
	U	0.0178	+/-0.0125	0.0101	+/-0.0125	0.0201	pCi/g		
	U	0.000196	+/-0.012	0.0104	+/-0.012	0.0207			
		11.4	+/-0.905	0.0852	+/0.905	0.170	pCi/g		
		0.630	+/-0.0834	0.0202	+/-0.0834	0.0404	pCi/g		
	U	0.00721	+/-0.0116	0.0101	+/-0.0116	0.0202	pCi/g		
		0.202	+/0.0307	0.0113	+/0.0307	0.0226	pCi/g		
ep Metl	hods were p	erformed							
Descri	ption				Analyst	Date	Time	Prep Batch	
Dry So	oil Prep GL-	RAD-A-0	21		LXM2	04/10/0	7 1040	624159	
		ere perfor	med						
		5.0.2							
EML H	1ASL 300, 4	.5.2.3							
	ep Meti Descri Dry Sc alytical Descri	U UI U U U U U U U U U U U U U U U E <u>P Methods were p</u> Description Dry Soil Prep GL- alytical Methods w Description EML HASL 300, 4	0.593 U 0.0269 0.512 0.630 UI 0.00 0.0504 0.049 U 0.00456 U 0.0259 U 0.0191 0.654 0.666 U 0.0178 U 0.00196 11.4 0.630 U 0.00721 0.202 ep Methods were performed Description Dry Soil Prep GL–RAD–A–0 alytical Methods were performed	U $0.0269 + -0.058$ 0.512 + -0.192 0.630 + -0.0834 UI $0.00 + -0.0244$ 0.0504 + -0.0242 0.049 + -0.0182 U $0.00456 + -0.0355$ U $0.0259 + -0.0405$ U $0.0191 + -0.0355$ 0.654 + -0.0612 0.666 + -0.0795 U $0.0178 + -0.0125$ U $0.00196 + -0.0125$ U $0.000196 + -0.0125$ U $0.00721 + -0.0125$ U $0.00721 + -0.0136$ 0.630 + -0.0834 U $0.00721 + -0.0116$ 0.202 + -0.0307 Pep Methods were performed Description Dry Soil Prep GL-RAD-A-021 alytical Methods were performed Description	0.593 +/-0.125 0.0363 U 0.0269 +/-0.058 0.0467 0.512 +/-0.192 0.082 0.630 +/-0.0834 0.0202 UI 0.00 +/-0.0244 0.0136 0.0504 +/-0.0242 0.0115 0.049 +/-0.0182 0.0149 U 0.00456 +/-0.0355 0.0285 U 0.0259 +/-0.0405 0.036 U 0.0191 +/-0.0355 0.0334 0.654 +/-0.0612 0.017 0.666 +/-0.0795 0.0202 U 0.0178 +/-0.0125 0.0101 U 0.000196 +/-0.012 0.0104 11.4 +/-0.905 0.0852 0.630 +/-0.0834 0.0202 U 0.00721 +/-0.0116 0.0101 0.202 +/-0.0307 0.0113 ep Methods were performed Description Dry Soil Prep GL-RAD-A-021 alytical Methods were performed Description	$\begin{array}{c cccccc} 0.593 & +/-0.125 & 0.0363 & +/-0.125 \\ U & 0.0269 & +/-0.058 & 0.0467 & +/-0.058 \\ 0.512 & +/-0.192 & 0.082 & +/-0.192 \\ 0.630 & +/-0.0834 & 0.0202 & +/-0.0834 \\ UI & 0.00 & +/-0.0244 & 0.0136 & +/-0.0244 \\ 0.0504 & +/-0.0242 & 0.0115 & +/-0.0242 \\ 0.049 & +/-0.0182 & 0.0149 & +/-0.0182 \\ U & 0.00456 & +/-0.0355 & 0.0285 & +/-0.0355 \\ U & 0.0259 & +/-0.0405 & 0.036 & +/-0.0405 \\ U & 0.0191 & +/-0.0355 & 0.0334 & +/-0.0355 \\ 0.654 & +/-0.0612 & 0.017 & +/-0.0612 \\ 0.666 & +/-0.0795 & 0.0202 & +/-0.0795 \\ U & 0.0178 & +/-0.0125 & 0.0101 & +/-0.0125 \\ U & 0.000196 & +/-0.012 & 0.0104 & +/-0.012 \\ 11.4 & +/-0.905 & 0.0852 & +/-0.905 \\ 0.630 & +/-0.0834 & 0.0202 & +/-0.0834 \\ U & 0.00721 & +/-0.0116 & 0.0101 & +/-0.0116 \\ 0.202 & +/-0.0307 & 0.0113 & +/-0.0307 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	 Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
	Client Sam Sample ID:			9802–000 18385701			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Cont Proje	 East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				A	Report Date: April 17, 2	007
Com Addr	 Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

ntact: nject:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				D.				
oject:		02332				Report Date: April 17, 2007					
		te:		1838570 TS 04-APR	-07	(YANK01204 YANK001			
	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch		
ec Analy	ysis										
-		226 Ingro	wth								
3		0.715	+/-0.155	0.0534	+/-0.155	0.107	pCi/g	MJH1 04/14/0	7 0556 624576		
41	UI	0.00	+/-0.0294	0.0247	+/-0.0294	0.0493					
	UI	0.00	+/-0.231	0.148	+/-0.231	0.297	pCi/g				
		0.637	+/-0.0985	0.0296	+/-0.0985	0.0592	pCi/g				
	UI	0.00	+/-0.0265	0.0183	+/-0.0265	0.0366	pCi/g				
		0.0686		0.0164	+/-0.0283	0.0328	pCi/g				
	U	0.0248	+/-0.0207	0.0184	+/-0.0207	0.0367	pCi/g				
2	U	-0.0178	+/-0.0548	0.0391	+/-0.0548		pCi/g				
4	U	0.0185	+/-0.0575				pCi/g				
5	U										
4											
	U			0.0152							
)											
	U										
i		0.229	+/-0.0402	0.0153	+/-0.0402	0.0305	pCi/g				
		erformed									
Desci	ription				Analyst	Date	Time	Prep Batch			
Dry S	Soil Prep GL-1	RAD-A-0	21		LXM2	04/10/0)7 1040	624159			
Analytica	al Methods w	ere perfor	med								
Descr	ription										
EML	HASL 300, 4.	.5.2.3									
	FSS GA 41 2 4 5 4 Prep Me Desci Dry S Analytic: EML	Collect Da Receive D Collector: Moisture: Qualifier ec Analysis FSS GAM & ALL FSS 41 UI UI UI UI U 2 U 4 U 5 U 4 U 5 U 4 U 4 U 5 U 4 U 5 U 4 U 5 U 4 U 4 U 5 U 4 U 4 U 5 U 4 U 5 U 4 U 4 U 5 U 4 U 5 U 4 U 5 U 4 U 5 U 4 U 4 U 5 U 4 U 4 U 5 U 4 U 5 U 4 U 4 U 4 U 4 U 4 U 5 U 4 U 4 U 5 U 4 U 4 U 4 U 5 U 4 U 5 U 4 U 4 U 4 U 5 U 4 U 4 U 4 U 5 U 4 U 4 U 5 U 4 U 4 U 5 U 4 U 4 U 4 U 5 U 5 U 4 U 4 U 5	Collect Date: Receive Date: Collector: Moisture: Qualifier Result ec Analysis Result FSS GAM & ALL FSS 226 Ingrov 0.715 41 UI 0.00 0.637 UI 0.00 0.6686 U 0.0248 2 U -0.0178 4 U 0.0185 5 U 0.0539 0.679 0.568 4 U -0.00507 U 0.00229 10.2 0.637 U 0.00229 10.2 0.637 U 0.229 Prep Methods were performed Description Dry Soil Prep GL–RAD–A–0 Analytical Methods were performed	Collect Date: Receive Date: Collector: Moisture: Qualifier Result Uncertainty Qualifier Result Uncertainty ec Analysis FSS GAM & ALL FSS 226 Ingrowth 3 0.715 +/-0.155 41 UI 0.00 +/-0.0294 U 0.037 +/-0.0283 U 0.0248 +/-0.0283 U 0.0178 +/-0.0575 U 0.0539 +/-0.0514 0.637 +/-0.0185 U 0.00507 +/-0.0195 U 0.00229 +/-0.018 0.637 +/-0.0985 U 0.00217 +/-0.0156 0.637 +/-0.0985 U 0.00217 +/-0.018 U 0.00217 +/-0.0402 Prep Methods were performed Description EML HASL 300, 4.5.2.3	Collect Date: 04–APR Receive Date: 10–APR Collector: Client Moisture: 5.53% Qualifier Result Uncertainty LC ec Analysis	Collect Date: 04–APR–07 Receive Date: 10–APR–07 Collector: Client Moisture: 5.53% Qualifier Result Uncertainty LC TPU ec Analysis FSS GAM & ALL FSS 226 Ingrowth 3 0.715 +/-0.155 0.0534 +/-0.129 41 UI 0.00 +/-0.0294 0.0247 +/-0.0294 0.637 +/-0.0985 0.0206 +/-0.0295 0.0183 +/-0.0295 0.637 +/-0.0283 0.0164 +/-0.0283 0.0164 +/-0.0283 UI 0.00 +/-0.0265 0.0183 +/-0.0265 0.0183 +/-0.0207 2 U 0.0178 +/-0.0283 0.0164 +/-0.0283 UI 0.0185 +/-0.0548 0.0391 +/-0.0575 2 U -0.0178 +/-0.0183 0.0216 +/-0.0195 2 U 0.00507 +/-0.0183 0.0216 +/-0.0195 3 U 0.00229 +/-0.0186 0.0168 +/-0.0183 4 <td>Collect Date: $0-APR-07$ Receive Date: $10-APR-07$ Collector: Client Moisture: 5.53% Qualifier Result Uncertainty LC TPU MDA ec Analysis FSS GAM & ALL FSS 226 Ingrowth 3 0.715 $t/-0.155$ 0.0534 $t/-0.155$ 0.107 41 UI 0.00 $t/-0.231$ 0.148 $t/-0.231$ 0.297 0.637 $t/-0.0985$ 0.0296 $t/-0.0245$ 0.0326 UI 0.00 $t/-0.0233$ 0.0164 $t/-0.0233$ 0.0265 0.0328 UI 0.00 $t/-0.0265$ 0.0184 $t/-0.0207$ 0.0328 U 0.0248 $t/-0.027$ 0.0184 $t/-0.0207$ 0.0328 U 0.0248 $t/-0.027$ 0.0184 $t/-0.027$ 0.0375 2 U -0.0178 $t/-0.0575$ 0.0489 $t/-0.0575$ 0.0978 3 U 0.0229 $t/-0.018$ 0.0216 $t/-0.018$ 0.0525</td> <td>Collect Date: 04–APR-07 IO–APR-07 Collector: ID–APR-07 Cilent Qualifier Result Uncertainty LC TPU MDA Units ec Analysis FSS GAM & ALL FSS 226 Ingrowth LC TPU MDA Units et Analysis </td> <td>Collect Date: $04-APR-07$ Receive Date: $10-APR-07$ Collector: Client Moisture: 5.53% Particle MDA Units DF Analyst Date ee Analysis FSS GAM & ALL FSS 226 Ingrowth MDH Units DF Analyst Date ee Analysis $-755 GAM & ALL FSS 226 Ingrowth$ MIH1 0.0715 $+/-0.155$ 0.0534 $+/-0.155$ 0.107 pCi/g MJH1 04/14/0 41 UI 0.00 $+/-0.0294$ 0.0294 0.0493 pCi/g MJH1 04/14/0 41 UI 0.00 $+/-0.0294$ 0.0295 0.0392 pCi/g MJH1 04/14/0 41 UI 0.00 $+/-0.0281$ 0.0148 $+/-0.0291$ 0.0493 pCi/g MJH1 04/14/0 41 UI 0.00 $+/-0.0281$ 0.0314 $+/-0.0291$ 0.0328 pCi/g MJH1 04/14/0 2 U 0.0178 $+/-0.0283$ 0.0164 $+/-0.0283$ 0.0328 pCi/g MJH1 04/14/0 2 U</td>	Collect Date: $0-APR-07$ Receive Date: $10-APR-07$ Collector: Client Moisture: 5.53% Qualifier Result Uncertainty LC TPU MDA ec Analysis FSS GAM & ALL FSS 226 Ingrowth 3 0.715 $t/-0.155$ 0.0534 $t/-0.155$ 0.107 41 UI 0.00 $t/-0.231$ 0.148 $t/-0.231$ 0.297 0.637 $t/-0.0985$ 0.0296 $t/-0.0245$ 0.0326 UI 0.00 $t/-0.0233$ 0.0164 $t/-0.0233$ 0.0265 0.0328 UI 0.00 $t/-0.0265$ 0.0184 $t/-0.0207$ 0.0328 U 0.0248 $t/-0.027$ 0.0184 $t/-0.0207$ 0.0328 U 0.0248 $t/-0.027$ 0.0184 $t/-0.027$ 0.0375 2 U -0.0178 $t/-0.0575$ 0.0489 $t/-0.0575$ 0.0978 3 U 0.0229 $t/-0.018$ 0.0216 $t/-0.018$ 0.0525	Collect Date: 04–APR-07 IO–APR-07 Collector: ID–APR-07 Cilent Qualifier Result Uncertainty LC TPU MDA Units ec Analysis FSS GAM & ALL FSS 226 Ingrowth LC TPU MDA Units et Analysis	Collect Date: $04-APR-07$ Receive Date: $10-APR-07$ Collector: Client Moisture: 5.53% Particle MDA Units DF Analyst Date ee Analysis FSS GAM & ALL FSS 226 Ingrowth MDH Units DF Analyst Date ee Analysis $-755 GAM & ALL FSS 226 Ingrowth$ MIH1 0.0715 $+/-0.155$ 0.0534 $+/-0.155$ 0.107 pCi/g MJH1 04/14/0 41 UI 0.00 $+/-0.0294$ 0.0294 0.0493 pCi/g MJH1 04/14/0 41 UI 0.00 $+/-0.0294$ 0.0295 0.0392 pCi/g MJH1 04/14/0 41 UI 0.00 $+/-0.0281$ 0.0148 $+/-0.0291$ 0.0493 pCi/g MJH1 04/14/0 41 UI 0.00 $+/-0.0281$ 0.0314 $+/-0.0291$ 0.0328 pCi/g MJH1 04/14/0 2 U 0.0178 $+/-0.0283$ 0.0164 $+/-0.0283$ 0.0328 pCi/g MJH1 04/14/0 2 U		

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Parameter		Qualifier Result U	ncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sample ID: Sample ID:		9802–000 18385701			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampton, Connecticut Mr. Jack McCarthy Soils PO# 002332	t 06424				R	Report Date: April 17, 2	007
	Company : Address :	Connecticut Yankee Atomi 362 Injun Hollow Rd	c Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Compa Addres	•	cut Yankee A Hollow Rd	tomic Power					
~		pton, Connec	ticut 06424			Rep	ort Date: April 17, 2	007
Contac		McCarthy						
Project	:: Soils PO	# 002332						
		ample ID:		9802-0000-014F			ANK01204	
	Sample	ID:		183857014 TS		Client ID: Y Vol. Recv.:	ANK001	
	Matrix: Collect	Data		04–APR–07		v 01. Ree v		
	Receive			10–APR–07				
	Collecto			Client				
	Moistur			5.91%				
Parameter	Qualifie	er Result	Uncertainty	LC TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spec A	Analysis							
Gamma,Solid–FSS Waived	S GAM & ALL F	FSS 226 Ingro	wth					
Actinium-228		0.568	+/-0.0999	0.0299 +/-0.0999	0.0597	pCi/g	MJH1 04/14/0	07 0556 624576
Americium-241		U 0.0641	+/-0.0384	0.0327 +/-0.0384	0.0654	pCi/g		
Bismuth-212		0.353	+/-0.150	0.0664 +/-0.150	0.133	pCi/g		
Bismuth-214		0.521	+/-0.0654	0.0161 +/-0.0654	0.0322	pCi/g		
Cesium-134	ι	Л 0.00	+/-0.0158	0.0111 +/-0.0158	0.0223	pCi/g		
Cesium-137		U 0.0053	+/-0.0119	0.00906 +/-0.0119	0.0181	pCi/g		
Cobalt-60		U 0.000741	+/-0.0116	0.00985 +/-0.0116	0.0197	pCi/g		
Europium-152		U -0.00719	+/0.0304	0.0246 +/-0.0304	0.0492	pCi/g		
Europium-154		U –0.0217	+/-0.0327	0.0266 +/-0.0327	0.0532	pCi/g		
Europium-155		U 0.0308	+/-0.0349	0.0268 +/-0.0349	0.0536	pCi/g		
Lead-212		0.568	+/-0.0525	0.0141 +/-0.0525	0.0282	pCi/g		
Lead-214		0.554	+/-0.0614	0.0176 +/-0.0614	0.0352	pCi/g		
Manganese–54		U -0.00438	+/-0.0105	0.00905 +/-0.0105	0.0181	pCi/g		
Niobium–94		U -0.00813	+/-0.0116	0.00812 +/-0.0116	0.0162	pCi/g		
Potassium-40		9.59	+/-0.714	0.0732 +/-0.714	0.146	pCi/g		
Radium-226		0.521	+/-0.0654	0.0161 +/-0.0654	0.0322	pCi/g		
Silver–108m Thallium–208		U 0.00459 0.168	+/-0.00931 +/-0.0286	0.00771 +/-0.00931 0.00862 +/-0.0286	0.0154 0.0172	pCi/g pCi/g		
The following Prep		e performed			·····			
	Description			Analyst	Date	Time	Prep Batch	
Dry Soil Prep I	Dry Soil Prep G	L-RAD-A-C	21	LXM2	04/10/	07 1040	624159	
The following Ana		were perfor	med					
Method I	Description							
1 E	EML HASL 300	, 4.5.2.3						
Notes:								
The Qualifiers in	this report are	e defined as	follows :					

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst Date	Time Batch N
		Client Sam Sample ID:			9802–000 18385701			Project: Client ID: Vol. Recv.:	YANI	K01204 K001	
Cont Proje		East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				F	leport D	ate: April 17, 2	007
	1 2	Connecticut 362 Injun Ho		omic Power							

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut 362 Injun He		omic Power						
	Contact:	East Hampto Mr. Jack Mo		ticut 06424				Rej	port Date: April 17, 2	007
	Project:	Soils PO# 0								
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	: te:		9802-00 1838570 TS 04-APR 10-APR Client 5.48%	-07	(YANK01204 YANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma	Spec Analy	ysis								
Gamma,Sol Waived	lid–FSS GA	M & ALL FSS	226 Ingro	wth						
Actinium-	-228		0.589	+/-0.110	0.0345	+/0.110	0.0689	pCi/g	MJH1 04/14/0	07 0601 624576
Americiun	n–241	U	0.0195	+/-0.0173	0.0148	+/-0.0173	0.0297	pCi/g		
Bismuth-2	212	_	0.386	+/-0.143	0.0822	+/-0.143	0.164	pCi/g		
Bismuth-2	214		0.504	+/-0.0682		+/-0.0682	0.0371	pCi/g		
Cesium-1		UI	0.00	+/-0.0195		+/-0.0195	0.0253	pCi/g		
Cesium-1	37	U	0.0153	+/-0.0119		+/-0.0119	0.0215	pCi/g		
Cobalt-60)	U -	-5.210E- 05	+/-0.0129	0.0109	+/0.0129	0.0217	pCi/g		
Europium-		U	-0.00218	+/-0.0323	0.0253	+/-0.0323	0.0505	pCi/g		
Europium-	-154	U	-0.0118	+/-0.0447	0.0315	+/-0.0447	0.063	pCi/g		
Europium-	-155	U	0.0185	+/-0.0319	0.0243	+/-0.0319	0.0485	pCi/g		
Lead-212			0.636	+/-0.0724	0.014	+/0.0724	0.0279	pCi/g		
Lead-214			0.570	+/-0.0683	0.0179	+/-0.0683	0.0358	pCi/g		
Manganes	e-54	U	-0.00143	+/-0.0136	0.0102	+/0.0136	0.0204	pCi/g		
Niobium-	94	U	0.00881	+/0.011	0.0097	+/-0.011	0.0194	pCi/g		
Potassium	-40		9.76	+/-0.759	0.0872	+/-0.759	0.174	pCi/g		
Radium-2	26		0.504	+/-0.0682	0.0186	+/-0.0682	0.0371	pCi/g		
Silver-108	8m	U	-0.00713	+/-0.00952	0.00818	+/-0.00952	0.0164	pCi/g		
Thallium–	-208		0.198	+/-0.029	0.00965	+/-0.029	0.0193	pCi/g		
		thods were p	erformed							
Method	Desc	ription				Analyst	Date	Time	Prep Batch	
Dry Soil Prep	p Dry S	Soil Prep GL-	RAD-A-0	21		LXM2	04/10/0	07 1040	624159	
The followin Method		al Methods we	ere perfor	med						
		-								
1	EML.	HASL 300, 4	5.2.3							

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	Dł	F Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385703			Project: Client ID: Vol. Recv.:	YAN	K01204 K001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	cticut 06424				F	Report E	Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power							

- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Comj Addre	pany : ess :	Connecticut 362 Injun Ho		omic Power						
		East Hampto		ticut 06424				Rep	ort Date: April 17, 2	007
Conta	act:	Mr. Jack Mc	Carthy							
Proje	ect:	Soils PO# 00	02332							
		Client Sam				00–017F			ANK01204	
		Sample ID	:		1838570 TS	16		Client ID: Y Vol. Recv.:	ANK001	
		Matrix: Collect Da	tar		03-APR	-07		v 01. Ree v		
		Receive Da			10-APR					
		Collector:			Client					
		Moisture:			5.64%					
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spec	Analy	sis								
Gamma,Solid–F. Waived	SS GAN	M & ALL FSS	226 Ingro	wth						
Actinium-228			0.573	+/-0.108	0.0326	+/-0.108	0.0652	pCi/g	MJH1 04/14/0	07 0556 624576
Americium-241	I	U	0.0136	+/-0.0412	0.0346	+/-0.0412	0.0691	pCi/g		
Bismuth-212			0.380	+/-0.131	0.0728	+/-0.131	0.146	pCi/g		
Bismuth-214			0.573	+/-0.0689	0.0166	+/-0.0689	0.0333	pCi/g		
Cesium-134		UI	0.00	+/-0.0197	0.00996	+/-0.0197	0.0199	pCi/g		
Cesium-137		U	0.00565	+/-0.0131	0.00995	+/-0.0131	0.0199	pCi/g		
Cobalt-60		U	0.00514	+/-0.0116	0.0101	+/-0.0116	0.0202	pCi/g		
Europium-152		-	-0.00394	+/-0.0332	0.0258	+/-0.0332	0.0515	pCi/g		
Europium-154		U	-0.00793	+/-0.0363	0.0302	+/-0.0363	0.0605	pCi/g		
Europium-155		U	0.0526	+/-0.0371	0.0278	+/-0.0371	0.0555	pCi/g		
Lead-212			0.626	+/-0.0566		+/-0.0566	0.0293	pCi/g		
Lead-214			0.633	+/-0.0669		+/-0.0669	0.0345	pCi/g		
Manganese-54		U	0.014	+/-0.0114		+/-0.0114	0.0191	pCi/g		
Niobium-94		U	0.00135	+/-0.011	0.00913	+/-0.011	0.0183	pCi/g		
Potassium-40			11.3	+/-0.843	0.0866	+/-0.843	0.173	pCi/g		
Radium–226			0.573	+/-0.0689		+/-0.0689	0.0333	pCi/g		
Silver–108m		U	0.00861	+/-0.00968		-/-0.00968	0.0176	pCi/g		
Thallium–208			0.193	+/-0.0304	0.00912	+/-0.0304	0.0182	pCi/g		
The following Pr	ep Met	thods were pe	erformed							
Method	Descr	ription				Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry S	oil Prep GL-I	RAD-A-0	21		LXM2	04/10/0	07 1040	624159	
The following An Method	-	al Methods we	ere perfor	med						
1		HASL 300, 4.	5.2.3							
Notes:		0 000, 11								
The Qualifiers			~ 1	6 11						

**

Analyte is a surrogate compound Result is less than value reported <

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385701			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	cticut 06424				F	Report Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Compar Address	•		tomic Power						
	East Hampto		ticut 06424				Rep	ort Date: April 17, 2	007
Contact	: Mr. Jack Mc	Carthy							
Project:	Soils PO# 0	02332							
	Client Sam Sample ID Matrix:	:		1838570 TS				ANK01204 ANK001	
	Collect Da Receive Da Collector:			04–APR 10–APR Client					
	Moisture:			4.8%					
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spec A	nalysis								
Gamma,Solid–FSS Waived	GAM & ALL FSS	-							
Actinium-228		0.755	+/-0.125	0.0334	+/-0.125	0.0667	pCi/g	MJH1 04/14/	07 0602 624576
Americium-241	U	0.0652	+/0.0505		+/-0.0505	0.0867	pCi/g		
Bismuth-212		0.314	+/-0.161	0.078	+/-0.161	0.156	pCi/g		
Bismuth-214		0.630	+/-0.0811		+/-0.0811	0.038	pCi/g		
Cesium-134	UI	0.00	+/-0.0184		+/-0.0184	0.0247	pCi/g		
Cesium-137	U ·	-4.410E- 05	+/-0.0121	0.0105	+/-0.0121	0.021	pCi/g		
Cobalt-60	U	-0.00522	+/-0.0119		+/-0.0119	0.0198	pCi/g		
Europium-152	U	-0.0458	+/-0.046	0.0267	+/-0.046	0.0533	pCi/g		
Europium-154	U	-0.037	+/-0.0366		+/-0.0366	0.0585	pCi/g		
Europium-155	UI	0.00	+/-0.0406		+/-0.0406	0.0611	pCi/g		
Lead-212		0.717	+/-0.0651		+/-0.0651	0.0316	pCi/g		
Lead-214		0.686	+/-0.0762		+/-0.0762	0.036	pCi/g		
Manganese-54	UI	0.00	+/-0.0215		+/-0.0215	0.0192	pCi/g		
Niobium-94	U	-0.00449	+/-0.0125		+/-0.0125	0.0182	pCi/g		
Potassium-40		10.2	+/-0.819	0.0818	+/-0.819	0.164	pCi/g		
Radium-226		0.630	+/-0.0811		+/-0.0811	0.038	pCi/g		
Silver–108m Thallium–208	U	-0.00208 0.217	+/-0.0102 +/-0.0333		+/-0.0102 +/-0.0333	0.018 0.0194	pCi/g pCi/g		
The following Prep	Methods were p	erformed							
	Description				Analyst	Date	Time	Prep Batch	
Dry Soil Prep [Dry Soil Prep GL–	RAD-A-C	021		LXM2	04/10/	07 1040	624159	
The following Anal		ere perfor	med	=					
	Description		· · · · ·						
1 E	EML HASL 300, 4	.5.2.3							
Notes:									

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802-000 18385701			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	cticut 06424				F	Report Date: April 17, 2	2007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

		Collector: Moisture:			Client 6.34%					
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spe	c Analys	sis								
Gamma,Solid–1 Waived	FSS GAN	1 & ALL FSS	226 Ingrov	wth						
Actinium-228			0.576	+/-0.101	0.0282	+/-0.101	0.0565	pCi/g	MJH1 04/14/0)7 0557 624576
Americium-24	1	U	0.0293	+/0.040	0.033	+/-0.040	0.066	pCi/g		
Bismuth-212			0.443	+/-0.156	0.0607	+/-0.156	0.121	pCi/g		
Bismuth-214			0.511	+/-0.063	0.0153	+/-0.063	0.0306	pCi/g		
Cesium-134		UI	0.00	+/-0.0145	0.00989	+/-0.0145	0.0198	pCi/g		
Cesium-137		U	0.00415	+/-0.0102		+/-0.0102	0.0155	pCi/g		
Cobalt-60		U	0.00644	+/-0.00964		+/-0.00964	0.0171	pCi/g		
Europium-152		U	0.00832	+/-0.0312		+/-0.0312	0.0425	pCi/g		
Europium-154		U	-0.0136	+/-0.0306		+/-0.0306	0.0517	pCi/g		
Europium-155		U	0.0318	+/-0.0325		+/-0.0325	0.0522	pCi/g		
Lead-212			0.681	+/-0.0576		+/-0.0576	0.0253	pCi/g		
Lead-214			0.617	+/-0.0633		+/-0.0633	0.0301	pCi/g		
Manganese-54	Ļ	U	0.0125	+/-0.012	0.00805	+/-0.012	0.0161	pCi/g		
Niobium-94		U	0.000288	+/-0.00874		-/-0.00874	0.0151	pCi/g		
Potassium-40			11.6	+/-0.828	0.0708	+/0.828	0.142	pCi/g		
Radium–226			0.511	+/-0.063	0.0153	+/-0.063	0.0306	pCi/g		
Silver–108m		U	0.00824	+/-0.00922		+/-0.00922	0.0144	pCi/g		
Thallium-208			0.209	+/-0.027	0.00735	+/-0.027	0.0147	pCi/g		
			. -							
The following P Method	rep Met Descri	-	erformed			Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Drv Se	oil Prep GL-l	RAD-A-0	21		LXM2	04/10/07	1040	624159	

Notes:

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385701			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	oject:	Soils PO# 00	-							
Co	ontact:	East Hampto Mr. Jack Mc		ticut 06424				F	Report Date: April 17, 2	2007
	ompany : Idress :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	npany : ress :	Connecticut 362 Injun He		omic Power							
		East Hampto	on, Connec	ticut 06424				Rep	oort Da	te: April 17, 2	007
Con	tact:	Mr. Jack Mc						-		-	
Proj	ect:	Soils PO# 00	02332								
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector:	: te:		9802-00 1838570 TS 03-APF 10-APF Client	R-07			YANK YANK	01204 001	
		Moisture:			5.71%						
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst Date	Time Batch
Rad Gamma Spe	-										
Gamma,Solid–1 Waived	FSS GAM	1 & ALL FSS	226 Ingro	wth							
Actinium-228			0.628	+/-0.116	0.0383	+/-0.116	0.0765	pCi/g		MJH1 04/14/0	07 0559 624576
Americium-24	-1	U	-0.32	+/-0.0805	0.0604	+/-0.0805	0.121	pCi/g			
Bismuth-212			0.324	+/-0.180	0.0851	+/-0.180	0.170	pCi/g			
Bismuth-214			0.496	+/-0.0696	0.0202	+/-0.0696	0.0404	pCi/g			
Cesium-134		U	0.0216	+/-0.0211	0.0133	+/-0.0211	0.0265	pCi/g			
Cesium-137		U	0.0098	+/-0.013	0.0115	+/-0.013	0.0229	pCi/g			
Cobalt-60		U ·	-0.00579	+/-0.0126	0.0102	+/-0.0126	0.0204	pCi/g			
Europium-152		U	-0.0313	+/-0.0411	0.0291	+/-0.0411	0.0581	pCi/g			
Europium-154		U	0.0181	+/-0.0442	0.0333	+/-0.0442	0.0665	pCi/g			
Europium-155		U	0.0393	+/-0.0466	0.0366	+/-0.0466	0.0732	pCi/g			
Lead-212			0.607	+/-0.0592		+/-0.0592	0.034	pCi/g			
Lead-214			0.547	+/-0.069	0.0211	+/-0.069	0.0422	pCi/g			
Manganese-54		U	0.00194	+/-0.0131		+/-0.0131	0.0231	pCi/g			
Niobium-94		U	0.00703	+/-0.0119		+/-0.0119	0.0208	pCi/g			
Potassium-40			9.98	+/-0.840	0.0993	+/-0.840	0.199	pCi/g			
Radium-226			0.496	+/-0.0696		+/-0.0696	0.0404	pCi/g			
Silver–108m		U	0.0109	+/-0.0124		+/-0.0124	0.0198	pCi/g			
Thallium–208			0.198	+/-0.0322	0.0101	+/-0.0322	0.0202	pCi/g			
The following P			erformed								
Method	Descri					Analyst	Date	Time	Pro	ep Batch	
Dry Soil Prep	Dry So	oil Prep GL-l	RAD-A-0	21		LXM2	04/10/0	07 1040	624	4159	
The following A	nalytical	Methods we	ere perfor	med							
Method	Descri										
	EML H	HASL 300, 4.	5.2.3								
Notes:											
The Qualifiers	s in this :	report are de	efined as t	follows :							
-		-									

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385701			Project: Client ID: Vol. Recv.:	YAN YAN	K01204 K001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				Ą	leport D	Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power							

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	pany : ress :	Connecticut 362 Injun H		omic Power							
		East Hampto		ticut 06424				Re	eport Da	ate: April 17, 2	007
Cont		Mr. Jack Mc	•								
Proje	ect:	Soils PO# 0	02332								
		Client Sam			9802-000			Project: Client ID:		K01204	
		Sample ID Matrix:	1:		18385702 TS	.0		Vol. Recv.:	YANK	1001	
		Collect Da	te:		03-APR-	-07					
		Receive Da			10-APR-						
		Collector:			Client						
		Moisture:			5.14%						
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF	Analyst Date	Time Batch
Rad Gamma Spe	c Analy	sis									
Gamma,Solid–F Waived	FSS GAI	M & ALL FSS	226 Ingro	wth							
Actinium-228			0.691	+/-0.107	0.0272	+/-0.107	0.0543	pCi/g		MJH1 04/14/0	07 0604 624576
Americium-24	1	U	0.0456	+/-0.0557	0.0484 +	-/-0.0557	0.0966	pCi/g			
Bismuth-212			0.442	+/-0.115		+/-0.115	0.114	pCi/g			
Bismuth-214			0.473	+/0.0591	0.0151 +		0.0302	pCi/g			
Cesium-134		UI	0.00	+/-0.0142	0.00981 +		0.0196	pCi/g			
Cesium-137		U	0.0166	+/-0.0124	0.00835 +		0.0167	pCi/g			
Cobalt-60		U ·	-1.340E- 05	+/-0.00939	0.0081 +/	-0.00939	0.0162	pCi/g			
Europium-152		U	-0.0362	+/-0.0265	0.0212 +	-/-0.0265	0.0424	pCi/g			
Europium-154		Ū	-0.0178	+/-0.0338	0.0241 +		0.0482	pCi/g			
Europium-155		Ū	0.00771	+/-0.0369		-/-0.0369	0.0559	pCi/g			
Lead-212			0.606	+/-0.0552	0.0124 +	-/0.0552	0.0248	pCi/g			
Lead-214			0.598	+/0.0618	0.0153 +	-/-0.0618	0.0306	pCi/g			
Manganese-54		U	-0.0038	+/-0.00933	0.00806 +/	-0.00933	0.0161	pCi/g			
Niobium-94		U	0.00188	+/-0.00854	0.00737 +/	-0.00854	0.0147	pCi/g			
Potassium–40			10.1	+/-0.700		+/-0.700	0.140	pCi/g			
Radium-226			0.473	+/0.0591	0.0151 +		0.0302	pCi/g			
Silver-108m		U	-0.00302	+/-0.00781	0.00696 +/		0.0139	pCi/g			
Thallium–208			0.186	+/-0.0252	0.00764 +	-/-0.0252	0.0153	pCi/g			
The following P	rep Me	thods were p	erformed								
	Desci					Analyst	Date	Time	e Pr	ep Batch	
Dry Soil Prep	Dry S	oil Prep GL-	RAD-A-0	21		LXM2	04/10/	07 1040) 62	4159	
The following A Method		al Methods wa	ere perfor	med							
		HASL 300, 4	523								
	ENIL	HASE 300, 4	.5.2.5								
Notes:											

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier Result Uncertainty	LC TPU	MDA Units DF Analyst Date Time Batch N
	Client Sample ID: Sample ID:	9802-0000-021F 183857020	Project: YANK01204 Client ID: YANK001 Vol. Recv.:
Contact: Project:	Mr. Jack McCarthy Soils PO# 002332		
	East Hampton, Connecticut 06424		Report Date: April 17, 2007
Company : Address :	Connecticut Yankee Atomic Power 362 Injun Hollow Rd		

- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Company : Address :	Connecticut 362 Injun H		tomic Power							
Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332				Report Date: April 17, 2007					
	50115 1 0# 0	02332					_			
	Client Sar Sample ID Matrix: Collect Da Receive D Collector: Moisture:): ate: oate:		1838570 TS 03–APF 10–APF Client 8.45%	R-07 R-07		Proiect: Client ID: Vol. Recv.:	YANK01204 YANK001	•	
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analy	st Date	Time Batch N
Rad Alpha Spec Analys	is		_							
Alphaspec Am241, Cm,	, Solid ALL FS									
Americium-241	U	-0.0381	+/-0.0733		+/-0.0734	0.164	pCi/g	BXJ1	04/13/0	07 1015 624202
Curium-242	U	0.038	+/-0.0745		+/-0.0746	0.103	pCi/g			
Curium-243/244	U	0.0276	+/-0.0733	0.0326	+/-0.0734	0.164	pCi/g			
Alphaspec Pu, Solid-A		0.00/07		0.00(1		0.101	<i></i>	574	04404	- 1015 (01000
Plutonium–238 Plutonium–239/240		-0.00697 -0.0209	+/-0.0137 +/0.0236		+/-0.0137 +/-0.0238	0.131 0.169	pCi/g	BXJ1	04/13/0	07 1015 624203
		-0.0209	+/~0.0250	0.0431	+/-0.0238	0.109	pCi/g			
Liquid Scint Pu241, So		2 (2	. / 7 10	5 77	. / 7 11	12.2	-Cile	DVI	04/16/6	7 1202 (24204
Plutonium-241 Rad Gamma Spec Anal	U	3.63	+/-7.10	5.77	+/-7.11	12.2	pCi/g	BAJI	04/16/0	07 1303 624204
Gamma,Solid–FSS GA Waived	-	S 226 Ingro	owth							
Actinium-228		0.727	+/-0.180	0.0597	+/-0.180	0.119	pCi/g	MJH1	04/13/0	07 0944 624577
Americium-241	U	0.0965	+/-0.100	0.0887	+/-0.100	0.177	pCi/g			
Bismuth-212		0.680	+/-0.245	0.119	+/-0.245	0.238	pCi/g			
Bismuth–214 Cesium–134	TIT	0.699	+/-0.116	0.0341	+/-0.116	0.0682	pCi/g			
Cesium-134 Cesium-137	UI U	0.00 0.0126	+/-0.0269 +/-0.0246		+/-0.0269 +/-0.0246	0.0475 0.0393	pCi/g pCi/g			
Cobalt60	U	-0.0081	+/-0.0240		+/-0.0240	0.0393	pCi/g			
Europium-152	Ŭ	0.0527	+/-0.0631		+/-0.0631	0.105	pCi/g			
Europium-154	U	-0.0512	+/-0.0673	0.0521	+/-0.0673	0.104	pCi/g			
Europium–155	U	-0.00809	+/-0.0585		+/-0.0585	0.106	pCi/g			
Lead-212		0.740	+/-0.083	0.0309	+/-0.083	0.0618	pCi/g			
Lead–214 Manganese–54	T	0.671 -0.00672	+/-0.115 +/-0.0227	0.0352	+/0.115 +/0.0227	0.0703 0.0379	pCi/g pCi/g			
Niobium–94	U		+/-0.0201		+/-0.0221	0.0342	pCi/g			
Potassium-40	U	11.1	+/-1.13	0.135	+/-1.13	0.270	pCi/g			
Radium-226		0.699	+/-0.116	0.0341	+/0.116	0.0682	pCi/g			
Silver-108m	U	-0.00607	+/-0.0196		+/-0.0196	0.0332	pCi/g			
Thallium-208		0.227	+/-0.0483	0.0187	+/0.0483	0.0374	pCi/g			
Rad Gas Flow Proporti	onal Countin	g								
GFPC, Sr90, solid–AL	L FSS									
Strontium-90	U	0.00633	+/-0.0204	0.0161	+/-0.0204	0.0383	pCi/g	NXL3	04/12/0	07 0947 624234
Rad Liquid Scintillation										
LSC, Tritium Dist, Soli	id – 3 pCi/g									
Tritium	U	-0.0783	+/-1.49	1.25	+/-1.49	2.60	pCi/g	AXD2	2 04/12/0	07 0132 624179
	U	-0.0763	- 7/ - 1. 4 9	1.23	+ / −1. 4 9	2.00	heng	AAD2	, UH/12/U	7 0152 024

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Address :	362 Injun H	ollow Rd								
Contact: Project:	East Hampton, Connecticut 06424 Mr. Jack McCarthy Soils PO# 002332						Report Date: April 17, 2007			
	Client San Sample ID			9802-0 1838570	000–022F 021		Project: Client ID: Vol. Recv.:	YANK01204 YANK001		
Parameter	Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Fime Batch N	
Rad Liquid Scintillatio	n Analysis	· · · · ·				-				
Liquid Scint C14, Solid	d All,FSS									
Carbon-14	U	-0.0142	+/-0.0924	0.0778	+/-0.0924	0.159	pCi/g	AXD2 04/11/07	1102 624180	
Liquid Scint Fe55, Sol	id–ALL FSS									
Iron-55	U	10.8	+/-27.5	18.9	+/-27.5	39.9	pCi/g	MXP1 04/13/07	1027 624176	
Liquid Scint Ni63, Soli	id–ALL FSS									
Nickel-63	U	-2.98	+/-8.86	7.57	+/-8.86	15.9	pCi/g	MXP1 04/17/07	1159 625941	
Liquid Scint Tc99, Sol	id–ALL FSS									
Technetium-99	U	0.213	+/-0.251	0.207	+/-0.251	0.422	pCi/g	MXP1 04/16/07	1134 624178	

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Prep Batch
Dry Soil Prep	Dry Soil Prep GL–RAD–A–021	LXM2	04/10/07	1049	624161

The following Analytical Methods were performed

Method	Description				
1	DOE EML HASL-300, Am-05-RC Modified				
2	DOE EML HASL-300, Pu-11-RC Modified				
3	DOE EML HASL-300, Pu-11-RC Modified				
4	EML HASL 300, 4.5.2.3				
5	EPA 905.0 Modified				
6	EPA 906.0 Modified				
7	EPA EERF C-01 Modified				
8	DOE RESL Fe-1, Modified				
9	DOE RESL Ni-1, Modified				
10	DOE RESL Ni-1, Modified				
11	DOE EML HASL-300, Tc-02-RC Modified				

Company : Connecticut Yankee Atomic Power

Surrogate/Tracer recovery	Test	Recovery%	Acceptable Limits	
Americium–243 Tracer	Alphaspec Am241, Cm, Solid ALL	71	(15%–125%)	
Plutonium-242 Tracer	Alphaspec Pu, Solid–ALL FSS	96	(15%-125%)	
Plutonium-242 Tracer	Liquid Scint Pu241, Solid-ALL FS	88	(25%-125%)	
Strontium Carrier	GFPC, Sr90, solid-ALL FSS	80	(25%-125%)	
Iron-59 Tracer	Liquid Scint Fe55, Solid-ALL FS	76	(15%-125%)	
Nickel Carrier	Liquid Scint Ni63, Solid-ALL FS	82	(25%-125%)	
Technetium–99m Tracer	Liquid Scint Tc99, Solid-ALL FS	74	(15%-125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID:			9802–000 18385702			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampton Mr. Jack McC Soils PO# 00	Carthy	ticut 06424				F	Report Date: April 17, 2	007
	Company : Address :	Connecticut N 362 Injun Ho		tomic Power						

Notes:

The Qualifiers in this report are defined as follows :

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

<u>Certificate of Analysis</u>

	mpany : dress :	Connecticut 362 Injun Ho		tomic Power						
		East Hampto		ticut 06424				Rep	oort Date: April 17, 2	2007
Cor	ntact:	Mr. Jack Mc	Carthy							
Pro	ject:	Soils PO# 00)2332							
		Client Sam Sample ID Matrix: Collect Dat Receive Da Collector: Moisture:	: te:		9802-00 1838570 TS 03-APR 10-APR Client 9.24%	-07	(YANK01204 YANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Sp	ec Analys	sis							· · · · · · · · · · · · · · · · · · ·	
Gamma,Solid Waived	FSS GAN	1 & ALL FSS	226 Ingro	wth						
Actinium-228	3		0.730	+/-0.163	0.0575	+/-0.163	0.115	pCi/g	MJH1 04/13/	07 0945 624577
Americium-24	41	U	0.0265	+/0.103	0.0863	+/-0.103	0.173	pCi/g		
Bismuth-212		U	0.337	+/-0.267	0.177	+/-0.267	0.353	pCi/g		
Bismuth-214			0.469	+/-0.113	0.0331	+/-0.113	0.0661	pCi/g		
Cesium-134		U	0.0258	+/-0.0473	0.0215	+/-0.0473	0.0429	pCi/g		
Cesium-137		U	0.0233	+/-0.0216	0.0188	+/-0.0216	0.0375	pCi/g		
Cobalt-60		U	0.0146	+/-0.0227	0.0205	+/-0.0227	0.041	pCi/g		
Europium-152	2	U	-0.0379	+/-0.0595	0.044	+/0.0595	0.0879	pCi/g		
Europium-154	4	UI	0.00	+/-0.121	0.0709	+/-0.121	0.142	pCi/g		
Europium-15		U	0.0869	+/-0.0787	0.0539	+/-0.0787	0.108	pCi/g		
Lead-212			0.611	+/0.0717		+/-0.0717	0.0547	pCi/g		
Lead-214			0.499	+/-0.0917	0.0343	+/-0.0917	0.0686	pCi/g		
Manganese-54	4	U-	-0.00951	+/-0.0211	0.0178	+/-0.0211	0.0356	pCi/g		
Niobium-94		U	0.0206	+/-0.0205		+/-0.0205	0.0373	pCi/g		
Potassium-40)		9.60	+/-1.01	0.123	+/-1.01	0.246	pCi/g		
Radium-226			0.469	+/0.113	0.0331	+/-0.113	0.0661	pCi/g		
Silver-108m		U	0.000427	+/-0.022	0.0168	+/-0.022	0.0337	pCi/g		
Thallium–208	6		0.216	+/-0.0463	0.0159	+/-0.0463	0.0317	pCi/g		
The following I	Prep Met	hods were ne	erformed							
Method	Descr					Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry So	oil Prep GL-I	RAD-A-0	21		LXM2	04/10/0	07 1049	624161	
The following A	Analytical	Methods we	ere perfor	med						
Method	Descri		F							
1	EML I	HASL 300, 4.	5.2.3							
Notes:										
The Qualifier	s in this	renort are de	efined as	follows ·						
		-		ionows.						
		rogate comp								

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385702			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	ontact: oject:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				· R	Report Date: April 17, 2	007
	ompany : ldress :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Comp. Addre	•	ut Yankee A Hollow Rd	tomic Power						
Conta		pton, Connec	cticut 06424				Rep	ort Date: April 17, 2	007
Projec		-							
	Client Sa Sample J Matrix: Collect I Receive Collector Moisture	Date: Date: r:		9802–00 1838570 TS 03–APR 10–APR Client 11.2%	-07	•		ANK01204 ANK001	
Parameter	Qualifier	r Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spec	Analysis								
Gamma,Solid–FS	S GAM & ALL F.	SS 226 Ingro	wth						
Waived									
Actinium-228		0.360	+/-0.112	0.0521	+/-0.112	0.104	pCi/g	MJH1 04/13/0	07 0945 624577
Americium-241	ι		+/-0.0782		+/-0.0782	0.134	pCi/g		
Bismuth-212	ι		+/-0.202	0.118	+/-0.202	0.236	pCi/g		
Bismuth-214		0.336	+/-0.0828		+/-0.0828	0.0579	pCi/g		
Cesium-134	Ľ		+/-0.0357		+/-0.0357	0.0368	pCi/g		
Cesium-137	l		+/-0.0183		+/-0.0183	0.033	pCi/g		
Cobalt–60	L		+/-0.0179		+/-0.0179	0.0323	pCi/g		
Europium-152	U		+/-0.0548		+/-0.0548	0.0881	pCi/g		
Europium-154	l		+/-0.0524		+/-0.0524	0.088	pCi/g		
Europium-155	t		+/-0.0515		+/-0.0515	0.0888	pCi/g		
Lead-212		0.420	+/-0.0547		+/-0.0547	0.0481	pCi/g		
Lead-214	,	0.362 J -0.00188	+/-0.0734 +/-0.0184		+/-0.0734 +/-0.0184	0.0593 0.0323	pCi/g pCi/g		
Manganese–54 Niobium–94		J -0.00188 J -0.00767	+/-0.0184		+/-0.0184	0.0323	pCi/g pCi/g		
Potassium-40	L L	8.82	+/-0.874	0.0130	+/-0.874	0.0272	pCi/g pCi/g		
Radium–226		0.336	+/-0.0828		+/-0.0828	0.0579	pCi/g		
Silver-108m	T	J 0.00284	+/-0.0164		+/-0.0164	0.0258	pCi/g		
Thallium-208		0.126	+/-0.0432		+/-0.0432	0.034	pCi/g		
The following Pr e	n Methods were	performed							
	Description	Per loi meu			Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry Soil Prep GL)21		LXM2	04/10/0	07 1049	624161	<u>_</u> _
The following Ana	lvtical Methods	were perfor	med						
	Description	por por tor							
1	EML HASL 300,	4.5.2.3					···· · · · · · · · · · · · · · · · · ·		
Notes:									

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID:			9802–000 18385702		1	Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampton Mr. Jack Mc Soils PO# 00	Carthy	eticut 06424				R	Report Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	mpany : Idress :	Connecticut 362 Injun Ho		tomic Power						
0		East Hampto		ticut 06424				Rep	port Date: April 17, 2	2007
	ntact: oject:	Mr. Jack Mc Soils PO# 00	•							
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector:	: te:		9802-00 1838570 TS 05-APR 10-APR Client	-07	(YANK01204 YANK001	
		Moisture:			6.86%					
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Sp	-		2261							
Gamma,Solid- Waived	-FSS GA	M & ALL FSS	226 Ingro	wth						
Actinium-228	8		0.816	+/-0.196	0.0614	+/-0.196	0.123	pCi/g	MJH1 04/13/	07 0946 624577
Americium-2	-	U	0.0589	+/-0.0723		+/-0.0723	0.124	pCi/g		
Bismuth-212		Ũ	0.616	+/-0.242	0.119	+/-0.242	0.238	pCi/g		
Bismuth-214			0.768	+/-0.118	0.0308	+/-0.118	0.0615	pCi/g		
Cesium-134		U	0.0268	+/-0.0228	0.0215	+/-0.0228	0.0429	pCi/g		
Cesium-137		U	0.00229	+/-0.0203	0.0175	+/-0.0203	0.035	pCi/g		
Cobalt-60		U	0.0053	+/-0.0206	0.0178	+/-0.0206	0.0357	pCi/g		
Europium-15	2	U	-0.0132	+/-0.060	0.0461	+/-0.060	0.0921	pCi/g		
Europium-15	4	U	-0.0402	+/-0.0727	0.0505	+/-0.0727	0.101	pCi/g		
Europium-15	5	U	0.021	+/-0.0523	0.0485	+/-0.0523	0.097	pCi/g		
Lead-212			0.728	+/-0.0771	0.0263	+/-0.0771	0.0527	pCi/g		
Lead-214			0.834	+/-0.112	0.0317	+/-0.112	0.0633	pCi/g		
Manganese-5	54	U	0.0077	+/-0.0196		+/-0.0196	0.0353	pCi/g		
Niobium–94		U	0.0184	+/-0.0186	0.0169	+/-0.0186	0.0338	pCi/g		
Potassium-40)		12.2	+/-1.08	0.143	+/-1.08	0.287	pCi/g		
Radium-226			0.768	+/-0.118	0.0308	+/-0.118	0.0615	pCi/g		
Silver–108m Thallium–208	8	U	-0.00763 0.219	+/-0.0175 +/-0.0429		+/-0.0175 +/-0.0429	0.030 0.0381	pCi/g pCi/g		
The following	Prep Me	thods were pe	erformed							
Method	Desc	ription				Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry S	Soil Prep GL-I	RAD-A-0	21		LXM2	04/10/0	1049	624161	
The following A	Analytic	al Methods w	ere perfor	med						
Method	Desci	ription								
1	EML	HASL 300, 4.	5.2.3							
Notes:										

** Analyte is a surrogate compoundResult is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385702			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	cticut 06424				R	teport Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut 362 Injun H		tomic Power						
		East Hampt	on, Connec	ticut 06424				Rep	oort Date: April 17, 2	2007
	Contact:	Mr. Jack Mo	cCarthy							
	Project:	Soils PO# 0	02332							
		Client San Sample ID Matrix: Collect Da Receive D); nte:		9802-00 1838570 TS 03-APR 10-APR	-07	((ANK01204 (ANK001	
		Collector:			Client					
		Moisture:			5.72%		<u>-</u>			
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma		•								
Gamma,So Waived	olid–FSS GA	AM & ALL FSS	5 226 Ingro	wth						
Actinium	-228		0.506	+/0.166	0.0572	+/-0.166	0.114	pCi/g	MJH1 04/13/	07 0946 624577
Americiu	m-241	U	0.00732	+/-0.0925	0.0751	+/-0.0925	0.150	pCi/g		
Bismuth-	-212		0.278	+/-0.228	0.129	+/-0.228	0.259	pCi/g		
Bismuth-	214		0.537	+/-0.0979	0.0307	+/-0.0979	0.0614	pCi/g		
Cesium-1		U	0.0252	+/0.0277		+/-0.0277	0.042	pCi/g		
Cesium-1		Ũ	-0.0147	+/-0.0225		+/-0.0225	0.036	pCi/g		
Cobalt-6		Ū	-0.001	+/-0.0195		+/-0.0195	0.0331	pCi/g		
Europium		Ŭ	-0.0536	+/-0.0573		+/-0.0573	0.0856	pCi/g		
Europium		Ū	-0.0251	+/-0.0583		+/-0.0583	0.0952	pCi/g		
Europium		Ŭ	0.0171	+/-0.0567		+/-0.0567	0.108	pCi/g		
Lead-212		Ũ	0.629	+/-0.0728		+/-0.0728	0.0528	pCi/g		
Lead-214			0.608	+/-0.0924		+/-0.0924	0.0627	pCi/g		
Mangane		U	0.000636	+/-0.0197		+/-0.0197	0.0337	pCi/g		
Niobium-			0.000518	+/-0.0211		+/-0.0211	0.0318	pCi/g		
Potassiun		Ũ	10.5	+/-1.06	0.159	+/-1.06	0.318	pCi/g		
Radium-2			0.537	+/-0.0979		+/-0.0979	0.0614	pCi/g		
Silver-10		I	-0.00772	+/-0.0171		+/-0.0171	0.0283	pCi/g		
Thallium-			0.203	+/-0.047	0.0167	+/-0.047	0.0334	pCi/g		
The feller	ing Drop M	athodo	outonmod							
Method		ethods were p cription	ci ivi med			Analyst	Date	Time	Prep Batch	
Dry Soil Pre	p Dry	Soil Prep GL-	RAD-A-0	021		LXM2	04/10/0	07 1049	624161	
The follow	ing Analytic	cal Methods w	ere perfor	med						
Method	Desc	ription								
1	EMI	L HASL 300, 4	.5.2.3							
Notes:										

** Analyte is a surrogate compound

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385702			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				R	Report Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

<u>Certificate of Analysis</u>

Com	pany : ess :	Connecticut 362 Injun Ho		tomic Power						
		East Hampto	on, Connec	ticut 06424				Rep	port Date: April 17, 2	007
Cont	act:	Mr. Jack Mc	Carthy					-	-	
Proje	et:	Soils PO# 00	02332							
		Client Sam				00-028B			YANK01204	
		Sample ID	:		1838570	26		Client ID: Y Vol. Recv.:	YANK001	
		Matrix: Collect Dat	t		TS 04–APR	_07		v 01. KCC v		
		Receive Da			10-APR					
		Collector:			Client					
		Moisture:			5.96%					
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spec	Analy	sis								
Gamma,Solid–F Waived	SS GAN	1 & ALL FSS	226 Ingro	wth						
Actinium-228			0.827	+/-0.194	0.0647	+/-0.194	0.129	pCi/g	MJH1 04/13/0	07 0947 624577
Americium-24	l	U	0.0524	+/-0.0769		+/-0.0769	0.125	pCi/g		
Bismuth-212		U	0.00	+/-0.263	0.189	+/-0.263	0.378	pCi/g		
Bismuth-214			0.757	+/-0.112	0.0326	+/-0.112	0.0652	pCi/g		
Cesium-134		UI	0.00	+/-0.0311		+/-0.0311	0.0381	pCi/g		
Cesium-137		U	0.0146	+/-0.0228		+/-0.0228	0.0401	pCi/g		
Cobalt-60		U·	-0.00872	+/-0.0216	0.0173	+/-0.0216	0.0346	pCi/g		
Europium-152		U	0.00517	+/-0.0683	0.0495	+/-0.0683	0.099	pCi/g		
Europium-154		U	0.0715	+/-0.173	0.0577	+/-0.173	0.115	pCi/g		
Europium-155		U	-0.0229	+/-0.0628	0.0528	+/-0.0628	0.105	pCi/g		
Lead-212			0.727	+/-0.0982	0.0431	+/-0.0982	0.0861	pCi/g		
Lead-214			0.801	+/-0.110	0.0339	+/0.110	0.0678	pCi/g		
Manganese-54		U	0.0119	+/-0.0201		+/-0.0201	0.0364	pCi/g		
Niobium-94		U	-0.016	+/-0.0198		+/-0.0198	0.0312	pCi/g		
Potassium-40			13.6	+/-1.19	0.154	+/-1.19	0.309	pCi/g		
Radium-226			0.757	+/-0.112	0.0326	+/-0.112	0.0652	pCi/g		
Silver-108m		U ·	-0.00169	+/-0.019	0.0164	+/-0.019	0.0327	pCi/g		
Thallium–208			0.272	+/-0.0496	0.0171	+/-0.0496	0.0342	pCi/g		
The following Pr	ep Met	hods were pe	erformed							
Method	Descr					Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry S	oil Prep GL-I	RAD-A-0	21	·	LXM2	04/10/0	07 1049	624161	
The following An	alvtica	l Methods we	ere perfor	med						
Method	Descr						· · · · · · · · · · · · · · · · · · ·			
1	EML	HASL 300, 4.	5.2.3							
Notes:										

Analyte is a surrogate compound Result is less than value reported **

<

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385702			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	cticut 06424				F	Report Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded
- The above sample is reported on a dry weight basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Comp Addre	•	Connecticut 362 Injun Ho		tomic Power						
Conta		East Hampto Mr. Jack Mc	Carthy	ticut 06424				Rep	ort Date: April 17, 2	2007
Projec	et:	Soils PO# 00	02332							
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	: te:		9802–00 1838570 TS 04–APR 10–APR Client 5.11%	-07	!		ANK01204 ANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spec	Analy	 /sis							`	
Gamma,Solid–FS	-		226 Ingro	wth						
Waived							_			
Actinium-228			0.594	+/-0.171	0.0663	+/-0.171	0.133	pCi/g	MJH1 04/13/	07 1001 624577
Americium-241		U	0.0328	+/-0.108	0.0869	+/-0.108	0.174	pCi/g		
Bismuth-212		UI	0.00	+/-0.236	0.184	+/-0.236	0.367	pCi/g		
Bismuth-214			0.549	+/-0.113	0.0336	+/-0.113	0.0671	pCi/g		
Cesium-134		U	0.0309	+/-0.0287		+/-0.0287	0.0447	pCi/g		
Cesium–137		U	0.0133	+/-0.0259		+/-0.0259	0.0412	pCi/g		
Cobalt-60		U	0.0237	+/-0.0254		+/-0.0254	0.0476	pCi/g		
Europium–152		U	0.0838	+/-0.0901		+/-0.0901	0.104	pCi/g		
Europium-154		U	-0.0284	+/-0.0692		+/-0.0692	0.115	pCi/g		
Europium-155		U	0.0244	+/-0.080	0.0574	+/-0.080	0.115	pCi/g		
Lead-212			0.641	+/0.0807		+/-0.0807	0.0549	pCi/g		
Lead-214			0.631	+/-0.111	0.0354	+/-0.111	0.0707	pCi/g		
Manganese–54		U	0.017	+/-0.0214		+/-0.0214	0.0392	pCi/g		
Niobium-94		U	0.0106	+/-0.0208		+/-0.0208	0.0376	pCi/g		
Potassium-40			10.7	+/-1.04	0.149	+/-1.04	0.298	pCi/g		
Radium-226		• •	0.549	+/-0.113	0.0336	+/-0.113	0.0671	pCi/g		
Silver–108m Thallium–208		U	-0.007 0.232	+/-0.018 +/-0.0493	0.0151 0.0174	+/-0.018 +/-0.0493	0.0301 0.0348	pCi/g pCi/g		
The following Pre	en Mei	thods were pe	erformed							
Method		ription	. IVI IIIU			Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry S	oil Prep GL-l	RAD-A-0	21		LXM2	04/10/	07 1049	624161	
The following An	alytica	d Methods we	ere perfor	med						
		iption	•							
1	EML	HASL 300, 4.	.5.2.3					·····		
Notes:										
Notes: The Qualifiers i	in this	report are de	efined as	follows :						

**

Analyte is a surrogate compound Result is less than value reported <

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier Result Unce	ertainty LC T	PU MDA	Units	DF Analyst Date	Time Batch N
	Client Sample ID: Sample ID:	9802–0000–0 183857027	29B	Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
Contact: Project:	Mr. Jack McCarthy Soils PO# 002332				F	
Company : Address :	Connecticut Yankee Atomic F 362 Injun Hollow Rd East Hampton, Connecticut 0			Re	eport Date: April 17, 2	007

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	mpany : dress :	Connecticut 362 Injun Ho		tomic Power						
Co	ntact:	East Hampto Mr. Jack Mc		ticut 06424				Repo	ort Date: April 17, 2	.007
Pro	oject:	Soils PO# 00	02332							
		Client Sam Sample ID Matrix: Collect Da Receive Da Collector: Moisture:	te:		9802-00 1838570 TS 05-APE 10-APE Client 4.12%	2–07			ANK01204 ANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Sp	ec Analy	ysis								
- Gamma,Solid-	-FSS GA	M & ALL FSS	226 Ingro	wth						
Waived			0							
Actinium-228	3		1.06	+/-0.251	0.0638	+/-0.251	0.128	pCi/g	MJH1 04/13/	07 1002 624577
Americium-2	41	U	0.0398	+/-0.105	0.0891	+/-0.105	0.178	pCi/g		
Bismuth-212		UI	0.00	+/0.268	0.229	+/-0.268	0.458	pCi/g		
Bismuth-214			0.654	+/-0.116	0.0418	+/0.116	0.0835	pCi/g		
Cesium-134		U	0.0508	+/-0.0319		+/-0.0319	0.0588	pCi/g		
Cesium-137		U	0.0256	+/-0.0258		+/-0.0258	0.0465	pCi/g		
Cobalt-60		U	0.0282	+/0.0253		+/-0.0253	0.0474	pCi/g		
Europium-15		U	0.018	+/-0.0886		+/-0.0886	0.118	pCi/g		
Europium-15		U	0.0336	+/-0.0868		+/-0.0868	0.132	pCi/g		
Europium–15	5	U	0.0238	+/-0.071	0.0653	+/-0.071	0.131	pCi/g		
Lead-212			0.967	+/-0.100	0.0322	+/-0.100	0.0643	pCi/g		
Lead-214		T.	0.886	+/-0.122	0.0417	+/-0.122	0.0834	pCi/g		
Manganese-5	4		-0.00392	+/-0.0264		+/-0.0264	0.0451	pCi/g		
Niobium–94 Potassium–40	`	U	0.0108 15.2	+/-0.0224 +/-1.33	0.0203	+/-0.0224 +/-1.33	0.0405 0.394	pCi/g pCi/g		
Radium-226)		0.654	+/-0.116	0.0418	+/-0.116	0.0835	pCi/g pCi/g		
Silver–108m		U	0.0233	+/-0.0199		+/-0.0199	0.0368	pCi/g		
Thallium-208	3	U	0.334	+/-0.0529		+/-0.0529	0.0418	pCi/g		
The following l	Pren Me	thads were no	rformed							
Method		ription	A TOT MCU			Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry S	Soil Prep GL-I	RAD-A-0	21		LXM2	04/10/	07 1049	624161	
The following A	Analytica	al Methods wo	ere perfor	med						
Method		ription			•					
1	EML	HASL 300, 4.	5.2.3							
Nataa										
Notes:										

The Qualifiers in this report are defined as follows :

** Analyte is a surrogate compound

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qual	fier R	esult	Uncertainty	LC	TPU	MDA	Units	DF Analy	st Date	Time Batch N
		t Sample le ID:	ID:		9802–000 18385702		(Project: Client ID: Vol. Recv.:	YANK01204 YANK001	4	
Projec		O# 0023	2								
Conta		ampton, C ck McCar		icut 06424				R	eport Date: A	pril 17, 20	007
Comp Addre	-	cticut Yar un Hollov		omic Power							

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	Connecticut 362 Injun H		tomic Power						
	Contact:	East Hampto Mr. Jack Mo		ticut 06424				Rep	port Date: April 17, 2	2007
	Project:	Soils PO# 0	02332							
		Client San Sample ID Matrix: Collect Da Receive D Collector: Moisture:	nte:		9802–00 1838570 TS 05–APR 10–APR Client 1.43%	-07			YANK01204 YANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma	Spec Analy	ysis								
Gamma,Sol		M & ALL FSS	226 Ingro	wth						
Waived										
Actinium-	-		0.794	+/-0.214	0.0801	+/-0.214	0.160	pCi/g	MJH1 04/13/	07 1035 624577
Americiun		U	0.033	+/-0.0409		+/-0.0409	0.0715	pCi/g		
Bismuth-2	212	U	0.458	+/-0.317	0.246	+/-0.317	0.492	pCi/g		
Bismuth-2	214		0.571	+/-0.122	0.0419	+/-0.122	0.0837	pCi/g		
Cesium-12	34	U	-0.00253	+/-0.0575	0.0272	+/-0.0575	0.0544	pCi/g		
Cesium-1	37	U	0.00593	+/-0.0293	0.0256	+/-0.0293	0.0512	pCi/g		
Cobalt-60)	U	0.0184	+/-0.0292	0.0255	+/0.0292	0.051	pCi/g		
Europium-	-152	U	-0.0136	+/-0.0795	0.0614	+/-0.0795	0.123	pCi/g		
Europium-		U	-0.0197	+/-0.0877	0.072	+/-0.0877	0.144	pCi/g		
Europium-		U	0.0984	+/0.0974	0.0561	+/-0.0974	0.112	pCi/g		
Lead-212			0.717	+/-0.106	0.033	+/-0.106	0.0659	pCi/g		
Lead-214			0.601	+/0.118	0.0439	+/-0.118	0.0877	pCi/g		
Manganes	e-54	U	0.0176	+/-0.022	0.0233	+/-0.022	0.0465	pCi/g		
Niobium-		Ŭ	0.0156	+/-0.0262		+/-0.0262	0.047	pCi/g		
Potassium		-	10.5	+/-1.22	0.227	+/-1.22	0.455	pCi/g		
Radium-2			0.571	+/-0.122	0.0419	+/-0.122	0.0837	pCi/g		
Silver-108		I	-0.00318	+/-0.0238		+/-0.0238	0.0419	pCi/g		
Thallium–		-	0.173	+/-0.0618		+/0.0618	0.0436	pCi/g		
The followi	ng Prep Me	ethods were p	erformed							
Method		ription				Analyst	Date	Time	Prep Batch	
Dry Soil Prep	p Dry S	Soil Prep GL-	RAD-A-0	21		LXM2	04/10/	07 1049	624161	
The followir	ng Analytic	al Methods w	ere perfor	med						
Method	<u> </u>	ription								
1	EML	HASL 300, 4	.5.2.3							
Notes:										
110103.										

** Analyte is a surrogate compound

< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID			9802–000 18385702			Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: roject:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				H	Report Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

ntact: ject: ec Analy: FSS GAM	East Hampto Mr. Jack Mc Soils PO# 00 Client Sam Sample ID Matrix: Collect Dat Receive Da Collector: Moisture: Qualifier	Carthy 02332 ple ID: : te: ate:	ticut 06424	9802–00 1838570 TS 05–APR 10–APR		(Project: Y	ort Date: April 17, 20 ANK01204 ANK001	007
oject: ec Analys	Soils PO# 00 Client Sam Sample ID Matrix: Collect Dat Receive Da Collector: Moisture: Qualifier	D2332 ple ID: : te: ate:		1838570 TS 05-APR	30	(Client ID: Y		
ec Analy	Client Sam Sample ID Matrix: Collect Dat Receive Da Collector: Moisture: Qualifier	nple ID: : te: ate:		1838570 TS 05-APR	30	(Client ID: Y		
•	Sample ID Matrix: Collect Dat Receive Da Collector: Moisture: Qualifier	te: te: te:		1838570 TS 05-APR	30	(Client ID: Y		
•	Matrix: Collect Dat Receive Da Collector: Moisture: Qualifier	te: ate:		TS 05-APR				ANKUUI	
•	Collect Dat Receive Da Collector: Moisture: Qualifier	ate:		05-APR	07		AND RECV.		
•	Receive Da Collector: Moisture: Qualifier	ate:			-11/				
•	Collector: Moisture: Qualifier								
•	Moisture: Qualifier			Client					
•		D. 14		6.2%					
•	~ ! ~	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
FSS GAN	SIS								
	A & ALL FSS	226 Ingro	wth						
3		0.786	+/-0.181	0.0533	+/-0.181	0.107	pCi/g	MJH1 04/14/0	7 2228 624577
41	U	0.0557	+/-0.0736	0.0594	+/-0.0736	0.119	pCi/g		
		0.699	+/-0.228	0.106	+/-0.228	0.211	pCi/g		
		0.561	+/0.089	0.0301	+/-0.089	0.0601	pCi/g		
	UI	0.00							
	U								
	U								
4									
5	U								
4									
	0 -								
	II.								
3	Ũ	0.266	+/-0.0456			0.0316	pCi/g		
		erformed			A 1		T!	Deve Detak	
	-								
Dry S	oil Prep GL–I	RAD-A-0	21		LXM2	04/10/0	7 1049	624161	
		ere perfor	med						
	-	<u> </u>							
EML I	HASL 300, 4.	5.2.3							
3 4 2 4 5 4 9 2 4	rep Met Descr Dry S nalytica EML	I U UI U U U U U U U U U Trep Methods were per Description Dry Soil Prep GL–J nalytical Methods were Description	0.786 U 0.0557 0.699 0.561 UI 0.00 U 0.0239 U -0.0122 U 0.0123 U -0.0416 U 0.0642 0.776 0.687 U 0.0135 U -0.00358 10.6 0.561 U -0.00358 10.6 0.561 U -0.00509 0.266 rep Methods were performed Description Dry Soil Prep GL-RAD-A-0 nalytical Methods were perfor Description EML HASL 300, 4.5.2.3	.1 U 0.0557 +/-0.0736 0.699 +/-0.228 0.561 +/-0.089 UI 0.00 +/-0.0282 U 0.0239 +/-0.0412 U -0.0122 +/-0.0188 U -0.0123 +/-0.0652 U -0.0416 +/-0.0555 U -0.0416 +/-0.0635 0.776 +/-0.084 0.687 0.0642 +/-0.0981 U U 0.0135 +/-0.0194 U -0.0358 +/-0.0185 10.6 +/-0.918 0.561 0.561 +/-0.089 U U -0.00509 +/-0.0167 0.266 +/-0.0456 0.266 Tep Methods were performed Description	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 0.786 & +/-0.181 & 0.0533 & +/-0.181 \\ 0.0557 & +/-0.0736 & 0.0594 & +/-0.0736 \\ 0.699 & +/-0.228 & 0.106 & +/-0.228 \\ 0.561 & +/-0.089 & 0.0301 & +/-0.089 \\ UI & 0.00 & +/-0.0282 & 0.0197 & +/-0.0412 \\ U & -0.0122 & +/-0.0188 & 0.0148 & +/-0.0188 \\ U & 0.0123 & +/-0.0652 & 0.0454 & +/-0.0652 \\ U & -0.0416 & +/-0.0555 & 0.0437 & +/-0.0555 \\ U & 0.0642 & +/-0.0635 & 0.0526 & +/-0.0635 \\ 0.776 & +/-0.0981 & 0.0302 & +/-0.0981 \\ U & 0.0135 & +/-0.0194 & 0.0152 & +/-0.0188 \\ U & -0.00358 & +/-0.0185 & 0.0155 & +/-0.0185 \\ 10.6 & +/-0.918 & 0.117 & +/-0.918 \\ 0.561 & +/-0.089 & 0.0301 & +/-0.089 \\ U & -0.00509 & +/-0.0167 & 0.0146 & +/-0.0167 \\ 0.266 & +/-0.0456 & 0.0158 & +/-0.0456 \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

** Analyte is a surrogate compound< Result is less than value reported

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch N
		Client Sam Sample ID	lient Sample ID:			00–032F 30		Project: Client ID: Vol. Recv.:	YANK01204 YANK001	
	Contact: Project:	East Hampto Mr. Jack Mc Soils PO# 00	Carthy	ticut 06424				R	eport Date: April 17, 2	007
	Company : Address :	Connecticut 362 Injun Ho		tomic Power						

- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

<u>Certificate of Analysis</u>

	npany : ress :	Connecticut 362 Injun Ho		comic Power						
Con	tact:	East Hampto Mr. Jack Mc		ticut 06424				Re	port Date: April 17, 2	007
Proj	ect:	Soils PO# 00	02332							
		Client Sam Sample ID: Matrix: Collect Dat Receive Da Collector: Moisture:	: te:		9802-00 1838570 TS 05-APF 10-APF Client 3.94%	R-07	(YANK01204 YANK001	
Parameter		Qualifier	Result	Uncertainty	LC	TPU	MDA	Units	DF Analyst Date	Time Batch
Rad Gamma Spe	c Analy	rsis								
Gamma,Solid–I Waived	FSS GA/	M & ALL FSS	226 Ingro	wth						
Actinium-228			0.614	+/-0.151	0.0541	+/-0.151	0.108	pCi/g	MJH1 04/13/0	07 1106 624577
Americium-24	1	U	0.0234	+/-0.0579	0.0501	+/-0.0579	0.100	pCi/g		
Bismuth-212		UI	0.00	+/-0.231	0.157	+/0.231	0.313	pCi/g		
Bismuth-214			0.426	+/-0.0759	0.0315	+/-0.0759	0.063	pCi/g		
Cesium-134		UI	0.00	+/0.0301	0.022	+/-0.0301	0.0439	pCi/g		
Cesium-137		U -	-0.00551	+/-0.0229	0.0175	+/-0.0229	0.035	pCi/g		
Cobalt-60		U	0.00973	+/-0.0191	0.017	+/-0.0191	0.034	pCi/g		
Europium-152		U	0.0382	+/-0.0564	0.0445	+/-0.0564	0.0889	pCi/g		
Europium-154		U-	-0.00985	+/-0.0519	0.0431	+/-0.0519	0.0862	pCi/g		
Europium-155		U	0.0687	+/-0.0509	0.0496	+/-0.0509	0.0991	pCi/g		
Lead-212			0.557	+/-0.0659	0.0239	+/-0.0659	0.0477	pCi/g		
Lead-214			0.454	+/-0.0793	0.0312	+/-0.0793	0.0623	pCi/g		
Manganese-54		U	-0.0015	+/-0.0192	0.0169	+/-0.0192	0.0337	pCi/g		
Niobium-94		U	0.00955	+/-0.0183	0.0163	+/-0.0183	0.0325	pCi/g		
Potassium-40			9.98	+/-0.900	0.109	+/-0.900	0.218	pCi/g		
Radium-226			0.426	+/-0.0759	0.0315	+/-0.0759	0.063	pCi/g		
Silver-108m		U-	-0.00541	+/-0.0167	0.0147	+/-0.0167	0.0293	pCi/g		
Thallium–208			0.199	+/-0.0421	0.0151	+/-0.0421	0.0302	pCi/g		
The following P	rep Me	thods were pe	rformed	_	_					
Method	Desci	ription				Analyst	Date	Time	Prep Batch	
Dry Soil Prep	Dry S	oil Prep GL-F	RAD-A-0	21		LXM2	04/10/0	07 1049	624161	
The following A	nalytica	l Methods we	ere perfor	med						
Method	Descr	iption								
	EML	HASL 300, 4.	5.2.3							
Notes:										

** Analyte is a surrogate compound

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter		Qualifier Re	esult	Uncertainty	LC	TPU	MDA	Units	DF	Analyst Date	Time Batch N
		Client Sample Sample ID:	ID:		9802–000 18385703			Project: Client ID: Vol. Recv.:	YANI YANI	K01204 K001	
	Contact: Project:	East Hampton, C Mr. Jack McCart Soils PO# 00233	thy	icut 06424				R	leport D	ate: April 17, 20	007
	Company : Address :	Connecticut Yan 362 Injun Hollow		omic Power							

- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B For General Chemistry and Organic analysis the target analyte was detected in the associated blank.
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- ND Analyte concentration is not detected above the detection limit
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: April 17, 2007 Page 1 of 12

362 Injun Hollow Rd

East Hampton, Connecticut Mr. Jack McCarthy

Connecticut Yankee Atomic Power

Workorder: 183857

Client :

Contact:

Parmname	NOM	Sample Q	Jual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Alpha Spec									
Batch 624202									
QC1201312067 183857007 DUP									
Americium-241	U	0.00458	U	0.00771	pCi/g	51		(0% - 100%) BXJ1	04/13/07 10:15
	Uncert:	+/-0.0552		+/-0.0332					
	TPU:	+/-0.0552		+/-0.0332					
Curium-242	U	0.00	U	0.0388	pCi/g	ţ		(0% - 100%)	
	Uncert:	+/-0.0908		+/-0.076					
	TPU:	+/-0.0908		+/-0.0761					
Curium-243/244	U	0.00	U	0.00	pCi/g	g 0		(0% - 100%)	
	Uncert:	+/-0.0872		+/-0.073				````	
	TPU:	+/-0.0872		+/-0.073					
QC1201312069 LCS									
Americium-241	13.4			13.0	pCi/g	5	97	(75%-125%)	
	Uncert:			+/-1.31					
	TPU:			+/-2.19					
Curium-242			U	-0.00844	pCi/g	ţ			
	Uncert:			+/-0.0165					
	TPU:			+/-0.0166					
Curium-243/244	16.0			14.3	pCi/g	<u>r</u>	89	(75%-125%)	
	Uncert:			+/-1.38	1 6	,		· ·	
	TPU:			+/-2.37					
QC1201312066 MB									
Americium-241			U	-0.00363	pCi/g	ţ			
	Uncert:			+/-0.0288					
	TPU:			+/-0.0288					
Curium-242			U	0.0342	pCi/g	g			
	Uncert:			+/-0.067					
	TPU:			+/-0.0672					
Curium-243/244			U	-0.00809	pCi/g	2			
	Uncert:			+/-0.0158		,			
	TPU:			+/-0.0159					
QC1201312068 183857007 MS									
Americium-241	13.4 U	0.00458		11.2	pCi/g	2	84	(75%-125%)	
	Uncert:	+/-0.0552		+/-1.23					
	TPU:	+/-0.0552		+/-1.96					
Curium-242	U	0.00	U	0.0368	pCi/g	g			
	Uncert:	+/-0.0908		+/-0.0722		-			
	TPU:	+/-0.0908		+/-0.0724					
Curium-243/244	16.0 U	0.00		13.1	pCi/g	g	82	(75%-125%)	
	Uncert:	+/-0.0872		+/-1.34		, ,		, <i>,</i>	
	TPU:	+/-0.0872		+/-2.23					
Batch 624203									
QC1201312071 183857007 DUP									
Plutonium-238	U	-0.00773	U	-0.00644	pCi/g	z 18		(0% - 100%) BXJ1	04/13/07 10.15
i latoniani 200	U	-0.00775	U	0.00074	P~#8	5 .0			5 # 15/07 10:15

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

			. <u>Su</u>	<u>mmary</u>							
Workorder: 183857				_				Page 2	of 12		
Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Rad Alpha Spec											
Batch 624203											
	Uncert:	+/-0.0152		+/-0.0126							
	TPU:	+/-0.0152		+/-0.0126							
Plutonium-239/240	U	-0.00773	U	0.0268	pCi/	g 362		(0% - 100%))		
	Uncert:	+/-0.0152		+/-0.0526							
	TPU:	+/-0.0152		+/-0.0527							
QC1201312073 LCS Plutonium-238			U	0.0144	-C:4	~		(750) 1050	、 、		
Plutomum-238	Uncert:		υ	0.0144 +/-0.0573	pCi/	g		(75%-125%))		
				+/-0.0573							
Plutonium-239/240	TPU: 13.3			+7-0.0373	pCi/į	a	97	(75%-125%)	`		
F 1010111011-239/240	Uncert:			+/-1.17	peng	g	91	(15/0-125/0)	,		
	TPU:			+/-1.86							
QC1201312070 MB	IFU.			+/-1.00							
Plutonium-238			U	-0.0145	pCi/	g					
	Uncert:			+/-0.0201	F 6	0					
	TPU:			+/-0.0202							
Plutonium-239/240			U	0.0157	pCi/	g					
	Uncert:			+/-0.0625		0					
	TPU:			+/-0.0626							
QC1201312072 183857007 MS											
Plutonium-238	U	-0.00773		0.166	pCi/	g		(75%-125%))		
	Uncert:	+/-0.0152		+/-0.139							
	TPU:	+/-0.0152		+/-0.141							
Plutonium-239/240	13.3 U	-0.00773		12.8	pCi/	g	96	(75%-125%))		
	Uncert:	+/-0.0152		+/-1.19							
	TPU:	+/-0.0152		+/-1.88							
Batch 624204											
QC1201312075 183857007 DUP											
Plutonium-241	U	6.49	U	2.06	pCi/	g 0		(0% - 100%)) BXJ1	04/16/0	7 13:3:
	Uncert:	+/-6.73		+/-6.40	-	-					
	TPU:	+/-6.76		+/-6.40							
QC1201312077 LCS											
Plutonium-241	140			124	pCi/	g	89	(75%-125%)	04/16/0	7 14:0
	Uncert:			+/-12.5							
	TPU:			+/-17.5							
QC1201312074 MB											
Plutonium-241			U	1.68	pCi/	g				04/16/0	7 13:1
	Uncert:			+/-7.42							
	TPU:			+/-7.43							
QC1201312076 183857007 MS		C 10		115	0.1		00	1050 1050	`	0.4/1.6/0	- 10 -
Plutonium-241	141 U	6.49		115	pCi/	g	82	(75%-125%)	04/16/0	13:5
	Uncert:	+/-6.73		+/-12.0							
	TPU:	+/-6.76		+/-16.9							
Rad Gamma SpecBatch624576											
QC1201312935 183857002 DUP											
Actinium-228		0.756		0.665	pCi/	g 13		(0% - 100%) MJH1	04/14/0	7 09:5
	Uncert:	+/-0.128		+/-0.145							
				+/-0.145							

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

			<u>, Su</u>	<u>mmary</u>							
Workorder: 183857								Page 2	3 of 12		
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Rad Gamma SpecBatch624576											
Americium-241	TPU: UI	+/-0.128 0.00	U	0.034	pCi/g	; 4		(0% - 100%)		
	Uncert:	+/-0.0201		+/-0.0566							
	TPU:	+/-0.0201		+/-0.0566		-					
Bismuth-212	U	0.00	UI	0.00	pCi/g	5		(0% - 100%	·)		
	Uncert:	+/-0.183		+/-0.164							
Diamonth 214	TPU:	+/-0.183		+/-0.164	-Cilo	. 14		(00% 1000%			
Bismuth-214	I In conte	0.565		0.651	pCi/g	<u>,</u> 14		(0% - 100%)		
	Uncert:	+/-0.0841		+/-0.0776							
Conjum 134	TPU:	+/-0.0841	EII	+/-0.0776	pCi/g	g 21		(0% - 100%			
Cesium-134	UI Uncont:	0.00	UI	0.00 +/-0.026	peng	; 21		(0% - 100%	9		
	Uncert:	+/-0.0213									
Cesium-137	TPU:	+/-0.0213 0.00663	U	+/-0.026 0.0117	pCi/g	55		(0% - 100%			
Cesium-137	U Uncert:	+/-0.0152	U	+/-0.0138	peng	; 55		(0 % - 100 %	<i>'</i>)		
		+/-0.0132		+/-0.0138							
Cobalt-60	TPU:	0.000914	U	-0.00615	pCi/g	g 270		(0% - 100%			
Cobalt-00	U Uncert:	+/-0.0157	U	+/-0.0143	peng	, 270		(0 % - 100 %)		
	TPU:	+/-0.0157		+/-0.0143							
Europium-152		-0.0137	U	-0.0221	pCi/g	g 51		(0% - 100%			
Europium-152	U Uncert:	+/-0.0408	0	+/-0.0454	peng	5 51		(070 - 10070	()		
	TPU:	+/-0.0408		+/-0.0454							
Europium-154	110. U	-0.00914	U	-0.055	pCi/g	g 143		(0% - 100%	3		
	Uncert:	+/-0.0413	U	+/-0.0442	P0e	, 112		(0.0 100.0	,		
	TPU:	+/-0.0413		+/-0.0442							
Europium-155	U U	0.0514	U	0.00268	pCi/g	g 180		(0% - 100%)		
Larophani 199	Uncert:	+/-0.0371	U	+/-0.0357	P 0.7 e	, 100		(0.0 100.0	/		
	TPU:	+/-0.0371		+/-0.0357							
Lead-212	n e.	0.648		0.679	pCi/g	g 5		(0% - 20%)		
Doud Did	Uncert:	+/-0.0795		+/-0.0632	Pone	, -		(0/1 20/1	/		
	TPU:	+/-0.0795		+/-0.0632							
Lead-214		0.641		0.688	pCi/g	g 7		(0% - 20%)		
	Uncert:	+/-0.0829		+/-0.0798	1 6	,		,	·		
	TPU:	+/-0.0829		+/-0.0798							
Manganese-54	U	0.0131	U	-0.00284	pCi/g	g 311		(0% - 100%)		
c	Uncert:	+/-0.0159		+/-0.013					·		
	TPU:	+/-0.0159		+/-0.013							
Niobium-94	U	0.000478	U	0.00352	pCi/g	g 152		(0% - 100%)		
	Uncert:	+/-0.0125		+/-0.0119		-					
	TPU:	+/-0.0125		+/-0.0119							
Potassium-40	-	9.95		9.54	pCi/g	g 4		(0% - 20%)		
	Uncert:	+/-0.774		+/-0.759							
	TPU:	+/-0.774		+/-0.759							
Radium-226		0.565		0.651	pCi/g	g 14		(0% - 100%)		
	Uncert:	+/-0.0841		+/-0.0776							
	TPU:	+/-0.0841		+/-0.0776							
Silver-108m	U	-0.0058	U	0.00329	pCi/g	g 722		(0% - 100%	b)		
				+/-0.0127							
	Uncert:	+/-0.0131		+/-0.0127							

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

		<u>VC 51</u>	immary					
Workorder: 183857							Page 4 of 12	
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gamma Spec								
Batch 624576								
	TPU:	+/-0.0131	+/-0.0127					
Thallium-208		0.230	0.226	pCi/g	g 2		(0% - 100%)	
	Uncert:	+/-0.0369	+/-0.0354					
	TPU:	+/-0.0369	+/-0.0354					
QC1201312936 LCS				~				
Actinium-228			1.07	pCi/g	3			04/16/07 10:04
	Uncert:		+/-0.594					
A	TPU:		+/-0.594	-0:4		00	(7501 10501)	
Americium-241	16.0		14.3	pCi/g	3	89	(75%-125%)	
	Uncert:		+/-2.21					
Discouth 212	TPU:	T	+/-2.21	-0:4	_			
Bismuth-212	T.T.	U	0.849	pCi/g	5			
	Uncert:		+/-0.953					
	TPU:		+/-0.953	0.1				
Bismuth-214			0.902	pCi/g	5			
	Uncert:		+/-0.275					
~	TPU:		+/-0.275					
Cesium-134		U	0.122	pCi/g	3			
	Uncert:		+/-0.109					
	TPU:		+/-0.109					
Cesium-137	6.20		5.70	pCi/g	3	92	(75%-125%)	
	Uncert:		+/-0.482					
	TPU:		+/-0.482					
Cobalt-60	9.28		9.54	pCi/g	g	103	(75%-125%)	
	Uncert:		+/-0.712					
	TPU:		+/-0.712					
Europium-152		U	-0.00879	pCi/g	3			
	Uncert:		+/-0.249					
	TPU:		+/-0.249					
Europium-154		U	-0.12	pCi/g	g			
	Uncert:		+/-0.244					
	TPU:		+/-0.244					
Europium-155		U	0.0195	pCi/g	g			
	Uncert:		+/-0.290					
	TPU:		+/-0.290					
Lead-212			0.974	pCi/g	3			
	Uncert:		+/-0.218					
	TPU:		+/-0.218					
Lead-214			1.03	pCi/g	3			
	Uncert:		+/-0.337					
	TPU:		+/-0.337					
Manganese-54		U	-0.00401	pCi/g	3			
	Uncert:		+/-0.103					
	TPU:		+/-0.103					
Niobium-94		U	0.0176	pCi/g	g			
	Uncert:		+/-0.0898					
	TPU:		+/-0.0898					
Potassium-40		U	0.456	pCi/g	r			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

		<u>VC Bu</u>	mmary				
Workorder: 183857						Page 5 of 12	
Parmname	NOM	Sample Qual	QC	Units RPD%	REC%	Range Anlst	Date Time
Rad Gamma Spec							
Batch 624576							
	Uncert:		+/-1.15				
	TPU:		+/-1.15				
Radium-226			0.902	pCi/g		(75%-125%)	
	Uncert:		+/-0.275				
	TPU:		+/-0.275				
Silver-108m		U	-0.00417	pCi/g			
	Uncert:		+/-0.0845				
	TPU:		+/-0.0845				
Thallium-208			0.330	pCi/g			
	Uncert:		+/-0.153				
	TPU:		+/-0.153				
QC1201312934 MB							
Actinium-228		U	0.0144	pCi/g			04/14/07 09:46
	Uncert:		+/-0.0757				
	TPU:		+/-0.0757				
Americium-241		U	0.00241	pCi/g			
	Uncert:		+/-0.0102				
	TPU:		+/-0.0102				
Bismuth-212		· U	-0.0984	pCi/g			
	Uncert:		+/-0.117				
	TPU:		+/-0.117				
Bismuth-214		U	0.0149	pCi/g			
	Uncert:		+/-0.0364				
	TPU:		+/-0.0364				
Cesium-134		U	-0.00358	pCi/g			
	Uncert:		+/-0.0105				
	TPU:		+/-0.0105				
Cesium-137		U	-0.000627	pCi/g			
	Uncert:		+/-0.00998				
	TPU:		+/-0.00998				
Cobalt-60		U	0.00527	pCi/g			
	Uncert:		+/-0.00975				
	TPU:		+/-0.00975				
Europium-152		U	0.0158	pCi/g			
	Uncert:		+/-0.023				
	TPU:		+/-0.023				
Europium-154		U	0.00783	pCi/g			
	Uncert:		+/-0.0308				
	TPU:		+/-0.0308				
Europium-155		U	0.00149	pCi/g			
	Uncert:		+/-0.0196				
	TPU:		+/-0.0196				
Lead-212		U	0.0108	pCi/g			
	Uncert:		+/-0.0202				
	TPU:		+/-0.0202				
Lead-214		U	0.0137	pCi/g			
	Uncert:		+/-0.0328				
	TPU:		+/-0.0328				

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 183857							Page 6 of 12	
Parmname	NOM	Sample Qua	al	QC Units	RPI	D% REC%	_	Date Time
Rad Gamma Spec				••••••				
Batch 624576								
Manganese-54		1	U 0.00)192 p(Ci/g			
	Uncert:		+/-0.00		0			
	TPU:		+/-0.00					
Niobium-94		1	U 0.00		Ci/g			
	Uncert:		+/-0.00		Ŧ			
	TPU:		+/-0.00	921				
Potassium-40		I	U 0	.097 p0	Ci/g			
	Uncert:		+/-0.0	984				
	TPU:		+/-0.0	984				
Radium-226		١	U 0.0)149 p0	Ci/g			
	Uncert:		+/-0.0	364				
	TPU:		+/-0.0	364				
Silver-108m		1	U 0.000	-	Ci/g			
	Uncert:		+/-0.00					
	TPU:		+/-0.00					
Thallium-208		I			Ci/g			
	Uncert:		+/-0.0					
	TPU:		+/-0.0	165				
Batch 624577								
QC1201312938 183857022 DUP								
Actinium-228		0.730	0	.871 p	Ci/g	18	(0% - 100%) MJH1	04/15/07 03:33
	Uncert:	+/-0.163	+/-0	.156				
	TPU:	+/-0.163	+/-0					
Americium-241	U			-	Ci/g	19	(0% - 100%) .	
	Uncert:	+/-0.103	+/-0.0					
	TPU:	+/-0.103	+/-0.0			• •		
Bismuth-212	U	0.337		-	Ci/g	39	(0% - 100%)	
	Uncert:	+/-0.267	+/-0					
	TPU:	+/-0.267	+/-0		~		(0.07 1.00.07)	
Bismuth-214		0.469			Ci/g	34	(0% - 100%)	
	Uncert:	+/-0.113	+/-0.0					
a i 194	TPU:	+/-0.113	+/-0.0		a : /	76	(007 10007)	
Cesium-134	U			_	Ci/g	76	(0% - 100%)	
	Uncert:	+/-0.0473	+/-0.0					
Conium 127	TPU:	+/-0.0473	+/-0.0			60	(0% - 100%)	
Cesium-137	U		U 0.0 +/-0.0		Ci/g	00	(0% - 100%)	
	Uncert:	+/-0.0216 +/-0.0216	+/-0.0					
Cobalt-60	TPU:				Ci/g	157	(0% - 100%)	
Cobait-00	U Uncert:	+/-0.0227	+/-0.0		Cirg	157	(070 - 10070)	
	TPU:	+/-0.0227	+/-0.0					
Europium-152	U III.				Ci/g	297	(0% - 100%)	
	Uncert:	+/-0.0595	+/-0.0		0.08	_,,	(0.00 100.00)	
	TPU:	+/-0.0595	+/-0.0					
Europium-154	UI				Ci/g	74	(0% - 100%)	
	Uncert:	+/-0.121	+/-0.0	-	-~0	÷ -	()	
	TPU:	+/-0.121	+/-0.0					
Europium-155	U U				Ci/g	111	(0% - 100%)	
	U	0.0007	- 0.	Р	0		(3.12 220,00)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 183857			<i>4</i>	Page 7 of 12								
Parmname	NOM	Sample Qua	I QC	Units I	RPD%	REC%		Anlst	Date	Time		
Rad Gamma Spec		_					~~~~					
Batch 624577												
	Uncert:	+/-0.0787	+/-0.0565									
	TPU:	+/-0.0787	+/-0.0565									
Lead-212	110.	0.611	0.604	pCi/g	1		(0% - 20%)	I.				
	Uncert:	+/-0.0717	+/-0.0737	r 0			(,					
	TPU:	+/-0.0717	+/-0.0737									
Lead-214		0.499	0.535	pCi/g	7		(0%-20%)					
	Uncert:	+/-0.0917	+/-0.090									
	TPU:	+/-0.0917	+/-0.090									
Manganese-54	U	-0.00951 U	J 0.00891	pCi/g	6110		(0% - 100%)	ł				
	Uncert:	+/-0.0211	+/-0.0188									
	TPU:	+/-0.0211	+/-0.0188									
Niobium-94	U	0.0206 U		pCi/g	115		(0% - 100%)	i				
	Uncert:	+/-0.0205	+/-0.0185									
	TPU:	+/-0.0205	+/-0.0185									
Potassium-40		9.60	9.51	pCi/g	1		(0% - 20%)	I				
	Uncert:	+/-1.01	+/-0.858									
	TPU:	+/-1.01	+/-0.858	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								
Radium-226		0.469	0.657	pCi/g	34		(0% - 100%)	1				
	Uncert:	+/-0.113	+/-0.0952									
C ¹	TPU:	+/-0.113	+/-0.0952	C :1	270		(0.07 1.00.07)					
Silver-108m	U	0.000427 U		pCi/g	270		(0% - 100%))				
	Uncert:	+/-0.022	+/-0.0161									
The 11:000 200	TPU:	+/-0.022	+/-0.0161	- C:/-	1		(00/ 1000)					
Thallium-208	11	0.216	0.219	pCi/g	1		(0% - 100%)					
	Uncert:	+/-0.0463	+/-0.0468									
001201212020	TPU:	+/-0.0463	+/-0.0468									
QC1201312939 LCS Actinium-228			1.00	pCi/g					04/15/07	7 08.37		
Actinium 220	Uncert:		+/-0.505	pen ₆					0415/0	00.51		
	TPU:		+/-0.505									
Americium-241	16.0		14.6	pCi/g		91	(75%-125%)	•				
	Uncert:		+/-1.45	P8			(1010 12010)					
	TPU:		+/-1.45									
Bismuth-212		ι		pCi/g								
	Uncert:		+/-0.986									
	TPU:		+/-0.986									
Bismuth-214			0.758	pCi/g								
	Uncert:		+/-0.341									
	TPU:		+/-0.341									
Cesium-134		τ	J 0.0763	pCi/g								
	Uncert:		+/-0.169									
	TPU:		+/-0.169									
Cesium-137	6.20		6.16	pCi/g		100	(75%-125%))				
	Uncert:		+/-0.592									
	TPU:		+/-0.592									
Cobalt-60	9.28		9.30	pCi/g		100	(75%-125%))				
	Uncert:		+/-0.671									
	TPU:		+/-0.671									

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

		<u>QC Su</u>	mmary					
Workorder: 183857						Page 8	of 12	
Parmname	NOM	Sample Qual	QC	Units RPD%	REC%	Range	Anlst	Date Time
Rad Gamma Spec								
Europium-152		U	-0.0791	pCi/g				
			+/-0.347					
	TPU:		+/-0.347					
Europium-154		U	0.046	pCi/g				
			+/-0.208					
	TPU:		+/-0.208	~				
Europium-155	•••	U	-0.127	pCi/g				
			+/-0.309					
1 1 0 1 0	TPU:		+/-0.309	<i>C</i> .,				
Lead-212			0.786	pCi/g				
Parmname Rad Gamma Spec Batch 624577			+/-0.259					
Lood 214	TPU:		+/-0.259	nCila				
Lead-214	11		0.664	pCi/g				
			+/-0.417					
Managanasa 54	TPU:	ŢŢ	+/-0.417 0.00219	-Cile				
Manganese-54	Linconte	U	+/-0.0971	pCi/g				
Nichium 94	IPU:	I.I.	+/-0.0971 -0.00763	»Cila				
Niobiani-94	Uncont	0	+/-0.0969	pCi/g				
			+/-0.0969					
Potassium-40	IPU:	II	1.00	pCi/g				
i otassium 40	Uncert	0	+/-1.64	peng				
			+/-1.64					
Radium-226	110.		0.758	pCi/g		(75%-125%)		
	Uncert		+/-0.341	pens		(15/0 125/0)		
			+/-0.341					
Silver-108m	no.	U	0.0041	pCi/g				
	Uncert:	U	+/-0.0911	Pone				
			+/-0.0911					
Thallium-208	11 0.		0.464	pCi/g				
	Uncert:		+/-0.201	F 0				
		U -0. Uncert: +/- TPU: +/- U -4 Uncert: +/- TPU: +/- Uncert: +/- TPU: +/- Uncert: +/- TPU: +/- Uncert: +/- TPU: +/- Uncert: +/- U -0 Uncert: +/- U -0	+/-0.201					
QC1201312937 MB								
		U	-0.0065	pCi/g				04/13/07 11:32
	Uncert:		+/-0.0584					
	TPU:		+/-0.0584					
Americium-241		U	-0.0433	pCi/g				
	Uncert:		+/-0.0173					
	TPU:		+/-0.0173					
Bismuth-212		U	0.192	pCi/g				
			+/-0.112					
	TPU:		+/-0.112					
Bismuth-214		U	-0.0259	pCi/g				
			+/-0.0326					
	TPU:		+/-0.0326					
Cesium-134		U	0.0141	pCi/g				
	Uncert:		+/-0.0148					

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

			Summary							
Workorder: 183857							Page 9	of 12		
Parmname	NOM	Sample Qu	ual QC	Units	RPD%	REC%	Range	Anlst	Date 7	Time
Rad Gamma Spec										
Batch 624577										
	TPU:		+/-0.0148							
Cesium-137			U 0.0189	pCi/	g					
	Uncert:		+/-0.0182		-					
	TPU:		+/-0.0182							
Cobalt-60			U -0.00566	pCi/	g					
	Uncert:		+/-0.0166							
	TPU:		+/-0.0166							
Europium-152			U -0.00102	pCi/	g					
-	Uncert:		+/-0.0367							
	TPU:		+/-0.0367							
Europium-154			U 0.00478	pCi/	g					
•	Uncert:		+/-0.0445							
	TPU:		+/-0.0445							
Europium-155			U 0.016	pCi/	g					
•	Uncert:		+/-0.0299	-	-					
	TPU:		+/-0.0299							
Lead-212			U 0.0278	pCi/	g					
	Uncert:		+/-0.0248	-	0					
	TPU:		+/-0.0248							
Lead-214			U 0.00464	pCi/	g					
	Uncert:		+/-0.0303		0					
	TPU:		+/-0.0303							
Manganese-54			U 0.00903	pCi/	g					
c	Uncert:		+/-0.013	I - ·	0					
	TPU:		+/-0.013							
Niobium-94			U 0.00262	pCi/	g					
	Uncert:		+/-0.0145		Ç					
	TPU:		+/-0.0145							
Potassium-40			U 0.0088	pCi/	g					
	Uncert:		+/-0.203	•	0					
	TPU:		+/-0.203							
Radium-226	110.		U -0.0259	pCi/	g					
	Uncert:		+/-0.0326	P ==	0					
	TPU:		+/-0.0326							
Silver-108m	110.		U 0.00999	pCi/	la					
	Uncert:		+/-0.0133	pen.	5					
	TPU:		+/-0.0133							
Thallium-208	IFU.		U 0.00639	pCi/	la					
Thantum-200	Uncert:		+/-0.019	pen	6					
	TPU:		+/-0.019							
Rad Gas Flow	IFU.		T/-0.019							
Batch 624234										
QC1201312112 183857007 DUP		0.00447		~	, ^		(0.01 + 0.02)	NIX7 2	04/10/07	00.47
Strontium-90	U		U 0.0262	pCi/	/g 0		(0% - 100%)	NXL3	04/12/07	09:47
	Uncert:	+/-0.0225	+/-0.029							
	TPU:	+/-0.0225	+/-0.029							
QC1201312114 LCS	1.49		1.50	-01	l~	107	(750 1050)		04/10/07	00.47
Strontium-90	1.48		1.59	pCi/	B	107	(75%-125%)		04/12/07	09:47

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

			. Su	<u>mmary</u>					
Workorder: 183857								Page 10 of 12	
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas FlowBatch624234									
	Uncert: TPU:			+/-0.112 +/-0.121					
QC1201312111 MB	IFU.			+ /*0.121					
Strontium-90			U	-0.00217	pCi/	g			04/12/07 09:47
	Uncert:			+/-0.0174					
QC1201312113 183857007 MS	TPU:			+/-0.0174					
Strontium-90	3.25 U	0.00647		3.18	pCi/	g	98	(75%-125%)	04/12/07 09:47
	Uncert:	+/-0.0225		+/-0.243					
	TPU:	+/-0.0225		+/-0.254					
Rad Liquid ScintillationBatch624176									
QC1201311985 183857007 DUP					~	0			
Iron-55	U Uncert:	20.4 +/-29.0	U	7.36 +/-28.5	pCi/	g 0		(0% - 100%) MXP1	04/13/07 11:00
	TPU:	+/-29.0		+/-28.5					
QC1201311987 LCS									
Iron-55	1190			1080	pCi/	g	91	(75%-125%)	04/13/07 11:33
	Uncert:			+/-58.7					
QC1201311984 MB	TPU:			+/-95.8					
Iron-55			U	-6.54	pCi/	g			04/13/07 10:44
	Uncert:			+/-24.4					
0.01001011007 1000055005 170	TPU:			+/-24.4					
QC1201311986 183857007 MS Iron-55	1220 U	20.4		1130	pCi/	σ	93	(75%-125%)	04/13/07 11:17
	Uncert:	+/-29.0		+/-65.7	pen	6	20	(10/0 120/0)	
	TPU:	+/-29.1		+/-106					
Batch 624178									
QC1201311993 183857007 DUP		0.101		0.000	<i></i>			(001 1000() MEDI	0.111.0107 1.0.00
Technetium-99	U Uncert:	0.131 +/-0.250	U	0.302 +/-0.254	pCi/	g 0		(0% - 100%) MXP1	04/16/07 13:00
	TPU:	+/-0.250		+/-0.254					
QC1201311995 LCS									
Technetium-99	19.6			18.7	pCi/	g	96	(75%-125%)	04/16/07 14:00
	Uncert:			+/-0.715					
QC1201311992 MB	TPU:			+/-0.856					
Technetium-99			U	-0.0685	pCi/	g			04/16/07 12:17
	Uncert:			+/-0.216					
001201211004 192957007 149	TPU:			+/-0.216					
QC1201311994 183857007 MS Technetium-99	20.0 U	0.131		19.9	pCi/	g	100	(75%-125%)	04/16/07 13:42
	Uncert:	+/-0.250		+/-0.802	r	-		/	
	TPU:	+/-0.250		+/-0.946					
Batch 624179									
QC1201311997 183857021 DUP Tritium	U	-0.0783	U	0.200	pCi/	g 0		(0% - 100%) AXD2	04/12/07 03:35

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 183857							Page 11 of 12			
Parmname	NOM	Sample Q	ual	QC	Units	RPD%	REC%	-	Date Time	
Rad Liquid ScintillationBatch624179										
	Uncert: TPU:	+/-1.49 +/-1.49		+/-1.53 +/-1.53						
QC1201311999 LCS Tritium	11.5 Uncert:			12.3 +/-1.86	pCi/g	Ş	107	(75%-125%)	04/12/07 05:38	
OC1201211006 MB	TPU:			+/-1.88						
QC1201311996 MB Tritium	Uncert:		U	1.12 +/-1.51	pCi/g	Ş			04/12/07 02:33	
QC1201311998 183857021 MS	TPU:			+/-1.51						
Tritium	12.0 U Uncert: TPU:	-0.0783 +/-1.49 +/-1.49		11.6 +/-1.95 +/-1.96	pCi/g	ţ	97	(75%-125%)	04/12/07 04:30	
Batch 624180										
QC1201312001 183857021 DUP Carbon-14	U Uncert:	-0.0142 +/-0.0924	U	-0.0391 +/-0.0868	pCi/g	g 0		(0% - 100%) AXD2	04/11/07 13:0	
QC1201312003 LCS	TPU:	+/-0.0924		+/-0.0868						
Carbon-14	6.78 Uncert: TPU:			6.79 +/-0.188 +/-0.215	pCi/g		100	(75%-125%)	04/11/07 15:07	
QC1201312000 MB Carbon-14	Uncert:		U	-0.0282 +/-0.0892	pCi/g	g			04/11/07 12:03	
QC1201312002 183857021 MS	TPU:			+/-0.0892						
Carbon-14	7.06 U Uncert: TPU:	-0.0142 +/-0.0924 +/-0.0924		6.93 +/-0.195 +/-0.223	pCi/g	7	98	(75%-125%)	04/11/07 14:00	
Batch 625941										
QC1201316375 183857021 DUP Nickel-63	U Uncert:	-2.98 +/-8.86	U	7.52 +/-10.5	pCi/Į	g 0		(0% - 100%) MXP1	04/17/07 12:3	
QC1201316377 LCS Nickel-63	TPU: 545	+/-8.86		+/-10.5	pCi/g	2	102	(75%-125%)	04/17/07 13:04	
	Uncert: TPU:			+/-24.3 +/-31.2	F 6	2		(,		
QC1201316374 MB Nickel-63			U	-5.48	pCi/g	g			04/17/07 12:1	
	Uncert: TPU:			+/-8.74 +/-8.74						
QC1201316376 183857021 MS Nickel-63	573 U Uncert:	-2.98 +/-8.86		583 +/-27.0	pCi/ş	g	102	(75%-125%)	04/17/07 12:4	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

armna	me	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Tim
Notes:			<u></u>								
The Qu	alifiers in this report are def	ined as follows:									
**	Analyte is a surrogate com	pound									
<	Result is less than value re	ported									
>	Result is greater than value	e reported									
Α	The TIC is a suspected ald	lol-condensation prod	uct								
В	For General Chemistry and	d Organic analysis the	e target analyte was deter	cted in the	associated	blank.					
BD	Results are either below th	e MDC or tracer reco	overy is low								
С	Analyte has been confirme	ed by GC/MS analysis	5								
D	Results are reported from a	a diluted aliquot of th	e sample								
Н	Analytical holding time wa	as exceeded									
J	Value is estimated										
N/A	Spike recovery limits do n	ot apply. Sample con	centration exceeds spike	e concentra	tion by 43	c or more					
ND	Analyte concentration is n	ot detected above the	detection limit								
R	Sample results are rejected	t									
U	Analyte was analyzed for,	but not detected above	e the MDL, MDA, or Le	OD.							
UI	Gamma SpectroscopyUr	ncertain identification									
Х	Consult Case Narrative, D	ata Summary package	e, or Project Manager co	ncerning th	is qualifie	er					
Y	QC Samples were not spik	ked with this compour	nd								
^	RPD of sample and duplic	ate evaluated using +	/-RL. Concentrations ar	e <5X the I	RL						
h	Preparation or preservation	n holding time was ex	ceeded								

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is RL is used to evaluate the DUP result. less than 5X the RL, a control limit of +/- the

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

SUBSURFACE AREA ASSOCIATED WITH THE WEST INDUSTRIAL SITE GROUNDS (NON-PROTECTED AREA) SURVEY UNIT 9802-0000

RELEASE RECORD

ATTACHMENT 3 (DQA RESULTS)

SUBSURFACE AREA ASSOCIATED WITH THE WEST INDUSTRIAL SITE GROUNDS (NON-PROTECTED AREA) SURVEY UNIT 9802-0000

RELEASE RECORD

ATTACHMENT 3A (PRELIMINARY DATA REVIEW)

.....

Preliminary Data Review Form - Samples for the Sign Test

Survey Unit:	
Survey Unit Name:	Northeast Protected Area Grounds

Classification:	В
Survey Media:	Soil
Type of Survey:	Final Status Survey
Type of Measurement:	Gross Measurement
Number of Measurements:	25
Operational DCGL:	1

BASIC STATISTICAL QUANTITIES

	Cs-137	Co-60
Minimum Value:	-8.41E-03	-1.22E-02
Maximum Value:	5.04E-02	4.90E-02
Mean:	1.16E-02	5.29E-03
Median:	9.80E-03	3.34E-03
Standard Deviation:	1.20E-02	1.33E-02

	RADION	JCLIDE CON	CENTRATIO	N (pCi/g)
NUMBER	Cs-137	Co-60	Identified?	Identified?
9802-0000-001F	2.09E-02	-4.84E-03	Y	Ν
9802-0000-003F	6.63E-03	9.14E-04	Ν	N
9802-0000-004F	-8.41E-03	4.07E-03	Ν	Ν
9802-0000-005F	9.13E-03	3.34E-03	Ν	Ν
9802-0000-006F	1.90E-02	-1.14E-02	Y	N
9802-0000-007F	3.96E-03	5.71E-03	Ν	Ν
9802-0000-008F	1.42E-02	-5.70E-03	Ν	N
9802-0000-010F	1.41E-02	1.95E-02	Ν	Y
9802-0000-011F	7.98E-03	2.86E-03	Ν	Ν
9802-0000-012F	-2.33E-03	6.22E-03	Ν	Ν
9802-0000-013F	5.04E-02	4.90E-02	Y	Y
9802-0000-014F	5.30E-03	7.41E-04	Ν	Ν
9802-0000-016F	1.53E-02	-5.21E-05	Y	Ν
9802-0000-017F	5.65E-03	5.14E-03	Ν	Ν
9802-0000-018F	-4.41E-05	-5.22E-03	Ν	Ν
9802-0000-019F	4.15E-03	6.44E-03	Ν	Ν
9802-0000-020F	9.80E-03	-5.79E-03	Ν	Ν
9802-0000-021F	1.66E-02	-1.34E-05	Y	N
9802-0000-022F	1.26E-02	-8.10E-03	Ν	N
9802-0000-024F	2.33E-02	1.46E-02	Y	N
9802-0000-025F	1.11E-02	1.06E-02	Ν	Ν
9802-0000-030F	2.56E-02	2.82E-02	Ν	Y
9802-0000-031F	5.93E-03	1.84E-02	Ν	Ν
9802-0000-032F	2.39E-02	-1.22E-02	Ν	N
9802-0000-033F	-5.51E-03	9.73E-03	Ν	Ν
•	· ·	Deee	4 - 60	

Performed By: Oal Maylall Det Independent Review:

Date: $\frac{4 - 26 - 07}{5 / 107}$

Preliminary Data Review Form - Judgemental Samples

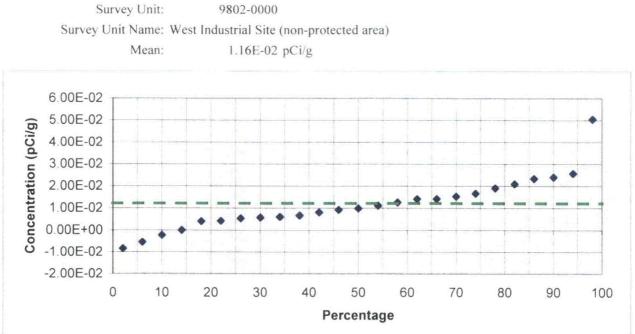
Survey Unit:	9802- 0000
Survey Unit Name:	
	West Industrial Site (non-protected area)
Classification:	В
Survey Media:	Soil
Type of Survey:	Final Status Survey
Type of Measurement:	Gross Measurement
Number of Measurements:	4
Operational DCGL:	1

BASIC STATISTICAL QUANTITIES

	•	
	Cs-137	Co-60
Minimum Value:	-1.47E-02	-8.72E-03
Maximum Value:	1.46E-02	2.37E-02
Mean:	3.87E-03	4.82E-03
Median:	7.80E-03	2.15E-03
Standard Deviation:	1.36E-02	1.38E-02

	RADIONUCLIDE CONCENTRATION (pCi/g)			
NUMBER	Cs-137	Co-60	Identified?	
9802-0000-026B	2.29E-03	5.30E-03	N	Ν
9802-0000-027B	-1.47E-02	-1.00E-03	N	Ν
9802-0000-028B	1.46E-02	-8.72E-03	N	Ν
9802-0000-029B	1.33E-02	2.37E-02	Ν	Ν

Pal Mmlal Performed By: 9 Independent Review:-


Date: <u>4-26-07</u> Date: <u>51: |07</u>

SUBSURFACE AREA ASSOCIATED WITH THE WEST INDUSTRIAL SITE GROUNDS (NON-PROTECTED AREA) SURVEY UNIT 9802-0000

RELEASE RECORD

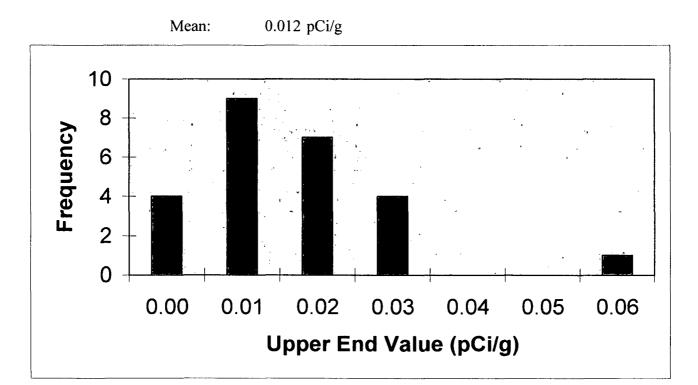
ATTACHMENT 3B (GRAPHICAL REPRESENTATION OF DATA)

Revision 0

Quantile	Plot	For	Cesium	- 137

Cs-137	Rank	Percentage
-8.41E-03	1	2 %
-5.51E-03	2	6 %
-2.33E-03	3	10 %
-4.41E-05	4	14 %
3.96E-03	5	18 %
4.15E-03	• 6	22 %
5.30E-03	7	26 %
5.65E-03	8	30 %
5.93E-03	9	34 %
6.63E-03	10	38 %
7.98E-03	11	42 %
9.13E-03	12	46 %
9.80E-03	13	50 %
1.11E-02	14	54 %
1.26E-02	15	58 %
1.41E-02	16	62 %
1.42E-02	17	66 %
1.53E-02	18	70 %
1.66E-02	19	74 %
1.90E-02	20	78 %
2.09E-02	21	82 %
2.33E-02	22	86 %

2.56E-02	24	94 %	
5.04E-02	25	98 %	

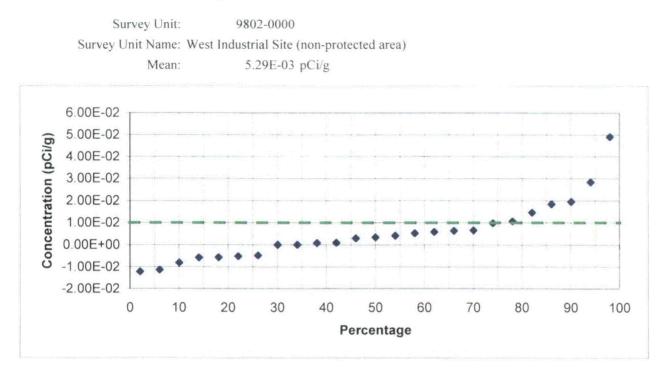

Prepared By: Och Mmhall Reviewed By:

.

Date:	4-26-07
Date: _	5/1/07

Frequency Plot For Cesium-137

Survey Unit: 9802-0000 Survey Unit Name: West Industrial Site (non-protected area)


Upper End		Observation	Observation %
Value		Frequency	Frequency
0.00	٠	4	16%
0.01		9	36%
0.02		7	28%
0.03		4	16%
0.04		0	0%
0.05		0	0%
0.06		1	4%
Total		25	100%

Dal Markall Prepared By:

Date: 4-26-07

 \sim **Reviewed By:**

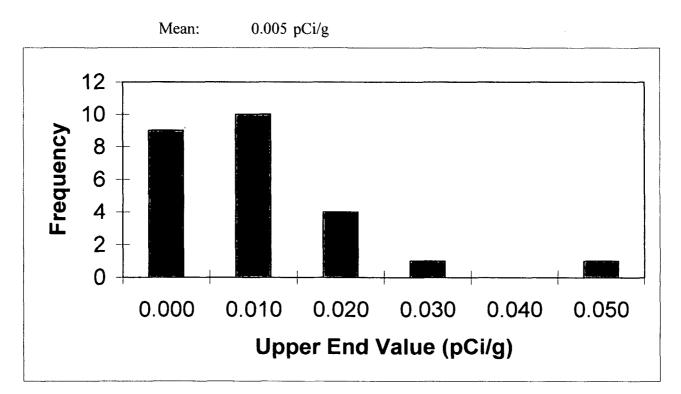
Date: 5/1/07

Quan	tile	Plot	For	Coba	lt -	60

Co-60	Rank	Percentage
-1.22E-02	1	2 %
-1.14E-02	2	6 %
-8.10E-03	3	10 %
-5.79E-03	4	14 %
-5.70E-03	5	18 %
-5.22E-03 😱	6	22 %
-4.84E-03	7	26 %
-5.21E-05	8	30 %
-1.34E-05	9	34 %
7.41E-04	10	38 %
9.14E-04	11	42 %
2.86E-03	12	46 %
3.34E-03	13	50 %
4.07E-03	14	54 %
5.14E-03	15	58 %
5.71E-03	16	62 %
6.22E-03	17	66 %
6.44E-03	18	70 %
9.73E-03	19	74 %
1.06E-02	20	78 %
1.46E-02	21	82 %
1.84E-02	22	86 %

1.95E-022390 %2.82E-022494 %4.90E-022598 %
1.95E-02 23 90 %

Prepared By: Dal Romball _____ Reviewed By:__ l


.

_

Date:	4-26-07
Date:	5/1/07

Frequency Plot For Cobalt - 60

Survey Unit: 9802-0000 Survey Unit Name: West Industrial Site (non-protected area)

Upper End Value		Observation Frequency	Observation % Frequency
0.000	٠	9	36%
0.010		10	40%
0.020		4	16%
0.030		1	4%
0.040		0	0%
0.050		_1	4%
Total		25	100%
rotar		20	100 /

north Dul Prepared By:

Date: 4-26-07

١ Reviewed By: 4

Date:__5/1/07

SUBSURFACE AREA ASSOCIATED WITH THE WEST INDUSTRIAL SITE GROUNDS (NON-PROTECTED AREA) SURVEY UNIT 9802-0000

RELEASE RECORD

ATTACHMENT 3C (SIGN TEST)

	Sign Test Calcı	lation Sheet For M	ultiple Radionuclisdes	
Survey Unit Number	: 9802-0000	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Survey Unit Name	: West Industrial S	ite (non-protected area)		
WD&IR#	: 9802-0000			
	. 7002-0000			
Classification	: B	TYPE I (α error):0.05	TYPE I (β error):0.05	· · ·
	Radionuclides:	Cs-137	Co-60	
Survey Desi	gn DCGL (pCi/g):	4.75	2.29	
Results Cs-137	Results Co-60	Weighted Sum (W _s)	DCGL-Result	Sign
		0		-
2.09E-02	-4.84E-03	2.29E-03	9.98E-01	1
6.63E-03	9.14E-04	1.80E-03	9.98E-01	1
-8.41E-03	4.07E-03	8.38E-06	1.00E+00	1
9.13E-03	3.34E-03	3.38E-03	9.97E-01	1
1.90E-02	-1.14E-02	-9.84E-04	1.00E+00	1
3.96E-03	5.71E-03	3.33E-03	9.97E-01	1
1.42E-02	-5.70E-03	4.99E-04	1.00E+00	1
1.41E-02	1.95E-02	1.15E-02	9.88E-01	1
7.98E-03	2.86E-03	2.93E-03	9.97E-01	1
-2.33E-03	6.22E-03	2.23E-03	9.98E-01	1
5.04E-02	4.90E-02	3.21E-02	9.68E-01	1
5.30E-03	7.41E-04	1.44E-03	9.99E-01	1
1.53E-02	-5.21E-05	3.20E-03	9.97E-01	1
5.65E-03	5.14E-03	3.44E-03	9.97E-01	1
-4.41E-05	-5.22E-03	-2.29E-03	1.00E+00	1
4.15E-03	6.44E-03	3.69E-03	9.96E-01	1
9.80E-03	-5.79E-03	-4.68E-04	1.00E+00	1
1.66E-02	-1.34E-05	3.49E-03	9.97E-01	1
1.26E-02	-8.10E-03	-8.88E-04	1.00E+00	1
2.33E-02	1.46E-02	1.13E-02	9.89E-01	1
1.11E-02	1.06E-02	6.98E-03	9.93E-01	1
2.56E-02	2.82E-02	1.77E-02	9.82E-01	1
5.93E-03	1.84E-02	9.30E-03	9.91E-01	1
2.39E-02	-1.22E-02	-3.01E-04	1.00E+00	1
-5.51E-03	9.73E-03	3.10E-03	9.97E-01	1
	Number of I	Positive Differences (S+)	: 25	

Critical Value:	17	Survey Unit:	Meets Acceptance Criterion	
· · · · · · ·			. <u></u>	
Performed By:	Dul 4	radull	Date: <u>4-26-07</u>	
Independent Review:	Dif		Date: 5/1/07	
)		ł	

SUBSURFACE AREA ASSOCIATED WITH THE WEST INDUSTRIAL SITE GROUNDS (NON-PROTECTED AREA) SURVEY UNIT 9802-0000

RELEASE RECORD

ATTACHMENT 3D (QC SPLIT RESULTS)

Split Sample Assessment Form

Survey Area #:	9802	Survey Unit #:	0000 Surv Unit	vey t Name: West	Industrial S	Site (non-p	rotected area))
Sample Plan o	or WPIR#:	9802-0000		011				
	a spectros	copy by an	off-site ve	ndor laborato				<u>+11</u> _and_analyze 9802-0000-0111
		STANDARI)			CC	MPARISON	1
Radionuclide	Activity Value	Standard Error	Resolution	Agreement Range	Activity Value	Standard Error	Comparison Ratio	Acceptable (Y/N
Cs-137	7.98E-03	8.95E-03	1	NONE -	-1.46E-02	7.65E-03	-1.83	N/A
Co-60	2.86E-03	6.60E-03	0	NONE -	3.43E-03	6.35E-03	N/A	N/A
K-40	9.57E+00	4.15E-01	23	0.75 - 1.33	1.02E+01	4.03E-01	1.07	Y
and Co-60 res	sults, guida	nce for agree	ment range			rovided to split sampl	-	ance criteria use
from USNRC resolution rat	-				Reso	lution	Agree	ement Range
acceptability	for such rat	tions cannot	be made. S	ince K-40 was	4	7 15	0.50	2.00
found to be p further action		-	evel of agre	ement, no	8 16	50	0.80	1.66 1.33
					51	200	0.80	1.25
					>	200	0.85	1.18
Performed B	y:		Da	te: 4-26-07	Reviewed	By:	I	Date: 5/1/07

SML – Sample Measurement Location designation

Split Sample Assessment Form

-	or WPIR#:						····	9802-0000-	
	spectrosco	opy by an	off-site ven						<u>#13</u> and analy)2-0000-013F,
- -		STANDAR	D	· · · · · · · · · · · · · · · · · · ·			СО	MPARISON	[
Radionuclide	Activity Value	Standard Error	Resolution	Agree Ran		Activity Value	Standard Error	Comparison Ratio	Acceptable (Y/
Cs-137	5.04E-02	1.21E-02	4	0.5 -	2	6.86E-02	1.42E-02	1.36	Y
Co-60	4.90E-02	9.10E-03	5	0.5-	2	2.48E-02	1.04E-02	0.51	Y
K-40	1.14E+01	4.53E-01	25	0.75 -	1.33	1.02E+01	4.21E-01	0.89	Y
									<u> </u>
Comments/C 40 were also	found to be	present at a	an acceptable			Table is pr to assess s		-	nce criteria use
agreement, n	o further ac	tion is warra	anted.			Reso	lution	Agree	ement Range
						4	7	0.50 0.60	2.00
						8 16	15 50	0.60	1.66 1.33
						51	200	0.80	1.25
						>	200	0.85	1.18

SML – Sample Measurement Location designation