

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Optimization of Dissolved Hydrogen in Primary Water to Mitigate PWSCC in Ni-Based RCS Components

Peter Andresen GE Global Research

May 30, 2007 MRP/PWROG Briefing to NRC RES

MRP Chemical Mitigation of PWSCC: Background and Objectives

- PWR primary water chemistry is known to have a limited effect on the initiation of PWSCC in Alloy 600.
- However, it must be assumed that cracks (some below NDE-limit) have already initiated in many thick-walled components.
- Thus the need for reliable data on crack growth rate (CGR) effects.
 - Can advantage be taken of moving to higher hydrogen levels to mitigate PWSCC (and extend inspection intervals)?
- Strong theoretical basis, supported in particular by extensive test data from the NR program, to recommend moving to higher hydrogen levels in PWR primary water to obtain some mitigation of PWSCC for Ni-base alloys used in thick-wall components.
- Goal is to develop data to optimize the primary water chemistry guidelines to achieve some PWSCC mitigation. The potential mitigation benefit is enormous because it would apply to almost all of the RCS.

PWSCC Mitigation by Elevated H₂

- MRP test program at (GE-GRC) has now been running for over 2 years. Need for very long duration tests has resulted in a limited number of data.
- Results to date on elevated hydrogen are encouraging but not conclusive. Testing to continue at least until 2008.
- The April 2006 meeting of the MRP Expert Panel on PWSCC was devoted mainly to consideration of chemical mitigation where Naval Reactors data on this subject was made available.
- This presentation will focus on the prospects for PWSCC mitigation by means of optimizing H_2 levels in primary water.

Experimental Strategy

- Crack growth rate measurements techniques with thorough transition from fatigue to SCC.
- Use susceptible heat of A600, ~120,000 hrs testing (CRDM heat 93510 from Framatome).
- Two 0.5T CT specimens tested in series.
- Moderate stress intensity factor, $K = 25 \text{ ksi} \sqrt{\text{in}}$
- Test in 325C water with a range of Zn, B/Li & H2
- Use B/Li-equilibrated demineralizer to maintain high water purity and good H₂ control.
- Use ZrO_2 / Cu_2O and Pt reference electrodes.

Alloy 600 CRDM Housing

Heat 93510 received from Framatome

Considered various orientations; used orientation at right, which is the C-L orientation

Ni Alloy Crack Growth Rate vs H₂

B/Li Effects at Constant pH

Pure water $\rightarrow 600B / 2.2Li$ pH_{325C} = 5.86 \rightarrow 7.53

RESEARCH INSTITUTE

Effect of Corrosion Potential & Cold Work of SS & Ni Alloys

† Yield strength *†* growth rate at low potential

Sensitized SS

100

Crack Growth Rate (mils/day)

റ്റ്റ്

qdd

+200 + +500 +

CW A600

42.5

28.3

14.2

...h/h

2000 ppb O₂

Ann. 304SS

200 dag 002

0.1 0.2 0.3

Cold worked SS/600

Ni allovs

Very High Growth Rate in B/Li + O₂

Thus, high growth rates occur as oxidants shift the crack chemistry – and can overwhelm B/Li buffering

CGR Peak at Ni/NiO Phase Boundary

RESEARCH INSTITUTE

Role of H₂ and B/Li/pH Water Chemistry

Connection between BWR & PWR leverages data & understanding. Extensive PWR data – applicable because B/Li/pH is not important in deaerated water.

There is a ~8X peak vs. H₂ for Alloy 82/182 weld metal that is relevant to BWRs.

Thermal activation also important.

Role of H₂ Also Relevant to BWRs

Peak growth rate occurs at much lower H₂ at 274C of BWR materials

Ni Alloy Crack Growth Rate vs. H₂

KAPL data: consistent benefit of $\uparrow H_2$ 288 – 360 °C

Ni Alloy Crack Growth Rate vs. H₂

"Background" CGR at low or high H₂ is likely a bit lower – this could markedly increase the peak height

KAPL data: consistent benefit of $\uparrow H_2$ vs. temperature & K Hard to conclude that the peak is not actually at Ni/NiO

Ni Alloy Crack Growth Rate vs. H₂

KAPL data: CGR different, but peak vs. H₂ is similar for different temperatures and K

Alloy 82 Weld Metal Crack Growth Rate vs. H₂

Hard to conclude that the peak is not actually at Ni/NiO

Modeling H₂ Effects on CGR

© 2007 Electric Power Research Institute, Inc. All rights reserved.

Modeling H₂ Effects on CGR

ECP_{os} = offset of CGR peak from Ni/NiO phase boundary (see Morton)

Ni/NiO Phase Boundary = $10^{(0.0111*T(^{\circ}C) - 2.59)}$ cc/kg H₂

 $V_{P} = \text{velocity vs. peak (e.g., 1-8)}$ P = height of peak (e.g., 3-8X) $\lambda = \text{width of peak (see Morton)}$ = 20.2 (A82) or 35.6 (A600) $\Delta ECP = H_2 \text{ value vs. peak } H_2$ = 29.58 (T+273.3)/298.2 * $\log (H_2/H_{2-\text{Peak}})$

Modeling H₂ Effects on CGR

Morton Formulation

$$V_{P} = P \exp\left(-0.5 \left[\frac{\Delta ECP + ECP_{OS}}{\lambda}\right]^{2}\right)$$

Morton parameters from

Attanasio & Morton, Proc. 11th Int. Conf. on Environmental Degradation of Materials, 2003.)

Test Material and Condition	<u>SCCGR_{max}</u> SCCGR _{min}	∆EcP₀	λ	Range of Applicability [†]
EN82H, 338°C	8.09	10.5	20.2	- 52 mV $\leq \Delta EcP \leq 31 mV$
Alloy 600, 338°C	2.81	-10.2	35.6	- 41 mV $\leq \Delta EcP \leq 61$ mV
Alloy X-750 HTH, 360°C	4.89	4.2	20.4	- 41 mV $\leq \Delta EcP \leq 32$ mV
Alloy X-750 AH, 338°C	7.19	30.8	40.0	- 110 mV $\leq \Delta EcP \leq 49$ mV

[†] The SCCGR effect of dissolved H₂ seems to have an appreciable influence in a narrow range of EcP near the Ni/NiO phase transition.

Alloy 600 Crack Growth Rate vs. H₂

Schematic of change in growth rate vs. H₂ for Alloy 600 & Alloys 82/182

H₂ Effects on SCC Growth Rates

Thermodynamic response in ECP to changes in H_2 2X change in H_2 = 17.9 mV at 325C Alloy 600 CRDM, 325C, 600 B / 2.2 Li, 20 cc/kg H_2

H₂ Effects on SCC Growth Rates

Response immediately after H_2 change, but then \uparrow in CGR Alloy 600 CRDM, 325C, 600 B / 2.2 Li, 20 cc/kg H_2

H₂ Effects – Short Term

Stronger short term effect is likely related to dcpd "shorting" when moving farther into Ni-metal stability as $H_2 \uparrow$

Expected & short-term observations of ratio in crack growth rate for specific changes in H₂, e.g., 20 to 40 cc/kg

H₂ Effects – Long Term

Expected & long-term observations of ratio in crack growth rate for specific changes in H_2 – average overall agreement is 10%

H₂ Effects on SCC Growth Rates (35 cc/kg reference)

Alloy 600				Alloy 82/182				
Baseline= 35 cc/kg	Alloy 600 (3X Peak Height, λ = 35.6, ECP _{OS} = 0)				Alloy 182/82 (8X Peak Height, λ = 20.2, ECP _{OS} = 0)			
Temp, °C	290 °C	310 °C	325 °C	343 °C	290 °C	310 °C	325 °C	343 °C
H ₂ at Ni/NiO	4.3 cc/kg	7.1 cc/kg	10.4 cc/kg	16.5 cc/kg	4.3 cc/kg	7.1 cc/kg	10.4 cc/kg	16.5 cc/kg
35 ightarrow 100	1.30	1.53	1.69	1.76	1.14	1.62	2.52	3.94
$35 \rightarrow 80$	1.27	1.44	1.55	1.56	1.14	1.59	2.36	3.22
$35 \rightarrow 50$	1.14	1.20	1.22	1.19	1.10	1.37	1.63	1.66
35 ightarrow 10	0.54	0.58	0.68	0.91	0.24	0.23	0.33	0.76
$35 \rightarrow 3$	0.47	0.69	1.02	1.67	0.16	0.37	1.04	3.63
35 ightarrow 1	0.72	1.21	1.74	2.41	0.54	1.37	2.55	4.84
50 → 100	1.14	1.27	1.39	1.47	1.03	1.18	1.54	2.37
$50 \rightarrow 80$	1.11	1.20	1.27	1.31	1.03	1.16	1.45	1.93

Predicted effects for specific changes in H_2 at various temperatures Based on CGR peak at Ni/NiO phase boundary with peak height and width as specified by Morton et al.

H₂ Effects on SCC Growth Rates (30 cc/kg reference)

Alloy 600				Alloy 82/182				
Baseline= 30 cc/kg	Alloy 600 (3X Peak Height, λ = 35.6, ECP _{OS} = 0)				Alloy 182/82 (8X Peak Height, λ = 20.2, ECP _{OS} = 0)			
Temp, °C	290 °C	310 °C	325 °C	343 °C	290 °C	310 °C	325 °C	343 °C
H ₂ at Ni/NiO	4.3 cc/kg	7.1 cc/kg	10.4 cc/kg	16.5 cc/kg	4.3 cc/kg	7.1 cc/kg	10.4 cc/kg	16.5 cc/kg
$30 \rightarrow 100$	1.40	1.66	1.84	1.87	1.25	1.97	3.17	4.71
$30 \rightarrow 80$	1.36	1.57	1.68	1.66	1.24	1.94	2.97	3.84
$30 \rightarrow 50$	1.22	1.31	1.33	1.27	1.21	1.67	2.05	1.99
$30 \rightarrow 10$	0.58	0.63	0.74	0.97	0.27	0.27	0.41	0.91
$30 \rightarrow 3$	0.50	0.75	1.10	1.77	0.17	0.44	1.31	4.34
$30 \rightarrow 1$	0.77	1.31	1.88	2.56	0.59	1.67	3.20	5.79
$50 \rightarrow 100$	1.14	1.27	1.39	1.47	1.03	1.18	1.54	2.37
$50 \rightarrow 80$	1.11	1.20	1.27	1.31	1.03	1.16	1.45	1.93

Predicted effects for specific changes in H_2 at various temperatures Based on CGR peak at Ni/NiO phase boundary with peak height and width as specified by Morton et al.

H₂ Effects on SCC Growth Rates

RESEARCH INSTITUTE

Effect of H₂ or ECP Offset on CG Rate

RESEARCH INSTITUTE

H₂ Effects on SCC Growth Rates

Current operating H_2 is above peak, so large reduction in H_2 is needed to get benefit – concern for radiolysis below ~2 – 4 cc/kg H_2

Conclusions on Modeling H₂ Effects

Summary and Interpretation of H₂ Theory & Modeling:

- Thermodynamic ECP response for SS & Ni Alloy vs. H₂
 - true even for $H_2 < 0.1$ cc/kg (9 ppb) in pure water or B/Li.
- H₂ effect appears to apply ~identically independent of temperature, stress intensity factor, B/Li, or heat.
- H₂ peak height (peak-to-background) is ~3X for Alloy 600 and ~6 – 8 for 182/82 weld metals & Alloy X750. The "background" growth rate may be lower, so peak is higher
- Deviations (offsets) from Ni/NiO are probably noise/scatter: the offset for Alloy 600 = -10 mV; Alloy 82 = +10 mV.
- H₂ peak width (e.g., FWHM) seems to vary, but more data are needed
- Factor-of-improvement analyses are complex because they must account for temperature, historical H₂, new H₂, material, etc.

Conclusions on Measuring H₂ Effects

Summary and Interpretation of H₂ Results:

- Observed thermodynamic response to ECP for changes in H₂
- Short term CGR response may be related to changes in Ni/NiO and Ni-Fe-Cr/spinel oxide stabilities on dcpd
- Effects of H₂ on CGR of alloy 600 agrees with KAPL data:
 - peak to background is only ~2.5 3X
 - peak at 325C is ~10.4 cc/kg H₂
 - width of peak at half-max is ~50 mV = 7X change in H_2
 - a peak height of 5 8X is observed for X750 or 82/182
- Mitigation benefit for a given component depends in rather complex manner on alloy, temperature & current vs. target H₂
- Future work will include Alloy 182 (larger effect of H₂)

MRP Current Position on Desirability of Raising H₂

- Strong theoretical basis, supported in particular by extensive test data from the NR program, to recommend moving to higher hydrogen levels in PWR primary water so as to obtain some mitigation of PWSCC for Ni-base alloys used in thick-wall components.
- Such a change is expected always to have a positive effect in slowing down crack growth, no matter what exact material or operating temperature is involved. Some mitigation benefit already being accrued with the current trend of moving to higher H₂.
- Quantifying the predicted benefit of such a change for any particular component, however, is complex.
- Overall, the benefit of hydrogen optimization will always be greater at higher temperatures (e.g., in the pressurizer) and for higher-strength alloys (e.g., weld metals or Alloy X750, rather than Alloy 600).
- Parallel effort on plant safety/operability evaluation for increased hydrogen is under way; assessment of effect on fuel integrity of higher hydrogen is planned (next 3 slides)

H₂ Optimization: Prioritized List of Issues

Issue					
Elevated hydrogen during operation					
Will elevated H ₂ levels during operation affect the performance of PWR Zr-based alloys? (crud, subnucleate boiling, fuel, etc.)	High				
Will elevated H ₂ levels during operation result in explosive gas mixtures in containment during a LOCA and other licensing/safety issues?	High				
Can the plant maintain \ge 50 cc/kg dissolved H ₂ with the existing VCT and all plant systems?	Medium				
Will the increase in total dissolved gases cause operational problems (gas pocket formation)?	Medium				
Will the increase in total dissolved H ₂ on the primary side affect conditions on the secondary side?	Medium				
What are the possible consequences of elevated H ₂ under off-normal conditions (make-up additions, letdown loss, etc.) that would be counter-productive?	Medium				
Will elevated hydrogen levels have an effect on plants using Zn addition?	Medium				
Reduced hydrogen during operation					
What margin will be required to ensure radiolytic oxygen production does not occur?	High				
Under what conditions will low H ₂ have no benefit or a negative benefit?	High				
Hydrogen effects during plant shutdown					
LTCP? Is stored hydrogen important? How quickly can H ₂ be removed prior to shutdown?					

- All safety items were given the highest priority ranking
- Other lower priority issues will be addressed in the final report

FRP: Concerns with Elevated Coolant DH

1. Possible H₂ pickup increase in Zr-based alloys

- Hydride rims (layers with [H]>~1000 ppm) at the outer zone of the cladding wall thickness could increase corrosion
- 18% volume expansion of Zr upon conversion to the hydride contributes to in-reactor growth, dimensional stability
- Zr-hydrides, ZrH_{1.6}, may further decrease ductility, fracture toughness of the metal
- 2. Elevated DH affects Fe, Ni solubility
 - Anticipate that Fe solubility increases and Ni solubility decreases.
 What happens to crud composition and morphology?
 - Enhanced corrosion under deposits? AOA?
- 3. Possible Ni metal precipitation on cladding, grids, and thimble tubes during startup
 - Possible pathway for H₂ entry from DH into Zr components

FRP: Recommendations for Implementing Elevated Coolant Hydrogen

Task 1: Perform out-reactor testing of M5 and ZIRLO to screen for sensitivity of corrosion and H_2 pickup at elevated DH. Tests should include post-transition corrosion oxides, high DH, Zr-4, -2 controls.

Task 2: Assess the impact of DH on corrosion product species in the coolant and on startup and shutdown procedures.

Task 3: In-reactor loop tests may be considered and can be used as a second screening. But it is nearly impossible to simulate commercial PWR system corrosion & crud deposition in loop tests.

Task 4: Pending favorable screening, begin demonstration in commercial plants using a cautious approach of increasing DH in steps of ~10 cc/kg and following with fuel surveillance. First implementation should be in low or medium duty plants. High duty plants can follow.

Effect of Reduced Hydrogen on PWSCC

- Ongoing MRP test program focuses on increasing H₂ fugacity to obtain lower CGRs, but growth rates are also predicted to decrease at much lower H₂ levels, except for components operating at the lowest temperatures in the primary circuit.
- Low H_2 approach to optimizing H_2 levels is being investigated in Japan and emerging results should be followed closely.
- Radiolysis is a possible concern here, since the increase in CGR that would result from a significant elevation of ECP is much larger than benefit from adjusting H₂.

Reduced Hydrogen to Mitigate PWSCC

- To reduce crack growth rates to a level comparable to that of 50 cc/kg, hydrogen would have to be reduced to approximately 2.5 cc/kg H₂ at 325°C, which does not provide an adequate operating margin
- Current data indicate that >1-5 cc/kg H₂ is required to suppress radiolysis and avoid oxidizing conditions
- Japan Atomic Power Company (JAPC) has developed a multiyear plan to investigate operation as low as 5 cc/kg H₂
- Possible Issues:
 - Effect on corrosion product transport and deposition
 - Effect on crack growth rates

