Nine Mile Point Unit 2 Alternative Source Term

Calculation H21C-101

"U2 MSLB, AST Methodology"

Engineering Services

CALCULATION COVER SHEET

Page 1 (Next Total <u>24</u> Last Attachment 2

Project: NINE MILE POINT NUCLEAR STATION	Unit (1,2 or (0=Both): <u>2</u>	_ Discipline	: _CR
Title U2 MSLB, AST Methodology	Calculation No.	H21C-101		
	(Sub)system(s) N/A	Building N/A	Floor Elev. N/A	Index No. N/A
Originator(s) M. Berg				

Reviewer(s)/Approver(s) H. Pustulka

NMP Acceptance: GLENN R. STINSON / SAL 5/29/07

Rev	Description	Eval., CR. or Change No.	Prepared By	Date	Reviewed by	Date	App Date
00	Initial Issue	N/A	How I. Reeg	5/29/07	Beather Justill	5/29/07	Heatthin Ast, De 5/29/07
			7/0				
			2				

Computer Output/Microfilm separately filed? (Yes/No/N/A) __No____

Safety Class: (*SR/NSR/Qxx): _

s: (*SR/NSR/Qxx): <u>SR</u> * If SR, attach or reference the associated Design Verification Report.

Superseded Document(s): N/A

Document Cross Reference(s) - For additional references see page(s) 5_

N (Y/N) Output provided? If yes, group(s)

Ref			-	1	01		Ref	Description	T	la de co	Ohaut	Davi
No.		Document No.	Туре	Index	Sheet	Rev	No.	Document No.	Туре	Index	Sheet	Rev
	See	page 5										
		- v										
	_											
		· · · · · · · · · · · · · · · · ·										
Genera	al Refer	ences: See Page	5	I					<u></u>		J	L
Remar	ks:							······································				
Confirr See Pa	mation F age(s):_	Required (Yes/No): <u>No</u>	·		nal Issue እዮዮ	Status			Turnover Req'd (Yes/N	/A): Yes		
10 CFI	R50.59	Evaluation Number(s):						Component ID(s)(As shown in	MEL):			
Сору с	of Applic	ability Determination or	50-59-Sero	ien Attac	hed? Yes	אס*נ No*נ		N/A				
N/A 🗆	*lf "N	o", location of AD/Scree	n?			,						
Key W	ords: M	ain Steam Line Break , N	ISLB, Des	ign Basis	s, Dose, A	ccident						

CALCULATION CONTINUATION SHEET

Page __2___ (Next __3___)

erę	Date g 5/29/07				ver/Date ustulka	5/29/07			Calculation H21C-	101			Revision 0
					Li	st of E	ffectiv	e Pag	es				
	Page No.	Latest Rev.	Page No.	Latest Rev.	Page No.	Latest Rev.	Page No.	Latest Rev.	Page No.	Latest Rev.	Page No.	Latest Rev.	
	1	0	A1-A5	0									
	2	0	Attach 1	0									
	3	0	Attach 2	0									
	4	0											
	5	0											
	6	0											
	7	0											
	8	0											
	9	0											
	11	0											
	12	0			•								
	13	0						1					
	14	0						1					
	15	0						T					
	16	0				1							
	17	0											
													_
			1					1					
	L	±	±	•	<u> </u>		Tota	Numl	ber of C	Calcula	tion Pa	iges	<u>24</u>

CALCULATION CONTINUATION SHEET

Page __3__ (Next __4__)

Proje	ct: Nine Mile Point Nucleai	r Station Unit:		Disposition:
	ator/Date Berg 5/29/07	Reviewer/Date H. Pustulka 5/29/07	Calculation No. H21C-101	Revision
Ref.				U
	}			
		Table of	Contents	
} }				
	Assumptions			5
				1
			······	
	Appendix A: A Spreads	heet for the Calculation of Offs	site and Control Room Doses (5 p	bages)
	,, ,			.
	Attachment 1: Design V	erification Report (1 Page)		
				м
	Attachment 2: Design V	erification Checklist (1 Page)		
	· · · · · · · · · · · · · · · · · · ·		·····	

CALCULATION CONTINUATION SHEET

oject: Nine Mile Point Ni riginator/Date	uclear Station Unit:		Calculation No.	Disposition:
1. Berg 5/29/07	H. Pustulka 5/29/07		H21C-101	
ef.				<u>1</u>
		,		
Purpose				
	analyzes the Main Steam Line	Break (MSL	.B) Accident for Nine	e Mile Point for
both offsite and	Control Room doses.			
Summary of F	Poculte			
	Table 1 – MSLB Sumn	nary of Dose	Results	
		$4 \mu \text{Ci/gm}$		
		TEDE	1	
	U1 MSLB/U2 Control Roon	n 2.32	E-01	
	U2 MSLB/U1 Control Roon	n 3.81	E-01	
	U2 MSLB/U2 Control Roon	n 2.968	E+00	
	U2 MSLB EAB		·····	
	U2 MSLB LP2	Z 5.34	E-02	
The offsite cases	s meet all of the applicable TED	E limits (2.5	rem EAB/LPZ at the r	normal coolant
activity of 0.2 μ	Ci/gm DE I131 per the Proposed	d Technical S	pecification [Ref. 4, It	em 1.9] and 25
	t the pre-incident spike coolant	•		•
	Ref 4., Item 1.10]). The Control			rem for either
coolant activity of	or for the normal proposed Tech	n Spec coolan	t activity.	
This dose analys	is fully complies with NRC Re	gulatory Guid	le 1.183 [Ref 1].	
Methodology				
memodology				

The MSLB accident is initiated from hot stand-by conditions in order to conservatively maximize the mass of coolant released from the break and thus maximizing the activity released. Following accident initiation, the radionuclide inventory from the released coolant is assumed to reach the environment instantaneously.

The TEDE values obtained for these analyses are compared with the 2.5/25 rem for offsite doses and the 5 rem TEDE limit for the Control Room [Ref 1]. The 2.5 rem offsite value is for the 0.2 uCi/g I-131 limit and the 25 rem value corresponds to the 4 uCi/g I-131 limit caused by an iodine spiking factor of 20.

For the control room analyses, there are three cases: Unit 1 MSLB to Unit 2 control room, Unit 2 MSLB to Unit 1 control room, and Unit 2 MSLB to Unit 2 control room.

Project: Nine Mile Point Nu	clear Station Unit:2	D	Disposition:
Originator/Date	Reviewer/Date H. Pustulka 5/29/07	Calculation No. H21C-101	Revision 0
Justification: Pe Assumption 2: In cc Justification: Re	here is no holdup in the Reactor Build er Reference 1, there should be no hol the calculation of the activity release onservatively used as per Reference 1 eference 4 for Unit 1 and Reference 5	ling. Idup credited. , the entire released coolant mas (rather than just the liquid mass 5 for unit 2	ss is ().
of as Justification: R re ze Assumption 4: A as	here is no fuel damage for a Unit 1 or f Extended Power Uprate or AST on t is the dose measure. eference 4. Since there is no fuel dan cleased. Extended Power Uprate has n ero power hot standby. n infinite exchange rate between the o ssumed. onservative	the dose analysis other than the unage, AST has no impact on the no impact because the analysis is	use of TEDE activity s conducted at
Nuclear H 2. J.V. Ram NUREG/ 3. "Atmosph Assessme June 2001 4. PSAT 40 Source To 5. PSAT 31	ive Radiological Source Terms for H Power Reactors", US NRC Regulato asdell Jr., et al., "Atmospheric Relati CR-6331 Revision1 (PNNL-10521) heric Relative Concentrations for Co ents at Nuclear Power Plants", US N 3 26CF.QA.03, "Design Database For erm to Nine Mile Point U1", Revisio 01CF.QA.03, "Design Database For erm to Nine Mile Point U2", Revisio	ry Guide 1.183, Revision 0, Jul ve Concentrations in Building Revision 1), May 1997 ontrol Room Radiological Habi RC Regulatory Guide 1.194, R the Application of the Revised on 1	ly 2000 Wakes", tability evision 0 1 DBA

Page __6__ (Next __7__)

inator/Date	Reviewer/Date		Catculation No.	Revision
Berg 5/29/07	H. Pustul	ka 5/29/07	H21C-101	0
-				
Design Inputs				
Design inputs				
Design Input Data	(Reference 4 for)	Init 1 with item n	umbers given in brackets	Reference 5 for
Unit 2 with item n			unioers groen in ordered	
		ŕ		
Control Room Fre	e Volume: U1: 1.3	$35E+05 \text{ ft}^3$,		[3.9]
Control Room Fre	e Volume: U2: 3.8	31E+05 ft ³ *0.529	occupied fraction = 2.023	35E+05 ft ³ [[3.2,3.3]]
X/Q values in sec/	m ³ *•			
U1 MSLB		1.90E-04 (ground	nd-level)	[5.1]
U1 MSLB		1.63E-05 (groun		[5.2]
U2 MSLB		1.19E-04 (groun		[[5.1]]
U2 MSLB	LPZ:	1.62E-05 (groun	nd level)	[[5.2]]
U1 MSLB		1.31E-04 (groun		[[5.5]]
U2 MSLB		1.90E-04 (groun		[[5.3]]
U2 MSLB	to U2 CR	1.47E-03 (groun	nd-level)	[[5.5]]
*This analysis qualifie	s as a puff release as	per defined in Referen	ce 3 [ie release lasts less then	1 minutel, so the use of
ground level and puff			•	2.
Breathing Rate in	ma ³ /a (frame start at	fundance for CD):) SE 4	[5 4] [[5 4]]
bleating Kate III.	III /S (HOIII Start O	Telease for CK).	5.JE-4	[5.4], [[5.6]]
Total mass of cool	ant released:U1 M	ISLB: 1.0715E+0	5 lbm, U2: 7.10E6 gm st	eam +1.58E7 gm
flashed liquid	+2.56E7 liquid			[1.8], [[1.8]]
Reactor Steam: U			lant, U2: 14.6%	F1 07 FF1 077
(=7.10E6/(7.10E6·	+1.58E7+2.56E7)			[1.8], [[1.8]]
Coolant DF-I-131	Activity per Uni	t Mass (microCur	ie/gram): 0.2 μCi/gm	[1.9], [[1.9]]
Coolant DE 1 191	reavity per em	i Muss (microeur)		[1.2], [[1.2]]
Spiking Multiplier	for Coolant DE I	-131 Activity: 20		[1.10], [[1.10]]
1131 DCF: 3.29E+	0.4 Pom/C			110 211
1151 DCF: 5.29E7	-04 Kem/Ci			[[9.2]]
4				

.

CALCULATION CONTINUATION SHEET

Page __7__ (Next __8__)

ginator/Date Berg 5/29/07	Reviewer/Date H. Pustulka 5/29	9/07	Calculation H21C-1		Revisio 0
Activity Releases: Unit 1	·			[1.11 &	1.12]
REACTOR COOLANT AN RADIONUCLIDE CONC (UCI / gm)	DOM: COLORDON COMMENT				
[A] [B] ISOTOPE REACTOR COOLANT					
KR-83M KR-85M KR-85 KR-87 KR-87 KR-87	9.1E-04 1.6E-03 5.0E-06 5.5E-03				
KR=88 KR=89 EXIST <u>KR</u> =90 KR=91 ONLY IN	5.5E=03 5.4E-02 7.5E-02 9.1E=02		an ann an star an star an star an star an st		
KR-92 KR-93 KR-94	9.1E-02 2.4E-02 5.9E-03	RADIONU	OOLANT AND M SLIDE CONCENT (UCI / gm)	RATIONS	
KR-95 STATE, KR-97 XE=131M	5.5E-04 3.6E-06 3.9E-06		[B] REACTOR COCLANT	(C) MAIN STEAM	
XE-133M SO, THERI XE-133 XE-135M ARE NO	E 7.5E-05 2.1E-03	88 -83 86 -84 88 -85	1,6E-03 2,2E-03 9,9E-04	2.5E-05 3.1E-05 1.7E-05	
XE-135 XE-137 XE=138	6.0E-03	131 132 133	8:6E04 1:6E02 1:2E02	1.4E-05 2.4E-04 1.9E-04	
XE-139 COOLANT XE-140 XE-141 CONCEN-	7.5E-02 8.0E-02	I=134 I=135 RB-89	2.9E-02 1.2E-02 1.6E-03	5.8E-04 2.0E-04 1.6E-06	
XE-142 XE-143 XE-144 XE-144	1.9E-02	CS-134 CS=136 CS-137 CS-138	5.6E08 3.7E06 1.5E05 3.1E03	5.6E-09 3.7E-09 1.5E-08 3.1E-06	
an <u>haran 1977 menerakan kanan</u> da <u>n k</u> anan kanan dari kanan		81 - <u>1997 - 2005 - 2007 - 2007</u>			

CALCULATION CONTINUATION SHEET

Page __8__ (Next __9__)

oject:	Nine Mile Point N	uclear Station	Unit: _	_2		Dispositior	n:
	/Date g 5/29/07	Reviewer H. Pus	^{/Date} stulka 5/29/07		Calculation No. H21C-101		· Revision 0
f.	Unit 2					[[1.11]]	
	ISOTOPE	DESIGN COOLANT ACTIVITY	DESIGN STEAM ACTIVITY	ISOTOPE	DESIGN COOLANT ACTIVITY	DESIGN STEAM ACTIVITY	
	I-131	<u>(μCi/gm)</u> 1.3E-2	(μCi/gm) 2.6E-4	KR-83M	<u>(μCi/gm)</u> NONE	<u>(μCi/gm)</u> 6.4E-3	
	I-131	2.2E-1	3.3E-3	KR-85M	NONE	1.1E-2	4
	I-133	1.6E-1	2.6E-3	KR-85	NONE	3.5E-5	-
-	I-134	4.0E-1	7.8E-3	KR-87	NONE	3.9E-2	1
	I-135	1.7E-1	2.8E-3	KR-88	NONE	3.9E-2	1
1	CS-134	8.5E-5	8.5E-8	XE-131M	NONE	2.8E-5	1
	CS-136	5.5E-5	5.5E-8	XE-133M	NONE	5.3E-4	1
	CS-137	2.2E-4	2.2E-7	XE-133	NONE	1.5E-2	1
	CS-138	1.6E-1	1.6E-4	XE-135M	NONE	5.0E-2	1
				XE-135	NONE	4.2E-2	1
				XE-138	NONE	1.6E-1	1

ator/Date	oint Nuclear Station	Unit:	_2		Disposition:					
tora 5/20/07		^{iewer/Date} Pustulka 5/29/07		alculation No. 121C-101	Revisio 0					
Berg 5/29/07	.			210-101	U					
Calculatic Offsite and Appendix A	control room dos	es were calculated	using the sprea	adsheet method	ology outlined in					
Calculation of the Source (Column 1 of Appendix A spreadsheet)										
equivalent. doses as 4 µ The I-131 c equivalent activity has	The spike concer µCi/gm I-131 dose lose conversion fa is 0.2 * 3.29E+04 s to be adjusted to re the iodine activ	actor is 3.29E+04 R Rem/Ci = 6.58 mR yield 6.58 mRem/g ity (μCi/gm) that is	ed as scaling fa Rem/Ci [Ref 4] Rem/gm. For a gm. This adjus s equivalent to	to the spree of t	adsheet to report μCi/gm I-131 ected iodine med in the table					
Cl	C2	2a: Unit 1 Calculated	d Dose Equivaler C4	nts (Iodine) C5	C6					
			01		(0.2 uCi/					
		*•			gm I131 DE)					
Nuclide	Expected		Converted	Expected	Adjusted					
•	uCi/gm	Rem/Ci	mRem/uCi	mRem/gm	uCi/gm					
	8.60E-04	3.29E+04	3.29E+01	2.83E-02	4.60E-02					
I131			2.915.01	6 10E 02	8.55E-01					
I131 I132	1.60E-02	3.81E+02	3.81E-01	6.10E-03	8.33E-01					
	1.60E-02 1.20E-02	3.81E+02 5.85E+03	5.85E+00	7.02E-02	6.41E-01					
I132										
I132 I133	1.20E-02	5.85E+03	5.85E+00	7.02E-02	6.41E-01					
I132 I133 I134	1.20E-02 2.90E-02	5.85E+03 1.31E+02	5.85E+00 1.31E-01	7.02E-02 3.80E-03	6.41E-01 1.55E+00					
I132 I133 I134 I135	1.20E-02 2.90E-02 1.20E-02	5.85E+03 1.31E+02	5.85E+00 1.31E-01	7.02E-02 3.80E-03 1.48E-02	6.41E-01 1.55E+00 6.41E-01					

CALCULATION CONTINUATION SHEET

Page __10__ (Next __11___

roject: Nine Mil	e Point Nuclear Statior	n Unit: _	_2		Disposition:		
Driginator/Date M. Berg 5/29/07		eviewer/Date . Pustulka 5/29/07		Calculation No. H21C-101	R. 0	Revision 0	
ef.							
	Tabl	e 2b: Unit 2 Calculate	ed Dose Equiva	lents (Iodine)			
Č1	C2	C3	C4	C5	• C6		
					(0.2 uCi/		
				_	gm I131 DE)		
Nuclide	Expected		Converted	Expected	Adjusted		
i	uCi/gm	Rem/Ci	mRem/uCi	mRem/gm	uCi/gm		
I131	1.30E-02	3.29E+04	3.29E+01	4.28E-01	5.01E-02		
I132	2.20E-01	3.81E+02	3.81E-01	8.38E-02	8.47E-01		
I133	1.60E-01	5.85E+03	5.85E+00	9.36E-01	6.16E-01		
1134	4.00E-01	1.31E+02	1.31E-01	5.24E-02	1.54E+00		
I135	1.70E-01	1.23E+03	1.23E+00	2.09E-01	6.55E-01		
Total	9.63E-01			1.71E+00	3.71E+00		
	[Ref 4, Item 1.12]	[Ref 4, Item 9.2]	C3/1000	C2*C4	C2*(6.58/1.23E-01)		

The remaining isotope activities must are adjusted by the same factor (0.2 μ Ci/gm Unit 2 case: 6.5786/1.71) as the iodine.

CALCULATION CONTINUATION SHEET

Page __11___ (Next __12__)

roject: Nine Mile P	oint Nuclear			nit:2			Disposition	:
Driginator/Date		Reviewer/		_	Calculatio			Revision
M. Berg 5/29/07		H. Pus	tulka 5/29/07	7	H21C-	101		0
ef.		Table 3a.	Unit 1 Iso	tone 0 2 uC	Ci/gm I131	DF		
		Expected	Expected		uCi/gm I131			
		Reactor	Main	Reactor	Main	Weighted		
		Coolant	Steam	Coolant	Steam	Average*		
	Isotope	(uCi/gm)	(uCi/gm)	(uCi/gm)	(uCi/gm)	(uCi/gm)		
	I131	8.60E-04	1.40E-05	4.60E-02	7.49E-04	3.49E-02		
	I132	1.60E-02	2.40E-04	8.56E-01	1.28E-02	6.49E-01		
	I133	1.20E-02	1.90E-04	6.42E-01	1.02E-02	4.87E-01		
	I134	2.90E-02	5.80E-04	1.55E+00	3.10E-02	1.18E+00		
	I135	1.20E-02	2.00E-04	6.42E-01	1.07E-02	4.87E-01		
	Cs134	5.60E-06	5.60E-09	3.00E-04	3.00E-07	2.26E-04		
	Cs136	3.70E-06	3.70E-09	1.98E-04	1.98E-07	1.49E-04		
	Cs137	1.50E-05	1.50E-08	8.02E-04	8.02E-07	6.06E-04		
	Cs138	3.10E-03	3.10E-06	1.66E-01	1.66E-04	1.25E-01		
j	Kr83m	0.00E+00	9.10E-04	0.00E+00	4.87E-02	1.19E-02		
	Kr85m	0.00E+00	1.60E-03	0.00E+00	8.56E-02	2.10E-02		
	Kr85	0.00E+00	5.00E-06	0.00E+00	2.67E-04	6.55E-05		
	Kr87	0.00E+00	5.50E-03	0.00E+00	2.94E-01	7.21E-02		
	Kr88	0.00E+00	5.50E-03	0.00E+00	2.94E-01	7.21E-02		
	Xe131m	0.00E+00	3.90E-06	0.00E+00	2.09E-04	5.11E-05		
	Xe133m	0.00E+00	7.50E-05	0.00E+00	4.01E-03	9.83E-04		
	Xe133	0.00E+00	2.10E-03	0.00E+00	1.12E-01	2.75E-02		
· · ·	Xe135m	0.00E+00	7.00E-03	0.00E+00	3.74E-01	9.17E-02		
	Xe135	0.00E+00	6.00E-03	0.00E+00	3.21E-01	7.86E-02		
	X138	0.00E+00	2.30E-02	0.00E+00	1.23E+00	3.01E-01		

Weighted average values were calculated using the following: $[(1-0.245)(uCi/gm)_{Reactor Coolant}] + [(0.245)*(uCi/gm)_{Main Steam}]$

Page __12__ (Next __13__)

oject: Nine Mile F iginator/Date		Reviewer		nit:2	Calculation	No.	· · ·	Revision
1. Berg 5/29/07			tulka 5/29/0	7	H21C-1			0
ef.		Table 3b	: Unit 2 Is	otope 0.2 u	Ci/gm I131	DE		
		Expected	Expected	(0.2 uCi/gm I131 DE)				
		Reactor	Main	Reactor	Main	Weighted		
		Coolant	Steam	Coolant	Steam	Average*		
	Isotope	(uCi/gm)	(uCi/gm)	(uCi/gm)	(uCi/gm)	(uCi/gm)		
	I131	1.30E-02	2.60E-04	5.00E-02	1.00E-03	4.29E-02		
	I132	2.20E-01	3.30E-03	8.46E-01	1.27E-02	7.25E-01		
	I133	1.60E-01	2.60E-03	6.16E-01	1.00E-02	5.27E-01		
	I134	4.00E-01	7.80E-03	1.54E+00	3.00E-02	1.32E+00		
	I135	1.70E-01	2.80E-03	6.54E-01	1.08E-02	5.60E-01		
	Cs134	8.50E-05	8.50E-08	3.27E-04	3.27E-07	2.79E-04		
	Cs136	5.50E-05	5.50E-08	2.12E-04	2.12E-07	1.81E-04		
	Cs137	2.20E-04	2.20E-07	8.46E-04	8.46E-07	7.23E-04		
	Cs138	1.60E-01	1.60E-04	6.16E-01	6.16E-04	5.26E-01		
	Kr83m	0.00E+00	6.40E-03	0.00E+00	2.46E-02	3.59E-03		
	Kr85m	0.00E+00	1.10E-02	0.00E+00	4.23E-02	6.18E-03		
	Kr85	0.00E+00	3.50E-05	0.00E+00	1.35E-04	1.97E-05		
	Kr87	0.00E+00	3.90E-02	0.00E+00	1.50E-01	2.19E-02		
	Kr88	0.00E+00	3.90E-02	0.00E+00	1.50E-01	2.19E-02		
	Xe131m	0.00E+00	2.80E-05	0.00E+00	1.08E-04	1.57E-05		
	Xe133m	0.00E+00	5.30E-04	0.00E+00	2.04E-03	2.98E-04		
	Xe133	0.00E+00	1.50E-02	0.00E+00	5.77E-02	8.43E-03		
	Xe135m	0.00E+00	5.00E-02	0.00E+00	1.92E-01	2.81E-02		
	Xe135	0.00E+00	4.20E-02	0.00E+00	1.62E-01	2.36E-02		
	X138	0.00E+00	1.60E-01	0.00E+00	6.16E-01	8.99E-02		

Weighted average values were calculated using the following: [(1-0.146)(uCi/gm)_{Reactor Coolant}] + [(0.146)*(uCi/gm)_{Main Steam}]

CALCULATION CONTINUATION SHEET

Page __13__ (Next __14__)

ginator/Date	Reviewer/Date	Calculation No.	Disposition:
Berg 5/29/07	H. Pustulka 5/29/07	H21C-101	0
determine doses a below. Scaling Factors (I Scaling Factor 1 i concentration to t (It should be note DE), and Scaling DF (Row 7) The DF's are set Source in Ci/MW The weighted ave The negligible an Nuclide Specific The Nuclide Specific value compensate	is the mass of coolant in grams, use total activity. Scaling Factor 2 is the d that using a multiplying factor of Factor 3 is the conversion between to unity for this analysis.	tions. The spreadsheet inputs a ed to convert the core inventor ne multiplier on the coolant DE f 20, the dose results are for 4 n Ci and uCi. were used. ine, and Xe137 were set to zer in this calculation are set to 0 lier of 20, (scaling factor 2) wi	y E 1131 activity, µCi/gm I131 o in this table.
	· · · ·		

CALCULATION CONTINUATION SHEET

Page __14__ (Next __15__)

E C S S	JMP1 MSI Dispersion CR Vol = Scaling Fac Scaling Fac	LB/U2 CR (X/Qs) =	able 4a: U EAB	1 MSLB						
E C S S	Dispersion + CR Vol = Scaling Fac	LB/U2 CR (X/Qs) =			to U2 Con	trol Roor	n Dose Calcu	lation	· . /	
E C S S	Dispersion + CR Vol = Scaling Fac	(X/Qs) =		LPZ	CR					
C S S	CR Vol = Scaling Fac		1.90E-04	1.63E-05	1.31E-04	sec/m3				
S S	Scaling Fac	2.02E+05			mma correct	ion =	0.052955			
s	-		4.86E+07	-	oolant in Gra					
	0		20	Multiplier	on Tech Spe	c Activity				
I S	caling Fac		1.00E-06	Ci/uCi	1	2				
	0			DF for Alk	ali Metals					
	OF for Elen	nental I =	1	=		1				
			Nuclide-	WB	CEDE	TEDE	CR	EAB	LPZ	CR
		Source:	Specific	DCF	DCF	DCF	DCF	TEDE	TEDE	TEDE
U	Jnits >>	uCi/g	Scaling	rem-m3	rem/Ci	rem-m3	rem-m3	rem	rem	rem
N	Juclide		Factor	Ci-sec		Ci-sec	Ci-sec			
K	Kr83m	0.011927	0.05	5.55E-06	0	5.55E-06	2.94E-07	6.11E-10	5.24E-11	2.23E
K	Kr85m	0.02097	0.05	0.0277	0	0.0277	0.001467	5.36E-06	4.60E-07	1.96E
K	Kr85	6.55E-05	0.05	0.00044	0	0.00044	2.33E-05	2.66E-10	2.28E-11	9.72E
K	Kr87	0.072086	0.05	0.152	0	0.152	0.008049	1.01E-04	8.68E-06	3.69E
K	Cr88	0.072086	0.05	0.501	8.36E+01	0.53026	0.055791	3.53E-04	3.03E-05	2.56E
K	Cr89	0	0.05	0.323	0.	0.323	0.017105	0.00E+00	0.00E+00	0.00E+
X	Ke131m	5.11E-05	0.05	0.00144	0	0.00144	7.63E-05	6.79E-10	5.83E-11	2.48E
X	Ke133m	0.000983	0.05	0.00507	0	0.00507	0.000268	4.60E-08	3.95E-09	1.68E
	Ke133	0.027524	0.05	0.00577	0	0.00577	0.000306	1.47E-06	1.26E-07	5.35E
X	Ke135m	0.091746	0.05	0.0755	0	0.0755	0.003998	6.39E-05	5.48E-06	2.33E
X	Ke135	0.078639	0.05	0.044	0	0.044	0.00233	3.19E-05	2.74E-06	1.17E-
X	Ke137	0	0.05	0.0303	0	0.0303	0.001605	0.00E+00	0.00E+00	0.00E+
X	Ke138	0.30145	0.05	0.213	0	0.213	0.01128	5.93E-04	5.08E-05	2.16E-
I	131Org	0	1	0.0673	3.29E+04	11.5823	11.51856	0.00E+00	0.00E+00	0.00E+
	132Org	0	1	0.414	3.81E+02	0.54735	0.155274	0.00E+00	0.00E+00	0.00E+
I	133Org	0	1	0.109	5.85E+03	2.1565	2.053272	0.00E+00	0.00E+00	0.00E+
I	134Org	0	1	0.481	1.31E+02	5.27E-01	0.071322	0.00E+00	0.00E+00	0.00E+
I	135Org	0	1	0.307	1.23E+03	0.7375	0.446757	0.00E+00	0.00E+00	0.00E+
I	131Elem	0.034883	1	0.0673	3.29E+04	11.5823	11.51856	7.46E-02	6.40E-03	5.11E
I	132Elem	0.648711	1	0.414	3.81E+02	0.54735	0.155274	6.55E-02	5.62E-03	1.28E
	133Elem	0.486664	1	0.109	5.85E+03	2.1565	2.053272	1.94E-01	1.66E-02	1.27E-
Ι	134Elem	1.177687	1	0.481	1.31E+02	0.52685	0.071322	1.15E-01	9.83E-03	1.07E-
I	135Elem	0.486795	1	0.307	1.23E+03	7.38E-01	0.446757	6.63E-02	5.69E-03	2.77E-
R	Rb86	0	1	0.0178	6.62E+03	2.3348	2.317943	0.00E+00	0.00E+00	0.00E+
0	Cs134	0.000226	1	0.28	4.63E+04	16.485	16.21983	6.88E-04	5.90E-05	4.67E
[C	Cs136	0.000149	. 1	0.392	7.33E+03	2.9575	2.586259	8.15E-05	6.99E-06	4.92E-
	Cs137	0.000605	1	0.101	3.19E+04	11.266	11.17035	1.26E-03	1.08E-04	8.61E
	Cs138	0.12512	1	0.4255	1.15E+02	0.465904	0.062937	1.08E-02	9.23E-04	1.00E-
							Tot TEDE =	5.29E-01	4.53E-02	2.32E

CALCULATION CONTINUATION SHEET

Page __15___ (Next __16___)

nator/Date Berg 5/29/07	, 		viewer/Date Pustulka 5/	/29/07		Calculation No. H21C-101			Revisior
	Т	able db.	III MET D	to III Con	itral Daa	m Dose Calc	lation		
NMP2 M	SLB/U1 CR	EAB	LPZ	CR		II DUSE Calci			
Dispersion		1.19E-04	1.62E-05	1.90E-04	sec/m3				
CR Vol =	135000		e volume ga			0.046212			
Scaling Fa		4.85E+07	-	polant in Gra		0.040212			
Scaling Fa		20		on Tech Spe					
Scaling Fa		1.00E-06	Ci/uCi	on reen ope	o montrity				
			DF for Alk	ali Metals					
DF for Ele	emental I =	1	=		1				
		Nuclide-	WB	CEDE	TEDE	CR	EAB	LPZ	CR
	Source:	Specific	DCF	DCF	DCF	DCF	TEDE	TEDE	TEDE
Units >>	uCi/g	Scaling	rem-m3	rem/Ci	rem-m3	rem-m3	rem	rem	rem
Nuclide		Factor	Ci-sec		Ci-sec	Ci-sec			
Kr83m	0.003595	0.05	5.55E-06	0	5.55E-06	2.56E-07	1.15E-10	1.57E-11	8.50E
Kr85m	0.006178	0.05	0.0277	0	0.0277	0.00128	9.88E-07	1.34E-07	7.29E
Kr85	1.97E-05	0.05	0.00044	. 0	0.00044	2.03E-05	4.99E-11	6.80E-12	3.68E
Kr87 .	0.021906	0.05	0.152	0	0.152	0.007024	1.92E-05	2.62E-06	1.42E
Kr88	0.021906	0.05	0.501	8.36E+01	0.53026	0.052412	6.70E-05	9.13E-06	1.06E
Kr89	0	0.05	0.323	0	0.323	0.014926	0.00E+00	0.00E+00	0.00E-
Xe131m	1.57E-05	0.05	0.00144	0	0.00144	6.65E-05	1.31E-10	1.78E-11	9.64E
Xe133m	0.000298	0.05	0.00507	0	0.00507	0.000234	8.71E-09	1.19E-09	6.43E
Xe133	0.008425	0.05	0.00577	0	0.00577	0.000267	2.81E-07	3.82E-08	2.07E
Xe135m	0.028084	0.05	0.0755	0	0.0755	0.003489	1.22E-05	1.67E-06	9.03E
Xe135	0.023591	0.05	0.044	0	0.044	0.002033	5.99E-06	8.16E-07	4.42E
Xe137	0	0.05	0.0303	0	0.0303	0.0014	0.00E+00	0.00E+00	0.00E-
Xe138	0.089869	0.05	0.213	0	0.213	0.009843	1.10E-04	1.50E-05	8.15E
I131Org	0	1	0.0673	3.29E+04	11.5823	11.51811	0.00E+00	0.00E+00	0.00E-
I132Org	0	1	0.414	3.81E+02	0.54735	0.152482	0.00E+00	0.00E+00	0.00E+
I133Org	0	1	0.109	5.85E+03	2.1565	2.052537	0.00E+00	0.00E+00	0.00E-
I134Org	• 0	1	0.481	1.31E+02	5.27E-01	0.068078	0.00E+00	0.00E+00	0.00E+
I135Org	0		0.307	1.23E+03	0.7375	0.444687	0.00E+00	0.00E+00	0.00E+
I131Elem	0.042857	1	0.0673	3.29E+04	11.5823	11.51811	5.73E-02	7.80E-03	9.10E
I132Elem	0.724653		0.414	3.81E+02	0.54735	0.152482	4.58E-02	6.23E-03	2.04E
I133Elem	0.527133	1	0.109	5.85E+03	2.1565	2.052537	1.31E-01	1.79E-02	1.99E
I134Elem	1.318562		0.481	1.31E+02	0.52685	0.068078	8.02E-02	1.09E-02	1.65E
I135Elem Rb86	0.5601		0.307	1.23E+03	7.38E-01	0.444687	4.77E-02	6.49E-03	4.59E
	0		0.0178	6.62E+03	2.3348	2.317823	0.00E+00	0.00E+00	0.00E-
Cs134 Cs136	0.000279 0.000181		0.28 0.392	4.63E+04	16.485 2.9575	16.21794 2.583615	5.31E-04 6.17E-05	7.24E-05	8.35E
Cs136 Cs137	0.000723		0.392	7.33E+03 3.19E+04	2.9373 11.266	2.583615	9.40E-04	8.40E-06 1.28E-04	8.61E 1.49E
Cs137	0.525762	1	0.4255					(
L CS1 30	0.525702] 1	0.4233	1.15E+02	0.465904	0.060067	2.83E-02	3.85E-03	5.82E
						Tot TEDE =	3.92E-01	5.34E-02	3.81E

CALCULATION CONTINUATION SHEET

Page __16___ (Next __17___)

ator/Date Berg 5/29/07			ewer/Date Pustulka 5//	29/07		Calculation No. H21C-101			Revision 0
Table 4	112 MST	LB to U2 C	ontrol De	om Doso	Colculatio				
	LB/U2 CR	EAB	LPZ	CR	Calculation	911			
Dispersion		1.19E-04	1.62E-05	1.47E-03	sec/m3				
· · ·	(X/Qs) = 2.02E+05			nma correcti		0.052955			
		4.85E+07		olant in Gra		0.052955			
Scaling Fa		4.83E+07 20		on Tech Spe					
Scaling Fa		20 1.00E-06	Ci/uCi	on reen spe	c Activity				
Scaling Fa	ctor 5 -	1.00E-00	DF for Alk	ali Metals					
DF for Ele	mental I =	1	=	un mound	1				
		Nuclide-	WB	CEDE	TEDE	CR	EAB	LPZ	CR
	Source:	Specific	DCF	DCF	DCF	DCF	TEDE	TEDE	TED
Units >>	uCi/g	Scaling	rem-m3	rem/Ci	rem-m3	rem-m3	rem	rem	rem
Nuclide		Factor	Ci-sec		Ci-sec	Ci-sec			
Kr83m	0.00359	0.05	5.55E-06	0	5.55E-06	2.94E-07	1.15E-10	1.57E-11	7.53
Kr85m	0.00618	0.05	0.0277	0	0.0277	0.001467	9.88E-07	1.34E-07	6.46
Kr85	2E-05	0.05	0.00044	0	0.00044	2.33E-05	4.99E-11	6.80E-12	3.27
Kr87	0.02191	0.05	0.152	0	0.152	0.008049	1.92E-05	2.62E-06	1.26
Kr88	0.02191	0.05	0.501	8.36E+01	0.53026	0.055791	6.70E-05	9.13E-06	8.71
Kr89	0	0.05	0.323	0.		0.017105	0.00E+00	0.00E+00	0.00
Xe131m	1.6E-05	0.05	0.00144	0	0.00144	7.63E-05	1.31E-10	1.78E-11	8.55
Xe133m	0.0003	0.05	0.00507	0	0.00507	0.000268	8.71E-09	1.19E-09	5.70
Xe133	0.00843	0.05	0.00577	0	0.00577	0.000306	2.81E-07	3.82E-08	1.84
Xe135m	0.02808	0.05	0.0755	0	0.0755	0.003998	1.22E-05	1.67E-06	8.01
Xe135	0.02359	0.05	0.044	0	0.044	0.00233	5.99E-06	8.16E-07	3.92
Xe137	0	0.05	0.0303	0	0.0303	0.001605	0.00E+00	0.00E+00	0.00]
Xe138	0.08987	0.05	0.213	0	0.213	0.01128	1.10E-04	1.50E-05	7.23
I131Org	0	1	0.0673	3.29E+04	11.5823	11.51856	0.00E+00	0.00E+00	0.00]
I132Org	0	1	0.414	3.81E+02	0.54735	0.155274	0.00E+00	0.00E+00	0.001
I133Org	0	1	0.109	5.85E+03	2.1565	2.053272	0.00E+00	0.00E+00	0.00I
I134Org	0	1	0.481	1.31E+02	5.27E-01	0.071322	0.00E+00	0.00E+00	0.001
I135Org	0	1	0.307	1.23E+03	0.7375	0.446757	0.00E+00	0.00E+00	0.001
I131Elem	0.04286	1	0.0673	3.29E+04	11.5823	11.51856	5.73E-02	7.80E-03	7.04
I132Elem	0.72465	1	0.414	3.81E+02	0.54735	0.155274	4.58E-02	6.23E-03	1.60
I133Elem	0.52713	1	0.109	5.85E+03	2.1565	2.053272	1.31E-01	1.79E-02	1.54]
I133Elem	1.31856	1	0.481	1.31E+02	0.52685	0.071322	8.02E-02	1.09E-02	1.34
I135Elem	0.5601	- 1	0.307	1.23E+03	7.38E-01	0.446757	4.77E-02	6.49E-03	3.57
Rb86	0.0001	1	0.0178	6.62E+03	2.3348	2.317943	0.00E+00	0.00E+00	0.001
Cs134	0.00028	1	0.28	4.63E+04	16.485	16.21983	5.31E-04	7.24E-05	6.46
Cs136	0.00018	1	0.392	7.33E+03	2.9575	2.586259	6.17E-05	8.40E-06	6.66
Cs137	0.00072	1	0.101	3.19E+04	11.266	11.17035	9.40E-04	1.28E-04	1.15
Cs138	0.52576	1	0.4255	1.15E+02	0.465904	0.062937	2.83E-02	3.85E-03	4.72
	0.0.0070	• •				Tot TEDE =	3.92E-01	5.34E-02	2.96
[5.740-01	5.510-04	2.70

CALCULATION CONTINUATION SHEET

Page __17__ (Next __A1__

ar Station Unit:2	_ D	Disposition:			
Reviewer/Date H. Pustulka 5/29/07	Calculation No. H21C-101	Revision 0			
		<u></u>			
sulting from a design basis Mair	n Steam Line Break (MSLB) at N	Vine Mile			
ed using the alternative source te	erm assumptions as given in Reg	ulatory			
		ntrol Room			
ISLB affecting the Unit 2 Contro	ol Room.				
•					
· .					
	Reviewer/Date H. Pustulka 5/29/07 sulting from a design basis Main ed using the alternative source to] are found to be well below the ISLB affecting the Unit 2 Contro ISLB affecting the Unit 2 Contro	Reviewer/Date Calculation No. H. Pustulka 5/29/07 H21C-101			

CALCULATION CONTINUATION SHEET

11005

nator/Date	Reviewer/Date	Calculation No.	Revisio
Berg 5/29/07	, H. Pustulka 5/29/07	H21C-101	0
A Spr Background/Mo	Appende adsheet for the Calculation o		Doses
Dueigi euria			
	simplicity in many cases to calcula c assumptions. These are as follow		or a given accider
dependent me filtration or ho o <u>It is assumed</u> instantaneous,	that the release of activity may be of chanisms that modify the amount of oldup). that the release is instantaneous and as well. Therefore, no radioactive e, A, may, in fact, occur over a give	of activity that's released; e.g., d complete, and the transport to e decay needs to be considered	no delayed o the receptor is . Note that the
 exposure time <u>It is assumed</u> of radionuclid <u>It is assumed</u> 	is equal to duration of the release, that the release is limited to coolan es are included in the sheet). that the chemical/physical form of	time cancels out of the integra t and/or gap activity (i.e., only	a limited number
and elemental		/* 61 * *	
o It is assumed	control room emergency ventilatio that the atmospheric dispersion for lue of X/Q for each location (EAB	the duration of the release may	y be characterized
• <u>It is assumed</u> the concentrat	that the exchange rate of the control ion of activity inside the control ro	of room with the environment i bom is equal to that in the atmo	sphere.
Effectively, th	that the breathing rate of exposed in this means the release actually must e LPZ dose not to be overstated.		
	that the control room occupancy fa	ictor is unity.	
based on Referen	e spreadsheet to be consistent with ces 2 and 3 must be used. These a ilt files of Reference 4. Breathing	re taken from the default TID.I	NP and
The following sec	tion describes the development of	such an Excel spreadsheet.	

18

Page <u>A1</u> (Next <u>A2</u>)

CALCULATION CONTINUATION SHEET

Page	A2_	
(Next_	_A3`)

Project: Nine Mile Point Nuclear Sta		t: <u>2</u>		Disposition:	
Originator/Date M. Berg 5/29/07	Reviewer/Date H. Pustulka 5/29/07		Calculation No. H21C-101		Revision 0
Ref.		<u> </u>			
Spreadsheet Develop	oment				
	1				
The spreadsheet is displa	iyed at the end of this	s section, just t	before the reference	ës.	
At the top of the spreads	heet (in the first row)	is the title. A	n example might b	e "NMP1 MSL	.B". In
the second row may be f					
control room volume in	-		-		
finite volume correction of the control room volu	-	ne dose provid	led by Reference I	(calculated to t	the right
	inc).				
The next three rows prov	vide scaling factors th	at apply equal	lly to all of the radi	onuclides listed	d and to
all of the calculated dose					
core-wide activity availa	-				-
of the core, a second may affected fuel bundles ma					
core's activity that is rele					
assumed to be in the gap	multiplied by the fra	iction of the co	ore fuel bundles that	t are damaged	
drop). Space is available	e next to each scaling	factor to anno	otate what each value	ue represents.	
DFs are specifically prov	vided in the next row	after the scali	ng factors One DE	F is provided fo	r
elemental iodine and one				is provided to	1
		· ·			
The "Source" column (i.		· ·			ovided
under "Source" to identi radionuclides identified	-			or gap release	
Tadionucides identified	in the first column, a	Source enu	y may be made.		1
In the third column, ther	e is a place for scalin	g factors uniqu	ue to individual rad	lionuclides. Fo	r
example, gap fractions the			•		
radionuclide-specific sca	•		-		
the "Source" for I-131 w That factor may be enter			or of 1.6 to account	t for that differe	ence.
That fuctor may be enter	ea mane unita colum				
In the fourth column, the					
taken from Reference 4					
by 3.7E12 to convert Sv					
Effective" values from F rem/Ci. Note that these					*
half-life less than 90 mir		•			
exception has been made					
Rb-88 have been added		÷	· · · · · · · · · · · · · · · · · · ·	17.8 minutes) i	.S
slightly greater than 10%	6 of its parent Kr-88	(170.4 minutes	5).		I
	······································	<u></u>			

				Page <u>A3</u> (Next <u>A4</u>)
Project: Nine Mile Point Nucl	ear Station	Unit: <u>2</u>	· · · · · · · · · · · · · · · · · · ·	Disposition:
Originator/Date M. Berg 5/29/07	Reviewer/Date H. Pustulka S	5/29/07	Calculation No. H21C-101	Revision 0
M. Berg 5/29/07 Ref. In the sixth column inhalation DCF tin In the seventh colu the immersion DSI Reference 1: For a control room appears next to the volume of 1.2E9 ft The eighth column factors, and the EA the release rate is A product is the conce release). When mudose rate for the du release duration, t, the last row of Col calculating the EA the alkali metal do	h, a TEDE DCF is p nes the assumed bre umn, a control room F is diminished by t volume of 135,000 control room volum t^3 . h is the EAB dose, the Ab X/Q. Note that is A/t assuming a unit centration present at ultiplied by the DCI uration, t. As long a then the immersion lumn 8, the EAB do	prepared which is eathing rate of 3 DCF is defined the finite volume $DDE_{finite} = \frac{DD}{DDE_{finite}}$ of t^3 , for example me at the top of the product of Co if a release of the scaling factor in the X/Q location F (Column 6) in as it is assumed the is summed for the is summed for tal iodine dose is the DF for alkali n	s the sum of the immersion I .5E-4 m ³ /sec. which is similar to the TEDI correction factor defined as $E_{\infty}V^{0.338}$ (1173) e, the factor is 0.0462. Note the spreadsheet. It is ~unity plumns 2, 3, and 6, the three g e activity, A, in Column 2 oc n Column 3. When multiplied on for the time, t (i.e., for the units of rem-volume/Ci-time that the exposure duration, t' ose is simply the product as ju or all radionuclides in Column s reduced by the DF for elem	DCF and the E DCF. However, the following in that this factor for a control room general scaling curs over time, t, d by the X/Q, the duration of the e, the result is a , is the same as ist described. In n 1. Note that in

CALCULATION CONTINUATION SHEET

Page <u>A4</u> (Next <u>A5</u> ١

Berg 5/29/	07	ŀ	I. Pustulka	5/29/07		H21C-101		<u> </u>	Revision 0
			Spread	dsheet for Si	mplified I	Dose Evalua	ation		
TITLE		EAB	LPZ	CR					
Dispersion		x.xxE-xx	x.xxE-xx	x.xxE-xx	sec/m3	•			
CR Vol =	1.20E+09	ft3 w/ finit	e volume ga	mma correction	n =	0.999			
Scaling Fa		1							
Scaling Fa		1							
Scaling Fa		1							
DF for Ele	mental I =	1	DF for All	ali Metals =	1	<u> </u>			
		Nuclide-	WB	CEDE	TEDE	CR	EAB	LPZ	CR
	Source:	Specific	DCF	DCF	DCF	DCF	TEDE	TEDE	TEDE
Units >>		Scaling	rem-m3	rem/Ci	rem-m3	rem-m3	rem	rem	rem
Nuclide		Factor	Ci-sec		Ci-sec	Ci-sec			
Kr83m	0	1	5.55E-06	0	5.55E-06	5.54E-06	0.00E+00	0.00E+00	0.00E+0
Kr85m	0	1	0.0277	0	0.0277	0.027666	0.00E+00	0.00E+00	0.00E+0
Kr85	0	1	0.00044	0	0.00044	0.000439	0.00E+00	0.00E+00	0.00E+0
Kr87	0	1	0.152	0	0.152	0.151813	0.00E+00	0.00E+00	0.00E+0
Kr88	0	1	0.501	8.36E+01	0.53026	0.529643	0.00E+00	0.00E+00	0.00E+0
Kr89	0	1	0.323	0	0.323	0.322603	0.00E+00	0.00E+00	0.00E+0
Xe131m	0	1	0.00144	0	0.00144	0.001438	0.00E+00	0.00E+00	0.00E+0
Xe133m	0	1	0.00507	0	0.00507	0.005064	0.00E+00	0.00E+00	0.00E+0
Xe133	0	1	0.00577	0	0.00577	0.005763	0.00E+00	0.00E+00	0.00E+0
Xe135m	0	1	0.0755	0	0.0755	0.075407	0.00E+00	0.00E+00	0.00E+0
Xe135	0	1	0.044	0	0.044	0.043946	0.00E+00	0.00E+00	0.00E+C
Xe137	0	1	0.0303	0	0.0303	0.030263	0.00E+00	0.00E+00	0.00E+0
Xe138	0	1	0.213	0	0.213	0.212738	0.00E+00	0.00E+00	0.00E+0
I131Org	0	1	0.0673	3.29E+04	11.5823	11.58222	0.00E+00	0.00E+00	0.00E+0
I132Org	0	1	0.414	3.81E+02	0.54735	0.546841	0.00E+00	0.00E+00	0.00E+0
I133Org	• 0	1	0.109	5.85E+03	2.1565	2.156366	0.00E+00	0.00E+00	0.00E+0
I134Org	0	1	0.481	1.31E+02	5.27E-01	0.526258	0.00E+00	0.00E+00	0.00E+0
1135Org	0	1	0.307	1.23E+03	0.7375	0.737122	0.00E+00	0.00E+00	0.00E+0
I131Elem	0	1	0.0673	3.29E+04	11.5823	11.58222	0.00E+00	0.00E+00	0.00E+0
I132Elem	0	1	0.414	3.81E+02	0.54735	0.546841	0.00E+00	0.00E+00	0.00E+0
I133Elem	0	1	0.109	5.85E+03	2.1565	2.156366	0.00E+00	0.00E+00	0.00E+0
I134Elem	0	1	0.481	1.31E+02	0.52685	0.526258	0.00E+00	0.00E+00	0.00E+0
I135Elem	0	1	0.307	1.23E+03	7.38E-01	0.737122	0.00E+00	0.00E+00	0.00E+0
Rb86	0	1	0.0178	6.62E+03	2.3348	2.334778	0.00E+00	0.00E+00	0.00E+0
Cs134	0	1	0.28	4.63E+04	16.485	16.48466	0.00E+00	0.00E+00	0.00E+0
Cs136	0		0.392	7.33E+03	2.9575	2.957018	0.00E+00	0.00E+00	0.00E+0
Cs137	0	1	0.101	3.19E+04	11.266	11.26588	0.00E+00	0.00E+00	0.00E+0
Cs138	0] 1	0.4255	1.15E+02	0.465904	0.46538	0.00E+00	0.00E+00	0.00E+0
					Т	otal TEDE	0.00E+00	0.00E+00	0.00E+0

CALCULATION CONTINUATION SHEET

Page ___A5___ (Next: Attachment 1)

Project: Nine Mile Point Nuclear Static				Disposition:				
Originator/Date M. Berg 5/		Reviewer/Date H. Pustulka 5/29/07	Calculation N H21C-10		Revision 0			
Ref. Ref. A- A-2								
		RADIRAD. A Shipi e Estimation", Decembe						
	·		·					

ATTACHMENT 1: DESIGN VERIFICATION REPORT

Document being design-verified: DCP Scale Spec NER DBD Other

H21C-101

Doc#, Rev and Title: H21C-101, Revision 0 : U2 MSLB, AST Methodology

Extent of Design Verification (Briefly describe):

This calculation was design verified by 1) validating all input with respect to the input database making sure the appropriate input values were used; 2) validating that all assumptions are conservative and conform to RG 1.183 AST requirements; 3) validating the calculation methodology and calculation tools (i.e. spreadsheet) as being acceptable for the task; and 4) validating final results to make sure that they are as expected. Additional check calculations were also performed.

Method of Design Verification:

🗵 Design Review	Qualification Testing
Alternate Calculations	Applicability of Proven Design

Results of Design Verification:

IXI Fully acceptable with no issues identified

□ Fully acceptable based on the following issues identified and resolved:

All inputs used were found to be appropriate and assumptions were sound. No further assumptions were necessary. The use of a spreadsheet methodology was appropriate for this calculation. Resulting values conform to the expected results. Conservatism was built into this calculation (no credit for filters, infinite exchange between the Control Room and the environment, etc). Minor concerns were commented on and addressed before the final draft of the calculation was issued.

Discipline Involvement and Approvals:

□ Continuation Page Follows

Lead Design Verifier:	H. Pustulka	Heather North	5/29/07	
	Name	Signature	Date	
Discipline Desig N/A	n Verifiers, if required:			
Discipline	Name	'Signature	Date:	

ATTACHMENT 2: DESIGN VERIFICATION CHECKLIST

The following questions are required to be addressed based on the Nine Mile Point commitment to NQA-1 (1983) for design verification activities. This checklist is intended to assist when using the Design Review method of design verification to ensure relevant items are addressed in the verification effort. Each "No" answer will require correction or resolution by the originator of the document being verified prior to full acceptance by the design verifier(s).

Doc #: H21C-101

Lead Design Verifiers H. Pustulka Name:

	Items Addressed with Basis of Review Answer		Review Check	
	ILEITIS AQUIESSEU WIIII DASIS OI RAVIEW ATISWEI	Yes	No	N/A
1.	Were the inputs correctly selected ?	x		
2.	Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are the assumptions identified for subsequent re-verifications when the detailed activities are completed ?	х		
3.	Was an appropriate design method used?	x		
4.	Were the design inputs correctly incorporated into the design ?	x		
5.	Is the design output reasonable compared to design inputs ?	x		
6.	Are the necessary design input and verification requirements for interfacing organizations specified in the design documents or in supporting procedures or instructions?	<u></u>		X