CC-AA-309-1001 Revision 3

ATTACHMENT 1

Design Analysis Major Revision Cover Sheet Page 1 of 1

1

Page 1.0.0

Design Analysis	Design Analysis (Major Revision) Last Page No. 14.0-7 and S118					
Analysis No.:	Analysis No.: 9389-46-19-3			L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Title:	Diesel Gene	rator 2/3 Loading Unde	r Design Bases Accid	lent Condition		
EC/ECR No.:	EC 364066	-	Revision: 000			
Station(s):		Dresden	Components(s)			
Unit No.:		2 and 3	Various			
Discipline:		E				
Description Cod	de/Keyword:	E15				
Safety/QA Class	5: ;	SR				
System Code:		66				
Structure:		N/A				
		CONTROLLED DO	CUMENT REFEREN	CES		
Document No.		From/To	Document No.	·	From/To	
See Section XIV						
Is this Design A	nalysis Safeg	uards Information?	Yes 🗌	No 🛛 If yes, s	ee SY-AA-101-106	
Does this Desig	n Analysis Co	ntain Unverlfied Assu	umptions? Yes 🗌	No 🛛 If yes, A	TI/AR#	
This Design Ana	lysis SUPER	SEDES: N/A		in its en	tirety	
Description of R	evision (list a	fected pages for partia	is):	_		
See Page 1.0-4 fo	or a description	of this revision and a	list of affected pages.			
9			anall		4/4/10	
Print N			Sign Viange		Date	
Method of Revie	w Detailed	Review 🛛 Alterr	nate Calculations (at	tached) 🗌 Tes	ting 🗌	
Reviewer Glen	in McCarthy		duf M/ c		4.4-2007	
Print N	lame Independent F		Sign Name er Review		Date	
(For External Analyses Or	nfy)		<u> </u>			
External Approve	er Richa	rd H. Low	Richard	A have	4-4-2007	
	Print Name		/Sign Name	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Date	
Exelon Reviewer	Print Name	Korach	A. Kon Sign Name	md	<u>04/04/07</u> 	
ndependent 3 rd F	Party Review	Required? Yes	Not If y	es, complete Attac	hment 3	
Exelon Reviewer	Louis M	ALLAVARAPL	1 louis A	alapo	4/5/07	
	Print Name		Sign Name		Dale	

Sergence Lundy	Caic	ulation For Diesel Ge	Calc. No. 9389-46-19-3		
	Design Bases Accident Condition			Rev. 2	Date 10/17/86
	x	Safety-Related	Non-Safety-Related	Page	1.0-1 of

Client Com Ed	Prepared by ECordona	Date 10/11/96
Project Dresden Station	Reviewed by Japa Rolan	Date /1/11/96
Proj. No. 9389-46 Equip. No.	Approved by	Date 10/17/96

DIVISION: EPED FILE: 15B SYSTEM CODE: 6600

NOTE: FOR THE PURPOSE OF MICROFILMING THE PROJ. NO. FOR THE ENTIRE CALC. IS " 9389-46"

I. REVISION SUMMARY AND REVIEW METHOD

A. <u>Revision 0</u>

Revision 0, Initial issue, all pages.

This calculation supersedes the Calculation for Diesel-Generator Loading Under Design Basis Accident Condition, Calculation Number 7317-33-19-3. The major differences between Calculation 7317-33-19-3 and this calculation are as follows:

- Dresden Diesel Generator (DG) surveillance test strip charts (Reference 23) show that the first LPCI pump starts almost 3.5 seconds after the closure of the DG output breaker. This is due to the under voltage (UV) relay disk resetting time. This revision shows that the 480V auxiliaries start as soon as the DG output breaker closes to the bus and the first LPCI pump starts approximately 3.5 seconds after the closure of the DG output breaker during Loss Of Offsite Power (LOOP) concurrent with Loss Of Coolant Accident (LOCA).
- 2) Created new ELMS-AC PLUS files for the DG for both Units 2 & 3 based on the latest base ELMS modified files D2A4.M24 and D3A4.M21, including all modifications included in Revisions 0 through 15 of Calculation Number 7317-43-19-1 for Unit 2 and all modifications included in Revisions 0 through 14 of Calculation 7317-43-19-2 for Unit 3. Utilization of the ELMS-AC PLUS program in this calculation is to maintain the loading data base and totaling the running KVA for each step.
- 3) Created Tables 1B & 2B for Unit 3. These tables did not previously exist.
- 4) Created Table 4A for Unit 2 and Table 4B for Unit 3 for totaling 480V loads starting KW/KVAR for determining starting voltage dip from the DG Dead Load Pickup Curve.

Revision 1:

Revised pages 1.0-1, 1.0-3, 2.0-1, 2.0-2, 2.0-3, 2.0-4, 4.0-7, 10.0-7 through 10.0-10, 10.0-12, 10.0-13, 10.0-20, 10.0-21, 10.0-23, 10.0-24, 11.0-1, 12.0-1, 14.0-6, F116, P2 and S94 as

K	Calculation For Diesel Generator 2/3 Loading Under				Calc. No. 9389-46-19-3
Sergence Lundy''		Design Bases Accid		Rev. 2 Date	
	×	Safety-Related	Non-Safety-Related		Page 1.0-2 of

Client Com Ed			Prepared by	Date
Project Dresden Station			Reviewed by	Date
Proj. No. 9389-46	Equip. No.		Approved by	Date

REVISION SUMMARY (Cont'd)

Revision 1 (Cont'd)

indicated by the revision bar, no revision bar was used to identify the information shifted due to addition and respacing of the text. Added pages 1.0-2, 4.0-8, 14.0-7, F117 through F232, P3, P4 and S95 through S101.

This revision analyzes the effect on the DG loading (both continuous and transient) due to the replacement of the existing LPCI Pump Motor 2B (700 HP) with a new 800 HP motor from Reliance Electric (see attachment 56) per Exempt Change Request E 12-2-95-200 and Work Order No. D222021. LPCI Pump 2B is powered by 4KV Switchgear bus 23-1. This pump (i.e. second LPCI pump) will start automatically 5 seconds after LPCI pump 2A (i.e. first LPCI Pump) during a LOOP concurrent with LOCA. This revision also determine the accelering time of the new LPCI pump motor 2B.

Revision 2

In this revision, the following pages were revised:

1.0-1, 1.0-2, 2.0-1 through 2.0-4, 4.0-7, 4.0-8, 10.0-1 through 10.0-12, 11.0-1 through 11.0-4, 12.0-1, 13.0-1, 14.0-1, 14.0-4, 14.0-6, 14.0-7, C1, C4, Attachment F (Pages F0 through F112), J1, J5, Attachment M (Pages M0 through M112), P1

the following pages were added:

1.0-3, 1.0-4, Section 10.1 (10.1-0 through 10.1-26), Section 10.2 (10.2-0 through 10.2-26), Section 15.0 (15.0-0 through 15.0-66)

the following pages were deleted:

10.0-13 through 10.0-49, F113 through F232, M113 through M120, P2 through P4

However, for completeness, all text pages are being reissued to correct various typographical errors throughout the text. Revision bars have not been employed to indicate these types of changes.

This revision incorporates load parameter changes determined in Revision 18 of Calculation 7317-43-19-1 (Ref. 26), and Revision 16 of Calculation 7317-43-19-2 (Ref. 27) into the ELMS-AC datafile models used in this calculation to model diesel generator operation. The most critical of these changes is the CCSW Pump BHP change from 450 HP to 575 HP. These load parameter changes normalize the DG datafiles so that file updates can be made easily and accurately with the file comparison program ELMSCOMP. In addition to the

er.

CALCULATION REVISION SUMMARY

CALC NO. 9389-46-19-3 REVISION 004 PAGE NO. 1.0-3

R4

Revision Summary (cont'd)

Revision 2 (Cont'd)

load/file changes, the text portion of the calculation dealing with determining starting kVA and motor start time for the 4.16 kV motors has been encoded into the MATHCAD Program. This will simplify any future changes, and decrease the possibility of calculation errors.

ELMSCOMP reports showing data transfers and so forth will be added in a new Section.

Please note: The BHP of CCSW Pump Motors is based on the nameplate rating of 500 HP with a 575 HP @ 90°C Rise. This assumption of CCSW Pump Motor BHP loading requires further verification per References 26 and 27.

Revision 3

EC 364066 was created for Operability Evaluation # 05-005. This operability evaluation concluded that the diesel generator load calculation trips one Low Pressure Coolant Injection (LPCI) pump before the first CCSW pump is loaded onto the diesel, at which point the diesel is supplying one Core Spray pump, one LPCI and one CCSW pump. In contrast, station procedure DGA-12, which implements the manual load additions for LOCA/LOOP scenarios, instruct operators to load the first CCSW pump without tripping a LPCI pump. The procedure directs removal of a LPCI pump from the EDG only before loading of the second CCSW pump. In accordance with Corrective Action #2 of the Operability Evaluation, Calculations 9389-46-19-1,2,3 "Diesel Generator 3,2,2/3 Loading Under Design Basis Accident Condition" require revision to document the capability of the EDGs to support the start of the first CCSW pump without first tripping a LPCI pump.

This revision incorporates the changes resulting from EC 364066, Rev. 000. In addition, this revision replaces the ELMS-AC portions of the calculation with ETAP PowerStation (ETAP). All outstanding minor revisions were also incorporated. The parameters for valves 2-1501-22A/B and 3-1501-22A/B were also revised in the ETAP model to reflect the latest installed motors. Section 10 calculations previously performed using MathCad were replaced with MS Excel spreadsheets.

In this revision the following pages were revised:

2.0-4, A10, A12, B14, B15, E2, O1, O2, S16-S19, S101

In this revision the following pages were added:

Design Analysis Cover Sheet, 2.0-5, G1-G61, N1-N61, S102-S113

In this revision the following pages were deleted:

1.0-4, Section XV, Attachment P

In this revision the following pages were replaced:

1.0-3, 2.0-1, 2.0-2, 2.0-3, 3.0-1, 3.0-2, 4.0-1, 4.0-6, 4.0-7, 5.0-1, 7.0-1, 8.0-2, 8.0-4, 8.0-5, 9.0-1 through 9.0-5, 10.0-1 through 10.0-12, 10.1-1 through 10.1-26, 10.2-1 through 10.2-26, 11.0-1 through 11.0-4, 12.0-1, 14.0-1, 14.0-6, 14.0-7, C1 through C5, F1-F112 replaced by F1-F113, J1 through J5, M1-M112 replaced by M1-M113,

CALCULATION REVISION SUMMARY

CALC NO.	9389-46-19-3	REVISION	004	PAGE NO.	1.0-4
		•			
Rev	ision 4				
This LPC durir cate even frequ Refe	revision incorporates various ch I and CCSW BHP values. Other ng a LOCA and replacement of th gories were generated in ETAP t nt. The scope was expanded to in uency to the 2000hr rating of the erences XIV.64 through 69. 71 an	anges to the EDG loading. M changes include a decrease ne DG cooling water pump. N o model loading of the 4kV pu nclude a comparison of the De diesel. This revision incorpor- id 72.	ajor change in the RPS ew study ca mps after 1 G loading a ates change	es include CS, MG Set bhp uses and loading 0 minutes into the t 102% of rated es associated with	
in th	is revision the following pages we	ere revised:			
	S113	· · · ·		·	
In thi	is revision the following pages we	ere added:			R4

1.0-4, 2.0-6, 4.0-8, S114-S118

In this revision the following pages were replaced:

1.0.0, 1.0-3, 2.0-1, 2.0-2, 2.0-3, 2.0.5, 3.0-1, 3.0-2, 4.0-7, 5.0-1, 7.0-1, 9.0-1 through 9.0 3, 9.0-5, 10.0-1, 10.0-9 – 10.0-12, 10.1-1, 10.1-3, 10.1-4, 10.1-10, 10.1-11, 10.1-17 through 10.1-20, 10.1-22, 10.1-24 through 10.1-25, 10.2-1, 10.2-3 through 10.2-6, 10.2-8, 10.2-10, 10.2-11, 10.2-17 through 10.2-20, 10.2-22, 10.2-24 through 10.2-26, 11.0-1, 11.0-3, 12.0-1, 13.0-1,14.0-1, 14.0-7, C1, F1-F113, G1-G61 with G1-G57, J1, M1-M113, N1-N61

CALCULATION TABLE OF CONTENTS

•		SECTION	PAGE NO.: SUB PAG				
				NO.:			
H	TABI	LE OF CONTENTS / FILE DESCRIPTION					
	١.	COVER SHEET / REVISION SUMMARY & REVIEW METHOD	1.0-0 - 1.0-4				
	H.	TABLE OF CONTENTS / FILE DESCRIPTION	2.0-1 - 2.0-6				
	III.	PURPOSE/SCOPE	3.0-1 - 3.0-2				
	IV.	INPUT DATA	4.0-1 - 4.0-8				
	IV.	ASSUMPTIONS	5.0-1	· · ·			
	VI.	ENGINEERING JUDGEMENTS	6.0-1				
,	VII.	ACCEPTANCE CRITERIA	7.0-1				
,	VIII.	LOAD SEQUENCING OPERATION	8.0-1 - 8.0-5				
i	IX.	METHODOLOGY	9.0-1 - 9.0-7				
:	X.	CALCULATIONS AND RESULTS DG 2/3 POWERING UNIT 2 BUSES DG 2/3 POWERING UNIT 3 BUSES	10.0-1 - 10.0-12 10.1-0 - 10.1-26 10.2-0 - 10.2-26				
;	XI.	COMPARISON OF RESULTS WITH ACCEPTANCE CRITERIA	11.0-1 - 11.0-4				
;	XII.	CONCLUSIONS	12.0-1				
,	XIII.	RECOMMENDATIONS	13.0-1				
>	KIV.	REFERENCES	14.0-1 - 14.0-7				
			,				

R4

CALC NO.: 938	39-46-19-3 RE	EV NO: 004 PA	GE NO. 2.0-2
	SECTION	PAGE NO.:	SUB PAGE NO.:
Attachments	Description		
Α	Unit 2: Table 1A – Automatically Turn ON and OFF Devices Under the Design Basis Accident Condition when DG2/3 is powering the Unit 2 Division I loads.	A1-A12	
В	Unit 2: Table 2A – The Affects of AC Voltage Dip on control circuits of Dresden Unit 2, Division I when large motor starts.	B1-B24	
С	Unit 2: Table 4A – Starting KW and KVAR for all 480V Loads at each Step when DG 2/3 is powering Unit 2, Division I.	C1-C5	
D	Unit 2: Figure 1A – Single Line Diagram when DG 2/3 Powers SWGR 23-1	D1-D1	
E	Unit 2: Figure 2A – Time vs. Load Graph when DG 2/3 Powers SWGR 23-1	E1-E2	
F	DG Unit 2 Division I ETAP Output Reports – Nominal Voltage	F1-F113	
G	DG Unit 2 Division I ETAP Output Reports - Reduced Voltage	G1-G57	
H	Unit 3: Table 1B – Automatically Turn ON and OFF Devices Under the Design Basis Accident Condition when DG2/3 is powering the Unit 3 Division I loads.	H1-H12]
1	Unit 3: Table 2B – The Affects of AC Voltage Dip on control circuits of Dresden Unit 3, Division I when large motor starts.	11-118	
j	Unit 3: Table 4B Starting KW and KVAR for all 480V Loads at each Step when DG 2/3 is powering Unit 3, Division I.	J1-J5]
к	Unit 3: Figure 2B – Single Line Diagram when DG 2/3 Powers SWGR 33-1	K1	
		,	
•			
			,

CALCULATION TABLE OF CONTENTS (Continued)

CALCULATION TABLE OF CONTENTS (Continued)

ALO NO	9389-46-19-3	REV NO: 004 PAG	GE NO. 2.0-3
, ,	SECTION	PAGE NO.:	SUB PAGE NO.:
L	Unit 3: Figure 2B – Time vs. Load Graph when DG 2/3 Powers SWGR 33-1	L1-L2	
M	DG Unit 3 Division I ETAP Output Reports - Nominal Voltage	M1-M113	
N	DG Unit 3 Division I ETAP Output Reports - Reduced Voltage	N1-N61	
0	Flow Chart 1 – Method of Determining Shed and Automatically Started Loads	01-02	
Q	Unit 2 ELMS-AC Plus Data Forms	Q1-Q10	
R	Unit 3 ELMS-AC Plus Data Forms	R1-R10	
S	Reference Pages	S1-S118	

Calculation For Diesel Generator 2/3 Loading Under				Calc. No. 9389-46-19-3		
	Design Bases Accident Condition				Date	
x	Safety-Related	Non-Safety-Related		Page 2.0	0-4 of	
	Calc X	Calculation For Diesel Ge Design Bases Acci X Safety-Related	Calculation For Diesel Generator 2/3 Loading Under Design Bases Accident Condition X Safety-Related	Calculation For Diesel Generator 2/3 Loading Under Design Bases Accident Condition X Safety-Related Non-Safety-Related	Calculation For Diesel Generator 2/3 Loading UnderCalc. No.Design Bases Accident ConditionRev. 3XSafety-RelatedNon-Safety-RelatedPage 2.0	

Client Com Ed	Prepared by	Date
Project Dresden Station	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

.

File Descriptions

Revision 2

File Name	Date	Time	File Description
D2A4DGS.G02	10/11/96	9:45:18a	General File - Original Issue
D2A4DGSR.G02	10/11/96	9:47:26a	General File - Original Issue - Reduced Voltage
D2A4DGS.102	9/18/96	3:23:34p	Initial File - Original Issue
D2A4DGSR.102	9/18/96	4:11:14p	Initial File - Original Issue - Reduced Voltage
D2EXCEL.XLS	10/11/98	1:0 6 :46p	Tables 1A, 2A, 4A and Time vs. Load Graph - Excel File
DG23_2.MCD	10/11/96	11:11:08a	Voltage Dip and Recovery Voltage Calculations - MathCad File
DG23_2.PPT	10/11/98	11:34:58p	Figure 1A - PowerPoint File
D3A4DGS.G01	10/11/96	9:49:16a	General File - Original Issue
D3A4DGSR.G01	10/11/96	9:51:58 a	General File - Original Issue - Reduced Voltage
D3A4DGS.I01	10/11/96	9:31:36a	Initial File - Original Issue
D3A4DGSR.I01	10/11/96	9:34:04a	Initial File - Original Issue - Reduced Voltage
D3EXCEL.XLS	10/11/96	1: 43 :08p	Tables 1B, 2B, 4B and Time vs. Load Graph - Excel File
DG23_3.MCD	10/11/96	11:19:02a	Voltage Dip and Recovery Voltage Calculations - MathCad File
DG23_3.PPT	10/11/98	11:42:38a	Figure 18 - PowerPoint File
DRESDG23.00	11/22/94	3:25:40p	Flow Chart 1
DRDGSR2.WP	10/11/98	3:53p	Calculation Text - Wordperfect

EZ.

ť

(<

CALC NO.

9389-46-19-3

REVISION 004

R4

File Descriptions (cont'd)

Revision 3

File Name	Size	Date	Time	File Description
9389-46-19-3 Rev. 3.doc	599040 bytes	8/9/06	9:32:57am	Text document
9389-46-19-3 Rev. 3 (section 10.1).xis	532992 bytes	8/01/06	12:54:26pm	Section 10.1 (Unit 2 Starting Calc)
9389-46-19-3 Rev. 3 (section 10.2).xls	532480 bytes	8/09/06	8:38:47am	Section 10.2 (Unit 3 Starting Calc)
9389-46-19-3 Rev. 3 (table 4).xis	80896 bytes	4/24/06	9:07:09am	Table 4
DRE_Unit2_0003.mdb	17,977,344 bytes	8/01/06	1:22:49pm	Unit 2 ETAP database
DRE_Unit2_0003.macros.xml	10595 bytes	8/01/06	10:17:20am	Unit 2 ETAP macros
DRE_Unit2_0003.scenarios.xml	11572 bytes	7/31/06	10:20:30pm	Unit 2 ETAP Scenarios
DRE_Unit2_0003.oti	9728 bytes	8/01/06	1:22:48pm	Unit 2 ETAP "OTI" file
DRE_Unit3_0004.mdb	18,509,824 bytes	8/03/06	1:41:09pm	Unit 3 ETAP database
DRE_Unit3_0004.macros.xml	10568 bytes	8/03/06	11:12:31am	Unit 3 ETAP macros
DRE_Unit3_0004.scenarios.xml	12388 bytes	2/28/06	11:18:23am	Unit 3 ETAP Scenarios
DRE_Unit3_0004.oti	16384 bytes	8/03/06	1:41:08pm	Unit 3 ETAP "OTI" file

9389-46-19-3

REVISION 004

PAGE NO. 2.0-6 (-....)

File Descriptions (cont'd)

Revision 4

r	1			······································
File Name	Size	Date	Time	File Description
9389-46-19-3 Rev. 4.doc	563,9846,70	312+197	6:10:13 pm	Text document
9389-46-19-3 Rev. 4 (section 10.1).xis	531456 bytes	3/21/07	3:31:53pm	Section 10.1 (Unit 2 Starting Calc)
9389-46-19-3 Rev. 4 (section 10.2).xls	528384 bytes	3/29/07	7:34:57am	Section 10.2 (Unit 3 Starting Calc)
9389-46-19-3 Rev. 4 (table 4).xls	79360 bytes	3/1/07	6:51:32pm	Table 4
DRE_Unit2_0004.mdb	18,911,232 bytes	3/20/07	11:34:56pm	Unit 2 ETAP database
DRE_Unit2_0004.macros.xml	11206 bytes	3/20/07	9:46:37pm	Unit 2 ETAP macros
DRE_Unit2_0004.scenarios.xml	12862 bytes	2/12/07	3:49:12pm	Unit 2 ETAP Scenarios
DRE_Unit2_0004.oti 440	15300 bytes	3/21/07	9:37:49pm	Unit 2 ETAP "OTI" file
DRE_Unit3_0005.mdb	19,559,360 bytes	3/29/07	8:17:29am	Unit 3 ETAP database
DRE_Unit3_0005.macros.xml	11293 bytes	3/21/07	2:47:02pm	Unit 3 ETAP macros
DRE_Unit3_0005.scenarios.xml	15500 bytes	2/26/07	7:50:53pm	Unit 3 ETAP Scenarios
DRE_Unit3_0005.oti	16384 bytes	3/29/07	8:32:57am	Unit 3 ETAP "OTI" file

CALC NO. 9389-46-19-3

REVISION 004

III PURPOSE/SCOPE

A. <u>Purpose</u>

The purpose of this calculation is to ensure that the Dresden Diesel Generator has sufficient capacity to support the required loading during the maximum loading profile as determined in the Calculation Results section.

The purpose of this calculation includes the following (these apply when DG 2/3 is powering either Unit 2 or Unit 3):

- 1) Determine automatically actuated devices and their starting KVA at each step for the ac electrical load when the DG is powering the safety related buses.
- 2) Develop a Time versus Load profile for the DG when the DG is powering the safety related buses.
- 3) Compare the maximum loading in ETAP for the DG load profile against the capacity of the DG.
- 4) Determine the starting voltage dip and one second recovery voltage at the DG terminals for initial loading and each 4000V motor starting step.
- 5) Evaluate the control circuits during the starting transient voltage dip.
- 6) Evaluate the protective device responses to ensure they do not inadvertently actuate or dropout during the starting transient voltage dip.
- Evaluate the travel time of MOVs to ensure they are not unacceptably lengthened by the starting transient voltage dips.
- 8) Determine the starting duration of the automatically starting 4kV pump motors.
- 9) Ensure the loading on the EDG is within the 2000hr rating should the frequency on the machine increase to its maximum allowable value.
- Determine the minimum power factor for the long term loading on the EDG.

B. Scope

The scope of this calculation is limited to determining the capability of the DG to start the sequential load (with or without the presence of the previous running load as applicable), without degrading the safe operating limits of the DG or the powered equipment & services. The minimum voltage recovery after 1 second following each sequential start will be taken from the DG dead load pickup characteristics and compared to the minimum recovery required to successfully start the motors and continue operation of all services.

(

CALC NO.	9389-46-19-3	REVISION	004	PAGE NO. 3.0-2(f.,
PURPO	<u>SE/SCOPE</u> (contrd)			
	The total running load of selected loading step to	the DG will also be compared ag confirm the loading is within the I	ainst the ratin OG capacity.	g of the DG at the
	The EDG has a minimur frequency above its nom increase in load due to the 2000 hr rating to ensure EDG long term loading w	n and maximum allowable freque inal value results in additional loa he increase in frequency will be q the limits of the EDG are not exc vill be quantified.	ncy range. Op iding on the EI uantified and o eeded. The m	perating the EDG at a DG. The percent compared to the EDG R4 inimum power factor for
	The scope will also inclu effects on control functio	de an evaluation based on review nality during the transient voltage	v of identified d dips.	Irawings to determine the
	The scope will also inclu- voltage dips.	de an evaluation of protective dev	vices which are	e subject to transient
	The scope does not inclu of the same Division. Alth Operations' discretion an Therefore, this operation	ude loads fed through the cross-ti hough DGA-12, Rev. 16 allows its id is verified to be within allowable is not included in the scope of th	e breakers bet use, loading i imits during i is calculation.	ween Unit 2 and 3 Buses is performed manually at manual loading.
		· .		

,

CALC	NO.	9389-46-19-3	RE	EVISION	003	PAGE NO.	4.0-1
iV	INPL	IT DATA				н 	
	The i	input data extract	ed from the references is summa	rized below:			
	Α.	Abbreviations	i				
		ADS	Automatic Depressurization Sy	vstem			
		AO	Air Operated				
		CC	Containment Cooling				-
		CCSW	Containment Cooling Service V	Vater			
		Clg	Cooling				
		Cinup	Clean up				
		Cnmt	Containment				
		Comp	Compressor			· .	
		Compt	Compartment				
		Diff	Differential				
		DIT	Design Information Transmittal				
		DG	Diesel Generator			v	
		DW	Drywell				
		EFF	Efficiency				
		EHC	Electro Hydraulic Control				
		ELMS	Electrical Load Monitoring Syste	Em			
		ETAP	Electrical Transient Analyzer Pro	ogram			R3
		Emerg	Emergency				1

	Cal	culation For Diesel Gei	Calc. No. 9389-46-19-3			
Sargens & Lundy''		Design Bases Accid		Rev. 2	Date	
	x	Safety-Related	Non-Safety-Related]	Page 4	

(

Client Com Ed	Prepared by	Date
Project Dresden Station	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

Input Data (cont	'd):	
ECCS	- 1	Emergency Core Cooling System
FSAR	-	Final Safety Analysis System
gpm	-	Gallons Per Minute
GE	· –	General Electric
Gen	.	Generator
Hndlg	•	Handling
HPCI		High Pressure Coolant Injection
HVAC	-	Heating Ventilation & Air Conditioning
Inbd	-	Inboard
Inst	-	Instrument
Isoln	-	Isolation
LOCA	-	Loss Of Coolant Accident
LOOP	-	Loss Of Offsite Power
LPCI	-	Low Pressure Coolant Injection
LRC	-	Locked Rotor Current
Mon	-	Monitoring
MCC	•	Motor Control Center
M-G	-	Motor Generator
MOV	-	Motor Operated Valve

	Calc	ulation For Diesel Ger	Calc. No. 9389-46-19-3		
Sargence Lundy'''		Design Bases Accid	Rev. 2	Date	
	x	Safety-Related	Non-Safety-Related	Page 2	1.0-3 of

Client Com Ed		Prepared by	Date
Project Dresden Station		Reviewed by	Date
Proj. No. 9389-46 Equip. No.		Approved by	Date

Input	Data (cont'd):	
	Outbd	-	Outboard
	PF	•	Power Factor
	Press	•	Pressure
	Prot	•	Protection
	Recirc	-	Recirculation
	Rm	-	Room
	Rx Bldg	- .	Reactor Building
	SBGT	-	Standby Gas Treatment System
	Ser	-	Service
	SWGR	•	Switchgear
	Stm	•	Steam
	Suct	•	Suction
	тв	-	Turbine Building
	Turb	-	Turbine
l	UPS	-	Uninterruptible Power Supply
· •	∕lv	-	Valve
٧	∕Vtr	-	Water
Х	(fmr	-	Transformer

 $\left(\right)$

Sargent & Lundy'''	Cal	culation For Diesel Ge	Calc. No	Calc. No. 9389-46-19-3		
		Design Bases Acci	Rev. 2	Date		
	x	Safety-Related	Non-Safety-Related	Page 4	4.0-4 of	

Client Com Ed]	Prepared by	Date
Project Dresden Station			Reviewed by	Date
Proj. No. 9389-46	Equip. No.		Approved by	Date

Input Data (cont'd):

B. Emergency Diesel Generator Nameplate data for the Dresden Unit 2/3 is as follows (Reference 24):

Manufacturer	Electro - Motive Division (GM)				
Model	A - 20 -C1				
Serial No.	68 - B1 - 1011				
Volts	2400 / 4160 v				
Currents	782 / 452 Amps				
Phase	3				
Power Factor	0.8				
RPM	900				
Frequency	60				
KVA	3250				
Temperature Rise	85°C Stator - Therm 60°C Rotor - Res				
KVA Peak Rating	3575 KVA For 2000 HR / YR				
Temperature Rise	105°C Stator - Therm 70°C Rotor - Res				
Insulation Class	Stator - H Rotor - F				
Excitation	Volts - 144 Amps - 100				
Diesel Engine Manufacturer	Electro - Motive Division (GM)				
Model No.	S20E4GW				
Serial No.	1158				

	Calc	culation For Diesel Ge	Calc. No. 9389-46-19-3			
Sargent & Lundy''		Design Bases Acci] [Rev. 2	Date	
"	x	Safety-Related	Non-Safety-Related] [Page 4	.0-5 of

Client Com Ed]	Prepared by	Date
Project Dresden Station			Reviewed by	Date
Proj. No. 9389-46	Equip. No.		Approved by	Date

Input Data (cont'd)

C. Dead Load Pickup Capability (Locked Rotor Current) - Generator Reactive Load Vs % Voltage Graph #SC - 5056 by Electro - Motive Division (EMD) [Reference 13].

This reference describes the dead load pickup capability of the MP45 Generating Unit. The curve indicates that even under locked rotor conditions an MP45, 2750 kw generating unit will recover to 70% of nominal voltage in 1 second when a load with 12,500 KVA inrush at rated voltage is applied. This indicates that the full range of the curve is usable. Also, page 8 of the purchase specification K-2183 (Reference 12) requires that the Generator be capable of starting a 1250 hp motor (starting current equal to 6 times full load current). The vertical line labelled as "Inherent capability" on the Dead Load Pickup curve is not applicable for the Dresden Diesel Generators because they have a boost system associated with the exciter. Per Reference 40 of this calculation, Graph #SC-5056 is applicable for Dresden Diesel Generators.

- D. Speed Torque Current Curve (297HA945-2) for Core Spray Pump by GE (Reference 14).
- E. Speed Torque Current Curve (#257HA264) for LPCI Pump by GE (Reference 15).
- F. Dresden Re-baselined Updated FSAR Table 8.3-3, DG loading due to loss of offsite ac power (Reference 30)
- G. Table 1A: Automatically ON and OFF devices during LOOP Concurrent with LOCA when the DG 2/3 is powering the Unit 2 Division I loads (Attachment A).
- H. Table 2A: Affects of Voltage Dip on the Control Circuits during the Start of Each Large Motor when DG 2/3 is powering Unit 2, Division I loads (Attachment B).
- I. Table 4A: KW/KVAR/ KVA loading tables for total and individual starting load at each step when DG 2/3 is powering Unit 2, Division I loads (Attachment C).
- J. Table 1B: Automatically ON and OFF devices during LOOP Concurrent with LOCA when the DG 2/3 is powering the Unit 3 Division I loads (Attachment H)
- K. Table 2B: Affects of Voltage Dip on the Control Circuits during the Start of Each Large Motor when DG 2/3 is powering Unit 3, Division I loads (Attachment I).
- L. Table 4B: KW/KVAR/ KVA loading tables for total and individual starting load at each step when DG 2/3 is powering Unit 3, Division I loads (Attachment J).

ALC NO.	9389-46-19-3	REVISION	003	PAGE NO. 4.0-6

Input Da	ta (cont'd)			
. М.	CECO letter dated March 11, post LOCA ECCS Equipment 35).	1988 from Bruce B. Palagi requirements for the Dresd	to W. Fancher en and Quad (/ M. Reed regarding the Cities Station (Reference
N.	Dresden Re-baselined Update offsite ac power (Reference 3	ed FSAR Figure 8.3-6, DG I 1).	oading under a	accident and during loss of
О.	Dresden Appendix R Table 3.	1-1, DG loading for safe shu	utdown (Refere	ence 32).
Ρ.	Flow Chart No. 1, showing the powering the safety buses dur	e source of data and establis ring LOOP concurrent with L	shing which loa .OCA (Attachn	ad is ON when the DG is nent 0).
Q. [′]	Single Line diagram showing t 23-1 during LOOP concurrent	the breaker position when the with LOCA (Attachment D).	ie DG output b	preaker closes to 4-kv bus
R.	ETAP Loadflow Report for cor step to DG capacity for both U	nparing loading and calcula Inits 2 & 3 (Attachment F, G	ted KVA input , M [°] & N).	of running loads at each
S.	S&L Standard ESA - 102, Rev Electrical Cables (Reference 1	rision 04-14-93 - Electrical a I 1).	nd Physical Cl	haracteristics of Class B
т.	S&L Standard ESC - 165, Rev (Reference 41).	rision 11-03-92 - Power Plar	it Auxiliary Pov	wer System Design
U.	S&L Standard ESI-167, Revisi	on 4-16-84, Instruction for C	computer Prog	rams (Reference 1).
۷.	S&L Standard ESC-193, Revis (Reference 39).	sion 9-2-86, Page 5 for Dete	rmining Motor	Starting Power Factor
W.	S&L Standard ESA-104a, Revi (Reference 10).	ision 1-5-87, Current Carryir	ng Capacities o	of Copper Cables
Χ.	S&L Standard ESC-307, Revis (Reference 21).	ion 1-2-64, for checking vol	age drop in sta	arting ac motors
Y	S&L Standard ESI-253, Revision and approval of electrical desig	on 12-6-91, Electrical Depar yn calculations (Reference 2	tment instruction).	on for preparation, review,

CALC NO.	9389-46-19-3	REVISION	004	PAGE NO.	4.0-7
Input Dat	ta (cont'd)				
Ζ.	Unit 2 ETAP file from Calculation the latest ETAP file.	DRE05-0038, Rev. 000	and 000A (Ref. 58). See Sect	ion 2.0 for
AA	Unit 3 ETAP file from Calculation the latest ETAP file.	DRE04-0019, Rev. 000	and 000B (Ref. 59). See Sect	ion 2.0 for
AB.	125Vdc and 250Vdc Battery Char 9198-18-19-3 used in ETAP (Refe	ger, and 250Vdc UPS M arence 25, 54 & 55).	lodels Calci	ulations 9198-18-19	9-1 and
AC.	Single Line diagram showing the t 33-1 during LOOP concurrent with	preaker position when the LOCA (Attachment K).	e DG outpu	t breaker closes to	4-kv bus
AD.	DIT DR-EPED-0860-00; Loading of	change for Dresden Unit	t 2 - Divisior	n 1.	
AE.	DIT DR-EPED-0862-00; Loading of	change for Dresden Unit	t 3 - Divisior	11.	
AF.	Speed - Torque Curve (#257HA26	6) for Core Spray Pump	by GE (Att	ached)	
AG.	Speed - Torque - Current Curve (#	257HA265) for Core Sp	oray Pump b	y GE (Attached)	
AH.	Memorandum from R.M. Dahlgren measured stroke times of various	to C.A. Tobias dated D MOVs (Reference 46).	ecember 30), 1994 regarding th	ne .
AJ.	CHRON Letter 0302643 to Mr. T. I regarding the measured stroke tim	Rieck from E.J. Rowley a sand acceptable limits	and J.D. Wi s for various	lliams dated June 2 MOVs (Reference	21, 1994 47).
AJ.	DOS 1600-18, Revision 15; Cold S	ihutdown Valve Testing	(Reference	48).	
AK.	DOS 1600-05, Revision 4; Unit 3 C	uarterly Valve Timing (f	Reference 4	9).	
AL.	DOS 7500-02, Revision 11; SBGT 50).	System Monthly Surveil	lance and C	perating Test (Ref	erence
AM.	DOS 1600-03, Revision 4; Unit 2 Q	uarterly Valve Timing (F	Reference 5	1).	
AN.	Paper Titled "Safety Classification of System" dated 12-23-91 (Reference	of the Motor Operated V e 52).	alves for the	e Reactor Recircula	ition
AO.	Comparison table of MOV measure	ed stroke times vs. their	acceptable	limits (Reference 5	3).
AP.	The maximum allowable time to sta (Reference 60)	rt each LPCI Pump and	Core Spray	Pump is 5 Second	ls
	(Reference 60)			·	

CALC NO.	9389-46-19-3		REVISION	004	PAGE NO.	4.0-8 ()	
A0	The PHP volues for the	CS I PCI and CC	SM numan offa				
	provided below (Ref. 64,	65, 66).	Svv pumps and		into a LOCA ever	il die	
	Core Spray Pump 2A	870.0 hp					
	LPCI Pump 2A	622.2 hp					
	LPCI Pump 2B	631.8 hp					
	CCSW Pump 2A	575.0 hp with 1	pump running,	465 hp with	both pumps runnir	ng	
	CCSW Pump 2B	575.0 hp with 1	pump running,	465 hp with	both pumps runnir	ng	
x	Core Spray Pump 3A	893.8 hp					
	LPCI Pump 3A	619.9 hp					
٠	LPCI Pump 3B	633.8 hp			•		
	CCSW Pump 3A	575.0 hp with 1	pump running,	465 hp with l	both pumps runnin	g	
	CCSW Pump 3B	575.0 hp with 1	pump running,	465 hp with I	both pumps runnir	g	
AR.	The 2/3 EDG Cooling Wa efficiency, LRC and start	ater Pump has a fing power factor a	3HP of 65.97kW re 100%, 400%	/ with a powe and 31.5%	er factor of 83.0. T respectively (Ref.	「he 67 & 68)	
AS.	The RPS MG Sets have based on a 5% tolerance	a BHP of 3.9kW v in the data acqui	vhen unloaded v sition equipmen	with a power t (Ref. 69)	factor of 12.2%.	This is	
AT.	For centrifugal pumps, th	e break horsepow	ver varies as the	cube of the	speed (Ref. 70).		
AU.	Dresden Technical Speci EDG frequency (Ref. 73)	Dresden Technical Specification Section 3.8.1.16 allows a +2% tolerance on the nominal 60HZ EDG frequency (Ref. 73)					
AV.	The continuous rating of	the EDG is 2600k	W at a 0.8 pf <u>(</u> R	lef. 74)			
		,					
					•		

CALC NO. 9389-46-19-3

REVISION 004

PAGE NO. 5.0-1(f.~.)

R4

V ASSUMPTIONS

- 1) MCC control transformers (approximately 150VA 200VA each) generally have only a small portion of their rating as actual load and can be neglected.
- 2) The Diesel Fuel Oil Transfer Pump is shown in this calculation as operating as soon as voltage is available on the MCC bus, but this is not the actual case as the pump responds to low day tank level which is normally full prior to DG starting. This is conservative and compensates for Assumption 1.
- 3) Individual load on buses downstream of 480/120V transformer have not been discretely analyzed to determine transformer loading. This transformer load on the 480V bus is assumed to be the rating of the distribution transformer or an equivalent three-phase loading for single phase transformers, which is conservative.
- 4) When Locked Rotor Currents are not available, it is considered 6.25 times the full load current. This is from S&L Standard ESC-165 and is reasonable and conservative.
- 5) For large motors (>250HP), the starting power factor is considered to be 20%. This is typical for large HP motors and does not require verification.
- 6) The load on the diesel generator is assumed to increase by 6% when the frequency of the machine is 2% above its nominal value. A majority of the load consists of large centrifugal pumps. The break horsepower of these pumps varies as the cube of the speed. Thus, a 2% increase in speed corresponds to a 6% increase in load (1.02³) (Ref. 70). Note that these pumps will operate on a different point on the performance curve and the BHP may actually increase less than 6%. Therefore, a 6% increase is conservative.

7) For determining starting time for the large motors, the starting current is assumed to be constant throughout the evaluation. Although the speed-torque curve shows a decrease in current with speed as is expected, using a constant current will simplify the starting time evaluation. Motor starting time would be somewhat less if the speed-current characteristics were included. This assumption of CCSW Pump Motor starting current is conservative.

The above assumptions 1, 2, 3, 4, 5, 6 and 7 do not require verification.

	Cal	culation For Diesel Ge	Calc. No. 9389-46-19-3		
Sargence Lundy"		Design Bases Accie	Rev. 2	Date	
an a	×	Safety-Related	Non-Safety-Related	Page 6	.0-1 of FINAL

Client Com Ed	Prepared by	Date
Project Dresden Station	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

VI. ENGINEERING JUDGEMENT

- 1.) Based on engineering judgement an efficiency of 90% is to be used to convert the cummulative HP to an equivalent KW for Table 8.3-3 of the Dresden Re-baselined Updated FSAR, Revision 0. This is considered conservative because the majority of this load consists of 1-4kV motor. Also, this result is only to be used for a comparison.
- 2.) The swing bus transfer circuits for MCC 28/29-7 and MCC 38/39-7 have a time delay relay with a setting of 20s (Reference 7). Based on engineering judgment a tolerance of ±5 seconds will be used for this time delay relay. The LPCI Swing MCC 28/29-7 (38/39-7) is normally fed from Switchgear 29 (39). However, on failure of the dedicated DG to start, this MCC will transfer to Switchgear 28 (38) approximately 15-25 seconds (i.e. 5-15 seconds after diesel breaker closes) after loss of Switchgear 29 (39) voltage. This is conservative because the loads starting on MCC 28/29-7 or MCC 38/39-7 can be shown starting at the most conservative time between 5s and 15s after DG breaker closure.
- 3.) For the purposes of this calculation, a LOCA is defined as a large line break event. This is a bounding case, as in this event, the large AC powered ECCS-related loads will be required to operate in the minutes of the event. This is conservative, as in the event of a small or intermediate line break scenario, there will be more time between the LOCA event and the low pressure (i.e. AC) ECCS system initiation.

CALC I	NO.	938	9-46-19-3		REVISIO	<u>N 0</u>	04	PAGE NO.	7.0-1	(finme)
VII	AC	CEPTAN	NCE CRITERIA							
	The	e followin	ng are used for the ac	ceptance c	riteria:					
	1)	Conti	nuous loading of the	Diesel Gen	erator.					
		•	The total running location 24) or 2860 KW fo	oad of the [r 2000 hr/y	DG must not excee r operation.	d its pe	ak rating of 3	3575kVA @ 0.8 pf (Ref.	
			Note: The load refi running load is with revision show that evaluation should l basis.	inements p hin the 2600 the loading be performe	erformed under Re 0 KW continuous ra i is greater than the ed to assess the im	vision 0 ating of 2600K pact on	04 of this ca the DG. Sho W continuou the current	Iculation showed the buld a future calcula is rating; a 50.59 sa Dresden design/lice	at the ition fety msing	
		•	The total running lo (Ref. 24) or 2860 k tolerance. If the El 1.02 ³ or 1.06 times (Ref. 70).	bad of the E W for 2000 DG is at 10 larger sinc	DG must not exceed) hr/yr operation wh 2% of its nominal fr e a centrifugal purr	d its nar en cons requenc ip input	meplate ratin sidering the r cy, the EDG I BHP varies	ng of 3575 KVA @ 0 maximum frequency load is expected to as the cube of the s	.8 pf / be speed	R4
		•	EDG Power Factor DG2/3_T=CRHVA	during Tim C must be a	ne Sequence Steps ≥88% (Ref. 75 and	DG2/3 76)	_T=10+m, D	G2/3_T=10++m, ar	ıd	
			Note: Should a futu above noted DG tir assess the impact	ure calculati ne sequence on the curre	ion revision show th ce steps can no lon ent Dresden design	at the c ger be i /licensii	criterion for m met; a reviev ng basis.	eactive power durin v should be perform	g the ied to	
	2)	Transi	ent loading of the Die	esel Genera	ator.				F	
		• V [/oltage recovery after)G bus rated voltage	1 second f (Ref. 12). T	ollowing each start his 80% voltage as	must be sures n	e greater tha notor accele	n or equal to 80% c ration.	if the	
		• T	he transient voltage of	dip will not o	cause any significar	nt adver	rse affects or	n control circuits.	,	
		• T a	he transient voltage o s appropriate.	dip will not a	cause any protective	e device	e to inadverte	ently actuate or drop	oout	
		• T	he transient voltage o	dip will not o	ause the travel time	e of any	MOV to be	longer than allowab	e.	
		• T fo	he starting durations blowing times (see Se	of the autor action IV.AF	matically starting 4k P):	V pump	p motors are	less than or equal	to the	
,		Г	Service	1	Allowable-Starting Time	(sec.)				
		Γ	LPCI Pump 2/	۹	5					
			LPCI Pump 2	3	5					
			Core Spray Pump	2A	5			1		
			LPCI Pump 34	4	5				·	
		Γ	LPCI Pump 38	3	5					
			Core Spray Pump	3A	5					
		Roman								

	Cal	culation For Diesel Ge	Calc. No. 9389-46-19-3		
Sargens & Lundy		Design Bases Acci	dent Condition	Rev. 2 Date	
,	×	Safety-Related	Non-Safety-Related	Page 8.0 - of	
Client Com Ed			Proposed by	Data	

Client Com Ed			Prepared by	Date	
Project Dresden Station			Reviewed by	Date	
Proj. No. 9389-46	Equip. No.		Approved by	Date	

VIII. LOAD SEQUENCING OPERATION

A. Load Sequencing During LOOP/LOCA

By reviewing the Table 1 schematic drawings, it was determined that there are three automatic load starting steps, which start the two LPCI Pumps sequentially, followed by the Core Spray Pump. Also, there is another inherent step which delays the large pumps from starting by 3 seconds. This delay is due to the undervoltage relay recovery time, which is interlocked with the timers for the large pumps.

This calculation considers that all the devices auto start from an initiating signal (pressure, level, etc.) or from a common relay start at the same time (unless a timer is in the circuit). It considers all devices are in normal position as shown on the P&ID. It was found from discussion with ComEd Tech. Staff and the Control Room Operators that valves always remain in the position as shown on the design document.

For long term cooling, manual operation is required to start a Containment Cooling Service Water pump.

1) Automatic Initiation of DG during LOOP concurrent with LOCA

The DG will automatically start with any one of the signals below:

- 2 psig drywell pressure, or
- -59" Reactor water level, or
- Primary Under voltage on Bus 23-1 (33-1), or
- Breaker from Bus 23 (33) to Bus 23-1 (33-1) opens, or
- Backup undervoltage on Bus 23-1 (33-1) with a 7 second time delay, with an additional 5 minute time delay if there is a LOCA.

Upon loss of all normal power sources, DG starts automatically and is ready for loading within 10 seconds (Reference 7, page 8.3-14). When the safety-related 4160V bus is de-energized, the DG automatically starts and the DG output breaker closes to energize the bus when the DG voltage and frequency are above the minimum required. Closure of the output breaker, interlocks ECCS loads from automatically reclosing to the emergency bus, and then the loads are started sequentially with their timers. This prevents overloading of the DG during the auto-starting sequence.

CALC NO. 9389-46-19-3

REVISION 003

PAGE NO. 8.0-2

LOAD SEQUENCING OPERATION (cont'd)

The LPCI Swing MCC 28/29-7 (38/39-7) is normally fed from Switchgear 29 (39). However, on failure of the dedicated DG to start, this MCC will transfer to Switchgear 28 (38) approximately 15 - 25 seconds after loss of Switchgear 29 (39) voltage (Reference 7, page 8.3-13 and engineering judgement). For conservatism, this calculation uses the time range of the transfer delay and applies it to coincide with the greatest transient voltage dip caused by the automatically starting 4000V motors.

Automatically activated loads on the DG during LOOP concurrent with LOCA are identified in Table 1A & 1B.

- 2) Automatic Load Sequence Operation for LOOP with LOCA
 - When the DG automatically starts and its output breaker (at Bus 23-1 or 33-1) closes to Switchgear 40, the diesel auxiliaries and certain MOVs start operating, and the UV relay starts its reset recovery timing.
 - As soon as UV relays (IAV 69B) complete their reset, the first LPCI pump starts.
 - 5 seconds after UV relays (IAV 69B) reset, the second LPCI pump starts. At the same time, associated valves and equipment with the LPCI pump start operating.
 - 10 seconds after the UV relays (IAV 69B) reset, the Core Spray pump starts. At the same time, associated valves and equipment with the Core Spray pump start operating.
- 3) Manual actuation required for long term cooling

After 10 minutes of continued automatic operation of the LPCI Pumps and Core Spray system, the operator has to do the following actions to initiate long term cooling (see References 56 and 57):

- Shed and lock out appropriate loads on Bus 23 (or 33).
- At this point the operator can manually close the breaker to the switchgear bus and start one of the CC Service Water pumps, and also opens the CC Heat Exchanger Service Water Discharge Valve.
- Turn off one of the LPCI pumps.
- After the first CCSW Pump is started and one of the LPCI pumps is shut off, the operator will start the second CCSW Pump.

R3

ulation For Diesel Ger	Calc. No. 9389-46-19-3		
Design Bases Accid	Rev. 2 Date		
Safety-Related	Non-Safety-Related	Page 8.0-3 of	
	Design Bases Accio Safety-Related	Design Bases Accident Condition Safety-Related Non-Safety-Related	

Client Com Ed	~	Prepared by	Date
Project Dresden Station		Reviewed by	Date
Proj. No. 9389-46 Equip.	lo.	Approved by	Date

B. Description of sequencing for various major systems with large loads

1) LPCI/CC - LPCI Mode

LPCI/CC

LPCI/CC is used to prevent a failure of fuel cladding as a result of various postulated LOCAs for break sizes ranging from those for which the core is adequately cooled by HPCI system alone, up to and including a DBA (Reference 6).

LPCI Mode

The LPCI mode of the LPCI/CC is to restore and maintain the water level in the reactor vessel to at least two-thirds of core height after a LOCA (Ref. 6).

i) Initiation of LPCI occurs at low-low water level (-59"), low reactor pressure (<350 psig), or high drywell pressure (+2 psig).

- CC Service Water pumps are tripped and interlocked off.
- The Heat Exchanger Bypass Valve 1501-11A receives an open signal and is interlocked open for 30 seconds and then remains open.
- Containment Cooling valves 1501-18A, 19A, 20A, 27A, 28A, and 38A are interlocked closed.
- An injection signal closes the Recirculation Pump Discharge Valve 202-5A.
- When reactor pressure decreases to 350 psig or less, the following occurs:

1.) LPCI pumps will start. Under LOOP concurrent with LOCA, LPCI Pump 2A (3A) will start after the closure of the DG output breaker following the UV relay (IAV 69B) reset time. Five (5) seconds following the UV relay (IAV 69B) reset, LPCI Pump 2B (3B) will auto start. If the initiation signal was low-low water level, the pumps will not start until the reactor pressure reaches <350 psig or they receive a start signal from ADS showing low water level for 8.5 minutes continuous.

ii) The following valves respond to initiation of LPCI/CC - LPCI mode of operation:

 LPCI injection valves (1501-21A, 21B, 22A & 22B) - LOOP selection circuitry will sense a damaged loop and will close one of the LPCI outboard valves

CALC NO.	9389-4	46-19-3	REVIS	ION	003	PAGE NO.	8.0-4
			(1501-21A or 21B) which are open injection through the undamaged k (1501-22A or 22B) which is normal valve in each loop operates. In both inboard and one outboard) at a give	during no pop. The L ly closed t h loops, th en time.	rmal plant opera indamaged loop will open upon LF here are only two	tion, and permit v LPCI inboard val PCI initiation. Onl valves operating	water ve y one (one R3
		•	LPCI pump suction valves (1501-5, damage caused by overheating wit upon system initiation.	A and 5B) h no flow,	- To prevent mai these valves are	in system pump lined up automa	i tically
		•	LPCI pumps minimum bypass valve overheating at low flow rates, a min pump discharge to the suppression valve for both LPCI pumps controls automatically upon sensing low flow also auto-closes when flow is above	e (1501-13 imum flow chamber the minin y in the dis a the low f	3A) - To prevent to v bypass line, wh is provided for ea num flow bypass scharge lines from low setting.	the LPCI pumps ich routes water ach pump. A sing line. The valve o n the pump. The	from from gle pens valve
	2)	Core Sp	pray				
		The fun maintai water, e	ction of the Core Spray system is to a sufficient core cooling on a LOCA mough to potentially uncover the cor	provide th or other co e.	ne core with cooli ondition, which ca	ng water spray to auses low reacto	p r
		i) The c	ore spray pump starts automatically	on any of	the following sigr	nal:	
		•	High Drywell Pressure (2 psig) or,				
		•	Low -Low reactor water level (-59") a	and low re	actor pressure («	<350 psig), or	
		•	Low Low reactor water level (-59") for	or 8.5 min	utes.		
		ii) The fo	ollowing valves respond to initiation of	of core spr	ay:		
		•	Minimum Flow Bypass Valve 1402-3 open to allow enough flow to be reci Core Spray Pump when pumping ag flow is sensed, it will close automatic	8A - This rculated to ainst a clo ally	valve is a N.O. v the torus to prevoked discharge van	alve, which rema /ent overheating alve. When suffic	ins of sient

	9389-46-19-3		REVISION	003	DAGE NO	80.5 /
CALC NO.	3303-40-13-3		REVISION	003	PAGE NO.	0.U-3/f1
	•	Outboard Injection V automatically when r	alve 1402-24A - This eactor pressure is les	valve is norma s than 350 psi	ally open and interlock 9-	(s open
	•	Inboard Injection Val automatically when r	ve 1402-25A - This ve eactor pressure is les	alve is normally is than 350 psi	y closed, but will oper g.) ¹
	•	Test Bypass Valve 1 with Core Spray initia	402-4A - This is a nor ation.	mally closed v	alve and interlocks cl	osed
	•	Core Spray Pump Su interlocks open with t	uction Valve 1402-3A the initiation of Core S	- This is a norr Spray.	nally open valve and	
	3) CC Se	rvice Water (CCSW) F	Pump			
	The Co water p pump i exchar exchar 3500gp i) The (C Service Water pump pressure for removing is is sized to assure suffic nger for LPCI operation nger. The pump flow re pm, so at this rate, one CCSW pump trips whe	provides river water a the heat from the LPC cient cooling in the se h, even though there a equired is 3500 gpm. pump is enough for a m it senses UV, overo	at a pressure o Cl heat exchang condary cooling are two CC Ser Each CCSW p adequate cooling current, or a LP	of 20 psig over the LP ger. One CC Service g loop of the CC heat vice Water pumps pe pump has the flow rat ng. Cl initiation signal on Bug 22 (22)	CI Water r heat e of Bus
,	ii) Acco require and the for DG calcula Dresde equipm are ade	ording to Dresden FSA d during LOOP concur or Core Spray pump, the loading capacity to turn tion] before the second on Updated FSAR section thent availability and con equate for recovery bey	R Section 8, Table 8.2 rent with LOCA. Afte a operator manually tu n off one of the LPCI I CCSW pump is turn on 5.2.3.3 analyzed the included that one LPCI yond 10 minutes after	2.5 two CC Ser r 10 minutes of urns on the CC pumps [e.g. pu ed on (see Ref he recovery poi l, one Core Spr LOCA.	vice Water pumps ar f running both LPCI p SW pumps, but is rec mp 2B (3B) for this ferences 56 and 57). rtion of LOCA for the ray, and two CCSW p	e umps quired R3 R3 umps
	iii) After Heat Eo through close th through	r the CC Service Water kchanger Service Water the CC heat exchange the CC 2A (3A) Heat Exc the heat exchanger.	r Pump is turned on, t er Discharge Control \ er. The operator at so changer Bypass Valvo	he operator ha /alve 1501-3A ome point durin e 1501-11A to	s to open the CC 2A to provide CCSW flov ig the event will manu establish LPCI flow	(3A) v R3 ally
• .		·				

CALC NO. 9389-46-19-3

REVISION 004

PAGE NO. 9.0-1

IX METHODOLOGY

A. Loading Scenarios:

There are three different abnormal conditions on which the Emergency Diesel Generator can be operating:

- 1) Loss of AC Offsite Power
- 2) Safe Shutdown Due to Fire
- 3) LOOP concurrent with LOCA

The above scenarios will be compared for total loading and heaviest sequential loading to determine worst case scenario and why the scenario was chosen.

B. Continuous Loading Evaluation

The following Attachments are used to determine and develop the continuous loading of the DG:

- Table 1
- ETAP for the load summary of the loading of the DG at selected steps of automatically and manually started loads.

The loading based on the maximum loading scenario, including cumulative proposed modifications to the loading, will be tracked in the ETAP data file. In all of the cases that will be analyzed, the proposed loading will be greater than that of the existing loading, since all modified load reductions will remain at previous loads until installed and changed to existing. Thus the capability of the DG to pickup the modified loading and operate within the safe operating limit of the DG will envelope the existing loading.

For all of the various steps in the DG load profile, the ETAP total load will be the summation of the steady state load of all running and starting services for the starting step being analyzed.

The ETAP model was revised to mimic the ELMS-AC data files that were part of the calculation prior to Revision 003. Scenarios were created in ETAP to model the various loading steps in the DG load profile as loads are energized and de-energized.

The scenarios used to model the DG loading in ETAP are listed in the table below. The scenarios use one of three loading categories named "DG Ld 0 CCSW", DG Ld 1 CCSW" and "DG Ld 2 R4 CCSW". These loading categories were created by duplicating loading category "Condition 3". In cases where a load was identified in loading category "Condition 3" as zero and the load is energized during the diesel loading scenario, the loads were modeled as 100% in the "DG Loading" category. If the bhp for a given load in the previous DG data files was different than that in load condition 3, it was revised to match the bhp value in the previous ELMS-AC data files for this calculation. Breakers were added for various loads that change state as part of the DG load profile. No specific breaker data was entered as these breakers are only used as switches. The breakers were opened and closed as required creating configurations which duplicate the loading on the DG for each load step (load condition) previously captured in the ELMS-AC program. The three loading categories are identical except the BHP values associated with the CS, LPCI and CCSW pumps are varied. "DG Ld 0 CCSW" represents the first 10 minutes of the accident where no CCSW pumps R4 are operating. "DG Ld 1 CCSW" reflects reduced CS and LPCI loading values after 10 minutes and a 115% bhp loading value for a single CCSW pump in operation. "DG Ld 2 CCSW" is the same as "DG Ld 1 CCSW" except CCSW bhp values are reduced to reflect operation of both pumps.

CALC NO. 9389-46-19-3 REVISION 004 PAGE NO. 9.0-2 Four study cases were created for use with this calculation: DG 0 CCSW, DG 1 CCSW, DG 2 CCSW and DG Vreduced. The first three study cases use the corresponding similarly named loading categories and the DG Vreduced case uses the DG 0 CCSW loading category as all runs correspond to less than 10 minutes into the event. The generating category was set to "Nominal" and "Gen Min" for the first three study cases and DG Vreduced study cases respectively. The "2/3" diesel voltage was set to 100% and 54% for the "Nominal" and "Gen Min" generation categories respectively. 54% was chosen as it envelopes the lowest expected DG terminal voltage. This value is supported by the calculations performed in Section 10. In each of these study cases, the Newton Raphson method of load flow was selected with the maximum number of iterations set at 99 and the precision set to 0.000001. Only the initial bus voltages were chosen to be updated as a result of execution of the load flow. No diversity factors or global tolerances were used. The scenario wizard in ETAP was used to set up the configuration, study case, and output report for each time step in the DG load profile. The study wizard was used to group and run all of the scenarios. Each scenario was run three times in a row as part of each study macro. The results can vary depending upon the order that the study cases are run as certain calculations within ETAP

can vary depending upon the order that the study cases are run as certain calculations within ETAP are run using the initial bus voltages in the bus editor. The multiple runs assure a unique solution is reached regardless of the bus voltages in the bus editors prior to each load flow run. The precision for each study case is not accurate enough to guarantee a unique solution. The scenarios used to calculate the loading on the DG during each time step are listed below along with the relevant ETAP settings, configurations, etc. Note that these same scenarios are used in both the Unit 2 and Unit 3 ETAP files as the 2/3 EDG is modeled in each file.

CALC NO. 9389-46-19-3

ĺ

REVISION 004

PAGE NO. 9.0-3

Unit 2/3 Diesel Generator							
Scenario	Configuration	Study Case	DG Voltage	Output Report	Study Macro	Description	
DG2/3_Bkr_Cl	DG2/3_Bkr_Ci	DG_0_CCSW	4160V	DG23_Bkr_Close	DG23_Vnormal	Initial loading on DG due to 480V loads when DG breaker closes	
DG2/3_UV_Rst	DG2/3_UV_Rst	DG_0_CCSW	4160V	DG23_UV_Reset	DG23_Vnormal	Scenario DG2/3_Bkr_Cl plus 1 st LPCl pump and auxiliaries	
DG2/3_T=5sec	DG2/3_T=5sec	DG_0_CCSW	4160V	DG23_T=5sec	DG23_Vnormal	Scenario DG2/3_UV_Rst plus 2 nd LPCI pump	
DG2/3_T=10s	DG2/3_T=10s	DG_0_CCSW	4160V	DG23_T=10sec	DG23_Vnormal	Scenario DG2/3_T=5sec plus Core Spray Pump and Auxiliaries	
DG2/3_T=10-m	DG2/3_T=10-m	DG_0_CCSW	4160V	DG23_T=10-min	DG23_Vnormal	Scenario DG2/3_T=10s minus MOV that have completed stroke	
DG2/3_T=10+m	DG2/3_T=10+m	DG_1_CCSW	4160V	DG23_T=10+min	DG23_Vnormal	Scenario DG2/3_T=10-m plus 1 st CCSW pump and Auxiliaries	
DG2/3_T10++m	DG2/3_T10++m	DG_2_CCSW	4160V	DG23_T=10++min	DG23_Vnormal	Scenario DG2/3_T=10+m plus 2 nd CCSW pump and Auxiliaries minus 1 LPCI pump.	
DG2/3_CRHVAC	DG2/3_CRHVAC	DG_2_CCSW	4160V	DG23_CR_HVAC	DG23_Vnormal	Scenario DG2/3_T10++m plus all long term loads	
DG23_Bkr_Vio	DG2/3_Bkr_Cl	DG_Vreduced	2246V	DG23_Bkr_Vred	DG23_Vreduce	Scenario DG2_Bkr_Cl run at lowest expected voltage	
DG23_UV_Vlow	DG2/3_UV_Rst	DG_Vreduced	2246V	DG23_UV_Vred	DG23_Vreduce	Scenario DG2_UV_Reset run at lowest expected voltage	
DG23_T≈5sVlo	DG2/3_T=5sec	DG_Vreduced	2246V	DG23_T=5sVred	DG23_Vreduce	Scenario DG2_T=5sec run at lowest expected voltage	
DG23_T10-mVI	DG2/3_T=10-m	DG_Vreduced	2246V	DG23_T=10-mVred	DG23_Vreduce	Scenario DG2_T=10-min run at lowest expected voltage	

9389-46-19-3	REVISION	003	PAGE NO. 9.0-4
HODOLOGY (cont'd)			
Transient Loading Evaluation.			R
The following attachments are us	ed to determine and dev	elop the transie	nt loading of the DG:
Tables 1A & 1B			
• Table 4A & 4B			
Flow Chart 1			
Use of Dead Los	ad Pickup Curve.		
The following formulas will be use motor data provided and the ETA	d to determine the starti P reduced voltage scena	ng KVA on the l arios.	DG at each step from the
Calculating starting KVA (SKVA _R)	at the machine's rated v	voltage (V _R)	
SKVAR = √3 V _R I _{LRC}	•		
where, ILRC is the machine	s Locked Rotor Current		
Calculating starting KVA (SKVA) a	at a different voltage (V_2)		. '
SKVA @ $V_2 = (V_2)^2 / (V_R)^2$	k SKVA _R		
		·	
		·	
	HODOLOGY (cont'd) Transient Loading Evaluation. The following attachments are us • Tables 1A & 1B • Tables 1A & 4B • Table 4A & 4B • Flow Chart 1 • Use of Dead Loa The following formulas will be use motor data provided and the ETAL Calculating starting KVA (SKVA _R) SKVAR = $\sqrt{3}$ V _R I _{LRC} where, I _{LRC} is the machine! Calculating starting KVA (SKVA) a SKVA @ V ₂ = (V ₂) ² / (V _R) ² :	9389-46-19-3REVISIONHODOLOGY (cont'd)Transient Loading Evaluation.The following attachments are used to determine and dex•Tables 1A & 1B••Table 4A & 4B••<	9389-46-19-3 REVISION 003 HODOLOGY (cont'd) Transient Loading Evaluation. The following attachments are used to determine and develop the transie • • Tables 1A & 1B • Tables 1A & 4B • Table 4A & 4B • Flow Chart 1 • Use of Dead Load Pickup Curve. The following formulas will be used to determine the starting KVA on the I motor data provided and the ETAP reduced voltage scenarios. Calculating starting KVA (SKVA _R) at the machine's rated voltage (V _R) SKVAR = $\sqrt{3}$ V _R I _{LRC} where, I _{LRC} is the machine's Locked Rotor Current Calculating starting KVA (SKVA) at a different voltage (V ₂) SKVA @ V ₂ = (V ₂) ² / (V _R) ² × SKVA _R

R4

METHODOLOGY (cont'd)

CALC NO.

The starting kW/kVAR for the starting loads in each step will be calculated and tabulated separately in Tables 4A & 4B.

The reduced voltage ETAP files are run for each timeframe immediately preceeding a large motor start with the exception of the last CCSW pump which is bounded by a start of the 1st CCSW pump. The reduced DG terminal voltage is equal to or lower than the voltage dip during the most severe starting step. The reduced terminal voltage will be used to determine an incremental increase in current caused by the running loads operating at lower than rated voltage.

The difference in current will be reflected as the equivalent kw/kvar at full voltage (at the power factor of the running loads) and added to the total starting kw/kvar of the starting loads to determine the net starting KVA.

The power factor of the running load is taken from ETAP.

Calculating the incremental KVA for previously running loads is done as follows:

Icum@100% = Taken from ETAP output report from study cases run at nominal voltage

ICum@reduced voltage = Taken from ETAP output report from DG_Vreduced study cases

∆I = ICurr@reduced voltage - ICurr@100%

 $\Delta KVA = \Delta I \times \sqrt{3} \times 4.16 KV$

Conservatively, the worst voltage dip case due to the presence of running load will be applied to all large motor starting cases. The previous calculation revisions show that the largest voltage dip occurs when the Core Spray Pump starts. Revision 10 of Calculation 7317-33-19-3 shows that the voltage dip is 54.3% of bus rated voltage for Unit 2 and 54.5% of bus rated voltage for Unit 3 when the first LPCI Pump is starting. For conservatism, 54.0% (i.e. 2246V) of bus rated voltage will be used for all running load conditions.

The voltage dip and one second recovery at the DG for the initial start at breaker closing is determined from the EMD's Dead Load Pickup Curve #SSC-5056 (Ref. 13) by using the total starting KVA value from Table 4. Following the initial start, the total KVA is determined by vectorially adding the step starting load KW/KVAR from Table 4, the Δ KVA changed to KW/KVAR of the running load of the previous scenario in the ETAP file, and the starting KW/KVAR of the 4000V motor

that is starting to determine the total starting KVA, which is then used to determine the voltage dip and one second recovery at the DG terminals.

The Dead Load Pickup Curve provides initial voltage dip and recovery after 1 second following a start based on the DG transient starting load. The curve includes the combined effect of the exciter and the governor in order to provide recovery voltages. The voltage dip and recovery analysis utilizes the results of dynamic DG characteristics reflected in the manufacturer's curve. Though the curve shows voltage recovery up to 1 second, the voltage will continue to improve after 1 second due to exciter and governor operation. The DG Strip Chart for the surveillance test (Ref. 23) shows the voltage improvement past I second.

Sargene & Lundy	Cal	culation For Diesel Ge	Calc. No. 9389-46-19-3	
		Design Bases Acci	Rev. 2 Date	
	x	Safety-Related	Non-Safety-Related	Page 9.0-6 of

Client Com Ed	Prepared by	Date
Project Dresden Station	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

METHODOLOGY (Cont'd)

that is starting to determine the total starting KVA, which is then used to determine the voltage dip and one second recovery at the DG terminals.

The Dead Load Pickup Curve provides initial voltage dip and recovery after 1 second following a start based on the DG transient starting load. The curve includes the combined effect of the exciter and the governor in order to provide recovery voltages. The voltage dip and recovery analysis utilizes the results of dynamic DG characteristics reflected in the manufacturer's curve. Though the curve shows voltage recovery up to 1 second, the voltage will continue to improve after 1 second due to exciter and governor operation. The DG Strip Chart for the surveillance test (Ref. 23) shows the voltage improvement past 1 second.

To determine motor starting terminal voltage, the cable voltage drop is calculated using the locked rotor current at rated voltage. This is conservative since the locked rotor current is directly proportional to applied voltage.

D. Analysis of control circuits during motor starting transient voltage dip.

When the DG starts a large motor, the momentary voltage dip can be below 70% of generator rated voltage. There is a concern whether momentary low voltage could cause certain control circuits to drop-out. Table 2 of this calculation analyzes the effect of an ac momentary voltage dip on the operation of the mechanical equipment. This table analyzes the momentary voltage dip at 5 seconds & 10 seconds after UV reset; and 10 minutes and after for its effect on the operation of mechanical equipment.

E. Protective device evaluation and MOV operating time effects during motor starting transient voltage dip

The voltage recovery after one second will be evaluated for net effect on the protective devices The duration of starting current is expected to be shorter than operation from offsite power source because of better DG voltage recovery. Because protective devices are set to allow adequate starting time at motor rated voltage and during operation from offsite power, protective device operation due to overcurrent or longer operating time is not expected to be a concern when operating from the DG power during LOOP concurrent with LOCA.

	Calculation For Diesel Generator 2/3 Loading Under			Calc. No. 9389-46-19-3		
Sargent & Lundy'''	Design Bases Accident Condition			Rev. 2	Date	
	x	Safety-Related	Non-Safety-Related	Page C	7.0-7 of FINAL	
Client Com Ed			Prepared by		Date	

Client Com Ed			Prepared by	Date	
Project Dresden Station			Reviewed by	Date	
Proj. No. 9389-46	Equip. No.		Approved by	Date	

METHODOLOGY (Cont'd)

F. Methodology for Determining Starting Time of Large Motors. (Ref. 42)

To determine large motor starting times, the time needed for the motor to accelerate through an increment of motor speed will be found. This will be accomplished by determining from motor and load speed-torque curves net accelerating torque (i.e. the difference between the torque produced by the motor and the torque required by the load) for each increment of speed. Using the combined motor and load inertia, the time needed to accelerate through the increment of speed can be calculated. All the time intervals will be summed to obtain a total motor starting time. Since motor torque is directly proportional to the square of applied terminal voltage, values obtained from the 100% rated voltage speed-torque curve will be adjusted downward for lower than rated applied terminal voltage. And, since this calculation determines for each motor start an initial voltage and a recovery voltage after 1 second, these two values will be used when adjusting motor torque for applied terminal voltage (i.e. For the initial speed increment and all subsequent increments occuring 1 second or less from the beginning of the motor start period, the initial voltage value will be used to determine motor torque. All later increments will use the 1 second recovery voltage value.) The time for each speed increment will be found using the following process:

 At each speed increment, the motor torque will be found at the initial or 1 second recovery motor terminal voltage, as appropriate this will be done using the equation:

T = [(Vterm)² / (Vrated)²] x Motor Base Torque x 100% Voltage Motor Torque from speed-torque curve

- At each speed increment, load torque will be obtained from the load speedtorque curve.
- 3) The torque of the load is subtracted from the determined motor torque to obtain the net accelerating torque.
- 4) Finally the time to accelerate through an RPM increment is found using the following equation:

t = [WK²(pump + motor) x RPM increment] / (307.5 x Net Accelerating Torque)

5) All the time increments are summed to obtain the total motor starting time.
CALC NO. 9389-46-19-3

REVISION 004

X CALCULATIONS AND RESULTS

The following set of Calculations and Results are for the condition when DG 2/3 is powering the Unit 2 buses.

A. Loading Scenarios:

Dresden Re-baselined Updated FSAR, Rev. 0, loading table 8.3-3 shows that the maximum DG 2/3 loading during LOOP is only 1552 kW.

Dresden Station Fire Protection Reports - Safe Shutdown Report dated July 1993, Table 3.1-1, shows that the maximum loading on DG 2/3 is **1541 kW**, (Note: Note 3 of Table 3.1-1 was considered when calculating this loading).

Also, the Dresden Re-baselined Updated FSAR, Rev. 0, Figure 8.3-6 shows that the maximum loading on DG 2/3 during LOOP concurrent with LOCA is 2328 kW

By comparing all three conditions, it is concluded that the combination of LOOP concurrent with LOCA is the worst case of DG loading. Therefore, LOOP concurrent with LOCA scenario was analyzed in detail in this calculation.

The load values for the three conditions stated above are historical values and are used only for comparison of load magnitudes to determine the worst-case loading scenario for the Diesel Generator. For currently predicted loading values on the diesel generator, see Section XI, Subsection A, "Continuous Loading of the Diesel Generator".

B. Continuous Loading

Table 1A was developed to show loads powered by the DG and the loads that will be automatically activated when the Bus 23-1 (DG output) breaker closes to 4-kV Bus 40 following LOOP concurrent with LOCA. The ETAP model was then set up using the "DG Ld 0 CCSW", DG Ld 1 CCSW" and "DG Ld 2 CCSW" loading categories and the configurations to model the loads as described in the methodology section. The 2nd CCSW Pump is manually started and a LPCI Pump is turned off to stay within the DG capacity.

Also, for conservatism the Diesel Fuel Oil Transfer Pumps are shown as operating from 0 seconds, even though these pumps will not operate for the first few hours because the Day Tank has fuel supply for approximately four hours.

C. DG Terminal Voltages under Different Loading Steps

Figure 2A Load vs Time profile of starting loads for the DG was developed from Table 1A showing loads operating at each different time sequence. The values for the running loads in kW/kVAR/kVA were taken from the appropriate ETAP output report, and the starting values for 480V loads are calculated in Table 4A. The following is a sample calculation for LPCI Pump 2A showing the determination of motor starting kVA and starting time. It is shown for demonstrative purposes only (based on Rev. 3). Actual calculations for the Unit 2 4.16 kV motors is contained in Section 10.1. This sample calculation is based on use of the ETAP program.

R4

| R4

CALC NO.	9389-46-19-3	REVISION	003	PAGE NO.	10.0-2
x	CALCULATIONS AND RESULTS (cor	ťd)			
	Starting LPCI Pump 2A (700HP) (FC	R DEMONSTRATIO	NONLY)		
	i) Starting KVA of LPCI Pump 2A				
	Base Voltage (Motor rated vo Operating voltage Base current (FLC) LRC Starting Power Factor (SPF%	ltage) 4000 4160 90A 7 Tir) 20%	0V (4.0kV) 0V (4.16kV) nes FLC	·	
	Calculating the starting KVA at base	voltage			
	SKVA₁ = √3 x 4.0kV x (90A x	7.00) = 4365 KVA			
	Starting KVA @ Operating voltage = (4160V) ² /(4000V) ² x 4365KVA = 4721KVA @20%PF				
	The starting KVA is converted at starting power factor to the following KW and KVAR values:				
	Starting KW = 4721KVA x 0.20PF = 944.2KW				
	Starting KVAR = 4721KVA x (sin[cos ⁻¹ 0.20PF]) = 46	25.6KVAR		
	The initial voltage dip (Based on 472 Dead Load Pickup Curve #SC-5056 a	KVA) due to starting t and multiplying by 0.97	he first LPCI Pur ' to account for -3	np alone from the 3% curve tolerance	eis
·	= (69.8% X 0.97) = 67.7% of 4	160V			
	When LPCI Pump starts, the LP will also start operating. The sta follows:	CI Core Spray Area C rting load is summariz	ooling Unit 2A, a ed in Table 4A, v	nd MOV 2-1501-13 vith the results as	BA
	Starting auxiliary load = 20.6 +	j28.4			
	 When the first LPCI Pump starts buses. Therefore, the actual vol- starting of the LPCI Pump alone. is 513 KVA (398kW and 323kVA 	, at that time there are age drop on the bus is The running KVA fror R).	running loads or assumed to be n ETAP supplied	DG powered more than the by the Unit 2/3 ED	OG _{R3}
		•			
					1

CALC NO.	9389-46-19-3	REVISION	003	PAGE NO.	10.0-3
X.	CALCULATIONS AND RESULTS (cont'd))			
	The current at 100% voltage (i.e. at 416	0 volts) from ETA	P is		
	Inun@100% = 71.2 amps				
	The kVAR & kW from ETAP scenario Do 339 kW.	G23_Bkr_Vlo at re	educed volta	ge are 221 kVAR &	
	The power factor from the same ETAP s	scenario at the red	luced voltage	e running load is	R3
	PF = 0.838 PF				
	The calculated current at the reduced vo	Itage dip for this k	(VA load from	m ETAP is	
	Inun@reduced voltage = 104.0 amps				
	The incremental difference of current is				
	∆I = 104.0 amps - 71.2 amps = 3	2.80 amps			R3
	The incremental KVA (Δ KVA) used to de	termine additional	starting KV	A is	•
	∆KVA = √3 x 4.160 kV x 32.8 am	os = 236.3 KVA			R3
	The incremental running load equivalent incremental KVA previously determined.	is converted to an	equivalent l	w/kVAR from the	
	Incremental running load KW = 23	36.3 kVA x 0.838 I	PF = 198.05	kW	
	Incremental running load KVAR = 236.3 kVA x (sin[cos ⁻¹	0.838 PF]) = 128.9	96 kVAR		R3
				·	

CALC NO.	9389-46-19-3	REVISION	003	PAGE NO.	10.0-4
¥		(cont'd)		. ,	
~.	iv) The storting K/A country	lent as seen by the DC is	coloulated as follows		
	iv) The starting KVA equiva	lient as seen by the DG is	calculated as follows		
	Starting Auxiliary Load		20.6+j28.4		1
	Incremental running load	d equivalent	198.05 + j128.96		R3
	LPCI Pump 2C Starting	load	<u>944.19 + j4625.55</u>		
	Total Starting KVA equiv	valent	1162.84 + j4782.91		. 02
	Vector starting KVA =	√[(1162.84) ² + (4782.9	1) ²] = 4922.24 kVA		~~
•					
	From Dead Load Pickup Curve voltage (Based on 4922.24 kVA Demonstration Only)	(SC-5056) the initial starti) and multiplying by 0.97 t	ng voltage and 1 seco o account for - 3% cu	ond recovery rve tolerance (For
	Initial Voltage drop = (68	3.9% x 0.97) = 66.83% of	4160V		R3
	Voltage recovery after 1	second = (95.3% x 0.97)	= 92.44% of 4160V		
	v) The feed cable of LPCI F The length of the cable is	Pump 2A is 3/C - #1/0 - 5 k 241 feet and this length i	V, and the cable num s taken from ETAP.	ber is 20900.	R3
	The impedance of the cable (Re	f. S&L Standard ESA-102) is:		
	Z _{cable} = 241 ft. x [(0.0128	+ j0.00384 ohms)/100ft p.	u. imp.]		
	Z _{cable} = 0.03085 + j0.0092	25 ohms			R3
	$ Z_{cable} = \sqrt{[(0.03085)^2 + (0.00925)^2]} = 0.032207 \text{ ohms}$				
	The maximum motor terminal lin amps is the LRC is:	e-to-line voltage drop whic	h may occur on this c	able where 63	0
	Δ Vcable = $\sqrt{3} \times 630$ amps	x 0.032207 ohm = 35.14	volts (0.84% of 4160V	')	R3

CALC NO.	9389-46-19-3	RE	VISION 003)	PAGE NO. 1	0.0-5
х.	CALCULATIONS AND RESULT	rs (cont'd)			· .	
	Deducting the voltage drop de terminal, the initial starting vo	ue to motor feed c itage at the motor	able to determin terminals is	e the actual vo	Itage at the moto	י אר
	66.83% - 0.84% = 65.	99% of 4160V				R3
	The voltage after 1 second at	the motor termina	als is			
ï	92.44% - 0.84% = 91.0	60% of 4160V				R3
	The process as demonstrated second. See Section 10.1 for actual numbers corresponding	d above determine r actual numbers c g to Unit 3.	s the initial start corresponding to	ing voltage and Unit 2, and Se	voltage after 1 ction 10.2 for	
	•					
	,					
		,				
		·				
	· · · · · ·				•	
•						

CALC NO.	9389-46-19-3	REVISION	003	PAGE NO.	10.0-6
Х.	CALCULATIONS AND RESULTS (co	nt'd)	,		
	Starting Time Calculations (FOR DEN	MONSTRATION ONLY	()		
	1) LPCI Pump 2A				<i>,</i>
	Initial (Starting) Voltage (@ motor) Voltage at 1 second (@ motor)	65.99% 91.60%	of 4160v = 274 of 4160v = 381	5.18 volts 0.56 volts	R3
	Motor Base Torque - 10	030 ft-lb			
	WK2 Pump (wet) - WK2 Motor - Total WK2 -	18.1 lb-ft ² 1 <u>90,0 lb-ft²</u> 208.1 lb-ft ²			
	Motor Torque at 2745.18 volts		• .		
	T = [(2745.18V) ² / (4000V) ² x Motor Torque from sp	²] x 1030 ft-lb x 100% peed-torque curve	voltage		R3
	= 485.13x 100% voltage	x Motor Torque from s	speed-torque c	urve (Ref. 42)	
	Motor Torque at 3810.56 volts				R3
	T = [(3810.56) ² / (4000) ²] x x Motor Torque from sp	1030 ft-lb x 100% volt beed-torque curve	age		
	= 934.75 x 100% voltage	x Motor Torque from	speed-torque c	:urve	R3

CALC NO. 9389-46-19-3 REVISION 003 PAGE NO. 10.0	ALC NO.
--	---------

X. <u>CALCULATIONS AND RESULTS</u> (cont'd)

FOR DEMONSTRATION ONLY)

% RPM	RPM	Voltage %	Motor Torque From Curve	Motor Torque Ib - ft	Pump Torque From Curve	Pump Torque Ib - ft	Net Torque Ib - ft	Time in Seconds
0 - 10	360	65.99	0.80	388.08	0.0	0.00	388.08	0.63
10 - 20	360	65.99	0.80	388.08	0.02	20.60	367.48	0.66
20 - 30	360	91.60	0.81	757.08	0.05	51.50	705.58	0.35
30 - 40	360	91.60	0.82	766.43	0.06	61.80	704.63	0.35
40 - 50	360	91.60	0.83	775.78	0.10	103.00	672.78	0.36
50 - 60	360	91.60	0.85	794.47	0.15	154.50	639.97	0.38
60 - 70	360	91.60	0.92	859.90	0.19	195.70	664.20	0.37
70 - 80	360	91.60	1.07	1000.10	0.25	257.50	742.60	0.33
80 - 90	360	91.60	1.50	1402.01	0.32	329.60	1072.41	0.23
90 - 95	180	91.60	2.20	2056.28	0.38	391.40	1664.88	0.07
95 - 99	144	91.60	2.35	2196.48	0.43	442.90	1753.58	0.06
							TOTAL	3.78

R3

Notes for the table above:

- 1. Motor Torque in above table is from GE drawing 257HA264 (Reference 15).
- 2. Motor Torque in above table is read from mid-point of applicable speed range.
- 3. Motor Torque in lb-ft is obtained by multiplying the torque from the curve by motor at applicable voltage.
- ⁴. Pump torques are from GE Curve 257HA264 (3% bypass) (Reference 15) and then multiplied by base torque of motor.
- 5. Net Torque is motor torque minus pump torque, both in lb-ft.
- 6. Time in Seconds to accelerate through an RPM Increment =

[WK²(Pump + Motor) x RPM Increment] (307.5 x Net Torque)

	CALC NO.	9389-46-19-3	REVISION	003	PAGE NO. 10.0-8
--	----------	--------------	----------	-----	-----------------

X. CALCULATIONS AND RESULTS (cont'd)

The following table summarizes the motor starting times from Section 10.1.

Device	Total Starting Time (Seconds)	Starting Time Allowed (Seconds) (See IV.AP)
LPCI Pump 2A	3.78	5
LPCI Pump 2B	3.90	5
Core Spray Pump 2A	4.09	.5

D. Control Circuit Evaluation for Voltage Dips

The voltage recovery is more than 87% after one second following the Core Spray motor start. The voltage will continue to improve after one second due to the exciter and the governor characteristics. These voltages during motor starting period (after the initial dip) are much better than the voltages expected during the operation from the offsite source. Table 2A has evaluated the effects on the control circuits of all services on the DG and has determined any transient effect during the short initial voltage dip and no lasting effects have been identified.

E. Protective Device Operation during Voltage Dips

The voltage recovery is more than 87% after one second following the Core Spray motor start. The voltage will continue to improve after one second due to the exciter and the governor characteristics. These voltages during motor starting period (after the initial dip) are much better than the voltages expected during the operation from the offsite source. Therefore, the duration of starting current is shorter than operation from offsite power source. Because protective devices are set to allow adequate starting time at motor rated voltage and during operation from offsite power, protective device operation due to overcurrent is not a concern when operating from the DG power during LOOP concurrent with LOCA.

R3

R3

CALC NO. 9389-46-19-3

REVISION 004

PAGE NO. 10.0-9

X. CALCULATIONS AND RESULTS (cont'd)

F. Results of calculations

The results of the calculation included in Section 10.1 show that the minimum voltage drop to the DG powered buses occur when the Core Spray Pump starts. The table below shows the starting (at 0.1 sec.) voltages and recovery voltages after 1 second following the start at Bus 23-1.

Equipment Description	Starting KVA	Voltage Drop @ 0.1 Second	Voltage Recovery after 1 second
LPCI Pump 2A	4924.1	66.83% of 4160V	92.44% of 4160V
LPCI Pump 2B	5230.4	65.57% of 4160V	91.37% of 4160V
Core Spray Pump	6570.3	60.72% of 4160V	87.11% of 4160V
CCSW Pump 2B	4477.1	68.97% of 4160V	93.90 % of 4160V

During LOOP concurrent with LOCA there is a 5 second time delay from the start of the first LPCI Pump to the start of the second LPCI Pump. Starting time calculations for the LPCI Pumps show that both the pumps accelerate to full speed in under 4 seconds. Therefore by the time the second LPCI Pump starts, the first LPCI Pump is at full speed (i.e. running load). There is also a 5 second time delay from the start of the second LPCI Pump to the start of the Core Spray Pump. Therefore, by the time the Core Spray pump starts, the second LPCI Pump is at full speed.

CALC NO. 9389-46-19-3 REVISION 004 PAGE NO. 10.0-10

X. <u>CALCULATIONS AND RESULTS</u> (cont'd)

The following set of Calculations and Results are for the condition when DG 2/3 is powering the Unit 3 buses.

A. Loading Scenarios:

Dresden Re-baselined Updated FSAR, Rev. 0, loading table 8.3-3 shows that the maximum DG 2/3 loading during LOOP is only **1552 kW**.

Dresden Station Fire Protection Reports - Safe Shutdown Report dated July 1993, Table 3.1-1, shows that the maximum loading on DG 2/3 is **1541 kW**, (Note: Note 3 of Table 3.1-1 was considered when calculating this loading).

Also, the Dresden Re-baselined Updated FSAR, Rev. 0, Figure 8.3-7 shows that the maximum loading on DG 2/3 during LOOP concurrent with LOCA is 2343 kW.

By comparing all three conditions, it is concluded that the combination of LOOP concurrent with LOCA is the worst case of DG loading. Therefore, LOOP concurrent with LOCA scenario was analyzed in detail in this calculation.

The load values for the three conditions stated above are historical values and are used only for comparison of load magnitudes to determine the worst-case loading scenario for the Diesel Generator. For currently predicted loading values on the diesel generator, see Section XI, Subsection A, "Continuous Loading of the Diesel Generator".

B. Continuous Loading

Table 1B was developed to show loads powered by the DG and the loads that will be automatically activated when the Bus 33-1 (DG output) breaker closes to 4-kV Bus 40 following LOOP concurrent with LOCA. The ETAP model was then set up using the "DG Ld 0 CCSW", "DG Ld 1 CCSW" and "DG Ld 2 CCSW" loading categories and the configurations to model the loads as described in the methodology section. The 2rd CCSW Pump is manually started and a LPCI Pump is turned off to stay within the DG capacity.

Also, for conservatism the Diesel Fuel Oil Transfer Pumps are shown as operating from 0 seconds, even though these pumps will not operate for the first few hours because the Day Tank has fuel supply for approximately four hours.

C. DG Terminal Voltages under Different Loading Steps

Figure 2B Load vs Time profile of starting loads for the DG was developed from Table 1B showing loads operating at each different time sequence. The values for the running loads in kW/kVAR/kVA were taken from the appropriate ETAP output report, and the starting values for 480V loads are calculated in Table 4B. The calculations included in Section 10.2 show the determination of the motor starting kVA and starting time for Unit 3, 4 kV motors. Calculations performed in Section 10.2 follow the sample calculation presented for a Unit 2 LPCI Pump motor.

10.0-11

R4

R4

CALC NO.	9389-46-19-3	REVISION	004	PAGE NO.
----------	--------------	----------	-----	----------

X. CALCULATIONS AND RESULTS (cont'd)

The following table summarizes the motor starting times from Section 10.2.

Device	Total Starting Time (Seconds)	Starting Time Allowed (Seconds) (See IV.AP)
LPCI Pump 3A	3.79	5
LPCI Pump 3B	3.92	5
Core Spray Pump 3A	4.10	5

E. Control Circuit Evaluation for Voltage Dips

The voltage recovery is at least 87% after one second following the Core Spray motor start. The voltage will continue to improve after one second due to the exciter and the governor characteristics. These voltages during motor starting period (after the initial dip) are much better than the voltages expected during the operation from the offsite source. Table 2B has evaluated the effects on the control circuits of all services on the DG and has determined any transient effect during the short initial voltage dip and no lasting effects have been identified.

F. Protective Device Operation during Voltage Dips

The voltage recovery is at least 87% after one second following the Core Spray motor start. The voltage will continue to improve after one second due to the exciter and the governor characteristics. These voltages during motor starting period (after the initial dip) are much better than the voltages expected during the operation from the offsite source. Therefore, the duration of starting current is shorter than operation from offsite power source. Because protective devices are set to allow adequate starting time at motor rated voltage and during operation from offsite power, protective device operation due to overcurrent is not a concern when operating from the DG power during LOOP concurrent with LOCA.

CALC NO. 9389-46-19-3

REVISION 004

PAGE NO. 10.0-126-

X. CALCULATIONS AND RESULTS (cont'd)

G. Results of calculations

The results of the calculation show that the minimum voltage drop to the DG powered buses occur when the Core Spray Pump starts. The table below shows the starting (at 0.1 sec.) voltages and recovery voltages after 1 second following the start at Bus 33-1.

Equipment	Starting KVA	Voltage Drop @	Voltage Recovery
Description		0.1 Second	after 1 second
LPCI Pump 3A	4937.2	66.74% of 4160V	92.25% of 4160∨
LPCI Pump 3B	5241.7	65.48% of 4160V	91.37% of 4160V
Core Spray Pump	6550.1	60.72% of 4160∨	87.11% of 4160V
CCSW Pump 3A	4502.8	67.80% of 4160∨	93.80 % of 4160V

During LOOP concurrent with LOCA there is a 5 second time delay from the start of the first LPCI Pump to the start of the second LPCI Pump. Starting time calculations for the LPCI Pumps show that both the pumps accelerate to full speed in under 4 seconds. Therefore by the time the second LPCI Pump starts, the first LPCI Pump is at full speed (i.e. running load). There is also a 5 second time delay from the start of the second LPCI Pump to the start of the Core Spray Pump. Therefore, by the time the Core Spray pump starts, the second LPCI Pump is at full speed.

Client Com Ed	Prepared by	Date
Project Dresden Station	Reviewed by	Date
Proj. No. 9389-48 Equip. No.	Approved by	Date

X. CALCULATION AND RESULTS (Cont.)

SECTION 10.1

Calculation of Inital Voltage and Recovery Voltage after 1 Second following the start of each 4 kV Motor, and Calculation of Motor Starting Times, when DG2/3 is powering Unit 2 Buses

1) <u>Starting kVA of the DG auxiliaries after the closure of the DG output breaker</u> (Page C1 & C2 Calculation)

Aggregate	SKW =	856.1	(Ref. Table 4A)	R4
Aggregate	SKVAR =	1338.2	(Ref. Table 4A)	
Aggregate	SKVA = SKVA = SKVA =	SKW + j SKVAR 856.1 + j1338.2 1588.61		R4

Angle = $\tan^{-1}(SKVAR/SKW)$

Angle = 57.39 Degrees R4

To determine the initial starting voltage (V_{curve_i}) and 1 second recovery voltage (V_{curve_1}), use the Dead Load Pickup Curve (SC-5056) and SKVA (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

$$V_{curve_i} = 88.1\%$$
 of 4160V
 $V_{dip} = V_{curve_i} \times 0.97$
 $V_{dip} = 85.5\%$ of 4160V

Voltage recovery after 1 second:

 $V_{curve_1} = 100.0\%$ of 4160V $V_{recovery} = V_{curve_1} \times 0.97$ $V_{recovery} = 97.0\%$ of 4160V

> Calc. No. 9389-46-19-3 Rev. 004 Page 10.1-1

R4

2) Starting of First LPCI Pump 2A (700HP)

Motor parameters

Base Voltage (motor rated voltage)	$V_{base} = 4000$	Volts	(Ref. 18)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	I _{FL} = 90	Amps	(Ref. 18)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 7.00$		(Ref. 18)
	l _{LRC} = 630.0		
Starting Power factor	$PF_{start} = 0.20$		(Ref. 18)

Motor Cable data

Conductor Size	3/C - #1/0 -5k∨	1	
Cable Number	20900		
Cable Length (feet)	L = 241	(ETAP)	
Cable Impedance (ohms)	$Z_{cable} = 0.03085 + j0.00925$	(ETAP)	R2

Motor parameters to be used to determine starting time of the pump.

Motor Base Torque	Torque _{rated} = 1030	ft-lb	(Ref. 15)
WK ² Pump (wet)	WK _{pump} = 18.1	lb-ft ²	(Ref. 15)
WK ² Motor	WK _{motor} = 190.0	lb-ft ²	(Ref. 15)
Motor rated RPM	RPM = 3600		(Ref. 15)

2) Starting kVA of LPCI Pump 2A

Calculating the starting kVA at base voltage

SKVA₁ = $\sqrt{3} \times V_{base} \times I_{LRC}$ /1000 SKVA₁ = 4364.8

Calculating starting kVA at operating voltage

$$KVA_{start1} = (V_{op}^2 / V_{base}^2) \times SKVA_1$$

$$KVA_{start1} = 4720.9$$

at Pf_{start} = 0.20

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-2 The starting kVA is converted at starting power factor to the following KW and KVAR values:

Motor parameters

 $LPCI_{start} = (KVA_{start1} \times PF_{start}) + j \times [KVA_{start1} \times (sin(acos(PF_{start})))]$ LPCI_{start} = 944.19 + j4625.55 kVA

ii) When the LPCI Pump starts, the LPCI Core Spray Pump Area Cooling Unit 2A, and MOV 2-1501-13A will also start operating. The starting load is summarized in Table 4A, with the results as follows:

Additional Starting auxiliary load:

 $Load_{start} = 20.6 + j28.4 kVA$

iii) When the first LPCI Pump starts, at that time, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the first LPCI Pump alone. The running kW & kVA from the ETAP DG2/3_Bkr_Cl scenario is:

> KW_{ETAP_100%} = 388 KVAR_{ETAP_100%} = 337 KVA_{ETAP_100%} = 514

The current at 100% voltage (i.e. at 4.16kV) is:

I_{run_100%} = 71.2 Amps

The KVA & KW from the special ETAP scenario DG2/3_Bkr_VI for the reduced voltage condition are:

 $V_{reduced} = 2246$ Volts $KW_{reduced} = 327$ $KVAR_{reduced} = 233$ $KVA_{reduced} = 402$

The power factor from the same ETAP scenario at reduced voltage running load is:

$$PF_{reduced} = 0.814$$

The calculated current at the reduced voltage for this kVA load is:

Ireduced = 103.1 Amps

R4

R4

R4

R4

Therefore, the incremental difference of current is:

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{op} \times I_{delta}) / 1000 \qquad KVA_{delta} = 229.9 \qquad R4$$

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

LPCI Pump 2A starting load:	LPCI _{start} = 944.19 + j4625.55	kVA	
Additional starting load:	$Load_{start} = 20.6 + j28.4$	kVA	
Incremental running load equiv :	KVA _{increment} = 187.1 + j133.51	kVA	R4

Total Starting kVA equivalent:

 $Total_{start} = Load_{start} + KVA_{increment} + LPCI_{start}$ $Total_{start} = 1151.88 + j4787.46 \quad kVA$

 $Vector_{start} = \sqrt{Re(Total_{start})^2 + Im(Total_{start})^2}$

Vector_{start} = 4924.09 kVA

Calc. No. 9389-46-19-3 Rev. 004 Page 10.1-4

R4

To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

$$V_{curve_initial} = 68.9\%$$
 of 4160V R2
 $V_{drop} = V_{curve_initial} \times 0.97$
 $V_{drop} = 66.83\%$ of 4160V R2

Voltage recovery after 1 second:

v) The impedance of the pump feed cable, as defined earlier:

Z_{cable} = 0.03085 + j0.00925 ohms

|Z_{cable} |= 0.0322 ohms

The maximum motor terminal line-to-line voltage drop which may occur on this cable given the LRC is:

I _{LRC} = 630.0 Amp)S			1
$V_{\text{deita}_{\text{max}}} = (\sqrt{3} \times I_{\text{LRC}} \times Z_{\text{cat}}]$	ve) V _{detta_max} =	35.14	Voits	R2
V _{delta_%} = V _{delta_max} / V _{op} x	100 V _{delta_%} =	0.84%	of 4160V	

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-5

Deducting the voltage drop due to motor feed cable to determine the actual voltage at the motor terminals, the initial starting voltage at the motor terminals is:

$$V_{initial.LPC12A} = V_{drop} - V_{delta_{\%}}$$
$$V_{initial.LPC12A} = 65.99\% \quad of 4160V$$

The voltage after 1 second at the motor terminals is:

 $V_{1second.LPCi2A} = V_{drop_1sec} - V_{deita_{\%}}$ $V_{1second.LPCi2A} = 91.60\% \text{ of } 4160V$

Calculation of Motor Starting Time:

Initial Starting Voltage (converted to decimal)

Vi = V_{initial.LPCI2A} / 100

R2

R2

Voltage at 1 second (converted to decimal)

$$V1 = V_{1 \text{ second i } PC i 24} / 100$$

Total inertia of the motor and pump together from above (WK²):

 $WK_{pump} = 18.1$ Ib-ft² $WK_{motor} = 190.0$ Ib-ft² $WK2 = WK_{pump} + WK_{motor}$ WK2 = 208.10 Ib-ft²

The following variables define the speed intervals and corresponding motor and pump torque increments necessary to compute the starting time of the pump.

%RPM_o - initial RPM of increment as a percentage of rated RPM

%RPM_f - final RPM of increment as a percentage of rated RPM

%Torque_{Motor} - motor torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Torque_{Pump} - pump torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Volt - either the initial voltage (Vi) or the voltage at 1 second (V1).

Note that the determination of which voltage (%Volt) to use is made when the motor acceleration time exceeds 1 second, and that can only be determined by looking at the calculated cumulative time below (i.e. Vi until 1 second, V1 after that).

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-6

%rpm _o	%rpm _t	%Torque _{Motor}	%Torque _{Pump}	%Voit
0	10	0.80	0.00	Vi
10	20	0.80	0.02	Vi
20	30	0.81	0.05	V1
30	40	0.82	0.06	V1
40	50	0.83	0.10	V1
50	60	0.85	0.15	V1
60	70	0.92	0.19	V1
70	80	1.07	0.25	V1
80	90	1.50	0.32	V1
90	95	2.20	0.38	V1
95	99	2.35	0.43	V1

Compute the motor torque at the initial voltage (Vi) and at 1 second (V1) using the motor torque at motor rated voltage (Ref 15).

 $V_{OP} = 4160$ Volts $V_{base} = 4000$ Volts

 $Torque_{Motor.at.voltage} = [Torque_{rated} \times (\% Volt \times V_{op})^2 / V_{base}^2] ft-lb$

Convert the percentage of motor torque from the curve to motor torque by using the applicable motor torque computed at Vi and V1 above.

Torque_{Motor} = (Torque_{motor} x Torque_{Motor.at.voltage})

ft-lb

Torque of the pump is determined by multiplying the pump torque from Ref. 15 by the base torque of the motor.

Net torque is the motor torque minus the pump torque:

Speed increment (% of rated RPM):

 $\%\Delta_{rpm} = \%rpm_{f} - \%rpm_{o}$

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-7

Time in seconds to accelerate through an RPM increment is calculated by the following:

Time = (WK2 x RPM x %Δrpm / 100) / (307.5 x Torque_{Net}) seconds

3.78

Cumulative time from 0% to full speed at $\%\Delta_{rpm}$ increments.

Time_{cumul} = Total Cumulative Start Time

Calculations:

Therefore, the total time for this pump to accelerate is: $Time_{cumult0} =$

seconds

R2

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-8

3) Starting LPCI Pump 2B (700HP)

Motor parameters

Base Voltage (motor rated voltage)	$V_{base} = 4000$	Volts	(Ref. 56)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	I _{FL} = 90	Amps	(Ref. 56)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 7.00$		(Ref. 56)
	$I_{LRC} = 630.0$		
Starting Power factor	$PF_{start} = 0.20$		(Ref. 39)

Motor Cable data

Conductor Size	3/C - #1/0 -5kV	0	
Cable Number	20906		
Cable Length (feet)	L = 237	(ETAP)	B2
Cable Impedance (ohms)	Z _{cable} = 0.03034 + j0.0091	(ETAP)	

Motor parameters to be used to determine starting time of the pump.

Motor Base Torque	Torque _{rated} = 1030	ft-lb	(Ref. 15)
WK ² Pump (wet)	$WK_{pump} = 18.1$	lb-ft ²	(Ref. 15)
WK ² Motor	$WK_{motor} = 190.0$	lb-ft ²	(Ref. 15)
Motor rated RPM	RPM = 3600		(Ref. 15)

2) Starting kVA of LPCI Pump 2B

Calculating the starting kVA at base voltage

SKVA₁ =
$$(\sqrt{3} \times V_{base} \times I_{LRC})/1000$$
 SKVA₁ = 4364.8

Calculating starting kVA at operating voltage

$$KVA_{start1} = (V_{op}^2 N_{base}^2) \times SKVA_1$$

KVA_{start1} = 4720.93

at Pf_{start} = 0.20

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-9 The starting kVA is converted at starting power factor to the following KW and KVAR values:

Motor parameters

 $LPCI_{start} = (KVA_{start1} \times PF_{start}) + j \times [KVA_{start1} \times (sin(acos(PF_{start})))]$ $LPCI_{start} = 944.19 + j4625.55 \qquad kVA$

ii) There are no additional loads starting with this pump:

Additional Starting auxiliary load: Load_{start} = 0 + j0 kVA

iii) When the second LPCI Pump starts, at that time, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the second LPCI Pump alone. The running kW & kVA from the ETAP DG2/3_UV_Rst scenario is:

> KW_{ETAP_100%} = 901 KVAR_{ETAP_100%} = 587 KVA_{ETAP_100%} = 1075

The current at 100% voltage (i.e. at 4.16kV) in ETAP is:

 $I_{run_{100\%}} = 149.2$ Amps

The KVA & KW from the special ETAP scenario DG2/3_UV_VIo for the reduced voltage condition are:

$V_{reduced} = 2246$	Volts	
KW _{reduced} = 843		
KVAR _{reduced} = 485		
KVA _{reduced} = 973		

The power factor from the same ETAP scenario at reduced voltage running load is:

$$PF_{reduced} = 0.866$$

The calculated current at the reduced voltage for this kVA load in ETAP is:

Ireduced = 249.9 Amps

R4

R4

R4

R4

Therefore, the incremental difference of current is:

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{op} \times I_{delta}) / 1000$$
 $KVA_{delta} = 725.6$ | R4

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

$$KVA_{increment} = (KVA_{delta} \times PF_{reduced}) + j \times [KVA_{delta} \times (sin(acos(PF_{reduced})))]$$

$$KVA_{increment} = 628.35 + j362.82 \quad kVA$$

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

LPCI Pump 2B starting load:	LPCI _{start} = 944.19 + j4625.55	kVA	
Additional starting load:	$Load_{start} = 0 + j0$	kVA	
Incremental running load equiv .:	$KVA_{increment} = 628.35 + j362.82$	kVA	R4

Total Starting kVA equivalent:

$$Total_{start} = Load_{start} + KVA_{increment} + LPCI_{start}$$

Total_{start} = 1572.54 + j4988.37 kVA

 $Vector_{start} = \sqrt{Re(Total_{start})^2 + Im(Total_{start})^2}$

Vector_{start} = 5230.36 kVA

Calc. No. 9389-46-19-3 Rev. 004 Page 10.1-11

R4

To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

$$V_{curve_initial} = 67.6\%$$
 of 4160V
 R2

 $V_{drop} = V_{curve_initial} \times 0.97$
 R2

 $V_{drop} = 65.57\%$ of 4160V
 R2

Voltage recovery after 1 second:

$$V_{curve_1sec} = 94.2\%$$
 of 4160V
 R2

 $V_{drop_1sec} = V_{curve_1sec} \times 0.97$
 $V_{drop_1sec} = 91.37\%$ of 4160V

v) The impedance of the pump feed cable, as defined earlier: -

 $Z_{cable} = 0.03034 + j0.0091$ ohms

 $|Z_{cable}| = 0.0317$ ohms

The maximum motor terminal line-to-line voltage drop which may occur on this cable given the LRC is:

I _{LRC} = 630.0 Amps			
$V_{\text{delta}_{\text{max}}} = \sqrt{3} \times I_{\text{LRC}} \times Z_{\text{cable}} $	V _{delta_max} = 34.56	Volts	D 2
V _{delta_%} = V _{delta_max} / V _{op} x 100	V _{detta_%} = 0.83%	of 4160V	

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-12

Deducting the voltage drop due to motor feed cable to determine the actual voltage at the motor terminals, the initial starting voltage at the motor terminals is:

 $V_{initial LPCi28} = V_{drop} - V_{delta_{\%}}$ $V_{initial LPCi28} = 64.74\% \quad of 4160V$

The voltage after 1 second at the motor terminals is:

 $V_{1second.LPCi2B} = V_{drop_1sec} - V_{deita_{\%}}$ $V_{1second.LPCi2B} = 90.54\% \quad of 4160V$

Calculation of Motor Starting Time:

Initial Starting Voltage (converted to decimal)

Vi = V_{initial LPCI2B} / 100

 $V1 = V_{1second | PC|2B} / 100$

Voltage at 1 second (converted to decimal)

Total inertia of the motor and pump together from above (WK²):

 $WK_{pump} = 18.1$ Ib-ft² $WK_{motor} = 190.0$ Ib-ft² $WK2 = WK_{pump} + WK_{motor}$ WK2 = 208.10 Ib-ft²

The following variables define the speed intervals and corresponding motor and pump torque increments necessary to compute the starting time of the pump.

%RPM_o - initial RPM of increment as a percentage of rated RPM

%RPM_f - final RPM of increment as a percentage of rated RPM

%Torque_{Motor} - motor torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Torque_{Pump} - pump torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Volt - either the initial voltage (Vi) or the voltage at 1 second (V1).

Note that the determination of which voltage (%Volt) to use is made when the motor acceleration time exceeds 1 second, and that can only be determined by looking at the calculated cumulative time below (i.e. Vi until 1 second, V1 after that).

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-13

R2

%rpm _o	%rpm _r	%Torque _{Motor}	%Torque _{Pump}	%Volt
0	10	0.80	0.00	Vi
10	20	0.80	0.02	Vi
20	30	0.81	0.05	V1
30	40	0.82	0.06	V1
40	50	0.83	0.10	V1
50	60	0.85	0.15	V1
60	70	0.92	0.19	V1
70	80	1.07	0.25	V1
80	90	1.50	0.32	V1
90	95	2.20	0.38	V1
95	99	2.35	0.43	V1

Compute the motor torque at the initial voltage (Vi) and at 1 second (V1) using the motor torque at motor rated voltage (Ref 15).

$$V_{OP} = 4160$$
 Volts
 $V_{base} = 4000$ Volts

 $Torque_{Motor.at.voltage} = [Torque_{rated} \times (\% Volt \times V_{op})^2 / V_{base}^2]$ ft-lb

Convert the percentage of motor torque from the curve to motor torque by using the applicable motor torque computed at Vi and V1 above.

Torque of the pump is determined by multiplying the pump torque from Ref. 15 by the base torque of the motor.

ft-ib

Net torque is the motor torque minus the pump torque:

Speed increment (% of rated RPM):

 $\%\Delta_{rpm} = \%rpm_{f} - \%rpm_{o}$

Time in seconds to accelerate through an RPM increment is calculated by the following:

Cumulative time from 0% to full speed at Δ_{rpm} increments.

Timecumul = Total Cumulative Start Time

Calculations:

%rpm _t	%Torque _{Motor}	%Torque _{Pump}	%Torque _{Net}	Time	Timecumul	
10 20 30 40	373.55 373.55 739.78 748.91	0.00 20.60 51.50 61.80	373.55 352.95 688.28 687.11	0.65 0.69 0.35 0.35	0.65 1.34 1.70 2.05	
50	758.04	103.00	655.04	0.37	2.42	
60	776.31	154.50	621.81	0.39	2.81	R2
70	840.24	195.70	644.54	0.38	3.19	
80	977.23	257.50	719.73	0.34	3.53	
90	1369.95	329.60	1040.35	0.23	3.77	
95	2009.27	391.40	1617.87	0.08	3.84	
99	2146.26	442.90	1703.36	0.06	3.90	

Therefore, the total time for this pump to accelerate is: Time amulto =

seconds

3.90

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-15

4) Starting Core Spray Pump (800HP)

Motor parameters

Base Voltage (motor rated voltage)	$V_{base} = 4000$	Volts	(Ref. 17)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	I _{FL} = 102	Amps	(Ref. 17)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 7.00$		(Ref. 17)
	$I_{LRC} = 714.0$		
Starting Power factor	$PF_{start} = 0.20$		(Ref. 17)

Motor Cable data

Conductor Size	3/C - #4/0 -5k∨		
Cable Number	20876		
Cable Length (feet)	L = 184	(ETAP)	0
Cable Impedance (ohms)	Z _{cable} = 0.01176 + j0.00659	(ETAP)	RZ

Motor parameters to be used to determine starting time of the pump.

Motor Base Torque	Torque _{rated} = 1180	ft-lb	(Ref. 15)
WK ² Pump (wet)	WK _{pump} = 18.1	lb-ft ²	(Ref. 15)
WK ² Motor	$WK_{motor} = 220.0$	lb-ft ²	(Ref. 15)
Motor rated RPM	RPM = 3600		(Ref. 15)

2) Starting kVA of Core Spray Pump

Calculating the starting kVA at base voltage

SKVA₁ = $(\sqrt{3} \times V_{base} \times I_{LRC})/1000$ SKVA₁ = 4946.7

Calculating starting kVA at operating voltage

$$KVA_{start1} = (V_{op}^{2}/V_{base}^{2}) \times SKVA_{1} \qquad KVA_{start1} = 5350.39$$

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-16

at Pf_{start} = 0.20

The starting kVA is converted at starting power factor to the following KW and KVAR values:

Motor parameters

CoreSpray_{start} = $(KVA_{start} \times PF_{start}) + j \times [KVA_{start1} \times (sin(acos(PF_{start})))]$ CoreSpray_{start} = 1070.08 + j5242.29 kVA

- When the Core Spray Pump starts, MOVs 1402-38A, 1402-25A, 1501-22A, 1502-21B, 202-9A, & 202-5A; and RX Building Emergency Lighting will also start operating. The starting load is summarized in Table 4A, with the results as follows:
 - Additional Starting auxiliary load: Load_{start} = 185.5 + j320.1 kVA
- iii) When the Core Spray Pump starts, at that time, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the Core Spray Pump alone. The running kW & kVA from the ETAP DG2/3_T=5sec scenario is:

KW_{ETAP_100%} = 1414 KVAR_{ETAP_100%} = 835 KVA_{ETAP_100%} = 1642

The current at 100% voltage (i.e. at 4.16kV) from ETAP is:

Irun_100% = 227.9 Amps

The KVA & KW from the special ETAP scenario DG2/3_T=5sVI output at reduced voltage are;

V _{reduced} =	2246	Volts	
KW _{reduced} =	1358	ł	
KVAR _{reduced} =	737	R	4
KVA _{reduced} =	1545		

The power factor from the same ETAP scenario at reduced voltage running load is:

The calculated current at the reduced voltage for this kVA load in ETAP is:

Ireduced = 397.2 Amps R4

Calc. No. 9389-46-19-3 Rev. 004 Page 10.1-17

Therefore, the incremental difference of current is:

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{op} \times I_{delta}) / 1000 \qquad KVA_{delta} = 1219.9 \qquad R4$$

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

$$\begin{array}{l} \mathsf{KVA}_{\mathsf{increment}} \cong (\mathsf{KVA}_{\mathsf{delta}} \times \mathsf{PF}_{\mathsf{reduced}}) + \mathsf{j} \times [\mathsf{KVA}_{\mathsf{delta}} \times (\mathsf{sin}(\mathsf{acos}(\mathsf{PF}_{\mathsf{reduced}})))] \\ \mathsf{KVA}_{\mathsf{increment}} \cong 1072.26 + \mathsf{j}581.66 \quad \mathsf{kVA} \end{array}$$

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

Core Spray Pump starting load:	CoreSpray _{start} = 1070.08 + j5242.29	kVA	
Additional starting load:	Load _{start} = 185.5 + j320.1	kVA	
Incremental running load equiv.:	KVA _{increment} = 1072.26 + j581.66	kVA	R4

Total Starting kVA equivalent:

Total_{start} = Load_{start} + KVA_{increment} + CoreSpray_{start}
Total_{start} =
$$2327.84 + j6144.05$$
 kVA

 $Vector_{start} = Re(Total_{start})^2 + Im(Total_{start})^2$

Vector_{start} = 6570.25 kVA

R4

Calc. No. 9389-46-19-3 Rev. 004 Page 10.1-18 To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage ($V_{curve_initial}$), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

$$V_{curve_initial} = 62.6\%$$
 of 4160V [R2
 $V_{drop} = V_{curve_initial} \times 0.97$
 $V_{drop} = 60.72\%$ of 4160V [R2

Voltage recovery after 1 second:

$$V_{curve_1sec} = 89.8\%$$
 of 4160V R2
 $V_{drop_1sec} = V_{curve_1sec} \times 0.97$
 $V_{drop_1sec} = 87.11\%$ of 4160V

v) The impedance of the pump feed cable, as defined earlier:

Z_{cable} = 0.01176 + j0.00659 ohms

 $|Z_{cable}| = 0.0135$ ohms

The maximum motor terminal line-to-line voltage drop which may occur on this cable given the LRC is:

$I_{LRC} = 714.0$ Amps			
V _{delta_max} = √3 x I _{LRC} x Z _{cable})	V _{delta_max} = 16.67	Volts	P2
V _{delta_%} = V _{delta_max} / V _{op} x 100	V _{delta_%} = 0.40%	of 4160V	172

Deducting the voltage drop due to motor feed cable to determine the actual voltage at the motor terminals, the initial starting voltage at the motor terminals is:

 $V_{initial.CSP} = V_{drop} - V_{detta_{\%}}$ $V_{initial.CSP} = 60.32\%$ of 4160V

The voltage after 1 second at the motor terminals is:

 $V_{1second.CSP} = V_{drop_1sec} - V_{delta_{\%}}$ $V_{1second.CSP} = 86.71\% \text{ of } 4160V$

Calculation of Motor Starting Time:

Initial Starting Voltage (converted to decimal)

 $Vi = V_{initial.CSP} / 100$

Voltage at 1 second (converted to decimal)

 $V1 = V_{1second,CSP} / 100$

Total inertia of the motor and pump together from above (WK²):

 $WK_{pump} = 18.1$ Ib-ft² $WK_{motor} = 220.0$ Ib-ft² $WK2 = WK_{pump} + WK_{motor}$ WK2 = 238.10 Ib-ft²

The following variables define the speed intervals and corresponding motor and pump torque increments necessary to compute the starting time of the pump.

%RPM_o - initial RPM of increment as a percentage of rated RPM

%RPM_I - final RPM of increment as a percentage of rated RPM

%Torque_{Motor} - motor torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Torque_{Pump} - pump torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Volt - either the initial voltage (Vi) or the voltage at 1 second (V1).

Note that the determination of which voltage (%Volt) to use is made when the motor acceleration time exceeds 1 second, and that can only be determined by looking at the calculated cumulative time below (i.e. Vi until 1 second, V1 after that).

%rpm₀	%rpm _f	%Torque _{Motor}	%Torque _{Pump}	%Voit
0	10	0.89	0.00	Vi
10	20	0.90	0.00	Vi
20	30	0.90	0.02	V1
30	40	0.90	0.06	V1
40	50	0.90	0.13	V1
50	60	0.94	0.20	V1
60	70	1.02	0.26	V1
70	80	1.18	0.35	V1
80	90	1.61	0.46	V1
90	95	2.25	0.58	V1
95	99	2.35	0.65	V1

Compute the motor torque at the initial voltage (Vi) and at 1 second (V1) using the motor torque at motor rated voltage (Ref 15).

 $V_{OP} = 4160$ Volts $V_{base} = 4000$ Volts

 $Torque_{Motor.at.voltage} = [Torque_{rated} \times (\%Volt \times V_{op})^2 / V_{base}^2]$ ft-lb

Convert the percentage of motor torque from the curve to motor torque by using the applicable motor torque computed at Vi and V1 above.

Torque of the pump is determined by multiplying the pump torque from Ref. 15 by the base torque of the motor.

Torque_{Pump} = Torque_{rated} x %Torque_{Pump} ft-lb

Net torque is the motor torque minus the pump torque:

Speed increment (% of rated RPM):

 $\%\Delta_{mm} = \%rpm_{f} - \%rpm_{o}$

Time in seconds to accelerate through an RPM increment is calculated by the following:

Time = (WK2 x RPM x %Δrpm / 100) / (307.5 x Torque_{Net}) seconds

Cumulative time from 0% to full speed at Δ_{rpm} increments.

Time_{cumut} = Total Cumulative Start Time

Calculations:

í

%Torque_{Motor} Timecumul %Torque_{Pump} %rpm %Torque_{Net} Time 10 413.31 0.00 413.31 0.67 0.67 20 417.96 0.00 417.96 0.67 1.34 23.60 1.67 30 863.54 839.94 0.33 2.02 40 863.54 70.80 792.74 0.35 2.42 50 863.54 153.40 710.14 0.39 60 901.92 236.00 665.92 2.84 0.42 **R4** 70 978.68 306.80 671.88 0.41 3.25 80 1132.20 413.00 719.20 0.39 3.64 3.92 90 1544.78 542.80 1001.98 0.28 2158.85 95 684.40 1474.45 0.09 4.01 **9**9 2254.80 767.00 1487.80 0.07 4.09 4.09

Therefore, the total time for this pump to accelerate is: Timecumulto =

seconds

5) Starting of Containment Cooling Service Water Pump 2A (500HP)

 $V_{base} = 4000$ (Ref. 40) Base Voltage (motor rated voltage) Volts $V_{OP} = 4160$ **Operating Voltage** Volts l_{FL} = 67 Base Current (full load) Amps (Ref. 40) $I_{LRC} = I_{FL} \times 5.91$ Locked Rotor Current (Ref. 40 & 43) I_{LRC} = 395.97 $PF_{start} = 0.20$ Starting Power factor (Ref. 41)

i) Starting kVA of CCSW Pump

Motor parameters

Calculating the starting kVA at base voltage

SKVA₁ = $(\sqrt{3} \times V_{base} \times I_{LRC})/1000$ SKVA₁ = 2743.4

Calculating starting kVA at operating voltage

 $KVA_{start1} = (V_{op}^2/V_{base}^2) \times SKVA_1$ $KVA_{start1} = 2967.2$ at $Pf_{start} = 0.20$

The starting kVA is converted at starting power factor to the following KW and KVAR values:

 $CCSW_{start} = (KVA_{start1} \times PF_{start}) + j \times [KVA_{start1} \times (sin(acos(PF_{start})))]$ $CCSW_{start} = 593.44 + j2907.27 \quad kVA$

ii) The CCSW Pumps are turned on manually between 10 minutes and 2 hours depending on the situation. For the purpose of this calculation the CCSW Pump 2A is turned on by the operator after 10 minutes into the event and CCSW Pump 2B is turned on shortly after CCSW Pump 2A.

The CC Heat exchanger Discharge Valve is required to operate to exchange CC residual heat with the CCSW system. When CCSW Pump 2A starts, the Containment Cooling Heat Exchanger Discharge Valve also starts. When CCSW Pump 2B starts, the CC Heat Exchanger Discharge Valve is considered to be in operation (i.e. running load), however, at this time the CCSW Pump Cubical Cooler Fans (total 4) are also starting.

This calculation will only calculate the voltage dip due to the starting of CCSW Pump 2A (the first CCSW pump) instead of CCSW Pump 2B because starting kVA (due to the voltage dip) for the load already on the diesel when the 2A pump starts is the largest. However the 2A pump is evaluated with the starting kVA of the loads that start concurrently with the 2B CCSW pump as it is conservative. The starting load is summarized in Table 4A, with the results as follows:

R2

Caic. No. 9389-46-19-3 Rev. 003 Page 10.1-23
Additional Starting auxiliary load:

$Load_{start} = 56 + j60.3$ kVA

iii) When the CCSW Pump 2A starts, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the CCSW Pump 2A alone.

All of the valves which are initiated by LOOP/LOCA have completed their operations and have stopped operating before CCSW Pump 2A was started. Therefore, these valve loads are taken off from the initial running load.

The running kW & kVA from the ETAP scenario DG2/3_T=10-m is:

KW_{ETAP_100%} = 2151 KVAR_{ETAP_100%} = 1154 KVA_{ETAP_100%} = 2441

The current at 100% voltage (i.e. at 4.16kV) from ETAP is:

The KVA & KW from the special ETAP scenario DG2/3_T10-ml for the reduced voltage condition is:

V _{reduced} = 2	2246	Volts	
KW _{reduced} = 2	2085		
KVAR _{reduced} = '	1058		R4
KVA _{reduced} = 2	2338		

The power factor from the same ETAP scenario at reduced voltage running load is:

 $PF_{reduced} = 0.892$

The calculated current at the reduced voltage for this kVA load from ETAP is:

Ireduced = 600.7 Amps

Calc. No. 9389-46-19-3 Rev. 004 Page 10.1-24

R4

R4

Therefore, the incremental difference of current is:

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{op} \times I_{delta}) / 1000 \qquad KVA_{delta} = 1887.8 \qquad P4$$

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

CCSW Pump 2B starting load:	CCSW _{start} = 593.44 + j2907.27	kVA	
Additional starting load:	$Load_{start} = 56 + j60.3$	kVA	
Incremental running load equiv.:	KVA _{increment} = 1683.91 + j853.35	kVA	

Total Starting kVA equivalent:

.

ł

 $Vector_{start} = /Re(Total_{start})^2 + Im(Total_{start})^2$

Vector_{start} = 4477.05 kVA

To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

$V_{curve_initial} = 71.1\%$	of 4160V		R2
V _{drop} = V _{curve_initial} :	x 0.97	· .	_
$V_{drop} = 68.97\%$	of 4160V		R2

Voltage recovery after 1 second:

V _{curve_1sec} = 96.8%	of 4160V	R2
V _{drop_1sec} = V _{curva_1sec} x 0	.97	
$V_{drop_{1sec}} = 93.90\%$	of 4160V	R2

Calc. No. 9389-46-19-3 Rev. 003 Page 10.1-26/F...1

Bangent Lundy"	Cal	Calculation For Diesel Generator 2/3 Loading Under Design Bases Accident Condition		Calc. No. 9389-46-19-3 Rev. 2 Date		9389-46-19-3	
						Date	
a second and a second	x	Safety-Related		Non-Safety-Related		Page 10.	2-0 of
Client Com Ed				Prepared by			Date
Project Dresden Station] [Reviewed by			Date	

Project Dresden Station Proj. No. 9389-46

Approved by

Date

X. CALCULATION AND RESULTS (Cont.)

Equip. No.

SECTION 10.2

Calculation of Inital Voltage and Recovery Voltage after 1 Second following the start of each 4 kV Motor, and Calculation of Motor Starting Times, when DG2/3 is powering Unit 3 Buses

Starting kVA of the DG auxiliaries after the closure of the DG output breaker (Page C1 & C2 Calculation)

Aggregate	SKW =	896.90	(Ref. Table 4B)		DA.
Aggregate	SKVAR =	1369.40	(Ref. Table 4B)		5 1 4
Aggregate	SKVA =	SKW + j SKVAR		•	
	SKVA =	896.9 + j1369.4			DA
	SKVA =	1636.97			n 4

Angle = $\tan^{-1}(SKVAR/SKW)$

Angle = 56.78 Degrees R4

To determine the initial starting voltage (V_{curve_i}) and 1 second recovery voltage (V_{curve_1}), use the Dead Load Pickup Curve (SC-5056) and SKVA (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

1

$$V_{curve_i} = 87.7\%$$
 of 4160V
 $V_{dip} = V_{curve_i} \times 0.97$
 $V_{dip} = 85.1\%$ of 4160V

Voltage recovery after 1 second:

 $V_{curve_1} = 100.0\%$ of 4160V $V_{recovery} = V_{curve_1} \times 0.97$ $V_{recovery} = 97.0\%$ of 4160V

> Calc. No. 9389-46-19-3 Rev. 004 Page 10.2-1

2) Starting of First LPCI Pump 3A (700HP)

Motor parameters

Base Voltage (motor rated voltage)	$V_{base} = 4000$	Volts	(Ref. 18)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	$l_{\rm FL} = 90$	Amps	(Ref. 18)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 7.00$		(Ref. 18)
	$I_{LRC} = 630.0$	•	
Starting Power factor	$PF_{start} = 0.20$		(Ref. 18)

Motor Cable data

Conductor Size	3/C - #1/0 -5kV		
Cable Number	30900		
Cable Length (feet)	L = 236	(ETAP)	
Cable Impedance (ohms)	$Z_{cable} = 0.03021 + j0.00906$	(ETAP)	R3

Motor parameters to be used to determine starting time of the pump.

Motor Base Torque	Torque _{rated} = 1030	ft-lb	(Ref. 15)
WK ² Pump (wet)	$WK_{pump} = 18.1$	lb-ft ²	(Ref. 15)
WK ² Motor	$WK_{motor} = 190.0$	lb-ft ²	(Ref. 15)
Motor rated RPM	RPM = 3600		(Ref. 15)

2) Starting kVA of LPCI Pump 2A

Calculating the starting kVA at base voltage

SKVA₁ =
$$\sqrt{3} \times V_{\text{base}} \times I_{\text{LRC}}$$
/1000

Calculating starting kVA at operating voltage

$$KVA_{start1} = (V_{op}^2 N_{base}^2) \times SKVA_1$$

KVA_{start1} = 4720.93

SKVA1 = 4364.8

at Pf_{start} = 0.20

Calc. No. 9389-46-19-3 Rev. 003 Page 10.2-2 The starting kVA is converted at starting power factor to the following KW and KVAR values:

Motor parameters

 $LPCI_{start} = (KVA_{start1} \times PF_{start}) + j \times [KVA_{start1} \times (sin(acos(PF_{start})))]$ $LPCI_{start} = 944.19 + j4625.55 \qquad kVA$

 When the LPCI Pump starts, the LPCI Core Spray Pump Area Cooling Unit 3A, and MOV 3-1501-13A will also start operating. The starting load is summarized in Table 4B, with the results as follows:

Additional Starting auxiliary load: Load_{start} = 20.6 + j28.4 kVA

iii) When the first LPCI Pump starts, at that time, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the first LPCI Pump alone. The running kW & kVA from the ETAP DG2/3_Bkr_CI scenario is:

> KW_{ETAP_100%} = 421 KVAR_{ETAP_100%} = 351 KVA_{ETAP_100%} = 548

The current at 100% voltage (i.e. at 4.16kV) is:

The KVA & KW from the special ETAP scenario DG2/3_Bkr_VI for the reduced voltage condition is::

$V_{reduced} = 2246$	Volts	. •		
$KW_{reduced} = 338$				
$KVAR_{reduced} = 259$				
KVA _{reduced} ≍ 426				
The power factor from the same ET	AP scenar	io at reduced v	oltage running load i	s:
$PF_{reduced} = 0.793$				R4

The calculated current at the reduced voltage for this kVA load from ETAP is:

Ireduced = 109.4 Amps

R4

Therefore, the incremental difference of current is:

$$I_{delta} = I_{reduced} - I_{run_100\%}$$

$$I_{delta} = 33.30 \quad Amps \quad R4$$

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{op} \times I_{delta}) / 1000$$
 $KVA_{delta} = 239.9$ R4

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

LPCI Pump 3A starting load:	LPCI _{start} = 944.19 + j4625.55	. kVA	
Additional starting load:	$Load_{start} = 20.6 + j28.4$	kVA	
Incremental running load equiv.:	KVA _{Increment} = 190.27 + j146.18	kVA	R4

Total Starting kVA equivalent:

1-

 $Total_{start} = Load_{start} + KVA_{increment} + LPCI_{start}$ $Total_{start} = 1155.06 + j4800.13 \quad kVA$

 $Vector_{start} = \sqrt{Re(Total_{start})^2 + Im(Total_{start})^2}$

Vector_{start} = 4937.14 kVA

R4

t

To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

 $V_{curve_lnitial} = 68.8\%$ of 4160V | R4 $V_{drop} = V_{curve_initial} \times 0.97$ $V_{drop} = 66.74\%$ of 4160V | R4

Voltage recovery after 1 second:

$$V_{curve_1sec} = 95.1\%$$
 of 4160V R4
 $V_{drop_1sec} = V_{curve_1sec} \times 0.97$
 $V_{drop_1sec} = 92.25\%$ of 4160V R4

v) The impedance of the pump feed cable, as defined earlier:

 $Z_{cable} = 0.03021 + j0.00906$ ohms

Z_{cable} = 0.0315 ohms

ť

The maximum motor terminal line-to-line voltage drop which may occur on this cable given the LRC is:

l _{LRC} = 630.0 Amps	,	
$V_{delta_{max}} = (\sqrt{3} \times I_{LRC} \times Z_{cable}) $	$V_{delta_max} = 34.42$	Volts
V _{delta_%} = V _{delta_max} / V _{op} x 100	V _{detta_%} = 0.83%	of 4160V

Calc. No. 9389-46-19-3 Rev. 004 Page 10.2-5 Deducting the voltage drop due to motor feed cable to determine the actual voltage at the motor terminals, the initial starting voltage at the motor terminals is:

 $V_{initial.LPCI3A} = V_{drop} - V_{dalta_\%}$ $V_{initial.LPCI3A} = 65.91\%$ of 4160V

The voltage after 1 second at the motor terminals is:

 $V_{1second.LPCI3A} = V_{drop_1sec} - V_{delta_\%}$ $V_{1second.LPCI3A} = 91.42\%$ of 4160V

Calculation of Motor Starting Time:

Initial Starting Voltage (converted to decimal)

Vi = V_{initial LPCI3A} / 100

Voltage at 1 second (converted to decimal)

 $V1 = V_{1second, LPCI3A} / 100$

Total inertia of the motor and pump together from above (WK²):

 $WK_{pump} = 18.1$ lb-ft² $WK_{motor} = 190.0$ lb-ft²

 $WK2 = WK_{pump} + WK_{motor}$

WK2 = 208.10 lb-ft²

The following variables define the speed intervals and corresponding motor and pump torque increments necessary to compute the starting time of the pump.

%RPM_o - initial RPM of increment as a percentage of rated RPM

%RPM_f - final RPM of increment as a percentage of rated RPM

%Torque_{Motor} - motor torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Torque_{Pump} - pump torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Volt - either the initial voltage (VI) or the voltage at 1 second (V1).

Note that the determination of which voltage (%Volt) to use is made when the motor acceleration time exceeds 1 second, and that can only be determined by looking at the calculated cumulative time below (i.e. Vi until 1 second, V1 after that).

Calc. No. 9389-46-19-3 Rev. 004 Page 10.2-6

R4

%rpm _o	%rpm _f	%Torque _{Motor}	%Torque _{Pump}	%Volt
0	10	0.80	0.00	Vi
	20	0.80	0.02	
20	30	0.81	0.05	V1
30	40	0.82	0.06	V1
40	50	0.83	0.10	V1
50	60	0.85	0.15	V1
60	70	0.92	0.19	V1
70	80	1.07	0.25	V1
80	90	1.50	0.32	V1
90	95	2.20	0.38	V1
95	99	2.35	0.43	V1

Compute the motor torque at the initial voltage (Vi) and at 1 second (V1) using the motor torque at motor rated voltage (Ref 15).

 $V_{OP} = 4160$ Volts $V_{base} = 4000$ Volts

 $Torque_{Motor.at.voltage} = \left[Torque_{rated} \times \left(\% Volt \times V_{op} \right)^2 / V_{base}^2 \right]$ ft-lb

Convert the percentage of motor torque from the curve to motor torque by using the applicable motor torque computed at Vi and V1 above.

Torque_{Motor} = (Torque_{motor} x Torque_{Motor.at.voltage}) ft-lb

Torque of the pump is determined by multiplying the pump torque from Ref. 15 by the base torque of the motor.

Torque_{Pump} = Torque_{rated} x %Torque_{pump} ft-lb

Net torque is the motor torque minus the pump torque:

Torque_{Net} = Torque_{Motor} - Torque_{Pump} ft-lb

Speed increment (% of rated RPM):

 $\%\Delta_{rom} = \%rpm_{f} - \%rpm_{o}$

Calc. No. 9389-46-19-3 Rev. 003 Page 10.2-7

Time in seconds to accelerate through an RPM increment is calculated by the following:

Time = (WK2 x RPM x %Δrpm / 100) / (307.5 x Torque_{Net}) seconds

Cumulative time from 0% to full speed at Δ_{mm} increments.

Time_{cumul} = Total Cumulative Start Time

Calculations:

(

(

Therefore, the total time for this pump to accelerate is: Timecumulto =

seconds

3) Starting LPCI Pump 3B (700HP)

Motor parameters (LPCI Pumps 3A and 3B are identical pumps)

Base Voltage (motor rated voltage)	$V_{base} = 4000$	Volts	(Ref. 18)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	$l_{FL} = 90$	Amps	(Ref. 18)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 7.00$		(Ref. 18)
	$I_{LRC} = 630.0$		
Starting Power factor	$PF_{start} = 0.20$		(Ref. 18)

Motor Cable data

Conductor Size	3/C - #1/0 -5k∨		
Cable Number	30906		
Cable Length (feet)	L = 276	(ETAP)	62
Cable Impedance (ohms)	$Z_{cable} = 0.03533 + j0.0106$	(ETAP)	

Motor parameters to be used to determine starting time of the pump.

Motor Base Torque	Torque _{rated} = 1030	ft-lb	(Ref. 15)
WK ² Pump (wet)	WK _{pump} = 18.1	lb-ft ²	(Ref. 15)
WK ² Motor	$WK_{motor} = 190.0$	lb-ft ²	(Ref. 15)
Motor rated RPM	RPM = 3600		(Ref. 15)

2) Starting kVA of LPCI Pump 3B

Calculating the starting kVA at base voltage

$$SKVA_1 = (\sqrt{3} \times V_{base} \times I_{LRC})/1000$$
 $SKVA_1 = 4364.8$

Calculating starting kVA at operating voltage

 $KVA_{start1} = (V_{op}^2/V_{base}^2) \times SKVA_1$

KVA_{start1} = 4720.9

at Pf_{start} = 0.20

The starting kVA is converted at starting power factor to the following KW and KVAR values:

Motor parameters

LPCI_{start} = (KVA_{start1} x PF_{start}) + j x [KVA_{start1} x (sin(acos(PF_{start})))] LPCI_{start} = 944.19 + j4625.55 kVA

ii) There are no additional loads starting with this pump:

Additional Starting auxiliary load: Load_{start} = 0 + j0 kVA.

iii) When the second LPCI Pump starts, at that time, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the second LPCI Pump alone. The running kW & kVA from the ETAP DG2/3_UV_Rst scenario is:

> KW_{ETAP_100%} = 931 KVAR_{ETAP_100%} = 600 KVA_{ETAP_100%} = 1108

The current at 100% voltage (i.e. at 4.16kV) from ETAP is:

I_{run_100%} = 153.7 Amps R4

The KVA & KW from the special ETAP scenario DG2/3_UV_VI for the reduced voltage condition are:

 $V_{reduced} = 2246$ Volts $KW_{reduced} = 850$ $KVAR_{reduced} = 510$ $KVA_{reduced} = 991$

The power factor from the same ELMS-AC file at reduced voltage running load is:

PF_{reduced} = 0.857

The calculated current at the reduced voltage for this kVA load is:

Ireduced = 254.9 Amps R4

R4

Therefore, the incremental difference of current is:

$$I_{delta} = I_{reduced} - I_{run_{100\%}}$$

$$I_{delta} = 101.20 \quad \text{Amps}$$
R4

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$\text{KVA}_{\text{deita}} = (\sqrt{3} \times \text{V}_{\text{op}} \times \text{I}_{\text{deita}}) / 1000 \qquad \text{KVA}_{\text{deita}} = 729.2 \qquad \text{R4}$$

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

LPCI Pump 2B starting load:	LPCI _{start} = 944.19 + j4625.55	kVA	
Additional starting load:	Load _{start} = 0 + j0	kVA	
Incremental running load equiv.:	KVA _{increment} = 624.91 + j375.76	kVA	R4

Total Starting kVA equivalent:

1

 $Vector_{start} = \sqrt{Re(Total_{start})^2 + Im(Total_{start})^2}$

Vector_{start} = 5241.67 kVA

To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for *a* -3% curve tolerance.

Initial Voltage Dip:

٩

$$V_{curve_initial} \approx 67.5\%$$
 of 4160V R3
 $V_{drop} = V_{curve_initial} \times 0.97$
 $V_{drop} = 65.48\%$ of 4160V R3

Voltage recovery after 1 second:

$$V_{curve_1sec} = 94.2\%$$
 of 4160V [R3
 $V_{drop_1sec} = V_{curve_1sec} \times 0.97$
 $V_{drop_1sec} = 91.37\%$ of 4160V

v) The impedance of the pump feed cable, as defined earlier:

Z_{cable} = 0.03533 + j0.0106 ohms

|Z_{cabie} |= 0.0369 ohms

The maximum motor terminal line-to-line voltage drop which may occur on this cable given the LRC is:

$l_{LRC} = 630.0$ Amps		·	
$V_{\text{delta}_{\text{max}}} = \sqrt{3} \times I_{\text{LRC}} \times Z_{\text{cable}} $	$V_{delta_{max}} = 40.25$	Volts	02
V _{delta_%} = V _{delta_max} / V _{op} x 100	V _{deita_%} = 0.97%	of 4160V	

Calc. No. 9389-46-19-3 Rev. 003 Page 10.2-12

Deducting the voltage drop due to motor feed cable to determine the actual voltage at the motor terminals, the initial starting voltage at the motor terminals is:

$$V_{initial.LPCI3B} = V_{drop} - V_{delta_{\%}}$$
$$V_{initial.LPCI3B} = 64.51\% \quad of 4160V$$

The voltage after 1 second at the motor terminals is:

 $V_{1second.LPCI3B} = V_{drop_1sec} - V_{delta_\%}$ $V_{1second.LPCI3B} = 90.41\% \quad of 4160V$

Calculation of Motor Starting Time:

Į

Initial Starting Voltage (converted to decimal)

V1 = V_{1second,LPCI3B} /100

 $V_i = V_{initial, LPCI3B} / 100$

Total inertia of the motor and pump together from above (WK²):

 $WK_{pump} = 18.1$ lb-ft² $WK_{motor} = 190.0$ lb-ft² $WK2 = WK_{pump} + WK_{motor}$ WK2 = 208.10 lb-ft²

The following variables define the speed intervals and corresponding motor and pump torque increments necessary to compute the starting time of the pump.

%RPM_o - initial RPM of increment as a percentage of rated RPM

%RPMr - final RPM of increment as a percentage of rated RPM

%Torque_{Motor} - motor torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Torque_{Pump} - pump torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Volt - either the initial voltage (Vi) or the voltage at 1 second (V1).

Note that the determination of which voltage (%Volt) to use is made when the motor acceleration time exceeds 1 second, and that can only be determined by looking at the calculated cumulative time below (i.e. Vi until 1 second, V1 after that).

Calc. No. 9389-46-19-3 Rev. 003 Page 10.2-13

|R3

%rpm。	%rpm _f	%Torque _{Motor}	%Torque _{Pump}	%Voit
0	10	0.80	0.00	Vi
10	20	0.80	0.02	
30	40	0.82	0.05	
40	50	0.83	0.10	V1
50	60	0.85	0.15	V1
60	70	0.92	0.19	V1
70	80	1.07	0.25	V1
80	90	1.50	0.32	V1
90	95	2.20	0.38	V1
95	99	2.35	0.43	V1

Compute the motor torque at the initial voltage (Vi) and at 1 second (V1) using the motor torque at motor rated voltage (Ref 15).

$$V_{OP} = 4160$$
 Volts
 $V_{base} = 4000$ Volts

 $Torque_{Motor.at.voltage} = [Torque_{rated} \times (%Volt \times V_{op})^2 / V_{base}^2]$ ft-lb

Convert the percentage of motor torque from the curve to motor torque by using the applicable motor torque computed at Vi and V1 above.

Torque of the pump is determined by multiplying the pump torque from Ref. 15 by the base torque of the motor.

Net torque is the motor torque minus the pump torque:

Speed increment (% of rated RPM):

 $\%\Delta_{rpm} = \%rpm_{f} - \%rpm_{o}$

Time in seconds to accelerate through an RPM increment is calculated by the following:

Cumulative time from 0% to full speed at Δ_{rpm} increments.

Time_{cumul} = Total Cumulative Start Time

Calculations:

%rpm	%Torque _{Motor}	%Torque _{Pump}	%Torque _{Net}	Time	Time _{cumul}	
10 20 30 40 50 60 70 80 90 95 99	370.86 370.86 737.54 746.65 755.75 773.97 837.70 974.29 1365.82 2003.21 2139.79	0.00 20.60 51.50 61.80 103.00 154.50 195.70 257.50 329.60 391.40 442.90	370.86 350.26 686.04 684.85 652.75 619.47 642.00 716.79 1036.22 1611.81 1696.89	0.66 0.70 0.36 0.36 0.37 0.39 0.39 0.38 0.34 0.24 0.08 0.06	0.66 1.35 1.71 2.06 2.44 2.83 3.21 3.55 3.78 3.86 3.92	R3

Therefore, the total time for this pump to accelerate is: Timecumul10 =

seconds

3.92

4) Starting Core Spray Pump (800HP)

Motor parameters

Base Voltage (motor rated voltage)	$V_{base} = 4000$	Volts	(Ref. 17)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	I _{FL} = 102	Amps	(Ref. 17)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 7.00$		(Ref. 17)
	$I_{LRC} = 714.0$		
Starting Power factor	$PF_{start} = 0.20$		(Ref. 17)

Motor Cable data

ł

Conductor Size	3/C - #4/0 -5kV		
Cable Number	30876		
Cable Length (feet)	L = 233	(ETAP)	00
Cable Impedance (ohms)	$Z_{cable} = 0.01489 + j0.00834$	(ÉTAP)	R3

Motor parameters to be used to determine starting time of the pump.

Motor Base Torque	Torque _{rated} = 1180	ft-lb	(Ref. 15)
WK ² Pump (wet)	WK _{pump} = 18.1	lb-ft ²	(Ref. 15)
WK ² Motor	$WK_{motor} = 220.0$	ib-ft ²	(Ref. 15)
Motor rated RPM	RPM = 3600		(Ref. 15)

2) Starting kVA of Core Spray Pump

Calculating the starting kVA at base voltage

SKVA₁ =
$$(\sqrt{3} \times V_{base} \times I_{LRC})/1000$$
 SKVA₁ = 4946.7

Calculating starting kVA at operating voltage

$$KVA_{start1} = (V_{op}^2 N_{base}^2) \times SKVA_1$$

$$KVA_{start1} = 5350.4$$

at Pf_{start} = 0.20

The starting kVA is converted at starting power factor to the following KW and KVAR values:

Motor parameters

CoreSpray_{start} = $(KVA_{start} \times PF_{start}) + j \times [KVA_{start1} \times (sin(acos(PF_{start})))]$ CoreSpray_{start} = 1070.08 + j5242.29 kVA

ii) When the Core Spray Pump starts, MOVs 1402-38A, 1402-25A, 1501-22A, 1501-21B, 202-5A will also start operating. The starting load is summarized in Table 4B, with the results as follows:

Additional Starting auxiliary load:

 $Load_{start} = 163.2 + j294.1 \text{ kVA}$

iii) When the Core Spray Pump starts, at that time, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the Core Spray Pump alone. The running kW & kVA from the ETAP DG2/3_T=5sec scenario is:

> $KW_{ETAP_{100\%}} = 1448$ $KVAR_{ETAP_{100\%}} = 850$ $KVA_{ETAP_{100\%}} = 1679$

The current at 100% voltage (i.e. at 4.16kV) from ETAP is:

I_{run_100%} = 232.9 Amps

The KVA & KW from the special ETAP scenario DG2/3_T=5sVI output at reduced voltage are:

 $V_{reduced} = 2246 \qquad Volts$ $KW_{reduced} = 1369$ $KVAR_{reduced} = 763$ $KVA_{reduced} = 1567$ R4

The power factor from the same ETAP scenario at reduced voltage running load is:

The calculated current at the reduced voltage for this kVA load is:

Ireduced = 402.9 Amps R4

R4

| R4

Therefore, the incremental difference of current is:

$$I_{delta} = I_{reduced} - I_{run_100\%}$$

$$I_{delta} = 170.00 \quad \text{Amps}$$

$$R4$$

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{op} \times I_{delta}) / 1000 \qquad KVA_{delta} = 1224.9 \qquad R4$$

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

Core Spray Pump starting load:	CoreSpray _{start} = 1070.08 + j5242.29	kVA	
Additional starting load:	$Load_{start} = 163.2 + j294.1$	kVA	
Incremental running load equiv.:	KVA _{increment} = 1070.57 + j595.21	kVA	R4

Total Starting kVA equivalent:

 $Vector_{start} = \sqrt{Re(Total_{start})^2 + Im(Total_{start})^2}$

Vector_{start} = 6550.14 kVA

Calc. No. 9389-46-19-3 Rev. 004 Page 10.2-18

To determine the initial starting voltage (V_{curve_initia}) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

$V_{curve_initial} = 62.6\%$	of 4160V		R4
V _{drop} = V _{curve_initial}	x 0.97		·
V _{drop} ≂ 60.72%	of 4160V		R4

Voltage recovery after 1 second:

$$V_{curve_1sec} = 89.8\%$$
 of 4160V
 R4

 $V_{drop_1sec} = V_{curve_1sec} \times 0.97$
 $V_{drop_1sec} = 87.11\%$ of 4160V

v) The impedance of the pump feed cable, as defined earlier:

 $Z_{cable} = 0.01489 + j0.00834$ ohms

|Z_{cable} |= 0.0171 ohms

The maximum motor terminal line-to-line voltage drop which may occur on this cable given the LRC is:

$l_{LRC} = 714.0$	Amps		
V _{detta_max} = √3 x I _{LRC} x	Z _{cable})	V _{deita_max} = 21.11	Volts
V _{delta_%} = V _{delta_max} / V	V _{op} x 100	V _{delta_%} = 0.51%	of 4160V

Deducting the voltage drop due to motor feed cable to determine the actual voltage at the motor terminals, the initial starting voltage at the motor terminals is:

$$V_{initial.CSP} = V_{drop} - V_{delta_{\%}}$$

 $V_{initial.CSP} = 60.21\% \text{ of } 4160V$

The voltage after 1 second at the motor terminals is:

 $V_{1second.CSP} = V_{drop_1sec} - V_{delta_{\%}}$ $V_{1second.CSP} = 86.60\% \text{ of } 4160V$

Calculation of Motor Starting Time:

Initial Starting Voltage (converted to decimal)

Vi = Vinitial.CSP / 100

 $V1 = V_{1second,CSP} / 100$

Voltage at 1 second (converted to decimal)

Total inertia of the motor and pump together from above (WK²):

 $WK_{pump} = 18.1$ lb-ft² $WK_{motor} = 220.0$ lb-ft²

 $WK2 = WK_{pump} + WK_{motor}$

WK2 = 238.10 $lb-ft^2$

The following variables define the speed intervals and corresponding motor and pump torque increments necessary to compute the starting time of the pump.

%RPM_n - initial RPM of increment as a percentage of rated RPM

%RPM_f - final RPM of increment as a percentage of rated RPM

- %Torque_{Motor} motor torque value from pump torque-speed curve read from the midpoint of the applicable speed range.
- %Torque_{Pump} pump torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Volt - either the initial voltage (Vi) or the voltage at 1 second (V1).

Note that the determination of which voltage (%Volt) to use is made when the motor acceleration time exceeds 1 second, and that can only be determined by looking at the calculated cumulative time below (i.e. Vi until 1 second, V1 after that).

Calc. No. 9389-46-19-3 Rev. 004 Page 10.2-20

R4

%rpm _o	%rpm _r	%Torque _{Motor}	%Torque _{Pump}	%Volt
0	10	0.89	0.00	Vi
10	20	0.90	0.00	Vi
20	30	0.90	0.02	V1
30	40	0.90	0.06	<u>V1</u>
40	50	0.90	0.13	V1
50	60	0.94	0.20	V1
60	70	1.02	0.26	V1
70	80	1.18	0.35	V1
80	90	1.61	0.46	V1
90	95	2.25	0.58	V1
95	99	2.35	0.65	V1

Compute the motor torque at the initial voltage (Vi) and at 1 second (V1) using the motor torque at motor rated voltage (Ref 15).

$$V_{OP} = 4160$$
 Volts
 $V_{base} = 4000$ Volts

 $Torque_{Motor.at.voltage} = [Torque_{rated} \times (%Volt \times V_{op})^2 / V_{base}^2]$ ft-lb

Convert the percentage of motor torque from the curve to motor torque by using the applicable motor torque computed at Vi and V1 above.

Torque_{Motor} = (Torque_{motor} x Torque_{Motor,at voltage})

ft-lb

Torque of the pump is determined by multiplying the pump torque from Ref. 15 by the base torque of the motor.

Torque_{Pump} = Torque_{rated} x %Torque_{Pump} ft-lb

Net torque is the motor torque minus the pump torque:

Torque_{Net} = Torque_{Motor} - Torque_{Pump} ft-lb

Speed increment (% of rated RPM):

(

 $\%\Delta_{rpm} = \%rpm_{f} - \%rpm_{o}$

Time in seconds to accelerate through an RPM increment is calculated by the following:

Cumulative time from 0% to full speed at Δ_{mm} increments.

Time_{cumul} = Total Cumulative Start Time

Calculations:

%rpm _f	%Torque _{Motor}	%Torque _{Pump}	%Torque _{Net}	Time	Time _{cumul}
10	411.85	0.00	411.85	0.68	0.68
20	416.48	0.00	416.48	0.67	1.35
	861.42	23.60	837.82	0.33	1.68
40	861.42	70.80	790.62	0.35	2.03
50	861.42	153.40	708.02	0.39	2.43
60	899.70	236.00	663.70	0.42	2.85 R4
70	976.27	306.80	669.47	0.42	3.26
80	1129.41	413.00	716.41	0.39	3.65
90	1540.98	542.80	998.18	0.28	3.93
95	2153.54	684.40	1469.14	0.09	4.02
99	2249.26	767.00	1482.26	0.08	4.10

Therefore, the total time for this pump to accelerate is: Time_{cumul10} =

seconds

4.10

5) Starting of Containment Cooling Service Water Pump 3A (500HP)

Motor parameters

Base Voltage (motor rated voltage)	$V_{base} = 4000$	Volts	(Ref. 40)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	l _{FL} = 67	Amps	(Ref. 40)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 5.91$		(Ref. 40 & 43)
	$h_{LRC} = 395.97$		
Starting Power factor	$PF_{start} = 0.20$		(Ref. 41)

i) Starting kVA of CCSW Pump

Calculating the starting kVA at base voltage

SKVA₁ =
$$(\sqrt{3} \times V_{\text{base}} \times I_{\text{LRC}})/1000$$
 SKVA₁ = 2743.4

Calculating starting kVA at operating voltage

 $KVA_{start1} = (V_{op}^{2}/V_{base}^{2}) \times SKVA_{1}$ $KVA_{start1} = 2967.2$ at $Pf_{start} = 0.20$

The starting kVA is converted at starting power factor to the following KW and KVAR values:

 $CCSW_{start} = (KVA_{start1} \times PF_{start}) + j \times [KVA_{start1} \times (sin(acos(PF_{start})))]$ $CCSW_{start} = 593.44 + j2907.27 \qquad kVA$

ii) The CCSW Pumps are turned on manually between 10 minutes and 2 hours depending on the situation. For the purpose of this calculation the CCSW Pump 3A is turned on by the operator after 10 minutes into the event and CCSW Pump 3B is turned on shortly after CCSW Pump 3A.

The CC Heat exchanger Discharge Valve is required to operate to exchange CC residual heat with the CCSW system. When CCSW Pump 3A starts, the Containment Cooling Heat Exchanger Discharge Valve also starts. When CCSW Pump 3B starts, the CC Heat Exchanger Discharge Valve is considered to be in operation (i.e. running load), however, at this time the CCSW Pump Cubical Cooler Fans (total 4) are also starting.

This calculation will only calculate the voltage dip due to the starting of CCSW Pump 3A (the first CCSW pump) instead of CCSW Pump 3B because the starting kVA (due to the voltage dip) for the load already on the diesel when the 3A pump starts is the largest. However, the 3A pump is conservatively evaluated with the starting kVA of the loads that start concurrently with the 3B CCSW pump. The starting load is summarized in Table 4B, with the results as follows:

Additional Starting auxiliary load:

(.

 $Load_{start} = 62.7 + j60$ kVA

iii) When the CCSW Pump 3A starts, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the CCSW Pump 3A alone.

All of the valves which are initiated by LOOP/LOCA have completed their operations and have stopped operating before CCSW Pump 3A was started. Therefore, these valve loads are taken off from the initial running load.

The running kW & kVA from the ETAP scenario DG2/3 T=10-m is:

 $KW_{ETAP_{100\%}} = 2181$ $KVAR_{ETAP_{100\%}} = 1153$ $KVA_{ETAP_{100\%}} = 2467$

The current at 100% voltage (i.e. at 4.16kV) from ETAP is:

Irun_100% = 342.4 Amps

The KVA & KW from the special ETAP scenario DG2/3_T10-ml output at reduced voltage is:

 $V_{reduced} = 2246 \quad Volts$ $KW_{reduced} = 2107$ $KVAR_{reduced} = 1074 \quad R4$ $KVA_{reduced} = 2365$

The power factor from the same ETAP scenario at reduced voltage running load is:

 $PF_{reduced} = 0.891$ R4

The calculated current at the reduced voltage for this kVA load from ETAP is:

Ireduced = 607.7 Amps

Calc. No. 9389-46-19-3 Rev. 004 Page 10.2-24

Therefore, the incremental difference of current is:

The incremental KVA (KVA_{detta}) used to determine additional starting kVA is

$$KVA_{deita} = (\sqrt{3} \times V_{op} \times I_{deita}) / 1000 \qquad KVA_{deita} = 1911.6 \qquad R4$$

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

$$\frac{\text{KVA}_{\text{increment}} = (\text{KVA}_{\text{deita}} \times \text{PF}_{\text{reduced}}) + j \times [\text{KVA}_{\text{deita}} \times (\sin(a\cos(\text{PF}_{\text{reduced}})))]}{\text{KVA}_{\text{increment}} = 1703.21 + j867.86} \text{ kVA}$$

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

CCSW Pump 3A starting load:	CCSW _{start} = 593.44 + j2907.27		kVA	
Additional starting load:	Load _{start} = 62.7 + j60		kVA	
Incremental running load equiv .:	KVA _{increment} = 1703.21 + j867.86	~	kVA	R4

Total Starting kVA equivalent:

ĺ

 $Vector_{start} = /Re(Total_{start})^2 + Im(Total_{start})^2$

Vector_{start} = 4502.75 kVA

Calc. No. 9389-46-19-3 Rev. 004 Page 10.2-25

R4

R4

To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_isec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

$V_{curve_initial} = 69.9\%$	of 4160V	R4
$V_{drop} = V_{curve_initial} \times 0$	0.97	
$V_{drop} = 67.80\%$	of 4160V	R4

Voltage recovery after 1 second:

$V_{curve_1sec} = 96.7\%$	of 4160V	R4
V _{drop_1sec} = V _{curve_1sec} x	: 0.97	
$V_{drop_{1sec}} = 93.80\%$	of 4160V	R4

Calc. No. 9389-46-19-3 Rev. 004 Page 10.2-26 (റ...)

CALC NO. 9389-46-19-3

REVISION 004

PAGE NO. 11.0-1

XI COMPARISON OF RESULTS WITH ACCEPTANCE CRITERIA

Comparison of results with Acceptance Criteria when DG2/3 power Unit 2 loads

A. <u>Continuous loading of the Diesel Generator</u>

The results of the calculation show that the maximum continuous load on the Diesel Generator is 2609 kW (ETAP Scenario DG2/3_T=10+m), which is slightly above the 2600 kW continous rating of the Diesel Generator. However, this loading value is well within the 2860kW 2000hr rating of the DG. This loading value occurs only while the 1st CCSW pump is energized and prior to deenergizing one of the two LPCI pumps. The maximum long term DG loading is 2491 kW when both CCSW pumps are in operation (ETAP Scenario DG2/3_CRHVAC). Therefore, from a continuous loading point of view the DG 2/3 has adequate capacity to accept the emergency load under LOOP concurrent with LOCA in accordance with the acceptance criteria.

If the EDG is at 102% of its nominal frequency, the EDG load is expected to be 1.02^3 or 1.06 times larger since input power is proportional to the speed cubed (Section V.5). This results in a maximum loading of 2609kW x $1.02^3 = 2769$ kW which is within the 2000 hr 2860kW rating of the diesel.

The lowest power factor for the EDG load during the DG2/3_T=10+m, DG2/3_T=10++m and DG2/3_CRHVAC is 87.7%. This value is below the 88% acceptance criteria.

B. Transient loading of the Diesel Generator

Results of this calculation show that the minimum recovery voltage after 1 second following the start of any large 4-kv motors is 87% of 4160V which is above the 80% recovery requirement in the acceptance criteria.

This calculation shows that when the Core Spray Pump starts, the initial voltage dips below 61% of operating voltage (i.e. 4160v). However, within 1 second after the start, voltage recovers to above 87% of 4160v. This voltage dip and recovery analysis utilizes the results of dynamic DG characteristics reflected in the manufacturer's curve. The curve includes the combined effect of exciter and governor in order to provide recovery voltages.

In this calculation, the voltage dip was conservatively calculated from the Dead Load Pick up curve utilizing the total KVA loading on the DG bus. The Dead Load Pickup curve indicates that reactive load (KVAR) should be used to determine the voltage dip when using this curve. Even with that conservatism, the minimum voltage recovery after 1 second following the start is 87% of 4160v. After one second, the voltage will continue to improve due to exciter and governor operation. These recovery voltages during the motor starting period (after the first second) are much better than the voltage expected during operation from the offsite power source under degraded voltage condition.

Due to momentary sharp voltage drops below 61% during large motor starting, certain contactors or relays may drop out, and that could cause some control circuits to de-energize. Table 2A of this calculation shows that none of the 480V DG powered loads have a seal-in circuit, and therefore these loads will restart as soon as the adequate voltage returns. The calculation shows that the voltage will recover to more than 87% within 1 second following the start and will continue recover to 100% voltage due to

CALC NO.	9389-46-19-3	REVISION	003	PAGE NO. 11.0-2
XI	COMPARISON OF RESU exciter and governor oper recover to 100% of rated	JLTS WITH ACCEPTANCE CR ration. Strip chart (Ref. 23) of th voltage within 3 to 4 seconds. T	ITERIA (con e DG surveil he 480v load	it'd) llance tests show that the DG ds which may drop out will
	experience recovery volta impedances (such as cab restarting of 480v loads w	iges sufficient to pick up at differ ole size and length) and variation vill have minimum impact on the	ent times du s in loading DG perform	e to variations in the network in each bus. This diverse ance.
	Due to this momentary sh this calculation shows tha operating voltage is back. cause any unacceptable of operating time of those va operating time is below th References 46 through 53	arp drop, operating valves may t these valves would start opera The analysis in Table 2A show effect on the valve operation. The alves to increase by 2 seconds. e time limit set by various Dresd 3).	stop momen ting again as s that the mo e momentar Even with th en Operating	tarily. However, Table 2A of soon as the sufficient pmentary voltage drop will not y drop may cause the at pause, the increased g Procedures (see
	For LOOP concurrent with following the Core Spray r the excitor and governor of starting current at reduced starting time at motor rate power will be much worse operation due to over curr concurrent with LOCA.	a LOCA the minimum voltage red motor start. The voltage will con- characteristics. Due to the mome d voltage is shorter. Because pro- d voltage and during operation fin- than the voltages when powered ent is not a concern when opera	covery is mo tinue to impr entary nature otective devi rom offsite p d by the DG) ting from the	re than 87% after one second R3 ove after one second due to e of this dips the duration of ces are set to allow adequate ower (voltages from offsite the protective device DG power during LOOP
	Starting times for large au calculated to ensure the st seconds Therefore, durin previous motor is at full sp	tomatically starting motors during tarting times of LPCI Pumps and ig the starting sequence, the pur need before the next motor starts	g LOOP con I Core Spray nps start wit	current with LOCA were Pump do not-exceed 5 hin the allowable time and the
• .				

CALC NO. 9389-46-19-3 REVISION 004 PAGE NO. 11.0-3 XI COMPARISON OF RESULTS WITH ACCEPTANCE CRITERIA (cont'd) Comparison of results with Acceptance Criteria when DG2/3 powers Unit 3 loads Continuous loading of the Diesel Generator Α The results of the calculation show that the maximum continuous load on the Diesel Generator is 2638 kW (ETAP Scenario DG2/3_T=10+m), which is above the 2600kW continuous rating of the Diesel Generator. However, this loading value is well within the 2860kW 2000hr rating R4 of the DG. This loading value occurs only while the 1st CCSW pump is energized and prior to de-energizing one of the two LPCI pumps. The maximum long term DG loading is 2518 kW when both CCSW pumps are in operation (ETAP Scenario DG2/3 CRHVAC). Therefore, from a continuous loading point of view the DG2/3 has adequate capacity to accept the emergency load under LOOP concurrent with LOCA in accordance with the acceptance criteria. If the EDG is at 102% of its nominal frequency, the EDG load is expected to be 1.02^3 or 1.06times larger since input power is proportional to the speed cubed (Section V.5). This results in a maximum loading of 2638kW x 1.02³ = 2800kW which is within the 2000 hr 2860kW rating of R4 the diesel. The lowest power factor for the EDG load during the DG2/3 T=10+m, DG2/3 T=10++m and DG2/3_CRHVAC is 87.9%. This value is below the 88% acceptance criteria. Transient loading of the Diesel Generator R Results of this calculation show that the minimum recovery voltage after 1 second following the start of any large 4-kv motors is 87% of 4160V which is above the 80% recovery requirement in the acceptance criteria. This calculation shows that when the Core Spray Pump starts, the initial voltage dips below 61% of operating voltage (i.e. 4160v). However, within 1 second after the start, voltage recovers to at least 87% of 4160v. This voltage dip and recovery analysis utilizes the results of dynamic DG characteristics reflected in the manufacturer's curve. The curve includes the combined effect of exciter and governor in order to provide recovery voltages. In this calculation, the voltage dip was conservatively calculated from the Dead Load Pick up curve utilizing the total KVA loading on the DG bus. The Dead Load Pickup curve indicates that reactive load (KVAR) should be used to determine the voltage dip when using this curve. Even with that conservatism, the minimum voltage recovery after 1 second following the start is 87% of 4160v. After one second, the voltage will continue to improve due to exciter and governor operation. These recovery voltages during the motor starting period (after the first second) are much better than the voltage expected during operation from the offsite power source under degraded voltage condition. Due to momentary sharp voltage drops below 61% during large motor starting, certain contactors or relays may drop out, and that could cause some control circuits to de-energize. Table 2B of this calculation shows that none of the 480V DG powered loads have a seal-in circuit, and therefore these loads will restart as soon as the adequate voltage returns. The calculation shows that the voltage will recover to more than 87%

CALC NO.	9389-46-19-3	REVISION	003	PAGE NO. 11.	0-4/51
CALC NO.	9389-46-19-3 <u>COMPARISON OF RESULT</u> within 1 second following governor operation. Stri recover to 100% of rated will experience recovery network impedances (su This diverse restarting o Due to this momentary s 2B of this calculation sho sufficient operating volta voltage drop will not cau drop may cause the operating operating operating operating operating volta	REVISION S WITH ACCEPTANCE CRI g the start and will continue re ip Chart (Ref. 23) of the DG s d voltage within 3 to 4 second voltages sufficient to pick up uch as cable size and length) f 480v loads will have minime sharp drop, operating valves to ows that these valves would so uge is back. The analysis in T se any unacceptable effect o rating time of those valves to	003 TERIA (co ecover to 1 surveillance ds. The 480 at differen and variati um impact may stop m start operat Table 2B sh n the valve increase b	PAGE NO. 11. nt'd) 00% voltage due to exciter a tests show that the DG 0v loads which may drop out t times due to variations in th ons in loading in each bus. on the DG performance. nomentarily. However, Table ing again as soon as the lows that the momentary operation. The momentary y 2 seconds. Even with that	<u>0-4/c(</u> ind
	y various Dresden Operating is more than 87% after one ontinue to improve after one he momentary nature of this Because protective devices d during operation from offsit voltages when powered by th concern when operating from LOOP concurrent with LOCA Core Spray Pump do not pumps start within the	R3 le le n			
	allowable time and the pr	revious motor is at full speed	before the	next motor starts.	

CALC NO. 9389-46-19-3

REVISION 004

PAGE NO. 12.0-1(企人

XII CONCLUSIONS

The results of the calculation show that the maximum continuous running load under the maximum loading scenario is less than the 2860 kW 2000hr rating of the Diesel Generator. The loading of the DG at maximum frequency of 102% is within the 2000 hr nameplate rating. Also, the worst voltage recovery after one second following the start of large 4kv motor (Core Spray Pump motor) is above 87% of DG terminal rated voltage. This 87% voltage recovery is above the minimum voltage recovery of 80% per the DG specification K-2183 requirement. The worst case power factor for the 10 minute and beyond time period is 87.7 which is below the acceptance criteria. The DG surveillance procedures and Technical Specification Bases should be revises accordingly.

The starting times for LPCI Pumps 2A, 2B, 3A, and 3B are less than 4 seconds, and the starting time for Core Spray Pumps 2A and 3A are less than 5 seconds. All of these pump starting times are below the maximum allowable starting time of 5 seconds, and therefore, are acceptable.

Also, the analysis in Tables 2A & 2B for Unit 2 and Unit 3, respectively, and the detailed explanation under the Calculation and Results section show that while some of the control circuits may dropout during the lowest portion of the voltage dip, no adverse effects are identified and no protective devices are expected to operate. This calculation also shows that momentary voltage dip will not cause the travel time of any MOV to increase any longer than allowable.

CALC NO. 9389-46-19-3 REVISION 004 PAGE NO. 13.0-1(five

XIII RECOMMENDATIONS

The worst case power factor for the 10 minute and beyond time period is 87.7 which is below the acceptance criteria. The Dresden Design/Licensing basis should be assessed to determine the impact due to this result.
CALCULATION PAGE

CALC	NO.	9389-46-19-3	REVISION	004	PAGE NO.	14.0-1
XIV	RE	FERENCES				
	1)	S & L Standard ESI-167, Revision	n 4-16-84, Instruction for Com	puter Progr	ams.	
	2)	Operation Technology Software,	ETAP PowerStation & Users	Manual, Ve	rsion 5.5.0N.	R4
	3)	Unused				•
	4)	Dresden DG 2/3 Calculation 7312	7-33-19-3, Revision 10.			
×	5)	Quad Citles DG 1 Calculation 73	18-33-19-1, Revision 0.			
	6)	Dresden Units 2 & 3, Equipment	Manual from GE, Number GE	K-786.		
	7)	Dresden Re-baselined Updated F	SAR, Revision O.		•	
	8)	Guidelines for Estimating Data (U Byron & Braidwood), which is use	lsed by Electrical Analytical Di d for determining % PF and e	vision in Va fficiency (At	rious Projects like Clinte tached).	on,
	9)	ANSI / IEEE C37.010-1979 for De Motor,	etermining X/R Range for Pow	er Transfor	mers, and 3-phase Indu	uctor
	10)	S & L Standard ESA-104a, Revisi	on 1-5-87, Current Carrying C	apacities of	Copper Cables.	
	11)	S & L Standard ESA-102, Revisio	n 4-14-93, Electrical & Physic	al Character	ristics of Electrical Cabl	es.
,	12)	Specification for Diesel Engine Ge	enerator Sets K-2183, Pages 3	3 and 8 (Atta	ached).	
	13)	Dead Load Pickup Capability (Loc (#SC-5056) by Electro-Motive Div	ked Rotor Condition) - Genera ision (EMD) (Attached).	ator Reactiv	e Load vs. % Voltage G	iraph
ל	14)	Speed - Torque - Current Curve (#	#297HA945-2) for Core Spray	Pump by G	E (Attached).	
	15)	Speed - Torque - Current Curve (#	#857HA264) for RHR/LPCI Pu	mp by GE (Attached).	

<u>"</u>	Calculation	For Diesel Ge	nerator 2/3 Loading Under	Calc. No.	9389-46-1
Sargence Lund	y Desi	gn Bases Acci	ient Condition	Rev. 2	Date
	X Safet	y-Related	Non-Safety-Related	Page 14-	.0-2 of
Client Com Ed	·		Prepared by		Date
Project Dresden Statio	n		Reviewed by		Date
Proj. No. 9389-46	Equip. No.		Approved by		Date
16.)					
, 	rawing No.	<u>Rev.</u>	Drawing No.	<u>Rev.</u>	
1:	2E-2301	Z	12E-2389A	B	
1:	2E-2302	J.	12E-2389D	С	
1:	2E-2302A	L	12E-2393	N	
1:	2E-2302B	w	12E-2397	н	
12	2E-2303, Sh. 1, 2	2 К	12E-2398	D	
12	2E-2304	S	12E-2399A	к	
12	2E-2305	Y	12E-2400A	S	
. 12	?E-2306	W	12E-2400B	M	
12	2E-2307	Y	12E-2400C, Sh. 1	AA	
12	E-2308	т	12E-2400C, Sh. 2	AA	
12	E-2311	AD	12E-2416	N	
12	E-2312	V	12E-2420A	P	
12	E-2318	AK	12E-2420B	М	
12	E-2320	AA	12E-2420C	D	
12	E-2328	D	12E-2429, Sh. 1	х	
12	E-2344, Sh. 1	P	12E-2429, Sh. 2	X	
12	E-2344, Sh. 2	Р	12E-2430, Sh. 1, 2	AW	
12	E-2344, Sh. 3	Р	12E-2431, Sh. 1	Х	
12	E-2344, Sh. 4	P	12E-2432	Ŷ	
121	E-2345, Sh. 1	AH	12E-2433	Μ	
121	E-2349, Sh. 1	W		·	
121	E-2349, Sh. 2	W	12E-2435, Sh. 1	X	
126	E-2349, Sh. 3	W	12E-2436, Sh. 1	W	
128	E-2350B, Sh. 2	V	12E-2436, Sh. 3	W	
			12E-2437, Sh. 1	AH	
12E	E-2351B, Sh. 1	AA	12E-2437, Sh. 2	AJ	

a contraction of the second se	Calculation Fo	r Diesel Ger	nerator 2/3 Loading Under	Calc. No.	9389-46-	
Sargene & Lundy"	Design	Bases Accid	lent Condition	Rev. 2 Date		
	X Safety-R	elated	Non-Safety-Related	Page /4	.0-3 of	
Client Com Ed			Prepared by	<u></u>	Date	
Project Dresden Station	······································		Reviewed by	······································	Date	
Proj. No. 9389-46	Equip. No.		Approved by		Date	
_		_				
Drawi	ng No.	<u>Rev.</u>	Drawing No.	Rev.		
12E-2	351B, Sh. 2	AC	12E-2437A	X		
12E-2	362	M	12E-2438, Sh. 1, 2	AL		
12E-2	363	K	12E-2438A	Y		
12E-2	364	ĸ	12E-2439	S		
12E-2	365	M	12E-2440, Sh. 1	Z		
12E-2	370	S	12E-2440, Sh. 2	Z		
12E-2	3728	M	12E-2440, Sh. 3	Z		
12E-2	3/3	۲ -				
12E-23	3/4	1	12E-2441, Sh. 1	vv		
12E-2	387B	G				
12E-24	141, Sn. 2	vv	12E-2674A	AG		
125-24	141, Sn. 3	VV NA	12E-2674C	X		
12E-24	141, Sn. 4	vv D	12E-2674D	5		
125-24			122-20740	S		
125-24	00, 311. 1, 2		125-20754			
125-25	01, 511. 1 01 Sh 2	AC	125-20756	R e		
125-25	06 Sh 1	AC	125-20100	10/		
125-20	06. Sh 2	AC	125-26770	vv \/		
12E-25	07B	F	12E-3345 Sh 1	۷ ۵۴		
126-20	 08	M	12E-3345 Sh 2	7		
12E-25	 08A	F	12E-3507A	- N		
12E-25	09, Sh. 1. 2	AG	12E-3507B	F		
12E-25	09A	L	12E-6628	Ċ		
12E-25	16	G	12E-6629	C		
12E-25 ⁻	17	н	12E-6631	D		

	Cak	culation For Diesel Ge	enerato	or 2/3 Loading Under		Calc. No. 9389-48-19-3	
Sergenic & Lundy"		Design Bases Accident Condition				Rev. 2 Date	
	x	Safety-Related		Non-Safety-Related		Page 14.0-4 of]
					_		-

Client Com Ed			Prepared by	Date
Project Dresden Statio	n		Reviewed by	Date
Proj. No. 9389-46	Equip. No.]	Approved by	Date

Drawing No.	Rev.	Drawing No.	Rev
12E-2520	Q.	12E-6552, Sh. 2	P
12E-2548	R	12E-6554A	F
12E-2592	J	12E-3312	AD
12E-3304	Q	12E-3318, Sh. 1	· X
12E-3306	Q	12E-3318, Sh. 2	z
12E-3311	AD	12E-3320	U

In addition to the above listed drawings, the draw the drawings listed in any Table 1 or Table 2 are also considered as references for this calculation.

- 17.) GE Drawing 992C510AB, Dresden Core Spray Pump Motor (Attached).
- 18.) GE Drawing 992C510, Dresden LPCI Pump Motor (Attached).
- 19.) IEEE Standard 399-1980, Chapter 8, for determining motor starting voltage drop at the source when some running load is is already present
- 20.) S & L Standard, ESI-253, Revision 12-6-91, Electrical Department instruction for preparation, review, and approval of electrical design calculations
- 21.) S & L Standard ESC-307, Revision 1-2-64, for checking voltage drop in starting ac motors
- 22.) Western Engine letter dated 1/19/87 to Mr. Wayne Hoan identifying the voltage dip curve applicable to Dresden and Quad Cities (Attached).
- 23.) Strip Chart for Diesel Generator 2/3 Surveilence Test: Dated March 7, 1992 (Attached).
- 24.) Walkdown Data for Diesel Generator 2/3 dated April 15, 1994 (Attached).
- 25.) DIT DR-EAD-0001-00 regarding the Battery Charger and UPS Models (Attached).
- 26.) Dresden Unit 2 Electrical Load Monitoring System (ELMS) AC, Calculation Number 7317-43-19-1, Revision 18.

22

27.) Dresden Unit 3 Electrical Load Monitoring System (ELMS) - AC, Calculation Number 7317-43-19-2, Revision 16.

<u>í</u>	Cale	culation For Diesel Ge	nerator 2/3 Loading Under	Calc	. No. 9389-46-19-3
Sargent & Lundy'''		Design Bases Accid	Rev.	2 Date	
	x	Safety-Related	Non-Safety-Related	Page	14.0-5 of

Client Com Ed		Prepared by	Date
Project Dresden Station		Raviewed by	Date
Proj. No. 9389-46 Equip. M	lo.	Approved by	Date

- 28.) DIT DR-EPED-0860-00; Loading Change for Dresden Unit 2 Division 1 (Attached).
- 29.) CIS-2: Tabulation for cables lengths (Attached).
- 30.) Dresden Re-baselined Updated FSAR, Revision 0, Table 8.3-3; DG loading due to Loss of Offsite AC Power (Attached).
- 31.) Dresden Re-baselined Updated FSAR, Revision 0, Figure 8.3-6 and 8.3-7, DG loading under Accident Condition (Attached).
- 32.) Dresden Station Fire Protection Reports -- Safe Shutdown Report dated July 1993, Table 3.1-1, DG Loading for Safe Shutdown (Attached).
- 33.) DIT DR-EPED-0862-00; Loading Change for Dresden Unit 3 Division 1 (Attached).
- 34.) DOP 0202-01, Revision 13; Unit 2 Reactor Recirculation System Startup (Attached).
- 35.) DELETED
- 36.) Calculation for Evaluation of 3HP, 460V CCSW Motor Minimum Voltage Starting Requirements; Calculation Number 9215-99-19-1, Revision 1.
- 37.) 4160 Volt Switchgeart Specification K-3141 (page 3-5 attached)
- 38.) Calculation for Single Line Impedance Diagrams for ELMS-AC; Calculation 7317-38-19-1, Revision 1.
- 39.) S & L Standard ESC-193, Revision 9-2-86, Page 5 for Determining Motor Starting Power Factor.
- 40.) Walkdown data for CCSW Pumps 2A, 2B, 2C, and 2D dated December 14, 1994; and walkdown data for CCSW Pumps 3A, 3B, 3C, and 3D dated December 15, 1994 (Attached).
- 41.) S & L Standard ESC-165, Revision 11-3-92, Electrical Engineering Standard for Power Plant Auxiliary Power System Design.
- 42.) Letter addressed to E. Guse from G.C. Mulick dated March 8, 1967 regarding EMD Inquiry No. 66-708 (attached).
- 43.) Hand calculation to determine LRC for CCSW Pumps (Attached).

CALCULATION PAGE

CALC NO.	9389-46-19-3	REVISION	003	PAGE NO. 14.0-6						
44)	Speed - Torque Curve (#257HA26	6) for Core Spray Pump by	GE (Attacl	hed)						
45)	Speed - Torque - Current Curve (#	#257HA265) for Core Spray	y Pump by (GE (Attached)						
46)	Memorandum from R.M. Dahlgren stroke times of various MOVs (Att	Memorandum from R.M. Dahlgren to C.A. Tobias dated December 30, 1994 regarding the measured stroke times of various MOVs (Attached).								
47)) CHRON Letter 0302643 to Mr. T. Rieck from E.J. Rowley and J.D. Williams dated June 21, 1994 regarding the measured stroke times and acceptable limits for various MOVs (Attached).									
48)	DOS 1600-18, Revision 15; Cold S	Shutdown Vaive Testing (p	gs 1, 18, 21	& 23 attached)						
49)	DOS 1600-05, Revision 4; Unit 3 0	Quarterly Valve Timing (pgs	1, 39 & 44	attached).						
50)	DOS 7500-02, Revision 11; SBGT attached).	System Monthly Surveillar	ice and Ope	erating Test (pgs 1 & 15						
51)	DOS 1600-03, Revision 4; Unit 2 0	Quarterly Valve Timing (pgs	1, 40, 45 8	46 attached).						
52)	Paper Titled "Safety Classification dated 12-23-91 (Attached).	of the Motor Operated Valv	ves for the F	Reactor Recirculation System"						
53)	Comparison table of MOV measure	ed stroke times vs. their ac	ceptable lim	nits (Attached).						
54)	Calculation for Dresden 2/I Safety- Number 9198-18-19-1, Revision 00	Related Continuous Load F 03, 003A	Running/Sta	rting Voltages; Calculation						
55)	Calculation for Dresden 3/I Safety-I Number 9198-18-19-3, Revision 00	Related Continuous Load F)3, 003A.	Running/Sta	rting Voltages; Calculation						
56)	EC 358579, Rev 000, Controlled De Evaluation 05-005.	ocument Changes Require	d to Suppor	t Closure of Operability R3						

CALCULATION PAGE

CALC NO.	9389-46-19-3	REVISION	004	PAGE NO.	14.0-7	(f:~i)
						
57)	Procedure DGA-12, Revision 55, "Partial	or Complete Loss of (Offsite Power"			
58)	Calculation DRE05-0038, Rev. 000A, "An	uxiliary Power Analysis	for Dresden U	nit 2"		
59)	Calculation DRE04-0019, Rev. 000B, "Au	uxiliary Power Analysis	for Dresden U	nit 3"		
60)	OPL-4, Rev. 003, GE LOCA Analysis Inp	uts for Dresden 2 & 3 a	and Quad Citie	s 1 & 2.		
61)	MOV 2-1501-22A & 22B Field Data Shee	et dated 3/13/03, (Attac	hment S)			{
62)	MOV 3-1501-22A & 22B Field Data Shee	t dated 3/13/03, (Attac	hment S)			{
63)	GE Correspondence, Containment Cooli 1971 (Attachment S)	ng Service Water Pum	ps – Motor Rat	ings, dated Februar	y 25,	
64)	Calculation DRE07-0003, Rev. 000, "El	DG Loading for CCSW	Pump LOCA	Long Term Cooling	a"	
65)	Calculation DRE07-0002, Rev. 000, "El	DG Loading for LPCI P	ump – LOCA L	ong Term Cooling"		.
66)	Calculation DRE07-0001, Rev. 000, "El	DG Loading for CS Pur	mp – LOCA Lo	ng Term Cooling"		
67)	Calculation 8982-13-19-4, Rev. 001A, " Minimum Starting Voltage:	Evaluation of 460V Die	sel Generator	Cooling Water Pum	p	
68)	EC 347745, Rev. 001, "Replace Diesei Motor – U2/3"	Generator Cooling Wa	ter Pump and I	Motor with New Purr	np and	
69)	TODI-07-003, Dated 2/1/07, "EDG Desi	gn Input Loading – RP	S MG Set Unio	aded" (Attachment	S)	PA
70)	Cameron Hydraulic Data, Copyright 199	15 by Ingersoll-Dresser	Pump Co (Atta	achment S).		
71)	A/R No. 00583950, "UFSAR Figures 8.3	3-4, -5, -6, -7 EDG Loa	d Profile Discre	pancies"		
72)	A/R No. 00578451, "DG Frequency Tole	erance Band not Reflec	ted in Calculat	ions"		
73)	Technical Specification Section SR 3.8.	1.12, SR 3.8.1.16 and 3	SR 3.8.1.19, Ai	mendment 185/180.		
74)	UFSAR Table 8.3.1, Rev. 5					
75)	Technical Specification Section SR 3.8.	1.15, Amendment 185/	180			
76)	EC 364072, Rev. 000, "Evaluate and De Generator 24-Hour Endurance Test."	termine Power Factor	and KVAR Rar	ige for Emergency D	Diesel	

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 2

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref.
No.		Shed				·	(P & ID)
23-1	RX Shutdown Cooling Pump 2C	Yes	Tripped on bus UV, and has no		12E-2516	G	1 1
2321	(2-1002-C)		auto start.		12E-2517	Н	
23-1	RX. Building Cooling Water	Yes	Tripped on LOCA.		12E-2397	н	1 1
2322	Pump 2A (2-3701-A)				<u> </u>		
23-1	RX Shutdown Cooling Pump 2A	Yes	Tripped on bus UV, and has no		12E-2516	G	1 1
2323	(2-1002-A)		auto start		12E-2517	<u>H</u>	
23-1	LPCI Pump 2B	No	Will operate in auto (starts 5	Assume in auto.	12E-2436	W	
2325	(2-1502-B)		seconds after UV relay resets).		Sh. 1 & 2]
Ì					12E-2437	AH	
				l	Sh. 1		
23-1	RX Cleanup Recirc. Pump 2A	Yes	Tripped on bus UV, and has no		12E-2520	L	
2326	(2-1205-A)	1	auto start.		1	1	
23-1	Feed to 480V SWGR 28	No	N.C. Does not trip and remains		12E-2349,	AC	
2327	(2-7328-28)	1	closed.	ł	Sh. 1		1
23-1	Main Feed from SWGR 23	No	Trips on Bus 23 UV, and is		12E-2344,	TV	1
2329		ł	manually closed before starting	1	Sh. 2		1
		1	the CCSW Pumps (10+		1		
		1	minutes).				
23-1	Core Spray Pump 2A	No	Will operate in auto (starts 10	Assume in auto.	12E-2429	X	
2330	(2-1401-A)	1	seconds after UV relay resets).		Sh. 1	í	
	,				12E-2430	AF	;
23-1	LPCI Pump 2A	No	Will operate in auto (starts 0	Assume in auto.	12E-2436	W	
2331	(2-1502-A)		seconds after UV relay resets).		Sh. 1 & 2		{
1		1			12E-2437	A	1
		ł.	{		Sh. 1	Į	
23-1	Bus Tie to 33-1	No	N.O. breaker with no auto close.		12E-2345	В	1
2332		<u> </u>	,			1	
40	Aux. Pt. Indicating Lights, Meter,	No	Will continue to operate		12E-6628	B	-
	and Relay Comb.		(0 seconds)	1			
28	Main Feed (2-6723-27)	No	N.C. Does not trip and remains		12E-2349	TAC	2
2B	· · ·		closed.		Sh. 2		1

Calc. No. 9389-46-19-3 Rev. 2 Page A1 Proj. No. 10014-012

Automatically Turn On and Off Devices Under the Design Basis Accident Condition

Dresden Station - Unit 2/3 (Swing Diesel)

EDG 2/3 Powering Unit 2

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
28	Bus 28-29 Tie	No	N.O. and remains open.		12E-2349,	AC	
2C 28	(2-7328-2-7329) Fuel Pool Cooling Water Pump	Yes	Tripped on bus UV, and has no		12E-2548	R	
3A	2A (2-1902-A)		auto start.	·			
28 3B	RX Building Vent Fan 2A (2A-5703)	Yes	Tripped on SBGT initiation.		12E-2399A	K	
28 3C	RX Building Vent Fan 2C (2C-5703)	Yes	Tripped on SBGT initiation.		12E-2399A	K	
28 3D	RX Cleanup Demin. Auxiliary Pump (2-1206)	Yes	Tripped on bus UV, and has no auto start.		12E-2520	N	
28 4A	480 MCC 28-1 (2-7828-1P1)	No	N.C. Does not trip and remains closed.		12E-2374	AB	
28 48	480 MCC 28-2 (2-7828-2A)	No	N.C. Does not trip and remains closed.		12E-2374	AE	
28 4C	RX Building Exhaust Fan 2A (2A-5704)	Yes	Tripped on SBGT initiation.		12E-2399A	ĸ	
28 4D	480 MCC 28-3 (2-7828-3A1)	No	N.C. Does not trip and remains closed.		12E-2374	AE	3
28 5A	480 MCC 28-7 (2-7828-7A1)	No	N.C. Does not trip and remains closed.		12E-2374	A	3
28 5C	South Turbine Room Vent Fan 2A (2A-5702)	Yes	Tripped on LOCA.		12E-2387E	3 G	
28 5D	Recirc M-G Set Vent Fan 2A (2A-5701)	Yes	Tripped on LOCA.		12E-24200		•
28 6A- 6D	Drywell Cooler Blower 2A, 2B, 2F, and 2G (2A,B,F,G-5734)	Yes	Tripped on LOCA.		12E-2393	N	
28-1 A1	Diesel Gen Starting Air Compressor 2/3A (2/3-6600-A)	No	Will operate in auto as long as pressure is below 230 psi (0 seconds).	Assume in auto.	12E-23511 Sh. 1	BA	A M173
28-1 . A3	120/208V Distr Xfmr 28-1	No	Will continue to operate (0 seconds)		12E-2674/	AA	C

Calc. No. 9389-46-19-3 Rev. 2 Page A2 Proj. No. 10014-012

D2EXCEL.XLS - U2 Table 1

Automatically Turn On and Off Devices Under the Design Basis Accident Condition

Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 2

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref.
No.		Shed				<u> </u>	(P & ID)
28-1	Safety System Jockey Pump	Yes	Trips on loss of voltage and does		12E-2674A	AG	
B1	(2-1401-4)		not auto start.				
28-1	Drywell and Torus Purge	Yes	Tripped on SBGT initiation.		12E-2393	K	
B2	Exhaust Fan 2A (2A-5708)						
28-1	Closed Cooling Water Drywell	No	NO and remains open.		12E-2398	D	M20
B 3	Return Valve 2B (2-3706)			· · · · · · · · · · · · · · · · · · ·			
28-1	Shutdown Cooling Return	No	NC and interlocked closed.		12E-2508E	J	M32
B4	Isolation Valve 2B (2-1001-5B)				12E-2508	M	
					12E-2501	AC	1
1				· ·	Sh. 1 & 2		
28-1	Cleanup System Return Isolation	No	NO and interlocked closed (0		12E-2509A	L	M30
C1	Valve (2-1201-7)		seconds).	· ·	12E-2509	AC	
1				}	12E-2501	AC	1
		1			Sh. 1 & 2	1	1
28-1	Cleanup System Inlet Isolation	No	NO and interlocked closed (0		12E-2509A	TL	M30
C2	Valve (2-1201-1)	1	seconds).		12E-2509	AC]
		{			12E-2501	AC	
1		· ·			Sh. 1 & 2		
28-1	Shutdown Cooling Return	No	NC and interlocked closed.		12E-2508E	J	M32
C3	Isolation Valve 2A (2-1001-5A)	[12E-2508	M	
}		í			12E-2501	AC	:1
		{			Sh. 1 & 2		
28-1	Shutdown Cooling Inlet Isolation	No	NC and interlocked closed.		12E-2508A	F	M32
C4	Valve 2A (2-1001-1A)	ł			12E-2508	M	1
		1			12E-2501	AC	
		1			Sh. 1 & 2		}
28-1	CRD Hydraulic System Pressure	No	NO and remains open.	1	12E-2416		M34
D1	Cont. Valve 2A (2-302-8)	1			1	1	
28-1	Torus/Drywell Air	Yes	Trips on loss of voltage and does	si	12E-2372E		+
D2	Compressor 2A (2-8549-A)	1	not auto start.		1	1	

Calc. No. 9389-46-19-3 Rev. 2 Page A3 Proj. No. 10014-012

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 2

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref.
No.		Shed			·	•	(P & ID)
28-1	Shutdown Cooling Inlet Isolation	No	NC and interlocked closed.		12E-2508A	F	M32
E2	Valve 2B (2-1001-1B)				12E-2508	М	
					12E-2501	AC	
	·				Sh. 1 & 2		
28-1 E3	RWCU Isolation Valve Bypass (2-1201-1A)	No	NC and remains closed.		12E-6816D	F	
28-1	Core Spray Pump Recirc.	No	NO and interlocked open, but		12E-2433	M	M27
E4	Isolation Valve 2A (2-1402-38A)]	when flow is over low flow level,		-	}] }
			valve will close (10 seconds after UV reset).				
28-1	Diesel Transfer Pump 2/3	No	Will operate in auto (0 seconds).	Assume in auto.	12E-2351B	AA	M41/2
F1	(2/3-5203)	l			Sh. 1	ł	1 1
28-1	RX Building Emergency Lighting	No	Has 1 minute time delay; enter in		12E-2674C	U	
F2	(2-7902)		calculation 10 seconds after UV			ł	
		1	relay resets.				
28-1	LPCI Core Spray Pump Area	No	Controlled by thermostat.	Assume cooler starts at 0	12E-2393	K	
F3	Cooling Unit 2A (2-5746-A)	1	· .	seconds after UV reset.		{	
						1	
28-1	Standby Liquid Control Pump 2A	No	Will not operate with switch in	Assume switch is in OFF	12E-2460	T	
F4	(2-1102A)		OFF position.	position.			
28-1	Diesel Gen 2/3 Vent Fan (2/3-	No	Will operate in auto (0 seconds).	Assume in auto.	12E-2351B	AA	M1297
G3	5790) (Normal Feed)	1			Sh. 2		
					12E-2674D	S	<u> </u>
28-1	Core Spray Outboard Isolation	No	NO and interlocked open.		12E-2431	Ī	M27
H1	Valve 2A (2-1402-24A)	1	1		Sh. 1		
28-1	Core Spray Inboard Isolation	No	NC and interlocked open.	For conservatism, assume low	12E-2431	X	M27
H2	Valve 2A (2-1402-25A)	1		pressure permissives coincide	Sh. 1		{
1		1	1	with Core Spray Pump start (10	12E-2430	AF	·
Ł		1		seconds after UV relay reset).	1		1

Calc. No. 9389-46-19-3 Rev. 2 Page A4 Proj. No. 10014-012

•

Automatically Turn On and Off Devices Under the

Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 2

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref.
10.		Sned			105 2440	·	(P & (D)
20-1 H3	Contain, Cooling Heat	NO	NC and interlocked closed when		12E-2440	2	NI25/1
115	(2 1501 2A)		Auto anona uton CCSM Dumm	· · · · · · · · · · · · · · · · · · ·		ΔН	
	(2-1501-3M)		Auto opens when CCSVV Pump		125-2431	N D	
			is started (10+ minutes).		3 11. 1		{
28-1	Core Spray Pump Suction Valve	No	NO and interlocked open.		12E-2432	Y	M27
H4	2A (2-1402-3A)				12E-2430	AF	}
28-1	Core Spray Test Bypass Valve	No	NC and interlocked closed.		12E-2433	M	M27
J1	2A (2-1402-4A)	1	1		12E-2430	AF	} }
28-1	Inbd Cond Return Vlv	No	NO and interlocked closed (0		12E-2507B	F	M28
J3	(2-1301-4)		seconds).		12E-2506	AC	
L		Į –			Sh. 1 & 2	{	1 1
28-1	Steam Line Isol VIv	No	NO and interlocked closed (0		12E-2507B	F	M28
] J4	(2-1301-1)		seconds).		12E-2506	AC	
		1			Sh. 1 & 2]	
28-1	LPCI Pump 2A Suction Valve	No	NO and interlocked open.		12E-2440	Z	M29/1
K1	(2-1501-5A)	1			Sh. 1	{	ļ (
		Į			12E-2437	AH	
					Sh. 1		
28-1	LPCI Pump 2B Suction Valve	No	NO and interlocked open.		12E-2440	Z	M29/1
K2	(2-1501-5B)	1	1		Sh. 1	l	
1		1			12E-2437	AH	l I
		1			Sh. 1	{	1.
28-1	LPCI Pumps Drywell Spray	No	NC and interlocked closed.	1	12E-2440	Z	M29/1
K3	Discharge Valve 2A	1		1	Sh. 3		1
1	(2-1501 <i>-</i> 27A)	1	1		12E-2437	AH	ŧĮ
					Sh. 1 & 2		1
28-1	Stm/iso Inbd Cond Vlv	No	Manual operation only.	Assumed off.	12E-3507B	F	1
K4	(3-1301-1 and -4)(alternate feed					1	

Calc. No. 9389-46-19-3 Rev. 2 Page A5 Proj. No. 10014-012

\sim

Table 1A

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 2

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref.
No.		Shed		ر			(P&ID)
28-1	Torus Spray Valve 2A	No	NC and interlocked closed.		12E-2441	W	M29/1
	(2-1501-38A)				Sh. 1		
}					12E-2437	AH	}
					Sh. 1 & 2		
28-1	Torus Spray Valve 2B	No	NC and interlocked closed.		12E-2441	W	M29/1
12	(2-1501-20A)				Sh. 2	1	
					12E-2437	AH	
					Sh. 1 & 2	})
28-1	Torus Ring Spray Valve 2A	No	NC and interlocked closed.		12E-2441	W	M29/1
L3	(2-1501-18A).				Sh. 1	1	
		1			12E-2437	AH	
					Sh. 1 & 2	(.	
28-1	Torus Ring Spray Valve 2B	No	NC and interlocked closed.		12E-2441	W	M29/1
L4	(2-1501-19A)				Sh. 2		
					12E-2437	AH	1
					Sh. 1 & 2	1	
28-1	LPCI Pumps Drywell Spray	No	NC and interlocked closed.		12E-2441	Tw	M29/1
M2	Discharge Valve 2B				Sh. 3		1
	(2-1501-28A)			1	12E-2347	AH	
L				(Sh. 1 & 2	1	1
28-1	LPCI Header Crosstie Isolation	No	NO and remains open.		12E-2440	TZ	M29/1
<u>M3</u>	Valve 2A (2-1501-32A)				Sh. 3	Į	1
28-1	LPCI Pump Flow Bypass Valve	No	NO and interlocked open but		12E-2440	TZ	M29/1
N1	2A (2-1501-13A)	ł	when flow is over low flow level,)	Sh. 2		
{		{	valve will close (0 seconds after		12E-2437	A	1
L		l	UV relay reset).		Sh. 2	1	1
28-1	LPCI Heat Exchanger Bypass	No	NO and interlocked open.		12E-2440	$\pm z$	M29/1
N2	Valve 2A	1			Sh. 2	1	
	(2-1501-11A)	1	1	1	12E-2437A	l x	
}		1		1	12E-2437	A	1
L		ł	(1	Sh. 1	1	1

Calc. No. 9389-46-19-3 Rev. 2 Page A6 Proj. No. 10014-012 ,

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diese!) EDG 2/3 Powering Unit 2

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref.
NO.		Shed			······		(P & ID)
28-1	West LPCI/Core Spray Room	Yes		It is not expected that the water	12E-2674G	R	
N3	Sump Pump 2B			level in Core Spray Room will go	12E-2677C	U	1
	(2-2001-511B)			up,			
28-1	Post LUCA H2 & O2 Monitoring	No	Load will operate at 0 seconds.		12E-6554A	F	
144	Sample Pump 2A (2-2252-81A)		·· ·		12E-6552	P	
					Sh. 2		
28-1	East LPCI/Core Spray Room	No		It is not expected that the water	12E-2674G	R	
N5	Sump Pump 2A			level in Core Spray Room will go	12E-2677C	U	
	(2-2001-510A)			up,			
28-1	Closed Cooling Water Drywell	No	NO and remains open.		12E-2398	D	M20
P4	Supply Valve (2-3702)			1)	i -	} }
28-1	Closed Cooling Water Header	No	NO and remains open.		12E-2398	D	M20
P5	Isolation Valve (2-3701)			1	}		i 1
28-2	Main Steam Line Drain Valves 2-	No	NC and remains closed.		12E-2450	D	M12/2
AZ	220-90 A, B, C, and D			j	{ . ·	1	
28-2	120/240V Distr Xfmr 28-2	No	Will continue to operate (0		12E-2326A	AG	
A4		{	seconds)			}	j
28-2	Condensate Transfer Jockey	No	Will operate in auto (0 seconds).	Assume in auto.	12E-2373	M	[
B1	Pump (2-4321)	ł				1	
28-2	Contain. Cool. Serv. Water	No	Turns on by operating CCSW		12E-2675A	AE	M274
B2	Pump Cub. Cooler A, Fan 1]	Pump 2B (starts at 10++		12E-2435	X	
	(2-5700-30A)		minutes).		SH. 1		{
28-2	RX Protection System	No	Will operate when voltage is		12E-2592	TK	<u>+</u>
B 3	M-G Set 2A (2-8001-A)	{	restored to MCC 28-2.			{ `` {	{
28-2	RX Building Vent to Standby Gas	No	NO and remains open.	1	12E-2400A	ts	M49
C1	Treatment Damper 2/3A	1	1	1	12E-2400C	R	
	(2-7503)				Sh 1 & 2		}
28-2	120/240V Essential Service Bus	No	Will not operate		125.26750	$\frac{1}{2}$	+
C2	(Reserve Feed)		The list sporate.		126-20/30		1
28-2	120/240V Instrument Bus	No	Will continue to operate	+	125-26758	10	+
C3	(Normal Feed)		(Oseconds)] ~	

Calc. No. 9389-46-19-3 Rev. 2 Page A7 Proj. No. 10014-012

Automatically Turn On and Off Devices Under the **Design Basis Accident Condition** Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 2

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref.
No.		Shed				•	(P & 1D)
28-2	120/240V Distr Xfmr Inst 2B	No	Will continue to operate	· · · · · · · · · · · · · · · · · · ·	12E-2675B	Q	
C4			(0 seconds).	-			
28-2	H2 Seal Oil Pump	No	Will operate in auto (0 seconds).	Assume in auto.	12E-2365	L	
D1	(2-5350-MSOP)				i		
28-2	125 Volt Battery Charger 2A	No	Will continue to operate (0		12E-2389D	A	
D3	(2-8300-2A)		seconds).			}] [
28-2	H2 Seal Oil Vacuum Pump	No	Will operate in auto (0 seconds)	Assume in auto.	12E-2365	L	
D4	(2-5350-SOVP)						
28-2	Condensate Transfer Pump 2A	Yes	Trips on loss of voltage, and	Assume in auto.	12E-2370	a	
D5	(2A-4301)		does not auto start.			[
28-2	Contain. Cool. Serv. Water	No	Turns on by operating CCSW		12E-2675C	ts	M274
E2	Pump Cub. Cooler A, Fan 2		Pump 2B (starts at 10++)	12E-2435	x I	
	(2-5700-30A)	ł	minutes).		SH. 1		
28-2	Diesel Starting Air Compressor	No	Will operate in auto as long as	Accume in auto	12E-2350B	1	M173
E3	2A		pressure is below 230 psi (0	Assume in auto.	Sh 1	Ĭ	
	(2-4611-A)	}	seconds)	1	U 1. 1	1	1
28-2	Turbine Vacuum Breaker Valve	No	NC and remains closed	Accuma in auto	125 2262	$\frac{1}{2}$	╉╼╼╼╼
E5	(2-4901)		no and remains closed.	Assume in auto.	122-2303	1	1
28-2	Contain Cool Serv Water	No	Turns on by operating COSIA		105 26750		
F1	Pump Cub Cooler 8 Fan 1		Pump 29 (starts at 10++		122-20/36	15	1
	(2-5700-308)	}	minutes)		125-2430	1^	
28-2	Submersible Severas Pump	Na	minutes).		50, 1	+	
F2	(2/3-2001-260)			Presume that pump is not in area	12E-2675C	S	1
28-2	Contain Cool Serv Water			of LUCA		<u> </u>	
F3	Pump Cub Coder B Ean 2		Purps 2D (starts at 40)		12E-2675C	S	
1.0	(2-5700-30R)	1.	Fump 28 (starts at 10++		12E-2435	X	ł
28.2	Main Steam Instation Mature (1-14	<u> </u>	minutes).		Sh. 1		
EA	Coolom (2 5759 A they Lit)	NO	1	Considering the worst case that	12E-2675C	S	1
1 ' T	Coolers (2-3/36 A min h)			the manual starter has no UV,	12E-2435	JX	1
1		1		the coolers will start to operate at	Sh. 1	1	
				0 seconds.	l		
20-2	120/240V Distr Xfmr Inst 2A	No	Will continue to operate		12E-2675B	Q	
L La		}	(0 seconds).		1	1	1

Calc. No. 9389-46-19-3 Rev. 2 Page A8 Proj. No. 10014-012

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 2

Bus No. Equipment Description/No. Load Shed Known Fact Assumption / Eng. Judgement Dwg. Ref. No. Rev (P & ID) 28-3 120/208V Distr Xfmr FP-2 No Will always operate (0seconds). 12E-2360B V					a second seco		_	
No. Issied	Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref.
28-3 120/208V Distr Xfmr FP-2 No Will always operate (diseconds). 12E-2670B V 2C3 2C3 2C3 2C4 No Will always operate (diseconds). 12E-2350B V 28-3 Diesel Circ, Water Heater 2 No Will remain on (0 seconds) Assume DG 2 failed to start. 12E-2350B V 28-3 DG Lube Oil Circulating Pump No Will remain on (0 seconds) 12E-2350B V 28-3 DG Lube Oil Circulating Pump No Will operate in auto (starts after Core Spray Pump but before CCSWP). Shown as a running load at 10- minutes. Assume in auto. 12E-2362 M 28-3 Turbine Turning Gear No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading. 12E-2362 M 28-3 Turbine Turning Gear No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turbine Gear Piggyback Motor (2-5601-TGM) No Will operate in auto. This load is shown to have operated (i.e. the Turbine Gear Motor is engaged and show as the operating load in ELMS). Assume in auto. 12E-2362 M 28-3	INO,		Disc			405 00700	÷	
2C3 Diesel Circ. Water Heater 2 No When DG 2 gets up to the speed the contacts will open. Assume DG 2 failed to start. 12E-2350B U 28-3 DG Lube Oil Circulating Pump A2 No Will remain on (0 seconds) 12E-2350B V 28-3 DG Lube Oil Circulating Pump A2 No Will remain on (0 seconds) 12E-2350B V 28-3 DG Lube Oil Circulating Pump A3 No Will remain on (0 seconds) 12E-2350B V 28-3 Turning Gear Oil Pump A3 No Will operate in auto (starts after Core Spray Pump but before CSWP). Shown as a running load at 10- minutes. Assume in auto. 12E-2362 M 28-3 Turbine Turning Gear (2-5601-TGM) No Motor will start when the turbine speed has decreased to a set opint. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turbine Turning Gear Piggyback Motor (2-5601-TGM) No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, B2- 2D, 2D, and 2E No Manual operation only. These are manually started prior to the Turning Gear operation (shown in final loading). 12E	28-3	120/208V Distr Xfmr FP-2	No	Will always operate (Oseconds).	1	126-20/00		
28-3 Diesel Circ. Water Heater 2 No When DG 2 gets up to the speed the contacts will open. Assume DG 2 failed to start. 12E-2350B U 28-3 DG Lube Oil Circulating Pump A2 Motor 1HP (2-6657) No Will remain on (0 seconds) 12E-2350B V 28-3 DG Lube Oil Circulating Pump A3 No Will remain on (0 seconds) 12E-2350B V 28-3 DG Lube Oil Circulating Pump A3 No Will remain on (0 seconds) 12E-2350B V 28-3 DG Lube Oil Circulating Pump A3 No Will remain on (0 seconds) 12E-2350B V 28-3 Turning Gear Oil Pump A3 No Will operate in auto (starts after Core Spray Pump but before CCSWP). Shown as a running load at 10- minutes. Assume in auto. 12E-2362 M 28-3 Turbine Tuming Gear No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turbine Gear Piggyback Motor BM No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turbine Turbine Turbine Turbine Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2364 K 28-3 Zubite Bearing Lift Pump 2	2C3						<u> </u>	
A2 speed the contacts will open. Sh. 2 28-3 DG Lube Oil Circulating Pump A2 Motor 1HP (2-6657) No Will remain on (0 seconds) Motor 3/4HP (2-6660) 12E-2350B V 28-3 DG Lube Oil Circulating Pump A2 Motor 3/4HP (2-6660) No Will remain on (0 seconds) Motor 3/4HP (2-6660) 12E-2350B V 28-3 DG Lube Oil Circulating Pump A3 No Will operate in auto (starts after Core Spray Pump but before CCSWP). Shown as a running load at 10- minutes. Assume in auto. 12E-2362 M 28-3 Turbine Turming Gear (2-5601-TGM) No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turning Gear Piggyback Motor B1 No Will operate in auto. This load is shown to have operated (i.e. the Turbine Bearing Lift Pump 2A, B2 No Will operate Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2364 K 28-3 Turbine Bearing Lift Pump 2A, B6 No Will always operate (0 seconds). Assume in auto. 12E-23684 K 28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). Assume in auto. 12E-23684 K 28-3	28-3	Diesel Circ, Water Heater 2	No	When DG 2 gets up to the	Assume DG 2 failed to start.	12E-2350B	Įυ	1
28-3 DG Lube Oil Circulating Pump A2 Motor 1HP (2-6657) No Will remain on (0 seconds) 12E-2350B V 28-3 DG Lube Oil Circulating Pump A2 Motor 3/4HP (2-6660) No Will remain on (0 seconds) 12E-2350B V 28-3 Turning Gear Oil Pump A3 No Will operate in auto (starts after Core Spray Pump but before CCSWP). Shown as a running load at 10- minutes. Assume in auto. 12E-2362 M 28-3 Turbine Turning Gear (2-5601-TGM) No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turning Gear Piggyback Motor B1 No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Show in calculation in the final loading. 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, B2 No Motor will start when the turbine shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). These are manually started prior to the Turning Gear operation (shown in final loading). 12E-2364 K 28-3 Z50 Volt Battery Charger #2 No Will always operate (0 seconds). Assume in auto. 12E-23684 K 28-3 <td>A2</td> <td></td> <td></td> <td>speed the contacts will open.</td> <td></td> <td>Sh. 2</td> <td>1</td> <td></td>	A2			speed the contacts will open.		Sh. 2	1	
A2 Motor 1HP (2-6657) Sheet 2 28-3 DG Lube OI Circulating Pump Motor 3/4HP (2-6660) No Will remain on (0 seconds) 12E-2350B V 28-3 Turning Gear Oil Pump A3 No Will operate in auto (starts after Core Spray Pump but before CCSWP). Shown as a running Ioad at 10- minutes. Assume in auto. 12E-2362 M 28-3 Turbine Turning Gear No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turning Gear Piggyback Motor B1 No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, B6 No Manual operation only. These are manually started prior to the Turbing Gear operation (shown in final loading). 12E-2364 K 28-3 Z50 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Z50 Volt Battery Charger #2 No Will operate in auto (0 seconds). Assume in auto. 12E-2364 K 28-3 Z50 Volt Battery Charger #2 No Will operate in a	28-3	DG Lube Oil Circulating Pump	No	Will remain on (0 seconds)		12E-2350B		} 1
28-3 Motor 3/4HP (2-6660) No Will remain on (0 seconds) 12E-2350B V 28-3 A3 Turning Gear Oil Pump No Will operate in auto (starts after Core Spray Pump but before CCSWP). Shown as a running load at 10- minutes. Assume in auto. 12E-2362 M 28-3 Turbine Turning Gear (2-5601-TGM) No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turbine Turning Gear (2-5601-TGM) No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turbine Gear (2-5601-TGM) No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turbing Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, (2-5620-A, B, C, D, E) No Manual operation only. These are manually started prior to the Turbing Gear operation (shown in final loading). 12E-2364 K 28-3 Z50 Volt Battery Charger #2 No Will always operate (0 seconds). Assume in auto. 12E-2368A B 28-3 Diesel Cooling Water Pump 2/3 (2/3-3903) No Will	A2	Motor 1HP (2-6657)				Sheet 2		
A2 Motor 3/4HP (2-660) Sheet 2 28-3 Turning Gear Oil Pump (2-5600-TGOP) No Will operate in auto (starts after Core Spray Pump but before CCSWP). Shown as a running load at 10- minutes. Assume in auto. 12E-2362 M 28-3 Turbine Turning Gear (2-5601-TGM) No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turning Gear Piggyback Motor (2-5601-TGM) No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, B2- 2B, 2C, 2D, and 2E B6 No Manual operation only. These are manually started prior to the Turning Gear operation (shown in final loading). 12E-2364 K 28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2376B V 28-3 Diesel Cooling Water Pump 2/3 (2/3-3903) No Will operate in auto (0 seconds). Assume in auto. 12E-2376B V 28-3 Diesel Cooling Water Pump 2/3 (2/3-3903) No Will operate in auto (0 seconds). Assume in auto. 12E-2376B V	28-3	DG Lube Oil Circulating Pump	No	Will remain on (0 seconds)		12E-2350B	V	
28-3 Turning Gear Oil Pump (2-5600-TGOP) No Will operate in auto (starts after Core Spray Pump but before CCSWP). Shown as a running load at 10- minutes. Assume in auto. 12E-2362 M 28-3 Turbine Turning Gear A4 No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turning Gear Piggyback Motor B1 No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Miggyback Motor B1 No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Miggyback Motor B1 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, B2- No Will always operate (0 seconds). These are manually started prior to the Turning Gear operation (shown in final loading). 12E-2364 K 28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Diesel Cooling Water Pump 2/3 (2/3-3903) No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V 12E-2351B	A2	Motor 3/4HP (2-6660)				Sheet 2		
A3 (2-5600-TGOP) No Core Spray Pump but before CCSWP). Shown as a running load at 10- minutes. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turbine Turning Gear A4 No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turning Gear Piggyback Motor B1 No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2364 K 28-3 Turbine Bearing Lift Pump 2A, B2- 2B, 2C, 2D, and 2E B6 No Mo Manual operation only. These are manually started prior to the Turning Gear operation (shown in final loading). 12E-2364 K 28-3 250 Volt Battery Charger #2 C2 No Will operate in auto (0 seconds). 12E-2376B V 28-3 Diesel Cooling Water Pump 2/3 (2/3-9003) No Will operate in auto (0 seconds). Assume in auto. 12E-2876B V 28-3 Diesel Cooling Water Pump 2/3 (2/3-9003) No Will operate in auto (0 seconds). Assume in auto. 12E-2876B V 28-3 Diesel Cooling Water Pump 2/3 (2/3-9003) No Will operate in au	28-3	Turning Gear Oil Pump	No	Will operate in auto (starts after	Assume in auto.	12E-2362	M	1
28-3 Turbine Turning Gear No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turbine Turning Gear Piggyback Motor B1 No Will operate in auto. This load is shown to have operated (i.e. the Turbine	43	(2.5600_TGOP)		Core Spray Pump but before			1	1
28-3 Turbine Turning Gear (2-5601-TGM) No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turning Gear Piggyback Motor B1 No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, B2 No Mo Will operation only. These are manually started prior to the Turning Gear operation (shown in final loading). 12E-2364 K 28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Diesel Cooling Water Pump 2/3 D1 No Will operate in auto (0 seconds). Assume in auto. 12E-2368 V 12E-2351B A			1	CCSIMP) Shown as a subbing			1	1
28-3Turbine Turning Gear (2-5601-TGM)NoMotor will start when the turbine speed has decreased to a set point.Show in calculation in the final loading condition.12E-2362M28-3Turning Gear Piggyback Motor B1NoWill operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS).Assume in auto.12E-2362M28-3Turbine Bearing Lift Pump 2A, 2B, 2C, 2D, and 2E B6NoMoManual operation only.These are manually started prior (shown in final loading).12E-2364K28-3250 Volt Battery Charger #2 (2/3-3903)NoWill always operate (0 seconds).12E-2389AB28-3Diesel Cooling Water Pump 2/3 (2/3-3903)NoWill operate in auto (0 seconds).Assume in auto.12E-2351BAA8h 1Show 1Seconds).Show 1Seconds).Show 1Show 1Show 1			Į	CCSVVF). Showings a running				
28-3 Turbine Turning Gear (2-5601-TGM) No Motor will start when the turbine speed has decreased to a set point. Show in calculation in the final loading condition. 12E-2362 M 28-3 Turning Gear Piggyback Motor (2-5601-TGM-PBM) No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, (2-5620-A,B,C,D,E) No Will operate on only. These are manually started prior to the Turning Gear operation (shown in final loading). 12E-2364 K 28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Diesel Cooling Water Pump 2/3 D1 No Will operate in auto (0 seconds). Assume in auto. 12E-2364 V 12E-2351B A	L			ioau at 10- minutes.		10000	+	·{
A4 (2-5601-TGM) speed has decreased to a set point. loading condition. 28-3 Turning Gear Piggyback Motor (2-5601-TGM-PBM) No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, B2- No Manual operation only. These are manually started prior to the Turning Gear operation (shown in final loading). 12E-2364 K 28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Diesel Cooling Water Pump 2/3 D1 No Will operate in auto (0 seconds). Assume in auto. 12E-2368 V 28-3 Diesel Cooling Water Pump 2/3 D1 No Will operate in auto (0 seconds). Assume in auto. 12E-23676B V 28-3 Diesel Cooling Water Pump 2/3 No Will operate in auto (0 seconds). Assume in auto. 12E-2351B AA	28-3	Turbine Turning Gear	No	Motor will start when the turbine	Show in calculation in the final	12E-2362	I W	{
28-3 B1Turning Gear Piggyback Motor (2-5601-TGM-PBM)No No Shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS).Assume in auto.12E-2362M28-3 B2- B6 (2-5620-A,B,C,D,E)No NoManual operation only. Manual operation only.These are manually started prior to the Turning Gear operation (shown in final loading).12E-2364K28-3 C2250 Volt Battery Charger #2 (2-5620-A,B,C,D,E)NoWill always operate (0 seconds). Will operate in auto (0 seconds).12E-2389AB28-3 D1 (2/3-3903)Diesel Cooling Water Pump 2/3 (2/3-3903)NoWill operate in auto (0 seconds). Sh 1Assume in auto.12E-2351B AAAA	· A4	(2-5601-TGM)		speed has decreased to a set	loading condition.			
28-3 Turming Gear Piggyback Motor (2-5601-TGM-PBM) No Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Assume in auto. 12E-2362 M 28-3 Turbine Bearing Lift Pump 2A, B2- No Manual operation only. These are manually started prior to the Turning Gear operation (shown in final loading). 12E-2364 K 28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Diesel Cooling Water Pump 2/3 (2/3-3903) No Will operate in auto (0 seconds). Assume in auto. 12E-2351B AA	1		1	point.				
B1 (2-5601-TGM-PBM) shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS). Image: Comparison of Comparison	28-3	Turning Gear Piggyback Motor	No	Will operate in auto. This load is	Assume in auto.	12E-2362	M	
Z8-3 B6Turbine Bearing Lift Pump 2A, (2-5620-A,B,C,D,E)NoManual operation only.These are manually started prior to the Turning Gear operation (shown in final loading).12E-2364K28-3 C2250 Volt Battery Charger #2NoWill always operate (0 seconds).12E-2389AB28-3 C2Diesel Cooling Water Pump 2/3 (2/3-3903)NoWill operate in auto (0 seconds).Assume in auto.12E-2676B 12E-2351B AA Sh 1	B1	(2-5601-TGM-PBM)]	shown to have operated (i.e. the				1
28-3 B2- B6Turbine Bearing Lift Pump 2A, (2-5620-A,B,C,D,E)NoManual operation only.These are manually started prior to the Turning Gear operation (shown in final loading).12E-2364K28-3 C2250 Volt Battery Charger #2 (2/3-3903)NoWill always operate (0 seconds).12E-2389AB28-3 D1 (2/3-3903)Diesel Cooling Water Pump 2/3 (2/3-3903)NoWill operate in auto (0 seconds).Assume in auto.12E-2676B 12E-2351BV			}	Turbine Turning Gear Motor is]		1
28-3Turbine Bearing Lift Pump 2A, B2- B6NoManual operation only.These are manually started prior to the Turning Gear operation (shown in final loading).12E-2364 KK28-3250 Volt Battery Charger #2NoWill always operate (0 seconds).12E-2389AB28-3Diesel Cooling Water Pump 2/3 (2/3-3903)NoWill operate in auto (0 seconds).12E-2676B AAV	1			engaged and shown as the		ļ		
28-3 B2- B6Turbine Bearing Lift Pump 2A, (2-5620-A,B,C,D,E)NoManual operation only.These are manually started prior to the Turning Gear operation (shown in final loading).12E-2364 KK28-3 C2250 Volt Battery Charger #2 (2/3-3903)NoWill always operate (0 seconds).12E-2389A (0 seconds).B28-3 C2Diesel Cooling Water Pump 2/3 (2/3-3903)NoWill operate in auto (0 seconds).Assume in auto.12E-2676B (12E-2351B (12E-2351B)V	1		1	operating load in ELMS)		{		
28-3 250 Volt Battery Charger #2 No Manual operation only. These are manually started prior to the Turning Gear operation (shown in final loading). 12E-2364 K 28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Diesel Cooling Water Pump 2/3 No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V 12E-2351B AA Sh 1 Sh 1 Sh 1	100-	+	+	operanig ioda in ELWO).		105 0264	┼╦	-
B2- B6 2B, 2C, 2D, and 2E (2-5620-A,B,C,D,E) to the Turning Gear operation (shown in final loading). 28-3 250 Volt Battery Charger #2 No Vill always operate (0 seconds). 12E-2389A 28-3 Diesel Cooling Water Pump 2/3 (2/3-3903) No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V 12E-2351B AA Sh 1	28-3	I urbine Bearing Lift Pump 2A,	No	Manual operation only.	These are manually started prior	122-2364	1 K	
B6 (2-5620-A,B,C,D,E) (shown in final loading). 28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Diesel Cooling Water Pump 2/3 No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V 28-3 Diesel Cooling Water Pump 2/3 No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V 21 (2/3-3903) No Will operate in auto (0 seconds). Assume in auto. 12E-2351B AA	82-	2B, 2C, 2D, and 2E			to the Turning Gear operation]		
28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Diesel Cooling Water Pump 2/3 No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V 28-3 Diesel Cooling Water Pump 2/3 No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V 21 (2/3-3903) No Will operate in auto (0 seconds). Assume in auto. 12E-2351B AA	B6	(2-5620-A,B,C,D,E)	1		(shown in final loading).	ł		
28-3 250 Volt Battery Charger #2 No Will always operate (0 seconds). 12E-2389A B 28-3 Diesel Cooling Water Pump 2/3 No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V D1 (2/3-3903) No Will operate in auto (0 seconds). Assume in auto. 12E-2351B AA	1					ł		1
C2 Z8-3 Diesel Cooling Water Pump 2/3 No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V D1 (2/3-3903) 12E-2351B AA	28-3	250 Volt Battery Charger #2	No	Will always operate (0 seconds)		12E-2389/	A B	
28-3 Diesel Cooling Water Pump 2/3 No Will operate in auto (0 seconds). Assume in auto. 12E-2676B V D1 (2/3-3903) 12E-2351B AA Sh<1	C2					1		ł
D1 (2/3-3903) 12E-2351B AA Sh 1	28-3	Diesel Cooling Water Pump 2/3	No	Will operate in auto (0 seconds)	Assume in auto	12E-2676	stv	
Sh 1	D1	(2/3-3903)	}			12E-2351	BA	A
			1			Sh. 1		1

Calc. No. 9389-46-19-3 Rev. 2 Page A9 Proj. No. 10014-012

				ladie 1A				
		A	utomati	cally Turn On and Off Devices Unc	ler the			
	ĺ	1	1	Design Basis Accident Condition				
			Dres	Dresden Station - Unit 2/3 (Swing Diesel)				
				EDG 2/3 Powering Unit 2				
Bus No.	Equipment De	cription/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
28-7 B3	LPCI Inbd. Isola (2-1501	tion Valve 2A -22A)	No	NC and interlocked open (10 seconds after UV relay reset).	Since the break could occur on either side, assume that Loop B has the break, so Loop A is selected by the loop selection logic. The loads on 28/29-7 that auto start will be started at the worst case time between 5s and 15s after DG breaker closure	12E-2441 Sh. 4 12E-2437A 12E-2438A	W X Y	M29/1
28- 7 B4	Recirc. Loop By (2-202	pass Valve 24 9A)	No	NO and closes on LPCI initiation (10seconds after UV relay reset).	Since the break could occur on either side, assume that Loop B	12E-2420A 12E-2437A	PX	M2872
			-		has the break, so Loop A is selected by the toop selection Logic. The loads on 28/29-7 that	12E-2438A	Y	
					auto start will be started at the worst case time between 5s and 15s after DG breaker closure.			
					Shown as operating when 28/29-7 is re-energized. This is conservative.		\vdash	
28-7 C1	Recirc. Pump 2/ (2-20)	A Suction Valve 2-4A)	No	NO and remain open.		12E-2420	P	M26/2
28-7 C2	Recirc. Pump Valve (2-	2A Discharge 202-5A)	No	NO and interlock closed (10 seconds after UV relay reset).	Since the break could occur on either side, assume that Loop B has the break, so Loop A is selected by the loop selection logic. The loads on 28/29-7 that auto start will be started at the worst case time between 5s and	12E-2420 12E-2437A 12E-2438A	P X Y	M26/2
28-7 C3	Recirc. Pump Bypass Valv	2A Discharge e (2-202-7A)	No	NC and interlocked closed.	15s after DG breaker closure.	12E-2420A 12E-2437A	P	M26/2
	ومحمد والمستعين والمتر معتبين ومنتبعا والمنافع والمحادث والمك		_		4 .	1125-2430/	\ [[1 I

- . .

Calc. No. 9389-46-19-3 Rev. 3 Page A10 Proj. No. 10014-012 R3

Table 1A

Automatically Turn On and Off Devices Under the Design Basis Accident Condition

Dresden Station - Unit 2/3 (Swing Diesel)

EDG 2/3 Powering Unit 2

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
28-7 C4	Recirc. Loop Equalizing Valve 2A (2-202-6A)	Yes	Disconnected at MCC 28-7		12E-2662B	N	M26/2
28-7 D2	LPCI Outbd, Isolation Valve 2A (2-1501-21A)	No	NO and interlocked open.	Since the break could occur on either side, assume that Loop B has the break, so Loop A is selected by the loop selection logic. The loads on 28/29-7 that auto start will be started at the worst case time between 5s and 15s after DG breaker closure.	12E-2441 Sh. 3 12E-2437A 12E-2438A	W X Y	M29/1
29-7 A3	LPCI Outboard Isolation Valve 2B (2-1501-21B)	No	NO and interlocked closed (10 seconds after UV relay reset).	Since the break could occur on either side, assume that Loop B has the break, so Loop A is selected by the loop selection logic. The loads on 28/29-7 that auto start will be started at the worst case time between 5s and 15s after DG breaker closure.	12E-2441A 12E-2437A 12E-2438A	W X Y	M29/1
29-7 B1	Recirc. Pump 2B Discharge Bypass Valve (2-202-7B)	No	NC and remains closed.		12E-2420B 12E-2437A 12E-2438A	MXY	M26/2
29-7 B2	Recirc. Pump 2B Discharge Valve (2-202-5B)	Νο	NO and remains open.	Since the break could occur on either side, assume that Loop B has the break, so Loop A is selected by the loop selection logic. The loads on 28/29-7 that auto start will be started at the worst case time between 5s and 15s after DG breaker closure.	12E-2420B 12E-2437A 12E-2438A		M26/2
29-7 B3	Recirc. Loop Equalizing Valve 2B (2-202-6B)	Yes	Disconnected at MCC 29-7.		12E-26620	s	M26/2

Calc. No. 9389-46-19-3 Rev. 2 Page A11 Proj. No. 10014-012 .

					Table 1A	•			,
		}	A	utomatic	ally Turn On and Off Devices Und	er the			
		-		0	Design Basis Accident Condition				
				Dres	den Station - Unit 2/3 (Swing Dies	el)			
					EDG 2/3 Powering Unit 2	-			
ſ	Bus	Equipment Des	cription/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev	Other Ref.
ļ	No.			Shed				<u> </u>	(P & ID)
Ī	29-7	Recirc. Equal. By	pass Valve 2B	No	NC and remains closed.	Since the break could occur on	12E-2420B	M	M26/Z
	B4	(2-202	9B)		MOV 2-202-9A is shown as the	either side, assume that Loop B	-12E-2437A	X	
l		•			normaliy open by-pass valve.	has the break, so Loop A is	12E-2438A	Y	
						selected by the loop selection			
			1			logic. The loads on 28/29-7 that			
						auto start will be started at the			
				[worst case time between 5s and		1	
i			ĺ		•	15s after DG breaker closure.			
	29-7	Recirc. Pump 28	Suction Valve	No	NO and remains open.		12E-2420B	M	M26/2
	C2	(2-202	4B)	1					
	29-7	LPCI Inboard Iso	lation Valve 2B	No	NC and interlocked closed.	Since the break could occur on	12E-2441A	W	M29/1
	C3	(2-1501	228)	1		either side, assume that Loop B	12E-2437A	X	Į
	1		1			has the break, so Loop A is	12E-2438A	Y	[
	1		l l	∫ Ť		selected by the loop selection	}	1	1
			1		1	logic. The loads on 28/29-7 that	1		
	1			1		auto start will be started at the		1	1
]	[worst case time between 5s and	I	1	}
				1	1	15s after DG breaker closure.			
	1	(1		1	1	1	1	1

N.O. - Normally Open

N.C. - Normally Closed

N/A - Not Available

Note: All loads that are tripped off and interlocked off or require manual action to restart are considered Load Shed. Operating loads and loads with auto start capabilities that have power available and do not operate (i.e. an MOV that is N.O. and remains open) is considered NOT load shed.

Calc. No. 9389-46-19-3 Rev. 3 Page A12 Proj. No. 10014-012 RЗ

TABLE 2A

AFFECTS OF VOLTAGE DIP

PURPOSE

The purpose of Table 2 is to determine the affects of an AC voltage dip, that is low enough to de-energize control circuits ie., contactors, relays, etc., has on the operation of the mechanical equipment.

METHOD

Table 2 shows the results of the review. The conclusion of Table 2 is shown in the analysis of data section. Below is the explanation for each column in Table 2.

Explanation of What is Shown in the Column

Table 2 Column Description

Equipment Description/No.

Load Shed

Will the voltage dip at 5 seconds, 10 seconds, and 10 minutes affect the equipments' operation

(Question 1)

This column lists all of the loads connected to the DG buses. It is the same list as shown in Table 1.

All loads that are tripped off and interlocked off or require manual action to restart are considered load shed. Operating loads and loads with auto start capabilities that have power available that do not operate (i.e. an MOV that is N.O. and remains open) is considered not load shed.

The "affect" looked for is that the control circuit per the referenced schematics is de-energized or energized by a voltage dip. If the circuit was not energized before the dip and/or the energized state of the circuit did not change due to a dip, the answer is no. If the energized state of the circuit changed, the answer is yes.

Calc. No.9	89-46-19-3
Rev. O	Date
Page B1	
Proj. No.93	389-41

<u>. E 2</u>A

AFFECTS OF A VOLTAGE DIP

Table 2 Column Description

Will the equipment restart after the voltage recovery

(Question 2)

Will the equipment operate in an adverse mode due to a voltage dip

(Question 3)

Will the time delay in operation cause any adverse affect

(Question 4)

Explanation of What is Shown in the Column

This question is to verify that equipment required is restarted automatically after a voltage dip. Only AC control circuits need to be considered. DC control circuits will be unaffected by an AC voltage dip. Circuits that have seal-in contacts are types that would not restart.

If the answer to Question 1 is yes, and to Question 2 is yes, then Question 3 has to be answered. The "adverse modes" looked for are items like, valves moving in the wrong direction, time delay relays being reset by the dip causing equipment to operate for shorter or longer periods than required, etc.

If the answer to Question 1 is yes, and 2 is yes, Question 4 has to be answered. The time delay referred to is the one second it takes the DG to recover to above 80% after the start of a large motor. The adverse affects looked for are items like, could within one second the room temperature rise excessively if a cooler is de-energized, if a valve travel requires one more second to operate will its total travel time exceed design limits, etc.

The "no" answers to this question are based on the following engineering judgements:

- a. Some valves may require two seconds more to complete its travel. Valves operate normally less than a minute. The allowable total time is 120 seconds. Therefore with a voltage dip, the design allowable is not exceeded.
- b. Two-second time delays in room coolers, pumps, etc. would not cause rooms, equipment, etc. to overheat, etc.

Calc. No.9389-46-19-3							
Rev.	0	Date					
Page	82						
Proj.	No. 9	389-46					

TABLE 2A

AFFECTS OF A VOLTAGE DIP

Table 2 Column Description

Drawing Reference

Revision

Other Reference

Calc. No.99	89-46-19-3
Rev. O	Date
Page B3	
Proj. No. 9	389-46

Explanation of What is Shown in the Column

c. Instrument bus loads may give erroneous readings for a fraction of a second due to momentary sharp voltage drop. But the instrument bus is designed with transfer switch, which takes about one second to transfer the loads. Therefore, the operators are familiar with the behavior of these loads during abnormal condition. This will not require any special attention of the operators.

This drawing shows the main schematic or wiring diagram for the control circuit reviewed.

This is the revision number of the drawing referenced above.

.

Other references used to understand the operation of control circuit may be listed here or see the main reference section of this calculation.

ARGENT & LUNDY

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Røf.	Rev	Other Ref.
23-1 2321	RX Shutdown Cooling Pump 2C	Yes	N/A	N/A	N/A	N/A	12E-2516 12E-2517	G Н	
23-1 2322	RX Building Cooling Water Pump 2A	Yes	N/A	N/A	N/A	N/A	12E-2397	Н	
23-1 2323	RX Shutdown Cooling Pump 2A	Yes	N/A	N/A	N/A	N/A	12E-2516 12E-2517	G H	1
23-1 2325	LPCI Pump 2B	No	Yes, pump will slow down momentarily.	Yes, 125Vdc control.	No	No	12E-2436 Sh. 1 & 3 12E-2437 Sh.1	W AH	
23-1 2326	RX Cleanup Recirc. Pump 2A	Yes	N/A	N/A	N/A	N/A	12E-2520	L	1
23-1 2327	Feed to 480V SWGR 28 (2-7328-28)	No	No. Note 1.	N/A	N/A	N/A	12E-2349, Sh. 1	AC	1
23-1 2329	Main Feed from SWGR 23	No	No. Note 1.	N/A	N/A	N/A	12E-2344, Sh. 2	V	1
23-1 2330	Core Spray Pump 2A	No	Yes, pump will slow down momentarily.	Yes, 125Vdc control.	No	No	12E-2429 Sh. 1 12E-2430	X	-
23-1 2331	LPCI Pump 2A	No	Yes, pump will slow down momentarily.	Yes, 125Vdc control.	No	No	12E-2436 Sh. 1 & 3 12E-2437 Sh. 1	W AH	
23-1 2332	Bus Tie to 33-1	No	No. Note 1.	N/A	N/A	N/A	12E-2345	В	
40	Aux. Pt. Indicating Light, Meter, and Relay Comb.	No	No	Yes	No	No	12E-6628	В	+
28 28	Main Feed (2-6723-27)	No	No. Note 1.	N/A	N/A	N/A	12E-2349,	AD	1

Calc. No. 9389-46-19-3 Revision 2 Page No. B4 Proj. No. 10014-12

D2EXCEL.XLS · U2 Table 2

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
28 2C	Bus 28-29 Tie (2-7328-2-7329)	No	No. Note 1.	N/A	N/A	N/A	12E-2349, Sh. 3	AC	
28 3A	Fuel Pool Cooling Water Pump 2A	Yes	N/A	N/A	N/A	N/A	12E-2548	R	
28 38	RX Building Vent Fan 2A	Yes	N/A	N/A	N/A	N/A	12E-2399A	ĸ	
28 3C	RX Building Vent Fan 2C	Yes	N/A	N/A	N/A	N/A	12E-2399A	к	1
28 3D	RX Cleanup Demin. Aux. Pump	Yes	N/A	N/A	N/A	N/A	12E-2520	N	
28 4A	480 MCC 28-1 (2-7828-1P1)	No	No. Note 1.	N/A	N/A	N/A	12E-2374	AB	
28 4B	480 MCC 28-2 (2-7828-2A)	No	No. Note 1.	N/A	N/A	N/A	12E-2374	AB	1
28 4C	RX Building Exhaust Fan 2A	Yes	N/A	N/A	N/A	N/A	12E-2399A	к	
28 4D	480 MCC 28-3 (2-7828-3A1)	No	No. Note 1.	N/A	N/A	N/A	12E-2374	AB	
28 5A	480 MCC 28-7 (2-7828-7A1)	No	No. Note 1.	N/A	N/A	N/A	12E-2374	AB	1
28 5C	South Turbine Room Vent Fan 2A	Yes	N/A	N/A	N/A	N/A	12E-2387B	G	1
28 5D	Recirc. M-G Set Vent Fan 2A	Yes	N/A	N/A	N/A	N/A	12E-2420C	D	1
28 6A- 6D	Drywell Cooler Blower 2A, 2B, 2F, and 2G	Yes	N/A	N/A	N/A	N/A	12E-2393	N	1

Calc. No. 9389-46-19-3 Revision 2 Page No. 85 Proj. No. 10014-12

Г

D2EXCEL.XLS - U2 Table 2

.

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
28-1 A1	Diesel Gen Starting Air Compressor 2/3A	No	Yes. Air compressor will slow down momentarily.	Yes	No	N/A	12E-2351B Sh. 1	AA	M-173
28-1 A3	120/208V Distr Xfmr 28-1	No	Yes. Voltage will decrease momentarily.	Yes	No	N/A	12E-2326A	AG	
28-1 B1	Safety System Jockey Pump	Yes	N/A	N/A	N/A	N/A	12E-2674A	AG	
28-1 B2	Drywell & Torus Purge Exhaust Fan 2A (2A-5708)	Yes	N/A	N/A	N/A	N/A	12E-2393	K	
28-1 B3	Closed Cooling Water Drywell Return Valve 2B (2-3706)	No	No. Note 1.	N/A	N/A	N/A	12E-2398	D	M-20
28-1 B4	Shutdown Cooling Outlet Isolation Valve 2B (2-1001-5B)	No	No. Note 1.	N/A	N/A	N/A	12E-2508E 12E-2508 12E-2501 Sh. 1 & 2	J M AC	
28-1 C1	Cleanup System Outlet Isolation Valve (2-1201-7)	No	Yes. Vaive will stop momentarily.	Yes	No. N.O. and interlocked closed.	Yes. Will increase operating time, Howaver, increased time will be within acceptable limits.	12E-2509A 12E-2509 12E-2501 Sh. 1 & 2	L AC AC	M-30
28-1 C2	Cleanup System Inlet Isolation Valve (2-1201-1)	No	Yes. Vaive will stop momentarily.	Yes ·	No. N.O. and interlocked closed.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-2509A 12E-2509 12E-2501 Sh. 1 & 2	L AC AC	M-30
28-1 C3	Shutdown Cooling Outlet Isolation Valve 2A (2-1001-5A)	No	No, Note 1.	N/A	N/A	N/A	12E-2508E 12E-2508 12E-2501 Sh. 1 & 2	J M AC	M-32

Calc. No. 9389-46-19-3 Revision 2 Page No. B6 Proj. No. 10014-12

.

D2EXCEL_XLS - U2 Table 2

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
28-1 C4	Shutdown Cooling Inlet Isolation Valve 2A (2-1001-1A)	No	No. Note 1.	N/A	N/A	N/A	12E-2508A 12E-2508 12E-2501 Sh. 1 & 2	F M AC	
28-1 D1	CRD Hydraulic System Pressure Cont. Valve 2A (2-302-8)	No	No. Note 1.	N/A	N/A	N/A	12E-2416	L	M-34
28-1 D2	Torus/Drywell Air Compressor 2A	Yes	N/A	N/A	N/A	N/A	12E-23728	L	
28-1 E2	Shutdown Cooling Inlet Isolation Valve 2B (2-1001-1B)	No	No. Note 1.	N/A	N/A	N/A	12E-2508A 12E-2508 12E-2501 Sh. 1 & 2	F M AC	
28-1 E3	RWCU Isolation Valve Bypass 2- 1201-1A	No	No. Note 1.	N/A	N/A	N/A	12E-6816D	F	1
28-1 E4	Core Spray Pump Recirc. Isolation Valve 2A (2-1402-38A)	No	No	Does not operate until after Core Spray Pump is started and completes its operation before the CCSW Pump is started.	N/A	N/A	12E-2433	M	M27
28-1 F1	Diesel Transfer Pump 2/3 (2/3-5203)	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-2351B Sh. 1	AA	M-41
28-1 F2	RX Building Emergency Lighting	No	Yes. Light will dim momentarily.	Yes	No	N/A	12E-2674C	U	
28-1 F3	LPCI Core Spray Pump Area Cool. Unit 2A	No	Yes. Unit slows down momentarily.	Yes	No	N/A	12E-2393	к	1
28-1 F4	Standby Liquid Control Pump 2A (2-1102A)	No	No. Note 1.	N/A	N/A	N/A	12E-2460	T	+

Calc. No. 9389-45-19-3 **Revision** 2 Page No. 87 Proj. No. 10014-12

١

D2EXCEL.XLS - U2 Table 2

Other Bus No. Dwg. Ref. Rev Equipment Description/No. Will the Will the time delay in Load Will the voltage dips @ Will the equipment start 5s, 10s, & 10min. affect Ref. after voltage recovery ? operation cause any Shed equipt. the equipment's operation operate in adverse affect ? ? adverse mode due to the voltage dips? M. 12E-2351B AA 28-1 Diesel 2/3 Vent Fan Yes. Fan will slow down Yes N/A No No G3 Sh. 2 (2/3-5790) 1297 momentarily. 12E-2674D S Core Spray Outboard Isolation Valve 28-1 No. Note 1. 12E-2431 X M-27 N/A N/A N/A No H1 2A Sh. 1 (2-1402-24A) 28-1 Core Spray Inboard Isolation Valve No Yes Yes, Will increase 12E-2431 X M-27 Yes. Valve will stop No. N.C. and H2 2A operating momentarily. interlocked operating time. However, Sh. 1 (2-1402-25A) 12E-2430 AF increased time will be open. within acceptable limits. 28-1 Containment Cool. Heat Exchanger No No No (not required until No. N.C. and No 12E2440 Z M-29 H3 **Discharge Valve 2A** CCSW Pump is started) interlocked Sh. 1 Sh.1 (2-1501-3A) closed until 12E-2437 AA CCSW Pump Sh. 1 is started. 28-1 Core Spray Pump Suction Valve 2A No No. Note 1. N/A N/A N/A 12E-2432 Ŷ M-27 H4 (2-1402-3A) 12E-2430 AF Core Spray Test Bypass Valve 2A 28-1 No No. Note 1. N/A N/A N/A 12E-2433 M M-27 J1 (2-1402-4A) 12E-2430 AF .

Calc. No. 9389-48-19-3 Revision 2 Page No. 88 Proj. No. 10014-12

D2EXCELXLS - U2 Table 2

Bus No. Equipment Description/No. Load Will the voltage dips @ Will the equipment start Will the Will the time delay in Dwg. Ref. Rev Other Shed 5s, 10s, & 10min. affect after voltage recovery ? equipt. operation cause any Ref. the equipment's operation operate in adverse affect ? ? adverse mode due to the voltage dips ? 28-1 Indb Cond Return Viv No Yes. Valve will stop No. N.O. and Yes. Will increase 12E-2507B M-28 Yes F JЗ (2-1301-4) operating momentarily. interlocked operating time. However, 12E-2506 AC increased time will be closed. Sh. 1 & 2 within acceptable limits. 28-1 Steam Line Isol Viv No Yes. Valve will stop Yes No. N.O. and Yes. Will increase 12E-2507B F M-28 J4 (2-1301-1)momentarily. interlocked operating time. However, 12E-2506 AC increased time will be closed. Sh. 1 & 2 within acceptable limits. 28-1 LPCI Pump 2A Suction Valve No No. Note 1. N/A 12E-2440 N/A N/A Z M-20 **K1** (2-1501-5A) Sh. 1 Sh. 1 12E-2437 AH Sh. 1 28-1 LPCI Pump 2B Suction Valve (2-No No. Note 1. N/A N/A N/A 12E-2440 Z M-29 K2 1501-5B) Sh. 1 Sh. 1 12E-2437 AH Sh. 1 LPCI Pumps Drywell Spray 28-1 No No. Note 1. N/A N/A 12E-2440 N/A Z M-29 КЗ Discharge Valve 2A Sh. 3 Sh. 1 (2-1501-27A) 12E-2437 AH Sh. 1 & 2 28-1 Stm/Iso Inbd Cond Viv (3-1301-1 & No No. Note 1. N/A N/A N/A 12E-3507B F K4 3-1301-4)(alternate feed) 28-1 Torus Spray Valve 2A No No. Note 1. N/A N/A N/A 12E-2441 W M29, L1 (2-1501-38A) Sh. 1 Sh. 1 12E-2437 AH Sh. 1 & 2

Calc. No. 8389-46-19-3 Revision 2 Page No. 89 Proj. No. 10014-12

D2EXCEL.XLS - U2 Table 2

 \sum

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
28-1 L2	Torus Spray Valve 2A (2-1501-20A)	No	No. Note 1.	N/A	N/A	N/A	12E-2441 Sh, 2	W	M-29 Sh. 1
							12E-2437 Sh. 1 & 2	AH	
28-1 L3	Torus Ring Spray Valve 2A (2-1501-18A)	No	No. Note 1.	N/A .	N/A	N/A	12E-2441 Sh. 1 12E-2437 Sh. 1 & 2	W AH	M-29 Sh. 1
28-1 L4	LPCI Torus Ring Spray Valve 2A (2-1501-19A)	No	No. Note 1.	N/A	N/A	N/A	12E-2441 Sh. 2 12E-2437 Sh. 1 & 2	W AH	M-29 Sh. 1
28-1 M2	LPCI Pumps Drywell Spray Discharge Valve 2A (2-1501-28A)	No	No. Note 1.	N/A	N/A	N/A	12E-2441 Sh. 3 12E-2437 Sh. 1 & 2	W AH	M-29 Sh.1
28-1 M3	LPCI Header Crosstie Isolation Valve 2A (2-1501-32A)	No	No. Note 1.	N/A	N/A	N/A	12E-2440 Sh 3	Z	M-29
28-1 N1	LPCI Pump Flow Bypass Valve 2A (2-1501-13A)	No	Yes. Valve will stop operating momentarily.	Yes	No.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-2440 Sh. 2 12E-2437 Sh. 2	Z AH	M-29 Sh.1
28-1 N2	LPCI Heat Exchanger Bypass Valve 2A (2-1501-11A)	No	No. Note 1.	N/A	N/A	N/A	12E-2440 Sh. 2 12E-2437A 12E-2437 Sh. 1	Z X AH	M-29 Sh.1
28-1 N3	West LPCI/Core Spray Room Sump Pump 2B (2-2001-511B)	No	No. Note 1,	N/A	NA	N/A	12E-2674G	R	\uparrow

Calc. No. 8389-46-19-3 Revision 2 Page No. 810 Proj. No. 10014-12

D2EXCEL.XLS - U2 Table 2

 $\sum_{i=1}^{n}$

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
28-1 N4	Post LOCA H2 & O2 Monitor Sample Pump 2A	No	Yes. Pump will slow down momentarily.	Yes. Interlocked with LOCA.	No	N/A	12E-6554A 12E-6552 Sh. 2	F P	
28-1 N5	East LPCI/Core Spray Room Sump Pump 2A (2001-510A)	No	No. Note 1.	N/A	N/A	N/A	12E-2674G 12E-2674C	R U	
28-1 P4	Closed Cooling Water Supply Valve (2-3702)	No	No. Note 1.	N/A	N/A	N/A	12E-2398	D	M-20
28-1 -P5	Closed Cooling Water Header Isolation Valve (2-3701)	No	No. Note 1.	N/A	N/A	N/A	12E-2398	D	M20
28-2 A2	Main Steam Line Drain Valves (2-220-90A,B,C,D)	No	No. Note 1.	N/A	N/A	N/A	12E-2450	D	\square
28-2 A4	120/240V Distr Xfmr 28-2	No	Yes. Voltage will decrease momentarily.	Yes	No	No	12E-2326A	AG	1
28-2 B1	Condensate Transfer Jockey Pump (2-4321)	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-2373	М	1
28-2 B2	Containment Cooling Service Water Pump Cubicle Cooler A Fan 1	No	No. Fan will operate after the CCSW Pump is operating (starts at 10++ minutes)	N/A	No	N/A	12E-2675A 12E-2435 Sh. 1	AE X	M-274
28-2 B3	RX Protection System M-G Set 2A	No	Yes. Motor will slow down momentarily.	Yes.	No.	N/A	12E-2592	к	
28-2 C1	RX Building Vent to Standby Gas Treatment Damper 2/3A (2/3-7503)	No	No. Note 1.	N/A	N/A	N/A	12E-2400A 12E-2400C Sh. 1 & 2	S B	M-49
28-2 C2	120/240V Essential Service Bus (Reserve Feed)	No	No. Note 1.	N/A	- N/A	N/A	12E-2675B	P	+
28-2 C3	120/240V Instrument Bus (Normal Feed)	No	Yes. Voltage will decrease momentanily (see pages B15-B18).				12E-2675B	Q	1

Calc. No. 9389-46-19-3 **Revision** 2 Page No. 811 Proj. No. 10014-12

•

D2EXCEL.XLS - U2 Table 2

Bus No. Equipment Description/No. Will the voltage dips @ Load Will the time delay in Dwg. Ref. Rev Other Will the equipment start Will the 5s. 10s, & 10min, affect Shed after voltage recovery ? operation cause any Ref. equipt. the equipment's operation adverse affect ? operate in ? adverse mode due to the voltage dips? 28-2 120/240V Distr Xfmr Inst 28 No Yes, Voltage will 12E-2675B 0 -----**C4** decrease momentarily (see Cubicles C2 & C3), 28-2 H2 Seal Oil Pump Yes. Pump will slow down No Yes No N/A 12E-2365 L D1 momentarily. 28-2 125V Battery Charger 2A No Yes. Charger output N/A 12E-2389D A Yes No D3 might decrease 28-2 H2 Seal Oil Vacuum Pump No Yes. Pump will slow down Yes 12E-2365 N/A No L D4 momentarily. 28-2 Condensate Transfer Pump 2A Yes N/A N/A N/A 12E-2370 Q N/A D5 (2A-4301) 28-2 Containment Cooling Service Water No No. Fan will operate after N/A N/A 12E-2675C S M-274 No E2 Pump Cubicle the CCSW Pump is 12E-2435 х Cooler A Fan 2 operating (starts at 10++ Sh. 1 minutes) 28-2 Diesel Starting Air Compressor 2A Yes. Compresor will slow No Yes. When pressure is No N/A 12E-2350B υ M-173 E3 down momentarily. below 230 psi. Sh. 1 28-2 Turbine Vacuum Breaker Valve No No. Note 1. N/A N/A N/A 12E-2363 F E5 (2-4901)28-2 Containment Cooling Service Water No No. Fan will operate after N/A No N/A 12E-2675C S F1 Pump Cubicle the CCSW Pump is 12E-2435 Х Cooler B Fan 1 operating (starts at 10++ Sh. 1 minutes) 28-2 Submersible Sewage Pump No No. Note 1. N/A N/A N/A 12E-2675C S F2 (2/3-2001-260) 28-2 Containment Cooling Service Water No No. Fan will operate after N/A No N/A 12E-2675C S F3 Pump Cubicle the CCSW Pump is 12E-2435 Х Cooler B Fan 2 operating (starts at 10++ Sh. 1 minutes)

Calc. No. 9389-46-19-3 Revision 2 Page Na. 812 Proj. No. 10014-12

D2EXCEL.XLS - U2 Table 2

\frown

TABLE 2A AFFECTS OF VOLTAGE DIP

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
28-2 F4	Main Steam Isolation Valves Unit Coolers (2-5758A thru H)	No	Yes. Coolers will slow down momentarily.	Yes	No	N/A	12E-2675C	S	
28-2 F5	120/240V Distr Xfmr Inst 2A	No	Yes. Voltage will decrease momentarily (see Cubicles C2 & C3).				12E-26758	Q	
28-3 2C3	120/208V Distr Xfmr FP-2	No	No	Yes	No	NIA	12E-2676B	V	
28-3 A2	Diesel Circ. Water Heater 2	No	Yes. Heater output will decrease momentarily.	Yes	No	N/A	12E-2350B Sh. 2	V	
28-3 A2	DG Lube Oil Circulating Pump Motor 1HP (2-6657)	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-2350B Sheet 2	. V	
28-3 A2	DG Lube Oil Circulating Pump Motor 3/4HP (2-6660)	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-2350B Sheet 2	v	
28-3 A3	Turning Gear Oil Pump (2-5600-TGOP)	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-2362	м	
28-3 A4	Turbine Turning Gear (2-5601-TGM)	No	No. Not started until after second CCSW Pump is running.	N/A	N/A	N/A	12E-2362	M	
28-3 B1	Turbine Turning Gear Piggyback Motor (2-5601-TGM-PBM)	No	No. Not started until after second CCSW Pump is running.	N/A	N/A	N/A	12E-2362	M	
28-3 82- 86	Turbine Bearing Lift Pump 2A, 2B, 2C, 2D, and 2E	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-2364	К	1
28-3 C2	250V Battery Charger #2	No	Yes. Charger output will decrease momentarily.	Yes	No	N/A	12E-2389A	8	1

Colc. Na. 9389-46-19-3 Revision 2 Page No. B13 Proj. No. 10014-12

D2EXCEL.XLS - U2 Table 2

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
28-3 D1	Diesel Cooling Water Pump 2/3 (2/3-3903)	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-2676B 12E-2351B Sh. 1	V AA	
28-7 B3	LPCI Inboard Isolation Valve 2A (2-1501-22A)	No	Yes, valve will stop momentarily.	Yes	No, N.C. and interlocked open.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-2441 Sh. 4 12E-2437A 12E-2438A	W X Y	M-29 Sh. 1
- 28-7 - B4	Recirc. Loop Bypass Valve 24 (2-202-9A)	No	Yes. Valve will slow down momentarily.	Yes	No	Yes. Will increase operating time. However, increased time will be within acceptable limits	12E-2429A 12E-2437A 12E-2438A	X Y	M-26 Sh.2
28-7 C1	Recirc. Pump 2A Suction Valve (2-202-4A)	No	No. Note 1.	N/A	N/A	N/A	12E-2420A	Ρ	M-26 Sh.2
28-7 C2	Recirc. Pump 2A Discharge Valve (2-202-5A)	No	Yes, valve will stop momentarily.	Yes	No, N.O. and interlocked closed.	Yes. Will increase operating time, However, increased time will be within acceptable limits.	12E-2420A 12E-2437A 12E-2438A	P X Y	M-26 Sh.2
28-7 C3	Recirc. Pump 2A Bypass Discharg Valve (2-202-7A)	9 Na	No. Note 1.	N/A	N/A	N/A	12E-2420A 12E-2437A 12E-2438A	P X Y	M-26 Sh.2
28-7 C4	Recirc. Loop Equalizing Valve 2A (2-202-6A)	Yes	N/A	N/A	N/A	N/A	12E-2662B	N	M-26
28-/ D2	(2-1501-21A)	No	No. Note 1.	N/A	N/A	N/A	12E-2441 Sh. 4	W	M-29 Sh. 1
L							12E-2437A		

Calc, No. 9389-46-19-3 Revision 2 Page No. 814 Proj. No. 10014-12

D2EXCEL XLS - U2 Table 2

R3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
29-7	LPCI Outboard Isolation Valve 28	No	Yes. Valve will stop	Yes	No, N.O. and	Yes. Will increase	12E-2441A	W	M-29
A3	(2-1501-218)		momentarily.	· ·	interlocked	operating time. However,	12E-2437A	X	Sh. 1
					closed.	increased time will be within acceptable limits.	12E-2438A	Ŷ	
29-7	Recirc. Pump 28 Bypass Dischar	a No	No. Note 1.	N/A	N/A	N/A	12E-2420B	M	M-26
ยา	Valve (2-202-78)	1	·		1		12E-2437A	х	Sh.2
20.7	Recipe D	-				·	12E-2438A	Y	
82	Recirc. Pump 28 Discharge Valv	BINO	No. Note 1.	N/A	N/A	N/A	12E-2420B	M	M-26
	(2-202-5B)						12E-2437A	X	Sh.2
29-7	Recirc Loop Equalizing Volum 21	- Var					12E-2438A	μ.Υ.	4
83	(2-202-6B)	i Teş		N/A	N/A .	N/A	12E-2662C	S	M-26 Sh.2
29-7	Recirc. Loop Bypass Valva 28	No	No. Note 1.	N/A	NIA	NIA	175 24208		11.26
84	(2-202-98)						12E-2437A	X	Sh 2
		+					12E-2438A	Y	
29-7	Recirc. Pump 2B Suction Valve	No	No. Note 1.	N/A	N/A	N/A	12E-2420B	M	14-26
C2	(2-202-48)				1			} `	Sh.2
23-1	LPCI Inboard Isolation Valve 2E	No	No. Note 1,	N/A	N/A	N/A	12E-2441	W	M-29
	(2-1501-228)			· .	}		12E-2437A	X	Sh. 1
							12E-2438A	Y	
Inst. Bus	Power Distribution Rod Manua	No	Yes. Will lose power	Yes	No	No	125-2410	F	
Ckt 1	Control Alarm Circuits	ł	temporarily.		}		12E-2755C	z	1
							12E2755D	D	1
I Inst. Hus	Voltage Regulator AC Control Circ	uit No	Yes. Will lose power	Yes	No	No	12E-2614	K	
CKT 2	G MCB Generator 2 Wattage		temporarily.		ł		12E-2737	W	1
1	Kecorder	1			1		12E-2613	R	{
	1	1	1	l	I	ł,	125-2370		· 1

Calc. No. 9389-46-19-3 Revision 3 Page No. B15 Proj. No. 10014-12 .

D2EXCEL.XL6 - U2 Table 2

•••

83

Equipment Description/No. Bus No. Load Will the voltage dips @ Will the equipment start Will the Will the time delay in Dwg. Ref. Other Rev Shed 5s, 10s, & 10min. affect after voltage recovery ? **faiupe** operation cause any Ref. the equipment's operation adverse affect ? operate in ? adverse mode due to the voltage dips ? Inst. Bus MCB Process Radiation Monitor Yes, Will lose power No Yes No No 12E-2489 AP Ckt 3 System, Reheat Seal-Trough Valve temporarily. 12E-2369 κ Control & Condensor Seal Trough 12E-2731 Ρ Drain Valve 12E-2728 AB Т 12E-2729 12E-2733 Q ATWS Recirc. Pump Trip System & inst Bus No Yes. Will lose power Yes No No 12E-6583C L Ckt 4 Annunciator Failure Indication temporarily. 12E-2576 D 12E-6583A R 12E-2815J F Inst. Bus Reactor Water Cleanup System No Yes. Will lose power Yes No P No 12E-2492 Ckt 5 Process temporarily. 12E-2751 Т Inst. Bus Reactor Recirc. Pump Seal Water No Yes. Will lose power Yes No No 12E-2491 S Ckt 6 Pressure temporarily. 12E-2750A AH Inst, Bus Annunciator Feed No Yes. Will lose power Yes No No 12E-2745 ĸ Ckt 7 temporarily. Inst Bus Battery Charger Control No Yes, Will lose power Yes No No 12E-2685B AA Ckt 8 temporarily. Inst Bus Feedwater Control System & No Yes. Will lose power Yes No No 12E-2417 R Ckt 9 Instrument Isolators temporarily. 12E-2750B AC 12E-2750A AH 12E-6818AA К Inst Bus **CRD** Hydraulic System Yes. Will lose power No Yas No No 12E-2496 G Ckt 10 temporarily. 12E-2751 Т Inst Bus Reactor Protection Scram No Yes. Will lose power No. Will not be in use No No 12E-2468 R Ckt 11 temporarily. during an emergency Sh. 2 condition 12E-2781A J Inst Bus HPCI Valve Indicating Lights No Yes. Will lose power Yes No No 12E-2528 AL Ckt 12 temporarily. 12E-2699 8D

Calc. No. 9389-46-19-3 Revision 2 Page No. B16 Proj. No. 10314-12

D2EXCEL.XLS · U2 Table 2

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
Inst, Bus Ckt 13	Reactor Protection Scram	No	Yes. Will lose power temporarily.	No. Will not be in use during an emergency condition	No	No	12E-2468 Sh.1 12E-2779A	R H	
inst. Bus Ckt 14	24Vdc Battery Charger 2A for Nuetron Monitor - Reactor Protection System #1	No	Yes. Will lose power temporarily.	Yes	No	No	12E-2798C	E	
Inst. Bus Ckt 15	24Vdc Battery Charger 2B for Nuetron Monitor - Reactor Protection System #2	No	Yes. Will lose power temporarily.	Yes	No	No	12E-2798D	E	
Inst. Bus Ckt 16	Thrust Bearing Wear Detector Sw./on the Electro-Hydraulic Cont. Cab.	No	Yes. Will lose power temporarily.	No. Manually operated.	No	No	12E-2638C 12E-2636	D K	
Inst. Bus Ckt 17	Neutron Monitoring System, SRM & IRM Drive Control	No	Yes. Will lose power temporarily.	Yes	No	No	12E-2477 12E-2478 12E-2777	L L G	
Inst. Bus Ckt 18	Activate Standby Gas Treat & Close Reactor Building Vent System (Outboard)	No	Yes. Will lose power temporarily.	Yes	No	No	12E-2488 12E-2764B	AR T	
inst. Bus Ckt 19	Off-gas Sample Control Switches	No	Yes. Will lose power temporarily.	No. Not in use during an emergency condition.	No	No	12E-6225 12E-6251 12E-6253	G AC S	
Inst. Bus Ckt 20	Switch Light Transfer	No	Yes. Will lose power temporarily.	Yes	No	No	12E-5205 12E-5204	G K	1
linst. Bus Ckt 21	Signal Convertor (Signal originates a the radiation monitor in the Radwaste Room and ends at the recorder in the Main Control Board)	t No	Yes. Will lose power temporarily.	Yes	No	No	12E-2744A 12E-2744B	AB AF	

Calc. No. 8389-46-19-3 Revision 2 Page No. 817 Proj. No. 10014-12

: •••

D2EXCEL_XLS - U2 Table 2

Bus No.	Equipment Description/No,	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the vottage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Røv	Other Ref.
Inst. Bus Ckt 22	Jet Pumps Process Instr. & LPCI Containment Cooling System 1	No	Yes. Will lose power temporarily.	Yes	No	No	12E-2490 12E-2495 12E-2761 12E-2751	F T G T	
Inst. Bus Ckt 23	Auto Blowdown (Electromatic Relief Valve, Controller)	No	Yes. Will lose power temporarily.	Yes	No	No	12E-2462 Sh. 2 12E-2757D 12E-2757B	AT AN AQ	
Inst. Bus Ckt 24	High-Low Level Alarm on Standby Liquid Control	No	Yes. Will lose power temporarily.	Yes	No	No	12E-2460 12E-2720 12E-2719	T AA AS	
Inst. Bus Ckt 25	Totalizing Relay at Relay and Meter Panel	No	Yes. Will lose power temporarily.	Yes	No	N/A	12E-2690D	Р	
Inst. Bus Ckt 26	Main Steam Valves Inboard, Isolation Condenser Steam Line Break Outboard, Inboard & Outboard Recirc. Loop Sample Valves	No	Yes. Will lose power temporarily.	Yes	No	No	12E-2504 Sh. 2 12E-2506 12E-2505 12E-2695 12E-2695 12E-2697 12E-2698 12E-2711 12E-2710 12E-2708	Q AB W CS BD BJ AB AX AC BG	

Calc. No. 9389-46-19-3 Revision 2 Page No. B 18 Proj. No. 10014-12

D2EXCEL.XLS - U2 Table 2

~

TABLE 2A AFFECTS OF VOLTAGE DIP

Bus No,	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
Inst. Bus Ckt 27	Tip Control on the Primary Containment Isolation System & Torus Vacuum Relief Valves, RX Vessel Vent Valves	No.	Yes. Will lose power temporarily.	Yes	Νο	No	12E-2502 Sh. 1 12E-2449 12E-2695 12E-2696 12E-2706 12E-2709	AB E CS BD BL Q	
Inst. Bus Ckt 28	L.P. Feed Heaters and Flash Tank Level Controls & H.P. Feed Heater Level Controls	No	Yes. Will lose power temporarily.	Yes	No	No	12E-2379 12E-2380 12E-2809A 12E-2809B 12E-2810B 12E-2810C 12E-2810D 12E-2810D	G K J J F H C	
MCC 28-2 Dist. Pnl Ckt 1	L.P. Service Water Strainer Cont. Cab.	Yes	No	N/A	No	N/A	12E-2391	Н	
Dist. Pnl Ckt 2	Last Turb. Room Vent Panel 2252- 27	Yes	No	N/A	No	N/A			
Dist. Pnl Ckt 3	Cont. Room & Office Heating & Vent Panel 2223-35	No	No	Yes	No	No	12E-2375	M	
Dist. Pni Ckt 4	Feed Cont. Room Aux. Elect. Equip. Rm. HVAC Sys. Panel 2223-89	No	No	Yes	No	No			

Calc. No. 9389-46-19-3 Revision 2 Page No. B19 Proj. No. 10014-12

D2EXCEL.XLS - U2 Table 2

<u>``</u>

TABLE 2A AFFECTS OF VOLTAGE DIP

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min, affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev .	Other Ref.
MCC 28-2 Dist. Pnl Ckt 5	Rollamatic Filter 2-5744 R.F. Pump Motors Vent Sys. Panel 2252-25	Yes	No	N/A	No	N/A	12E-2394 12E-2395	U S	
MCC 28-2 Dist. Pnl Ckt 6	Diesel Ganerator 2 Relay & Meter Panel 2252-10	No	No	Yes	No	No	12E-2336	м	
MCC 28-2 Dist. Pnl Ckt 7	Area Rad. Mon. System STA 2A	No	No	Yes	No	No	12E-2480	М	
MCC 28-2 Dist. Pnl Ckt 8	Power Supply & Indicating Lights Panel 2252-25	No	No	Yes	No	No	12E-2494 12E-2395	Q S	
MCC 28-2 Dist. Pnl Ckt 9	Junction Box TB-2, Turb. Stand. #2	Yes	No	N/A	No	N/A			
MCC 28-2 Dist. Pnl Ckt 10	Turbine Building Entry Doors #16,51,52	Yes	No	N/A	No	N/A	12E-2844E	L	
MCC 28-2 Dist. Pnl Ckt 11	Turbine Building Entry Doors #47, 48	Yes	No	N/A	No	N/A	12E-2844E	ſ	
MCC 28-2 Dist. Pnl Ckt 12	Drywell Cooling System Panel 2252- 26	No	No	Yes	No	No	12E-2393	к	
MCC 28-2 Dist. Pnl Ckt 13	Turbine Building Entry Doors #74, 75	Yes	No	N/A	No	N/A	12E-2844E	J	

Calc. No. 9389-48-19-3 Revision 2 Page No. B20 Proj. No. 10014-12

D2EXCEL.XLS - U2 Table 2

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
MCC 28-2 Dist. Pnl Ckt 14	Diesel Generator 2 Vent Panel 2252- 47	No	No	Yes	No	No	12E-2350B	T	
MCC 28-2 Dist. Pnl Ckt 15	Control Cooling Service Water Pump Room Floor Drain Valves	Yes	No	N/A	No	N/A	12E-2400C	В	
MCC 28-2 Dist. Pnl Ckt 16	Main Steam Tunnel Access Door Interlocks #55, 185	Yes	No	N/A	No	N/A	12E-2844E	ţ	
MCC 28-2 Dist. Pnl Ckt 17	Feed Com. Sys. A Panel 902-55	Yes	No	N/A	No	N/A			
MCC 28-2 Dist. Pnl Ckt 18	Instrument Air Comp. Panel 2202-51	No	No	Yes	No	No	12E-6716B	A	
MCC 28-2 Dist. Pnl Ckt 19	Standby Liquid Cont. Area Panel 2202-48	No	No	Yes	No	No	12E-6574H	J	
MCC 28-2 Dist. Pnl Ckt 21	Turbine Building 480V SWGR Area Panel 2202-46 Fire Det. Panel	Yes	No	N/A	No	N/A	12E-6730H		
MCC 28-2 Dist. Pnl Ckt 23	Feed Battery Area Panel 2202-47	Yes	No	N/A	No	N/A	12E-6730G		1
MCC 28-1 Dist. Pnl Ckt 1	RX Head Seal Inst. Shutoff Valve 2A & 2B	Yes	No	N/A	No	N/A	12E-2449	E	1

Calc. No. 9389-46-19-3 Revision 2 Page No. B23 Proj. No. 10014-12

D2EXCEL.XLS - U2 Table 2

 $\mathbb{C}_{\mathbb{Z}}$

dus no.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Røv	Other Ref.
MCC 28-1 Dist. Pnl Ckt 2	Core Spray Pump 2A & LPCI Pump 2A Motor Heater	No	No	Yes	No	No	12E-2436 12E-2439	S S	
MCC 28-1 Dist. Pnl Ckt 3	RX Head Cool Drain Valve 2A	No	No	Yes	No	No	12E-2449	E	
MCC 28-1 Dist. Pnl Ckt 4	Diesel Gen 2/3 Vent	No	No	Yes	No	No	12E-2830		
MCC 28-1 Dist. Pni Ckt 5	Press. Suppr. Sys. Torus Vac. Bkr. Valve	Yes	No	N/A	No	N/A			
MCC 28-1 Dist. Pnl Ckt 6	H2 & O2 Monitor Sys. Heat Tracing	No	No	Yes	No	No	12E-6554P	E	<u> </u>
MCC 28-1 Dist. Pnl Ckt 7	RX Shutdown Cooling Pump 2A Motor Heater & Post LOCA H2 & O2 Panei	No	No	Yes	No	No	12E-2516 12E-6554A	G F	†
MCC 28-1 Dist. Pnl Ckt 8	Diesel Gen 2/3 Relay & Meter Panel	No	No	Yes	No	No	12E-2337	м	
MCC 28-1 Dist. Pnl Ckt 9	RX Shutdown Cooling Pump 2B Motor Heater	No	No	Yes	No	No	12E-2516	G	
MCC 28-1 Dist. Pnl Ckt 10	RX Water Cleanup Panel	No	Yes. Panel will be at 0 volts momentarily	Yes	No	No	12E-6862	В	

Calc. No. 9389-46-19-3 Revision 2 Page No. 822 Proj. No. 10014-12

TABLE 2A AFFECTS OF VOLTAGE DIP

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
MCC 28-1 Dist. Pnl Ckt 11	RX Shutdown Cooling Pump 2C & LPCI Pump 2B Motor Space Heaters	No	No	Yes	No	No	12E-2516 12E-2436	G V	
MCC 28-1 Dist. Pni Ckt 12,13,14	Area Radiation Monitoring System Local Alarm Stations #1, 4, & 7 Recept	No	No	Yes	No	No	12E-2480	м	
MCC 28-1 Dist. Pnl Ckt 15	Analog Trip Cabinet	No	No	Yes	No	Νο	12E-6822	L L	
MCC 28-1 Dist. Pnl Ckt 16	Switchgear 28 & MCC 28-7 Heaters	No	No	Yes	No	No			
MCC 28-1 Dist. Pnl Ckt 17	MCC 28-1 Space Heater & Feed Fire Protection Panel	No	No	Yes	No	No			
MCC 28-1 Dist. Pnl Ckt 18	Cont. Standby Liquid System Pipes Heat Trace Pump 2A-1102	Yes	No	N/A	No	N/A			

Calc. No. 8389-46-19-3 Revision 2 Page No. 823 Proj. No. 10014-12

D2EXCEL.XLS · U2 Table 2

 \sim

$\overline{}$

TABLE 2A AFFECTS OF VOLTAGE DIP

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt, operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
MCC 28-1 Dist. Pnl Ckt 19,21,23	Local Starter Panel 28-1-1	No	No	Yes	No	No			
MCC 28-1 Dist. Pnl Ckt 20,22,24	SRM-IRM Drive System Motor Control Instrument Rack 2202-14	No	No	Yes	No	No	12E-2477	L	

NC - Normally Closed

NO - Normally Open

÷

For further explanation of this table see Flow Chart No. 2.

Note 1: These loads have power available, however they do not operate.

Calc. No. 9389-46-19-3 Revision 2 Page No. B24 Proj. No. 10014-12

D2EXCEL.XLS · U2 Table 2

DG Auxiliaries and Other 480V Loads Starting 0 Seconds after Closing of DG Breaker

oad No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
	Aux. Pt. Indicating Lights, Meter, and relay Comb	40	0.4	KVA	480	85	85	0.6	100	85	0.4	0.2
/3-6600-A	Diesel Starting Air Compressor 2/3A	28-1	5	HP	460	85	80	6.9	625	58	19.9	27.9
	120/208V Distr Xfmr 28-1	28-1	9	HP	480	75	100	10.8	100	75	6.7	5.9
-1201-7	Cleanup System Return Isolation Valve	28-1	2.6	HP	440	85	80	3.7	680	68	13.2	14.2
-1201-1	Cleanup System Inlet Isolation Valve	28-1	5.2	HP	460	60	70	11.6	545.5	78	39.3	31.5
/3-5203	Diesel Transfer Pump 2/3	28-1	1.5	HP	460	80	75	2.3	625	75	8.7	7.7
/3-5790	Diesel 2/3 Vent Fan	28-1	30	HP	440	85	85	40.6	625	42	81.3	175.7
-1301-4	Inbd Cond Return Viv	28-1	5.2	HP	460	82	70	8.5	850	56	32.2	47.6
-1301-1	Steam Line Isol Viv	28-1	9.5	HP	460	82	70	15.5	650	54	43.3	67.5
-2252-81A	Post LOCA H2 & O2 Monitoring Sample	28-1	1	HP	460	80	75	1.6	625	79	6.1	4.8
	120/240V Distr Xfmr 28-1	28-2	17.32	KVA	480	75	100	20.8	100	75	13.0	11.5
-4321	Condensate Transfer Jockey Pump	28-2	7.5	HP	460	85	80	10.3	625	56	28.8	42.6
	120/240V Distr Xfmr Inst 2A & 2B	28-2	86.6	KVA	480	75	100	104.2	100	75	65.0	57.3
-5350-MSOP	Main H2 Seal Oil Pump	28-2	15	HP	440	85	85	20.3	625	49	47.4	84.4
-8300-2A	125V Battery Charger 2A	28-2				From	ETAP				34.1	30.6
-5350-SOVP	H2 Seal Oil Vacuum Pump	28-2	2	HP	440	85	80	2.9	625	75	10.3	9.1
-4611-A	Diesel Starting Air Compressor 2A	28-2	5	HP	460	85	80	6.9	625	58	19.9	27.9
-5758A	Main Steam Isolation Valve Unit Cooler A	28-2	2	HP	460	85	80	2.8	625	75	10.3	9.1
-5758B	Main Steam Isolation Valve Unit Cooler B	28-2	2	HP	460	85	80	2.8	625	75	10.3	9.1
-5758C	Main Steam Isolation Valve Unit Cooler C	28-2	2	HP	460	85	80	2.8	625	75	10.3	9.1
2-5758D	Main Steam Isolation Valve Unit Cooler D	28-2	2	HP	460	85	80	2.8	625	75	10.3	9.1
-5758E	Main Steam Isolation Valve Unit Cooler E	28-2	2	HP	460	85	60	2.8	625	75	10.3	9.1
2-5758F	Main Steam Isolation Valve Unit Cooler F	28-2	2	HP	460	85	80	2.8	625	75	10.3	9.1
2-5758G	Main Steam Isolation Valve Unit Cooler G	28-2	2	HP	460	85	80	2.8	625	75	10.3	9.1
2-5758H	Main Steam Isolation Valve Unit Cooler H	28-2	2	HP	460	85	80	2.8	625	75	10.3	9.1
2-8001-A	RX Protection System M-G Set 2A	28-2	25	HP	440	85	85	33.9	625	43	69.4	145.7
	120/208V Distr Xfmr FP-2	28-3	15	KVA	480	75	100	18.0	100	75	11.3	9.9
	Diesel Circulation Water Heater 2	28-3	15	KW	480	100	100	18.0	100	100	15.0	0.0
2-6657	Engine Lube Oil Circulating Pump Motor	28-3	1	HP	460	80	75	1.6	625	79	6.1	4.8
2-6660	Engine Lube Oil Circulating Pump Motor	28-3	0.75	HP	460	80	75	1.2	546	83	4.2	2.8
	250V Battery Charger #2	28-3				From	n ETAP				66.1	58.0
2/3-3903	Diesel Cooling Water Pump 2/3	28-3	87	KW	460	83	100	131.6	400	31.5	132.1	397.9

TOTAL STARTING KW & KVAR 856.1 1338.2

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / $(1.732 \times kV \times PF \times eff.)$ FLC from KVA = KVA / $(1.732 \times kV \times eff.)$

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

Calculation No. 9389-46-19-3 Rev. 4 Attachment C Page C1 of C5

DG Auxiliaries and Other 480V Loads Starting 0 Seconds after UV Relay Resets

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
2-1501-13A	LPCI Pump Flow Bypass Valve 2A	28-1	0.13	HP	440	80	75	0.2	527	83	0.7	0.5
2-5746A	LPCI Core Spray Pump Area Cooling Unit 2A	28-1	5	HP	460	85	80	6.9	625	58	19.9	27.9
								TOTAL S	TARTING K	W & KVAR	20.6	28.4

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

| R3

Calculation No. 9389-46-19-3 Rev. 3 Attachment C Page C2 of C5

DG Auxiliaries and Other 480V Loads Starting 10 Seconds after UV Relay Resets

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR	
2-7902	RX Building Emergency Lighting	28-1	21.54	KW	480	90	100	28.8	100	90	21.5	10.4	1
2-1401-38A	Core Spray Pump Recirculation Isolation Valve 2A	28-1	0.13	HP	440	80	75	0.2	527	85	0.7	0.4	1
2-1402-25A	Core Soray Inboard Isolation Valve 2A	28-1	3.9	HP	440	85	80	5.6	830	58	20.6	28.9	la la
2-1501-22A	LPCI Inboard Isolation Valve 2A	28-7	10.5	HP	460	85	83.78	13.8	826	43	39.1	82.0	R3
2-202-5A	Recirc, Pump 2A Discharge Valve	28-7	13	HP	460	85	85	16.8	766	49	50.4	89.6	I R3
2-1501-21B	LPCI Outboard Isolation Valve 2B	29-7	16.2	HP	460	85	85	21.0	723	44	53.2	108.6	
				L	-			TOTAL S	TARTING K	W&KVAR	185.5	320.1	R3

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

> Calculation No. 9389-46-19-3 Rev. 3 Attachment C Page C3 of C5

R3

DG Auxiliaries and Other 480V Loads Starting at 10+ Minutes

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR	1
2-1501-3A	Containment Cooling Heat Exchanger Discharge Valve 3A	28-1	0.33	HP	460	80	75	0.5	273	85	1.0	0.6	
Full Load Curren FLC from KW = FLC from KVA =	t (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) KW / (1.732 x kV x PF x eff.) KVA / (1.732 x kV x eff.)			•				TOTAL S	TARTING K	W & KVAR	1.0	0.6	R3
Starting KW (SK Starting KVAR (W) = 1.732 x kV x LRC% x FLC x SPF SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))												

Calculation No. 9389-46-19-3 Rev. 3 Attachment C Page C4 of C5

DG Auxiliaries and Other 480V Loads Starting at 10++ Minutes

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
2-5700-30A	Containment Cooling Service Water Pump Cooler A Fan 1	28-2	3	HP	460	85	80	4.1	625	68	14.0	15.1
2-5700-30A	Containment Cooling Service Water Pump Cooler A Fan 2	28-2	3	HP	460	85	80	4.1	625	68	14.0	15.1
2-5700-30B	Containment Cooling Service Water Pump Cooler B Fan 1	28-2	3	HP	460	85	80	4.1	625	68	14.0	15.1
2-5700-30B	Containment Cooling Service Water Pump Cooler B Fan 2	28-2	3	HP	460	85	80	4.1	625	68	14.0	15.1
	······································							TOTAL S	TARTING K	W & KVAR	56.0	60.3

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW./ (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

> Calculation No. 9389-46-19-3 Rev. 3 Attachment C Page C5 of C5

R3

DRESDEN DIESEL GEN 2/3 LOAD BUS (LOOP AND LOCA CONDITION)

FIGURE 2A - DG AUXILIARIES AND OTHER 4kV AND 480V LOADS

Calc.No. 9389-46-19-3, Rev.3 Page No. E1 , Proj.No. 10014-012

f(_

((

Emergency D	liesel 2/3 - Powering Unit 2 Loads		{ut)	və		108	10- mat	1U+ min.	10++min	min.
.oad No.	Load Description	Bus No.			1 1. 4. 4. 4		and the second s	1. 1. 1. 1.		1
2-1502-A	LPCI Pump 2A	23-1						-		
2-1502-B	LPCI Pump 28	23-1				+		+		
2-1401-A	Core Spray Pump 2A	23-1						+		-
	Containment Cooling Service Water	23				1		1		
,	Pump 2A							1		1
	Containment Cooling Service Water	23						1		1
	Pump 2B	[]								
	Aux Dt Indicating Lights Mater and Relay	40					_			
2/2 6600 A	Diesel Can Starting Air Compressor 2/34	28.1						1		
23-0000-A	120/208V Dist Year 28.4	28.1								
	Ciscon Onter Anna Josephia Value	20-1						1	T	
2-1201-7	Cleanup System Return Isolation Valve	20-1					7		1	
2-1201-1	Cleanup System Inter Isolation Valve	28-1			1	1	7	· ·	1	1
2/3-5203	Diesel Transfer Pump 2/3	28-1						1	1	1
2/3-5790	Diesel Gen 2/3 Vent Fan	28-1				1		1	1	
2-1402-25A	Core Spray Inboard Isolation Valve 2A	28-1					7]		1
2-1301-4	Inbd Cond Return VIV	28-1				1	7	ł	1	
2-1301-1	Steam Line Isol VIV	28-1				1	7		1	1
2-1501-13A	LPCI Pump Flow Bypass Valve 2A	28-1				1	-		I	
2-2252-81A	Post LOCA H2 & O2 Monitoring Sample	28-1		+			+	 	+	
2-7902	RX Building Emergency Lighting	28-1				<u> </u>	1	<u> </u>	+	<u> </u>
2-5746-A	LPCI Core Spray Pump Area Cooling	28-1					1			Į
	Unit 2A					1				
2-1501-3A	Containment Cooling Heat Exchanger	28-1		1		1		1	1	
	Discharge Valve 2A					ľ				
2-1402-38A	Core Spray Pump Recirc. Isolation Valve 2A	28-1	1				-		J	
	120/240V Distr Xfmr 28-2	28-2		<u> </u>		<u> </u>				
2-4321	Condensate Transfer Jockey Pump	28-2	-							
	120/240V Distr Xfmr Inst 2A & 2B	28-2			·· {					
-5350-MSOP	Main H2 Seal Oil Pump	28-2								
-8300-2A	125V Battery Charger 2A	28-2		<u> </u>						
-5350-SOVP	H2 Seal Oil Vacuum Pump	28-2								
-4611-A	Diesel Gen Starting Air Compressor 2A	28-2								
57584	Main Steam isolation Valve Init Cooler A	28-2								
67580	Main Steam Isolation Value Unit Cooler B	28.2								
57590	Main Steam indiation Valve Unit Cooler C	28-2								
57590	Intern Steam Isolation Valve Unit Cooler C	20-2		I						
-0100U	Inden Steam Isolation Value Unit Cooker D	20-2								
-3/302	Inden Steam Isolation Valve Unit Cooler E	40-2		T			j — t			
-3/307	IMART Steam Isolation Valve Unit Cooler F	20-2								
-5758G	Main Steam Isolation Valve Unit Cooler G	28-2					<u> </u>		f	
-5/58H	Main Steam Isolation Valve Unit Cooler H	28-2					;──-+			
-5700-30A	Containment Cooling Service Water Pump	28-2	1							
	Cooler A Fan 1			1						
-5700-30A	Containment Cooling Service Water Pump	28-2		ł .				1		
	Cooler A Fan 2		1	1	1			1	1	1
5700-30B	Containment Cooling Service Water Pump	28-2						Ĺ		
	Cooler B Fan 1			1	1			Г		
5700-30B	Containment Cooling Service Water Pump	28-2			} [1		L		
	Cooler B Fan 2	1	1			'		Г		
8001-A	RX Protection System M-G Set 2A	28-2			╉╾╍╍╍┙╇					
	120/208V Distr Xfmr FP-2	28-3								
	Diesel Circulation Water Heater 2	28-3			┟┉┉┈╺╧┥					
6657	Eppine Lube Oil Circulating Pump Motor 1HP	28-3								
6660	Engine Lube Oil Circulating Fump Motor				T					
	mighte care of one distribution in the interest	2000							L	

FIGURE 2A - DG AUXILIARIES AND OTHER 4kV AND 480V LOADS

Calc.No. 9389-46-19-3, Rev. 3, Page No. E 2/ , Proj.No. 10014-012

Emergency Die	esel 2/3 - Powering Unit 2 Loads		{ 0s }	0s	5 s	10s	10-	nia	10+ min.	10++min	10+++ min.
Load No.	Load Description	Bus No.	<u> </u>	1. A. M. M.				34. ·	-144		<u>و.</u>
2-5600-TGOP	Turning Gear Oil Pump	28-3					F				
2-5620-A	Turbine Bearing Lift Pump 2A	28-3							1	1.	
2-5620-B	Turbine Bearing Lift Pump 2B	28-3	1.	. [1	1			1	ľ	
2-5620-C	Turbine Bearing Lift Pump 2C	28-3				1					
2-5620-D	Turbine Bearing Lift Pump 2D	28-3	1		1		1		· ·	1	
2-5620-E	Turbine Bearing Lift Pump 2E	28-3	1			1					
	250V Battery Charger #2	28-3							+		
2/3-3903	Diesel Gen Cooling Water Pump 2/3	28-3								+	
2-5601-TGM	Turbine Turning Gear	28-3	- f								
-1501-22A	LPCI Inboard Isolation Valve 2A	28-7				→ →			1		
2-202-5A	Recirc. Pump 2A Discharge Valve	28-7		1							· ·
202-84	Recirc. Loop By pass Value 2A	28-7			_				<u> </u>		
2-1501-218	LPCI Outboard isolation Valve 28	29-7									

(0s) - 0 seconds after closing of DG Breaker

0s - 0 seconds after UV reset

5s - 5 seconds after UV reset

10s - 10 seconds after UV reset

10-min - All loads that automatically stop before 10 minutes are shown off.

10+min - CCSW Pump 2A is started.

10++min - CCSW Pump 28 is started with its auxiliaries.

10+++min. - Both CCSW Pumps are running and other loads starting after 10 minutes are shown here.

Attachment F

Calculation:	9389-4	6-19-3
Attachment:	F	
Revision:	004	
Page <u>F1</u>	of	F113

ject: Location:	Dresden Unit2 OTI	ETAP 5.5.0N	Page: Date:	8 03-20-2007
Contract:			SN:	WASHTNGRPN
Engineer:	πο	Study Case: DG 0 CCSW	Revision:	Base
Filename;	DRE_Unit2_0004	5.14y Case. 20_0_000 W	Config.:	DG2/3_Bkr Cl

Diesel Generator connected using nominal voltage, 2 LPCI, This time period is less than 10 min into event.

Bus		Voltage		Generation		Lo	ad	Load Flow					XFMF
ID	kV	kV	Ang.	мw	Mvar	мw	Mvar	ID	мw	Mvar	Amp	% PF	% Tap
4KV SWGR 23-1	4,160	4.158	0.0	0	0	0	0	HIGH SIDE OF XFMR 28	0.387	0.337	71.2	75.5	
								4KV SWING BUS 40	-0.387	-0.337	71.2	75,5	
• 4KV SWING BUS 40	4.160	4.160	0.0	0,388	0.337	0	0	4KV SWGR 23-1	0.387	0.337	71.2	75,5	
28-1 ALTF 3-1301-1&4	0.480	0.477	-1.4	0	0	0	0	480V MCC 28-1	0.000	0.000	0.0	0.0	
125V DC CHGR 2A	0.480	0.464	-0.8	0	0	0.034	0.028	480V MCC 28-2	-0.034	-0.028	55.0	77.1	
250V DC CHGR 2	0.480	0.469	-1.3	0	0	0.066	0.055	480V MCC 28-3	-0.066	-0.055	106.1	76.7	
480V MCC 28-1	0,480	0.477	-1.4	0	0	0.065	0.047	480V SWGR 28	-0.065	-0.047	96,7	81.2	
								28-1 ALTF 3-1301-1&4	0.000	0.000	0.0	0.0	
480V MCC 28-2	0.480	0.472	-1.5	0	0	0.119	0.128	480V SWGR 28	-0.154	-0.156	268.0	70.3	
								125V DC CHGR 2A	0.035	0.028	55.0	77.9	
180V MCC 28-3	0.480	0.473	-1.5	0	0	0.095	0.056	480V SWGR 28	-0.162	-0.111	239.7	82.3	
								250V DC CHGR 2	0.067	0.055	106.1	77.0	
480V MCC 28-7	0.480	0.479	-1.4	0	0	0	0	480V SWGR 28	0.000	0.000	0.0	0.0	
								480V MCC 29-7	0.000	0.000	0.0	0.0	
480V MCC 29-7	0.480	0.479	-1.4	0	0	0	0	480V MCC 28-7	0.000	0,000	0.0	0.0	
480V SWGR 28	0,480	0.479	-1.4	0	0	0	0	480V MCC 28-1	0.065	0.047	96.7	81.2	
								480V MCC 28-2	0.156	0,158	268.0	70.2	
								480V MCC 28-3	0.164	0.113	239.7	82.2	
								480V MCC 28-7	0.000	0.000	0.0	0.0	
								HIGH SIDE OF XFMR 28	-0.385	-0.318	601.9	77.0	
HIGH SIDE OF XFMR 28	4,160	4.158	0.0	0	0	0	0	4KV SWGR 23-1	-0,387	-0.337	71.2	75.5	
								480V SWGR 28	0,387	0.337	71.2	75.S	-2.500

LOAD FLOW REPORT

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

,

Indicates a bus with a load mismatch of more than 0.1 MVA

Calculation:	<u>9389-46-19-3</u>
Attachment:	F
Revision:	004
Page F9	of F113

(jeet: Location:	Dresden Unit2 OTI	ETAP 5.5.0N	Page: Date:	8 03-20-2007
Contract:			SN:	WASHTNGRPN
Engineer:	оп	Study Case: DG 0 CCSW	Revision:	Base
Filename:	DRE_Unit2_0004	5.115 Case. Do_0_0001	Config.:	DG2/3_UV_Rst

Diesel Generator connected using nominal voltage, 2 LPCI, This time period is less than 10 min into event.

Bus		Volt	age	Gene	ation	Lo	ad		Load Flov	*			XFMR
ID	k٧	kV	Ang.	MW	Mvar	MW	Mvar	al	мw	Mvar	Ainp	% PF	% Tap
4KV SWGR 23-1	4.160	4.157	0.0	0	0	0.509	0.246	HIGH SIDE OF XFMR 28	0.392	0.340	72.0	75.6	
								4KV SWING BUS 40	-0.900	-0.586	149.2	83.8	
* 4KV SWING BUS 40	4.160	4.160	0.0	0.901	0.587	0	0	4KV SWGR 23-1	0.901	0.587	149.2	83.8	
28-1 ALTF 3-1301-1&4	0.480	0.477	-1.4	0	o	0	0	480V MCC 28-1	0.000	0.000	0.0	0.0	
125V DC CHGR 2A	0.480	0.463	-0.8	0	0	0.034	0.028	480V MCC 28-2	-0.034	-0.028	55.0	77,2	
250V DC CHGR 2	0.480	0.469	-1.3	0	0	0.066	0.055	480V MCC 28-3	-0.066	-0.055	106.1	76.7	
480V MCC 28-1	0.480	0.477	-1.4	0	0	0.069	0.049	480V SWGR 28	-0.069	-0.049	103.1	81.4	
								28-1 ALTF 3-1301-1&4	0.000	0.000	0.0	0.0	
480V MCC 28-2	0.480	0.472	-1.6	0	0 -	0.119	0.128	480V SWGR 28	-0.154	-0.156	268.0	70.3	
								125V DC CHGR 2A	0.035	0.028	55.0	78.0	
480V MCC 28-3	0.480	0.473	-1.5	0	0	0.095	0.056	480V SWGR 28	-0.162	-0,111	239,8	82.4	
								250V DC CHGR 2	0.067	0.055	106.1	77.0	
480V MCC 28-7	0.480	0.479	-1.4	0	0	0	0	480V SWGR 28	0.000	0.000	0.0	0.0	
								480V MCC 29-7	0.000	0.000	0.0	0.0	
480V MCC 29-7	0.480	0.479	-1.4	0	0	0	0	480V MCC 28-7	0.000	0.000	0.0	0.0	
480V SWGR 28	0.480	0.479	-1.4	0	. 0	0	0	480V MCC 28-1	0.070	0,050	103.1	81,5	
								480V MCC 28-2	0.156	0,158	268.0	70.2	
								480V MCC 28-3	0.164	0.113	239.8	82.2	
					`			480V MCC 28-7	0.000	0.000	0.0	0.0	
								HIGH SIDE OF XFMR 28	-0.389	-0.321	608.3	77.1	
HIGH SIDE OF XFMR 28	4.160	4.156	0.0	0	0	0	0	4KV SWGR 23-1	-0.392	-0,339	72.0	75.6	
								480V SWGR 28	0.392	0.339	72.0	75.6	-2.500

LOAD FLOW REPORT

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calcul	ation:	9389-46-19-3					
Attach	ment:	F					
Revisi	on:	004					
Page	F23	of	F113				

,

roject: Location;	Dresden Unit2 OTI	ЕТАР 5.5.0N	Page: Date:	8 03-20-2007
Contract:			SN:	WASHTNGRPN
Engineer:	OTI	Study Case: DG 0 CCSW	Revision:	Base
Filename:	DRE_Unit2_0004		Config.:	DG2/3_T≕Ssec

Diesel Generator connected using nominal voltage, 2 LPC!, This time period is less than 10 min into event.

		,											
Bus		Volt	age	Gene	ration	Lo	ad		Load Flo	w			XFMR
ID	kV	<u>kV</u>	Ang.	MW	Mvar	WW	Mvar	ID	MW	Mvar	Amp	% PF	% Tap
4KV SWGR 23-1	4.160	4.156	0.0	0	0	1.021	0.494	HIGH SIDE OF XFMR 28	0.392	0.339	72.0	75,6	
								4KV SWING BUS 40	-1.413	-0.834	227.9	86.1	
*4KV SWING BUS 40	4.160	4.160	0.0	1.414	0.835	0	0	4KV SWGR 23-1	1.414	0.835	227.9	86.1	
28-1 ALTF 3-1301-1&4	0.480	0.476	-1.4	0	0	0	0	480V MCC 28-1	0.000	0.000	0.0	0.0	
125V DC CHGR 2A	0.480	0.463	-0.8	0	0	0.034	0.028	480V MCC 28-2	-0.034	-0.028	55.0	77.2	
250V DC CHGR 2	0.480	0,469	-1.3	0	0	0.066	0.055	480V MCC 28-3	-0.066	-0.055	106.1	76.8	
480V MCC 28-1	0,480	0.476	-1.4	0	0	0.069	0.049	480V SWGR 28	-0.069	-0.049	103.1	81.4	
								28-1 ALTF 3-1301-1&4	0.000	0.000	0.0	0.0	
480V MCC 28-2	0.480	0.472	-1.6	0	0	0.119	0.127	480V SWGR 28	-0,154	-0.156	268.0	70.4	
								125V DC CHGR 2A	0.035	0.028	55.0	[·] 78.0	
480V MCC 28-3	0.480	0.473	-1.6	0	0	0.095	0.056	480V SWGR 28	-0.162	-0.111	239.8	82.4	
								250V DC CHGR 2	0,067	0.055	106.1	77.1	
480V MCC 28-7	0.480	0.479	-1.5	0	0	0	Ņ	480V SWGR 28	0.000	0.000	0.0	0.0	
								480V MCC 29-7	0.000	0.000	0.0	0.0	
480V MCC 29-7	0,480	0.479	-1.5	0	0	0	0	480V MCC 28-7	0,000	0.000	0.0	0.0	
480V SWGR 28	0,480	0.479	-1.5	0	0	0	0	480V MCC 28-1	0.070	0.050	103.1	81.5	
								480V MCC 28-2	0.156	0.158	268.0	70.2	
								480V MCC 28-3	0.164	0,113	239.8	82.3	
								480V MCC 28-7	0,000	0.000	0.0	0.0	
								HIGH SIDE OF XFMR 28	-0.389	-0.321	· 608.3	77.2	
HIGH SIDE OF XFMR 28	4.160	4.155	0.0	. 0	0	0	0	4KV SWGR 23-1	-0.391	-0.339	72.0	75. 6	
								480V SWGR 28	0.391	0.339	72.0	75.6	-2.500

LOAD FLOW REPORT

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calculati	on:	9389-4	6-19 <u>-3</u>
Attachm	ent:	F	
Revision	:	004	
Page	F37	of	F113

Project: Location:	Dresden Unit2 OT1		ETAP 5.5.0N	Page: Date:	8 03-20-2007
Contract:				SN:	WASHTNGRPN
Engineer:	ΤΟ	Study Case: DG_	DG 0 CCSW	Revision:	Base
Filename:	DRE_Unit2_0004			Config.:	DG2/3_T=10s

Diesel Generator connected using nominal voltage, 2 LPCI, This time period is less than 10 min into event.

۰.

LOAD FLOW REPORT

Bus		Vol	lage	Gene	ration	La	ad		Load Flo	w			XFMR
ID	kV	k٧	Ang.	MW	Mvar	MW	Mvar	ID	MW	Mvar	Атр	% PF	% Tap
4KV SWGR 23-1	4.160	4.153	-0.1	0	0	1.721	0.794	HIGH SIDE OF XFMR 28	0.452	0.378	81.9	76.7	
								4KV SWING BUS 40	-2.174	-1.172	343.3	88.0	
* 4KV SWING BUS 40	4.160	4.160	0.0	2.176	1.176	0	0	4KV SWGR 23-1	2.176	1.176	343.3	88.0	
28-1 ALTF 3-1301-1&4	0.480	0.474	-1.7	0	0	0	0	480V MCC 28-1	0.000	0.000	0.0	0.0	
125V DC CHGR 2A	0.480	0.461	-1.1	0	0	0.034	0.028	480V MCC 28-2	-0.034	-0.028	55.0	77.5	
250V DC CHGR 2	0.480	0.467	-1.6	0	0	0.066	0.055	480V MCC 28-3	-0.066	-0.055	106,1	77.0	
480V MCC 28-1	0.480	0.474	-1.7	0	0	0.094	0.062	480V SWGR 28	-0.094	-0.062	137,1	83.5	
								28-1 ALTF 3-1301-1&4	0.000	0,000	0.0	0.0	
480V MCC 28-2	0.480	0.470	-1.8	0	0	0.118	0.127	480V SWGR 28	-0.153	-0.155	267.8	70.4	
								125V DC CHGR 2A	0.035	0.028	55.0	78.3	
480V MCC 28-3	0.480	0.471	-1.8	0	0	0.095	0.056	480V SWGR 28	-0.162	-0.111	240.2	82.5	
,								250V DC CHGR 2	0.067	0.055	106.1	77.3	
480V MCC 28-7	0.480	0.475	-1.7	0	0	0.021	0.013	480V SWGR 28	-0.036	-0.022	50.7	85.4	
		•						480V MCC 29-7	0.014	0.009	20.4	85.1	
480V MCC 29-7	0.480	0.475	-1.7	0	0	0.014	0.009	480V MCC 28-7	-0.014	-0,009	20,4	85.1	•
480V SWGR 28	0.480	0,477	-1.7	0	0	0	0	480V MCC 28-1	0.095	0.062	137.1	83.6	
								480V MCC 28-2	0.155	0.157	267.8	70.2	
								480V MCC 28-3	0.163	0.113	240.2	82.3	
								480V MCC 28-7	0.036	0.022	50.7	85.4	
								HIGH SIDE OF XFMR 28	-0.449	-0.354	692.3	78.5	
HIGH SIDE OF XFMR 28	4.160	4.153	-0.1	0	0	0	0	4KV SWGR 23-1	-0.452	-0.378	81.9	76.7	
								480V SWGR 28	0.452	0.378	81.9	76.7	-2.500

• Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

.

Calculation:	<u>9389-46-19-3</u>
Attachment:	F
Revision:	004
PageF51	of

iject:	Dresden Unit2	ETAP	Page:	8
Location:	ΟΤΙ	5.5.0N	Date:	03-20-2007
Contract:			SN:	WASHTNGRPN
Engineer:	OTI	Study Case: DG 0 CCSW	Revision:	Base
Filename:	DRE_Unit2_0004		Config.:	DG2/3_T=10-m

{

Diesel Generator connected using nominal voltage, 2 LPCI, This time period is less than 10 min into event.

LOAD FLOW REPORT

Bus		Vol	lage	Gene	ration	Lo	ad		Load Flow	*			XFMR
!D	kV	kV	Ang.	мw	Mvar	MW	Mvar	ID	MW	Mvar	Amp	% PF	% Tap
4KV SWGR 23-1	4.160	4.154	-0.1	0	0	1.721	0.794	HIGH SIDE OF XFMR 28	0.427	0,355	77.2	76.8	
								4KV SWING BUS 40	-2.148	-1.150	338.7	88.2	
*4KV SWING BUS 40	4.160	4.160	0.0	2.151	1,154	0	0	4KV SWGR 23-1	2.150	1.154	338.7	88.1	
28-1 ALTF 3-1301-1&4	0,480	0.476	-1.6	0	0	0	0	480V MCC 28-1	0.000	0.000	0.0	0.0	
125V DC CHGR 2A	0.480	0,462	-1.0	0	0	0.034	0.028	480V MCC 28-2	-0.034	-0.028	55.0	77.3	
250V DC CHGR 2	0.480	0.466	-1.5	0	0	0.066	0.055	480V MCC 28-3	-0.066	-0.055	106.2	77,1	
480V MCC 28-1	0.480	0.476	-1.6	0	0	0.066	0.040	480V SWGR 28	-0,066	-0.040	93.9	85.8	
								28-1 ALTF 3-1301-1&4	0.000	0.000	0.0	0.0	
480V MCC 28-2	0.480	0.471	-1.7	0	0	0.119	0.127	480V SWGR 28	-0.154	-0.155	267.9	70.4	
							,	125V DC CHGR 2A	0.035	0.028	55.0	78.1	
480V MCC 28-3	0.480	0.471	-1.8	0	0	0.132	0.079	480V SWGR 28	-0.199	-0.134	294.0	83.0	
								250V DC CHGR 2	0.067	0.055	106.2	77.4	
480V MCC 28-7	0.480	0.478	-1.6	0	0	0	0	480V SWGR 28	0.000	0.000	0.0	0.0	
								480V MCC 29-7	0.000	0.000	0.0	0.0	
480V MCC 29-7	0,480	0.478	-1.6	0	0	0	0	480V MCC 28-7	0.000	0.000	0.0	0.0	
480V SWGR 28	0.480	0.478	-1.6	0	0	0	0	480V MCC 28-1	0.067	0.040	93.9	85.9	
								480V MCC 28-2	0,156	0.158	267.9	70.2	
								480V MCC 28-3	0.202	0.136	294.0	82.8	
								480V MCC 28-7	0.000	0.000	0.0	0.0	
								HIGH SIDE OF XFMR 28	-0.424	-0.334	652.2	78.5	
HIGH SIDE OF XFMR 28	4.160	4.153	-0.1	0	0	0	0	4KV SWGR 23-1	-0.427	-0.355	77.2	76.8	
								480V SWGR 28	0.427	0.355	77.2	76.8	-2.500

• Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

 $\#\,$ indicates a bus with a load mismatch of more than 0.1 MVA

Calculation:	<u>9389-46-19-3</u>
Attachment:	F
Revision:	004
Page F65	of F113

ject:	Dresden Unit2	ЕТАР	Page:	8
Location:	ΟΤΙ	5.5.0N	Date:	03-20-2007
Contract:			SN:	WASHTNGRPN
Engineer:	OTI	Study Case: DG 1 CCSW	Revision:	Base
Filename:	DRE_Unit2_0004		Config.:	DG2/3_T=10+m

Diesel Generator connected using nominal voltage, 2 LPCl Pump, 1 CCSW, This time period is 10+ min into event.

LOAD FLOW REPORT

Bus		Vol	tage	Gener	ation	Lo	ad		Load Flow	,			XFMR
ID '	kV	kV	Ang.	MW	Муаг	MW	Mvar	. ID	MW	Mvar	Ainp	% PF	% Tap
4KV SWGR 23	4.160	4.150	-0.1	0	0	0.477	0.212	4KV SWGR 23-1	-0.477	-0.212	72.6	91.3	
4KV SWGR 23-1	4.160	4.152	-0,1	0	0	1.701	0.788	HIGH SIDE OF XFMR 28	0.427	0.356	77.2	76.8	
								4KV SWGR 23	0.477	0.213	72.6	91.3	
								4KV SWING BUS 40	-2.605	-1.356	408.4	88.7	
* 4KV SWING BUS 40	4.160	4.160	0.0	2.609	1.3 61	0	0	4KV SWGR 23-I	2.609	1.361	408.4	88.7	•
28-1 ALTF 3-1301-1&4	0.480	0.475	-1.6	0	0	0	0	480V MCC 28-1	0.000	0.000	0.0	0.0	
125V DC CHGR 2A	0.480	0.462	-1.0	0	0	0.034	0.028	480V MCC 28-2	-0.034	-0,028	55.0	77,4	
250V DC CHGR 2	0.480	0.466	-1.5	0	0	0.066	0.055	480V MCC 28-3	-0.066	-0.055	106.2	77.1	
480V MCC 28-1	0.480	0.475	-1.6	0	0	0.067	0.040	480V SWGR 28	-0.067	-0.040	94.4	85.8	
								28-1 ALTF 3-1301-1&4	0.000	0.000	0.0	0.0	
+80V MCC 28-2	0.480	0.471	-1.8	0	0	0.119	0.127	480V SWGR 28	-0.154	-0.155	267.9	70.4	
								125V DC CHGR 2A	0.035	0.028	55.0	78.2	
480V MCC 28-3	0.480	0,470	-1.8	0	0	0.132	0.079	480V SWGR 28	-0.199	-0.134	294.1	83.0	
4								250V DC CHGR 2	0.067	0.055	106.2	77,4	
480V MCC 28-7	0.480	0.478	-1.6	0	0	0	0	480V SWGR 28	0.000	0.000	0.0	0.0	
								480V MCC 29-7	0.000	0.000	0.0	0.0	
480V MCC 29-7	0.480	0.478	-1.6	0	0	0	0	480V MCC 28-7	0.000	0.000	0.0	0.0	
480V SWGR 28	0.480	0.478	-1.6	o	• •	0	0	480V MCC 28-1	0.067	0.040	94.4	85.8	
								480V MCC 28-2	0.156	0.158	267.9	70.2	
								480V MCC 28-3	0.202	0.136	294.1	82,8	
								480V MCC 28-7	0.000	0.000	0.0	0.0	
								HIGH SIDE OF XFMR 28	-0.424	-0.334	652.7	78.5	
HIGH SIDE OF XFMR 28	4.160	4.152	-0.1	0_	0	0	0	4KV SWGR 23-1	-0.427	-0.355	77.2	76.8	
								480V SWGR 28	0.427	0.355	77.2	7 6 .8	-2.500

· Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load misinatch of more than 0.1 MVA

Calcul	ation:	<u>9389-46-19-3</u>				
Attach	ment:	F				
Revisi	on:	004				
Page .	F79	of	F113			

nject:	Dresden Unit2	ETAP	Page:	8
Location:	πο	5.5.0N	Date:	03-20-2007
Contract:			SN:	WASHTNGRPN
Engineer:	ТОТІ	Study Case: DG 2 CCSW	Revision:	Base
Filename:	DRE_Unit2_0004		Config.:	DG2/3_T10++m

ĺ

Diesel Generator connected using nominal voltage, 1 LPCI Pump, 2 CCSW, This time period is 10+ min into event.

Voltage Load Flow XFMR Bus Generation Load ID kV kν MW Mvar м₩ Mvar D МW Mvar Amp % PF % Тар Ang. 4KV SWGR 23 4.160 4.150 -0,1 0 0 0.771 0.395 4KV SWGR 23-1 -0.771 -0.395 120.5 89.0 4KV SWGR 23-1 4.160 4.153 -0.1 0 0 1.194 0.542 HIGH SIDE OF XFMR 28 0.438 0.364 79.2 77.0 4KV SWGR 23 0.771 0.396 120,5 89.0 4KV SWING BUS 40 -2.404 -1.301 380.0 87.9 0 4KV SWGR 23-1 *4KV SWING BUS 40 4.160 4.160 0.0 2.407 1.306 0 2 407 1.306 380.0 87.9 28-1 ALTF 3-1301-1&4 0.480 0.475 0 0 0 480V MCC 28-1 0.000 0,000 0.0 -1.6 0 0.0 125V DC CHGR 2A 0.480 0.034 0.028 480V MCC 28-2 -0.034 -0.028 77.5 0.461 -1.1 0 Û 55.0 250V DC CHGR 2 0.480 0.466 -1.6 0 0 0.066 0.055 480V MCC 28-3 -0.066 -0.055 106.2 77.1 0.040 480V SWGR 28 480V MCC 28-1 0.480 0.475 -1.6 0 0 0.067 -0.067 -0.040 94.4 85.8 0.0 28-1 ALTF 3-1301-1&4 0.000 0.000 0,0 +80V MCC 28-2 0.480 0.134 480V SWGR 28 0.470 -1.8 0 0 0.130 -0.165 -0.162 283.8 71.4 125V DC CHGR 2A 0.035 0.028 55.0 78.3 0.079 480V SWGR 28 480V MCC 28-3 0.480 0 0.132 -0.199 -0.134 83.0 0.470 ~1.8 0 294.2 250V DC CHGR 2 0.067 0.055 106.2 77.4 480V MCC 28-7 0.480 0.477 -1.7 0 0 0 0 480V SWGR 28 0.000 0.000 0.0 0.0 480V MCC 29-7 0.000 0.000 0.0 0.0 0 480V MCC 28-7 480V MCC 29-7 0.480 0.477 -1.7 0 0 0 0.000 0.000 0.0 0,0 480V SWGR 28 0.480 0 0 0 0 480V MCC 28-1 0.067 0.040 0.477 -1.7 94.4 85.8 480V MCC 28-2 0.167 0.165 283.8 71.2 480V MCC 28-3 0.201 0.136 294.Z 82.8 480V MCC 28-7 0.000 0,000 0,0 0.0 **HIGH SIDE OF XFMR 28** -0.436 -0.341 78.7 669.1 HIGH SIDE OF XFMR 28 -0.1 4.160 4,152 ٥ 0 0 0 4KV SWGR 23-1 -0.438 -0,363 77.0 79.2 480V SWGR 28 0,438 0.363 79.2 77.0 -2.500

LOAD FLOW REPORT

Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calculation:	9389-46-19-3
Attachment:	F
Revision: _	004
Page F93	of F113

oject:	Dresden Unit2	E.	ГАР	Page:	8
Location:	оп	5.5.0N		Date:	03-20-2007
Contract:				SN:	WASHTNGRPN
Engineer:	ΟΤΙ	Study Case:	DG 2 CCSW	Revision:	Base
Filename:	DRE_Unit2_0004	,		Config.:	DG2/3_CRHVAC

Diesel Generator connected using nominal voltage, 1 LPCI Pump, 2 CCSW, This time period is 10+ min into event.

LOAD FLOW REPORT

Bus		Voli	age	Gene	ration	Lo	ad		Load Flor	v			XFMR
D	kV	kV	Ang.	МŴ	Mvar	м₩	Mvar	ID	MW	Mvar	Amp	% PF	% Tap
4KV SWGR 23	4.160	4,149	-0.1	0	0	0.771	0.395	4KV SWGR 23-1	-0.771	-0.395	120.6	89.0	
4KV SWGR 23-1	4,160	4.152	-0.1	0	0	1.194	0.542	HIGH SIDE OF XFMR 28	0.522	0.423	93.5	77.7	
								4KV SWGR 23	0.771	0.396	120.6	89.0	
								4KV SWING BUS 40	-2.488	-1.361	394.3	87.7	
*4KV SWING BUS 40	4.160	4.160	0.0	2.491	1.366	0	0	4KV SWGR 23-1	2.491	1.366	394.3	87.7	
28-1 ALTF 3-1301-1&4	0.480	0,473	-2.0	0	0	0	0	480V MCC 28-1	0.000	0.000	0.0	0.0	
125V DC CHGR 2A	0.480	0.459	-1.4	0	0	0.034	0.027	480V MCC 28-2	-0.034	-0.027	55.0	77.8	
250V DC CHGR 2	0.480	0.461	-2.0	ວ່	0	0.066	0.053	480V MCC 28-3	-0.066	-0.053	106,3	77,9	
480V MCC 28-1	0.480	0,473	-2,0	0	0	0.066	0.040	480V SWGR 28	-0.066	-0.040	94.5	85.8	
								28-1 ALTF 3-1301-1&4	0.000	0.000	0.0	0.0	
+80V MCC 28-2	0.480	0.468	-2.1	0	0	0.129	0.133	480V SWGR 28	-0.164	-0,161	283.7	71.4	
								125V DC CHGR 2A	0.035	0.028	55.0	7 8.7	
480V MCC 28-3	0,480	0.465	-2.2	0	0	0.213	0.129	480V SWGR 28	-0.280	-0.183	415.3	83.7	
								250V DC CHGR 2	0.067	0,053	106.3	78.2	
480V MCC 28-7	0.480	0.475	-2.0	0	. 0	0	0	480V SWGR 28	0.000	0.000	0.0	0.0	
								480V MCC 29-7	0.000	0.000	0.0	0.0	
480V MCC 29-7	0.480	0.475	-2.0	0	0	0	0	480V MCC 28-7	0.000	0.000	0.0	0.0	
480V SWGR 28	0,480	0.475	-2.0	0	0	0	0	480V MCC 28-1	0.067	0.040	94.5	85.8	
								480V MCC 28-2	0.166	0.164	283,7	71.3	
								480V MCC 28-3	0.285	0,188	415.3	83.5	
								480V MCC 28-7	0.000	0.000	0.0	0.0	
								HIGH SIDE OF XFMR 28	-0.519	-0.392	789.7	79.8	
HIGH SIDE OF XFMR 28	4.160	4.152	- 0 .1	0	0	0	0	4KV SWGR 23-1	-0.522	-0.423	93.5	77.7	
								480V SWGR 28	0.522	0.423	93.5	77.7	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

, ł

Calcula	ation:	9389-	<u>46-19-3</u>
Attach	ment:	F	
Revisio	on:	004	
Page _	F107	of	F113

Automatically Turn On and Off Devices Under the **Design Basis Accident Condition** Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref. (P & ID)
33-1 3321	Bus Tie to 23-1	No	N.O. breaker with no auto close.	<u></u>	12E-3445, Sh. 3	A	
33-1 3322	RX. Building Cooling Water Pump 3A (3-3701-A)	Yes	Tripped on LOCA.		12E-3397	М	
33-1 3323	Main Feed from SWGR 33 (3-6733-10)	No	Trips on bus UV, and is manually closed before starting the CCSW Pump (10+ minutes).		12E-3344, Sh.1 &2	V, W	
33-1 3324	RX Cleanup Recirc. Pump 3A (3-1205-A)	Yes	Tripped on bus UV, and has no auto start.		12E-3520	V	
33-1 3325	480V SWGR 38 Feed (3-7338-2B)	No	N.C. Does not trip and remains closed.		12E-3349	S	
33-1 3327	LPCI Pump 3A (3-1502-A)	No	Will operate in auto (starts 0 seconds after UV relay resets).	Assume in auto.	12E-3436 Sh. 1 & 2 12E-3437 Sh. 1	P,P AD	
33-1 3329	RX Shutdown Cooling Pump 3A (3-1002-A)	Yes	Tripped on bus UV, and has no auto start.		12E-3516 12E-3517	F	
33-1 3330	LPCI Pump 3B (3-1502-B)	No	Will operate in auto (starts 5 seconds after UV relay resets).	Assume in auto.	12E-3436 Sh. 1 & 2 12E-3437 Sh. 1	P,P AD	
33-1 3331	Core Spray Pump 3A (3-1401-A)	No	Will operate in auto (starts 10 seconds after UV relay resets).	Assume in auto.	12E-3429 Sh. 1 12E-3430 Sh. 1	U AP	·
33-1 3332	I.L.R.T. Air Compressor	Yes	Compressor trips on LOCA.		12E-3397	M	
40	Aux. Pt. Indicating Lights, Meter, and Relay Comb.	No	Will continue to operate (0 seconds)		12E-6628	C	
38 2B	Main Feed from SWGR 33-1 (3-6733-25)	No	N.C. Does not trip and remains closed.		12E-3349	S	

Calc. No. 9389-46-19-3 Rev. 2 Page H1 Proj. No. 10014-012

Automatically Turn On and Off Devices Under the Design Basis Accident Condition

Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref.
No.		Shed					(P&ID)
38	Bus 38-39 Tie	No	N.O. and remains open.		12E-3349	S	
2C	(3-7339-2C)			· · ·			
38	Fuel Pool Cooling Water	Yes	Tripped on bus UV, and has no		12E-3548	L	
3A	Pump 3A (3-1902-A)		auto start.				
38	RX Building Vent Fan 3A	Yes	Tripped on SBGT initiation.		12E-3399A	L	
38	(3A-5703)						
38	RX Building Vent Fan 3C	Yes	Tripped on SBGT initiation.		12E-3399A	. L	1
<u> 3C</u>	(3C-5703)				ļ		1
38	RX Cleanup Demin. Auxiliary	Yes	Tripped on bus UV, and has no	· · · · · · · · · · · · · · · · · · ·	12E-3520	V	1
3D	Pump (3-1206)		auto start.	· · · · · · · · · · · · · · · · · · ·	· ·		
38	480V MCCs 38-1 & 38-4	No	N.C. Does not trip and remains		12E-3374	υ	1
4A	(3-7838-1A & 3-7838-4E1)		closed.		}		1
38	480V MCC 38-2	No	N.C. Does not trip and remains		12E-3374	U	1
<u>4B</u>	(3-7838-2A1)		closed.			ĺ	
38	RX Building Exhaust Fan 3A	. Yes	Tripped on SBGT initiation.		12E-3399A	L	1
4C	(3A-5704)	1		1			1
38	480V MCC 38-3	No	N.C. Does not trip and remains		12E-3374	U	1
4D	(3-7838-3A1)		closed.]	
38	480V MCC 38-7	No	N.C. Does not trip and remains]	12E-3374	U	1
<u>5</u> A	(3-7838-7A1)		closed.			{	1
38	South Turbine Room Vent	Yes	Tripped on LOCA		12E-3387B	L	1
5C	Fan 3A (3A-5702)	}					1
38	Recirc M-G Set Vent Fan 3A	Yes	Tripped on LOCA		12E-3420C	J	1
5D	(3A-5701)	1				1	}
38	Drywell Cooler Blower 3A, 3B,	Yes	Tripped on LOCA		12E-3393	N	1
6A-	3F, and 3G (3A,B,F,G-5734)	·					1
6D]				1	1
38-1	Drywell Air	No	Will operate in auto (0 seconds).	Assume in auto.	12E-3514	B	+
A2	Compressor (3-4710-A)	1				1 -	
38-1	120/208V Distr Xfmr 38-1	No	Will continue to operate	· · · · · · · · · · · · · · · · · · ·	12E-3674A	AF	
A4			(0 seconds)				

Calc. No. 9389-46-19-3 Rev. 2 Page H2 Proj. No. 10014-012

. . . •

Automatically Turn On and Off Devices Under the **Design Basis Accident Condition**

Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref. (P & ID)
38-1 B1	West LPCI/Core Spray Room Sump Pump 3B (3-2001-511B)	No		It is not expected that the water level in Core Spray Room will go up.	12E-3674A	AF	
38-1 B1A	Primary Containment Fans	No	Switch is N.O., therefore these will not run.		12E-3674A	AF	
38-1 82	Standby Liquid Control Tank Heater (3-1103)	No	Will continue to operate (0 seconds).		12E-3460 Sh. 1 12E-3674A	AD AF	
-38-1 B3	Standby Liquid Control Pump 3A (3-1102A)	No	Will not operate with switch in OFF position.	Assume switch is in OFF position.	12E-3460 Sh. 1	AD	
38-1 C1	LPCI/Core Spray Pump Area Cooling Unit 3A (3-5746A)	No	Controlled by thermostat.	Assume the the cooler starts at 0 seconds after UV relay reset.	12E-3393	N	
38-1 C2	Diesel Oil Transfer Pump 2/3 (2/3-5203) (alternate feed)	No	Will operate in auto (0 seconds).	Assume in auto.	12E-2351B Sh. 1	AF	
38-1 C3	Drywell and Torus Purge Exhaust Fan 3A (3-5708A)	Yes	Tripped on SBGT initiation.		12E-3393	М	
38-1 C4	Diesel 2/3 Vent Fan (2/3-5790) (alternate feed)	No	Will operate in auto (O seconds).	Assume in auto.	12E-2351B Sh. 2 12E-3674B	AL Y	
38-1 D1	Stm Iso/Inbd Con Viv Alt Fd 2-1301-1 and 2-1301-4 (alternate feed)	No	Manually operated only.	Assumed off.	12E-2507B	M	†
38-1 D2	Torus Drywell Compressor 3A (3-8551-A)	Yes	Trip on loss of voltage, and has no auto start.		12E-3372	R	1
38-1 D3	Shutdown Cooling Inlet Isolation Valve 3B (3-1001-1B)	No	NC and interlocked closed.		12E-3508A 12E-3508 12E-3501 Sh. 1 & 2	L E AD AC	, , ,

Calc. No. 9389-46-19-3 Rev. 2 Page H3 Proj. No. 10014-012

1. Jan 1.

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref. (P & ID)
38-1 D4	Shutdown Cooling Return Isolation Valve 3B	No	NC and interlocked closed.		12E-3508E 12E-3508	N E	
	(3-1001-5B)				12E-3501 Sh. 1 & 2	AD,AD	
38-1 E1	Core Spray Outboard Isolation Valve 3A	No	NO and interlocked open.		12E-3431 Sh. 1	V	
	(3-1402-24A) .				12E-3430 Sh. 1	AP	
38-1 E2	Core Spray Inboard Isolation Valve 3A (3-1402-25A)	No	NC and interlocked open.	Assume for conservatism, the low pressure permissive	12E-3431 Sh. 1	v	
			•	start (10 seconds after UV relay reset).	12E-3430 Sh. 1 & 2	AP,AN	
38-1 E3	Contain. Cooling Heat Exchanger Discharge Valve 3A	No	NC and interlocked closed when CCSW Pump is not in service.		12E-3440 Sh. 1	Y	
	(0.1001-04)		is started (10+ minutes)		12E-3437 Sh. 2	AC	
38-1 E4	Cleanup System Inlet Isolation Valve	No	NO and interlocked closed (0 seconds).		12E-3509A 12E-3509	R	
	(3-1201-1)				Sh.2 12E-3501 Sh. 1 & 2	AA AD.AD	
38-1	Cleanup System Potum Isolation		NO and introductor distance of (2)				
F1	Valve (3-1201-7)		seconds).		12E-3509A 12E-3509 Sh.2 12E-3501	AA	
					Sh. 1 & 2	AD,AC	

Calc. No. 9389-46-19-3 Rev. 2 Page H4 Proj. No. 10014-012

D3EXCEL XLS - U3 Table 1

.

Automatically Turn On and Off Devices Under the **Design Basis Accident Condition**

Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref. (P & ID)
38-1 F3	RWCU Isolation Valve Bypass (3-1201-1A)	No	NC and interlocked closed.		12E-7816D 12E-3509	J	M-361
					Sh. 2	AA	
38-1 F4	East LPCI/Core Spray Room Sump Pump 3A (3-2001-510A)	No		It is not expected that the water level in Core Spray Room will go up.	12E-3674C	AG	
38-1 F4A	Post LOCA H2 & O2 Sample Pump 3A (3-2400-A)	No	Load will operate at 0 seconds.		12E-7554A 12E-7552	J	
38-1 G1	Closed Cooling Water Isolation Valve (3-3704)	No	NO and remains open.		Sh. 2 12E-3674D	AA	
38-1 G2	Shutdown Cooling Retum Isolation Valve 3A (3-1001-5A)	No	NC and interlocked closed.		12E-3508E 12E-3508 12E-3501	N E	
38-1 G3	Closed Cooling Water Drywell Return Valve 3A (3-3703)	No	NO and remains open.		12E-3398	D	
38-1 G4	Shutdown Cooling Inlet Isolation Valve 3A (3-1001-1A)	No	NC and interlocked closed.		12E-3508A 12E-3508 12E-3501 Sh. 1 & 2	L E AD.AD	
38-1 H1	Inbd Cond Return Viv (3-1301-4) (normal feed)	No	NO and interlocked closed (0 seconds).		12E-3507B 12E-3506 Sb 1 8 2	M	
38-1 H2	Steam Line Isol VIv (3-1301-1) (normal feed)	No	NO and interlocked closed (0 seconds).		12E-3507B 12E-3506 Sh. 1 & 2	M ZAA	
38-1 H3	LPCI Pumps Drywell Discharge Valve 3A (3-1501-27A)	No	NC and interlocked closed.		12E-3440 Sh. 3 12E-3437 Sh. 1 & 2	W	

Calc. No. 9389-46-19-3 Rev. 2 Page H5 Proj. No. 10014-012

Automatically Turn On and Off Devices Under the **Design Basis Accident Condition** Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref. (P & ID)
38-1 H4	LPCI Pumps Drywell Discharge Valve 3B (3-1501-28A)	No	NC and interlocked closed.		12E-3441 Sh. 3 12E-3437	S	
	· · · · · · · · · · · · · · · · · · ·				Sh. 1 & 2	AD,AC	
38-2 A4	120/240V Distr Xfmr 38-2	No	Will continue to operate (0 seconds)		12E-3675A	AK	
38-2 B1	Condensate Transfer Jockey Pump (3-4321)	No	Will operate in auto (0 seconds).	Assume in auto.	12E-3373	к	
38-2 B2	Main Steam Isolation Valve Unit Coolers (3-5758 A thru F)	No		Considering the worst case that the manual starter has no UV, the coolers will start to operate at	12E-3675A 12E-3435 Sh. 1	AK S	
38-2 B3	Turbine Vacuum Breaker Valve (3-4901)	No	N.C. and remains closed.	0 seconds.	12E-3363	L	
38-2 B4	125Vdc Alternate Battery Electric Heaters #1, 2, 3	No	Will continue to operate (0 seconds)		12E-3675A	AK	
38-2 B5	Main Steam Line Drain Valves 220-90 A, B, C, and D	No	NC and remains closed.		12E-3450	В	
38-2 B6	H2 Seal Oil Vacuum Pump (3-5350-SOVP)	No	Will operate in auto (0 seconds)	Assume in auto.	12E-3365	M	
38-2 C1	125 Volt Battery Charger 3A (3-8300-3A)	No	Will continue to operate (0 seconds).		12E-3675B	L	
38-2 C2	Essential Bus Transformer Feed (Reserve Feed)	No	Will not operate. The 250Vdc Battery Charger will be feeding this load.		12E-3675B	L	
38-2 C3	120/240V Distr Xfmr Instr	No	Will continue to operate (0 seconds).		12E-3675B	L	1
38-2 C4	Instrument Buses Transformer Feeds (Bifurcated to Cubicles C2 & C3)	No	Will remain energized.		12E-3675B	L	

Calc. No. 9389-46-19-3 Rev. 2 Page H6 Proj. No. 10014-012

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref. (P & ID)
38-2 D1	Main H2 Seal Oil Pump (3-5350-MSOP)	No	Will operate in auto (0 seconds).	Assume in auto.	12E-3365	M	
38-2 D2	250 Volt Battery Charger #3 (3-8350-3)	No	Will always operate (0 seconds).		12E-3675B	L	
38-2 D3	Condensate Transfer Pump 3A (3A-4301)	Yes	Trips on loss of voltage, and has no auto start.		12E-3370	Q	
38-2 D4	Welder Receptacle (3-7901)	No	Will remain energized.	Assume there is no load being powered by this receptacle.	12E-3675B	L	
38-2 D5	Diesel Gen Starting Air Compressor 3A (3-4611A)	No	Will operate in auto as long as pressure is below 230 psi (0 seconds).	Assume in auto.	12E-3350B	AK	
38-3 A2	Diesel Circ. Water Heater 3	No	When Diesel Generator 3 gets up to the speed the contacts will open.	Assume Diesel Generator 3 failed to start.	12E-3350B	AK	
38-3 A2	DG Lube Oil Circulating Pump Motor 1HP (3-6657)	No	Will remain on (0 seconds)	· · · · · · · · · · · · · · · · · · ·	12E-3350B	AK	
38-3 A2	DG Lube Oil Circulating Pump Motor 3/4HP (3-6660)	No	Will remain on (0 seconds)		12E-3350B	AK	
38-3 A3	Turning Gear Oil Pump (3-5600-TGOP)	No	Will operate in auto (starts after Core Spray Pump but before CCSW Pump). Shown as a running load at 10+ minutes.	Assume in auto.	12E-3362	М	
38-3 A4	Turbine Turning Gear (3-5601- TGM)	No	Motor will start when the turbine speed has decreased to a set point.	Show in calculation in the final loading condition.	12E-3362A	D	
38-3 B1	Turning Gear Piggyback Motor (3-5601-TGM-PBM)	No	Will operate in auto. This load is shown to have operated (i.e. the Turbine Turning Gear Motor is engaged and shown as the operating load in ELMS).	Assume in auto.	12E-3362A	D	

Calc. No. 9389-46-19-3 Rev. 2 Page H7 Proj. No. 10014-012

D3EXCEL.XLS - U3 Table 1

Automatically Turn On and Off Devices Under the

Design Basis Accident Condition

Dresden Station - Unit 2/3 (Swing Diesel)

EDG 2/3 Powering Unit 3

Bus No	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	(P & ID)
38-3 B2- B6	Turbine Bearing Lift Pump 3A, 3B, 3C, 3D, and 3E (3-5620-A, B, C, D, E)	No	Manual operation only.	These are manually started prior to the Turning Gear operation (shown in final loading).	12E-3364	К	
38-3 C2	RX Protection System M-G Set 3A (3-8001-A)	No	Will start operating when voltage recovers at MCC 38-3.		12E-3592	К	
38-3 C4	Diesel Cooling Water Pump 2/3 (2/3-3903) (Alternate Feed)	No	Will operate in auto (0 seconds).	Assume in auto.	12E-3676B 12E-2351B Sh. 1	U AF	
38-3 D1	Contain. Cool. Serv. Water Pump Cub. Cooler A Fan 1 3-5700-30A	No	Turns on by operating CCSW Pump 3B (starts at 10++ minutes).		12E-3676B 12E-3435 Sh. 1	U S	
38-3 D2	Contain. Cool. Serv. Water Pump Cub. Cooler A Fan 2 3-5700-30A	No	Turns on by operating CCSW Pump 3B (starts at 10++ minutes).		12E-3676B 12E-3435 Sh. 1	บ ร	
38-3 D3	Contain. Cool. Serv. Water Pump Cub. Cooler B Fan 1 3-5700-30B	No	Tums on by operating CCSW Pump 3B (starts at 10++ minutes).		12E-3676B 12E-3435 Sh. 1	U S	
38-3 D4	Contain. Cool. Serv. Water Pump Cub. Cooler B Fan 2 3-5700-30B	No	Turns on by operating CCSW Pump 3B (starts at 10++ minutes).		12E-3676B 12E-3435 Sh. 1	U S	
38-3 D5	120/208V Distr Xfmr 38-3	No	Will continue to operate (0 seconds).		12E-3676B	U	
38-3 D6	120/208V Distr Xfmr FP-3	No	Will always operate (Oseconds)		12E-3676B	U	
38-4 A1	Core Spray Suction Valve 3A (3-1402-3A)	No	NO and interlocked open.		12E-3432 12E-3430 Sh. 1	AP	
38-4 A2	Core Spray Test Bypass Valve 3A (3-1402-4A)	No	NC and interlocked closed.		12E-3433 12E-3430 Sh. 1	P AP	

Calc. No. 9389-46-19-3 Rev. 2 Page H8 Proj. No. 10014-012

Automatically Tum On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref. (P & ID)
38-4 A3	LPCI Pump 3A Suction Valve (3-1501-5A)	No	NO and interlocked open.		12E-3440 Sh. 1 12E-3437	Y	
					Sh. 1	AD	
38-4 A4	LPCI Pump 3B Suction Valve (3-1501-5B)	No	NO and interlocked open.		12E-3440 Sh. 1 12E-3437	Y	
					Sh. 1	AD	
38-4 B1	LPCI Torus Spray Valve 3A (3-1501-38A)	No	NC and interlocked closed.	······································	12E-3441 Sh. 1 12E-3437	Q	
38-4 B2	LPCI Torus Spray Valve 3B (3-1501-20A)	No	NC and interlocked closed.		Sh. 1 & 2 12E-3441 Sh. 2 12E-3437 Sh. 1 # 2	R	
38-4 B3	LPCI Torus Ring Spray Valve 20 (3-1501-18A).	No	NC and interlocked closed.		12E-3441 Sh. 1 12E-3437 Sh. 1 & 2		
38-4 B4	LPCI Torus Ring Spray Valve M (3-1501-19A)	No	NC and interlocked closed.		12E-3441 Sh. 2 12E-3437 Sh. 1 & 2	R AD,AC	
38-4 C1	Temporary Hyd. Power Unit for Rod Oscillator Tests	No	Field to disconnect various points in the control circuit, thus disabling the equipment.		12E-3680B	J	
38-4 C1A	Welder Receptacle	No	Will remian energized.	Assume there is no load powered by this receptacle.	12E-3680B	L	1
38-4 C2	Diesel Starting Air Compressor 2/3B (2/3-6600-B)	No	Will operate in auto as long as pressure is below 230 psi (0 seconds).	Assume in auto.	12E-2351B Sh. 1	AA	

Calc. No. 9389-46-19-3 Rev. 2 Page H9 Proj. No. 10014-012

*

 \sim

Automatically Turn On and Off Devices Under the **Design Basis Accident Condition** Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref. (P & ID)
38-4 C3	LPCI Header Crosstie Isolation Valve (3-1501-32A)	No	NO and remains open.		12E-3440 Sh. 3	W	
38-4 E2	LPCI Pump Flow Bypass Valve 3A (3-1501-13A)	No	NO and interlocked open but when fluid is over low flow level, valve will close (0 seconds after UV relay reset).		12E-3440 Sh. 2 12E-3437 Sh. 2	X AC	
38-4 E3	Core Spray Pump Recirc. Isolation Valve 3A (3-1402-38A)	No	NO and interlocked open, but when flow is over low flow level, valve will close (10 seconds after UV relay reset).		12E-3433	P	
38-4 E4	LPCI Heat Exchanger Bypass Valve 3A (3-1501-11A)	No	NO and interlocked open.		12E-3440 Sh. 2 12E-3437A 12E-3437 Sh. 1	X R AD	
38-4 E5	HPCI Floor Drain Sump Pump (3-2301-250)	No	Turns on & off by a level switch.	Water level in the sump pump is not expected to go up, thus the pump will not operate.	12E-3533	Q	
38-7 A2	LPCI Inbd. Isolation Valve 3A (3-1501-22A)	No	NC and interlocked open (10 seconds after UV reset)	Since the break could occur on either side, assume that Loop B has the break, so Loop A is selected by the loop selection logic. The loads on 38/39-7 that auto start will be started at the worst case time between 5s and 15s after DG breaker closure.	12E-3441 Sh. 4 12E-3437A 12E-3438A	T S S	
38-7 B1	Recirc. Pump 3A Suction Valve (3-0202-4A)	Yes	NO and remain open.		12E-3420A	T	1

Calc. No. 9389-46-19-3 Rev. 2 Page H10 Proj. No. 10014-012

· / /

Table 1B

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref. (P & ID)
38-7 82	Recirc. Pump 3A Discharge Valve (3-0202-5A)	No	NO and interlock closed (10 seconds after UV reset)	Since the break could occur on either side, assume that Loop B has the break, so Loop A is selected by the loop selection logic. The loads on 38/39-7 that auto start will be started at the worst case time between 5s and 15s after DG breaker closure.	12E-3420A 12E-3437A 12E-3438A	T S S	
38-7 C3	LPCI Outboard Isolation Valve 3A (3-1501-21A)	No	NO and interlocked open.	Since the break could occur on either side, assume that Loop B has the break, so Loop A is selected by the loop selection logic. The loads on 38/39-7 that auto start will be started at the worst case time between 5s and 15s after DG breaker closure.	12E-3441 Sh. 3 12E-3437A 12E-3438A	S S S	
39-7 A2	Refueling Floor Jib Crane (3-5813)	No		Not operating.	12E-3662C	U	
39-7 A3	LPCI Outboard Isolation Valve 3B (3-1501-21B)	No	NO and interlocked closed (10 seconds after UV reset).	Since the break could occur on either side, assume that Loop B has the break, so Loop A is selected by the loop selection logic. The loads on 38/39-7 that auto start will be started at the worst case time between 5s and 15s after DG breaker closure.	12E-3441A 12E-3437A 12E-3438A	U S S	
39-7 B1	Recirc. Pump 3B Suction Valve (3-0202-4B)	No	NO and remains open.		12E-3420B	V	

Calc. No. 9389-46-19-3 Rev. 2 Page H11 Proj. No. 10014-012 $\sum_{i=1}^{j}$

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 2/3 (Swing Diesel)

EDG 2/3 Powering Unit 3

Bus	Equipment Description/No.	Load	Known Fact	Assumption / Eng. Judgement	Dwg. Ref.	Rev.	Other Ref.
No.		Shed					(P&ID)
39-7	Recirc. Pump 3B Discharge	No	NO and remains open.	Since the break could occur on	12E-3420B	V	[[
B2	Valve			either side, assume that Loop B	12E-3437A	S	{ }
	(3-0202-5B)			has the break, so Loop A is selected by the loop selection logic. The loads on 38/39-7 that	12E-3438A	S	
				auto start will be started at the worst case time between 5s and			
				15s after DG breaker closure.			
39-7	LPCI Inboard Isolation Valve 3B	No	NC and interlocked closed.	Since the break could occur on	12E-3441A	U	
C2	(3-1501-22B)		4	either side, assume that Loop B	12E-3437A	S	
1				has the break, so Loop A is	12E-3438A	S	
	1			selected by the loop selection			
				logic. The loads on 38/39-7 that	1	l	
1		Į		auto start will be started at the	Į	1	l
				worst case time between 5s and	1		
				15s after DG breaker closure.			<u> </u>

N.O. - Normally Open

N.C. - Normally Closed

N/A - Not Available

Note: All loads that are tripped off and interlocked off or require manual action to restart are considered Load Shed.

Operating loads and loads with auto start capabilities that have power available and do not operate (i.e. an MOV that is N.O. and remains open) is considered NOT load shed.

Calc. No. 9389-46-19-3 Rev. 2 Page H12 Proj. No. 10014-012
TABLE 28

AFFECTS OF VOLTAGE DIP

PURPOSE

The purpose of Table 2 is to determine the affects of an AC voltage dip, that is low enough to de-energize control circuits ie., contactors, relays, etc., has on the operation of the mechanical equipment.

METHOD

Table 2 shows the results of the review. The conclusion of Table 2 is shown in the analysis of data section. Below is the explanation for each column in Table 2.

Table 2 Column Description

Equipment Description/No.

Load Shed

Will the voltage dip at 5 seconds, 10 seconds, and 10 minutes affect the equipments' operation

(Question 1)

Calc. No.93	89-46-19-3
Rev. O	Date
Page I	
Proj. No. 9	389-46

Explanation of What is Shown in the Column

This column lists all of the loads connected to the DG buses. It is the same list as shown in Table 1.

This column answers the question "when a LOOP/LOCA occurs, does this load automatically de-energize to shed load on the bus?" It is the same list as shown in Table 1. It is shown again because any load de-energized will not be affected by a voltage dip. If there is a yes in this column, the answer to the other questions will be "no" or "N/A" (not applicable).

The "affect" looked for is that the control circuit per the referenced schematics is de-energized or energized by a voltage dip. If the circuit was not energized before the dip and/or the energized state of the circuit did not change due to a dip, the answer is no. If the energized state of the circuit changed, the answer is yes.

AFFECTS OF A VOLTAGE DIP

Table 2 Column Description

Will the equipment restart after the voltage recovery

(Question 2)

57

Will the equipment operate in an adverse mode due to a voltage dip

(Question 3)

Will the time delay in operation cause any adverse affect

(Question 4)

Explanation of What is Shown in the Column

This question is to verify that equipment required is restarted automatically after a voltage dip. Only AC control circuits need to be considered. DC control circuits will be unaffected by an AC voltage dip. Circuits that have seal-in contacts are types that would not restart.

If the answer to Question 1 is yes, and to Question 2 is yes, then Question 3 has to be answered. The "adverse modes" looked for are items like, valves moving in the wrong direction, time delay relays being reset by the dip causing equipment to operate for shorter or longer periods than required, etc.

If the answer to Question 1 is yes, and 2 is yes, Question 4 has to be answered. The time delay referred to is the one second it takes the DG to recover to above 80% after the start of a large motor. The adverse affects looked for are items like, could within one second the room temperature rise excessively if a cooler is de-energized, if a valve travel requires one more second to operate will its total travel time exceed design limits, etc.

The "no" answers to this question are based on the following engineering judgements:

- a. Some valves may require two seconds more to complete its travel. Valves operate normally less than a minute. The allowable total time is 120 seconds. Therefore with a voltage dip, the design allowable is not exceeded.
- b. Two-second time delays in room coolers, pumps, etc. would not cause rooms, equipment, etc. to overheat, etc.

ARGENT & LUNDY ENGINEERS CHICAGO

Calc. No.93	89-46-19-3
Rev. Q	Date
Page I2	
Proj. No. 9	389-46

TABLE 28

AFFECTS OF A VOLTAGE DIP

Table 2 Column Description

Drawing Reference

Revision

1

Other Reference

Calc. No.9389-46-19-3						
Rev. Q	Date					
Page I3						
Proj. No. 9	389-46					

Explanation of What is Shown in the Column

c. Instrument bus loads may give erroneous readings for a fraction of a second due to momentary sharp voltage drop. But the instrument bus is designed with transfer switch, which takes about one second to transfer the loads. Therefore, the operators are familiar with the behavior of these loads during abnormal condition. This will not require any special attention of the operators.

This drawing shows the main schematic or wiring diagram for the control circuit reviewed.

This is the revision number of the drawing referenced above.

Other references used to understand the operation of control circuit may be listed here or see the main reference section of this calculation.

TABLE 2B AFFECTS OF VOLTAGE DIP

 \sim

Dresden Station - Unit 2	/3 (Swing Diesel)
--------------------------	-------------------

		-	-
CD0 00	Denne dae -	4 1	-
CUG 23	Powening	υπα	3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
33-1 3321	Bus Tie to 23-1	No	No. Note 1.	N/A	N/A	N/A	12E-3345, Sh. 3	A	
33-1 3322	RX. Building Cooling Water Pump 3A (3-3701-A)	Yes	N/A	N/A	N/A	N/A	12E-3397	М	
33-1 3323	Main Feed from SWGR 33 (3-6733-10)	No	No. Note 1.	N/A .	N/A	N/A	12E-3344, Sh.1 & 2	V.W	
33-1 3324	RX Cleanup Recirc. Pump 3A	Yes	N/A	N/A	N/A	N/A	12E-3520	V	
33-1 3325	480V SWGR 38 Feed (3-7338-2B)	No	No. Note 1.	N/A	N/A	N/A	12E-3349	S	
33-1 3327	LPCI Pump 3A (3-1502-A)	No	Yes, Pump will slow down momentarily.	Yes. 125Vdc control circuit.	No	No	12E-3436 Sh. 1 & 2 12E-3437 Sh. 1	P,P AD	
33-1 3329	RX Shutdown Cooling Pump 3A	Yes	N/A	N/A	N/A	N/A	12E-3516 12E-3517	F	
33-1 3330	LPCI Pump 38 (3-1502-B)	No	Yes, Pump will slow down momentarily.	Yes. 125Vdc control circuit.	No	No	12E-3436 Sh. 1 & 2 12E-3437 Sh. 1	P,P	
33-1 3331	Core Spray Pump 3A (3-1401-A)	No	Yes. Pump will slow down momentarily.	Yes. 125Vdc control circuit.	No	No	12E-3429 Sh. 1 12E-3430 Sh. 1		

Calc. No. 9389-48-19-3 Revision 2 Page No. 14 Proj. No. 10014-012

TABLE 2B AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel)	
EDG 2/3 Powering Unit 3	

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
33-1 3332	I.L.R.T. Air Compressor	Yes	N/A	N/A	N/A	N/A	12E-3397	М	
40	Aux. Pt. Indicating Lights, Meter, and Relay Comb.	No	No	Yes	No	No	12E-6628	С	
38 2B	Main Feed from SWGR 33-1 (3-6733-25)	No	No. Note 1.	N/A	N/A	N/A	12E-3349	S	
38 2C	Bus 38-39 Tie (3-7339-2C)	No	No. Note 1.	N/A	N/A	N/A	12E-3349	S	
38 3A	Fuel Pool Cooling Water Pump 3A (3-1902-A)	Yes	N/A	N/A	N/A	N/A	12E-3548	Ł	
38 3B	RX Building Vent Fan 3A (3A-5703)	Yes	N/A	N/A	N/A	N/A	12E-3399A	L	
38 3C	RX Building Vent Fan 3C (3C-5703)	Yes	N/A	N/A	N/A	N/A	12E-3399A	L	
38 3D	RX Cleanup Demin. Auxiliary Pump (3-1206)	Yes	N/A	N/A	N/A	N/A	12E-3520	V	
38 4A	480V MCCs 38-1 & 38-4 (3-7838-1A & 3-7838-4E1)	No	No. Note 1.	N/A	N/A	N/A	12E-3374	U	
38 4B	480V MCC 38-2 (3-7838-2A1)	No	No. Note 1.	N/A	N/A	N/A	12E-3374	U	1
38 4C	RX Building Exhaust Fan 3A (3A-5704)	Yes	N/A	N/A	N/A	N/A	12E-3399A	L.	1

Calc. No. 9389-46-19-3 Revision 2

.

Page No. 15 Proj. No. 10014-012

TABLE 2B

· _ ~

AFFECTS OF VOLTAGE DIP

Dresden Station - I	Jnit 2/3 (Swing Diesel)
EDG 2/3 P	owering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
38 4D	480V MCC 38-3 (3-7838-3A1)	No	No. Note 1.	N/A	N/A	N/A	12E-3374	U .	
38 5A	480V MCC 38-7 (3-7838-7A1)	No	No. Note 1.	N/A	N/A	N/A	12E-3374	U	
38 5C	South Turbine Room Vent Fan 3A (3A-5702)	Yes	N/A	N/A	N/A	N/A	12E-3387B	L	
38 5D	Recirc M-G Set Vent Fan 3A (3A-5701)	Yes	N/A	N/A	N/A	N/A	12E-3420C	J	
38 6A- 6D	Drywell Cooler Blower 3A, 3B, 3F, and 3G (3A,B,F,G- 5734)	Yes	N/A	N/A	N/A	N/A	12E-3393	N	<u> </u>
38-1 A2	Drywell Air Compressor (3-4710-A)	No	Yes. Compressor will slow down momentarily.	Yes	No	N/A	12E-3514	В	—
38-1 A4	120/208V Distr Xfmr 38-1	No	Yes. Vołtage will decrease temporarily.	Yes	No	N/A	12E-3674A	AF	
38-1 B1	West LPCI/Core Spray Room Sump Pump 3B (3-2001-511B)	No	No. Note 1.	N/A	N/A	N/A	12E-3674A	AF	
38-1 B1A	Primary Containment Fans	No	No, Note 1.	N/A	N/A	N/A	12E-3674A	AF	

Calc. No. 8389-46-19-3 Revision 2 Page No. 16 Proj. No. 10014-012

TABLE 2B

AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel) ED

)G 2/3	Power	ing l	Jnit 3
--------	-------	-------	--------

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
38-1 B2	Standby Liquid Control Tank Heater (3-1103)	No	No	Yes	No	N/A	12E-3460 Sh. 1 12E-3674A	AD AF	
38-1 B3	Standby Liquid Control Pump 3A (3-1102A)	No	No. Note 1.	N/A	N/A	N/A	12E-3460 Sh. 1	AD	
38-1 C1	LPCI/Core Spray Pump Area Cooling Unit 3A (3-5746A)	No	Yes. Fan slows down momentarily.	Yes	No	N/A	12E-3393	N	
38-1 C2	Diesel Oil Transfer Pump 2/3 (2/3-5203) (alternate feed)	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-2351B Sh. 1	AF	
38-1 C3	Drywell and Torus Purge Exhaust Fan 3A (3-5708A)	Yes	N/A	N/A	N/A	N/A	12E-3393	М	
38-1 C4	Diesel 2/3 Vent Fan (2/3-5790) (alternate feed)	No	Yes. Fan slows down momentarily.	Yes	No	N/A	12E-2351B Sh. 2 12E-3674B	AL Y	
38-1 D1	Stm Iso/Inbd Con Viv Alt Fd 2-1301-1 and 2-1301-4 (alternate feed)	No	No. Note 1.	N/A	N/A	N/A	12E-2507B	M	
38-1 02	Torus Drywell Compressor 3A (3-8551-A)	Yes	N/A	N/A	N/A	N/A	12E-3372	R	

Calc. No. 9389-46-19-3 **Revision 2** Page No. 17 Proj. No. 10014-012

1

TABLE 2B AFFECTS OF VOLTAGE DIP

: .--

Dresden Station - Unit 2/3 (Swing Diese!)	
EDG 2/3 Powering Unit 3	

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
					uips r				
38-1 D3	Shutdown Cooling Inlet Isolation Valve 3B (3-1001-1B)	No	No. Note 1.	N/A	N/A	N/A	12E-3508A 12E-3508 12E-3501 Sh. 1 & 2	L E AD,AD	
38-1 D4	Shutdown Cooling Return Isolation Valve 3B (3-1001-5B)	No	No. Note 1.	N/A	N/A	N/A	12E-3508E 12E-3508 12E-3501 Sh. 1 & 2	N E AD,AD	
38-1 E1	Core Spray Outboard Isolation Valve 3A (3-1402-24A)	No	No. Note 1.	N/A	N/A	N/A	12E-3431 Sh. 1 12E-3430 Sh. 1	V AP	
38-1 E2	Core Spray Inboard Isolation Valve 3A (3-1402-25A)	No	Yes. Valve will stop momentarily.	Yes	No. NC and interlocked open.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-3431 Sh. 1 12E-3430 Sh. 1 & 2	V AP.AN	
38-1 E3	Contain. Cooling Heat Exchanger Discharge Valve 3A (3-1501-3A)	No	No	No (not required until CCSW Pump is started)	No. NC and interlocked closed until the CCSW Pump is started.	No	12E-3440 Sh. 1 12E-3437 Sh. 2	Y AC	
38-1 E4	Cleanup System Inlet Isolation Valve (3-1201-1)	No	Yes. Valve will stop momentarily.	Yes	No. NO and interlocked closed.	Yes, Will increase operating time. However, increased time will be within acceptable limits.	12E-3509A 12E-3509 Sh.2 12E-3501 Sh. 1 & 2	R AA AD,AD	

Calc. No. 9389-46-19-3 Revision 2 Page No. 18 Proj. No. 10014-012 .

TABLE 2B

AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
38-1 F1	Cleanup System Return Isolation Valve (3-1201-7)	No	Yes. Valve will stop momentarily.	Yes	No. NO and interlocked closed.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-3509A 12E-3509 Sh.2 12E-3501 Sh. 1 & 2	R AA AD,AD	
38-1 F3	RWCU Isolation Valve Bypass (3-1201-1A)	No	No. Note 1.	N/A	N/A	N/A	12E-7816D 12E-3509 Sh. 2	J	
38-1 F4	East LPCI/Core Spray Room Sump Pump 3A (3-2001-510A)	No	No. Note 1.	N/A	N/A	N/A	12E-3674C	AG	
38-1 F4A	Post LOCA H2 & O2 Monitoring Sample Pump 3A (3-2400-A)	No	Yes. Pump will slow down momentarily.	Yes. Interlocked with LOCA signal.	No	N/A	12E-7554A 12E-7552 Sh. 2	J	 -
38-1 G1	Closed Cooling Water Isolation Valve (3-3704)	No	No. Note 1.	N/A	N/A	N/A	12E-3674D	AA	
38-1 G2	Shutdown Cooling Return Isolation Valve 3A (3-1001- 5A)	No	No. Note 1.	N/A	N/A	N/A	12E-3508E 12E-3508 12E-3501 Sh. 1 & 2	N E AD,AD	
38-1 G3	Closed Cooling Water Drywell Return Valve 3A (3-3703)	No	No. Note 1.	N/A	N/A	N/A	12E-3398	D	

Calc. No. 9389-46-19-3 Revision 2 Page No. 19 Proj. No. 10014-012

D3EXCEL.XLS - U3 Table 2

•

TABLE 2B

AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bue No	Equipment Decemption ()	1.000	1AGH Ale Line Harris dia - C	ACRACE STORING	AAGU AL - T	No.Cli Ale a Alega datas te	Own Det 1	David	0
UUS NU ,	Equipment Description/ND.	Load Shed	5s, 10s, & 10min. affect the equipment's operation ?	vuil the equipment start after voltage recovery ?	vull me equipt. operate in adverse - mode due to the voltage dips ?	vvill the time delay in operation cause any adverse affect ?	Dwg. Ker.	Kev	Ref.
38-1 G4	Shutdown Cooling Inlet Isolation Valve 3A (3-1001-1A)	No	No. Note 1.	N/A	N/A	N/A .	12E-3508A 12E-3508 12E-3501 Sh. 1 & 2	L E AD,AD	
38-1 H1	Inbd Cond Return Valve (3-1301-4) (normal feed)	No	Yes. Valve will stop momentarily.	Yes	No. NO and interlocked closed.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-3507B 12E-3506 Sh. 1 & 2	M Z,AA	
38-1 H2	Steam Line Isol Valve (3-1301-1) (normal feed)	No	Yes. Valve will stop momentarily.	Yes	No. NO and interlocked closed.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-3507B 12E-3506 Sh. 1 & 2	M Z,AA	
38-1 H3	LPCI Pumps Drywell Discharge Valve 3A (3-1501-27A)	No	No. Note 1.	N/A	N/A	N/A	12E-3440 Sh. 3 12E-3437 Sh. 1 & 2	W AD,AC	-
38-1 H4	LPCI Pumps Drywell Discharge Valve 3B (3-1501-28A)	No	No. Note 1.	N/A	N/A	N/A ·	12E-3441 Sh. 3 12E-3437 Sh. 1 & 2	S AD,AC	
38-2 A4	120/240V Distr Xfmr 38-2	No	Yes. Voltage will decrease temporarily.	Yes	No	N/A	12E-3675A	AK	
38-2 B1	Condensate Transfer Jockey Pump (3-4321)	No	Yes. Pump will slow down momentarily,	Yes	No	N/A	12E-3373	к	

Calc. No. 8389-46-19-3 Revision 2 Page No. 110 Proj. No. 10014-012

,

TABLE 2B

AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect	Will the equipment start after voltage recovery ?	Will the equipt.	Will the time delay in operation cause any	Dwg. Ref.	Rev	Other Ref.
			the equipment's operation	•	operate in	adverse affect ?	1		
			?		adverse		1		
. 1					mode due to		1 1		1 1
					the voltage		1 1		1 1
					dips?		1 ·		t [
38-2	Main Steam Isolation Valve	No	Yes. Coolers will slow	Yes	No	N/A	12E-3675A	AK	
B2	Unit Coolers		down momentarily.				12E-3435		1 1
	(3-5758 A thru F)						Sh. 1	S	
38-2	Turbine Vacuum Breaker	No	No. Note 1.	N/A	N/A	N/A	12E-3363	Ĺ	
63	Valve (2.4001)						1		
	(3-4901)								
38-2	125V Alternate Battey	No	No	Yes	No	N/A	12E-3675A	AK	f{
B4	Electric Heaters #1, 2, 3								
					1				\
38-2	Main Steam Line Drain	No	No. Note 1.	N/A	N/A	· N/A	12E-3450	B	
B5	Valves 220-90 A, B, C, and								
ł	D				4				
39.2	H2 Seel Oil Meaning During					·			
B6	(3-5350-SOVP)	NO	Yes. Pump will slow down	Yes	No	N/A	12E-3365	M	
			momentaniy.				}		{
38-2	125 Volt Battery Charger 3A	No	Yes Charger output will	Vec	hin .		405 26750		
C1	(3-8300-3A)		decrease momentarily.	105	110		122-30/30		
38-2	Essential Bus Transformer	No	No. Note 1.	N/A	N/A	N/A	125-36758		+
C2	Feed (Reserve Feed))				i Mirk	122-00100	5	}
38-2	120/240V Distr Xfmr Inst	No	Yes. Voltage will	Yes	No	No	12E-3675B		+
C3			decrease temporarily.						
					}	}		Į	
38-2	Instrument Buses	No	Yes. Voltage will				12E-3675B	E	+
C4	Transformer Feeds	1	decrease momentarily					[_	1
}	(Binurcated to		(see Cubicles C2 & C3).			Į	1	Į	1
L		L			ł	Į	1		

Calc. No. 8389-46-18-3 Revision 2 Page No. 111 Proj. No. 10014-012

TABLE 2B

0

AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel) EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt, operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
38-2 D1	Main H2 Seal Oil Pump (3-5350-MSOP)	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-3365	М	
38-2 D2	250 Volt Battery Charger #3 (3-8350-3)	No	Yes. Charger output will decrease momentarily.	Yes	No	N/A	12E-3675B	L	
38-2 D3	Condensate Transfer Pump 3A (3A-4301)	Yes	N/A	N/A	N/A	N/A	12E-3370	Q	
38-2 D4	Welder Receptacle (3-7901)	No	No. Note 1.	N/A	N/A	N/A	12E-3675B	L	
38-2 D5	Diesel Gen Starting Air Compressor 3A (3-4611A)	No	Yes. Compressor will slow down momentarily.	Yes. Will start when pressure is below 230 psi.	No	N/A	12E-3350B	AK	
38-3 A2	Diesel Circ. Water Heater 3	No	Yes. Heater output will decrease momentarily.	Yes	No	N/A	12E-3350B	AK	
38-3 A2	DG Turbo Charger Lube Oil Circulating Pump #2	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-3350B	AK	
38-3 A2	DG Turbo Charger Lube Oil Circulating Pump #2	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-3350B	AK	T
38-3 A3	Turning Gear Oil Pump (3-5600-TGOP)	No	Yes. Pump will slow dowr momentarily.	l Yes	No	N/A	12E-3362	М	T
38-3 A4	Turbine Turning Gear (3-5601-TGM)	No	No. Not started until after the second CCSW Pump is running.	N/A	N/A	N/A	12E-3362A	D	

Calc. No. 9389-48-18-3 Revision 2 Page No. 112 Proj. No. 10014-012

\sim

TABLE 2B AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel)

EDG 2/3	Powering	Unit 3
---------	----------	--------

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
38-3 B1	Turning Gear Piggyback Motor (3-5601-TGM-PBM)	No	No. Not started until after the second CCSW Pump is running.	N/A	N/A	N/A	12E-3362A	D	
38-3 82- 86	Turbine Bearing Lift Pump 3A, 3B, 3C, 3D, and 3E (3-5620-A, B, C, D, E)	No	N/A. Starts after 10 minutes.	Yes	N/A	NA	12E-3364	К	
38-3 C2	RX Protection System M-G Set 3A (3-8001-A)	No.	Yes. The motor might slow down momentarily.	Yes,	No.	N/A	12E-3592	К	
38-3 C4	Diesel Cooling Water Pump 2/3 (2/3-3903) (Alternate Feed)	No	Yes. Pump will slow down momentarily.	Yes	No	N/A	12E-3676B 12E-2351B, Sh. 1	U AF	
38-3 D1	Contain. Cool. Serv. Water Pump Cub. Cooler A, Fan 1, 3-5700-30A	No	No. Fan will operate after the second CCSW Pump is operating (starts at 10++ minutes).	N/A	No	N/A	12E-3676B 12E-3435 Sh. 1	U S	
38-3 D2	Contain. Cool. Serv. Water Pump Cub. Cooler A Fan 2, 3-5700-30A	No	No. Fan will operate after the second CCSW Pump is operating (starts at 10++ minutes).	N/A	No	N/A	12E-3676B 12E-3435 Sh. 1	U S	-
38-3 D3	Contain. Cool. Serv. Water Pump Cub. Cooler B, Fan 1, 3-5700-308	No	No. Fan will operate after the second CCSW Pump is operating (starts at 10++ minutes).	N/A	No	N/A	12E-3676B 12E-3435 Sh. 1	U S	

Calc. No. 9389-46-19-3 Revision 2 Page No. 113 Proj. No. 10014-012

5

TABLE 2B AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel)

EDG 2/3	Powering	Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
38-3	Contain. Cool. Serv. Water	No	No. Fan will operate after	N/A	No	N/A	12E-3676B	U	
D4	Pump Cub. Cooler B, Fan 2, 3-5700-30B		the second CCSW Pump is operating (starts at 10++ minutes).			x.	12E-3435 Sh. 1	S	
38-3 D5	120/208V Distr Xfmr 38-3	No	Yes. Voltage will decrease momentarily.	Yes	No	N/A	12E-3676B	U	
38-3 D6	120/208V Distr Xfmr FP-3	No	No	Yes	No	N/A	12E-3676B	Ū	
38-4 A1	Core Spray Suction Valve 3A (3-1402-3A)	No	No. Note 1.	N/A	N/A	N/A	12E-3432 12E-3430 Sh. 1	T	
38-4 A2	Core Spray Test Bypass Valve 3A (3-1402-4A)	No	No. Note 1.	N/A	N/A	N/A	12E-3433 12E-3430 Sh. 1	P AP	<u> </u>
38-4 A3	LPCI Pump 3A Suction Valve (3-1501-5A)	No	No. Note 1.	N/A	N/A	N/A	12E-3440 Sh. 1 12E-3437 Sh. 1 12E-3438	Y AD	
							Sh. 1 12E-3438 Sh. 1		AD

Calc. No. 9389-46-19-3 Revision 2 Page No. 114 Proj. No. 10014-012

TABLE 2B

AFFECTS OF VOLTAGE DIP Dresden Station - Unit 2/3 (Swing Diesel)

EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt, operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
38-4 A4	LPCI Pump 3B Suction Valve (3-1501-5B)	No	No. Note 1.	N/A	N/A	N/A	12E-3440 Sh. 1 12E-3437 Sh. 1	Y AD	
38-4 B1	LPCI Torus Spray Valve 3A (3-1501-38A)	No	No. Note 1.	N/A	N/A	N/A	12E-3441 Sh. 1 12E-3437 Sh. 1 & 2	Q . AD,AC	
38-4 B2	LPCI Torus Spray Valve 3B (3-1501-20A)	No	No. Note 1.	N/A	N/A	N/A	12E-3441 Sh. 2 12E-3437 Sh. 1 & 2 12E-3438 Sh. 1 & 2	R AD,AC	
38-4 B3	LPCI Torus Ring Spray Valve 96 (3-1501-18A).	No	No. Note 1.	N/A	N/A	N/A	12E-3441 Sh. 1 12E-3437 Sh. 1 & 2	Q AD,AC	
38-4 B4	LPCI Torus Ring Spray Valve 38 (3-1501-19A)	No	No. Note 1.	N/A	N/A	N/A	12E-3441 Sh. 2 12E-3437 Sh. 1 & 2 12E-3438 Sh. 1 & 2	R AD,AC	

Calc. No. 9389-48-19-3 Revision 2 Page No. 115 Proj. No. 10014-012

TABLE 2B AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel) ED

~~	` ^	ion i	D	· · *		12.	- 14	9
JC	- 21	13 1	۲O	мел	ng –	u	nπ	3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
38-4 C1	Temporary Hyd. Power Unit for Rod OSC Tests	No	No, Note 1.	N/A	N/A	N/A	12E-3680B	J	
38-4 C1A	Welder Receptacle	No	No. Note 1.	N/A	N/A	N/A	12E-3680B	J	
38-4 C2	Diesel Starting Air Compressor 2/3B (2/3-6600-B)	No	Yes. Compressor will slow down momentarily.	Yes	No	, N/A	12E-2351B Sh. 1	AA	
38-4 C3	LPCI Header Crosstie Isolation Valve 24 (3-1501-32A)	No	No. Note 1.	N/A	N/A	N/A	12E-3440 Sh. 3	W	
38-4 E2	LPCI Pump Flow Bypass Valve 3A (3-1501-13A)	No	Yes. Valve will stop momentarily.	Yes	No. NO and interlocked open, but will close on high level	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-3440 Sh. 2 12E-3437 Sh. 2	AC	
38-4 E3	Core Spray Pump Recirc. Isolation Valve 3A (3-1402-38A)	No	Yes. Valve will stop operating momentarily.	Yes	No	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-3433	P	

Calc. No. 8389-46-19-3 **Revision 2** Page No. 116 Proj. No. 10014-012

TABLE 2B AFFECTS OF VOLTAGE DIP Dresden Station - Unit 2/3 (Swing Diesel)

 $\langle \rangle$

			E	DG 2/3 Powering Unit 3					
Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
38-4 E4	LPCI Heat Exchanger Bypass Valve 3A (3-1501-11A)	No	No. Note 1.	N/A	N/A	N/A	12E-3440 Sh. 2 12E-3437A 12E-3437 Sh. 1	X R AD	
38-4 E5	HPCI Floor Drain Sump Pump (3-2301-250)	No	No. Note 1.	N/A	N/A	N/A	12E-3533	Q	
38-7 A2	LPCI Inbd. Isolation Valve 3A (3-1501-22A)	No	Yes. Valve will stop operating momentarily.	Yes	No. NC and interlocked open.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-3441 Sh. 4 12E-3437A 12E-3438A	T S S	
38-7 B1	Recirc. Pump 3A Suction Valve (3-0202-4A)	No	No. Note 1.	N/A	N/A	N/A	12E-3420A	T	
38-7 82	Recirc. Pump 3A Discharge Valve (3-0202-5A)	No	Yes. Valve will stop momentarily.	Yes	No. NO and interlocked closed.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-3420A 12E-3437A 12E-3438A	T S S	
38-7 C3	LPCI Outboard Isolation Valve 3A (3-1501-21A)	No	No. Note 1.	N/A	N/A	N/A	12E-3441 Sh. 3 12E-3437A 12E-3438A	S S S	
39-7 A2	Refueling Floor Jib Crane (3-5813)	No	No. Note 1.	N/A	N/A	N/A	12E-3662C	U	1

Calc. No. 9389-48-19-3 Revision 2 Page No. 117 Proj. No. 10014-012

TABLE 2B AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 2/3 (Swing Diesel)

EDG 2/3 Powering Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5s, 10s, & 10min. affect the equipment's operation ?	Will the equipment start after voltage recovery ?	Will the equipt. operate in adverse mode due to the voltage dips ?	Will the time delay in operation cause any adverse affect ?	Dwg. Ref.	Rev	Other Ref.
39-7 A3	LPCI Outboard Isolation Valve 38 (3-1501-218)	No	Yes. Valve will stop operating momentarily.	Yes	No. NO and interlocked closed.	Yes. Will increase operating time. However, increased time will be within acceptable limits.	12E-3441A 12E-3437A 12E-3438A	U S S	
39-7 B1	Recirc. Pump 3B Suction Valve (3-0202-4B)	No	No. Note 1.	N/A	N/A	N/A	12E-3420B	V	
39-7 B2	Recirc. Pump 38 Discharge Valve (3-0202-5B)	No	No. Note 1.	• N/A	N/A	N/A	12E-3420B 12E-3437A 12E-3438A	V S S	
39-7 C2	LPCI Inboard Isolation Valve 3B (3-1501-22B)	No	No. Note 1.	N/A .	N/A	N/A	12E-3441A 12E-3437A 12E-3438A	U S S	·

NC - Normally Closed

NO - Normally Open

For further explanation of this table see Flow Chart No. 2.

Note 1: These loads have power, however they do not operate.

Calc. No. 9389-46-18-3 Revision 2 Page No. 118 Proj. No. 10014-012

Table +B

DG Auxiliaries and Other 480V Loads Starting 0 Seconds after Closing of DG Breaker

oad No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
	Aux. Pt. Indicating Lights, Meter, and relay Comb	40	0.4	KVA	480	85	85	0.6	100	85	0.4	0.2
	120/208V Distr Xfmr 38-1	38-1	9	KVA	480	75	100	10.8	100	75	6.8	6.0
-1201-7	Cleanup System Return Isolation	38-1	2.6	HP	440	85	80	3.7	680	68	13.2	14.2
-1201-1	Cleanup System Inlet Isolation Valve	38-1	3.9	HP	460	78	70	6.7	750	58	23.2	32.6
/3-5203	Diesel Transfer Pump 2/3	38-1	1.5	HP	460	80	75	2.3	625	75	8.7	7.7
/3-5790	Diesel 2/3 Vent Fan	38-1	30	HP	440	85	85	40.6	625	42	81.3	175.7
-1301-4	Inbd Cond Return Viv	38-1	6.4	HP	460	63	70	13.6	844	56	51.2	75.7
-1301-1	Steam Line Isol VIv	38-1	9.5	HP	460	.74	70	17.2	666	54	49.2	76,7
-2400-A	Post LOCA H2 & O2 Monitoring Sample	38-1	1	HP	460	80	75	1.6	625	79	6.1	4.8
-4710-A	Drywell Air Compressor	38-1	4.6	HP	460	80	75	7.2	625	75	26.8	23.6
-1103	Standby Liquid Control Tank Heater	38-1	25	KW	440	100	100	32.8	100	100	25.0	0.0
	120/240V Distr Xfmr 38-2	38-2	17.32	KVA	480	75	100	20.8	100	75	13.0	11.5
-4321	Condensate Transfer Jockey Pump	38-2	7.5	HP	460	85	60	10.3	625	56	28.8	42.6
	120/240V Distr Xfmr Inst	38-2	64.95	KVA	480	75	100	78.1	100	75	48.7	43.0
-5350-MSOP	Main H2 Seal Oil Pump	38-2	15	HP	460	85	85	19.4	625	49	47.4	84.4
-8300-2A	125V Battery Charger 3A	38-2	1			From	ETAP				34.1	30.6
-5350-SOVP	H2 Seal Oil Vacuum Pump	38-2	2	HP	460	85	80	2.8	625	75	10.3	9.1
-4611-A	Diesel Starting Air Compressor 3A	38-2	5	HP	460	85	80	6.9	625	58	19.9	27.9
-5758A	Main Steam Isolation Valve Unit Cooler A	38-2	1.5	HP	460	80	75	2.3	625	75	8.7	7.7
-5758B	Main Steam Isolation Valve Unit Cooler B	38-2	1.5	HP	460	80	75	2.3	625	75	8.7	7.7
-5758C	Main Steam Isolation Valve Unit Cooler C	38-2	1.5	HP	460	80	75	2.3	625	75	8.7	7.7
3-5758D	Main Steam Isolation Valve Unit Cooler D	38-2	1.5	HP	460	80	75	2.3	625	75	8.7	7.7
-5758E	Main Steam Isolation Valve Unit Cooler E	38-2	1.5	HP	460	80	75	2.3	625	75	8.7	7.7
-5758F	Main Steam Isolation Valve Unit Cooler F	38-2	1.5	HP	460	80	75	2.3	625	75	8.7	7.7
	250V Battery Charger #3	38-2	1			From	ETAP				66.1	58.0
	125Vdc Alternate Batt, Electric	38-2	5	KW	480	100	100	6.0	100	100	5.0	0.0
	125Vdc Alternate Batt. Electric	38-2	5	KW	480	100	100	6.0	100	100	5.0	0.0
	125Vdc Alternate Batt. Electric	38-2	5	KW	480	100	100	6.0	100	100	5.0	0.0
	120/208V Distr Xfmr FP-3	38-3	15	KVA	480	75	100	18.0	100	75	11.3	9.9
	Diesel Circulation Water Heater 2	38-3	15	KW	480	100	100	18.0	100	100	15.0	0.0
3-6657	DG3 Lube Oil Circulating Pump Motor 1HP	38-3	1 1		460	80	75	1.6	625	79	6.1	4.8
-6660	DG3 Lube Oil Circulating Pump Motor 3/4HP	38-3	0.75	HP	460	80	75	1.2	546	83	4.2	2.8
2/3-3903	Diesel Cooling Water Pump 2/3	38-3	87	KW	460	83	100	131.6	400	31.5	132.1	397.9
2253-85	120/208V Distr X1mr 38-3	38-3	15	KVA	480	75	100	18.0	100	75	11.3	9.9
3-8001-A	RX Protection Bus 2 M-G Set 3A	38-3	25		460	85	85	32.4	625	43	69.4	145.7
2/3-6600-B	Diesel Starting Air Compressor 2/3B	38-4	5	THP	460	85	80	6.9	625	58	19.9	27.9
							1	TOTAL	ADTINC H		806.0	1360 /

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

.

Calculation No. 9389-46-19-3 Rev. 4 Attachment J Page J1 of J5

....

DG Auxiliaries and Other 480V Loads Starting 0 Seconds after UV Relay Resets

 \sim

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
3-1501-13A	LPCI Pump Flow Bypass Valve 3A	38-4	0.13	HP	440	80	75	0.2	527	85	0.7	0.4
3-5746A	LPCI Core Spray Pump Area Cooling Unit 3A	38-1	5	HP	460	85	80	6.9	625	58	19.9	27.9
								TOTAL S	FARTING K	W & KVAR	20.6	28.4

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

| R3

Calculation No. 9389-46-19-3 Rev. 3 Attachment J Page J2 of J5

DG Auxiliaries and Other 480V Loads Starting 10 Seconds after UV Relay Resets

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR	
3-1402-25A	Core Spray Inboard Isolation Valve 3A	36-1	4	HP	440	85	80	5.8	830	58	21.1	29.7	
3-1401-38A	Core Spray Pump Recirculation Isolation Valve 3A	38-4	0.13	HP	440	80	75	0.2	527	85	0.7	04	
3-1501-22A	LPCI Inboard Isolation Valve 3A	38-7	10.5	HP	460	85	83.78	13.8	826	43	39.1	820	Da
3-202-5A	Recirc. Pump 3A Discharge Valve	38-7	13	HP	460	85	85	16.8	775	49	51.0	90.7	1100
3-1501-21B	LPCI Outboard Isolation Valve 3B	39-7	16.2	HP	460	85	90	19.8	663	49	51.3	91.3	1
				·····	المحمد تكتر ومحمد	······		TOTAL S	TARTING K	W & KVAR	163.2	294.1	R3

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

> Calculation No. 9389-46-19-3 Rev. 3 Attachment J Page J3 of J5

| R3

DG Auxiliaries and Other 480V Loads Starting at 10+ Minutes

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
3-1501-3A	Containment Cooling Heat Exchanger Discharge Valve 3A	38-1	0.33	HP	460	80	75	0.5	245	85	0.9	0.5
Full Load Cu FLC from KW FLC from KV	rrent (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) / = KW / (1.732 x kV x PF x eff.) A = KVA / (1.732 x kV x eff.)							TOTAL S	TARTING K	W & KVAR	0.9	0.5
Starting KW Starting KVA	(SKW) = 1.732 x kV x LRC% x FLC x SPF R (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))											

Calculation No. 9389-46-19-3 Rev. 3 Attachment J Page J4 of J5

DG Auxiliaries and Other 480V Loads Starting at 10++ Minutes

.

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
3-5700-30A	Containment Cooling Service Water Pump Cooler A Fan 1	38-3	3	HP	460	85	80	4.1	625	68	14.0	15,1
3-5700-30A	Containment Cooling Service Water Pump Cooler A Fan 2	38-4	3	HP	460	81.5	84	4.1	780	81.5	20.8	14.8
3-5700-308	Containment Cooling Service Water Pump Cooler B Fan 1	38-5	3	HP	460	85	80	4.1	625	68	14.0	15,1
3-5700-30B	Containment Cooling Service Water Pump Cooler B Fan 2	38-6	3	HP	460	85	80	4.1	625	68	14.0	15.1
								TOTAL S	TARTING K	W & KVAR	62.7	60.0

,

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

> Calculation No. 9389-46-19-3 Rev. 3 Attachment J Page J5 of J5

R3

DRESDEN DIESEL GEN 2/3 LOAD BUS (LOOP AND LOCA CONDITION)

FIGURE 2B - DG AUXILIARIES AND OTHER 4kV AND 480V LOADS

•

10+++

Calc.No. 9389-46-19-3, Rev. 3 Page No. L , Proj.No. 10014-012

ų

Emergency D	Diesel 2/3 - Powering Unit 3 Loads		(Oz)	0 s	5\$	10s	10- min	10+ min.	10++min	min.	
Load No.	Load Description	Bus No.			1. 1. 1. 1. 1. 1.	5-1-32		1225.45	1.e 🔿 👌	100.00	ন
3-1502-A	LPCI Pump 3A	33-1								-	7
3-1502-B	LPCI Pump 3B	33-1			-			_	4		le
3-1401-A	Core Spray Pump 3A	33-1						_			
	Containment Cooling Service Water	33		1						1	1
	Pump 3A								+		+
	Containment Cooling Service Water	33					ſ		1		
	Pump 3B			1				- -	: 	+	4
	Aur Pt Indicating Lights Mater and Pelay	40									
	Comb			-					+		-
	120/20BV/ Diete V/mr 38 1	39.1								<u> </u>	
3-1201.7	Cleanum Suntem Return Instation Value	38.1					·			T	7
2 4204 4	Cleanup System Recurrent Soladori Valve	- 30-1									
3-1201-1	Disad Can Oli Transfer Dura 2/2	- 30-1						I]		1
2/3-5203	Diesel Gen Dit Transfer Pump 2/3	38-1							1	1	1
2/3-5/90	Diesel 2/3 Vent Fan	38-1								1	1
3-1402-20A	Core Spray indeard isolation valve 3A	38-1					7				
3-1301-4	Ind Cond Return VIV	38-1				T			ł]
3-1301-1	ISteam Line Isol VIV	38-1				1	-1			1	1
3-2400-A	Post LOCA H2 & O2 Monitoring Sample	38-1	-	·					ļ		
	Pump 3A	+				ļ	1				1
3-4710-A	Drywell Air Compressor	38-1		1		1		+			1
3-1103	Standby Liquid Control Tank Heater	38-1				†	-				
3-5746A	LPCI Core Spray Pump Area Cooling	38-1				- L]
	Unit 3A					1	1 .				1
3-1501-3A	Containment Cooling Heat Exchanger	38-1	l l								
	Discharge Valve 3A			1	1	1					I
	120/240V Distr Xfmr 38-2	38-2						1			ł
3-4321	Condensate Transfer Jockey Pump	38-2				<u> </u>					ł
	120/240V Distr X/mr Inst	38-2				+	+				ł
3-5350-MSOP	Main H2 Seal Oil Pump	38-2			+	+	+			······································	1
3-8300-3A	125V Battery Charger 3A	38-2		+	+			+			•
3-5350-SOVP	H2 Seal Oil Vecuum Pump	38-2		1							
3-4611A	Diesel Starting Air Compressor 3A	38-2	-				+	+			
3-5758A	MSIV Unit Cooler A	38-2									
3-57588	MSIV Unit Cooler B	38-2			+			<u> </u>			:
3-5758C	MSIV Unit Cooler C	38-2			-						I
3-5758D	MSIV Unit Cooler D	38-2					+	<u> </u>			
-5758E	MSIV Unit Cooler E	38-2						[
-5758F	MSIV Unit Cooler F	38-2					+				
-8350-3	250V Battery Charger #3	38-2									
	125Vdc Alternate Battery Electric Heaters	38-2			÷						
	120/208V Distr Xfmr FP-3	38-3		ļ							
	Diesel Circulation Water Heater 3	38-3	-	Ļ							
-6657	Engine Lube Oil Circulating Pump	38-3									
	Motor 1HP										
-6660	Engine Lube Oil Circulating Pump	38-3									
	Motor 3/4HP										
5600-TGOP	Turning Gear Oil Pump	38-3			1						
5620-A	Turbine Bearing Lift Pump 3A	38-3	ſ				7				
5620-8	Turbine Bearing Lift Pump 3B	38-3							E		
5620-C	Turbine Bearing Lift Pump 3C	38.3							Г		
5620-0	Turbine Bearing Lift Pump 3D	38.3									
5820 F	Turbine Beering Lift Pump 35	22.2			} [ļĺ		Г		
13003	Niesel Gen Cooling Water Rumn 2/2	30.2									
x52.95	120/208V Dietr Xfmr 38-3	22.2									
	I CONTONA DIPOL VILLII DO-D	30-3									

FIGURE 2B - DG AUXILIARIES AND OTHER 4kV AND 480V LOADS

Calc.No. 9389-46-19-3, Rev. 2, Page No. L2/ , Proj.No. 10014-012

Emergency Di	esel 2/3 - Powering Unit 3 Loads	
Load No.	Load Description	Bus No.
3-5700-30A	Containment Cooling Service Water Pump Cooler A Fan 1	38-3
3-5700-30A	Containment Cooling Service Water Pump Cooler A Fan 2	38-3
3-5700-308	Containment Cooling Service Water Pump Cooler B Fan 1	38-3
3-5700-30B	Containment Cooling Service Water Pump Cooler B Fan 2	38-3
3-8001-A	RX Protection System Bus 2 M-G Set 3A	38-3
3-5601-TGM	Turbine Turning Gear	38-3
3A-1402-38A	Core Spray Pump Recirculation Isolation Valve 3A	38-4
2/3-6600-B	Diesel Starting Air Compressor 2/3B	38-4
3-1501-13A	LPCI Pump Flow Bypass Valve 3A	38-4
3-1501-22A	LPCI Inboard Isolation Valve 3A	38-7
3-202-5A	Recirc. Pump 3A Discharge Valve	38-7
3-1501-218	LPCI Outboard Isolation Valve 38	39-7

(0s) - 0 seconds after closing of DG Breaker

Os - O seconds after UV reset

5s - 5 seconds after UV reset

ł

10s - 10 seconds after UV reset

10-min - All loads that automatically stop before 10 minutes are shown off. 10+min - CCSW Pump 2A is started.

10++min - CCSW Pump 2B is started with its auxiliaries.

10+++min. - Both CCSW Pumps are running and other loads starting

after 10 minutes are shown here.

Attachment M

1

DG Unit 3 Division I ETAP Output Reports – Nominal Voltage

<u>Scenario</u>	Page #'s	
DG2/3_Bkr_Cl	M2-M15	
DG2/3_UV_Rst	M16-M29	
DG2/3_T=5sec	M30-M43	•
DG2/3_T=10s	M44-M57	
DG2/3_T=10-m	M58-M71	
DG2/3_T=10+m	M72-M85	
DG2/3_T=10++m	M86-M99	
DG2/3_CRHVAC	м100-м113	

Flow	Ĺ
(Only the Lowe) of Nove (Page 2) nove	Ì
these included. 4/20/07	}
ber pi	-

Calcul	ation:	9389-46-19-3							
Attach	ment:	M							
Revisi	on:	004							
Page	<u>M1</u>	of M1	13						

ject:	Dresden Unit3	E	ТАР	Page:	8
Location:	то	5	.5.0N	Date:	03-21-2007
Contract:	123			SN:	WASHTNGRPN
Engineer:	ΠΟ	Study Case:	DG 0 CCSW	Revision:	Base
Filename:	DRE_Unit3_0005			Config.:	DG2/3_Bkr_Cl

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

.

Bus		Vol	tage	Generation		L.o	ad		Load Flor	¥	_		XFMR
ID	kV	k٧	Ang.	MW	Mvar	мw	Mvar	ID	MW	Mvar	Amp	% PF	% Tap
4KV SWGR 33-1	4,160	4.159	0.0	0	0	0	0	HIGH SIDE OF XFMR 38	0.420	0.351	76.1	76.7	
								4KV SWING BUS 40	-0.420	-0.351	76.1	76.7	
* 4KV SWING BUS 40	4.160	4,160	0.0	0.421	0.351	0	0	4KV SWGR 33-1	0.421	0.351	76.1	76.7	
38-1 ALTF 2-1301-1&4	0.480	0.474	-1.6	0	0	0	0	480V MCC 38-1	0.000	0.000	0.0	0.0	
125V DC CHGR 3A	0.480	0.464	-1.8	0	0	0.034	0.028	480V MCC 38-2	-0.034	-0.028	55.0	77.1	
250V DC CHGR 3	0.480	0.464	-1.8	0	0	0,066	0.054	480V MCC 38-2	-0.066	-0.054	106.2	77.4	
480V MCC 38-1	0.480	0.474	-1.6	0	0	0.091	0.049	38-1 ALTF 2-1301-1&4	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	-0.091	-0.049	125.6	88.2	
480V MCC 38-2	0.480	0.468	-2.0	0	0	0.104	0.072	250V DC CHGR 3	0,067	0.054	106.2	77.7	
								125V DC CHGR 3A	0.034	0.028	55.0	77.4	
								480V SWGR 38	-0.206	-0.155	317.7	79.9	
480V MCC 38-3	0.480	0.474	-1.6	0	0	0.111	0.117	480V SWGR 38	-0.111	-0.117	196.7	69.0	
480V MCC 38-4	0.480	0.478	-1.7	0	0	0.005	0.003	BKR 38-4A BIFURC	-0.005	-0,003	6.7	85.5	
480V MCC 38-7	0.480	0.478	-1.7	0	0	0	0	480V SWGR 38	0.000	0.000	0.0	0.0	
								480V MCC 39-7	. 0.000	0,000	0.0	0.0	
480V MCC 39-7	0.480	0.478	-1.7	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
480V SWGR 38	0.480	0.478	-1.7	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	0.096	0.052	132.3	88.0	
								480V MCC 38-3	0.112	0,118	196.7	69,0	
								480V MCC 38-2	0.209	0.159	317.7	79.5	
								HIGH SIDE OF XFMR 38	-0.418	-0.329	642.7	78,6	
BKR 38-4A BIFURC	0.480	0.478	-1.7	· 0	0	0	0	480V MCC 38-4	0.005	0.003	6.7	85.5	
								480V SWGR 38	-0.096	-0.052	132.3	88,0	
								480V MCC 38-1	0.092	0.049	125.6	88.2	
HIGH SIDE OF XFMR 38	4.160	4.158	0.0	0	O	0	0	4KV SWGR 33-1	-0.420	-0.351	76.1	76.7	
								480V SWGR 38	0.420	0.351	76.1	76.7	-2,500

LOAD FLOW REPORT

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA $_{\odot}$

Calculation:	9389-46-19-3	
Attachment:	M	
Revision:	004	
Page M9	of M113	

(oject: Location:	Dresden Unit3 OTI	E 5	.5.0N	Page: Date:	8 03-29-2007
	Contract:	123			SN:	WASHTNGRPN
	Engineer:	110	Study Case:	DG 0 CCSW	Revision:	Base
	Filename:	DRE_Unit3_0005	51229 5125	<u> </u>	Config.:	DG2/3_UV_Rst

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

LOAD FLOW REPORT

Bus		Voltage		Generation		La	ad	Load Flow					XFMR
D	k۷	k٧	Ang.	MW	Mvar	MW	Mvar	ID	MŴ	Mvar	Amp	% PF	% Tap
4KV SWGR 33-1	4.160	4.158	0.0	0	0	0.506	0.245	HIGH SIDE OF XFMR 38	0.425	0.354	76.8	76.8	
								4KV SWING BUS 40	-0.931	-0.599	153.7	84,1	
*4KV SWING BUS 40	4.160	4,160	0.0	0.931	0.600	0	0	4KV SWGR 33-1	0.931	0.600	153.7	84.1	
38-1 ALTF 2-1301-1&4	0.480	0.474	-1.7	0	0	0	0	480V MCC 38-1	0.000	0.000	0.0	0.0	
125V DC CHGR 3A	0.480	0.463	-1.8	0	0	0.034	0.028	480V MCC 38-2	-0.034	-0.028	55.0	77.2	
250V DC CHGR 3	0.480	0,463	-1.8	0	0	0.066	0.054	480V MCC 38-2	-0.066	-0.054	106.2	77.5	
480V MCC 38-1	0.480	0.474	-1.7	0	0	0.095	0.051	38-1 ALTF 2-1301-1&4	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	-0.095	-0.051	131,8	88.0	
480V MCC 38-2	0,480	0.467	-2.1	0	0	0.104	0.072	250V DC CHGR 3	0.067	0.054	106.2	77.7	
								125V DC CHGR 3A	0.034	0.028	55.0	77.5	
								480V SWGR 38	-0.206	-0.154	317.7	79.9	
480V MCC 38-3	0.480	0.474	-1.7	0	0	0.111	0.117	480V SWGR 38	-0.111	-0.117	196.7	69,0	
480V MCC 38-4	0.480	0.478	-1.7	0	0	0.005	0.003	BKR 38-4A BIFURC	-0.005	-0.003	6,9	85.3	
480V MCC 38-7	0.480	0.478	-1.7	0	0	0	0	480V SWGR 38	0.000	0.000	0.0	0.0	
								480V MCC 39-7	0.000	0.000	0.0	0.0	
480V MCC 39-7	0.480	0.478	-1.7	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
480V SWGR 38	0.480	0.478	-1.7	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	0.101	0.055	138.7	87.9	
								480V MCC 38-3	0.112	0.118	196.7	69.0	•
								480V MCC 38-2	0.209	0.159	317.7	79.5	
								HIGH SIDE OF XFMR 38	-0.422	-0.332	649.1	78.6	
BKR 38-4A BIFURC	0.480	0.478	-1.7	0	0	0	0	480 V MCC 38-4	0,005	0.003	6.9	85.3	
								480V SWGR 38	-0.101	-0.055	138.7	87.9	
								480 V MCC 38-1	0,096	0.052	131,8	88.0	
HIGH SIDE OF XFMR 38	4.160	4.157	0.0	0	0	0	0	4KV SWGR 33-1	-0,425	-0.354	76.8	76.8	,
								480V SWGR 38	0.425	0.354	76.8	76.8	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calcu	lation:	9389-4	6-19-3				
Attacl	nment:	M					
Revis	ion:	004					
Page	_M23	of	M113				

oject:	Dresden Unit3	ET	AP	Page:	8
Location:	πο	5.5.	ON	Date:	03-21-2007
Contract:	123		· · · · · · · · · · · · · · · · · · ·	SN:	WASHTNGRPN
Engineer:	OTI	Study Case:	DG 0 CCSW	Revision:	Base
Filename:	DRE_Unit3_0005			Config.:	DG2/3_T=5sec

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

Bus		Vol	age	Gene	ration	Lo	ad		Load Flo	w			XFMR
` ID	kV	kV	Ang.	MW	Mvar	MW	Mvar	١D	MW	Mvar	Алар	% PF	% Tap
4KV SWGR 33-1	4.160	4.157	0.0	0	0	1.022	0.495	HIGH SIDE OF XFMR 38	0.425	0.354	76.8	76.8	
								4KV SWING BUS 40	-1,446	-0.849	232.9	86.2	
*4KV SWING BUS 40	4.160	4.160	0.0	1,448	0.850	0	0	4KV SWGR 33-1	1.447	0.850	232.9	86:2	
38-1 ALTF 2-1301-1&4	0.480	0.474	-1.7	0	0	ļ	0	480V MCC 38-1	0.000	0.000	0.0	0.0	
125V DC CHGR 3A	0.480	0.463	-1.8	0	Û	0.034	0.028	480V MCC 38-2	-0.034	-0.028	55.0	77.2	
250V DC CHGR 3	0.480	0.463	-1.8	0	0	0.066	0.054	480V MCC 38-2	-0.066	-0.054	106.2	77.5	
480V MCC 38-1	0,480	0.474	-1.7	0	0	0.095	0.051	38-1 ALTF 2-1301-1&4	0.000	0.000	0.0	0.0	•
								BKR 38-4A BIFURC	-0.095	-0.051	131.8	88.0	-
480V MCC 38-2	0.480	0.467	-2.1	0	0	0.104	0.072	250V DC CHGR 3	0.067	0.054	106.2	77.7	
								125V DC CHGR 3A	0.034	0.028	55.0	7 7.5	
								480V SWGR 38	-0.205	-0.154	317.6	80.0	
480V MCC 38-3	0.480	0.473	-1.7	0	0	0.111	0.117	480V SWGR 38	-0.111	-0.117	196.8	69.0	
480V MCC 38-4	0.480	0.477	-1.7	0	0	0.005	0.003	BKR 38-4A BIFURC	-0.005	-0,003	6.9	85.3	
480V MCC 38-7	0.480	0,478	-1.7	• 0	0	0	0	480V SWGR 38	0.000	0.000	0.0	0.0	
								480V MCC 39-7	0.000	0.000	0.0	0.0	
480V MCC 39-7	0.480	0.478	-1.7	0	0	0	0	480V MCC 38-7	0,000	0.000	0.0	0.0	
480V SWGR 38	0.480	0.478	-1.7	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	0.101	0.055	138.8	87.9	
								480V MCC 38-3	0.112	0.118	196.8	69.0	
								480V MCC 38-2	0.209	0.159	317.6	79.6	
								HIGH SIDE OF XFMR 38	-0.422	-0.332	649.1	78.6	
BKR 38-4A BIFURC	0.480	0.478	-1.7	0	0	0	0	480V MCC 38-4	0.005	0.003	6.9	85.3	
								480V SWGR 38	-0.101	-0.055	138.8	87.9	
								480V MCC 38-1	0.096	0.052	131.8	88.0	
HIGH SIDE OF XFMR 38	4,160	4.156	0.0	· 0	0	Û Q	0	4KV SWGR 33-1	-0.425	-0.354	76,8	76.8	
								480V SWGR 38	0.425	0.354	76.8	76.8	-2,500

LOAD FLOW REPORT

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

.

.

Calculation:	9389-46-19-3	
Attachment:	M	
Revision:	004	
Page M37	of M113	

;

(.ject: . Location:	Dresden Unit3 OTI	E 5	TAP 1.5.0N	Page: Date:	8 03-21-2007
Contract:	123			SN:	WASHTNGRPN
Engineer:	оп	Study Case:	DG 0 CCSW	Revision:	Base
Filename:	DRE_Unit3_0005		(Config.:	DG2/3_T=10s

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

LOAD FLOW REPORT

Bus		Voltage Generation		Lo	ad	Load Flow					XFMR		
ID	kV	k٧	Ang.	MW	Mvar	MW	Mvar	ID	мw	Mvar	Ainp	°6 PF	% Tap
4KV SWGR 33-1	4.160	4.155	0.0	0	0	1.741	0.795	HIGH SIDE OF XFMR 38	0.463	0.381	83.3	77.2	
	•							4KV SWING BUS 40	-2.204	-1.176	347.1	88.2	
• 4KV SWING BUS 40	4.160	4.160	0.0	2.206	1.179	0	0	4KV SWGR 33-1	2.206	1.179	347.1	88.2	
38-1 ALTF 2-1301-1&4	0.480	0.472	-1.9	0	0	0	0	480V MCC 38-1	0.000	0.000	0.0	0.0	
125V DC CHGR 3A	0.480	0.462	-2.0	0	0	0.034	0,028	480V MCC 38-2	-0.034	-0.028	55.0	77.4	
250V DC CHGR 3	0.480	0.462	-2.0	0	0.	0.066	0.054	480V MCC 38-2	-0.066	-0.054	106.3	77.7	
480V MCC 38-1	0.480	0.472	-1.9	0	0	0.099	0.054	38-1 ALTF 2-1301-1&4	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	-0.099	-0.054	137.3	87.9	
480V MCC 38-2	0.480	0.466	-2.3	0	0	0.104	0.072	250V DC CHGR 3	0.067	0.054	106.3	77.9	
								125V DC CHGR 3A	0.034	0.028	55.0	77.7	
								480V SWGR 38	-0.205	-0.154	317.5	80.0	
480V MCC 38-3	0.480	0.472	-1.8	0	0	0.111	0.117	480V SWGR 38	-0.111	-0.117	197.1	69.0	
480V MCC 38-4	0.480	0.476	-1.9	0	0	0.005	0.003	BKR 38-4A BIFURC	-0.005	-0.003	7.1	85.2	
480V MCC 38-7	0.480	0.474	-1.8	0	0	0.021	0.013	480V SWGR 38	-0.035	-0,021	49.4	85.3	
								480V MCC 39-7	0.013	0,008	19.3	85.1	
480V MCC 39-7	0.480	0.474	-1.8	٥	0	0.013	0.008	480V MCC 38-7	-0.013	-0.008	19.3	85.1	
480V SWGR 38	0.480	0.476	-1.9	0	0	0	0	480V MCC 38-7	0.035	0.021	49.4	85.3	
								BKR 38-4A BIFURC	0.105	0.057	144.5	87.8	
								480V MCC 38-3	0.112	0.118	197.1	69.0	
								480V MCC 38-2	0.209	0,158	317.5	79.6	
								HIGH SIDE OF XFMR 38	-0.460	-0.355	704. j	79.2	
BKR 38-4A BIFURC	0.480	0.476	-1.9	0	0	0	0	480V MCC 38-4	0.005	0.003	7.1	85.2	
								480V SWGR 38	-0.105	-0.057	144.5	87.8	
								480V MCC 38-1	0.100	0.054	137.3	87.9	
HIGH SIDE OF XFMR 38	4.160	4.154	0,0	0	0	0	0	4KV SWGR 33-1	-0.463	-0.381	83.3	77.2	
								480V SWGR 38	0.463	0.381	83.3	77.2	-2.500

• Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calcu	lation:	9389-46-19-3						
Attac	hment:	M						
Revis	ion:	004						
Page	M51	of	M113					

ject: Location:	Dresden Unit3 OTI	ETAP 5.5.0N	Page: Date:	8 03-21-2007
Contract:	123		SN:	WASHTNGRPN
Engineer:	по	Study Case DG & CCSW	Revision:	Base
Filename:	DRE_Unit3_0005		Config.:	DG2/3_T=10-m

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

LOAD FLOW REPORT

Bus		Vol	lage	Gene	ration	Lo	ad		Load Flow	v			XFMR
ID	kV	kV	Ang.	MW	Mvar	MW	Mvar	ID	MW .	Mvar	Amp	% PF	% Tap
4KV SWGR 33-1	4.160	4.155	0.0	0	0	1,741	0.795	HIGH SIDE OF XFMR 38	0.438	0.356	78.4	77.6	
•								4KV SWING BUS 40	-2.179	-1.151	342.4	88.4	
* 4KV SWING BUS 40	4.160	4.160	0.0	2.181	1.153	0	0	4KV SWGR 33-1	2.181	1.153	342.4	88.4	
38-1 ALTF 2-1301-1&4	0.480	0.475	-1.8	0	0	0	0	480V MCC 38-1	0.000	0.000	0.0	0.0	
125V DC CHGR 3A	0.480	0.463	-1.9	o	0	0,034	0.028	480V MCC 38-2	-0.034	-0.028	55.0	77.2	
250V DC CHGR 3	0.480	0.463	-1.9	0	0	0.066	0.054	480V MCC 38-2	-0.066	-0.054	106.2	77.5	
480V MCC 38-1	0,480	0.475	-1.8	0	0	0.071	0.029	38-1 ALTF 2-1301-1&4	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	-0.071	-0.029	93.7	92.7	
480V MCC 38-2	0.480	0.467	-2,2	.0	0	0.104	0.072	250V DC CHGR 3	0.067	0.054	106.2	77.8	
								125V DC CHGR 3A	0.034	0.028	55.0	77.5	
								480V SWGR 38	-0.205	-0.154	317.6	80.0	
480V MCC 38-3	0.480	0.472	÷1.8	0	D	0.148	0.140	480V SWGR 38	-0.148	-0.140	249.4	72.8	
480V MCC 38-4	0,480	0.477	-1.8	0	0	0.005	0.003	BKR 38-4A BIFURC	-0.005	-0.003	6.7	85.5	
480V MCC 38-7	0.480	0.477	-1.8	0	0	0	0	480V SWGR 38	0.000	0.000	0.0	0.0	
								480V MCC 39-7	0.000	0.000	0.0	0.0	
480V MCC 39-7	0.480	0.477	-1.8	0	0	0	0	480V MCC 38-7	0.000	0,000	0.0	0.0	
480V SWGR 38	0.480	0.477	-1.8	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
		•						BKR 38-4A BIFURC	0.077	0.032	100.4	92.3	
								480V MCC 38-3	0.150	0.141	249.4	72.8	
								480V MCC 38-2	0.209	0.159	317.6	79.6	
								HIGH SIDE OF XFMR 38	-0.436	-0.332	662.7	79.5	
BKR 38-4A BIFURC	0.480	0.477	-1.8	0	0	0	0	480V MCC 38-4	0.005	0.003	6.7	85.5	
								480V SWGR 38	-0.077	-0.032	100.4	92.3	
	•							480V MCC 38-1	0.072	0.029	93.7	92.7	
HIGH SIDE OF XFMR 38	4.160	4.155	0.0	0	0	0	0	4KV SWGR 33-1	-0,438	-0.356	78.4	77,6	
_						•		480V SWGR 38	0.438	0.356	78.4	77.6	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calculation:	9389-46-19-3						
Attachment:	M						
Revision:	004						
Page M65	of1	13					

oject:	Dresden Unit3	ЕТАР	Page:	8	
Location:	πο	5.5.0N	Date:	03-21-2007	
Contract:	123		SN:	WASHTNGRPN	
Engineer:	оп	Study Case: DG 1 CCSW	Revision:	Base	
Filename:	DRE_Unit3_0005		Config.:	DG2/3_T=10+m	

Diesel Generator connected using nominal voltage, Time period is 10 min or greater into the event, 1 CCSW pump.

.

LOAD FLOW REPORT

Bus		Volt	läge	Gene	ration	Ľ.o	ad		Load Flo	w			XFMR
۱D .	k٧	kV	Ang.	MW	Mvar	MW	Mvar	ID	MW	Mvar	Amp	% PF	% Tap
4KV SWGR 33	4,160	4.152	-0.1	0	0	0.477	0.212	4KV SWGR 33-1	-0.477	-0.212	72.6	91.4	
4KV SWGR 33-1	4,160	4.154	-0.1	0	0	1.720	0.788	HIGH SIDE OF XFMR 38	0.438	0.356	78.5	77.6	
								4KV SWING BUS 40	-2.636	-1.356	412.0	88.9	
								4KV SWGR 33	0.477	0.213	72.6	91.3	
+4KV SWING BUS 40	4,160	4.160	0.0	2.638	1.361	0	0	4KV SWGR 33-1	2.638	1.361	412.0	88.9	
38-1 ALTF 2-1301-1&4	0,480	0,475	-1.8	0	0	0	0	480V MCC 38-1	0.000	0.000	0.0	0.0	
125V DC CHGR 3A	0.480	0.463	-1.9	0	0	0.034	0.028	480V MCC 38-2	-0.034	-0.028	55.0	77.2	
250V DC CHGR 3	0.480	0.463	-1.9	0	0	0.066	0.054	480V MCC 38-2	-0.066	-0.054	106.2	77.5	
480V MCC 38-1	0,480	0.475	-1.8	0	0	0.072	0.029	38-1 ALTF 2-1301-1&4	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	-0.072	-0.029	94.2	92.7	
480V MCC 38-2	0.480	0.467	-2.2	0	0	0.104	0.072	250V DC CHGR 3	0.067	0.054	106.2	77.8	
								125V DC CHGR 3A	0.034	0.028	55.0	77.6	
								480V SWGR 38	-0.205	-0.154	317.6	80.0	
480V MCC 38-3	0.480	0.472	-1.8	0	0	0.148	0.140	480V SWGR 38	-0.148	-0,140	249,4	72.8	
480V MCC 38-4	0.480	0.477	-1.8	0	0	0.005	0.003	BKR 38-4A BIFURC	-0.005	-0.003	6.7	85.5	
480V MCC 38-7	0.480	0.477	-1.8	0	0	0	0	480V SWGR 38	0.000	0.000	0.0	0.0	
								480V MCC 39-7	0.000	0,000	0.0	0.0	
480V MCC 39-7	0.480	0.477	-1.8	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
480V SWGR 38	0.480	0.477	-1.8	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0,0	
								BKR 38-4A BIFURC	0.077	0.032	100.8	92.2	
								480V MCC 38-3	0.150	0.141	249.4	72.8	
								480V MCC 38-2	0.209	0.159	317.6	79.6	
•								HIGH SIDE OF XFMR 38	-0.436	-0.333	663.3	79.5	
BKR 38-4A BIFURC	0.480	0.477	-1,8	0	0	0	0	480V MCC 38-4	0.005	0.003	6.7	85.5	
								480V SWGR 38	-0.077	-0.032	100.8	92. 2	
								480V MCC 38-1	0.072	0.029	94.2	92.6	
HIGH SIDE OF XFMR 38	4.160	4.154	-0.1	0	0	0	0	4KV SWGR 33-1	-0.438	-0.356	78.5	77.6	
								480V SWGR 38	0.438	0.356	78.5	77.6	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

.

Calculation:	<u>9389-46-19-3</u>						
Attachment:	<u>M</u>						
Revision: _	004						
Page M79	of M113						

(ject: Location:	Dresden Unit3 OTI	ETAP 5.5.0N	Page: Date:	8 03-21-2007
Contract:	123		SN:	WASHTNGRPN
Engineer:	то	Study Case: DG 2 CCSW	Revision:	Base
Filename:	DRE_Unit3_0005		Config.:	DG2/3_T10++m

Diesel Generator connected using nominal voltage, Time period is 10 min or greater into the event, 2 CCSW pumps.

LOAD FLOW REPORT

Bus		Voltage		Generation		Load		Load Flow					XFMR
ID	k٧	kV	Ang.	MW	Mvar	M₩	Mvar	ID	MW	Mvar	Amp	% PF	% Tap
4KV SWGR 33	4.160	4.151	-0.1	0	0	0.771	0.395	4KV SWGR 33-1	-0.771	-0.395	120.5	89.0	
4KV SWGR 33-1	4.160	4.155	0.0	0	0	1.211	0.541	HIGH SIDE OF XFMR 38	0.450	0.364	80.4	77.7	
								4KV SWING BUS 40	-2.433	-1.301	383.4	88.2	
	•							4KV SWGR 33	0.772	0.396	120.5	89.0	
• 4KV SWING BUS 40	4.160	4.160	0.0	2.435	1.305	0	0	4KV SWGR 33-1	2.435	1.305	383.4	88.1	
38-1 ALTF 2-1301-1&4	0.480	0.474	-1.8	-0	0	0	0	480V MCC 38-1	0.000	0.000	0.0	0,0	
125V DC CHGR 3A	0.480	0.463	-1.9	0	0	0.034	0.028	480V MCC 38-2	-0.034	-0.028	55.0	77.3	
250V DC CHGR 3	0.480	0.463	-2.0	0	0	0.066	0.054	480V MCC 38-2	-0.066	-0.054	106.2	77.6	
480V MCC 38-1	0.480	0.474	-1.8	0	0	0.072	0.029	38-1 ALTF 2-1301-1&4	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	-0.072	-0.029	94.2	92.6	
480V MCC 38-2	0.480	0.466	-2.2	0	0	0.104	0.072	250V DC CHGR 3	0.067	0.054	106,2	77.8	
					•			125V DC CHGR 3A	0.034	0.028	55.0	77.6	
								480V SWGR 38	-0.205	-0.154	317.6	80.0	
480V MCC 38-3	0.480	0.471	-1.8	0	0	0.160	0.147	480V SWGR 38	-0.160	-0.147	265.7	73.6	
480V MCC 38-4	0.480	0.477	-1.8	0	0	0.005	0,003	BKR 38-4A BIFURC	-0,005	-0.003	6.7	85.5	
480V MCC 38-7	0.480	0.477	-1.8	0	0	0	0	480V SWGR 38	0.000	0.000	0.0	0.0	
								480V MCC 39-7	0.000	0.000	0.0	0.0	
480V MCC 39-7	0.480	0.477	-1.8	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
480V SWGR 38	0.480	0.477	-1.8	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	0.077	0.032	100.9	92.2	
-								480V MCC 38-3	0.161	0.149	265.7	73.6	
								480V MCC 38-2	0.209	0.159	317.6	79.6	
								HIGH SIDE OF XFMR 38	-0.447	-0.340	679.7	79.6	
BKR 38-4A BIFURC	0.480	0.477	-1.8	0	0	0	0	480V MCC 38-4	0.005	0.003	6.7	85,5	
								480V SWGR 38	-0.077	-0.032	100.9	92.2	
								480V MCC 38-1	0.072	0.029	94.2	92.6	
HIGH SIDE OF XFMR 38	4.160	4.154	0.0	0	0	0	0	4KV SWGR 33-1	-0.450	-0.364	80.4	77.7	
								480V SWGR 38	0.450	0.364	80.4	77.7	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load inismatch of more than 0.1 MVA

Calcula	ition:	<u>_9389~</u>	<u>46-19-3</u>
Attachr	nent:	M	
Revisio	ก:	004	
Page _	M93	of	M113

oject:	Dresden Unit3	ЕТАР	Page:	8
Location:	ΟΤΙ	5.5.0N	Date:	03-21-2007
Contract:	123		SN:	WASHTNGRPN
Engineer:	ITO	Study Case: DG 2 CCSW	Revision:	Base
Filename:	DRE_Unit3_0005		Config.:	DG2/3_CRHVAC

Diesel Generator connected using nominal voltage, Time period is 10 min or greater into the event, 2 CCSW pumps.

LOAD FLOW REPORT

Bus		Voltage		Generation		Load		Load Flow					XFMR
ID	kV	kV	Ang.	MW	Mvar	MW	Mvar	1D	MW	Mvar	Ainp	% PF	% Тар
4KV SWGR 33	4.160	4.151	-0.1	0	0	0.771	0.395	4KV SWGR 33-1	-0.771	-0.395	120.5	89.0	
4KV SWGR 33-1	4.160	4.155	0.0	0	0	1.211	0.541	HIGH SIDE OF XFMR 38	0.533	0.424	94.7	78.2	
				·				4KV SWING BUS 40	-2.516	-1.362	397.5	87.9	
								4KV SWGR 33	0.772	0.396	120.5	89.0	
*4KV SWING BUS 40	4.160	4.160	0.0	2.518	1.365	0	0	4KV SWGR 33-1	2.518	1.365	397.5	87.9	
38-1 ALTF 2-1301-1&4	0.480	0.472	-2.2	0	0	0	0	480V MCC 38-1	0.000	0.000	0.0	0.0	
125V DC CHGR 3A	0.480	0.460	-2.3	0	0	0.034	0.028	480V MCC 38-2	-0.034	-0.028	55.0	77.7	
250V DC CHGR 3	0.480	0.460	-2.3	0	0	0.066	0.053	480V MCC 38-2	-0.066	-0.053	106.3	77.9	
480V MCC 38-1	0.480	0.472	-2.2	0	0	0.071	0.029	38-1 ALTF 2-1301-1&4	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	-0.071	-0.029	94.3	92.6	
+80V MCC 38-2	0.480	0.464	-2.6	0	0	0.103	0.071	250V DC CHGR 3	0.067	0.053	106.3	78.2	
								125V DC CHGR 3A	0.034	0.028	55.0	78.0	
								480V SWGR 38	-0.205	-0.152	317.4	80.2	
480V MCC 38-3	0.480	0.466	-2.2	0	0	0.241	0,197	480V SWGR 38	-0.241	-0.197	385.1	77.4	
480V MCC 38-4	0,480	0.474	-2.2	0	0	0.005	0,003	BKR 38-4A BIFURC	-0.005	-0.003	6.8	85.5	
480V MCC 38-7	0.480	0.474	-2.2	0	0	0	0	480V SWGR 38	0.000	0.000	0.0	0.0	
								480V MCC 39-7	0.000	0.000	0.0	0.0	
480V MCC 39-7	0.480	0.474	-2.2	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
480V SWGR 38	0.480	0.474	-2.2	0	0	0	0	480 V MCC 38-7	0.000	0.000	0.0	0.0	
								BKR 38-4A BIFURC	0.076	0.032	101.0	92.2	
								480V MCC 38-3	0.245	0.201	385.1	77.3	
								480V MCC 38-2	0.208	0.157	317.4	79.8	
								HIGH SIDE OF XFMR 38	-0.529	-0.390	800.1	80.5	
BKR 38-4A BIFURC	0.480	0,474	-2.2	. 0	0	0	0	480V MCC 38-4	0.005	0.003	6.8	85.5	
								480V SWGR 38	-0.076	-0.032	101.0	92.2	
							•	480V MCC 38-1	0.072	0.029	94.3	92.6	
HIGH SIDE OF XFMR 38	4.160	4.154	0.0	0	0	0	0	4KV SWGR 33-I	-0.533	-0.424	94.7	78.2	
								480V SWGR 38	0.533	0.424	94.7	78.2	-2.500

· Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calculation:		9389-46-19-3	
Attachment:		M	
Revision:		004	
Page .	M107	_ of _	M113