ATTACHMENT 1 Design Analysis Major Revision Cover Sheet Page 1 of 1

Konacy

Page 1.0-0

Design Analysis	Major Davi	eion)		Last Page No	. 14.0-8 and R81	
1	Design Analysis (Major Revision) Analysis No.: 9389-46-19-1			Lastrage NU		
Analysis No.:			Revision: 003			
Title:		rator 3 Loading Under [-	t Condition		
EC/ECR No.:	EC 364066		Revision: 000			
Station(s):		Dresden		Components(s	5)	
Unit No.:		3	Various			
Discipline:		E				
Description Cod	e/Keyword:	E15				
Safety/QA Class	:	SR				
System Code:		66				
Structure:		N/A				
		CONTROLLED DO	CUMENT REFERENC	ES		
Document No.		From/To	Document No.		From/To	
See Section XIV		· · · · · · · · · · · · · · · · · · ·				
			·····			
		juards Information?	Yes 🛄	No 🛛 If yes,	see SY-AA-101-106	
Does this Desigr Assumptions?	Analysis Co	ontain Unverified	Yes 🗌	No 🛛 If yes,	ATI/AR#	
This Design Ana	lysis SUPER	SEDES: N/A	· · ·	in its e	entirety	
Description of Re	evision (list a	iffected pages for partia	ils):	×		
		n of this revision and a				
	•					
· · · · · · · · · · · · · · · · · · ·	Shephard		MAM		4/4/87	
Print N	ame		Sign Name		Date	
Method of Review	w Detailed	Review 🛛 🛛 Altern	ate Calculations (att	ached) Te	esting 🗌	
Deviewer Class	n McCorthu		M Dall		8	
Reviewer Glen	n McCarthy		Sign Name	<u> </u>	<u> </u>	
	Independent	Review 🕅 🛛 Per	er Review		U alle	
		<u></u>				
(For External Analyses Only)	- A-1	d 4 1	A:L. D.	AL1	11 Ld man	
External Approve		rd H. Low	Rupera	RT fow	<u> </u>	
	Print Name	1	Sign Name		Date	
Exelon Reviewer	J.G.	Kovach	Ad Ko	viel	04/04/07	
	Print Name		Sign Name		Date	
Independent 3 rd P	arty Review	Required? Yes] No			
Exelon Reviewer	Louis,	MSLLAVARADO	loui h.	aloop	2 4/5/07	
		· · · · · · · · · · · · · · · · · · ·	Sign Name		Date	

	Ca	Iculation For Diesel G	Inder	Calc. No. 9389-46-19-1		
SARGENT & LUNDY		Design Bases Ac		Rev. 1	Date 10/21/96	
ORIGINAL		Safety-Related	Non-Safety-Re	lated	Page /	.0-/ of
Client ComEd			Demond by	8-6	P	Data 10-18-96

Client ComEd	Prepared by S. Ka Jaha	Date 10-18-76
Project Dresden Station Unit 3	Reviewed by Reun,	Date /0/18/96
Proj. No. 9389-46 Equip. No.	Approved by DA MORGOPY MA	Date 10/21/96

DIVISION: EPED FILE: 15B SYSTEM CODE: 6600

NOTE: FOR THE PURPOSE OF MICROFILMING THE PROJ. NO. FOR THE ENTIRE CALC. IS "9389-46"

I. REVISION SUMMARY AND REVIEW METHOD

A. <u>Revision 0</u>

Revision 0, Initial issue, all pages.

This calculation supersedes the Calculation for Diesel-Generator Loading Under Design Basis Accident Condition, Calculation Number 7317-33-19-1. The major differences between Calculation 7317-33-19-1 and this calculation are as follows:

- Dresden Diesel Generator (DG) surveillance test strip charts (Reference 23) show that the first LPCI pump starts almost 3.5 seconds after the closure of the DG output breaker. This is due to the under voltage (UV) relay disk resetting time. This revision shows that the 480V auxiliaries start as soon as the DG output breaker closes to the bus and the first LPCI pump starts approximately 3.5 seconds after the closure of the DG output breaker during Loss Of Offsite Power (LOOP) concurrent with Loss Of Coolant Accident (LOCA).
- 2) Created new ELMS-AC PLUS files for the DG for Unit 3 based on the latest base ELMS modified file D3A4.M21, including all modifications included in Revisions 0 through 14 of Calculation 7317-43-19-2 for Unit 3. Utilization of the ELMS-AC PLUS program in this calculation is to maintain the loading data base and totaling the running KVA for each step.
- 3) Additional loading changes were made due to DITs DR-EPED-0863-00, which revised lighting loads, and DR-EAD-0001-00, which revised the model for UPS and Battery Chargers. For non-operating loads in base ELMS-AC file, running horsepower was taken as rated horsepower for valves and 90% of rated horsepower for pumps, unless specific running horsepower data for the load existed.
- 4) Created Table 4 for totaling 480V loads starting KW/KVAR for determining starting voltage dip from the DG Dead Load Pickup Curve.

SARGENT & LUNDY ENGINEERS	Calculation For Diesel Generator 3 Loading Under					Calc. No. 9389-46-19-1		
	Design Bases Accident Condition				Rev. 1	Date		
	х	Safety-Related		Non-Safety-Related]	Page	1.0-2 of	

Client ComEd	Prepared by	Date
Project Dresden Station Unit 3	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

I. Revision Summary and Review Method (Cont)

Revision 1

In this revision, the following pages were revised:

1.0-1, 1.0-3, 2.0-1, 2.0-2, 2.0-3, 4.0-6, 7.0-1, 10.0-1 through 10.0-8, 11.0-1, 13.0-1, 14.0-1, 14.0-5, 14.0-7, C2, C3, C4, C6, D2, E1, E2, J4, J5, J6, J9, J10, J11

The following pages were added:

1.0-2, 2.0-4, Section 10.1 (pages 10.1-0 through 10.1-26), Section 15.0 (Pages 15.0-0 through 15.0-32), ELMS AC Reports pages F101 through F224, I3.

The following pages were deleted:

10.0-9 through 10.0-24, B15

For completeness, all text pages are being issued to correct various typographical errors throughout the text, however, revision bars were not used for these types of changes.

This revision incorporates load parameter changes determined in Revision 18 of Calculation 7317-43-19-2 (Ref. 26) into the ELMS-AC data file models used in this calculation to model generator operation. The most critical of these changes is the CCSW Pump BHP change from 450 hp to 575 hp. These load parameter changes normalize the DG data files so that file update can be made easily and accurately with the comparison program ELMSCOMP. In addition to the load/file changes, the calculation portion of the text dealing with determining starting KVA and motor start time for the 4.16 KV motors has been encoded into the MATHCAD program. This will simplify any future changes, and decrease the possibility of calculation error. ELMSCOMP reports showing data transfers and so forth will be added in a new attachment.

Please note: The BHP of CCSW Pump Motors is based on the nameplate rating of 500 hp with a 575 hp @ 90°C Rise. This assumption of CCSW Pump Motor BHP loading requires further verification.

CALC NO. 9389-46-19-1

REVISION 003

PAGE NO. 1.0-3(6.)

Revision Summary and Review Method (cont'd)

Revision 2

EC 364066 was created for Operability Evaluation # 05-005. This operability evaluation concluded that the diesel generator load calculation trips one Low Pressure Coolant Injection (LPCI) pump before the first CCSW pump is loaded onto the diesel, at which point the diesel is supplying one Core Spray pump, one LPCI and one CCSW pump. In contrast, station procedure DGA-12, which implements the manual load additions for LOCA/LOOP scenarios, instruct operators to load the first CCSW pump without tripping a LPCI pump. The procedure directs removal of a LPCI pump from the EDG only before loading of the second CCSW pump. In accordance with Corrective Action #2 of the Operability Evaluation, Calculations 9389-46-19-1,2,3 "Diesel Generator 3,2,2/3 Loading Under Design Basis Accident Condition" require revision to document the capability of the EDGs to support the start of the first CCSW pump without first tripping a LPCI pump.

This revision incorporates the changes resulting from EC 364066, Rev. 000. In addition, this revision replaces the ELMS-AC portions of the calculation with ETAP PowersStation (ETAP). All outstanding minor revisions have been incorporated. The parameters for valve 3-1501-22A/B were also revised in the ETAP model to reflect the latest installed motor. Section 10 calculations previously performed using MathCad were replaced with MS Excel spreadsheets.

In this revision the following pages were revised:

2.0-4, H2, H3, R18-R21, R61

In this revision the following pages were replaced:

1.0-3, 2.0-1, 2.0-2, 3.0-1, 4.0-1, 4.0-6, 5.0-1, 7.0-1, 8.0-2, 8.0-5, 9.0-1 – 9.0-5, 10.0-1, 10.0-3 – 10.0-8, 10.1-0 – 10.1-26, 11.0-1, 14.0-1, 14.0-6, 14.0-7, C1-C5, F1-F224 replaced by F1-F118, G1 replace by G1-G63

In this revision the following pages were added:

Design Analysis Cover Sheet (1.0-0), 2.0-5, R62-R76

In this revision the following pages were deleted:

15.0-0 - 15.0-32, Attachment I

Revision 3

This revision incorporates various changes to the EDG loading. Major changes include CS, LPCI and CCSW BHP values. Other changes include decreasing the LOCA bhp value for the RPS MG set and incorporating the DG cooling water pump replacement. New study cases and loading categories were generated in ETAP to model loading of the 4kV pumps after 10 minutes into the event. The scope was expanded to include a comparison of the DG loading at 102% of rated frequency to the 2000hr rating of the diesel. This revision incorporates changes associated with References XIV.64 through 72.

In this revision the following pages were revised:

A5, B7, E2, R76

In this revision the following pages were replaced:

1.0-0, 1.0-3, 2.0-1, 2.0-2, 2.0-5, 3.0-1, 3.0-2, 4.0-6, 5.0-1, 7.0-1, 9.0-1 – 9.0-3, 9.0-5, 10.0-1, 10.0-8, 10.1-1, 10.1-3 – 10.1-6, 10.1-8, 10.1-10 – 10.1-13, 10.1-15, 10.1-17 – 10.1-18, 10.1-24 – 10.1-26, 11.0-1, 12.1-0, 14.0-1, 14.0-7, C1, Attachments F and G.

In this revision the following pages were added:

4.0-7, 14.0-8, R77-R81

CALCULATION TABLE OF CONTENTS

			REV NO: 003 PAGE NO. 2.0-				
·		SECTION	PAGE NO.:	SUB PAGE NO.:			
	11 T	ABLE OF CONTENTS / FILE DESCRIPTION					
	1.	COVER SHEET / REVISION SUMMARY & REVIEW METHOD	1.0-0 - 1.0-3	. ,			
	11	TABLE OF CONTENTS / FILE DESCRIPTION	2.0-1 - 2.0-5				
	. 11	I. PURPOSE/SCOPE	3.0-1 - 3.0-2				
	P	V. INPUT DATA	4.0-1 - 4.0-7				
	IV	/. ASSUMPTIONS	5.0-1				
	۷	1. ENGINEERING JUDGEMENTS	6.0-1				
	V		7.0-1				
	V	III. LOAD SEQUENCING OPERATION	8.0-1 - 8.0-6				
	D	K. METHODOLOGY	9.0-1 - 9.0-7				
	· X	CALCULATIONS AND RESULTS	10.0-1 - 10.0-8 10.1-0 - 10.1-26				
	х	I. COMPARISON OF RESULTS WITH ACCEPTANCE CRITERIA	11.0-1 - 11.0-2				
	Х	II. CONCLUSIONS	12.0-1				
	X	III. RECOMMENDATIONS	13.0-1				
	х	IV. REFERENCES	14.0-1 - 14.0-8				

REV NO: 003 PAGE NO. 2.0-2 CALC NO.: 9389-46-19-1 PAGE NO .: SUB PAGE SECTION NO.: **Attachments** Description Table 1 - Automatically Turn ON and OFF Devices Under Α the Design Basis Accident Condition when DG3 is powering the Unit 3 Division II loads. A1-A11 Table 2 - The Affects of AC Voltage Dip on control circuits в of Dresden Unit 3, Division II when large motor starts. B1-B13 Table 4 – Starting KW and KVAR for all 480V Loads at С each Step when DG 3 is powering Unit 3, Division II. C1-C5 Figure 1 – Single Line Diagram when DG 3 Powers D SWGR 34-1 D1-D2 Figure 2 - Time vs. Load Graph when DG 3 Powers Е SWGR 34-1 E1-E2 DG Unit 3 Division II ETAP Output Reports - Nominal F F1-F115 Voltage DG Unit 3 Division II ETAP Output Reports - Reduced G G1-G58 Voltage Flow Chart 1 - Method of Determining Shed and Η H1-H3 Automatically Started Loads J1-J12 Unit 3 ELMS-AC Plus Data Forms J **Reference Pages** R1-R81 R Note: Table 3 has been omitted.

CALCULATION TABLE OF CONTENTS (Continued)

R3

	·	Calculation For Diesel Generator 3 Loading Under				Calc	Calc. No. 9389-46-19-1		
SARGENT & LUNDY ENGINEERS	Design Bases Accident Condition			Rev.	1	Date]		
	x	Safety-Related		Non-Safety-Related	Page	1 2	.0-3 of] ri	

Client ComEd	Prepared by	Date	
Project Dresden Station Unit 3	Reviewed by	Date	
Proj. No. 9389-46 Equip. No.	Approved by	Date	

File Descriptions

Revision 0

Ć

File Name	Date	Time	File Description
D3A4DGD.G00	12/29/94	1413	General File - Original Issue
D3A4DGDR.G00	12/29/94	1418	General File - Original Issue - Reduced Voltage
D3A4DGD.100	12/30/94	1209	Initial File - Original Issue
D3A4DGDR.100	12/30/94	1238	Initial File - Original Issue - Reduced Voltage
D3TB1DGD.XLS	1/6/95	1505	Table 1 - Excel File
D3TB2DGDXLS	1/6/95	1512	Table 2 - Excel File
D3TB4DGDXLS	1/6/95	1020	Table 4 - Excel File
D3GRFDGD.XLS	1/6/95	1015	Time vs. Load Graph
DRESDGD3.00	1/5/95	1038	Flow Chart 1
D3SINGLE.PPT	12/28/94	1138	Sketch of Unit 3 safety system - Powerpoint
DRESDGD.WP	1/6/95		Calculation Text - Wordperfect

	enerator 3 Loading Under	Calc. No	. 9389-46-19-1		
SARGENT & LUNDY	Design Bases Accident Condition			Rev. 1	Date
	x	Safety-Related	Non-Safety-Related	Page 2	0-4 of

Client ComEd		Prepared by	•	Date	
Project Dresden Statio	n Unit 3	Reviewed by		Date	
Proj. No. 9389-46	Equip. No.	Approved by		Date	

File Description (cont'd)

Revision 1

((

(()

File Name	Date	Time	File Description
D3A4DGD.G01	10/17/96	03:22:20pm	General File - Data upgrade, see Revision Summary for Details
D3A4DGDR.G01	10/17/96	04:06:04pm	General File - Reduced Voltage, see Revision Summary for Details
D3A4DGD.101	09/10/96	10:36:52pm	Initial File - Data upgrade, see Revision Summary for Details
D3A4DGDR.101	10/13/96	03:35:48pm	Initial File - Reduced Voltage, see Revision Summary for Details
DG3GRAF1.XLS	10/17/96	2:45:06pm	Time Vs Load Graph in Excel
D3TBL4R1.XLS	10/18/96	2:03:00pm	Table - Excel File
DG3SLINE.PPT	09/19/96	6:58:50pm	Sketch of Unit 3 safety system - Powerpoint
DG3MCAD.MCD	10/18/96	10:33:48pm	Mathcad File for Section 10.1
DREDG3R1.WP	10/18/96		Calculation Text - Wordperfect

9389-46-19-1

REVISION 003

PAGE NO. 2.0-5(0.1)

R3

File Descriptions (cont'd)

Revision 2

File Name	Size	Date	Time	File Description
9389-46-19-1 Rev. 2.doc	496640 bytes	8/9/06	8:58:04am	Text document
9389-46-19-1 Rev. 2 (section 10).xls	532992 bytes	8/03/06	10:16:22am	Section 10.1
9389-46-19-1 Rev. 2 (table 4).xls	48128 bytes	4/24/06	1:10:29pm	Table 4
DRE_Unit3_0004.mdb	18,509,824 bytes	8/03/06	1:41:09am	ETAP database
DRE_Unit3_0004.macros.xml	10568 bytes	8/03/06	11:12:31am	ETAP macros
DRE_Unit3_0004.scenarios.xml	12388 bytes	2/28/06	11:18:23am	ETAP Scenarios
DRE_Unit3_0004.oti	16384 bytes	8/03/06	1:41:08am	ETAP "OTI" file

Revision 3

File Name	Size	Date	Time	File Description
9389-46-19-1 Rev. 3.doc	502,748 bytos	4/4/07	7:42:35am	Text document
9389-46-19-1 Rev. 3 (section 10).xls	526848 bytes	3/2/07	8:50:48am	Section 10.1
9389-46-19-1 Rev. 3 (table 4).xis	48128 bytes	3/1/07	7:52:12pm	Table 4
DRE_Unit3_0005.mdb	19,559,360 bytes	3/29/07	8:17:29am	ETAP database
DRE_Unit3_0005.macros.xml	11293 bytes	3/21/07	2:47:02pm	ETAP macros
DRE_Unit3_0005.scenarios.xml	15500 bytes	2/26/07	7:50:53pm	ETAP Scenarios
DRE_Unit3_0005.oti	16384 bytes	3/29/07	8:32:57pm	ETAP "OTI" file

CALC NO. 9389-46-19-1 REVISION 003 PAGE NO. 3.0-1 Ш PURPOSE/SCOPE A. Purpose The purpose of this calculation is to ensure that the Dresden Diesel Generator has sufficient capacity to support the required loading during the maximum loading profile as determined in the Calculation Results section. The purpose of this calculation includes the following: Determine automatically actuated devices and their starting KVA at each step for the ac 1) electrical load when the DG is powering the safety related buses. Develop a Time versus Load profile for the DG when the DG is powering the safety 2) related buses. Compare the maximum loading in ETAP for the DG load profile against the capacity of 3) the DG at each step. Determine the starting voltage dip and one second recovery voltage at the DG terminals 4) for initial loading and each 4000V motor starting step. Evaluate the control circuits during the starting transient voltage dip. 5) Evaluate the protective device responses to ensure they do not inadvertently actuate or 6) dropout during the starting transient voltage dip. Evaluate the travel time of MOVs to ensure they are not unacceptably lengthened by the 7) starting transient voltage dips. Determine the starting duration of the automatically starting 4kV pump motors. 8) Ensure the loading on the EDG is within the 2000hr rating should the frequency on the 9) machine increase to its maximum allowable value. Determine the minimum power factor for the long term loading on the EDG. 10)

Β. <u>Scope</u>

The scope of this calculation is limited to determining the capability of the DG to start the sequential load (with or without the presence of the previous running load as applicable), without degrading the safe operating limits of the DG or the powered equipment & services. The minimum voltage recovery after 1 second following each sequential start will be taken from the DG dead load pickup characteristics and compared to the minimum recovery required to successfully start the motors and continue operation of all services.

Ŕ3

CALC NO. 9389-46-19-1 REVISION

ISION 003

R3

PURPOSE/SCOPE (cont'd)

The total running load of the DG will also be compared against the rating of the DG at the selected loading step to confirm the loading is within the DG capacity. The scope will also include an evaluation based on review of identified drawings to determine the effects on control functionality during the transient voltage dips.

The EDG has a minimum and maximum allowable frequency range. Operating the EDG at a frequency above its nominal value results in additional loading on the EDG. The percent increase in load due to the increase in frequency will be quantified and compared to the EDG 2000 hr rating to ensure the limits of the EDG are not exceeded. The minimum power factor for EDG long term loading will be quantified.

The scope will also include an evaluation of protective devices which are subject to transient voltage dips.

The scope does not include loads fed through the cross-tie breakers between Unit 2 and 3 Buses of the same Division. Although DGA-12, Rev. 16 allows its use, loading is performed manually at Operations' discretion and is verified to be within allowable limits during manual loading. Therefore, this operation is not included in the scope of this calculation.

Abbreviation ADS AO CC CCSW Clg Clnup	cted from the references is summarized below: ons Automatic Depressurization System Air Operated Containment Cooling Containment Cooling Service Water Cooling Clean up Containment	
Abbreviation ADS AO CC CCSW Clg Clnup	onsAutomatic Depressurization SystemAir OperatedContainment CoolingContainment Cooling Service WaterCoolingClean up	
ADS AO CC CCSW Clg Clnup	Automatic Depressurization System Air Operated Containment Cooling Containment Cooling Service Water Cooling Clean up	
AO CC CCSW Clg Clnup	Air Operated Containment Cooling Containment Cooling Service Water Cooling Clean up	
CC CCSW Clg Clnup	Containment Cooling Containment Cooling Service Water Cooling Clean up	
CCSW Clg Clnup	Containment Cooling Service Water Cooling Clean up	
Clg Clnup	Cooling Clean up	
Clnup	Clean up	
Comt	Containment	
Cnmt	Outdument	,
Comp	Compressor	
Compt	Compartment	
Diff	Differential	
DIT	Design Information Transmittal	
DG	Diesel Generator	
DW .	Drywell	
EFF	Efficiency	
EHC	Electro Hydraulic Control	
ELMS	Electrical Load Monitoring System	
ETAP	Electrical Transient Analyzer Program	R2
	Emergency	I
	EHC ELMS	EHCElectro Hydraulic ControlELMSElectrical Load Monitoring SystemETAPElectrical Transient Analyzer Program

r	Calculation For Diesel Generator 3 Loading Under				Calc. No. 9389-46-19-1	
SARGENT & LUNDY	Design Bases Accident Condition				Rev. Date	
	x	Safety-Related	Non-Safety-Related		Page 4.0-2 of	

· (-

(e)e

Client ComEd	Prepared by	Date
Project Dresden Station Unit 3	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

	Input Data (cont'	d):	
	ECCS	-	Emergency Core Cooling System
	FSAR	-	Final Safety Analysis System
	gpm	-	Gallons Per Minute
• .	GE	-	General Electric
	Gen	. .	Generator
	Hndlg	-	Handling
	HPCI	-	High Pressure Coolant Injection
	HVAC	-	Heating Ventilation & Air Conditioning
	Inbd	-	Inboard
	Inst	-	Instrument
	Isoln	-	Isolation
	LOCA	-	Loss Of Coolant Accident
	LOOP	-	Loss Of Offsite Power
	LPCI	-	Low Pressure Coolant Injection
	LRC	-	Locked Rotor Current
	Mon	-	Monitoring
	MCC	-	Motor Control Center
	M-G	-	Motor Generator
	MOV	-	Motor Operated Valve

				ienerator 3 Loading Under		9389-46-19-
SARGENT &		Desig	gn Bases Ac	cident Condition	Rev.	Date
	Ĺ	X Safety-	Related	Non-Safety-Related	Page 4	0-3 of
Client ComEd				Prepared by		Date
Project Dresde	n Station Unit	3		Reviewed by		Date
Proj. No. 9389	-46 E	iquip. No.		Approved by		Date
Inp	ut Data (con	ťd):				
	Outbd	-	Outboa	ard		
	PF	-	Power	Factor		
	Press	- ,	Pressu	Ire		
	Prot	-	Protec	tion		
	Recirc	-	Recirc	ulation		
	Rm	-	Room			
	Rx Bldg	-	Reacto	or Building		
	SBGT	-	Standb	y Gas Treatment System		
	Ser	-	Service	9		
	SWGR	-	Switch	gear		
	Stm	-	Steam			
	Suct	-	Suction	1		
	ТВ	•	Turbine	Building		
	Turb	-	Turbine)		
	UPS	-	Uninter	ruptible Power Supply		
	VIv	~	Valve			
	Wtr	-	Water			
	Xfmr	-	Transfo	rmer		
•						
					-	
						:

· []	Cal	culation For Diesel G	Calc. No. 9389-46-19-1		
SARGENT & LUNDY	Design Bases Accident Condition				L Date
	x	Safety-Related	Non-Safety-Related	Page	4,0-4 of

Client ComEd	Prepared by	Date
Project Dresden Station Unit 3	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

Input Data (cont'd):

B. Emergency Diesel Generator Nameplate data for the Dresden Unit 3 is as follows (Reference 24):

Manufacturer	Electro - Motive Division (GM)
·	
Model	A - 20 -C1
Serial No.	68 - E1 - 1013
Volts	2400 / 4160 v
Currents	782 / 452 Amps
Phase	3
Power Factor	0.8
RPM	900
Frequency	60
KVA	3250
Temperature Rise	85⁰C Stator - Therm 60⁰C Rotor - Res
KVA Peak Rating	3575 KVA For 2000 HR / YR
Temperature Rise	105 ⁰ C Stator - Therm 70 ⁰ C Rotor - Res
Insulation Class	Stator - H Rotor - F
Excitation	Volts - 144 Amps - 100
Diesel Engine Manufacturer	Electro - Motive Division (GM)
Model No.	S20E4GW
Serial No.	1159

()	Calculation For Diesel Generator 3 Loading Under Design Bases Accident Condition				Calc. No. 9389-46-19-1		
SARGENT & LUNDY					Rev. 1	Date	
	x	Safety-Related	Non-Safety-Related		Page 4,	0-5 of	

Client ComEd		Prepared by	Date
Project Dresden Station	Únit 3	Reviewed by	Date
Proj. No. 9389-46	Equip. No.	Approved by	Date

Input Data (cont'd)

C. Dead Load Pickup Capability (Locked Rotor Current) - Generator Reactive Load Vs % Voltage Graph #SC - 5056 by Electro - Motive Division (EMD) [Reference 13].

This reference describes the dead load pickup capability of the MP45 Generating Unit. The curve indicates that even under locked rotor conditions an MP45, 2750 kw generating unit will recover to 70% of nominal voltage in 1 second when a load with 12,500 KVA inrush at rated voltage is applied. This indicates that the full range of the curve is usable. Also, page 8 of the purchase specification K-2183 (Reference 12) requires that the Generator be capable of starting a 1250 hp motor (starting current equal to 6 times full load current). The vertical line labelled as "Inherent capability" on the Dead Load Pickup curve is not applicable for the Dresden Diesel Generators because they have a boost system associated with the exciter. Per Reference 40 of this calculation, Graph #SC-5056 is applicable for Dresden Diesel Generators.

- D. Speed Torque Current Curve (297HA945-2) for Core Spray Pump by GE (Reference 14).
- E. Speed Torque Current Curve (#257HA264) for LPCI Pump by GE (Reference 15).
- F. Dresden Re-baselined Updated FSAR Table 8.3-3, DG loading due to loss of offsite ac power (Reference 30)
- G. Table 1: Automatically ON and OFF devices during LOOP Concurrent with LOCA when the DG 3 is powering the Unit 3 Division II loads (Attachment A)
- H. Table 2: Affects of Voltage Dip on the Control Circuits during the Start of Each Large Motor when DG 3 is powering Unit 3, Division II loads (Attachment B).
- I. Table 4: KW/KVAR/ KVA loading tables for total and individual starting load at each step when DG 3 is powering Unit 3, Division II loads (Attachment C).
- J. CECO letter dated March 11, 1988 from Bruce B. Palagi to W. Fancher / M. Reed regarding the post LOCA ECCS Equipment requirements for the Dresden and Quad Cities Station (Reference 4, Page R1).
- K. Dresden Re-baselined Updated FSAR Figure 8.3-6, DG loading under accident and during loss of offsite ac power (Reference 31).
- L. Dresden Appendix R Table 3.1-1, DG loading for safe shutdown (Reference 32).

CALC NO.	9389-46-19-1	REVISION	003	PAGE NO. 4.0-6
Input D	ata (cont'd)			
N.	Flow Chart No. 1, showing the powering the safety buses duri			
. O.	ETAP Loadflow summary for c step to DG capacity for Unit 3		ated KVA input	t of running loads at each
Ρ.	S&L Standard ESA-102, Revis Electrical Cables (Reference 1		Physical Char	acteristics of Class B
Q.	S&L Standard ESC-165, Revis	sion 11-03-92 - Power Plant A	uxiliary Power	System Design (Reference
R.	S&L Standard ESI-167, Revisi	on 4-16-84, Instruction for Co	mputer Progra	ams (Reference 1)
S.	S&L Standard ESC-193, Revis (Reference 39)	sion 9-2-86, Page 5 for Determ	nining Motor S	tarting Power Factor.
Т.	S&L Standard ESA-104a, Revi 10)	ision 1-5-87, Current carrying	Capabilities o	f copper Cables (Reference
U.	S&L Standard ESC-307, Revis 21)	ion 1-2-64, for checking volta	ge drop in sta	rting AC motors (Reference
V.	S&L Standard ESI-253, Revision and approval of electrical design			n for preparation, review,
W.	Unit 3 ETAP file from Calculati for latest ETAP file.	ion DRE04-0019, Rev. 000 ar	nd 000B (Refe	rence 55). See Section 2.0 R
Х.	125Vdc and 250Vdc Battery Ch in ETAP (Reference 25 & 34)	harger, and 250Vdc UPS Mod	els from Calcu	ulation 9189-18-19-4 used
Y.	Single Line diagram showing th 1 during LOOP concurrent with		DG output brea	aker closes to 4-kV Bus 34-
Z.	Walkdown data for CCSW Pur	nps (Ref 26)		
AA.	S&L Calculation 9198-18-19-4, 34)	Rev. 0 provides Reactor Prot	ection M-G se	t brake horsepower. (Ref
AB.	The maximum allowable time to	o start each LPCI Pump and (Core Spray Pu	mp is 5 seconds (Ref. 56)

CALC NO.	9389-46-19-1	REVISION	003	PAGE NO.	4.0-7(c	
AC.	The BHP values for the CS provided below (Ref. 64, 6	5, LPCI and CCSW pumps after 1 5, 66).	0 minutes inte	o a LOCA event are		
	Core Spray Pump 3B	881.9 hp				
	LPCI Pump 3C	640.7 hp				
	LPCI Pump 3D	609.0 hp				
	CCSW Pump 3C	575.0 hp with 1 pump running,	465 hp with b	oth pumps running		
	CCSW Pump 3D	575.0 hp with 1 pump running,	465 hp with b	oth pumps running		
AD.	The 3 EDG Cooling Water Pump has a BHP of 69.28kW with a power factor of 83.5. The efficiency, LRC and starting power factor are 100%, 400% and 31.5% respectively (Ref. 67 & 68)					
AE.	The RPS MG Sets have a BHP of 3.9kW when unloaded with a power factor of 12.2%. This is based on a 5% tolerance in the data acquisition equipment (Ref. 69)					
AF.	The HPCI Aux Coolant Pump is manually controlled and not operated during a LOCA (Ref. 70)					
AG.	Dresden Technical Specification Section 3.8.1.16 allows a +2% tolerance on the nominal 60HZ EDG frequency (Ref. 73)					
AH.	The continuous rating of th	e EDG is 2600kW at a 0.8 pf (Rei	f. 74)			
AI.	For centrifugal pumps, the	break horsepower varies as the c	ube of the spe	eed (Ref. 75)		

CALC	NO.	9389-46-19-1 REVISION 003 PAGE NO. 5.0-1(
					•				
V	<u>ASS</u>	UMPTIONS							
	1)		s (approximately 150VA – 200V) actual load and can be neglected		rally have only a small				
	2)	available on the MCC bus	afer Pump is shown in this calcul s, but this is not the actual case a Il prior to DG starting. This is co	as the pump	responds to low day ta				
	3)	determine transformer loa	downstream of 480/120V transfo ading. This transformer load on mer or an equivalent three-phas	the 480V bus	is assumed to be the	rating			
	4)		ents are not available, it is consid d ESC-165 and is reasonable an			nt.			
	5)	For large motors (>250HF large HP motors and does	P), the starting power factor is co s not require verification.	insidered to b	e 20%. This is typical	for			
	6)	subsequently lower voltag calculation, it will allow po	on Reactor Recirc Line B. This view of the third of the theory of theory of the theory of the theory of the theory	voltages are	not evaluated by this				
	7)	is 2% above its nominal v break horsepower of these corresponds to a 6% incre	nerator is assumed to increase b alue. A majority of the load con e pumps varies as the cube of th ease in load (1.02 ³) (Ref. 75). No prmance curve and the BHP ma	sists of large le speed. Th ote that these	centrifugal pumps. Th us, a 2% increase in sp pumps will operate or	ne Deed R3			
	8)	throughout the evaluation. speed as is expected, usir starting time would be son	me for the large motors, the star Although the speed torque cur og a constant current will simplify newhat less if the speed-current or starting current is conservative	ve shows a d y the starting characteristic	ecrease in current with time evaluation. Moto cs were included. This	r			
	The a	above assumptions 1, 2, 3, 4,	5, 6, 7 and 8 do not require veri	ification.					
		÷ .			•				

[]	Ca	culation For Diesel G	Calc. No. 9389-46-19-1				
SARGENT & LUNDY	Design Bases Accident Condition			Rev	• 1	Date	
	x	Safety-Related	Non-Safety-Related	Page	9 6	.0 -1	of FINAL

Client ComEd	Prepared by	Date
Project Dresden Station Unit 3	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

VI. ENGINEERING JUDGEMENT

- Based on engineering judgement an efficiency of 90% is to be used to convert the cumulative HP to an equivalent KW for Table 8.3-3 of the Dresden Re-baselined Updated FSAR, Revision 0. This is considered conservative because the majority of this load consists of 2-4kV motors. Also, this result is only to be used for a comparison.
- 2.) For the purposes of this calculation, a LOCA is defined as a large line break event. This is a bounding case, as in this event, the large AC powered ECCS-related loads will be required to operate in the first minutes of the event. In small and intermediate line break scenarios, there will be more time between the LOCA event initiation and the low pressure (i.e. AC) ECCS system initiation.

3) It is acknowledged that system parameters (i.e. low level, high pressure, etc.) for different ECCS and PCIS functions have distinctly different setpoints. For the purposes of this calculation, it will be assumed that these setpoints will have been reached prior to the EDG output breaker closure except as otherwise noted. This is conservative as it will result in the greatest amount of coincidental loading at time t=0and time t=0+.

4) Based on the fact that large motors will cause larger voltage dips when started on the Diesel Generator, the manually initiated loads starting at t=10+ minutes will be assumed started as follows:

- a) CCSW Pump D
- b) CCSW Pump C

CALC NO. 9389-46-19-1

REVISION 003

PAGE NO. 7.0-1(9...)

R3

VII ACCEPTANCE CRITERIA

The following are used for the acceptance criteria:

- 1) Continuous loading of the Diesel Generator.
 - The total running load of the DG must not exceed its peak rating of 3575kVA @ 0.8 pf (Ref. 24) or 2860 KW for 2000 hr/yr operation.

Note: The load refinements performed under Revision 003 of this calculation showed that the running load is within the 2600 KW continuous rating of the DG. Should a future calculation revision show that the loading is greater than the 2600KW continuous rating; a 50.59 safety evaluation should be performed to assess the impact on the current Dresden design/licensing basis.

The total running load of the DG must not exceed its nameplate rating of 3575 KVA @ 0.8 pf (Ref. 24) or 2860 kW for 2000 hr/yr operation when considering the maximum frequency tolerance. If the EDG is at 102% of its nominal frequency, the EDG load is expected to be 1.02³ or 1.06 times larger since a centrifugal pump input BHP varies as the cube of the speed (Ref. 75)

EDG Power Factor during Time Sequence Steps DG3_T=10+m, DG3_T=10++m, and DG3_T=CRHVAC must be ≥88% (Ref. 76 and 77)

Note: Should a future calculation revision show that the criterion for reactive power during the above noted DG time sequence steps can no longer be met; a review should be performed to assess the impact on the current Dresden design/licensing basis.

2) Transient loading of the Diesel Generator.

Voltage recovery after 1 second following each start must be greater than or equal to 80% of the DG bus rated voltage (Ref. 12). This 80% voltage assures motor acceleration.

The transient voltage dip will not cause any significant adverse affects on control circuits.

The transient voltage dip will not cause any protective device to inadvertently actuate or dropout as appropriate.

The transient voltage dip will not cause the travel time of any MOV to be longer than allowable.

The starting durations of the automatically starting 4kV pump motors are less than or equal to the following times (see Section IV.AB):

Service	Allowable-Starting Time (sec.)
LPCI Pump 3C	5
LPCI Pump 3D	5
Core Spray Pump 3B	5

[]	Calculation For Diesel Generator 3 Loading Under Design Bases Accident Condition				Calc. No. 9389-46-19-1	
SARGENT & LUNDY					v. / Date	
· · · · · · · · · · · · · · · · · · ·	x	Safety-Related	Non-Safety-Related	Pa	ge <u>8.0-1</u> of	

Client ComEd	Prepared by	Date
Project Dresden Station Unit 3	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

VIII. LOAD SEQUENCING OPERATION

A. Load Sequencing During LOOP/LOCA

By reviewing the Table 1 schematic drawings, it was determined that there are three automatic load starting steps, which start the two LPCI Pumps sequentially, followed by the Core Spray Pump. Also, there is another inherent step which delays the large pumps from starting by 3 seconds. This delay is due to the undervoltage relay recovery time, which is interlocked with the start time for the large pumps.

This calculation considers that all the devices auto start from an initiating signal (pressure, level, etc.) or from a common relay start at the same time (unless a timer is in the circuit). It considers all devices are in normal position as shown on the P&ID. It was found from discussion with ComEd Tech. Staff and the Control Room Operators that valves always remain in the position as shown on the design document.

For long term cooling, manual operation is required to start 2 Containment Cooling Service Water pumps and associated auxiliaries.

1) Automatic Initiation of DG during LOOP concurrent with LOCA

The DG will automatically start with any one of the signals below:

- 2 psig drywell pressure, or
- -59" Reactor water level, or

ņ

- Primary Under voltage on Bus 34-1, or
- Breaker from Bus 34 to Bus 34-1 opens, or
- Backup undervoltage on Bus 34-1 with a 7 second time delay under LOCA
- Backup undervoltage on Bus 34-1 with a 5 minutes time delay without a LOCA

Upon loss of all normal power sources, DG starts automatically and is ready for loading within 10 seconds (Reference 7, page 8.3-14). When the safety-related 4160V bus is de-energized, the DG automatically starts and the DG output breaker closes to energize the bus when the DG voltage and frequency are above the minimum required. Closure of the output breaker, interlocks ECCS loads from automatically reclosing to the emergency bus, and then the loads are started sequentially with their timers. This prevents overloading of the DG during the auto-starting sequence.

CALC NO.	9389-46-19-1		REVISION	002	PAGE NO. 8.	0-2
LOA	D SEQUENCING OPE	RATION (cont'd)				
	2) Automatic L	.oad Sequence Ope	ration for LOOP w	ith LOCA		
	the di		certain MOVs star		closes to Switchgear 34-1, d the UV relay (IAV 69B)	,
	As so	on as UV relay (IAV	69B) completes it	s reset, the firs	st LPCI pump starts.	
		onds after UV relay associated valves a			I pump starts. At the sam p start operating.	ne
		time, associated va			pray pump starts. At the e Spray pump start	
	Automatically activa Table 1.	ated loads on the DO	G during LOOP co	ncurrent with L	OCA are identified in	
, 13.	3) Manual actu	ation required for lo	ng term cooling			
					nd Core Spray system, th References 33 and 63):	e
	 Appro 	priate loads on Bus	34 will be shed an	d locked out.	·	R2
	start o		e Water pumps, ai		o the switchgear bus and the CC Heat Exchanger	•
	• Turn d	off one of the LPCI p	umps			
					pumps is shut off, the l equipment (e.g. cooler	R2
				• 1		

	Cal	culation For Diesel G	Calc. No. 9389-46-19-1		
SARGENT & LUNDY	Design Bases Accident Condition			Rev. /	Date
	x	Safety-Related	Non-Safety-Related	Page	8.0-3 of

Client ComEd	Prepared	by	Date
Project Dresden Station Unit 3	Reviewed	l by	Date
Proj. No. 9389-46 Equip. No.	Approved	by	Date

B. Description of sequencing for various major systems with large loads

1) LPCI/CC - LPCI Mode

LPCI/CC

To prevent a failure of fuel cladding as a result of various postulated LOCAs for line break sizes ranging from those for which the core is adequately cooled by HPCI system alone, up to and including a DBA (Reference 6).

LPCI Mode

The LPCI mode of the LPCI/CC is to restore and maintain the water level in the reactor vessel to at least two-thirds of core height after a LOCA (Ref. 6).

- i) Initiation of LPCI occurs at low-low water level (-59"), and low reactor pressure (<350 psig), or high drywell pressure (+2 psig). For the purposes of this calculation, it is assumed that LPCI loop selection and the <350 psig interlocks have occurred prior to DG Output breaker closure.
- CC Service Water pumps are tripped and interlocked off.
- The Heat Exchanger Bypass Valve 1501-11B receives an open signal and is interlocked open for 30 seconds and then remains open. Note: these valves will be required to close to obtain flow throughout LPCI Heat Exchanger; See Section VIII.B.3.iii.
- LPCI pump suction valves (1501-5C and 5D) To prevent main system pump damage caused by overheating with no flow, these valves are normally open and remain open upon system initiation.
- Containment Cooling valves 1501-18B, 19B, 20B, 27B, 28B, and 38B are interlocked closed.
- With time delay, the Low Level/High Drywell Pressure signal closes the Recirculation Pump Discharge Valve 202-5A and 1501-22B, opens 1501-21A.
- LPCI Pump 3C will start immediately after UV relay resets.

LPCI Pump 3D will start 5 seconds after UV relay resets.

	Calculation For Diesel Generator 3 Loading Under				Calc. No. 9389-46-19-1		
SARGENT & LUNDY		Design Bases Acc	Rev.	Date			
	x	Safety-Related	Non-Safety-Related	Page	8.0-4 of		

Client ComEd		Prepared by	Date
Project Dresden Station Unit 3		Reviewed by	Date
Proj. No. 9389-46 Equip. No.		Approved by	Date

LPCI pumps minimum bypass valve (1501-13B) - To prevent the LPCI pumps from overheating at low flow rates, a minimum flow bypass line, which routes water from pump discharge to the suppression chamber is provided for each pump. A single valve for both LPCI pumps controls the minimum flow bypass line. The valve opens automatically upon sensing low flow in the discharge lines from the pump. The valve also auto-closes when flow is above the low flow setting.

2) Core Spray

The function of the Core Spray system is to provide the core with cooling water spray to maintain sufficient core cooling on a LOCA or other condition which causes low reactor water, enough to potentially uncover the core.

i) The core spray pump starts automatically on any of the following signal:

- High Drywell Pressure (2 psig) or,
- Low -Low reactor water level (-59") and low reactor pressure (<350 psig), or</p>
- Low-Low reactor water level (-59") for 8.5 minutes.

ii) The following valves respond to initiation of core spray:

- Minimum Flow Bypass Valve 1402-38B This valve is a N.O. valve which remains open to allow enough flow to be recirculated to the torus to prevent overheating of core spray pump when pumping against a closed discharge valve. When sufficient flow is sensed, it will close automatically
- Outboard Injection Valve 1402-24B This valve is normally open and interlocks open automatically when reactor pressure is less than 350 psig.
- Inboard Injection Valve 1402-25B This valve is normally closed, but will open automatically when reactor pressure is less than 350 psig.
- Test Bypass Valve 1402-4B This is a normally closed valve and interlocks closed with Core Spray initiation.
- Core Spray Pump Suction Valve 1402-3B This is a normally open valve and interlocks open with the initiation of Core Spray.

			CALC	ULATION PAG	E		
CALC NO.	9389-	46-19-1	· · · · · · · · · · · · · · · · · · ·	REVISION	002	PAGE NO.	8.0-5
	. 3)	CC Service W	Vater (CCSW)	Pump			
		water pressur pump is sized exchanger for exchanger. T 3500gpm, so	re for removing d to assure suff r LPCI operatio The pump flow at this rate, on	the heat from the LP icient cooling in the se in, even though there required is 3500 gpm. e pump is enough for	CI heat excha econdary cooli are two CC Se Each CCSW adequate coo	of 20 psig over the LP nger. One CC Service ng loop of the CC heat ervice Water pumps pe pump has the flow rate ling. However, the Dre s would be operating.	Water t er heat e of
				en it senses UV, over en the proper voltage		PCI initiation signal on s 34.	Bus
		required durin and the Core for DG loading before the sec FSAR section and concluded	ng LOOP concu Spray pump, th g capacity to tu cond CCSW pu n 5.2.3.3 analyz	urrent with LOCA. After the operator manually for rn off one of the LPCI ump is turned on (see ed the recovery portio I, one Core Spray, and	er 10 minutes turns on the C pumps [e.g. p References 3 n of LOCA for	ervice Water pumps ar of running both LPCI p CSW pumps, but is re- bump 3D for this calcul 3 and 63). Dresden Up the equipment availab pump is adequate for	oumps quired R2 ation] pdated R2
		Discharge Co exchanger. T Exchanger By	ntrol Valve 150 The operator at ypass Valve 150	1-3A opens to provide some time during the 01-11B to establish LF	e CCSW flow event will clos PCI flow through		. As
	4)	Standby Gas	Treatment (SB	GT)			
		building to pre affluent from t	event ground levent build	vel release of airborne	e radioactivity.	pressure in the reactor The system also treat through a 310 foot to the environment.	s the
				· · · · · · · · · · · · · · · · · · ·			

SARGENT & LUNDY ENGINEERS	Calculation For Diesel Generator 3 Loading Under]	Calc.	No.	9389-46-19-1
	Design Bases Accident Condition				Rev.	1	Date	
	x	Safety-Related		Non-Safety-Related]	Page	8	.0-6 of FINAL

Client ComEd	Prepared by	Date
Project Dresden Station Unit 3	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

The SBGT system will auto initiate on the following conditions:

- 1) B train in Primary, A train in Standby
 - a. High radiation in Reactor Building Vent System (4mr/hr)
 - b. High radiation on refuel floor (100mr/hr)
 - c. High drywell pressure (+2 psig)
 - d. Low Reactor water level (+8 inches)
 - e. High radiation inside the drywell $(10^2 \times R/hr)$

2) A train in Primary, B train in Standby

If the B train of SBGT system is in standby, a timer is enabled which will initiate the B train of SBGT if a low flow is present on A train SBGT for longer than the allowed time. Per DIS7500-01, this time is set to operate within 18 to 22 seconds

Since the Case 2 scenario is after the Core Spray Pump start and before t=10minutes, B train SBGT will be shown to operate as described in Case 1 above.

Upon initiation, the SBGT trips the normal Reactor Building vent supply and exhaust fans, and closes A0 valves. It also trips the drywell and torus purge fans. Motor Operated Inlet Butterfly Valve 7503 (N.O.) remains open. The electric heater raises the air temperature sufficiently to lower the relative humidity. Motor operated Butterfly Valve 7505B is normally closed and interlocked open upon system initiation. Motor Operated Butterfly Valve 7504B is normally closed and interlocked open. Motor operated valve 7504B is normally open and is interlocked closed on system initiation. SBGT Fan 2/3-7506 will drive the filtered air out through the ventilating chimney.

CALC NO.	9389-46-19-1	REVISION	003	PAGE NO. 9.0-1

IX <u>METHODOLOGY</u>

A. Loading Scenarios:

There are three different abnormal conditions on which the Emergency Diesel Generator can be operating:

- 1) Loss of AC Offsite Power (LOOP)
- 2) Safe Shutdown Due to Fire
- 3) LOOP concurrent with LOCA

The above scenarios will be compared for total loading and heaviest sequential loading to determine worst case scenario and why the scenario was chosen.

B. Continuous Loading Evaluation

The following Attachments are used to determine and develop the continuous loading of the DG:

- Table 1
- ETAP for the load summary of the loading of the DG at selected steps of automatically and manually started loads (Attachments F & G).

The loading based on the maximum loading scenario, including cumulative proposed modifications to the loading, will be tracked in the ETAP data file. In all of the cases that will be analyzed, the proposed loading will be greater than that of the existing loading, since all modified load reductions will remain at previous loads until installed and changed to existing. Thus the capability of the DG to pickup the modified loading and operate within the safe operating limit of the DG will envelope the existing loading.

For all of the various steps in the DG load profile, the ETAP total load will be the summation of the steady state load of all running and starting services for the starting step being analyzed.

The ETAP model was revised to mimic the ELMS-AC data files that were part of the calculation prior to Revision 002. Scenarios were created in ETAP to model the various loading steps in the DG load profile as loads are energized and de-energized.

The scenarios used to model the DG loading in ETAP are listed in the table that follows. The scenarios use one of three loading categories named "DG Ld 0 CCSW", DG Ld 1 CCSW" and "DG R3 Ld 2 CCSW". These loading categories were created by duplicating loading category "Condition 3". In cases where a load was identified in loading category "Condition 3" as zero and the load is energized during the diesel loading scenario, the loads were modeled as 100% in these loading R3 categories. If the bhp for a given load in the previous DG data files was different than that in load condition 3, it was revised to match the bhp value in the previous ELMS-AC data files for this calculation. Breakers were added for various loads that change state as part of the DG load profile. No specific breaker data was entered as these breakers are only used as switches. The breakers were opened and closed as required creating configurations which duplicate the loading on the DG for each load step previously captured in the ELMS-AC program. The three loading categories are identical except the BHP values associated with the CS, LPCI and CCSW pumps are varied. "DG Ld 0 CCSW" represents the first 10 minutes of the accident where no CCSW R3 pumps are operating. "DG Ld 1 CCSW" reflects reduced CS and LPCI loading values after 10 minutes and a 115% bhp loading value for a single CCSW pump in operation. "DG Ld 2 CCSW" is the same as "DG Ld 1 CCSW" except CCSW bhp values are reduced to reflect operation of both pumps.

CALC NO.	9389-46-19-1	REVISION	003	PAGE NO. 9.0-2
	DG_2_CCSW and DG_Vrec named loading category and all runs correspond to less th "Nominal" and "Gen Min" for The Unit 3 diesel voltage wa categories respectively. 609 voltage. This value is suppor study cases, the Newton Ra iterations set at 99 and the p	as set to 100% and 60% for th % was chosen as it envelope orted by the calculations perfor phson method of load flow w precision set to 0.0000001. Or	ases use the s the DG_0_ t. The gener nd DG_Vredu- ne "Nominal" s the lowest e ormed in Sec as selected w hly the initial	corresponding similarly CCSW loading category as ating category was set to uced study case respectively. and "Gen Min" generation expected DG terminal
	for each time step in the DG scenarios. Each scenario wa can vary depending upon the ETAP are run using the initia solution is reached regardles The precision for each study	P was used to set up the confi i load profile. The study wiza as run three times in a row as e order that the study cases a al bus voltages in the bus edi ss of the bus voltages in the bus case is not accurate enough the loading on the DG during ngs, configurations, etc.	rd was used s part of each are run as cei tor. The mul bus editors pr to guarantee	to group and run all of the study macro. The results rtain calculations within tiple runs assure a unique for to each load flow run. a unique solution. The

CALC NO.

9389-46-19-1

REVISION 003

PAGE NO. 9.0-3

Scenario	Configuration	Study Case	DG Voltage	Output Report	Study Macro	Description
DG3_Bkr_Cl	DG3_Bkr_Cl	DG_0_CCSW	4160V	DG3_Bkr_Close	DG3_Vnormal	Initial loading on DG due to 480V loads when DG breaker closes
DG3_UV_Reset	DG3_UV_Reset	DG_0_CCSW	4160∨	DG3_UV_Reset	DG3_Vnormal	Scenario DG3_Bkr_Cl plus 1 ^{et} LPCl pump and auxiliaries
DG3_T=5sec	DG3_T=5sec	DG_0_CCSW	4160V	DG3_T=5sec	DG3_Vnormal	Scenario DG3_UV_Reset plus 2 [™] LPCI pump
DG3_T=10sec	DG3_T=10sec	DG_0_CCSW	4160V	DG3_T=10sec	DG3_Vnormal	Scenario DG3_T=5sec plus Core Spray Pump and Auxiliaries
DG3_T=10-min	DG3_T=10-m	DG_0_CCSW	4160∨	DG3_T=10-min	DG3_Vnormal	Scenario DG3_T≃10sec minus MOV that have completed stroke
DG3_T=10+min	DG3_T=10+m	DG_1_CCSW	4160∨	DG3_T=10+min	DG3_Vnormal	Scenario DG3_T=10-min plus 1 st CCSW pump and Auxiliaries
DG3_T=10++min	DG3_T=10++m	DG_2_CCSW	4160V	DG3_T=10+≁min	DG3_Vnormal	Scenario DG3_T=10+min plus 2 nd CCSW pump and Auxiliaries minus 1 LPCI pump.
DG3_CRHVAC	DG3_CRHVAC	DG_2_CCSW	4160V	DG3_CR_HVAC	DG3_Vnormal	Scenario DG3_T=10++min plus Control Room HVAC and all other long term loads.
DG3_Bkr_Vlow	DG3_Bkr_Cl	DG_Vreduced	2496V	DG3_Bkr_Vred	DG3_Vreduced	Scenario DG3_Bkr_Cl run at lowest expected voltage
DG3_UV_Vlow	DG3_UV_Reset	DG_Vreduced	2496V	DG3_UV_Vred	DG3_Vreduced	Scenario DG3_UV_Reset run at lowest expected voltage
DG3_T=5sVlow	DG3_T=5sec	DG_Vreduced	2496V	DG3_T=5sVred	DG3_Vreduced	Scenario DG3_T=5sec run at lowest expected voltage
DG3_T≃10-mVI	DG3_T=10-m	DG_Vreduced	2496V	DG3_T≖10-mVred	DG3_Vreduced	Scenario DG3_T=10-min run at lowest expected voltage

CALC NO.	9389-46-19-1	REVISION	002	PAGE NO. 9.0-4
MET	<u>[HODOLOGY</u> (cont'd)			
	No other manual loads outside the considered for this analysis.	e Dresden Re-baselined	Updated FS.	AR (Revision 0) scope were
C.	Transient Loading Evaluation.			
	The following attachments are use	ed to determine and dev	elop the trans	sient loading of the DG:
	Table 1			
÷	• Table 4			
	Flow Chart 1			
	Use of Dead Loa	nd Pickup Curve.		
	The following formulas will be used motor data provided and the ETAF			e DG at each step from the
	Calculating starting KVA (SKVA _R)	at the machine's rated v	oltage (V _R)	
	SKVAR = √3 V _R I _{LRC}			
	where, I _{LRC} is the machine's	s Locked Rotor Current		
	Calculating starting KVA (SKVA) a	t the machine's rated vo	ltage (V ₂)	
	SKVA @ $V_2 = (V_2)^2 / (V_R)^2$	(SKVA _R		
	The starting kW/kVAR for the start in Table 4.	ing loads in each step w	rill be calculat	ed and tabulated separately
	The reduced voltage ETAP files ar start with the exception of the last (The 1 st CCSW pump was modeled with the 2 nd CCSW pump in order t DG terminal voltage is equal to or I The reduced terminal voltage will b by the running loads operating at lo	CCSW pump which is be as starting concurrent to o create a bounding cas ower than the voltage di e used to determine an	bunded by a swith the aux loss is a second to the aux loss is a construction of the second to the second tott to the second to the second to t	start of the 1 st CCSW pump. Dads energized concurrently V pump start. The reduced most severe starting step.
				· · ·
				,

CALC NO.	9389-46-19-1	REVISION	003	PAGE NO. 9.0-5	;
			,		
<u>ME1</u>	<u> [HODOLOGY</u> (cont'd)	·		,	
	The difference in current will factor of the running loads) a determine the net starting K	ind added to the total starting			
	The power factor of the runn	ing loads is taken from ETAI	D.		
	Calculating the incremental H	(VA for previously running lo	bads is don	e as follows:	
	I _{Curr@100%} = Taken fror	n ETAP output report from s	tudy cases	run at nominal voltage	R3
	ICurr@reduced voitage = Tak	en from ETAP output report	from DG_\	/reduced study cases	
•	$\Delta I = I_{Curr@reduced voltage} -$	ICum@100%			
	ΔKVA = ΔI x √3 x 4.16	вкν			
	all large motor starting cases occurs when the Core Spray voltage dip is 62.2% of bus re	. The previous calculation re Pump starts. Revision 10 of ated voltage for Unit 3 when 96V) of bus rated voltage wil ond recovery at the DG for th	evisions sho Calculatior the first LP II be used for the initial sta	or all running load conditions. Int at breaker closing is	
	starting KVA value from Tabl vectorially adding the step sta of the running load of the pre 4000V motor that is starting to the voltage dip and one second	arting load KW/KVAR from T vious scenario in the ETAP f o determine the total starting	Table 4, the file, and the KVA, which	△KVA changed to KW/KVAR e starting KW/KVAR of the	
	The Dead Load Pickup Curve start based on the DG transie exciter and the governor in or analysis utilizes the results of Though the	nt starting load. The curve i der to provide recovery volta	includes the ages. The	e combined effect of the voltage dip and recovery	
. ·				,	
	·				

SARGENT & LUNDY	Calculation For Diesel Generator 3 Loading Under				Calc. No. 9389-46-19-1			
	Design Bases Accident Condition			Re	v.	Date		
	x	Safety-Related	Non-Safety-Related	Pa	ige 4	1.0-6	of	
				-				

Client ComEd		Prepared by	Date
Project Dresden Station Unit 3	`	Reviewed by	Data
Proj. No. 9389-46 Equip. No.		Approved by	Date

METHODOLOGY (Cont'd)

curve shows voltage recovery up to 1 second, the voltage will continue to improve after 1 second due to exciter and governor operation. The DG Strip Chart for the surveillance test (Ref. 23) shows the voltage improvement past 1 second.

To determine motor starting terminal voltage, the cable voltage drop is calculated using the locked rotor current at rated voltage. This is conservative since the locked rotor current is directly proportional to applied voltage.

D. Analysis of control circuits during motor starting transient voltage dip.

When the DG starts a large motor, the momentary voltage dip can be below 70% of generator rated voltage. There is a concern whether momentary low voltage could cause certain control circuits to drop-out. Table 2 of this calculation analyzes the effect of an ac momentary voltage dip on the operation of the mechanical equipment. This table analyzes the momentary voltage dip at 5 seconds & 10 seconds after UV reset; and 10 minutes and after for its effect on the operation of mechanical equipment.

E. Protective device evaluation and MOV operating time effects during motor starting transient voltage dip

The voltage recovery after one second will be evaluated for net effect on the protective devices The duration of starting current is expected to be shorter than operation from offsite power source because of better DG voltage recovery. Because protective devices are set to allow adequate starting time at motor rated voltage and during operation from offsite power, protective device operation due to overcurrent or longer operating time is not expected to be a concern when operating from the DG power during LOOP concurrent with LOCA. The voltage and frequency protection of MCCs 39-7/38-7 has been studied in S&L calculation 8231-03-19-1 (Ref. 44).

F. Methodology for Determining Starting Time of Large Motors. (Ref. 42)

To determine large motor starting times, the time needed for the motor to accelerate through an increment of motor speed will be found. This will be accomplished by determining from motor and load speed-torque curves net accelerating torque (i.e. the difference between the torque produced by the motor and the torque required by the load) for each increment of speed. Using the combined motor and load inertia, the time needed to accelerate through the increment of speed can be calculated. All the time intervals will be summed to

	Calculation For Diesel Generator 3 Loading Under				Calc. No. 9389-46-19-1			
SARGENT & LUNDY	Design Bases Accident Condition			Rev.	Date			
	x	Safety-Related	Non-Safety-Related	Page	9.0-7 of F	INAL		

Client ComEd	Prepared by	Date
Project Dresden Station Unit 3	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

obtain a total motor starting time. Since motor torque is directly proportional to the square of applied terminal voltage, values obtained from the 100% rated voltage speed-torque curve will be adjusted downward for lower than rated applied terminal voltage. And, since this calculation determines for each motor start an initial voltage and a recovery voltage after 1 second, these two values will be used when adjusting motor torque for applied terminal voltage (i.e. For the initial speed increment and all subsequent increments occurring 1 second or less from the beginning of the motor start period, the initial voltage value will be used to determine motor torque. All later increments will use the 1 second recovery voltage value.) The time for each speed increment will be found using the following process:

- At each speed increment, the motor torque will be found at the initial or 1 second recovery motor terminal voltage, as appropriate this will be done using the equation:
 - T = [(Vterm)² / (Vrated)²] x Motor Base Torque x 100% Voltage Motor Torque from speed-torque curve
- At each speed increment, load torque will be obtained from the load speedtorque curve.
- 3) The torque of the load is subtracted from the determined motor torque to obtain the net accelerating torque.
- 4) Finally the time fo accelerate through an RPM increment is found using the following equation:

t = [WK²(pump + motor) x RPM increment] / (307.5 x Net Accelerating Torque)

5) All the time increments are summed to obtain the total motor starting time.

ALC NO.	9389-46-19-1	REVISION	003	PAGE NO. 10.0-1					
х <u>с</u> ,	ALCULATIONS AND RESULTS								
	ne following set of Calculations and luses.	Results are for the condition	when DG 3 i	s powering the Unit 3					
A	Loading Scenarios:								
		Dresden Re-baselined Updated FSAR, Rev. 0, loading table 8.3-3 shows that the maximum DG 3 loading during LOOP is only 1552 kW.							
	Dresden Station Fire Protection Reports - Safe Shutdown Report dated July 1993, Table 3.1-1, shows that the maximum loading on DG 3 is 1541 kW , which is adequate for Dresden Station								
		Also, the Dresden Re-baselined Updated FSAR, Rev. 0, Figure 8.3-7 shows that the maximum loading on DG 3 during LOOP concurrent with LOCA is 2260 kW							
	By comparing all three condit LOCA is the worst case of DC analyzed in detail in this calcu	G loading. Therefore, LOOP							
	The load values for the three comparison of load magnitud Generator. For currently pred Subsection A, "Continuous Lo	es to determine the worst-ca licted loading values on the	ise loading so diesel genera	cenario for the Diesel					
В	Continuous Loading								
	Table 1 was developed to sho automatically activated when concurrent with LOCA. The E CCSW" and DG Ld 2 CCSW" loads as described in the met LPCI Pump is turned off to sta	the DG output breaker close TAP model was then set up loading categories and the hodology section. The CCS	es to 4-kV But using the "D various config	s 34-1 following LOOP G Ld 0 CCSW", DG Ld 1 R3 gurations to model the					
	Also, for conservatism the Die seconds, even though these p Tank has fuel supply for appro	umps will not operate for the							
C	. DG Terminal Voltages unde	r Different Loading Steps							
	Figure 2 Load vs Time profile loads operating at each differe kW/kVAR/kVA were taken from 480V loads are calculated in T showing the determination of r demonstrative purposes only (Section 10.1. This sample cal	ent time sequence. The valuem the appropriate ETAP out able 4. The following is a s motor starting kVA and starti based on Rev. 2). For actua	ues for the run put report, an ample calcula ing time. It is al starting and	nning loads in d the starting values for ation for LPCI Pump 3C shown for d recovery voltages, see R3					

SARG	ENT & LUNDY	Calculation For Diesel G				9389-46-		
ENGINEERS		Design Bases Accident Conc				Rev. Date		
		X Safety-Related	Non-Saf	ety-Related	Page 10),0-2 0		
Client Co	omEd		Prepared b	y		Date		
Project [Dresden Station Un	it 3	Reviewed I	Reviewed by				
Proj. No	. 9389-46	Equip. No.	Approved	by .		Date		
	CALCULATIO	N AND RESULTS (Co	nt'd)	For Demonst	ration Only			
						•		
		of First LPCI Pump 3C						
	i) S	tarting KVA of LPCI Pur	np 3C					
		Base voltage(motor rate Operating voltage	d voltage)	4000v (4.0KV) 4160v (4.16KV				
	, i	Base current(FLC)		90A	,			
		LRC Starting Power Factor (S	PF%)	7 Times FLC 20%				
	Calc	ulating the starting KVA	at base voltad	18				
		$KVA_1 = \sqrt{3 \times 4.0} KV \times (90A \times 7.00) = 4365 KVA$						
		-						
	Starting KVA @ Operating voltage = (4160V)²/(4000V)² x 4365KV = 4721KVA @20%PF							
0 I	The starting KVA is converted at starting power factor to the following KW and KVAR values:							
RI	٤	Starting KW = 4721KVA x .20PF = 944.2KW						
	٤	Starting KVAR = 4721KVA x (sin[cos ⁻¹ 0.20PF]) = 4625.6KVAR						
	The initial voltage dip (Based on 4721 KVA) due to starting the LPCI pump is found from the Dead Load Pickup Curve #SC-5056 and multiplying by 0.97 to account for -3% curve tolerance is							
		$= (69.8\% \times 0.97) = 67.7\% \text{ of } 4160v$						
	Flow	When the first LPCI Pump starts, LPCI/CS Pump Cooling Unit and LPCI Pum w Bypass Valve 3B operates. The starting load is summarized in Table 4. Th ults are as follows:						
	s	tarting auxiliary load		= 23.1 + j30. ⁻	1			
	s	tarting LPCI Pump 3C		= 944.2 + j462	5.6			
	τ	otal Starting Load		967.3 + j 4655.	.7			
ł		ector starting KVA = √[·········					

,

CALC NO.	9389-46-19-1	REVISION	002	PAGE NO.	10.0-3
CAL	CULATIONS AND RESULTS (cont'd)				
	The initial voltage dip (Based on 4 the Dead Load Pickup Curve tolerance is	755 KVA) due to startin #SC-5056 and multiply	g the LPCI pu ing by 0.97 to	mp and auxiliaries fro account for –3% curv	om /e
	= (69.8% × 0.97) = 67.	7% of 4160v			
	iii) When first LPCI Pump starts, Therefore, the actual voltage first LPCI Pump alone. The ru KVA.	drop on the bus is assu	umed to be mo	re than the starting o	
	The current at 100% voltage ((i.e. at 4160 volts) from	ETAP scenari	o DG3_Bkr_Cl is	
	$I_{run@100\%} = 70.4 \text{ amps}$				
	The kVAR & kW from ETAP scena 414 kW.	rio DG3_Bkr_Vlow at r	educed voltag	e are 231 kVAR &	
	The power factor from the same E	TAP scenario at the rec	luced voltage	running load is	
	PF = 0.874 PF				R
	The current at the reduced voltage	dip for this KVA load fr	om ETAP is		
	Inun@reduced voltage = 109.7 amp	S			
	The incremental difference of curre	ent is			
	∆l = 109.7 amps – 70.4 amp	os = 39.3 amps			R2
	The incremental KVA (ΔKVA) used	to determine additiona	I starting KVA	is	·
	∆KVA = √3 x 4.160 kV x 39.3	3 amps = 283.2 KVA			R2
	The incremental running load equiv incremental KVA previously determ		ı equivalent kV	V/kVAR from the	ł
	Incremental running load KW	V = 283.2 kVA x 0.874	PF = 247.49 k	w	R2
	Incremental running load KV	'AR= 283.2 kVA x (sin[d	cos ⁻¹ 0.874 PF]) = 137.60 kVAR	
					·
	•				

i.

•

CALC NO.	9389-46-19-1	REVISION	002	PAGE NO.	10.0-4
CAL	CULATIONS AND RESULTS (cont'd)				
	iv) The starting KVA equivalent	as seen by the DG is	calculated as follows	:	
	Incremental running load eq	uivalent	247.49 + j137.60		
	LPCI Pump 3C Starting load	t	944.2 + j4625.6		
	Concurrent Starting Auxilian	y Load (from Table 4)	<u>23.1+i30.1</u>		R2
	Total Starting KVA equivaler	nt	1214.78 + j4793.25		
	Vector starting KVA = $\sqrt{(1214.78)^2}$	+ (4793.25) ²] = 4944.7	′9 kVA		
	From Dead Load Pickup Curve (SC voltage (Based on 4944.79 kVA) an				
	Initial Voltage drop = (68.8%	% x 0.97) = 66.74% of	4160V		R2
	Voltage recovery after 1 sec	ond = (95.2% x 0.97)	= 92.34% of 4160V		
	 v) The feed cable of LPCI Pum The length of the cable is 22 			nber is 30980.	R2
	The impedance of the cable (Ref. S	&L Standard ESA-102) is:		1
	Z _{cable} = 227 ft. x [(0.0128 + j0).00384 ohms)/100ft p	.u. imp.]		
	Z _{cable} = 0.02906 + j0.00872 o	hms			R2
	$ Z_{cable} = \sqrt{(0.02906)^2 + (0.00)^2}$	872) ²] = 0.0303 ohms			
	The maximum motor terminal line-to amps is the LRC is:	o-line voltage drop whi	ch may occur on this	cable where 6	30
	ΔV cable = $\sqrt{3} \times 630$ amps x 0).0303 ohm = 33.11 vc	lts (0.80% of 4160V)		R2
	Deducting the voltage drop due to m terminal, the initial starting voltage a			age at the mot	or
	66.74% - 0.80% = 65.94% of	4160V			R2
	The voltage after 1 second at the mo	otor terminals is			
	92.34% - 0.80% = 91.55% of	4160V			R2

CALC NO.	9	389-46-19-1	RI	EVISION	002	PAGE NO.	10.0-5
CAL	CUI	LATIONS AND RESULTS (co	ont'd)				
D.		Starting Time Calculations	(FOR DEMONS	TRATION O	ONLY)		
	1)	LPCI Pump 3C					
		Initial (Starting) Voltage (@ n Voltage at 1 second (@ moto			of 4160v = 27 of 4160v = 38		R2
		Motor Base Torque	1030 ft-lb				
		WK2 Pump (wet) WK2 Motor Total WK2	18.1 lb-ft ² <u>190.0 lb-ft</u> ² 208.1 lb-ft²		• •		
		Motor Torque at 2743.1 volts					R2
		T = $[(2743.1V)^2 / (40) \times Motor Torque$	000V) ²] x 1030 ft- from speed-torqu		/oltage		
		= 484.4 x 100% v	oltage x Motor To	rque from s	speed-torque c	urve	
		Motor Torque at 3808.5 volts			· .		R2
		$T = [(3808.5)^2 / (400) \times Motor Torque$	0) ²] x 1030 ft-lb x from speed-torqu		age		
		= 933.7 x 100% v	oltage x Motor To	rque from s	speed-torque c	urve	R2
				·			
			v				

CALC NO. 9389-46-19-1

REVISION 002

PAGE NO. 10.0-6

R2

CALCULATIONS AND RESULTS (cont'd) (FOR DEMONSTRATION ONLY)

% RPM	RPM	Voltage %	Motor Torque From Curve	Motor Torque Ib - ft	Pump Torque From Curve	Pump Torque Ib - ft	Net Torque lb - ft	Time in Seconds
0 - 10	360	65.94	0.80	387.52	0.0	0.00	387.52	0.63
10 - 20	360	65.94	0.80	387.52	0.02	20.60	366.92	0.66
20 - 30	360	91.55	0.81	756.29	0.05	51.50	704.79	0.35
30 - 40	360	91.55	0.82	765.63	0.06	61.80	703.83	0.35
40 - 50	360	91.55	0.83	774.96	0.10	103.00	671.96	0.36
50 - 60	360	91.55	0.85	793.64	0.15	154.50	639.14	0.38
60 - 70	360	91.55	0.92	859.00	0.19	195.70	663.30	0.37
70 - 80	360	91.55	1.07	999.05	0.25	257.50	741.55	0.33 '
80 - 90	360	91.55	1.50	1400.54	0.32	329.60	1070.94	0.23
90 - 95	180	91.55	2.20	2054.12	0.38	391.40	1662.72	0.07
95 - 99	144	91.55	2.35	2194.17	0.43	442,90	1751.27	0.06
	in an				**** <u>*********************************</u>		TOTAL	3.78

Notes for the table above:

- 1. Motor Torque in above table is from GE drawing 257HA264.
- 2. Motor Torque in above table is read from mid-point of applicable speed range.
- 3. Motor Torque in lb-ft is obtained by multiplying the torque from the curve by motor at applicable voltage.
- 4. Pump torques are from GE Curve 257HA264 and then multiplied by motor base torque.
- 5. Net Torque is motor torque minus pump torque, both in lb-ft.
- 6. Time in Seconds to accelerate through an RPM Increment =

[WK²(Pump + Motor) x RPM Increment] (307.5 x Net Torque)

CALC NO. 9389-46-19-1

REVISION 002

PAGE NO. 10.0-7

R2

CALCULATIONS AND RESULTS (cont'd)

E. Control Circuit Evaluation for Voltage Dips

The voltage recovery (@ DG terminal bus) is at least 88.4% after one second following the Core Spray motor start. The voltage will continue to improve after one second due to the exciter and the governor characteristics. These voltages during motor starting period (after the initial dip) are much better than the voltages expected during the operation from the offsite source. Table 2 has evaluated the effects on the control circuits of all services on the DG and has determined any transient effect during the short initial voltage dip and no lasting effects have been identified.

F. Protective Device Operation during Voltage Dips

The voltage recovery (@ DG terminal bus) is at least 88.4% after one second following the Core Spray motor start. The voltage will continue to improve after one second due to the exciter and the governor characteristics. These voltages during motor starting period (after the initial dip) are much better than the voltages expected during the operation from the offsite source. Therefore, the duration of starting current is shorter than operation from offsite power source. Because protective devices are set to allow adequate starting time at motor rated voltage and during operation from offsite power, protective device operation due to overcurrent is not a concern when operating from the DG power during LOOP concurrent with LOCA. For Example,

- TID-E&IC-02 provides that the recommended settings for thermal overloads (TOL) be able to withstand 1 duty cycle (two valve strokes) before tripping. It is not expected that any of the operating valves will be required to complete a full duty cycle. Rather, operating valves are expected to complete 1 stroke (1/2 duty cycle) when called upon during DG operation. Therefore, TOL settings will not be operated by the voltage dips. (Reference 35)
- Typical settings for the 480V MCC feed breakers allow for approximately 1800 amperes of current to flow for 20 seconds. Large motor starting will not take longer than 5 seconds, and the actual voltage recovery of the DG after 1 second is more than 88%. With a 20 second delay in feed breaker tripping, the short time of the voltage dips will not cause feed breakers to be tripped. (Reference 45)

CALC NO.	. 9389-46-19-1	REVISION	003	PAGE NO. 10.0-8()
----------	-----------------------	----------	-----	-------------------

G. Results of calculations

Summary of Motor Starting Times

Device	Total Starting Time (Seconds)	Starting Time Allowed (Seconds) (See IV.AB)
LPCI Pump 3C	3.77	5
LPCI Pump 3D	3.67	5
Core Spray Pump	3.90	5

The results of the calculation show that the minimum voltage drop to the DG powered buses occur when the Core Spray Pump starts. The table below shows the starting (at 0.1 sec.) voltages and recovery voltages after 1 second following the start.

Equipment Description	Starting KVA	Voltage Drop @ 0.1 Second	Voltage Recovery after 1 second
LPCI Pump 3C	4933.8	66.83% of 4160V	92.44% of 4160V
LPCI Pump 3D	4040.5	71.00% of 4160V	95.16% of 4160V
Core Spray Pump 3B	6125.4	62.18% of 4160V	88.46% of 4160V
CCSW Pump 3D	4150.0	70.52% of 4160V	94.96% of 4160V

During LOOP concurrent with LOCA there is a 5 second time delay from the start of the first LPCI Pump to the start of the second LPCI Pump. Starting time calculations for the LPCI Pumps show that both the pumps accelerate to full speed in under 4 seconds. Therefore by the time the second LPCI Pump starts, the first LPCI Pump is at full speed (i.e. running load). There is also a 5 second time delay from the start of the second LPCI Pump to the start of the Core Spray Pump. Therefore, by the time the Core Spray pump starts, the second LPCI Pump is at full speed.

R3

CALCULATION PAGE CALC NO. PAGE NO. 10.1-0 9389-46-19-1 REVISION 002 CALCULATIONS AND RESULTS (cont'd) Section 10.1 Section 10.1 contains the MS Excel calculations of starting kVA and starting times for the 4.16 kV motors.

1) <u>Starting kVA of the DG auxiliaries after the closure of the DG output breaker</u> (Page C1 & C2 Calculation)

Aggregate Aggregate Aggregate

SKW = 807.30 SKVAR = 1391.60 SKVA = SKW + j SKVAR SKVA = 807.3 + j1391.6 |SKVA| = 1608.81 (Ref. Table 4) (Ref. Table 4)

R3

R3

Angle = $tan^{-1}(SKVAR/SKW)$

Angle = 59.88 Degrees

To determine the initial starting voltage (V_{curve_i}) and 1 second recovery voltage (V_{curve_1}), use the Dead Load Pickup Curve (SC-5056) and SKVA (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

$$V_{curve_i} = 87.9\%$$
 of 4160V
 $V_{dip} = V_{curve_i} \times 0.97$
 $V_{dip} = 85.3\%$ of 4160V

Voltage recovery after 1 second:

 $V_{curve_1} = 100.0\%$ of 4160V $V_{recovery} = V_{curve_1} \times 0.97$ $V_{recovery} = 97.0\%$ of 4160V

> Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-1

R3

2) Starting of First LPCI Pump 3C (700HP)

Motor parameters

Base Voltage (motor rated voltage)	V _{base} = 4000	Volts	(Ref. 18)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	$I_{FL} = 90$	Amps	(Ref. 18)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 7.00$		(Ref. 18)
	$I_{LRC} = 630.0$	•	
Starting Power factor	$PF_{start} = 0.20$		(Ref. 18)

Motor Cable data

Conductor Size	3/C - #1/0 -5k∨		
Cable Number	30980		
Cable Length (feet)	L = 227	(ETAP)	R2
Cable Impedance (ohms)	$Z_{cable} = 0.02906 + j0.00872$	(ETAP)	

Motor parameters to be used to determine starting time of the pump.

Motor Base Torque	Torque _{rated} = 1030	ft-lb	(Ref. 15)
WK ² Pump (wet)	WK _{pump} = 18.1	lb-ft ²	(Ref. 15)
WK ² Motor	$WK_{motor} = 190.0$	lb-ft ²	(Ref. 15)
Motor rated RPM	RPM = 3600		(Ref. 15)

2) Starting kVA of LPCI Pump 3C

Calculating the starting kVA at base voltage

SKVA₁ =
$$\sqrt{3} \times V_{base} \times I_{LRC}$$
/1000 SKVA₁ = 4364.8

Calculating starting kVA at operating voltage

$$KVA_{start1} = (V_{op}^2/V_{base}^2) \times SKVA_1$$

KVA_{start1} = 4720.9

at Pf_{start} = 0.20

The starting kVA is converted at starting power factor to the following KW and KVAR values:

Motor parameters

LPCI_{start} = (KVA_{start1} x PF_{start}) + j x [KVA_{start1} x (sin(acos(PF_{start})))] LPCI_{start} = 944.19 + j4625.55 kVA

 ii) When the LPCI Pump starts, the LPCI Core Spray Pump Area Cooling Unit 3B, and MOV 3-1501-13B will also start operating. The starting load is summarized in Table 4, with the results as follows:

Additional Starting auxiliary load: Load_{start} = 23.1 + j30.1 kVA

iii) When the first LPCI Pump starts, at that time, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the first LPCI Pump alone. The running kW & kVA from the ETAP DG3_Bkr_CI scenario is:

> kW_{ETAP100%} = 392 kVAR_{ETAP100%} = 293 KVA_{ETAP100%} = 489

The current at 100% voltage (i.e. at 4.16kV) from ETAP is:

 $I_{run_{100\%}} = 67.9$ Amps

The KVA & KW from the special ETAP scenario DG3_Bkr_Vlow for the reduced voltage condition is:

$V_{reduced} = 2496$	Volts			
KW _{reduced} = 386		·		
KVAR _{reduced} = 229				R3
KVA _{reduced} = 449				

The power factor from the same ETAP scenario at reduced voltage running load is:

 $PF_{reduced} = 0.860$

The calculated current at the reduced voltage for this kVA load from ETAP is:

Ireduced = 103.9 Amps

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-3

R3

R3

R3

Therefore, the incremental difference of current is:

The incremental KVA (KVA_{detta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{oo} \times I_{delta}) / 1000$$
 $KVA_{delta} = 259.4$ R3

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

LPCI Pump 3C starting load:	LPCI _{start} = 944.19 + j4625.55	kVA	
Additional starting load:	Load _{start} = 23.1 + j30.1	kVA	
Incremental running load equiv.:	KVA _{increment} = 223.08 + j132.37	kVA	R3

Total Starting kVA equivalent:

$$Total_{start} = Load_{start} + KVA_{increment} + LPCI_{start}$$
$$Total_{start} = 1190.36 + j4788.02 \quad kVA$$

 $Vector_{start} = \sqrt{Re(Total_{start})^2 + Im(Total_{start})^2}$

Vector_{start} = 4933.77 kVA

R3

To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

 $V_{curve_initial} = 68.9\% of 4160V$ $V_{drop} = V_{curve_initial} \times 0.97$ $V_{drop} = 66.83\% of 4160V$

Voltage recovery after 1 second:

$$V_{curve_1sec} = 95.3\%$$
 of 4160V R3
 $V_{drop_1sec} = V_{curve_1sec} \times 0.97$
 $V_{drop_1sec} = 92.44\%$ of 4160V R3

v) The impedance of the pump feed cable, as defined earlier:

Z_{cable} = 0.02906 + j0.00872 ohms

|Z_{cable} |= 0.0303 ohms

The maximum motor terminal line-to-line voltage drop which may occur on this cable given the LRC is:

I _{LRC} = 630.0 Amps		
$V_{\text{defta}_{\text{max}}} = (\sqrt{3} \times I_{\text{LRC}} \times Z_{\text{cable}}) $	V _{delta_max} = 33.11	Volts
V _{delta_%} = V _{delta_max} / V _{op} x 100	$V_{detta_{\%}} = 0.80\%$	of 4160V

R3

Deducting the voltage drop due to motor feed cable to determine the actual voltage at the motor terminals, the initial starting voltage at the motor terminals is:

$$V_{initial LPCI3C} = V_{drop} - V_{delta_{\%}}$$
$$V_{initial LPCI3C} = 66.04\% \text{ of } 4160 \text{V}$$

The voltage after 1 second at the motor terminals is:

 $V_{1second.LPCI3C} = V_{drop_1sec} - V_{deita_{\%}}$ $V_{1second.LPCI3C} = 91.65\%$ of 4160V

Calculation of Motor Starting Time:

Initial Starting Voltage (converted to decimal)

Voltage at 1 second (converted to decimal)

 $Vi = V_{initial, LPCI3C} / 100$

Total inertia of the motor and pump together from above (WK²):

 $WK_{pump} = 18.1$ Ib-ft² $WK_{motor} = 190.0$ Ib-ft²

 $WK2 = WK_{pump} + WK_{motor}$

WK2 = 208.10 lb-ft²

The following variables define the speed intervals and corresponding motor and pump torque increments necessary to compute the starting time of the pump.

%RPM_o - initial RPM of increment as a percentage of rated RPM

%RPM_f - final RPM of increment as a percentage of rated RPM

%Torque_{Motor} - motor torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Torque_{Pump} - pump torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Volt - either the initial voltage (Vi) or the voltage at 1 second (V1).

Note that the determination of which voltage (%Volt) to use is made when the motor acceleration time exceeds 1 second, and that can only be determined by looking at the calculated cumulative time below (i.e. Vi until 1 second, V1 after that).

R3

%rpm。	%rpm _f	%Torque _{Motor}	%Torque _{Pump}	%Volt
0		0.80	0.00	
10	20	0.80	0.02	Vi
20	30	0.81	0.05	V1
30	40	0.82	0.06	V1
40	50	0.83	0.10	V1
50	60	0.85	0.15	V1
60	70	0.92	0.19	V1
70	80	1.07	0.25	V1
80	90	1.50	0.32	V1
90	95	2.20	0.38	V1
95	99	2.35	0.43	V1

Compute the motor torque at the initial voltage (Vi) and at 1 second (V1) using the motor torque at motor rated voltage (Ref 15).

$$V_{OP} = 4160$$
 Volts $V_{base} = 4000$ Volts

 $Torque_{Motor.at.voltage} = [Torque_{rated} \times (\%Volt \times V_{op})^2 / V_{base}^2]$ ft-lb

Convert the percentage of motor torque from the curve to motor torque by using the applicable motor torque computed at Vi and V1 above.

Torque_{Motor} = (Torque_{motor} x Torque_{Motor.at.voitage}) ft-lb

Torque of the pump is determined by multiplying the pump torque from Ref. 15 by the base torque of the motor.

Net torque is the motor torque minus the pump torque:

Speed increment (% of rated RPM):

 $\%\Delta_{rpm} = \%rpm_{f} - \%rpm_{o}$

Calc. No. 9389-46-19-1 Rev. 2 Page 10.1-7

Time in seconds to accelerate through an RPM increment is calculated by the following:

Time = $(WK2 \times RPM \times \%\Delta rpm / 100) / (307.5 \times Torque_{Net})$ seconds

Cumulative time from 0% to full speed at Δ_{rpm} increments.

Time_{cumul} = Total Cumulative Start Time

Calculations:

	ne _{cumul}
20 388.66 20.60 368.06 0.66 1. 30 757.89 51.50 706.39 0.34 1. 40 767.25 61.80 705.45 0.35 1. 50 776.61 103.00 673.61 0.36 2. 60 795.32 154.50 640.82 0.38 2. 70 860.82 195.70 665.12 0.37 3. 80 1001.17 257.50 743.67 0.33 3. 90 1403.51 329.60 1073.91 0.23 3. 95 2058.48 391.40 1667.08 0.07 3.	0.63 1.29 1.63 1.98 2.34 2.72 3.09 8.41 1.64 1.71 1.77

Therefore, the total time for this pump to accelerate is: Time_{cumul} =

seconds

3.77

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-8

3) Starting LPCI Pump 3D (700HP)

Motor parameters

Base Voltage (motor rated voltage)	V _{base} = 4000 Volts	(Ref. 59)	R2
Operating Voltage	V _{OP} = 4160 Volts		
Base Current (full load)	I _{FL} = 90 Amps	(Ref. 59)	
Locked Rotor Current	$I_{LRC} = I_{FL} \times 5.3$	(Ref. 59)	R2
	$I_{LRC} = 477.0$		
Starting Power factor	$PF_{start} = 0.229$	(Ref. 60)	
Motor Cable data			
Conductor Size	3/C - #1/0 -5kV		
Cable Number	30986		
Cable Length (feet)	L = 191	(ETAP)	
Cable Impedance (ohms)	Z _{cable} = 0.02445 + j0.00733	(ETAP)	R2

Motor parameters to be used to determine starting time of the pump.

Motor Base Torque	Torque _{rated} = 1033	ft-lb	(Ref. 59)	R2
WK ² Pump (wet)	$WK_{pump} = 18.1$	lb-ft ²	(Ref. 15)	
WK ² Motor	$WK_{motor} = 183.0$	lb-ft ²	(Ref. 59)	R2
Motor rated RPM	RPM = 3600		(Ref. 59)	

2) Starting kVA of LPCI Pump 3D

Calculating the starting kVA at base voltage

SKVA₁ =
$$(\sqrt{3} \times V_{hase} \times I_{LRC})/1000$$
 SKVA₁ = 3304.8 | R2

Calculating starting kVA at operating voltage

$$KVA_{start1} = (V_{nn}^2 N_{base}^2) \times SKVA_1$$

KVA_{start1} = 3574.4 at Pf_{start} = 0.229 R2

Calc. No. 9389-46-19-1 Rev. 2 Page 10.1-9

I

The starting kVA is converted at starting power factor to the following KW and KVAR values:

Motor parameters

 $LPCI_{start} = (KVA_{start1} \times PF_{start}) + j \times [KVA_{start1} \times (sin(acos(PF_{start})))]$ $LPCI_{start} = 818.54 + j3479.44 \qquad kVA$

ii) There are no additional loads starting with this pump:

Additional Starting auxiliary load: Load_{start} = 0 + j0

iii) When the second LPCI Pump starts, at that time, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the second LPCI Pump alone. The running kW & kVA from the ETAP DG3_UV_Reset scenario is:

> KW_{ETAP_100%} = 919 KVAR_{ETAP_100%} = 550 KVA_{ETAP_100%} = 1071

The current at 100% voltage (i.e. at 4.16kV) from ETAP is:

Inun_100% = 148.6 Amps

The KVA & KW from the special ETAP scenario DG3_UV_Vlow for the reduced voltage condition is:

$V_{reduced} = 249$	6 Volts		,
KW _{reduced} = 916			
KVAR _{reduced} = 489			R3
KVA _{reduced} = 103	8	·	

kVA

The power factor from the same ETAP scenario at reduced voltage running load is:

The calculated current at the reduced voltage for this kVA load from ETAP is:

I_{reduced} = 240.1 Amps

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-10

R3

Therefore, the incremental difference of current is:

$$I_{delta} = I_{reduced} - I_{run_{100\%}}$$

$$I_{delta} = 91.50 \quad \text{Amps} \quad \text{R3}$$

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{op} \times I_{delta}) / 1000$$
 $KVA_{delta} = 659.3$ R3

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

LPCI Pump 3D starting load:	LPCI _{start} = 818.54 + j3479.44	kVA	R3
Additional starting load:	$Load_{start} = 0 + j0$	kVA	
Incremental running load equiv .:	KVA _{increment} = 581.49 + j310.69	кVА	R3

Total Starting kVA equivalent:

$$Total_{start} = Load_{start} + KVA_{increment} + LPCI_{start}$$
$$Total_{start} = 1400.03 + j3790.12 \quad kVA$$

 $Vector_{start} = /Re(Total_{start})^2 + Im(Total_{start})^2$

Vector_{start} = 4040.44 kVA

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-11

| R3

To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

$$V_{curve_initial} = 73.2\%$$
 of 4160V | R3
 $V_{drop} = V_{curve_initial} \times 0.97$
 $V_{drop} = 71.00\%$ of 4160V | R3

Voltage recovery after 1 second:

$$V_{curve_{1sec}} = 98.1\%$$
 of 4160V R3
 $V_{drop_{1sec}} = V_{curve_{1sec}} \times 0.97$
 $V_{drop_{1sec}} = 95.16\%$ of 4160V R3

v) The impedance of the pump feed cable, as defined earlier.

 $Z_{cable} = 0.02445 + j0.00733$ ohms $|Z_{cable}| = 0.0255$ ohms

The maximum motor terminal line-to-line voltage drop which may occur on this cable given the LRC is:

I _{LRC} = 477.0 Amps		
$V_{delta_max} = \sqrt{3} \times I_{LRC} \times Z_{cable} $	V _{delta_max} = 21.09	Volts
V _{delta_%} = V _{delta_max} / V _{op} x 100	V _{delta_%} = 0.51%	of 4160V

Deducting the voltage drop due to motor feed cable to determine the actual voltage at the motor terminals, the initial starting voltage at the motor terminals is:

$$V_{initial.LPCI3D} = V_{drop} - V_{delta_{\%}}$$

 $V_{initial.LPCI3D} = 70.50\% \text{ of } 4160 \text{V}$

The voltage after 1 second at the motor terminals is:

 $V_{1second.LPCI3D} = V_{drop_1sec} - V_{delta_\%}$ $V_{1second.LPCI3D} = 94.65\% \quad of 4160V$

Calculation of Motor Starting Time:

Initial Starting Voltage (converted to decimal)

 $V_i = V_{initial, LPCI3D} / 100$

 $V1 = V_{\text{teacond i } PCI3D} / 100$

Voltage at 1 second (converted to decimal)

Total inertia of the motor and pump together from above (WK²):

 $WK_{pump} = 18.1$ Ib-ft² $WK_{motor} = 183.0$ Ib-ft²

 $WK2 = WK_{pump} + WK_{motor}$

WK2 = 201.10 lb-ft²

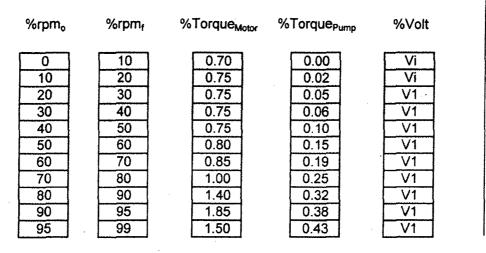
The following variables define the speed intervals and corresponding motor and pump torque increments necessary to compute the starting time of the pump.

%RPM_o - initial RPM of increment as a percentage of rated RPM

%RPM_f - final RPM of increment as a percentage of rated RPM

%Torque_{Motor} - motor torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Torque_{Pump} - pump torque value from pump torque-speed curve read from the midpoint of the applicable speed range.


%Volt - either the initial voltage (Vi) or the voltage at 1 second (V1).

Note that the determination of which voltage (%Volt) to use is made when the motor acceleration time exceeds 1 second, and that can only be determined by looking at the calculated cumulative time below (i.e. Vi until 1 second, V1 after that).

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-13

R3

| R3

Compute the motor torque at the initial voltage (Vi) and at 1 second (V1) using the motor torque at motor rated voltage (Ref 15).

$$V_{OP} = 4160$$
 Volts
 $V_{base} = 4000$ Volts

 $Torque_{Motor.at voltage} = [Torque_{rated} \times (\% Volt \times V_{op})^2 / V_{base}^2]$ ft-lb

Convert the percentage of motor torque from the curve to motor torque by using the applicable motor torque computed at Vi and V1 above.

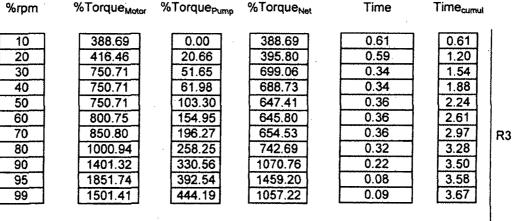
Torque_{Motor} = (Torque_{motor} x Torque_{Motor.at.voltage})

ft-lb

Torque of the pump is determined by multiplying the pump torque from Ref. 15 by the base torque of the motor.

Net torque is the motor torque minus the pump torque:

Speed increment (% of rated RPM):


 $\%\Delta_{rom} = \%rpm_{f} - \%rpm_{o}$

Calc. No. 9389-46-19-1 Rev. 2 Page 10.1-14 Time in seconds to accelerate through an RPM increment is calculated by the following:

Cumulative time from 0% to full speed at Δ_{rpm} increments.

Time_{cumul} = Total Cumulative Start Time

Calculations:

Therefore, the total time for this pump to accelerate is: Timecumulto =

seconds

3.67

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-15

4) Starting Core Spray Pump 3B (800HP)

Motor parameters

Base Voltage (motor rated voltage)	$V_{base} = 4000$	Volts	(Ref. 17)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	I _{FL} = 102	Amps	(Ref. 17)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 7.00$		(Ref. 17)
	$I_{LRC} = 714.0$		
Starting Power factor	$PF_{start} = 0.20$		(Ref. 17)

Motor Cable data

Conductor Size	3/C - #4/0 -5k∨		
Cable Number	30962		
Cable Length (feet)	L = 148	(ETAP)	02
Cable Impedance (ohms)	Z _{cable} = 0.00946 + j0.0053	(ETAP)	R2

Motor parameters to be used to determine starting time of the pump.

Motor Base Torque	Torque _{rated} = 1180	ft-lb	(Ref. 15)
WK ² Pump (wet)	$WK_{pump} = 18.1$	lb-ft ²	(Ref. 15)
WK ² Motor	$WK_{motor} = 220.0$	lb-ft ²	(Ref. 15)
Motor rated RPM	RPM = 3600		(Ref. 15)

2) Starting kVA of Core Spray Pump 3B

Calculating the starting kVA at base voltage

SKVA₁ = $(\sqrt{3} \times V_{base} \times I_{LRC})/1000$ SKVA₁ = 4946.7

Calculating starting kVA at operating voltage

$$KVA_{start1} = (V_{op}^2 / V_{base}^2) \times SKVA_1$$

$$KVA_{start1} = 5350.4$$

at Pf_{start} = 0.20

Calc. No. 9389-46-19-1 Rev. 2 Page 10.1-16 The starting kVA is converted at starting power factor to the following KW and KVAR values:

Motor parameters

CoreSpray_{start} = $(KVA_{start} \times PF_{start}) + j \times [KVA_{start} \times (sin(acos(PF_{start})))]$ CoreSpray_{start} = 1070.08 + j5242.29 kVA

ii) When the Core Spray Pump starts, MOVs 1402-38B, 1402-25B, Turbine Room 3 Emergency Lighting; and RX Building Emergency Lighting will also start operating. The starting load is summarized in Table 4, with the results as follows:

Additional Starting auxiliary load: Load_{start} = 54.1 + j45.7 kVA

iii) When the Core Spray Pump starts, at that time, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the Core Spray Pump alone. The running kW & kVA from the ETAP DG3_T=5sec scenario is:

> $KW_{ETAP_{100\%}} = 1413$ $KVAR_{ETAP_{100\%}} = 810$ $KVA_{ETAP_{100\%}} = 1629$

The current at 100% voltage (i.e. at 4.16kV) from ETAP is:

I_{run_100%} = 226.0 Amps

The KVA & KW from the special ETAP scenario DG3_T=5sVlow output at reduced voltage are:

 $V_{reduced} = 2496$ Volts $KW_{reduced} = 1412$ $KVAR_{reduced} = 752$ $KVA_{reduced} = 1600$

The power factor from the same ETAP scenario at reduced voltage running load is:

PF_{reduced} = 0.883

The calculated current at the reduced voltage for this kVA load from ETAP is:

Ireduced = 370.1 Amps

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-17

R3

R3

R3

R3

Therefore, the incremental difference of current is:

$$I_{delta} = I_{reduced} - I_{run_{100\%}}$$

$$I_{delta} = 144.10 \quad \text{Amps} \quad \text{R3}$$

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{op} \times I_{delta}) / 1000 \qquad KVA_{delta} = 1038.3$$

The incremental running load equivalent is converted to an equivalent KW and KVA from the incremental kVA previously determined

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

Core Spray Pump starting load:	CoreSpray _{start} = 1070.08 + j5242.29	kVA	
Additional starting load:	Load _{start} = 54.1 + j45.7	kVA	
Incremental running load equiv.:	KVA _{increment} = 916.81 + j487.34	kVA	R3

Total Starting kVA equivalent:

Total _{start} = Load _{start} + KVA _{increment}	+ CoreSpray _{start}	
Total _{start} = 2040.99 + j5775.34	kVA	R3

 $Vector_{start} = /Re(Total_{start})^2 + Im(Total_{start})^2$

Vector_{start} = 6125.37 kVA

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-18

R3

To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

 $V_{curve_initial} = 64.1\%$ of 4160V
 R2

 $V_{drop} = V_{curve_initial} \times 0.97$
 $V_{drop} = 62.18\%$ of 4160V

Voltage recovery after 1 second:

$V_{curve_{1sec}} = 91.2\%$	of 4160V	R2
V _{drop_1sec} = V _{curve_1sec} x ().97	
V _{drop_1sec} = 88.46%	of 4160V	

v) The impedance of the pump feed cable, as defined earlier:

 $Z_{cable} = 0.00946 + j0.0053$ ohms

|Z_{cable} |= 0.0108 ohms

The maximum motor terminal line-to-line voltage drop which may occur on this cable given the LRC is:

I _{LRC} = 714.0 Amps		÷	•
$V_{\text{delta}_{\text{max}}} = \sqrt{3} \times I_{\text{LRC}} \times Z_{\text{cable}} $	V _{deita_max} = 13.41	Volts	R2
V _{detta_%} = V _{detta_max} / V _{op} x 100	V _{delta_%} = 0.32%	of 4160V	

Deducting the voltage drop due to motor feed cable to determine the actual voltage at the motor terminals, the initial starting voltage at the motor terminals is:

$$V_{initial.CSP3B} = V_{drop} - V_{delta_{\%}}$$

 $V_{initial.CSP3B} = 61.85\% \text{ of } 4160 \vee$

The voltage after 1 second at the motor terminals is:

 $V_{1second.CSP3B} = V_{drop_1sec} - V_{delta_{\%}}$ $V_{1second.CSP3B} = 88.14\% \quad of 4160V$

Calculation of Motor Starting Time:

Initial Starting Voltage (converted to decimal)

Voltage at 1 second (converted to decimal)

V1 = V_{1second,CSP3B} /100

 $V_i = V_{initial CSP3B} / 100$

Total inertia of the motor and pump together from above (WK²):

 $WK_{pump} = 18.1$ Ib-ft² $WK_{motor} = 220.0$ Ib-ft²

 $WK2 = WK_{pump} + WK_{motor}$

WK2 = 238.10 lb-ft²

The following variables define the speed intervals and corresponding motor and pump torque increments necessary to compute the starting time of the pump.

%RPM_o - initial RPM of increment as a percentage of rated RPM

%RPM, - final RPM of increment as a percentage of rated RPM

%Torque_{Motor} - motor torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Torque_{Pump} - pump torque value from pump torque-speed curve read from the midpoint of the applicable speed range.

%Volt - either the initial voltage (Vi) or the voltage at 1 second (V1).

Note that the determination of which voltage (%Volt) to use is made when the motor acceleration time exceeds 1 second, and that can only be determined by looking at the calculated cumulative time below (i.e. Vi until 1 second, V1 after that).

Calc. No. 9389-46-19-1 Rev. 2 Page 10.1-20

R2

%rpm _o	%rpm _f	%Torque _{Motor}	%Torque _{Pump}	%Volt
0 10 20 30 40 50 60 70 80	10 20 30 40 50 60 70 80 90	0.89 0.90 0.90 0.90 0.90 0.94 1.02 1.18 1.61	0.00 0.00 0.02 0.06 0.13 0.20 0.26 0.35 0.46	Vi Vi V1 V1 V1 V1 V1 V1 V1 V1
90 95	95 99	2.25 2.35	0.58 0.65	V1 V1

Compute the motor torque at the initial voltage (Vi) and at 1 second (V1) using the motor torque at motor rated voltage (Ref 15).

 $V_{OP} = 4160$ Volts $V_{base} = 4000$ Volts

 $Torque_{Motor.at.voltage} = [Torque_{rated} \times (\% Volt \times V_{op})^2 / V_{base}^2]$ ft-lb

Convert the percentage of motor torque from the curve to motor torque by using the applicable motor torque computed at Vi and V1 above.

Torque_{Motor} = (Torque_{motor} x Torque_{Motor.at.voltage})

ft-lb

Torque of the pump is determined by multiplying the pump torque from Ref. 15 by the base torque of the motor.

Net torque is the motor torque minus the pump torque:

Speed increment (% of rated RPM):

 $\%\Delta_{rom} = \%rpm_{f} - \%rpm_{o}$

Calc. No. 9389-46-19-1 Rev. 2 Page 10.1-21

Time in seconds to accelerate through an RPM increment is calculated by the following:

Time = (WK2 x RPM x %Δrpm / 100) / (307.5 x Torque_{Net}) seconds

Cumulative time from 0% to full speed at Δ_{rpm} increments.

Calculations:

%rpm _f	%Torque _{Motor}	%Torque _{Pump}	%Torque _{Net}	Time	Time _{cumul}	
10	434.59	0.00	434.59	0.64	0.64	
20	439.48	0.00	439.48	0.63	1.28	
30	892.39	23.60	868.79	0.32	1.60	
40	892.39	70.80	821.59	0.34	1.94	
50	892.39	153.40	738.99	0.38	2.31	
60	932.05	236.00	696.05	0.40	2.71	R2
70	1011.37	306.80	704.57	0.40	3.11	
80	1170.02	413.00	757.02	0.37	3.48	
90	1596.38	542.80	1053.58	0.26	3.74	
95	2230.97	684.40	1546.57	0.09	3.83	
99	2330.12	767.00	1563.12	0.07	3.90	
<u></u>		······		······		

Therefore, the total time for this pump to accelerate is: Time_{amul10} =

seconds

3.90

R2

1

Calc. No. 9389-46-19-1 Rev. 2 Page 10.1-22

5) Starting of Containment Cooling Service Water Pump 3D (500HP)

Motor parameters

Base Voltage (motor rated voltage)	$V_{base} = 4000$	Volts	(Ref. 26)
Operating Voltage	V _{OP} = 4160	Volts	
Base Current (full load)	I _{FL} ≠ 67	Amps	(Ref. 26)
Locked Rotor Current	$I_{LRC} = I_{FL} \times 5.91$		(Ref. 52 & 43)
	$I_{LRC} = 395.97$		
Starting Power factor	$PF_{start} = 0.20$		(Ref. 41)

i) Starting kVA of CCSW Pump

Calculating the starting kVA at base voltage

SKVA₁ =
$$(\sqrt{3} \times V_{\text{base}} \times I_{\text{LRC}})/1000$$
 SKVA₁ = 2743.4

Calculating starting kVA at operating voltage

 $KVA_{start1} = (V_{op}^2/V_{base}^2) \times SKVA_1$ $KVA_{start1} = 2967.2$ at $Pf_{start} = 0.20$

The starting kVA is converted at starting power factor to the following KW and KVAR values:

 $CCSW_{start} = (KVA_{start1} \times PF_{start}) + j \times [KVA_{start1} \times (sin(acos(PF_{start})))]$ $CCSW_{start} = 593.44 + j2907.27 \qquad kVA$

ii) The CCSW Pumps are turned on manually between 10 minutes and 2 hours depending on the situation. For the purpose of this calculation the CCSW Pump 3D is turned on by the operator after 10 minutes into the event and CCSW Pump 3C is turned on shortly after CCSW Pump 3D.

The CC Heat exchanger Discharge Valve is required to operate to exchange CC residual heat with the CCSW system. When CCSW Pump 3D starts, the Containment Cooling Heat Exchanger Discharge Valve (3-1501-3B) also starts. When CCSW Pump 3C starts, the CC Heat Exchanger Discharge Valve is considered to be in operation (i.e. running load), however, at this time the CCSW Pump Cubical Cooler Fans (total 4) are also starting.

This calculation will only calculate the voltage dip due to the starting of CCSW Pump 3D (the first CCSW pump) instead of CCSW Pump 3C because the starting kVA (due to the voltage dip) for the load already on the diesel when the 3D pump starts is the largest. However, the 3D pump is evaluated with the starting kVA of the loads that start concurrently with the 3C CCSW pump as this load is greater than the load starting concurrently with the 3D CCSW pump. The starting load is summarized in Table 4, with the results as follows:

Calc. No. 9389-46-19-1 Rev. 2 Page 10.1-23

R2

Additional Starting auxiliary load:

$$Load_{start} = 62.7 + j67.6 kVA$$

iii) When the CCSW Pump 3D starts, there are running loads on DG powered Buses. Therefore, the actual voltage drop on the bus will be more than that of the starting of the CCSW Pump 3D alone.

All of the valves which are initiated by LOOP/LOCA have completed their operations and have stopped operating before CCSW Pump 3D was started. Therefore, these valve loads are taken off from the initial running load.

The running kW & kVA from the ETAP scenario DG3_T=10-min is:

 $KW_{ETAP_{100\%}} = 2106$ $KVAR_{ETAP_{100\%}} = 1095$ $KVA_{ETAP_{100\%}} = 2374$

The current at 100% voltage (i.e. at 4.16kV) from ETAP is:

I_{run_100%} = 329.4 Amps

The KVA & KW from the special ETAP scenario DG3_T=10-mVL for the reduced voltage condition is:

$V_{reduced} = 2496$	Volts		
KW _{reduced} = 2084			
KVAR _{reduced} = 1024			R3
KVA _{reduced} = 2322			

The power factor from the same ETAP scenario at reduced voltage running load is:

PF_{reduced} = 0.897

The calculated current at the reduced voltage for this kVA load from ETAP is:

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-24

R3

R3

Therefore, the incremental difference of current is:

$$I_{deita} = I_{reduced} - I_{run_{100\%}}$$

$$I_{deita} = 207.80 \quad \text{Amps}$$
R3

The incremental KVA (KVA_{delta}) used to determine additional starting kVA is

$$KVA_{delta} = (\sqrt{3} \times V_{op} \times I_{delta}) / 1000$$
 $KVA_{delta} = 1497.3$ R3

The incremental running load equivalent is converted to an equivalent KW and KVA. from the incremental kVA previously determined

iv) The starting KVA equivalent as seen by the DG is calculated as follows:

CCSW Pump 3D starting load:	CCSW _{start} = 593.44 + j2907.27	kVA	
Additional starting load:	Load _{start} = 62.7 + j67.6	kVA	
Incremental running load equiv.:	KVA _{increment} = 1343.05 + j661.84	kVA	R3

Total Starting kVA equivalent:

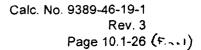
$$Total_{start} = Load_{start} + KVA_{increment} + CCSW_{start}$$
$$Total_{start} = 1999.19 + i3636.71 \quad kVA$$

 $Vector_{start} = /Re(Total_{start})^2 + Im(Total_{start})^2$

Vector_{start} = 4149.99 kVA

Calc. No. 9389-46-19-1 Rev. 3 Page 10.1-25

R3


To determine the initial starting voltage ($V_{curve_initial}$) and 1 second recovery voltage (V_{curve_1sec}), use the Dead Load Pickup Curve (SC-5056) and Vector_{start} (calculated above) as "Generator Reactive Load MVA". Multiply the initial and 1 second curve values by 0.97 to account for a -3% curve tolerance.

Initial Voltage Dip:

V _{curve_initial} =	72.7%	of 4160V	R3
V _{drop} =	$V_{curve_initial} \ge 0$.97	
V _{drop} =	70.52%	of 4160V	R3

Voltage recovery after 1 second:

$V_{curve_{1sec}} = 97.9\%$	of 4160V	R3
$V_{drop_1sec} = V_{curve_1sec} \times C$.97	,
$V_{drop_{1sec}} = 94.96\%$	of 4160V	R3

PAGE NO. 11.0-1 CALC NO. 9389-46-19-1 REVISION 003 XI COMPARISON OF RESULTS WITH ACCEPTANCE CRITERIA Continuous loading of the Diesel Generator Α. The results of the calculation show that the maximum continuous load on the Diesel Generator is 2562 kW (ETAP Scenario DG3 T=10+min), which is below the 2600kW continuous rating of the Diesel Generator. This loading value occurs only while the 1st CCSW pump is energized and prior R3 to de-energizing one of the LPCI pumps. The maximum long term DG loading is 2385kW when both CCSW pumps are in operation (DG3 T=10++m and DG3 CRHVAC). Therefore, from a continuous loading point of view the DG 3 has adequate capacity to accept the emergency load under LOOP concurrent with LOCA in accordance with the acceptance criteria. If the EDG is at 102% of its nominal frequency, the EDG load is expected to be 1.02³ or 1.06 times larger since input power is proportional to the speed cubed (Section V.5). This results in a maximum loading of 2562kW x $1.02^3 = 2719$ kW which is within the 2000 hr 2860kW rating of the R3 diesel. The lowest power factor for the EDG load during the DG3_T=10+m, DG3_T=10++m and DG3 CRHVAC is 88.8%. This value is above the 88% acceptance criteria. В. **Transient loading of the Diesel Generator** Results of this calculation show that the minimum recovery voltage after 1 second following the start of any large 4-ky motors is 88.4% of 4160y which is above the 80% recovery requirement in the acceptance criteria. This calculation shows that when the Core Spray Pump starts, the initial voltage dips below 63% of operating voltage (i.e. 4160v). However, within 1 second after the start, voltage recovers to above 88% of 4160v. This voltage dip and recovery analysis utilizes the results of dynamic DG characteristics reflected in the manufacturer's curve. The curve includes the combined effect of exciter and governor in order to provide recovery voltages. In this calculation, the voltage dip was conservatively calculated from the Dead Load Pick up curve utilizing the total KVA loading on the DG bus. The Dead Load Pickup curve indicates that reactive load (KVAR) should be used to determine the voltage dip when using this curve. Even with that conservatism, the minimum voltage recovery after 1 second following the start is greater than 88% of 4160v. After one second, the voltage will continue to improve due to exciter and governor operation. These recovery voltages during the motor starting period (after the first second) are much better than the voltage expected during operation from the offsite power source under degraded voltage condition. Due to momentary sharp voltage drops to approximately 62% during large motor starting, certain contactors or relays may drop out, and that could use some control circuits to de-energize. The required loads all have start signals which will be present through the voltage dip, and therefore, will be capable of restarting after the voltage dip. The calculation shows that the voltage will recover to more than 88% within 1 second following the start and will continue recover to 100% voltage due to exciter and governor operation. Strip chart (Ref. 23) of the DG surveillance tests show that the DG recover to 100% of rated voltage within 3 to 4

Calculation For Diesel Generator 3 Loading Under

SARGENT & LUNDY

Design Bases Accident Condition

X Safety-Related

Non-Safety-Related

Calc. No. 9389-46-19-1				
Rev. 1	Date			
Page /	1.0-2	of FINAL		

Client ComEd	Prepared by	Date
Project Dresden Station Unit 3	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

seconds. The 480v loads which may drop out will experience recovery voltages sufficient to pick up at different times due to variations in the network impedances (such as cable size and length) and variations in loading in each bus. This diverse restarting of 480v loads will have minimum impact on the DG performance.

Due to this momentary sharp drop, operating valves may stop momentarily. However, Table 2 of this calculation shows that these valves would start operating again as soon as the sufficient operating voltage is recovered. The analysis in Table 2 shows that the momentary voltage drop will not cause any unacceptable effect on the valve operation. The momentary drop may cause the operating time of those valves to increase by 2 seconds. Even with that pause, the increased operating time is below the time limit set by various Dresden Operating Procedures (see References 47 through 51 and Ref. 53).

For LOOP concurrent with LOCA the minimum voltage recovery is more than 88% after one second following the Core Spray motor start. The voltage will continue to improve after one second due to the excitor and governor characteristics. Due to the momentary nature of this dips the duration of starting current at reduced voltage is shorter. Because protective devices are set to allow adequate starting time at motor rated voltage and during operation from offsite power (voltages from offsite power will be much worse than the voltages when powered by the DG), the protective device operation due to over current is not a concern when operating from the DG power during LOOP concurrent with LOCA. Section X.F discussed whether protective devices will operate during system voltage dips. It was concluded that protective device (e.g. TOL s and MCC feed breakers) operation is not a concern during the short voltage dips.

Starting times for large motors during LOOP concurrent with LOCA were calculated to ensure the starting times of LPCI Pumps do not exceed 5 seconds (when the second pump starts the first pump is in full speed, likewise when the Core Spray starts the second LPCI pump is in running condition).

CALC NO. 9389-46-19-1 REVISION 003 PAGE NO. 12.0-1(0...) XII CONCLUSIONS The results of the calculation show that the maximum continuous running load under the maximum loading scenario is less than the continuous 2600kW rating. The loading of the DG at maximum frequency of 102% R3 is within the 2000hr nameplate rating. Also, the worst voltage recovery after one second following the start of large 4kv motor (Core Spray Pump Motor) is above 88% of DG terminal rated voltage. This 88% voltage recovery is above the minimum voltage recovery of 80% per the DG specification K-2183 requirement. The worst case power factor from the DG3_T=10+m time period and after is 88.8% which is above the 88% criteria. R3 The starting times for LPCI Pumps 3C, and 3D are less than 4 seconds, and the starting time for Core Spray Pump 3B is less than 5 seconds. All of these pump starting times are below the maximum allowable starting time of 5 seconds, and therefore, are acceptable. Also, the analysis in Table 2, and the detailed explanation under the Calculation and Results section show that while some of the control circuits may dropout during the lowest portion of the voltage dip, no adverse effects are identified and no protective devices are expected to operate. This calculation also shows that momentary voltage dip will not cause the travel time of any MOV to increase any longer than allowable.

	· · · · · · · · · · · · · · · · · · ·	Ca	Iculation For Diesel G	Calc. No. 9389-46-19	}-1	
<u> </u>	SARGENT & LUNDY	Design Bases Accident Condition			Rev. 1 Date	
		X	Safety-Related	Non-Safety-Related	Page 13.0-1 of	FINAL

Client ComEd		 Prepared by	Date
Project Dresden Station	n Unit 3	Reviewed by	Date
Proj. No. 9389-46	Equip. No.	Approved by	Date

XIII. RECOMMENDATIONS

None

RI

CALC N	10.	9389-46-19-1 REVISION 003 PAGE NO. 14.0-							
XIV	REF	ERENCES							
	1)	S & L Standard ESI-167, Revis	ion 4-16-84, Instruction for C	omputer Progi	rams.				
	2)	Operation Technology Software	e, ETAP PowerStation & Use	rs Manual, Ve	rsion 5.5.0N				
	3)	Not used			1				
	4)	Dresden DG 3 Calculation 731	7-33-19-1, Revision 11. (supe	erseded).					
	5)	Quad Cities DG 1 Calculation 7	7318-33-19-1, Revision 0.						
	6)	Dresden Units 2 & 3, Equipmer	nt Manual from GE, Number (GEK-786.					
	7)	Dresden Re-baselined Updated	FSAR, Revision 0.						
	8)	Guidelines for Estimating Data Byron & Braidwood), which is u							
	9)	ANSI / IEEE C37.010-1979 for Motor,	Determining X/R Range for F	ower Transfor	mers, and 3-phase Inductor				
	10)	S & L Standard ESA-104a, Rev	vision 1-5-87, Current Carryin	g Capacities o	f Copper Cables.				
	11)	S & L Standard ESA-102, Revis	sion 4-14-93, Electrical & Phy	sical Characte	eristics of Electrical Cables.				
	12)	Specification for Diesel Engine	Generator Sets K-2183, Page	es 3 and 8 (Att	ached).				
	13)	Dead Load Pickup Capability (L Graph (#SC-5056) by Electro-M			ve Load vs. % Voltage				
	14)	Speed - Torque - Current Curve	e (#297HA945-2) for Core Spi	ay Pump by G	E (Attached).				
	15)	Speed - Torque - Current Curve	e (#857HA264) for RHR/LPCI	Pump by GE	(Attached).				

[Calculatio	on For Diesel G	enerator 3 Loading Under	Calc. No. 9389-46-19-1		
SARGE	NT & LUNDY De	sign Bases Ac	cident Condition	Rev. 1 Date		
•		ty-Related	Non-Safety-Related	Page /4.0-2 of		
Client Con	nEd		Prepared by	Date		
Project Dr	esden Station Unit 3		Reviewed by	Date		
Proj. No. 9	9389-46 Equip. No	•	Approved by	Date		
	16.					
	Drawing No	Rev.	Drawing No	Rev.		
	12E-2306	W	12E-3420B	R		
	12E-23351B, Sh. 3	Z	12E-3420C	D		
	12E-2344, Sh. 2	Р	12E-3425	L		
	12E-2344, Sh. 1	Р	12E-3429, Sh. 1	Ρ		
	12E-2344, Sh. 3	P	12E-3429, Sh. 2	P		
	12E-2344, Sh. 4	Р	12E-3430, Sh. 1	АН		
	12E-2346, Sh. 2	AF	12E-3430. Sh. 2	АН		
	12E-2346, Sh. 1	AC	12E-3431, Sh. 1	R		
	12E-2346, Sh. 3	AB	12E-3431, Sh. 2	S		
	12E-2348	F	12E-3432	P		
	12E-2349, Sh. 1	W	12E-3433	К		
	12E-2349, Sh. 2	W	12E-3435, Sh. 1	Р		
	12E-2349, Sh. 3	W	12E-3435, Sh. 2	P		
	12E-2350A, Sh. 1	AB	12E-3435, Sh. 3	P		
	12E-2350A, Sh. 2	AB	12E-3436, Sh, 1	К		
	12E-2350B, Sh. 2	х	12E-3436, Sh, 2	L		
	12E-2350B, Sh. 1	V	12E-3436, Sh, 3	к		
	12E-2350B, Sh. 2	V	12E-3436, Sh, 4	к		
	12E-2351B, Sh. 2	AC	12E-3438, Sh. 1	AA		
	12E-2351B, Sh. 1	ÂĂ	12E-3438, Sh. 2	Z		
	12E-2374	т	12E-3439	н		
	12E-2375	М	12E-3440, Sh. 1	Т		
	12E-2389	В	12E-3440, Sh. 2	U		
	12E-2389	С	12E-3440, Sh. 3	Т		
	12E-2393	N	12E-3441, Sh. 1	N		
	12E-2400A	S	12E-3441, Sh. 2	N		

	Calculation	For Diesel C	Calc. No. 9389-46-19-1			
SARGENT	& LUNDY Desi	gn Bases Ac	ccident Condition	Rev. 1	Date	
·		Related	Non-Safety-Related	Page 4	-10-3 of	
Client ComE	d		Prepared by		Date	
Project Dress	den Station Unit 3		Reviewed by		Date	
Proj. No. 938	9-46 Equip. No.		Approved by		Date	
	,					
	12E-2400B	М	12E-3441, Sh. 3	N		
	12E-2400B	М	12E-3441, Sh. 4	N		
	12E-2400C, Sh. 2	AA	12E-3509, Sh. 2	W		
	12E-2400C, Sh. 1	AA	12E-3522	к		
	12E-2429, Sh. 2	X	12E-3529	W		
	12E-2431, Sh. 2	х	12E-3531	R		
	12E-2431, Sh. 1	х	12E-3532	Ν		
	12E-2432	Y	12E-3546A, Sh. 1	F		
· ·	12E-2433	М	12E-3546A, Sh. 2	F		
	12E-2435, Sh. 1	х	12E-3547A	A		
	12E-2436, Sh. 1	W	12E-3547B	D		
	12E-2436, Sh. 3	W	12E-3548	Н		
	12E-2440, Sh. 2	Z	12E-3592	J		
	12E-2440, Sh. 1	z	12E-3577E	S		
	12E-2440, Sh. 3	Z	12E-3654B	Ρ		
	12E-2441, Sh. 3	W	12E-3662B	D		
	12E-2441, Sh.	1	12E-3674A	AB		
	12E-2441, Sh. 1	W	12E-3674B	R		
ľ	12E-2441, Sh. 4	W	12E-3674C	AC		
	12E-2441A	W	12E-3674D	W		
	12E-2531	AB	12E-3677C	L		
	12E-2532	V	12E-3677G	ĸ		
	12E-2592	J	12E-3678A	Р		
	12E-2661B	Т	12E-3678B	Т		
	12E-2668A	M	12E-3679A	AD		
1	12E-2678B	U	12E-3679B	E		
	12E-2678C	Е	12E-3679C	D		

Calculation For Diesel Generator 3 Loading Under

(

Design Bases Accident Condition Х Safety-Related

Non-Safety-Related

Calc. N	10.	9389-46-19-1
Rev.	1	Date
Page	k	4.0-4 of

Client ComEd	Prepared by	Date		
Project Dresden Station Unit 3		Reviewed by	Date	
Proj. No. 9389-46 Equip. No.		Approved by	Date	

12E-2811B	Е	12E-3811B	G	
12E-3301	x	12E-6555A	Е	
12E-3302A	J	12E-6556	Е	
12E-3302B	R	12E-6606A	В	
12E-3303	G	12E-6811A	4	
12E-3304	Q	12E-6811B	5	
12E-3305	Y	12E-6811D	5	
12E-3306	Q	12E-7552, Sh.2	R	
1 2E- 3311	AD	12E-7555A	E	
12E-3312	AD	12E-7556	E	· · ·
12E-3314	н	12E-7820	L	
12E-3319, Sh. 1	Q	12E-7820A	F	
12E-3319, Sh. 2	Q	12E-7820B	E	
12E-3319, Sh. 3	S	M-1297	С	
12E-3320	U	M-173	М	
12E-3344, Sh. 1	Q	M-22	AZ	
12E-3344, Sh. 2	Q	M-269	L	
12E-3344, Sh. 3	Q	M-27	WX	
12E-3344, Sh. 4	Q	M-274	А	
12E-3346, Sh. 1	AE	M-274	D	
12E-3346, Sh. 2	AE	M-29, Sh. 2	Р	
12E-3347	F	M-29, Sh. 1	AT	
12E-3348	F	M-355	MZ	
12E-3349	М	M-358	AR	
12E-3350B	Z	M-360, Sh. 2	L	
12E-3372	L	M-360, Sh. 1	UC	
12E-3374	Ρ	M-374	AL	

SARGENT &				Senerator 3 Loading Under]	9389-46-19	
11	NGINEERS	De	sign Bases Ac	cident Condition	Rev. 1	Date	
		X Safel	ly-Related	Non-Safety-Related	Page /4	,0-5 of	
Client ComEd			· · · · · · · · · · · · · · · · · · ·	Prepared by		Date	
Project Dresden	Station Unit	3		Reviewed by		Date	
Proj. No. 9389-4	6 1	Equip. No.		Approved by		Date	
			_	, 			
	12E-3389		R	M-41, Sh, 1	KK -		
•	12E-3393		F	M-41, Sh. 2	E		
	12E-3397		H	M-49	PP		
	12E-3398		С	M-51	AE		
	12E-3420A	A	Р	M-529	К		
				ngs, any drawings listed in T is calculation.	Table 1 or Table	e 2 are	
17.)	GE Draw	ring 992C5	510AB, Dresd	en Core Spray Pump Motor	(Attached).		
18.)	GE Draw	ving 992C8	510, Dresden	LPCI Pump Motor (Attached	d).		
19.) IEEE Standard 399-1980, Chapter 8, source when some running load is al				er 8, for determining motor starting voltage drop at the s already present			
20.)				ion 12-6-91, Electrical Depar al of electrical design calcula		n for	
21.)	S & L Sta motors	andard ES	C-307, Revis	ion 1-2-64, for checking volt	age drop in star	ting ac	
22.)				9/87 to Mr. Wayne Hoan ide Quad Cities (Attached).	ntifying the volta	age dip	
23.)		rts (2) for 1993 (Atta		ator Surveillance Test: Date	d December 10	, 199 <u>2</u> and	
24.)	Walkdowr	n Data for	Diesel Gener	ator 3 dated April 15, 1994	(Attached).		
25.)	DIT DR-E	AD-0001-	00 regarding 1	the Battery Charger and UP	S Models (Attac	ched).	
26.)	CCSW PI	ump Motor	Walkdown in	formation. (Attached)			
27.)				onitoring System (ELMS) - / S File: D3A4CONF.M30	AC, Calculation	Number	
28.)	DIT DR-E	PED-0863	-00 (Attached	Ŋ.	-		
29.)	CIS-2: Tal	bulation fo	r cables lengt	hs (Applicable pages attach	ed)		

CALCULATION PAGE								
CALC NO.	9389-46-19-1	REVISION	002	PAGE NO. 14.0-6				
30)	Dresden Re-baselined Updated Power. (Attached)	FSAR, Revision 0, Table 8.	3-3; DG loadin	ng due to Loss of Offsite AC				
31)	Dresden Re-baselined Updated Loss of Offsite AC Power. (Attac		.3-5, DG loadir	ng under Accident and during				
32)	Dresden Station Fire Protection Loading for Safe Shutdown. (Att		leport dated Ju	uly 1993, Table 3.1-1, DG				
33)	Dresden Station Procedure DGA	A-12, Rev. 55, "Partial or Co	mplete Loss of	f Offsite Power"				
34)	S&L Calculation 9198-18-19-4, F Related Continuous Load Runni		tled "Calculatio	· [
35)	ComEd Technical Information M	anual Section TID-E/I&C-02	, Rev. 0					
36)	Calculation for Evaluation of 3HI Calculation Number 9215-99-19		um Voltage Sl	tarting Requirements;				
37)	4160 Volt Switchgear Sepcification K-3141 (page 3-5 attached)							
38)	Calculation for Single Line Imped	dance Diagrams for ELMS-A	C; Calculation	7317-38-19-1, Revision 1.				
39)	S & L Standard ESC-193, Revisi	on 9-2-86, Page 5 for Deterr	mining Motor S	Starting Power Factor.				
40)	Not Used	×.						
41)	S & L Standard ESC-165, Revisi Power System Design.	on 11-3-92, Electrical Engine	eering Standar	rd for Power Plant Auxiliary				
42)	Letter addressed to E. Guse from (attached).	n G.C. Mulick dated March 8	, 1967 regardi	ing EMD Inquiry No. 66-708				
43)	Dresden Station Procedure DOS	-6600-04, Rev 5, (Pages 1 a	ind 43 attache	d)				
44)	S&L Calculation 8231-03-19-1, R Relay Settings"	ev 1, dated 2/20/90, entitled	"LPCI/RHR S	wing Bus (MCC 39-7/38-7)				
	S&L Report SL-4500, Volumes 1	-3, entitled "Overcurrent Prof	tective Device	coordination study,				

CALC NO.	9389-46-19-1 REVISION 003	PAGE NO.	14.0-7
46)) Dresden Original FSAR, 3/22/68		
47)) Memorandum from R.M. Dahlgren to C.A. Tobias dated December 30, 1994 for Motor Operated Valves" (Attached).	entitled "Stroke T	ïmes
48)) CHRON Letter 0302643 from E.J. Rowley to T. Reid dated 6/21/94 entitled " Generic Letter 89-10 MOV Design Review ECCS MOV Stroke Time Changes		ind 3
49)) Dresden Station Procedure DOS 1600-18, Revision 15; (pages 1, 18, 21 & 2	3 attached)	
50)) Dresden Station Procedure DOS 1600-5, Revision 4; (pages 1, 39, 44 attach	ed)	
51)) Dresden Station Procedure DOS 7500-2, Revision 11; (pages 1, 15 attached)	
52)	Hand Calculation of CCSW Pump Locked Rotor Current (attached)		
53)) Comparison table of MOV measured stroke times vs. their acceptable limits (Attached).	
54)	Dresden Station Procedure DIS 7500-1, Revision 12		
55)	Calculation DRE04-0019, Rev. 000B, "Auxiliary Power Analysis for Dresden L	Jnit 3"	
56)	OPL-4, Rev. 003, GE LOCA Analysis Inputs for Dresden 2 & 3 and Quad Citie	es 1 & 2.	
57)	MOV 2-1501-22A & B Field Data Sheet dated 3/13/03, (Attachment R)		
58)	GE correspondence, Containment Cooling Service Water Pumps – Motor Rat (Attachment R)	ings, dated 2/25/	71
59)	LPCI Pump 3D Replacement Motor Data Sheet, DS2831204, Rev. 01 (Attach	ment R)	
60)	LPCI Pump 3D Replacement Motor Test Report, SN 283003667, dated 06/03/	03 (Attachment F	र)
61)	LPCI Pump 3D Replacement Motor Starting Characteristics, SC2831024, Rev	. 00 (Attachment	R)
62)	EC 342134, Replace LPCI Pump Motor 3-1502-D with an Equivalent Motor Su	pplied by the OE	М.
63)	EC 358579, Rev 000, Controlled Document Changes Required to Support Clo Evaluation 05-005.	sure of Operabili	ty
64)	Calculation DRE07-0003, Rev. 000, "EDG Loading for CCSW Pump - LOCA I	Long Term Coolir	ng"
65)	Calculation DRE07-0002, Rev. 000, "EDG Loading for LPCI Pump - LOCA Lo	ng Term Cooling	-
66)	Calculation DRE07-0001, Rev. 000, "EDG Loading for CS Pump – LOCA Long	Term Cooling"	R3
67)	Calculation 8982-13-19-4, Rev. 001A, "Evaluation of 460V Diesel Generator C Minimum Starting Voltage:	ooling Water Pur	np
68)	EC 347744, Rev. 000, "Replace Diesel Generator Cooling Water Pump and Me and Motor – U3"	otor with New Pu	mp

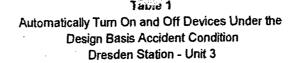
CALCOLATION FAGE	
9389-46-19-1 REVISION 003 PAGE NO. 1	4.0-8(f;)
TODI-07-003, Dated 2/1/07, "EDG Design Input Loading – RPS MG Set Unloaded" (Attachment I	R)
Operability Evaluation 06-002, Rev. 002, Dwg. 12E-3531, Rev. AE	
A/R No. 00583950, "UFSAR Figures 8.3-4, -5, -6, -7 EDG Load Profile Discrepancies"	
A/R No. 00578451, "DG Frequency Tolerance Band not Reflected in Calculations"	
Technical Specification Section SR 3.8.1.12, SR 3.8.1.16 & SR 3.8.1.19, Amendment 185/180	R3
UFSAR Table 8.3.1, Rev. 5	
Cameron Hydraulic Data, Copyright 1995 by Ingersoll-Dresser Pump Co (Attachment R).	
Technical Specification Section SR 3.8.1.15, Amendment 185/180	
EC 364072, Rev. 000, "Evaluate and Determine Power Factor and KVAR Range for Emergency Diesel Generator 24-Hour Endurance Test."	
	. 1
	9389-46-19-1 REVISION 003 PAGE NO. 1 TODI-07-003, Dated 2/1/07, "EDG Design Input Loading – RPS MG Set Unloaded" (Attachment I Operability Evaluation 06-002, Rev. 002, Dwg. 12E-3531, Rev. AE A/R No. 00578451, "DG Frequency Tolerance Band not Reflected in Calculations" Technical Specification Section SR 3.8.1.12, SR 3.8.1.16 & SR 3.8.1.19, Amendment 185/180 UFSAR Table 8.3.1, Rev. 5 Cameron Hydraulic Data, Copyright 1995 by Ingersoll-Dresser Pump Co (Attachment R). Technical Specification Section SR 3.8.1.15, Amendment 185/180 EC 364072, Rev. 000, "Evaluate and Determine Power Factor and KVAR Range for Emergency Diesel Generator 24-Hour Endurance Test."

- (

[Calculation For Diesel Generator 3 Loading Under				Calc. No. 9389-46-19-1		
SARGENT & LUNDY	Design Bases Accident Condition			Rev. 0 Date			
	х	Safety-Related	Non-Safety-Related	P	age /	A1 .	of

Client ComEd		Prepared by	Date
Project Dresden Station	n Unit 3	Reviewed by	Date
Proj. No. 9389-46	Equip. No.	Approved by	Date

ł


Attachment A

6

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Engineering Judgement	Ref.		Other Ref. (P & ID)
34-1	RX Bldg Cooling Water Pump 3B (3-3701-B)	Yes	Trip due to core spray initiation. Will not auto start.		12E-3397		M-353
34-1	RX Shutdown Cooling Water Pump 3C (3-1002-C)	Yes	Trip due to UV relay and will not auto start.		12E-3516 12E-3517	D	M-353
34-1	RX Cleanup Recirc. Pump 3B (3-1205-B)	Yes	Trip due to UV relay and will not auto start.		12E-3520	J	M-353
34-1	RX Shutdown Cooling Pump 3B (3-1002-B)	Yes	Trip due to UV relay and will not auto start.		12E-3516	C	M-353
34-1	Core Spray Pump 3B (3-1401-B)	No	Starts 10 Sec. after UV relay resets.		12E-3429	L	M-358
34-1	LPCI Pump 3C (3-1502-C)	No	Starts 0 Sec. after UV relay resets.		12E-3436 Sh.3	K	M-360 Sh.1
34-1	LPCI Pump 3D (3-1502-D)	No	Starts 5 Sec. after UV relay resets.		12E-3436 Sh.4	5 K	M-360 Sh.1
34-1	RX Bldg. Cooling Water Pump 2/3 (2/3-3701)	Yes	Trip due to UV relay and will not auto start.		12E-3397	Н	M-20
34-1	Bus Tie between 24-1 and 34-1	Yes	N.O. and will not autoclose	Operation of the crosstie is manually activated at Operation's discretion, and assumed off for this calculation	12E-3340 Sh. 1	5 AH	

Calc. No. 9389-46-19-1 Rev. 0 Page *AZ*-Proj. No. 9389-46

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Engineering Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
34-1	480V Gatehouse MCC	Yes	Trip due to UV relay and will not auto load.		12E- 3656D 12E-3346 Sh. 2	H	
39	Fuel Pool Cooling Water Pump 3B (3-1902-B)	Yes	Trip due to UV relay and will not auto start.		12E-3548	H	M-362
39	Recirc. M-G Sets Vent Fan 3B (3-5701-B)	1	Trip due to UV relay and will not restart due to the presence of LOCA and UV signals		12E- 3420C	D	
39	480 V Turb Bldg MCC 26-4 Reserve Feed (2-7326-40)	Yes	Operates only by manual action.		12E- 3661H	D	
39	South Turbine Bldg. Vent Fan 3B (3-5702-B)	Yes	Trip due to UV relay and will not restart due to the presence of LOCA and UV signals		12E- 3387B	E	
39	RX Bldg. Vent Fan 3B (3-5703-B)	Yes	Trip due to UV relay and will not auto start.		12E- 3399A	E	
39	RX Bldg. Exhaust Fan 3B (3-5704-B)	Yes	Trip due to UV relay and will not auto start.		12E- 3399A	E	
39	RX Bldg. Exhaust Fan 3C (3-5704-C)	Yes	Trip due to UV relay and will not auto start.		12E- 3399A	E	
39	120/240 VAC Uninterruptable Power Supply Panel 903-63	No	Starts operating at 0 Sec.		12E- 3811B	G	

Calc. No. 9389-46-19-1 Rev. 0 Page **43** Proj. No. 9389-46

Table 1 Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Engineering Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
39	Drywell Cooler Blower 3C, 3D, & 3E (3-5734-C, D, E)	Yes	Trip due to core spray initiation and will not auto start.		12E-3393		M-273
39	480V MCC 39-3	Yes	This MCC is load shed, no loads are energized for LOCA mitagation.		12E-3374	U	
39	480V MCC 39-5	Yes	This MCC is load shed, no loads are energized for LOCA mitagation.		12E-3374	U	
39	480V MCC 39-6	Yes	This MCC is load shed, no loads are energized for LOCA mitagation.		12E-3374	U	
MCC 39-1	Distribution Transformer Feed (9 KVA)	No	Will start operating at 0 Sec.		12E-3593	D	
MCC 39-1	Standby Liquid Control Pump 3B (3-1102B)	Yes	Manually operated load. Not used in LOCA event.		12E-3460 Sh.2	W	M-364
MCC 39-1	Drywell & Torus Purge Exhaust Fan 3B (3-5708B)	Yes	Will not operate due to high drywell pressure and low water level.		12E-3393	F	M-529
MCC 39-1	Core Spray Outbd, Isol. Valve 3E (3-1402-24B)	No	N.O. and interlock open with high drywell and low water level.		12E-3431 Sh.2	A	M-358
MCC 39-1	Core Spray Inbd. Isol. Valve 3B (3-1402-25B)	No	N.C. but interlock open with high drywell press or low water level after UV relay resets.	Assume to open concurrent with Core Spray Pump, resulting in highest concurrent load. (Conservative)	12-3431 Sh.2	A	M-358

Calc. No. 9389-46-19-1 Rev. 0 Page *AY* Proj. No. 9389-46

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load	Known Fact	Assumption / Engineering	Dwg. Ref.	Rev	Other Ref. (P & ID)
MCC 39-1	Core Spray Pump Suction Valve 3B (3-1402-3B)	Shed No	N.O. and interlock open with Core Spray initiation.	Judgement	12E3432	Ρ	M-358
MCC 39-1	RX Bldg, Emerg, Lighting	No	Starts at 1 min.	Assume starting at 10 seconds for conservatism	12E- 3677C	Т	
MCC 39-1	CRD Hydraulic System Pressure Cont. Valve 3A (3-0302- 8)	Yes	Manually operated valve.		12E-3416	L	M-365
MCC 39-1	Core Spray Test Bypass Valve 3B (3B-1402-4B)	No	N.C. and interlock close on high drywell pressure		12E-3433	к	M-358
MCC 39-1	HPCI Aux, Coolant Pump (3-2301-57)	No	Manually Operated	Not operited during a LOCA	12E-3531	P	M-374 R.F. 70
MCC 39-1	LPCI Pump 3C Suction Valve (3-1501-5C)	No	N.O. and interlock open with LPCI iniation.		12E-3440	P	M-360 Sh.1
MCC 39-1	Post LOCA H ₂ & O ₂ Monitoring Sample Pump 3B (3-2400-B)	Yes	Operator has to turn switch HS5 to standby or analyze position considering this equip. Will show starting at 10 min.		12E- 7555A	E	
MCC 39-1	Drywell/Torus Differential Pressure Air Compressor 3B (3-8551-B)	Yes	Will not operate in auto mode.		12E-3372	L	+
MCC 39-1	LPCI Drywell Spray Valve 3C (3-1501-27B)	No	N.C. and interlock close with high Drywell pressure and low RX level.		12E-3440	P	M-360 Sh,1

Calc. No. 9389-46-19-1 Rev. 3 Page **AS** Proj. No. 9389-46

DRTB1DG3.XLS

R3

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Engineering Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
MCC 39-1	LPCI Torus Ring Spray Valve 3D (3-1501-19B)	No	N.C. and interlock close with high Drywell pressure and low RX level.		12E-3441 Sh.2	N	M-360 Sh.1
MCC 39-1	LPCI Torus Ring Spray Valve 3C (3-1501-18B)	No	N.C. and interlock close with high Drywell pressure and low RX level.		12E-3441 Sh.2	N	M-360 Sh.1
MCC 39-1	LPCI Torus Ring Spray Valve 3D (3-1501-20B)	No	N.C. and interlock close with high Drywell pressure and low RX level.		12E-3441 Sh.1	N	M-360 Sh.1
MCC 39-1	LPCI Torus Ring Spray Valve 3C (3-1501-38B)	No	N.C. and interlock close with high Drywell pressure and low RX level.		12E-3441 Sh.1	N	M-360 Sh.1
MCC 39-1	Closed Cool Water Drywell Return Valve 3B (3-3706)	Yes	Will not operate in auto mode. N.O. will remain open.		12E-3398	В	M-353
MCC 39-1	LPCI Header Crosstie Isol, Valve 3B (3-1501-32B)	No	N.O. and interlock open with switch on open position (with key removable).		12E-3440	N	M-360 Sh.1
MCC 39-1	LPCI Heat Exchanger Bypass Valve 3B (3-1501-11B)	No	N.O. and interlock open for 30 sec	See description in Section VIII.B.3	12E-3440	N	M-360 Sh.1
MCC 39-1	LPCI Pump Flow Bypass Valve 3B (3-1501-13B)	No	N.O. and remain open until flow is above set point and then it will close.	Consider valve to operate concurrent with 1st LPCI pump start.	12E-3440	P	M-360 Sh.1
MCC 39-1	East LPCI/CS Room Sump Pump 3B (3-2001-510B)	No	Pump operates on level switch high	Water level on core spray pump will not go up and pump will not operate.		к	M-358

Calc. No. 9389-46-19-1 Rev. 0 Page *Alo* Proj. No. 9389-46

Table 1Automatically Turn On and Off Devices Under the
Design Basis Accident Condition
Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Engineering Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
MCC 39-1	West LPCI/CS Room Sump Pump 3A (3-2001-511A)	No	Pump operates on level switch high	Water level on core spray pump will not go up and pump will not operate.	3677E	К	M-358
MCC 39-1	Safety System Jockey Pump (3-1401-4)	Yes	Manually operated, will not start automatically	1	12E- 3667E	Y	
MCC 39-1	LPCI Pump 3D Suction Valve (3-1501-5D)	No	N.O. and interlock with LPCI initiation.		12E-3440	P	M-360 Sh.1
MCC 39-1	Closed Cooling Water Drywell Supply Valve (3-3702)	Yes	Manually operated		12E-3398	B	M-353
MCC 39-1	Closed Cooling Water Header Isol. Valve (3-3701)	Yes	Manually operated		12E-3398		M-353
MCC 39-1	Contain Cooling Heat Exchanger Discharge Valve 3B (3-1501-3B)	No	N.C. but interlock open when CCSW pump is not operating. After 10 min., the operator will open when the CCSW begins operating.		12E-3440	N	M-360 Sh.1
MCC 39-1	LPCI/Core Spray Pump Area Cooling Unit 3B (3-5746-B)	No	Thermostatically controlled. Assume start at t=0 sec		12E-3393	3 F	
MCC 39-1	HPCI Turbine Inlet Isol. Vlv (3-2301-4)	No	N.O, but interlock close by reactor low pressure concurrent with LPCI initiation.		12E-3529	W	M-374
MCC 39-1	Core Spray Pump Recirc, Isol. Valve 3B (3-1402-38B)	No	N.O. remain open for low flow but will close when enough flow is established.	Closes with Core Spray pump	12E-343	3 K	M-358

Calc. No. 9389-46-19-1 Rev. 0 Page *A*7 Proj. No. 9389-46

DRTB1DG3.XLS

.....

Table 1Automatically Turn On and Off Devices Under the
Design Basis Accident Condition
Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed		Assumption / Engineering Judgement	Dwg. Ref,	Rev	Other Ref. (P & ID)
MCC 39-1	HPCI Pump 3 Area Cooling Unit (3-5747)	No	Starts operating when MCC 39-1 has voltage.		12E-3393	F	
MCC 39-1	ACAD Air Compressor Unit No. 3-2501	Yes	Manually Operated	Application is as a post-LOCA device, assume on in last time period	12E-7556	E	
MCC 39-1	LPCI Drywell Spray Valve 3D (3-1501-28B)	No	N.C. and interlock closed with LPCI initiation.		12-3441 Sh.3	N	M-360 Sh.1
MCC 39-1	HPCI Oil Tank Heater	No		Consider that temp switch will close and heater will operate at 0 Sec.	12E-3532	M	
MCC 39-2	SBGT Air Heater (2/3-B-7503)	No	Starts operating at 0 Sec.	B Train in Primary, A Train in Standby	12E- 2400B	M	M-49
MCC 39-2	250V Battery Charger 2/3 (2/3-8350-2/3)	No	Starts operating at 0 Sec.		12E- 2389B	С	
MCC 39-2	SBGT Fan Disch Damper 2/3B (2/3-7507B)	No	N.C. but will open with PCIS initiation (operates at 0 Sec.)	B Train in Primary, A Train in Standby	12E- 2400A	S	M-49
MCC 39-2	SBGT Fan 2/3B (2/3-B-7506)	No	Starts operating with iniation on PCIS (starts at 0 Sec.)	B Train in Primary, A Train in Standby	12E- 2400B	M	M-49.
MCC 39-2	Turbine Room 3 Emerg. Lighting (3-7902)	No	Starts operating at 1 min	Assume 10 second start for conservatism	12E- 3678B	Z	

Calc. No. 9389-46-19-1 Rev. 0 Page *AB* Proj. No. 9389-46

Page 7 of 10

Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Engineering Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
MCC 39-2	SBGT Sys. Inlet Damper 2/3B (2/3-7505B)	No	N.C. but interlock open with high drywell and low RX pressure.	B Train in Primary, A Train in Standby	12E- 2400A	S	M-49
MCC 39-2	Contain Cooling SWP Cub. Cooler Fan 2 (3-5700-30C)	No	This fan will be operating only when Containment Cooling SWP C is operating (start at 10 min.)		12E- 3678A	N	M-275
MCC 39-2	Contain Cooling SWP Cub. Cooler Fan 1 (3-5700-30C)	No	This fan will be operating only when Containment Cooling SWP C is operating (start at 10 min.)		12E- 3678A	N	M-275
MCC 39-2	Contain Cooling SWP Cub. Cooler Fan 1 (3-5700-30D)	No	This fan will be operating only when Containment Cooling SWP C is operating (start at 10 min.)		12E- 3678B	N	M-275
MCC 39-2	125V Battery Charger 3 (3-8300-3)	No	Starts operating at 0 Sec.		12E-3389	N	
MCC 39-2	Condensate Transfer Pump 3B (3-3319-B)	Yes	Will not operate in auto mode.	Assume in auto	12E-3370	J	
MCC 39-2	DG Starting Air Compressor 3B (3-4611-B)	No	Starts operating at 0 Sec.	-	12E- 3350B	w	M-173
MCC 39-2	Contain Cooling SWP Cub. Cooler Fan 2 (3-5700-30D)	No	This fan will be operating only when Containment Cooling SWP C is operating (start at 10 min.)		12E- 3678B	T	M-275
MCC 39-2	SBGT Outside Air Damper 2/3B (2/3-7504B)	No	N.O. Damper closes on high drywell press or RX low level.		12E- 2400A	S	M-49

Calc. No. 9389-46-19-1 Rev. 0 Page *A*9 Proj. No. 9389-46

Table 1Automatically Turn On and Off Devices Under the
Design Basis Accident Condition
Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed	Known Fact	Assumption / Engineering Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
MCC 39-2	RX Bldg. Vent SBGT Damper 2/3B (3-7503)	Yes	Power cables disconnected.		12E- 2400A	S	M-49
MCC 39-2	DG Cooling Water Pump 3 (3-3903)	No	Starts operating at 0 Sec.		12E- 3350B	W	M-355
MCC 39-2	DG Fuel Oil Transfer Pump 3 (3-5203)	No	Starts operating at 0 Sec.		12E- 3350B	W	M-41 Sh.2
MCC 39-2	RX Protection M-G Set 3B (3-8001-B)	No	Will restart on restoration of bus voltage.		12E-3592	J	
MCC 39-2	DG Ventilation Fan 3 (3-5790)	No	Starts operating at 0 Sec.	· · · · · · · · · · · · · · · · · · ·	12E- 3350B	W	M-1297
MCC 39-7	Recirc. Pump 3B Suction Valve (3-0202-4B)	Yes	N.O. and remain open.		12E- 3420B	R	M-357 Sh.2
MCC 39-7	Recirc. Pump 3B Disch Valve (3-0202-5B)	No	N.O. but interlock closed with LPCI initiation if selected by the LOOP selection logic.		12E- 3420B	R	M-357 Sh.2
MCC 39-7	LPCI Inboard Isol. Valve 3B (3-1501-22B)	No	N.C. but interlock open or closed with LPCI initiation if selected by the LOOP selection logic.		12E- 3441A	M	M-360 Sh.1
MCC 39-7	LPCI Outboard Isol Valve 3B (3-1501-21B)	No	N.O. but interlock open or closed with LPCI initiation if selected by the LOOP selection logic.	Assume closes based on scenario	12E-3441	N	M-360 Sh. 1
MCC 38-7	LPCI Inboard Isol. Valve 3A (3-1501-22A)	No	N.C. but interlock open or closed with LPCI initiation if selected by the LOOP selection logic.	Assume opens based on scenario	12E- 3441A Sh.4	N	M-360 Sh.1

Calc. No. 9389-46-19-1 Rev. 0 Page *AID* Proj. No. 9389-46

Taple 1 Automatically Turn On and Off Devices Under the Design Basis Accident Condition Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed		Assumption / Engineering Judgement	Dwg. Ref.	Rev	Other Ref. (P & ID)
MCC 38-7	Recirc. Pump 3A Suction Valve 3A (3-202-4A)	Yes	N.O. and will remain open.		12E- 3420A	P	M-347 Sh.2
MCC 38-7	Recirc. Pump 3A Disch. Valve 3A (3-202-5A)		N.O. but interlock open or closed with LPCI initiation if selected by the LOOP selection logic.	Assume closes based on scenario	12E- 3420A	P	M-357 Sh.2
MCC 38-7	LPCI Outboard Isol. Valve 3A (3-1501-21A)		N.O. but interlock open or closed with LPCI initiation if selected by the LOOP selection logic.		12E-3441	N	M-360 Sh.1

N.O. - Normally Open N.C. - Normally Closed

N/A - Not Available

Calc. No. 9389-46-19-1 Rev. 0 Page All /Final Proj. No. 9389-46

Page 10 of 10

·	Calculation For Diesel Generator 3 Loading Under Design Bases Accident Condition			Calc. No. 9389-46-1				
SARGENT & LUNDY				Rev. O	Date			
	x	Safety-Related		Non-Safety-Related	Page B	of		
Client ComEd		· · · · · · · · · · · · · · · · · · ·	Pr	epared by		Date		
Project Dresden Station Ur	nit 3		Reviewed by			Date		

Approved by

Date

Attachment B

Proj. No. 9389-46

Equip. No.

ENGIN

č m Qe

E R S

D

~

TABLE 2

AFFECTS OF VOLTAGE DIP

PURPOSE

The purpose of Table 2 is to determine the affects of an AC voltage dip, that is low enough to de-energize control circuits ie., contactors, relays, etc., has on the operation of the mechanical equipment.

METHOD

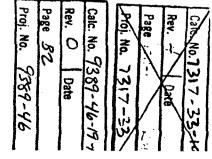
Table 2 shows the results of the review. The conclusion of Table 2 is shown in the analysis of data section. Below is the explanation for each column in Table 2.

Table 2 Column Description

Equipment Description/No.

Load Shed

Will the voltage dip at 5 seconds, 10 seconds, and 10 minutes affect the equipments' operation


(Question 1)

Explanation of What is Shown in the Column

This column lists all of the loads connected to the DG buses. It is the same list as shown in Table 1.

All loads that are tripped off and interlocked off or require manual action to restart are considered load shed. Operating loads and loads with auto start capabilities that have power available that do not operate (i.e. an MOV that is N.O. and remains open) is considered not load shed.

The "affect" looked for is that the control circuit per the referenced schematics is de-energized or energized by a voltage dip. If the circuit was not energized before the dip and/or the energized state of the circuit did not change due to a dip, the answer is no. If the energized state of the circuit changed, the answer is yes.

AFFECTS OF A VOLTAGE DIP

Table 2 Column Description

Will the equipment restart after the voltage recovery

(Question 2)

Will the equipment operate in an adverse mode due to a voltage dip

(Question 3)

Will the time delay in operation cause any adverse affect

(Question 4)

Explanation of What is Shown in the Column

This question is to verify that equipment required is restarted automatically after a voltage dip. Only AC control circuits need to be considered. DC control circuits will be unaffected by an AC voltage dip. Circuits that have seal-in contacts are types that would not restart.

If the answer to Question 1 is yes, and to Question 2 is yes, then Question 3 has to be answered. The "adverse modes" looked for are items like, valves moving in the wrong direction, time delay relays being reset by the dip causing equipment to operate for shorter or longer periods than required, etc.

If the answer to Question 1 is yes, and 2 is yes, Question 4 has to be answered. The time delay referred to is the one second it takes the DG to recover to above 80% after the start of a large motor. The adverse affects looked for are items like, could within one second the room temperature rise excessively if a cooler is de-energized, if a valve travel requires one more second to operate will its total travel time exceed design limits, etc.

The "no" answers to this question are based on the following engineering judgements:

- a. Reference 53 provides a comparaison between allowable and measured and/or calculated valve stroke times for the valves in question. This shows that the addition of 2 seconds to the stroke time of any valve will not result in the total stroke time exceeding the maximum allowable stroke time.
- b. Based on Engineering Judgement, 2 second time delays in room coolers, pumps, etc. would not cause rooms, equipment, etc. to overheat, etc.

Calc. No. 9	389-46-19-1
Rev. O	Date
Page B:	3
Proj. No.	9389-46

ENGINES

C

TABLE 2

AFFECTS OF A VOLTAGE DIP

Table 2 Column Description

Drawing Reference

Revision

Other Reference

Explanation of What is Shown in the Column

c. Instrument bus loads may give erroneous readings for a fraction of a second due to momentary sharp voltage drop. But the instrument bus is designed with transfer switch, which takes about one second to transfer the loads. Therefore, the operators are familiar with the behavior of these loads during abnormal condition. This will not require any special attention of the operators.

This drawing shows the main schematic or wiring diagram for the control circuit reviewed.

This is the revision number of the drawing referenced above.

Other references used to understand the operation of control circuit may be listed here or see the main reference section of this calculation.

5 20 Date M 5 3

m Z

ŝ

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5 sec, 10 sec, & 10 min. affect the equipment's operation?	Will the equipment start after voltage recovery?	Will the equipt, operate in adverse mode due to the voltage dips?	Will the time delay in operation cause any adverse affect?	Dwg. Ref.	Rev	Other Ref.
34-1	RX Bldg. Cooling Water Pump 3B (3-3701-B)	Yes	No	N/A	N/A	N/A	12E-3397	н	M-353
34-1	RX Shutdown Cooling Water Pump 3C (3-1002-C)	Yes	No	N/A	N/A .	N/A	12E-3516 12E-3517		M-353
34-1	RX Cleanup Recirc, Pump 3B (3-1205-B)	Yes	No	N/A	N/A	N/A	12E-3520	J	M-353
34-1	RX Shutdown Cooling Pump 3B (3-1002-B)	Yes	No	• N/A	N/A	N/A	12E-3516	С	M-353
34-1	Core Spray Pump 3B (3-1401-B)	No	Yes, the pump might stop momentarily	Yes, interlock relay controlled by 125V DC	No	No	12E-3429	L	M-358
34-1	LPCI Pump 3C (3-1502-C)	No	Yes, the pump might stop momentarily	Yes, interlock relay controlled by 125V DC	No	No	12E-3436 Sh.3	ĸ	M-360 Sh.1
34-1	LPCI Pump 3D (3-1502-D)	No	Yes, the pump might stop momentarily	Yes, interlock relay controlled by 125V DC	No	No	12E-3436 Sh.4	K	M-360 Sh.1
34-1	RX Bldg. Cooling Water Pump 2/3 (2/3-3701)	Yes	No	N/A	N/A	N/A	12E-3397	т Н	M-20
39	Fuel Pool Cooling Water Pump 3B (3-1902-B)	Yes	No	N/A	N/À	N/A	12E-3548	H	M-362
39	Recirc. M-G Sets Vent Fan 3B (3-5701-B)	Yes	No. Interlocked off after trip	No	N/Á	N/A	12E3420 C		1

Calc. No. 9389-46-19-1 Revision O Page No. *B* Proj. No. 9389-46

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5 sec, 10 sec, & 10 min. affect the equipment's operation?	Will the equipment start after voltage recovery?	Will the equipt. operate in adverse mode due to the voltage dips?	Will the time delay in operation cause any adverse affect?	Dwg. Ref.	Rev	Other Ref.
39	480 V Turb Bldg MCC 26-4 Reserve Feed (2-7326-40)	Yes	No	N/Ă	N/A	N/A	12E3661 H	D	
39	South Turbine Bldg. Vent Fan 3B (3-5702-B)	Yes	No	N/A	N/A	N/A	12E- 3387B	E,	
39	RX Bidg. Vent Fan 3B (3-5703-B)	Yes	No	N/A	N/A	N/A	12E- 3399A	E	
39	RX Bldg. Exhaust Fan 3B (3-5704-B)	Yes	No	N/A	N/A	N/A	12E- 3399A	E	
39	RX Bidg. Exhaust Fan 3C (3-5704-C)	Yes	No	N/A	N/A	N/A	12E- 3399A	E	
39	120/240 VAC Uninterruptable Power Supply Panel 903-63	No	No, UPS will be supplied by alternate (DC) source until adequate AC voltage is available	Yes, UPS will return to AC source with restoration of adequate voltage	No	No	12E- 3811B	G	
39	Drywell Cooler Blower 3C, 3D, & 3E (3-5734-C, D, E)	Yes	No	N/A	N/A	N/A	12E-3393	F	M-273
39	480V MCC 39-3	Yes	No	N/A	N/A	N/A		1	
39	480V MCC 39-5	Yes	No	N/A	N/A	N/A			
39	480V MCC 39-6	Yes	No	N/A	N/A	N/A		1	

Calc. No. 9389-46-19-1

Revision 0 Page No. 86 Proj. No. 9389-46

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5 sec, 10 sec, & 10 min. affect the equipment's operation?	after voltage recovery? adverse mode due to the voltage dips? opera adverse mode due to the voltage dips? Yes, no sux. relay No		Will the time delay in operation cause any adverse affect?	Dwg. Ref.	Rev	Other Ref,
MCC 39-1	Distribution Transformer Feed (9 KVA)	No	Yes might de energize momentarily	Yes, no aux. relay interlock	No	No	12E- 3677A	AC	
MCC 39-1	Standby Liquid Control Pump 3B (3-1102B)	Yes	No	N/A	N/A	N/A	12E3460 Sh.2	W.	M-364
MCC 39-1	Drywell & Torus Purge Exhaust Fan 3B (3-5708B)	Yes	No	N/A	N/A	N/A	12E-3393	F	M-529
MCC 39-1	Core Spray Outbd. Isol Valve 38 (3-1402-248)	No	No, N.O. interlock open VV. is not operating	No not required			12E-3431 sh.2	A	M-358
MCC 39-1	Core Spray Inbd. Isol Valve 3B (3-1402-258)	No	Yes might Stop Momentarity	Yes interlock relay No No, increased 1 controlled by 125V DC. operating time within scceptable limit.		12E-3431 Sh.2	A	M-358	
MCC 39-1	Core Spray Pump Suction Valve 3B (38-1402-3)	No	No, N.O. interlock open Viv. is not operating	No not required	N/A	N/A	12E-3432	P	M-358
MCC 39-1	RX Bldg. Emerg. Lighting.	No	Yes might de-energize momentarily	Yes interlock relay energizes when voltage is back.	No	No	12E- 3677C	ĸ	
MCC 39-1	Core Spray Test Bypass Valve 3B (3B-1402-4B)	No	No, N.C. & interlock close, viv is not operating.	No, not required	N/A	N/A	12E-3433	к	M-358
MCC 39-1	HPCI Aux. Coolant Pump (3-2301-57)	No	No, Equipment is not operating		No	No	12E-3531	P	M-374 R_#70
MCC 39-1	LPCI Pump 3C Suction Valve (3-1501-5C)	No	No, N.O. & interlock open, viv is not operating	No, not required	N/A	N/A	12E-3440	P	M-360 Sh.1

Calc. No. 9389-46-19-1

Revision 3 Page No. 87 Proj. No. 8388-46

DRTB2DG3.XLS

R3

TABLE 2 AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5 sec, 10 sec, & 10 min. affect the equipment's operation?	Will the equipment start after voltage recovery?	Will the equipt, operate in adverse mode due to the voltage dips?	Will the time delay in operation cause any adverse affect?	Dwg. Ref.	Rev	Other Ref.
MCC 39-1	Post LOCA H ₂ & O ₂ Monitoring Sample Pump 3B	Yes	No, pump will be operating only after 10 min.	Voltage does not dip below 70% after 10min.	N/A	N/A	12E- 7555A	E	
MCC 39-1	Drywell/Torus Differential Pressure Air Compressor 3B (3-8551-B)	Yes	N/A	N/A	N/A	N/A	12E-3372	L	
MCC 39-1	LPCI Drywell Spray Velve 3C (3-1501-27B)	No	No, N.C. & interlock close, vtv. is not operating.	No, not required	` No	No	12E-3440	Ρ	M-360 Sh.1
MCC 39-1	LPCI Torus Ring Spray Valve 3D (3-1501-19B)	No	No, N.C. & interlock close, vlv. is not operating.	No, not required	No	No	12E3441	N.	M-360 Sh.1
MCC 39-1	LPCI Torus Ring Spray Valve 3C (3-1501-18B)	No	No, N.C. & interlock close, viv. is not operating.	lo, not required No No		12E3441 Sh.1	N	M-360 Sh.1	
MCC 39-1	LPCI Torus Ring Spray Valve 3D (3-1501-20B)	No	No, N.C. & interlock close, viv. is not operating.	No, not required	No	No	12E3441 Sh.2	N	M-360 Sh.1
MCC 39-1	LPCI Torus Ring Spray Valve 3C (3-1501-38B)	No	No, N.C. & interlock close, viv. is not operating.	No, not required	No	No	12E3441 Sh.1	N	M-360 Sh.1
MCC 39-1	Closed Cool Water Drywell Return Valve 3B (3-3706)	Yes	N/A	No, not required	N/A	N/A	12E-3398	В	M-353
MCC 39-1	LPCI Header Crosstie Isol. Valve 3B (3-1501-32B)	No	No, N.O. & interlock open viv is not operating.	No, not required	N/A	N/A	12E-3440	N	M-360 Sh.1
MCC 39-1	LPCI Heat Exchanger Bypass Valve 3B (3-1501-11B)	No	No, N.O. & interlock open. Valve is not operating when large motors are	N/A	N/A	N/A	12E-3440	N	M-360 Sh.1

Calc. No. 9389-46-19-1 Revision O Page No. 28 Proj. No. 9389-46

TABLE 2 AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5 sec, 10 sec, & 10 min. affect the equipment's operation?	Will the equipment start after voltage recovery?	Will the equipt. operate in adverse mode due to the voltage dips?	Will the time delay in operation cause any adverse affect?	Dwg. Ref.	Rev	Other Ref.
MCC 39-1	LPCI Pump Flow Bypass Valve 3B (3-1501-13B)	No	No, N.O. & interlock open v/v is not operating.	No, not required	N/A	N/A	12E-3440	N	M-360 Sh.1
MCC 39-1	East LPCI/CS¦Room Sump Pump 3B (3-2001-510B)	Yes	N/A	N/A	N/A	N/A	12E- 3677E	ĸ	M-358
MCC 39-1	West LPCI/CS Room Sump Pump 3A (3-2001-511A)	Yes	N/A	N/A	N/A	N/A	12E- 3677E	к	M-358
MCC 39-1	Saftey System Jockey Pump (3-1401-4)	Yes	N/A ~	N/A	N/A N/A N/A		12E- 3667E	Y	
MCC 39-1	LPCI Pump 3D Suction Valve (3-1501-5D)	No	No, N.O. & interlock open viv is not operating.	No, not required	N/A	N/A	12E-3440	P	M-360 Sh.1
MCC 39-1	Closed Cooling Water Drywell Supply Valve (3-3702)	Yes	N/A	N/A	N/A	NA	12E-3398	В	M-353
MCC 39-1	Closed Cooling Water Header isol. Valve (3-3701)	Yes	N/A	N/A	N/A	N/A	12E-3398	В	M-353
MCC 39-1	Contain Cooling Heat Exchanger Discharge Valve 3B (3-1501-3B)	No	No, N.O. & interlock open vv is not operating.	No, not required	N/A	N/A	12E-3440	N	M-360 Sh.1
MCC 39-1	LPCI/Core Spray Pump Area Cooling Unit 3B (3-5746-B)	No	Yes might stop momentarily.	Yes, interlock with temperature switch only.	No	No	12E-3393	F	
MCC 39-1	HPCI Turbine Inlet Isol Valve (3-2301-4)	No	Yes might stop momentarily.	Yes, interlock relay energize with low RX pressure, steam line break etc.	No	No,increased operating time is within acceptable limit	12E-3529	w	M-374

Calc. No. 9389-46-19-1

Revision O

Page No. 39 Proj. No. 9389-46

ORTB2DG3.XLS

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5 sec, 10 sec, & 10 min. affect the equipment's operation?	Will the equipment start after voltage recovery?	Will the equipt. operate in adverse mode due to the voltage dips?	Will the time delay in operation cause any adverse affect?			Ref.
MCC 39-1	Core Spray Pump Recirc. Isol. Valve 3B (3-1402-38B)		Yes might stop momentarily.	Yes interlock relay controlled by 24V DC.	No	No,increased operating time is within acceptable limit.	12E-3433	к	M-358
MCC 39-1	HPCI Pump 3 Area Cooling Unit (3-5747)	No	Yes might stop momentarilý.	Yes, interlock with temperature switch only.	No	No	12E-3393	F	
MCC 39-1	ACAD Air Compressor Unit No. 3- 2501	No	Yes might stop momentarily.	Yes, interlock with pressure switch only.	No	No	12E-7556	E	
MCC 39-1	HPCI Oil Tank Heater	No	Yes might stop momentarily.	Yes, interlock with temperature switch only.	No	No	12E-3532	M	
MCC 39-2	SBGT Air Heater (2/3-B-7503)	No	Yes, might stop momentarily	Yes, interlock relay energize by a flow switch	No	No	12E- 2400B	M	M-49
MCC 39-2	250V Battery Charger 2/3 (2/3-8350-2/3)	No	Yes, might stop momentarily	Yes no aux. relay interlock	No	No	12E- 23898	C	
MCC 39-2	SBGT Fan Disch Damper 2/38 (2/3-75078)	No	Yes, might stop momentarily	Yes, interlock relay energizes concurrently with LPCI initiation	No	Increased stroke time	12E- 2400A	S	M-49
MCC 39-2	SBGT Fan 2/3B (2/3-B-7506)	No	Yes, might stop momentarily	Yes, interlock relay energizes concurrently with LPCI initiation	No	Increased stroke time	12E- 2400B	M	M-49
MCC 39-2	Turbine Room 3 Emerg, Lighting	No	Yes, might stop momentarily	Yes, interlock relay energizes when voltage is back.	No	No	12E- 2678B	T	
MCC 39-2	SBGT Sys. inlet Damper 2/3B (2/3-7505B)	No	Yes, might stop momentarily	Yes, interlock relay energizes concurrently with LPCI initiation.	No	Increased stroke time	2400A	S	M-49

Calc. No. 9389-46-19-1 Revision 0

Page No. B/O Proj. No. 9389-46

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5 sec, 10 sec, & 10 min. affect the equipment's operation?	Will the equipment start after voltage recovery?	Will the equipt. operate in adverse mode due to the voltage dips?	Will the time delay in operation cause any adverse affect?	Dwg, Ref.	Rev	Other Ref.
MCC 39-2	Contain Cooling SWP Cub. Cooler Fan 2 (3-5700-30C)	·	No, fan will be operating only after the CCSWP C is operating.	N/A	N/A	N/A	12E- 3678A	N	M-275
MCC 39-2	Contain Cooling SWP Cub. Cooler Fan 1 (3-5700-30C)	No	No, fan will be operating only after the CCSWP C is operating.	N/A	N/A	N/A	12E- 3678A	N	
MCC 39-2	Contain Cooling SWP Cub. Cooler Fan 1 (3-5700-30D)	No	No, fan will be operating only after the CCSWP C is operating.	N/A	N/A	N/A	12E- 3678B	N	M-275
MCC 39-2	125V Battery Charger 3 (3-8300-3)	No	Yes, might stop momentarily	Yes, no aux. relay interlock	No	No	12E-3389	N	
MCC 39-2	Condensate Transfer Pump 3B (3-3319-B)	Yes	No	N/A	N/A	N/A	12E-3370	J	
MCC 39-2	DG Starting Air Compressor 3B (3-4611-B)	No	Yes, might stop momentarily	Yes interlock with pressure switch only.	No .	No	12E- 3350B	W	M-173
MCC 39-2	Contain Cooling SWP Cub. Cooler Fan 2 (3-5700-30D)	No	No, fan will be operating only after the CCSWP C is operating.	N/A	N/A	N/A	12E- 3678B	T	M-275
MCC 39-2	SBGT Outside Air damper 2/3B (2/3-7504B)	No	Yes, might stop momentarily	Yes, interlock relay energizes on low flow	No	Increased stroke time within acceptable limits	12E- 2400A	S	M-49
MCC 39-2	RX Bldg. Vent SBGT Damper 2/3B (3-7503B)	Yes	No	N/A	N/A	N/A	12E- 2400A	s	M-49
MCC 39-2	DG Cooling Water Pump 3 (3-3903)	No	Yes, might stop momentarily	Yes, interlock relay energizes when voltage is back.	No	No	12E- 3350B	W	M-355

Calc. No. 9389-48-19-1 Revision O Page No. *B*// Proj. No. 9389-46

DRTB2DG3,XLS

TABLE 2 AFFECTS OF VOLTAGE DIP

Dresden Station - Unit 3

Bus No.	Equipment Description/No.	Load Shed	Will the voltage dips @ 5 sec, 10 sec, & 10 min. affect the equipment's operation?	Will the equipment start after voltage recovery?	Will the equipt. operate in adverse mode due to the voltage dips?	Will the time delay in operation cause any adverse affect?	Dwg. Ref.	Rev	Other Ref.
MCC 39-2	DG Fuel Oil Transfer Pump 3 (3-5203)	No	Yes, might stop momentarily	Yes, starts operating at 0 sec.	No	N/A	12E- 3350B	W	M-41 Sh.2
MCC 39-2	RX Protection M-G Set 3B	No	Yes, M-G set is a high inertia machine, designed to ride through voltage dips	N/A	N/A	N/A	12E-3592	J	
MCC 39-2	DG Ventilation Fan 3 (3-5790)	No	Yes, might stop momentarily	Yes, interlock relay energizes when voltage is back.	No	No	12E- 3350B	W	M- 1297
MCC 39-7	Refueling Floor Jib Cranes (3-899)	No	No.This crane will not operate.	No, not required	N/A	N/A	12E- 3622C	к	
MCC 39-7	LPCI Outbd. Isol Valve 3B (3-1501-218)	No	No, valve will not operate.	N/A	N/A	N/A	12E- 3441A	м	M-360 Sh.1
MCC 39-7	Recirc. Pump 3B Suction Valve (3-0202-4B)	Yes	No	N/A	N/A	N/A	12E- 3420B	R	M-357 Sh.2
MCC 39-7	Recirc, Pump 3B Disch Valve (3-0202-5B)	No	No, valve will not operate.	N/A	N/A	N/A	12E- 34208	R	M-357 Sh.2
MCC 39-7	LPCI Inboard isol. Valve 38 (3-1501-228)	No	Yes might stop momentarily.	Yes, interlock relay controlled by 125V DC.	No	No,increased operating time within acceptable limit.	12E- 3441A	M	M-360 Sh.1
MCC 39-7	LPCI Outboard Isol Valve 3B (3-1501-21B)	No	No	N/A	N/A	N/A	12E- 3441A	M	M-360 Sh. 1
MCC 38-7	LPCI Inboard Isol. Valve 3A (3-1501-22A)	No	No, N.O. & interlock open. VIV. is not operating.	No, not required	N/A	N/A	12E- 3441A Sh.4	N	M-360 Sh.1

Calc. No. 9389-46-19-1 Revision O Page No. **B/Z**

Proj. No. 9389-46

Bus No.	Equipment Description/No.	Shed sec, 10 sec, & 10 min. after voltage recovery? adverse mode due to the operation cause any voltage dips? operation cause any adverse affect?		Dwg. Ref.	Rev	Other Ref.			
MCC 38-7	Recirc. Pump 3A Suction Valve 3A (3-202-4A)	Yes	No	N/A	N/A	N/A	12E- 3420A	Ρ	M-357 Sh.2
MCC 38-7	Recirc. Pump 3A Disch. Valve 3A (3-202-5A)	No	Yes might stop momentarily.	Yes, interlock relay. controlled by 125V DC.	No	No, increased operating time within acceptable limit.	12E- 3420A	Ρ.	M-357 Sh.2
MCC 38-7	LPCI Outboard Isol. Valve 3A (3-1501-21A)	No	Yes might stop momentarily.	Yes, interlock relay, controlled by 125V DC.	No	No, increased operating time within acceptable limit.	12E-3441 Sh.3	N	M-360 Sh.1

NC - Normally Closed

NO - Normally Open

• .

For further explanation of this table see Flow Chart No. 2.

Calc. No. 9389-46-19-1 Revision O Page No. 8/3/FinAL Proj. No. 9389-46

Table 4

DG Auxiliaries and Other 480V Loads Starting 0 Seconds after Closing of DG Breaker

oad No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR	j
	3-902-63 ESS UPS Panel	39				From	ETAP				50.5	37.1]
	120/208V Distribution Transformer 39-1	39-1	9	KVA	480	75	100	10.8	100	75	6.8	6.0] F
	Post LOCA H2 and O2 Sample Monitoring Pump 3B	39-1	1	HP	460	80	75	1.6	625	79	6.1	4.8] [
3-2301-4	HPCI Turbine Inlet Isol. Valve	39-1	7.8	HP	460	78	70	13.4	827	54	47.6	74.2]
3-5747	HPCI Pump 3 Area Cooling Unit	39-1	3	HP	460	85	80	4.1	625	68	14.0	15.1	
	HPCI Oil Tank Heater	39-1	9	KW	480	100	100	10.8	100	100	9.0	0.0	J
2/3-8350-2/3	250V DC Battery Charger 2/3	39-2				From	ETAP				66.1	58.0]
2/3-B-7503	SBGT Air Heater 2/3B	39-2	30	KW	440	100	100	39.4	100 ·	100	30.0	0.0]
2/3-7504B	SBGT Outside Air Damper 2/3B	39-2	0.6	HP	440	80	75	1.0	625	83	3.9	2.6]
2/3-75078	SBGT Fan Disch. Damper 2/3B	39-2	4.3	HP	440	85	80	6.2	625	68	20.0	21.6]
2/3-B-7506	SBGT Fan 2/3B	39-2	20	HP	460	85	85	25.9	625	44	56.8	115.9]
2/3-7505B	SBGT Sys Inlet Damper 2/3B	39-2	1.8	HP	440	80	75	2.9	625	75	10.5	9.3]
3-8300-3	125V DC Battery Charger 3	39-2		•	- 1	From	ETAP				34.1	30.6]
3-4611-B	DG Starting Air Compressor 3B	39-2	5	HP	460	85	80	6.9	625	58	19.9	27.9].
3-3903	DG Cooling Water Pump 3	39-2	87	KW	460	83.5	100	130.8	400	31.5	131.3	395.5] F
3-5203	DG Fuel Oil Transfer Pump 3	39-2	1.5	HP	460	80	75	2.3	625	75	8.7	7.7]
3-5790	DG Ventilation Fan 3	39-2	30	HP	440	85	85	40.6	625	42	81.3	175.7]
3-8001-B	Reactor Protection M-G Set 3B	39-2	25	HP	440	85	85	33.9	625	43	69.4	145.7].
3-1501-22A	LPCI Inbd Isol. Valve 3A	38-7	10.5	HP	460	85	83.78	13.8	826	43	39.1	82.0	1
3-202-5A	Recirc. Pump 3A Disch. Valve	38-7	13	HP	460	85	85	16.8	775	49	51.0	90.7]
3-1501-21B	LPCI Outbd Isol. Valve 3B	38-7	16.2	HP	460	85	90	19.8	663	49	51.3	91.3	٦.
				•				TOTAL ST.	ARTING K	W & KVAR	807.3	1391.6	

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

> Calculation No. 9389-46-19-1 Rev. 3 Attachment C Page C1 of C5

()

Table 4

DG Auxiliaries and Other 480V Loads Starting 0 Seconds after UV Relay Resets

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
3-1501-13B	LPCI Pump Flow Bypass Valve 38	39-1	0.6	HP	440	80	75	1.0	527	83	3.3	2.2
3-5746B	LPCI/Core Spray Pump Area Cooling Unit	39-1	5	HP	460	85	80	6.9	625	58	19.9	27.9
					-			TOTAL S	TARTING K	W & KVAR	23.1	30.1

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

| R2

Calculation No. 9389-46-19-1 Rev. 2 Attachment C Page C2 of C5

Table 4

DG Auxiliaries and Other 480V Loads Starting 10 Seconds after UV Relay Resets

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
	Turbine Room 3 Emerg. Lighting	39-2	13.68	KW	480	90	100	18.3	100	90	13.7	6.6
3-1401-25B	Core Spray Inbd Isol Valve 38	39-1	3.9	HP	440	85	80	5.6	830	58	20.6	28.9
	RX Bldg. Emerg. Lighting	39-1	18.36	KVA	480	90	100	22.1	100	90	16.5	8.0
3-1402-38B	Core Spray Pump Recirc Isol, Valve 3B	39-1	0.6	HP	440	80	75	1.0	527	83	3.3	2.2
TOTAL STARTING KW										W & KVAR	54.1	45.7

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

> Calculation No. 9389-46-19-1 Rev. 2 Attachment C Page C3 of C5

R2

Table 4

DG Auxiliaries and Other 480V Loads Starting at 10+ Minutes after UV Relay Resets (1st CCSW Pump)

Load No. Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR
3-1501-3B Containment Cooling Heat Exchanger Discharge Valve 3B	39-1	0.33	HP	460	80	75	0.5	245	85	0.9	0.5
Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)	-						TOTAL S	TARTING K	W & KVAR	0.9	0.5

Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF))

R2

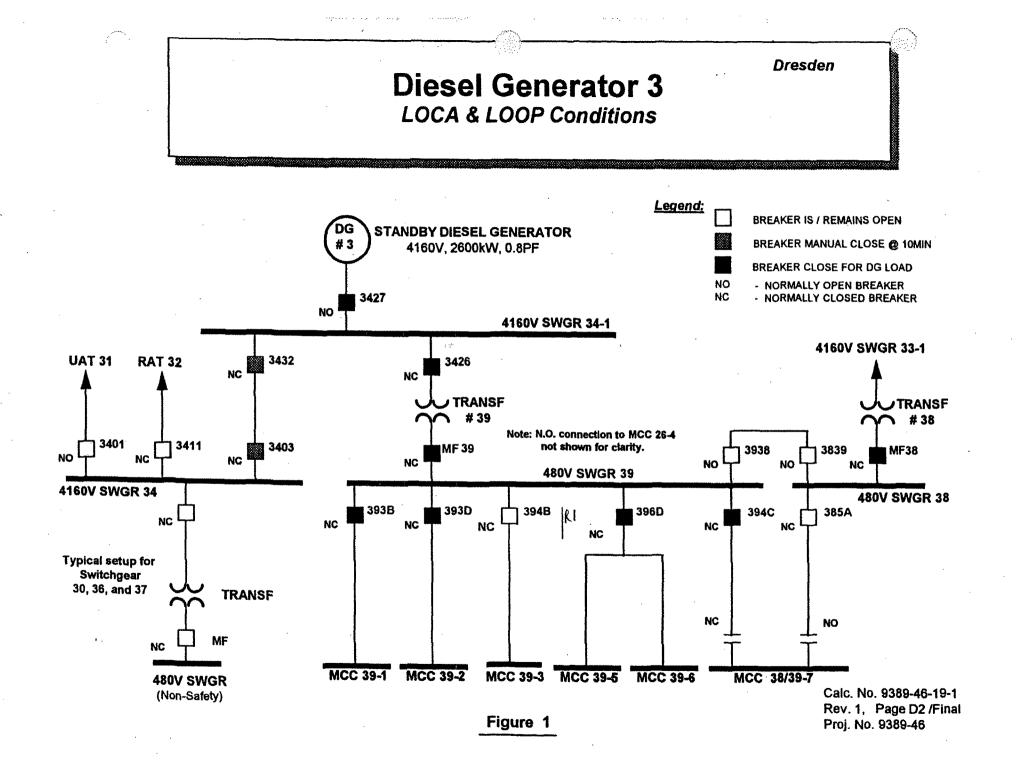
Calculation No. 9389-46-19-1 Rev. 2 Attachment C Page C4 of C5

Table 4

DG Auxiliaries and Other 480V Loads Starting at 10++ Minutes after UV Relay Resets (2nd CCSW Pump)

Load No.	Load Description	Bus No.	Rating	Unit	Vrated	PF%	Eff. %	FLC	LRC%	SPF%	SKW	SKVAR	1.
	Contain Cooling SWP Cub. Cooler C Fan 2	39-2	3	HP	460	85	80	4,1	700	68	15.7	16.9	R2
3-5700-30C	Contain Cooling SWP Cub. Cooler C Fan 1	39-2	3	HP	460	85	80	4.1	700	68	15.7	16.9	1
3-5700-30D	Contain Cooling SWP Cub. Cooler D Fan 1	39-2	3	HP	460	85	80	4.1	700	68	15.7	18.9	1
3-5700-30D	Contain Cooling SWP Cub. Cooler D Fan 2	39-2	3	HP	460	85	80	4.1	700	68	15,7	16.9	1

Full Load Current (FLC) form HP = (HP x 746) / (1.732 x kV x PF x eff.) FLC from KW = KW / (1.732 x kV x PF x eff.) FLC from KVA = KVA / (1.732 x kV x eff.)


Starting KW (SKW) = 1.732 x kV x LRC% x FLC x SPF Starting KVAR (SKVAR) = 1.732 x kV x LRC% x FLC x sin(acos(SPF)) TOTAL STARTING KW & KVAR 62.7 67.6 R2

Calculation No. 9389-46-19-1 Rev. 2 Attachment C Page C5 of C5

R2

	\bigcirc	· •			
			Project Dresden Station Unit 3 Proj. No. 9389-46 Eq	Client ComEd	SARGENT & LUNDY ENGINEERS
	· · · · · · · · · · · · · · · · · · ·		nit 3 Equip. No.		Calculation For Diesel Ge Design Bases Acc X Safety-Related
		Attachment D	Reviewed by Approved by	Prepared by	Calculation For Diesel Generator 3 Loading Under Design Bases Accident Condition X Safety-Related Non-Safety-Related
			Date Date	Date	Calc. No. 9389-46-19-1 Rev. 1 Date Page D1 of

,

ri	Cal	Iculation For Diesel G	Calc. No. 9389-46-19-1				
SARGENT & LUNDY		Design Bases Acc	Rev. 1 Date			e	
	X	Safety-Related	Non-Safety-Related	Pa	ige	ΕI	of

Client ComEd	Prepared by	Date
Project Dresden Station Unit 3	Reviewed by	Date
Proj. No. 9389-46 Equip. No.	Approved by	Date

Attachment E

FIGURE 2 - DG AUXILIARIES AND OTHER 4kV AND 480V LOADS

Calc. No. 9389-46-19-1, Rev. 3 PageNo. E2/FINAL , Proj. No. 9389-46

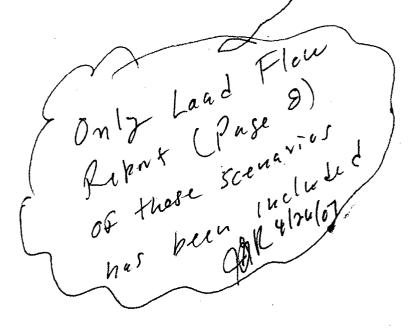
Emergency Di	iesel 3 Powers Unit 3 Loads		(Os)	0s 5	s 10	s 1	0- min 11	0+min 10)++ min	
		Bus			-					
_oad No.	Load Description	No.								
-1401-B	Core Spray Pump 3B	34-1								ĺ
-1502-C	LPCI Pump 3C	34-1				Į				
I-1502-D	LPCI Pump 3D	34-1		1						
	Containment Cooling SWP #3C	34				I				
	Containment Cooling SWP #3D	34		1						
	3-903-63 Essential Service Uniterruptable									l.
	Power Supply Panel	39								
	120/208V Distribution Transf. 39-1	39-1			<u> </u>		+			
-1402-25B	Core Spray Inbd. Isol. VN. 3B	39-1		1			4			
	RX Bldg. Emerg. Lighting	39-1				J				Ľ
-2301-57	HPCLAW Coolant Pump	39-1								1
	Post LOCA H2 And O2 Monitoring Sample									Ľ
	Pump 3B	39-1		1	T					
I-1501-13B	LPCI Pump Flow Bypass Valve 3B	39-1		}	}	}	-			
	Contain Cooling Heat Exchanger									
I-1501-3B	Discharge Valve 3B	39-1		1	1	i				
	LPCI / Core Spray Pump Area Cooling]				ļ
-5746B	Unit 3B	39-1			1					
-2301-4	HPCI Turbine Inlet Isol. VIv	39-1			[[4	1 1	Í	
2-388	Core Spray Pump Recirc. Isol. Valve	39-1								
I.S 7	HPCI Pump 3 Area Cooling Unit	39-1			{					
	ACAS Air Compressor Linit No. 3-2501	39-1								11
	HPCI Oil Tank Heater	39-1						[]		·
/3-8350-2/3	250 VDC Battery Charger 2/3	39-2			· · ·		ļ			
/3-7503B	SBGT Air Heater 2/3B	39-2					<u> </u>			
/3-7504B	SBGT Outside Air Damper 2/3B	39-2					4			
/3-7507B	SBGT Fan Disch. Damper 2/3B	39-2								
/38-7506	SBGT Fan 2/3B	39-2								
/3-7505B	SBGT Sys. Inlet Damper 2/3B	39-2								
-7902	Turbine Room 3 Emerg. Lighting	39-2								
							1			
-5700-30C	Cnmt. Cooling SWP Cub. Cooler C Fan 2	39-2		1						
-5700-30C	Cnmt. Cooling SWP Cub. Cooler C Fan 1	39-2		1			· ·			
				1				i - J		
-5700-30D	Cnmt. Cooling SWP Cub. Cooler D Fan 1	39-2							. 1	
			1	1				· •		
-5700-30D	Cnmt. Cooling SWP Cub. Cooler D Fan 2	39-2						1	1	
-8300-3	125 VDC Battery Charger 3	39-2								
-5319-8	DG Starting Air Compressor 3B	39-2								
-3903	DG Cooling Water Pump 3	39-2								
	DG Fuel Oil Transfer Pump 3	39-2								
	DG Ventilation Fan 3	39-2						I		
	Reactor Protection M-G Set 3B	39-2				1				
									1	n
		3 8-7 38-7						1	[1	R
		39-7			1				- L.	R:

(0s) - 0 seconds after closing of DG Breaker

)s - 0 seconds after UV relay resets

5s - 5 seconds after UV relay resets

10s - 10 seconds after UV relay resets


10- min - all loads that automatically stop before 10 minutes are shown off 10+ min - CCSW Pump is started with it auxiliaries 10++ min - CCSW Pump is running and other loads starting after 10 minutes

are shown here

Attachment F

DG Unit 3 Division II ETAP Output Reports – Nominal Voltage

<u>Scenario</u>	Page #'s	\sim	
DG3_Bkr_Cl	F2-F15		
DG3_UV_Reset	F16-F29)	
DG3_T=5sec	F30-F44		
DG3_T=10sec	F45-F59	\rightarrow	
DG3_T=10-min	F60-F73		R3
DG3_T=10+min	F74-F87		
DG3_T=10++m	F88-F101)	
DG3_CR_HVAC	F102-F115		

Calcul	ation:	9389-4	6-19-1
Attach	ment:	F	
Revisi	on:	003	
Page	F1	of	F115

Location:	Dresden Unit3 OTI	ETAP 5.5.0N	Page: Date:	8 03-21-2007
Contract:	123		SN:	WASHTNGRPN
Engineer:	OTI	Study Case: DG_0_CCSW	Revision:	Base
Filename:	DRE_Unit3_0005		Config.:	DG3_Bkr_Cl

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

LOAD FLOW REPORT

Bus		Volt	age	Gene	ration	Lo	ad		Load Flow	۷			XFMR
ID	kV	kV	Ang.	MW	Mvar	MW	Mvar	ĺĎ	MW	Mvar	Amp	% PF	% Тар
3-903-63 ESS UPS PNL	0.480	0,480	-1.5	0	0	0.050	0.037	480V SWGR 39	-0.050	-0.037	75.4	80.5	
4KV SWGR 34-1	4.160	4.158	0.0	0	0	0	0	HIGH SIDE OF XFMR 39	0.392	0.293	67,9	80.1	
								DG 3 TERMINAL	-0.392	-0.293	67.9	80.1	·
125V DC CHGR 3	0.480	0.454	-0.3	0	0	0.034	0.027	480V MCC 39-2	-0.034	-0.027	55.0	78.6	
250V DC CHGR 2/3	0.480	0.455	-0.7	0	0	0.066	0.052	480V MCC 39-2	-0.066	-0.052	106.6	78,7	
480V MCC 38-7	0.480	0.478	-1.5	0	0	0.021	0.013	480V MCC 39-7	-0.021	-0.013	29.8	85.4	
480V MCC 39-1	0.480	0.479	-1.5	0	0	0.027	0.014	480V SWGR 39	-0.027	-0.014	36,5	88.1	
480V MCC 39-2	0.480	0.471	-1,7	0	0	0.168	0.119	125V DC CHGR 3	0.036	0.027	55.0	80.1	
								250V DC CHGR 2/3	0.069	0,053	106,6	79.7	
2000 000 000 2000 000 2000 000 000								480V SWGR 39	-0.273	-0.198	413.7	80.9	
480V MCC 39-7	0.480	0.479	-1.5	0	0	0.013	0.008	480V MCC 38-7	0.021	0.013	29.8	85.4	
								480V SWGR 39	-0.035	-0.021	48.9	85.2	
480V SWGR 39	0.480	0.480	-1.5	0	0	0	0	480V MCC 39-7	0.035	0.021	48.9	85.3	
								480V MCC 39-2	0.278	0.203	413.7	80.7	
								3-903-63 ESS UPS PNL	0.050	0.037	75.4	80.5	
								480V MCC 39-1	0.027	0.014	36.5	88.1	
								HIGH SIDE OF XFMR 39	-0.390	-0.276	574.1	81.6	
* DG 3 TERMINAL	4.160	4.160	0.0	0.392	0.293	0	0	4KV SWGR 34-1	0.392	0.293	67.9	80.1	
HIGH SIDE OF XFMR 39	4,160	4.157	0.0	0	0	0	0	4KV SWGR 34-1	-0.392	-0.293	67.9	80.1	
								480V SWGR 39	0.392	0.293	67.9	80.1	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calcu	lation:	9389-	46-19-1	,
Attacł	nment:	F		
Revisi	on:	003		
Page	F9	of _	F115	

Project: Location:	Dresden Unit3 OTI	ETAP 5.5.0N	Page: Date:	8 03-21-2007
Contract:	123		SN:	WASHTNGRPN
Engineer:	οπ	Study Case: DG 0 CCSW	Revision:	Base
Filename:	DRE_Unit3_0005		Contig.:	DG3_UV_Reset

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

LOAD FLOW REPORT

Bus		Voft	age	Gene	ration	Lo	ad		Load Flov	¥			XFMR
D	kν	k٧	Ang.	MW	Mvar	MW	Mvar	lD	MW	Mvar	Amp	*• PF	∾ Тар
3-903-63 ESS UPS PNL	0.480	0.480	-1.6	0	0	0.050	0.037	480V SWGR 39	-0.050	-0.037	75.4	80.6	
4KV SWGR 34-1	4.160	4,155	0.0	0	0	0.521	0.252	HIGH SIDE OF XFMR 39	0.397	0.296	68.8	80.1	
								DG 3 TERMINAL	-0.918	-0.549	148.6	85.8	
125V DC CHGR 3	0.480	0.454	-0.3	0	0	0.034	0.027	480V MCC 39-2	-0.034	-0.027	55.0	7 8.7	
250V DC CHGR 2/3	0.480	0.454	-0.8	0	0	0.066	0.052	480V MCC 39-2	-0.066	-0.052	106.6	78.8	
480V MCC 38-7	0.480	0,478	-1.5	0	0	0.021	0.013	480V MCC 39-7	-0.021	-0.013	29.9	85.4	
480V MCC 39-1	0.480	0.479	-1.5	0	0	0.032	0.017	480V SWGR 39	-0.032	-0.017	43.5	87.5	
480V MCC 39-2	0.480	0.470	-1.7	0	0	0.168	0.119	125V DC CHGR 3	0.036	0.027	55.0	80.2	
								250V DC CHGR 2/3	0.069	0.052	106.6	79.8	
15.								480V SWGR 39	-0.273	-0.198	413.9	80.9	
80V MCC 39-7	0.480	0.478	-1.5	0	0	0.013	0.008	480V MCC 38-7	0.021	0.013	29.9	85,4	
								480V SWGR 39	-0.035	-0.021	49.0	85.2	
480V SWGR 39	0.480	0.480	-1.6	0	0	0	.0	480V MCC 39-7	0.035	0.021	49.0	85.3	
								480V MCC 39-2	0.278	0.203	413.9	80.7	
								3-903-63 ESS UPS PNL	0.050	0.037	75.4	80.6	
								480V MCC 39-1	0.032	0.017	43.5	87.5	
								HIGH SIDE OF XFMR 39	-0,395	-0.279	581.3	81.7	
* DG 3 TERMINAL	4.160	4.160	0.0	0.919	0.550	0	0	4KV SWGR 34-1	0.919	0.550	148.6	85.8	
HIGH SIDE OF XFMR 39	4.160	4.155	0. 0	0	0	0	0	4KV SWGR 34-1	-0.397	-0.296	68.8	80.1	
								480V SWGR 39	0.397	0.296	68.8	80.1	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

indicates a bus with a load mismatch of more than 0.1 MVA

Calcul	ation:	9389	-46-19-1
Attach	ment:		F
Revisi	on:	003	
Page	F23	of	F115

,	Project:	Dresden Unit3	E	ТАР	Page:	8
(Location:	ТОТІ	5.	.5.0N	Date:	03-21-2007
	Contract:	123			SN:	WASHTNGRPN .
	Engineer	оп	Study Case:	DG 0 CCSW	Revision:	Base
ľ	Filename:	DRE_Unit3_0005	Study Case.		Config.:	DG3_T=5sec

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

LOAD FLOW REPORT

Bus		Völt	iage	Gene	ration	Lo	ad		Load Flov	v .			XFMR
۱D	kV	· kV	Ang.	MW	Mvar	MW	Mvar	ſD	MW	Mvar	Amp	% PF	% Tap
3-903-63 ESS UPS PNL	0.480	0.479	-1.6	0	0	0.050	0.037	480V SWGR 39	-0.050	-0.037	75.4	80.7	
4KV SWGR 34-1	4.160	4,153	-0.1	0	0	1.014	0.511	HIGH SIDE OF XFMR 39	0.397	0.296	68.8	80.1	
								DG 3 TERMINAL	-1.411	-0.807	226.0	86.8	
125V DC CHGR 3	0.480	0.453	-0.3	0	0	0.034	0.027	480V MCC 39-2	-0.034	-0.027	55,0	78.7	
250V DC CHGR 2/3	0.480	0.454	-0.8	0	0	0.066	0.052	480V MCC 39-2	-0.066	-0.052	106.6	78.8	
480V MCC 38-7	0.480	0.478	-1.6	0	0	0.021	0.013	480V MCC 39-7	-0.021	-0.013	29.9	85.4	
480V MCC 39-1	0.480	0.478	-1.6	0	0	0.032	0.017	480V SWGR 39	-0.032	-0.017	43.5	87.5	
480V MCC 39-2	0.480	0.470	-1.7	0	0	0.168	0.119	125V DC CHGR 3	0.036	0.027	55.0	80.2	
								250V DC CHGR 2/3	0.069	0.052	106.6	79.8	
								480V SWGR 39	-0.273	-0.198	414.1	80.9	
180V MCC 39-7	0.480	0.478	-1.6	0	0	0.013	0.008	480V MCC 38-7	0.021	0.013	29.9	85.4	
								480V SWGR 39	-0.035	-0.021	49.0	85.2	
480V SWGR 39	0.480	0.479	-1.6	0	0	0	0	480V MCC 39-7	0.035	0.021	49.0	85.3	
								480V MCC 39-2	0.278	0.203	414.1	80.8	
				· .				3-903-63 ESS UPS PNL	0.050	0.037	75.4	80.6	
								480V MCC 39-1	0.032	0.017	43.5	87.5	
								HIGH SIDE OF XFMR 39	-0.395	-0.279	581.5	81.7	
* DG 3 TERMINAL	4.160	4.160	0.0	1.413	0.810	0	0	4KV SWGR 34-1	1.413	0.810	226.0	86,8	
HIGH SIDE OF XFMR 39	4,160	4.152	-0.1	0	Ò	0	0	4KV SWGR 34-1	-0.397	-0.296	68.8	80,1	
								480V SWGR 39	0.397	0.296	68.8	80,1	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calcul	ation:	9389-4	18-19- 1	
Attach	ment:	F		
Revisi	on:	003		
Page	F37	of	F115	

vject:	Dresden Unit3 OTI		ETAP 5.5.0N		Page: Date:	8 03-21-2007	
Contract:	123				SN:	WASHTNGRPN	
Engineer:	OTI	3	Study Case: DG) CCSW	Revision:	Base	
Filename:	DRE_Unit3_0005		ondy one - Do		Contig.:	DG3_T=10sec	

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

LOAD FLOW REPORT

Bus		Volt	age	Gener	ration	Lo	ad		Load Flow	v	• •		XFMR
D	k٧	kV	Ang.	MW	Mvar	MW	Mvar	ID	M₩	Mvar	Amp	% PF	% Tap
3-903-63 ESS UPS PNL	0.480	0.478	-1.8	0	0	0.050	0.037	480V SWGR 39	-0.050	-0.037	75.4	80.8	
4KV SWGR 34-1	4.160	4.149	-0.1	0	0	1.724	0.811	HIGH SIDE OF XFMR 39	0.433	0.317	74.7	80.7	
								DG 3 TERMINAL	-2.157	-1.128	338.8	88.6	
125V DC CHGR 3	0.480	0.452	-0.5	0	0	0.034	0.026	480V MCC 39-2	-0.034	-0.026	55.0	79.0	
250V DC CHGR 2/3	0.480	0.452	-1.0	0	0	0.066	0.051	480V MCC 39-2	-0.066	-0.051	106.7	79.0	
480V MCC 38-7	0.480	0.476	-1.7	0	0	0.021	0.013	480V MCC 39-7	-0.021	-0.013	30,0	85.4	
480V MCC 39-1	0.480	0.476	-1.8	0	0	0.054	0.029	480V SWGR 39	-0.054	-0.029	74.6	88.1	
480V MCC 39-2	0.480	0.468	-1.9	0	0	0.180	0.125	125V DC CHGR 3	0.036	0.026	55.0	80.5	
								250V DC CHGR 2/3	0.069	0.052	106.7	80.0	
								480V SWGR 39	-0.286	-0.204	432.4	81.4	
80V MCC 39-7	0.480	0.477	-1.7	0	0	0.013	0.008	480V MCC 38-7	0.021	0.013	30.0	85.4	
								480V SWGR 39	+0.035	-0.021	49.2	85.3	
480V SWGR 39	0.480	0.478	-1.8	0	0	0	0	480V MCC 39-7	0.035	0.021	49.2	85.3	
								480V MCC 39-2	0.291	0.209	432,4	81.2	
						-		3-903-63 ESS UPS PNL	0.050	0.037	75.4	80.8	
•								480V MCC 39-1	0.054	0.029	74.6	88.1	
								HIGH SIDE OF XFMR 39	-0.431	-0.296	630.9	82.4	
* DG 3 TERMINAL	4.160	4.160	0.0	2.161	1.134	0	, 0	4KV SWGR 34-1	2.161	1.134	338.8	88,5	
HIGH SIDE OF XFMR 39	4.160	4.149	-0.1	0	0	0	0	4KV SWGR 34-1	-0.433	-0.317	74.7	80.7	
								480V SWGR 39	0.433	0.317	74.7	80.7	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

-Indicates a bus with a load mismatch of more than 0.1 MVA

Calcul	ation:	<u>9389-</u>	<u>46-19-1</u>	
Attach	ment:	F		
Revisi	on:	003		
Page	F52	of _	F115	

ject: Location:	Dresden Unit3 OTI		TAP 5.0N	Page: Date:	8 03-21-2007
Contract:	123			SN:	WASHTNGRPN
Engineer:	σπ	Study Case	DG 0 CCSW	Revision:	Base
Filename:	DRE_Unit3_0005	Grady Class.		Config.:	DG3_T=10-m

Diesel Generator connected using nominal voltage, Time period is less than 10 minutes into the event.

LOAD FLOW REPORT

Bus		Volt	age	Gener	ration	Lo	ad		Load Flov	v			XFMR
ID	kV	kV	Ang.	MW	Mvar	MW	Mvar	ID	MW	Mvar	Атр	% PF	% Тар
3-903-63 ESS UPS PNL	0.480	0.480	-1.5	0	0	0.050	0.037	480V SWGR 39	-0.050	-0.037	75.4	80.6	
4KV SWGR 34-1	4.160	4.149	-0.1	0	0	1.724	0.811	HIGH SIDE OF XFMR 39	0.378	0.277	65.3	80.6	
								DG 3 TERMINAL	-2.103	-1.089	329,4	88.8	
125V DC CHGR 3	0.480	0.453	-0.3	0	0	0.034	0.027	480V MCC 39-2	-0.034	-0.027	\$5.0	78.7	1
250V DC CHGR 2/3	0.480	0.454	0.8	0	0	0.066	0.052	480V MCC 39-2	-0.066	-0.052	106.6	78.8	
480V MCC 38-7	0.480	0.480	-1.5	0	0	0	0	480V MCC 39-7	0.000	0.000	0.0	0.0	
480V MCC 39-1	0.480	0.478	-1.5	0	0	0.041	0.019	480V SWGR 39	-0.041	-0.019	54.9	90.5	
480V MCC 39-2	0.480	0.470	-1.7	0	<u>0</u>	0.174	0.121	125V DC CHGR 3	0.036	0.027	55.0	80.2	
								250V DC CHGR 2/3	0.069	0.052	106.6	79,8	
								480V SWGR 39	-0.279	-0.200	422.1	81.3	
180V MCC 39-7	0.480	0.480	-1.5	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
								480V SWGR 39	0.000	0.000	0.0	0.0	
480V SWGR 39	0.480	0.480	-1.5	0	0	0	0	480V MCC 39-7	0.000	0.000	0.0	0.0	
								480V MCC 39-2	0,285	0.205	422.1	8i.1	
								3-903-63 ESS UPS PNL	0.050	0,037	75.4	80.6	
								480V MCC 39-1	0.041	0.019	54.9	90.5	
								HIGH SIDE OF XFMR 39	-0.376	-0.262	551.5	82, 1	
• DG 3 TERMÍNAL	4.160	4.160	0.0	2.106	1.095	0	0	4KV SWGR 34-1	2.106	1.095	329.4	88.7	
HIGH SIDE OF XFMR 39	4,160	4.149	-0.1	0	0	0	0	4KV SWGR 34-1	-0.378	-0.277	65.3	80.6	
								480V SWGR 39	0.378	0.277	65.3	80.6	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

-Indicates a bus with a load mismatch of more than 0.1 MVA

Calcul	ation:	9389-	<u>46-19-1</u>
Attach	ment:	F	
Revisi	on:	003	
Page	F67	of _	F115

jeet: Location:	Dresden Unit3 OTI		E TAP 5.5.0N	Page: Date:	8 03-21-2007
Contract:	123			SN:	WASHTNGRPN
Engineer:	ΟΤΙ	Study Case:	DG_1 CCSW	Revision:	Base
Filename: 1	DRE_Unit3_0005	.study Case.		Config.:	DG3_T=10+m

Diesel Generator connected using nominal voltage, Time period is 10 min or greater into the event, 1 CCSW pump.

LOAD FLOW REPORT

Bus		Volt	age	Gene	ration	Lo	ad		Load Flov	v			XFMR
ID	kV	kV	Ang.	MW	Mvar	MW	Mvar	D	MW.	Mvar	Amp	% PF	% Tap
3-903-63 ESS UPS PNL	0.480	0.480	-1.6	0	0	0.050	0.037	480V SWGR 39	-0.050	-0.037	75.4	80.6	
4KV SWGR 34	4.160	4.146	-0.1	0	0	0.477	0.212	4KV SWGR 34-1	-0.477	-0.212	72.7	91.4	
4KV SWGR 34-1	4.160	4.147	-0.1	0	0	1.702	0,804	HIGH SIDE OF XFMR 39	0.379	0.278	65.3	80.6	
								4KV SWGR 34	0.477	0.213	72.7	91.3	
								DG 3 TERMINAL	-2.557	-1,294	399.0	89.2	
125V DC CHGR 3	0.480	0.453	-0.3	0	0	0.034	0.027	480V MCC 39-2	-0.034	-0.027	55.0	78,8	
250V DC CHGR 2/3	0.480	0.454	-0.8	0	0	0.066	0.052	480V MCC 39-2	-0.066	-0.052	106.6	78.8	
480V MCC 38-7	0.480	0.480	-1.6	0	0	0	0	480V MCC 39-7	0.000	0.000	0.0	0.0	
480V MCC 39-1	0.480	0.478	-1.6	0	0	0.041	0.020	480V SWGR 39	-0.041	-0.020	55.4	90.4	
180V MCC 39-2	0.480	0.470	-1.7	0	0	0.174	0.121	125V DC CHGR 3	0.036	0.027	55.0	80.2	
t u te ce								250V DC CHGR 2/3	0.069	0.052	106.6	79.8	
								480V SWGR 39	-0.279	-0.200	422.2	81.3	
480V MCC 39-7	0.480	0.480	-1.6	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
								480V SWGR 39	0.000	0.000	0.0	0.0	
480V SWGR 39	0,480	0.480	-1.6	0	0	0	0	480V MCC 39-7	0.000	0.000	0.0	0.0	
								480V MCC 39-2	0.285	0.205	422.2	81.1	
								3-903-63 ESS UPS PNL	0.050	0.037	75.4	80.6	
								480V MCC 39-1	0.042	0.020	55.4	90.4	
								HIGH SIDE OF XFMR 39	-0.377	-0.262	552.1	82.1	
DG 3 TERMINAL	4.160	4.160	0,0	2.562	1.303	0	0	4KV SWGR 34-1	2.562	1.303	399.0	89.1	
HIGH SIDE OF XFMR 39	4.160	4.147	-0.1	0	0	0	0	4KV SWGR 34-1	-0.378	-0.278	65.3	80.6	
								480V SWGR 39	0.378	0.278	65.3	80.6	-2.500

* Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calculation	: <u>9389</u>	9389-46-19-1					
Attachmen	t: <u> </u>						
Revision:	003						
PageF8	31 of	F115					

Project:	Dresden Unit3 OTI		C AN		8 03-21-2007
Contract:	123			SN:	WASHTNGRPN
Engineer:	тот	Study Case: DG 2_CCSW		Revision:	Base
Filename:	DRE_Unit3_0005	Study C use		Config.:	DG3_T=10++m

Diesel Generator connected using nominal voltage, Time period is 10 min or greater into the event, 2 CCSW pumps.

LOAD FLOW REPORT

Bus		Volt	age	Gener	ation	Lo	ad		Load Flov	٧			XFMR	
lD	k٧	kν	Ang.	MW	Mvar	MW	Mvar	ID	MW	Mvar	Amp	% PF	% Tap	
3-903-63 ESS UPS PNL	0.480	0.479	-1.6	0	0	0.050	0.037	480V SWGR 39	-0.050	-0.037	75.4	80.7		
4KV SWGR 34	4.160	4.145	-0.1	0	0	0.771	0.395	4KV SWGR 34-1	-0.771	-0.395	120.7	89.0		
4KV SWGR 34-1	4.160	4.148	-0.1	. 0	0	1.219	0.549	HIGH SIDE OF XFMR 39	0.391	0.286	67.3	80.7		
								4KV SWGR 34	0.772	0.396	120.7	89.0		
								DG 3 TERMINAL	-2.381	-1,231	373.0	88.8		
125V DC CHGR 3	0.480	0.453	-0.4	0	0	0.034	0.027	480V MCC 39-2	-0.034	-0.027	55.0	78.9		
250V DC CHGR 2/3	0.480	0.453	-0.9	0	. 0	0.066	0.051	480V MCC 39-2	-0.066	-0.051	106.6	78.9		
480V MCC 38-7	0.480	0.479	-1.6	0	0	0	0	480V MCC 39-7	0.000	0.000	0.0	0.0		
480V MCC 39-1	0.480	0.478	-1.6	0	0	0.041	0.020	480V SWGR 39	-0.041	-0.020	55.4	90,4		
480V MCC 39-2	0.480	0.469	-1.8	0	0	0.186	0.128	125V DC CHGR 3	0.036	0.027	55.0	80.3		
								250V DC CHGR 2/3	0.069	0.052	106.6	79.9		
								480V SWGR 39	-0.291	-0.207	439.1	81.5		
480V MCC 39-7	0.480	0,479	-1.6	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0		
								480V SWGR 39	0.000	0.000	0.0	0.0		
480V SWGR 39	0.480	0.479	-1.6	0	0	Ø	0	480V MCC 39-7	0.000	0.000	0.0	0.0		
								480V MCC 39-2	0.297	0.212	439.1	81.3		
								3-903-63 ESS UPS PNL	0.050	0.037	75.4	80.7		
								480V MCC 39-1	0.042	0.020	55,4	90.4		
								HIGH SIDE OF XFMR 39	-0.389	-0.269	569.1	82.2		
* DG 3 TERMINAL	4.160	4.160	0.0	2.385	1.239	0	0	4KV SWGR 34-1	2.385	1,239	373.0	88.8		
HIGH SIDE OF XFMR 39	4.160	4,148	-0.1	0	0	0	0	4KV SWGR 34-1	-0.391	-0.286	67.3	80.7		
								480V SWGR 39	0.391	0.286	67.3	80.7	-2.500	

* indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calcul	ation:	9389-46-19-1						
Attach	ment:	F						
Revisi	on:	003						
Page	F95	of	F115					

(ect:	Dresden Unit3	ETAP		Page:	8
Location:	οτι	5.5.0N		Date:	03-21-2007
Contract:	123			SN:	WASHTNGRPN
Engineer:	оп	Study Case: DG	2 CCSW	Revision:	Base
Filename:	DRE_Unit3_0005	······		Config.:	DG3_CRHVAC

Diesel Generator connected using nominal voltage, Time period is 10 min or greater into the event, 2 CCSW pumps.

LOAD FLOW REPORT

Bus		Voltage		Generation		Load		Load Flow					XFMR
ID	kV	kV	Ang,	MW	Mvar	MW	Mvar	ID .	MW	Mvar	Amp	% PF	% Tap
3-903-63 ESS UPS PNL	0.480	0.479	-1.6	0	0	0.050	0.037	480V SWGR 39	-0.050	-0.037	75.4	80,7	
4KV SWGR 34	4,160	4.145	-0.1	0	0	0.771	0.395	4KV SWGR 34-1	-0,771	-0,395	120.7	89,0	
4KV SWGR 34-1	4,160	4.148	-0.1	. 0	0	1.219	0.549	HIGH SIDE OF XFMR 39	0.391	0.286	67.3	80,7	
								4KV SWGR 34	0.772	0.396	120.7	89.0	
								DG 3 TERMINAL	-2.381	-1.231	373.0	88,8	
125V DC CHGR 3	0.480	0.453	-0.4	0	0	0.034	0.027	480V MCC 39-2	-0.034	-0.027	55.0	78,9	
250V DC CHGR 2/3	0.480	0.453	-0.9	0	0	0.066	0.051	480V MCC 39-2	-0,066	-0.051	106.6	78,9	
480V MCC 38-7	0.480	0.479	-1.6	0	0	0	0	480V MCC 39-7	0.000	0.000	0.0	0.0	
480V MCC 39-1	0,480	0.478	-1.6	0	0	0.041	0.020	480V SWGR 39	-0.041	-0.020	55.4	90.4	
180V MCC 39-2	0.480	0.469	-1.8	0	0	0.186	0.128	125V DC CHGR 3	0.036	0.027	55.0	80,3	
								250V DC CHGR 2/3	0.069	0.052	106.6	79,9	
,								480V SWGR 39	-0.291	-0.207	439.1	81.5	
480V MCC 39-7	0.480	0.479	-1.6	0	0	0	0	480V MCC 38-7	0.000	0.000	0.0	0.0	
								480V SWGR 39	0.000	0,000	0.0	0.0	
480V SWGR 39	0.480	0.479	-1.6	0	0	0	0	480V MCC 39-7	0.000	0.000	0.0	0.0	
								480V MCC 39-2	0.297	0.212	439.1	81.3	
								3-903-63 ESS UPS PNL	0.050	0.037	75.4	80.7	
								480V MCC 39-1	0.042	0.020	55.4	90.4	
								HIGH SIDE OF XFMR 39	-0.389	-0.269	569.1	82.2	
DG 3 TERMINAL	4.160	4.160	0.0	2.385	1.239	0	0	4KV SWGR 34-1	2.385	1.239	373.0	88.8	
HIGH SIDE OF XFMR 39	4.160	4,148	-0.1	0	0	0	0	4KV SWGR 34-1	-0.391	-0.286	67.3	80.7	
								480V SWGR 39	0,391	0.286	67.3	80.7	-2.500

• Indicates a voltage regulated bus (voltage controlled or swing type machine connected to it)

Indicates a bus with a load mismatch of more than 0.1 MVA

Calcul	ation: _	9389-46-19-1						
Attach	ment:	۴						
Revisi	on:	003						
Page	F109	of	F115					