SEABROOK UPDATED FSAR

APPENDIX 2G

STATIC DYNAMIC ROCK PROPERTIES

The information contained in this appendix was not revised, but has been extracted from the original ${f FSAR}$ and is provided for historical information.

 $\widehat{}$

4 5

APPENDIX 2G

STATIC AND DYNAMIC ROCK PROPERTIES

TABLES

TP.	i +	10	
т.	ււ		

2G-1	Unconfined Compression Tests
2G-2	Laboratory Compression Wave Velocity Measurements
2G-3	Strength, Velocity and Hardness Data, Samples from Tunnel Alignments

Table

-	-1
	1
5	2
c	1
E	-1
5	21
5	뀌
Ê	1
1	

UNCONFINED COMPRESSION TESTS

50%														
e H e	ŋŋ	.25	.25		.28	.20	ŝ	.25	.19	.26	.21	.28		
Sa la														strain-gage
Poisson's Initial Load		.29	.25		.36	.18	;	.23	.17	.21	.18	.33		strai
	ਜ਼ੇ	.06	106	06	901	106	ļ	00	106	106	106 106	106		l, the
Secant Modulus @ 50%	q _u (psi)	12 x 106	9.3 x 106	11 X 106	10 x 106	9.9 x 106	4	9.7 x 106 10 x 106	10 x 1	10 x 1	8.0 x 7.4 x	9.9 x		omitted,
		106	: 106	106	106	report. 106		106 106	106	106	د 106 106	106		
Initial Tangent Modulus	(ps1)	12 x 106	9.3 x 10 ⁶	13 X 106	12 x 106	Do not 12 x	90 C	12 x 10 x	11 x	11 x 106	9.1 x 106 10 x 106	11 × 10 ⁶		's ratio ar these tests.
al nê re						•								isson's for th
Axial Strain0 Failure	*	.21	.21	0Z.	. 20	splitting .17	3	.21	.20	.27	.21	.19		and Poisson's ratio are plotted for these tests.
ned ive th	,					λα								<u>р</u> .
Unconfined Compressive Strength	q _u (psi)	22,400 19 520	19,820	19,400	18,020	Failed 15,530	5, 970	11, 610 18, 610	17,940	27,600	16,500 11,970	16,130 13,950	6,060 6,000 6,330	strain at failure, modulus, No stress-strain curves are
COD														ilure, rain c
Rock Type		Diorite	Diorite	Diorite	Diorite	Diorite Diorite	Diorite	Diorite Diorite	Schist	Diabase	Schist Schist	Diorite Diorite	Schist Schist Schist	at fa tess-st
∝ ⊢				ſ			ΪŪ	I II		Di	Sc	id Di	8 8 8 8 8 8 8	strain No str
Depth	(ft)	- 31.8	- 79.5	6.67 - c. 6/	- 50.0	50.4- 50.8	139.1	139.8 142.3	27.8- 28.2	123.9	141.7 143.1	-127.9 -128.3	246.7 247.6 260.7	
De	0	31.4-	-1.62	ć. 6/	49.6-	50.4	138.7-139.1	139.4-139.8 141.9-142.3	27.8	123.5-123.9	141.3-141.7 142,7-143.1	127.5-127.9 127.9-128.3	246.3-246.7 247.2-247.6 260.3-260.7	values of axi be unreliable,
Hole No.		El-1.			E2-1					2		¥		value be u
ЧЧ		EI			E2				B7	B42		FIA	F2	for which appear to
u		1			2				Reactors	در				
Location		Reactor			Reactor				Near Re	Contact		runne l	Tunnel	In tests readings
					-						H	0 -	-	
Test No.		EIA	ELF	913	E2A	E2C	E2G	E2J E2M	B7B	B42D	B42F B42H	F1A F1B	F2A F2C F2F	NOTE:

Test_No	Location	Hole No.	Depth (Feet)	Rock Type	Density (gm/cm ³)	Laboratory C Wave Veloc @ 0 psi	
Е 1 Н	Reactor 1	E1-1	79.9 - 80.3	Diorite	2.81	19,460	19,880
E 2 E	Reactor 2	E 2 - 1	51.2 - 51.6	Diorite	2.83	18,860	19,090
E 2 H	Reactor 2	E 2 - 1	139.1 - 139.4	Diorite	2.77	20,050	20,300
B 42 B	Contact	B 42	122.5 - 123.0	Diabase	2.84	18,600	18,800
B 42 G	Contact	B 42	141.8 - 142.3	Schist	2.77	16,960	17,320
F 1 D	Tunnel	F 1 A	128.7 - 129.2	Diorite	2.79	20,050	20,340
F 2 D	Tunnel	F 2	259.0 - 259.4	Schist	2.86	18,110	18,370

TABLE 2G-2 LABORATORY COMPRESSION WAVE VELOCITY MEASUREMENTS

TABLE 2G-3

STRENGTH, VELOCITY, AND HARDNESS DATA SAMPLES FROM TUNNEL ALIGNMENTS

SERIES

Reactis		failed along from stained Joint				failed along pre-existing but Mailed fracture			Failed along caicile filled Joint	failed along pu- wist,né but balled fracture	Falled along from stained joint			Failed along pre-existing but healed fracture	
Reck Description		Diorite - fine grained; 5000 quartz, foldspar, mailts, and ingn sulfides	Diarita · coarse grained: primarity foldspar and biscite; silght follation developed	Quarts diarits • very fine grained; quarts. faildsars.* lcrr. and wifics; med. gray	Blarter + medium to fine grained: nighty intercours: cuarts, foldspar. filts antice; lite gray: some follation developed.	Martia a mudium grainadi quarta, faidapar, • ical, sufficia Mudium gruy:scor- umat sificiansided.	Schistese diorite . fine grained; high biotite content; foilation developed to fair degree	Blarito - med. to course grained, quarte. Peidepur, bistita, merics; and iron suificies	Olabuse - Else grained feldspar, pyrite and mitics; derk gray	Querts digrits a casta grainds high querts-tridane contint, disa d'ace: ed. to lite gruy	Blogite schist : med. to fine grained: quarts. (elsser, jag marics) fine felsion all developed	Biotite schitt - ri graineri wei) éo- Walipad fine feitacion with quartz-rich layersi med, gray	Schlatme quarts digrila . fine to med. gruined: guarts. faldapar bion fild: fallation fair: med. to 3. gr	Diabuse - very fine grained; primerly feldeper and melics; derk gray	Quartitic Schist - rd. grained, mostly the rest of the rest of the rest of the transitions for any fairly developed, mad.proy
k	.	132 16.7	61	TU 16.0	61, 8.8	8. 9	12.1	8.1	16.4	7	10.:	ì		ì	1
			12			F	<u>\$</u>	, <u>s</u> i	2	;00i	8	8	j	¥	ii i
	-	6.U	1.0	1.01	3.61	8.9	8	6.9	4.6	4.46	4.76	6.13	3	1.1	3.2
Ľ		21 23	8	*	3	2 2	* *	#	11 9	61 Is	46 67	2 5	2	2 3	× *
-			;	6.32	6.01	3		<u> </u>	8.3		6.1	2.61)	ii.	<u>ş</u>	1
of Li asticity		6.21	0.M	1.46	8.0	0.51	65.0		0.62	1.4	F1	1 71	1.36	2.1	1.6
Bris o		3.72	2.76	3.26	a.)	37.2	19.2	11.2	¥.4	3.42	2.61	21.2	3.16	3.41	4.8
Ultimate	Strength	196'22	22,547	15,500	19.306	149 , 65	10,060	'n	7.026	21,290	6.510	18.16	21(1,22	24,736	18 ,436
	892	169.71	16.501	16.479	16.61	713,81	16.071	117.611	17.07,	18,624	14,96	110.11	16.771	11-11	16.621
(ellocity, fps Drv)		17.40H	16.755	16.437	16.496	N2.21	IS.014	902.71	4.09*11	18.747	14,789	17.624	1, 15 19 19	16.046	16.627
		7.606	16.492	16.312	15,624	16.616	16.014	16,996	7.007	16.423	11 .62	17,646	16.64	15,966	18.627
۹	•	17,564 17.606	16.162	16.271	16.370 15,434	16.410	14.966	17.063	17,307 17.00	16.343	289'11		16.662	15,960 15,96	16,493.18.627
	£°≩	2.55	39'2	•.2	2.73	11.1	1	3.71	10.6	*3		8.5	2.11	2.7 0	8
Depth, ft. Reck Mechanics Laboratory		23-49	95-64	19-61	13-62	17-13	2-E	73 - 86	73-#	1 9- 12				11-12	24
Depth. ft.	-	I67.0.267.1	2 68.6 -267.8	1.122-0.122	250.0-250.0	255.4-254.0	1.12-1.12	213.0-213.7	101-0-101	250.0-210.9	1-241-3-061	196.0-194.2	114.3-114.9	205.3-205.9	C.91-5.101
Boria Mi.		I - 1	401-2	A51-2	A.014	I - W	AGT-11	11-1 0 4	X1-N	1-1Y	1-11V	Alt-A		5	AIT-16

· tenpest medulors at 605 of the ultimate uncertioned strength. - initial tangent modulus

- Scimids (L-type) Rebound Hardness

 Shore Scierescapa (G-2 type) Kardnesi
 Mulified Tabar Abrasion Nordnesa

Ľ,

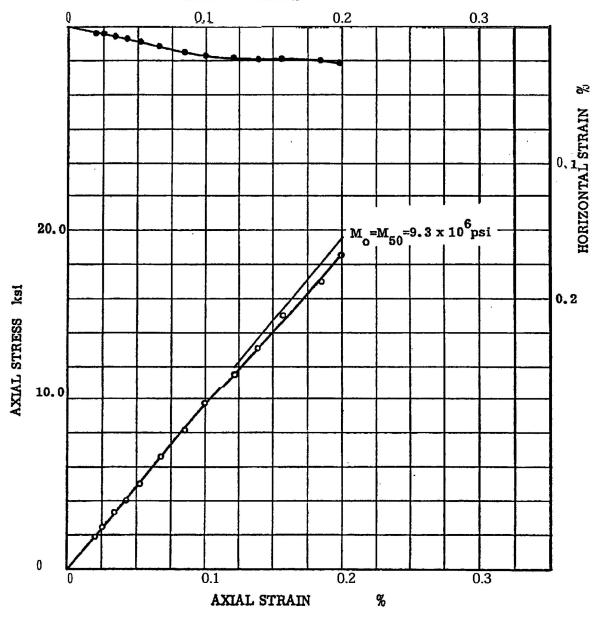
- helt Abras mon

Amendment 45 June 1982

5

45

APPENDIX 2G


STATIC AND DYNAMIC ROCK PROPERTIES

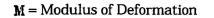
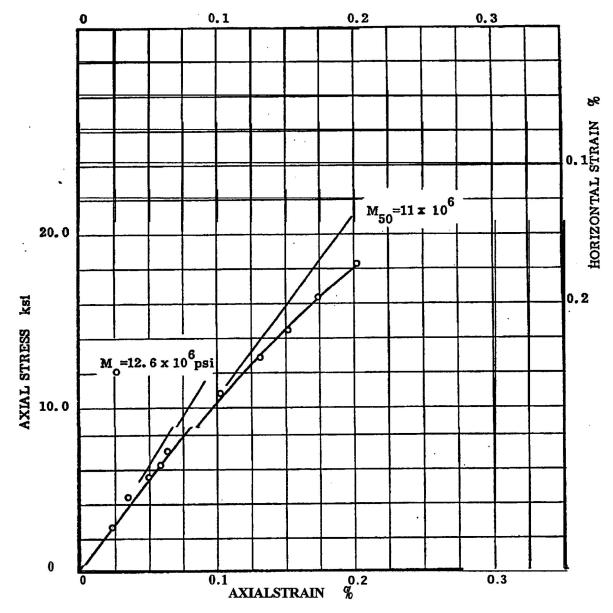

FIGURES

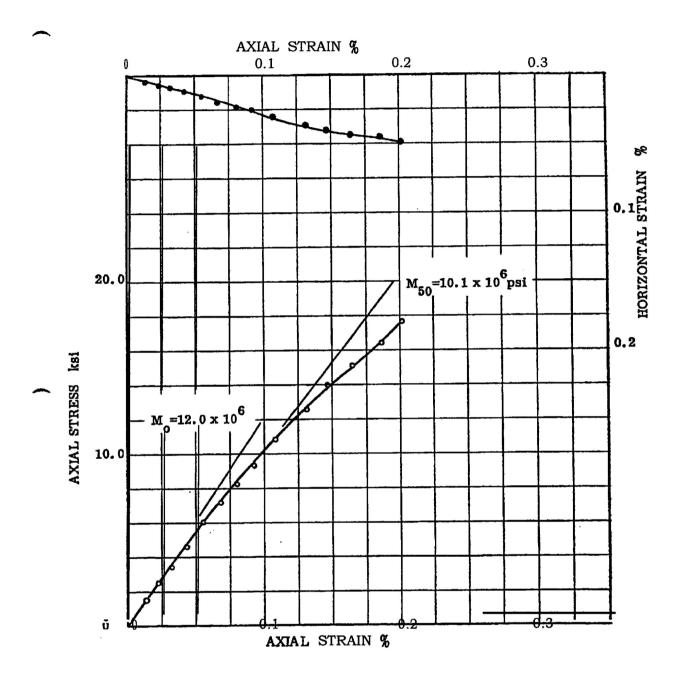
Figure	<u>Title</u>
2G-1	Unconfined Test ElF Stress-Strain Curve
2G-2	Unconfined Test E1G Stress-Strain Curve
2G-3	Unconfined Test E2A Stress-Strain Curve
2G-4	Unconfined Test E2C Stress-Strain Curve
2G-5	Unconfined Test E2J Stress-Strain Curve
2G6	Unconfined Test E2M Stress-Strain Curve
2G-7	Unconfined Test B7B Stress-Strain Curve
2G-8	Unconfined Test B42D Stress-Strain Curve
2G-9	Unconfined Test B42F Stress-Strain Curve
2610	Unconfined Test B42H Stress-Strain Curve
2611	Unconfined Test FIA Stress-Strain Curve

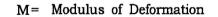
NOTE: The stress-strain curves shown in Figures 2G-1 through 2G-11 are terminated at the last strain reading before sudden, brittle failure. The maximum compressive load at failure was recorded by the testing machine and was used to calculate the compressive strengths contained in Table 2G-1.

.

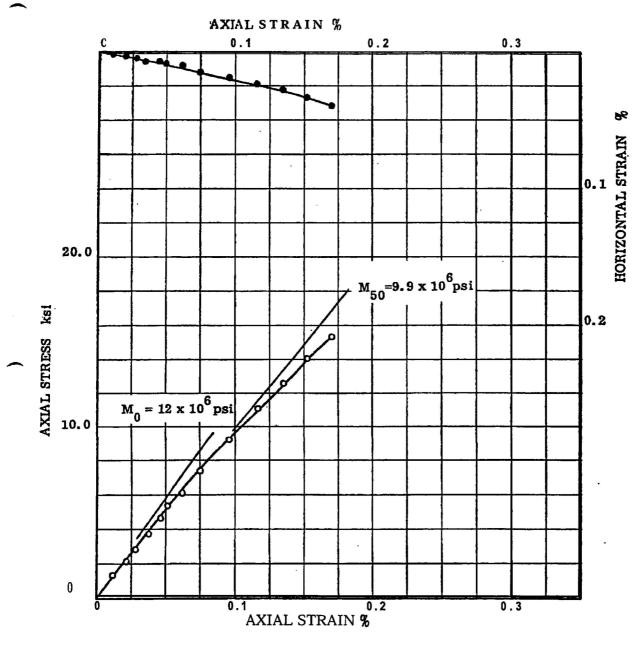


Diorite Borehole El-l Depth 79.1 to 79.5 ft

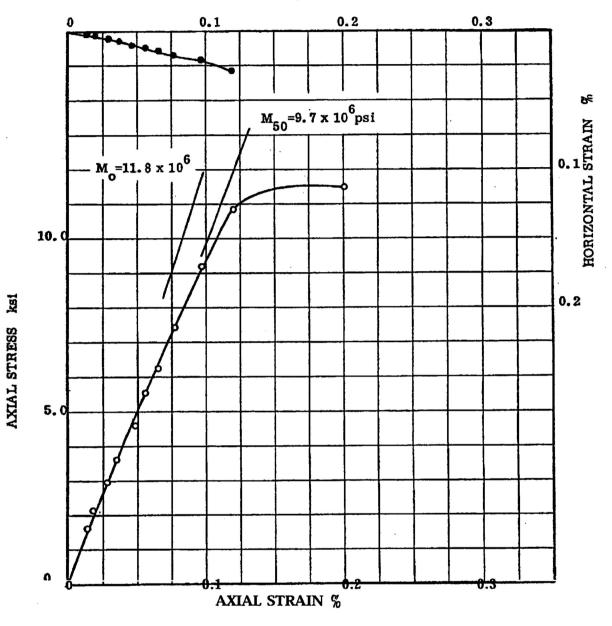

UNCONFINED TEST E 1 F STRESS -STRAIN CURVE FIGURE 2G-1


.

Diorite M = Modulus of Deformation Borehole E1-1 Depth 79.5 to 79.3 ft


UNCONFINED TEST EIG STRESS-STRAIN CURVE FIGURE 2G-2

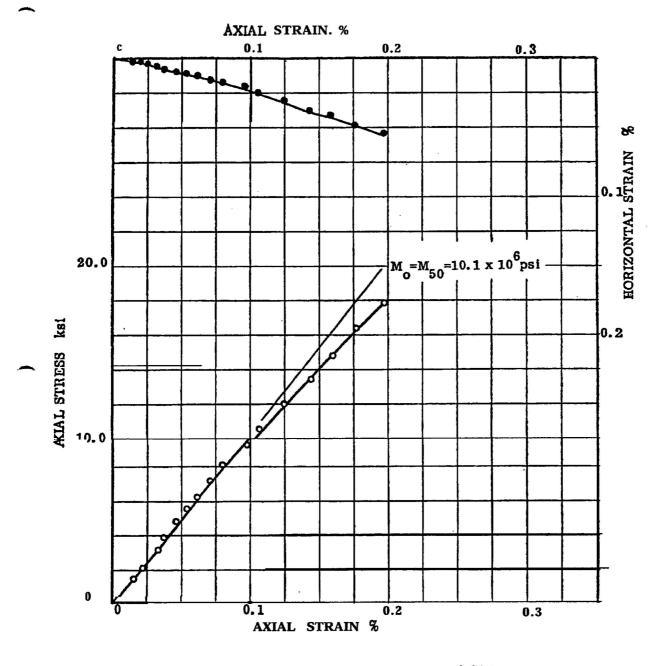
Diorite Borehole E2-2 Depth 49. 6 to 50. Oft


UNCONFINED TEST E2A STRESS-STRAIN CURVE FIGURE 2G-3

M = Meculus of Deformation

Diorite Borehole E2-2 Depth 50.4 to 50.8 ft

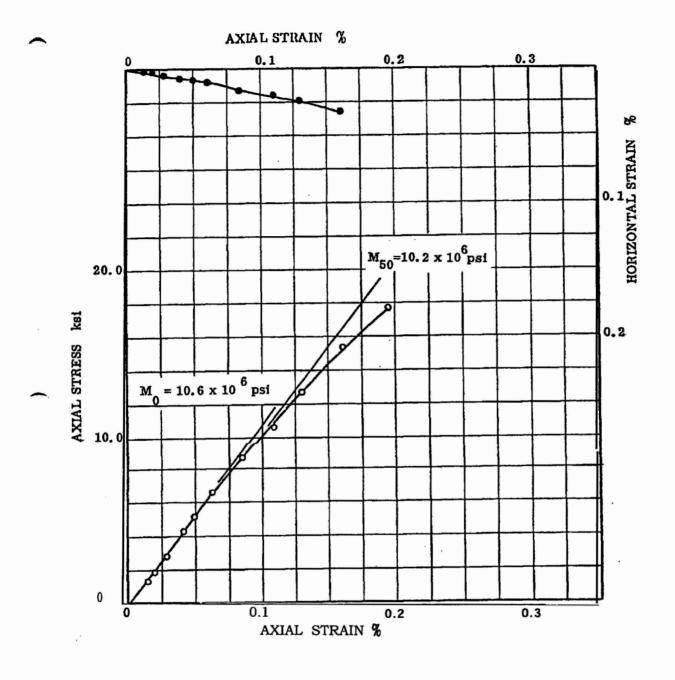
UNCONFINEDTEST E2C STRESS-STRAIN CURVE FIGURE 2G-4



M = Modulus of Deformation

Schist Borehole E2-2 Depth 139.4 to 139.8

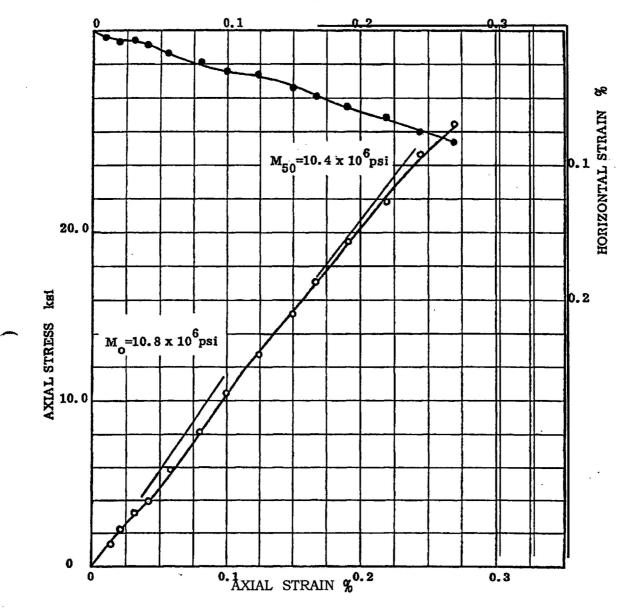
UNCONFINED TEST E2 J STRESS-STRAIN CURVE FIGURE 2G-5

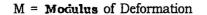

.

M = Moculus of Deformation

Schist Borehole E2-2 Depth 141.9 to 142.3 ft

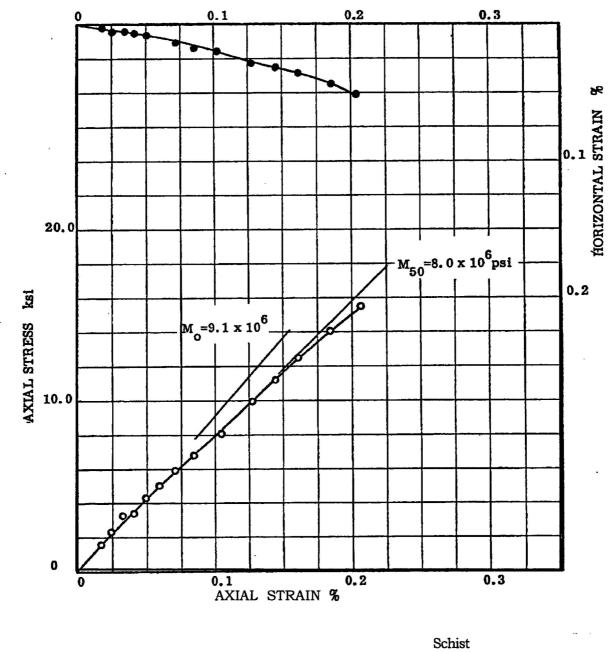
UNCONFINED TEST E2M STRESS -STRAIN CURVE FIGURE 2G-6

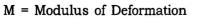



M = Modulus of Deformation

Schist Borehole B7 Depth 27.8 to 28.2 ft

UNCONFINED TEST B7B STRESS-STRAIN CURVE FIGURE 2G- 7

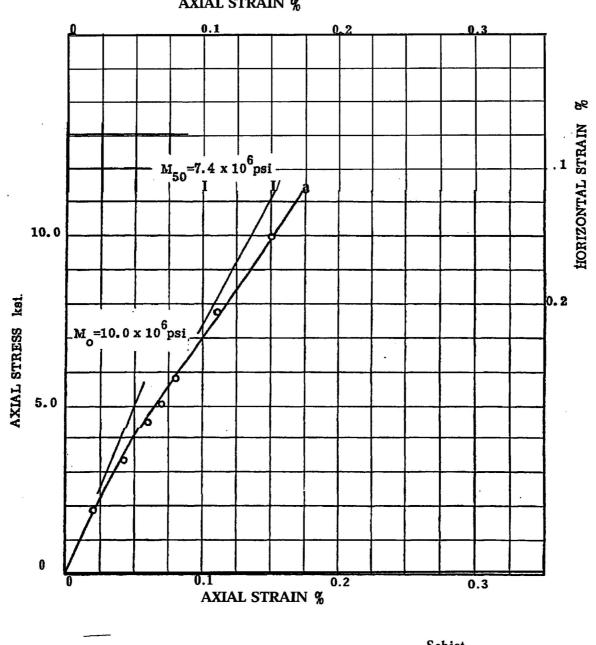


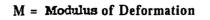


Diabase Borehole B-12 Depth 123.5 to 123.9 ft

UNCONFINED TEST 842D STRESS-STRAIN CURVE FIGURE 2G-8

~

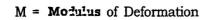




Schist Borehole B42 Depth 141.3 to 141. 7 ft

UNCONFINED TEST B42F STRESS-STRAIN CURVE FIGURE 2G-9


-



Schist Borehole B42 Depth 142.7 to 143.1 ft

UNCONFINED TEST B42H STRESS-STRAIN CURVE FIGURE 2G-10

Diorite Borehole F1A Depth 127.5 to 127. ? ft

UNCONFINED TEST F IA STRESS-STRAIN CURVE

FIGURE 2G-11