LASALLE COUNTY STATION UNITS 1 and 2

Annual Radiological Environmental Operating Report

1 January Through 31 December 2006

Prepared By

Teledyne Brown Engineering Environmental Services

Nuclear LaSalle County Station Marseilles, IL 61341

May 2007

1 of 23

Intentionally left blank

1

Table Of Contents

I.	ummary and Conclusions	. 1
II.	ntroduction A. Objectives of the REMP B. Implementation of the Objectives	.2 .2 .2
187.	Program Description A. Sample Collection B. Sample Analysis C. Data Interpretation D. Program Exceptions E. Program Changes	.2 .2 .5 .7 .8
	Results and Discussion A. Aquatic Environment 1. Surface Water 2. Ground/well Water 3. Fish 4. Sediment B. Atmospheric Environment 1. Airborne a. Air Particulates b. Airborne lodine 2. Terrestrial a. Milk b. Food Products	.8 .8 .9 .9 10 10 11 11 11
	C. Ambient Gamma Radiation D. Land Use Survey E. Summary of Results – Inter-laboratory Comparison Program	12 12 13

3 of 234

• • • • • • • • • •

•

۳

Appendices

Appendix A	Radiological Environmental Monitoring Report Summary
Tables	
Table A-1	Radiological Environmental Monitoring Program Summary for the LaSalle County Station, 2006
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
Tables	
Table B-1:	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, LaSalle County Station, 2006
Table B-2:	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, LaSalle County Station, 2006
Figures	
Figure B-1:	Inner Ring TLD Locations of the LaSalle County Station, 2006
Figure B-2:	Outer Ring TLD Locations of the LaSalle County Station, 2006
Figure B-3:	Fixed Air Sampling Locations of the LaSalle County Station, 2006
Figure B-4:	Ingestion and Waterborne Exposure Pathway Sample Locations of the LaSalle County Station, 2006
Appendix C	Data Tables and Figures - Primary Laboratory
Tables	
Table C-I.1	Concentrations of Gross Beta in Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-I.2	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-1.3	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-II.1	Concentrations of Tritium in Ground/well Water Samples Collected in the Vicinity of LaSalle County Station, 2006

î

•

Table C-II.2	Concentrations of Gamma Emitters in Ground/well Water Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-III.1	Concentrations of Gamma Emitters in Fish Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3 pCi/cu meter) in Air Particulate Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-VI.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-VII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-VIII.1	Concentrations of Gamma Emitters in Vegetation Samples Collected in the Vicinity of LaSalle County Station, 2006.
Table C-IX.1	Quarterly TLD Results for LaSalle County Station, 2006.
Table C-IX.2	Mean Quarterly TLD Results for the Inner Ring, Outer Ring, Other and Control Locations for LaSalle County Station, 2006.
Table C-IX.3	Summary of the Ambient Dosimetry Program for LaSalle County Station, 2006.
Table C-X.1	Summary of Collection Dates for Samples Collected in the Vicinity of LaSalle County Station, 2006.
Figures_	
Figure C-1	Surface Water - Gross Beta – Stations L-21 and L-40 Collected in the Vicinity of LCS, 2000 - 2006.
Figure C-2	Surface Water - Tritium – Stations L-21 (C) and L-40 Collected in the Vicinity of LCS, 2000 - 2006.
Figure C-3	Air Particulate - Gross Beta – Stations L-01 and L-03 Collected in the Vicinity of LCS, 2000 - 2006.
Figure C-4	Air Particulate - Gross Beta – Stations L-05 and L-06 Collected in the Vicinity of LCS, 2000 - 2006.

^

×

Figure C-5	Air Particulate - Gross Beta – Station L-10 (C) Collected in the Vicinity of LCS, 2000 - 2006.
Figure C-6	Air Particulate - Gross Beta – Station L-04 and L-07 Collected in the Vicinity of LCS, 2006.
Figure C-7	Air Particulate - Gross Beta – Station L-08 and L-11 Collected in the Vicinity of LCS, 2006.
Appendix D	Inter-Laboratory Comparison Program
<u>Tables</u>	
Table D-1	Analytics Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2006
Table D-2	ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2006
Table D-3	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering, 2006
Table D-4	ERA Statistical Summary Proficiency Testing Program Environmental, Inc., 2006
Table D-5	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Environmental, Inc., 2006
Appendix E	Effluent Data
Appendix F	Meteorological Data
Appendix G	Annual Radiological Groundwater Protection Program Report (ARGPPR)

٦

I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program conducted for the LaSalle County Station (LCS) by Exelon covers the period 1 January 2006 through 31 December 2006. During that time period, 1,370 analyses were performed on 1,030 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of LCS had no adverse radiological impact on the environment.

Surface water samples were analyzed for concentrations of gross beta, tritium and gamma emitting nuclides. Ground/well water samples were analyzed for concentrations of tritium and gamma emitting nuclides. No fission or activation products were detected. Gross beta and tritium activities detected were consistent with those detected in previous years.

Fish (commercially and recreationally important species) and sediment samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected in fish or sediment. Sediment samples had Cs-137 concentrations consistent with levels observed during the preoperational years. No plant produced fission or activation products were found in sediment.

Air particulate samples were analyzed for concentrations of gross beta and gamma emitting nuclides. No fission or activation products were detected.

High sensitivity I-131 analyses were performed on bi-weekly air samples. All results were less than the minimum detectable activity.

Cow milk samples were analyzed for concentrations of I-131 and gamma emitting nuclides. All I-131 results were below the minimum detectable activity. Concentrations of naturally occurring K-40 were consistent with those detected in previous years. No fission or activation products were found.

Food product samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using thermoluminescent dosimeters. Levels detected were consistent with those observed in previous years.

II. Introduction

The LaSalle County Station (LCS), consisting of two boiling water reactors, each rated for 3489 MWt, owned and operated by Exelon Corporation, is located in LaSalle County, Illinois. Unit No. 1 went critical on 16 March 1982. Unit No. 2 went critical on 02 December 1983. The site is located in northern Illinois, approximately 75 miles southwest of Chicago, Illinois.

A Radiological Environmental Monitoring Program (REMP) for LCS was initiated in 1982. (The preoperational period for most media covers the periods 1 January 1979 through 26 December 1981 and was summarized in a separate report.) This report covers those analyses performed by Teledyne Brown Engineering (TBE), Global Dosimetry, and Environmental Inc. (Midwest Labs) on samples collected during the period 1 January 2006 through 31 December 2006.

A. Objective of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways.
- 2. Establishing baseline radiological data of media within those pathways.
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.
- III. Program Description
 - A. Sample Collection

Samples for the LCS REMP were collected for Exelon Nuclear by

Environmental Inc. (Midwest Labs). This section describes the general collection methods used by Environmental Inc. (Midwest Labs) to obtain environmental samples for the LCS REMP in 2006. Sample locations and descriptions can be found in Tables B–1 and B–2, and Figures B–1 through B–4, Appendix B.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, ground/well water, fish, and sediment. Two gallon water samples were collected weekly from two surface water locations (L-21 and L-40) and composited for monthly and quarterly required analyses. Control location was L-21. Two ground/well water locations (L-27 and L-28) were also grab sampled quarterly. All samples were collected in new unused plastic bottles, which were rinsed with source water prior to collection. Fish samples comprising the flesh of bluegill, channel catfish, freshwater drum and smallmouth buffalo were collected semiannually at three locations, L-34, L-35 and L-36 (Control). Sediment samples composed of recently deposited substrate were collected at two locations semiannually, L-40 and L-41.

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, milk and food products. Airborne iodine and particulate samples were collected and analyzed weekly at nine locations (L-01, L-03, L-04, L-05, L-06, L-07, L-08, L-10 and L-11). The control location was L-10. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The air filters samples were replaced weekly and air iodine samples were replaced biweekly and sent to the laboratory for analysis. On 04/13/06, air iodine samples were replaced weekly and sent to the laboratory for analysis.

Milk samples were collected biweekly at one location (L-42) from May through October, and monthly from November through April. The control location was L-42. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Food products were collected annually in September at five locations (L-Quad C, L-Quad 1, L-Quad 2, L-Quad 3, and L-Quad 4). The control

location was L-Quad C. Various types of samples were collected and placed in new unused plastic bags, and sent to the laboratory for analysis.

Ambient Gamma Radiation

Direct radiation measurements were made using CaF_2 thermoluminescent dosimeters (TLD). Each location consisted of 2 TLD sets. The TLD locations were placed on and around the LCS site as follows:

An <u>inner ring</u> consisting of 16 locations (L-101, L-102, L-103, L-104, L-105, L-106, L-107, L-108, L-109, L-110, L-111B, L-112, L-113A, L-114, L-115 and L-116) near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off–site doses) from LCS release.

An <u>outer ring</u> consisting of 16 locations (L-201, L-202, L-203, L-204, L-205, L-206, L-207, L-208, L-209, L-210, L-211, L-212, L-213, L-214, L-215 and L-216) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

An other set consisting of eight locations (L-01, L-03, L-04, L-05, L-06, L-07, L-08 and L-11).

The balance of one location (L-10) representing the control area.

The specific TLD locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- Site meteorological data taking into account distance and elevation for each of the sixteen-22 1/2 degree sectors around the site, where estimated annual dose from LCS, if any, would be most significant;
- 3. On hills free from local obstructions and within sight of the vents (where practical);
- 4. And near the closest dwelling to the vents in the prevailing downwind direction.

(Two TLDs – each comprised of two CaF₂ thermoluminescent phosphors enclosed in plastic – were placed at each location in a PVC conduit located approximately six feet above ground level. The TLDs were exchanged quarterly and sent to Global Dosimetry for analysis.)

B. Sample Analysis

This section describes the general analytical methodologies used by TBE and Environmental Inc (Midwest Labs) to analyze the environmental samples for radioactivity for the LCS REMP in 2006. The analytical procedures used by the laboratories are listed in Table B-2.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in surface water and air particulates.
- 2. Concentrations of gamma emitters in ground/well and surface water, air particulates, milk, fish, sediment and vegetation.
- 3. Concentrations of tritium in ground/well and surface water.
- 4. Concentrations of I-131 in air and milk.
- 5. Ambient gamma radiation levels at various site environs.
- C. Data Interpretation

The radiological and direct radiation data collected prior to LaSalle County Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, LaSalle County Station was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required LCS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined above

with the exception that the measurement is an after the fact estimate of the presence of activity.

2. <u>Net Activity Calculation and Reporting of Results</u>

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity effecting a negative number. An MDC was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface water 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140, and La-140 were reported.

For ground/well water 11 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, Cs-134, Cs-137, Ba-140, and La-140 were reported.

For fish nine nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb/Zr-95, Cs-134, Cs-137 and Ba/La-140 were reported.

For sediment nine nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-95, Nb/Zr-95, Cs-134, Cs-137 and Ba/La-140 were reported.

For air particulate nine, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb/Zr-95, Cs-134, Cs-137 and Ba/La-140 were reported.

For milk 10 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb/Zr-95, Cs-134, Cs-137, Ba-140 and La-140 were reported.

For food products 10 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb/Zr-95, I-131, Cs-134, Cs-137 and Ba/La-140 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

For 2006 the LCS REMP had a sample recovery rate in excess of 99%. Sample anomalies and missed samples are listed in the tables below:

Sample Type	Location Code	Collection Date	Reason
A/I	L-10	05/25/06	Low reading of 160.8 hours possibly due to storms in area.
М	L-42	06-30-06	I-131 LLD missed due to problem with the filter paper used in the analysis.
A/I	L-06	09/14/06	No electricity; Station Point of Contact notified.
ww	L-28	10/19/06	No one available at location; collected at City Hall.

Table D-1 LISTING OF SAMPLE ANOMALIES

Table D-2 LISTING OF MISSED SAMPLES

Sample Type	Location Code	Collection Date	Reason
TLD	Other	06-30-6	TLD –103-1 found collected but not accounted for during scan-in process for reading. 3 rd quarter TLD was placed.
A/I	L-04	07/13/06	Pump running but not pumping; collector removed pump for service; placed pump #640.

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent recurrence. Occasional equipment breakdowns and power outages were unavoidable.

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation. E. Program Changes

On 04/13/06, the air iodine sample collection was changed from biweekly to weekly sample collection.

A separate program was instituted to monitor groundwater in the surrounding environs during 2006. This program and any sampling and analysis results are discussed in the attached report, "Annual Radiological Groundwater Protection Program Report".

- IV. Results and Discussion
 - A. Aquatic Environment
 - 1. Surface Water

Samples were taken weekly and composited monthly at two locations (L-21 and L-40). Of these locations only L-40 located downstream, could be affected by LaSalle's effluent releases. The following analyses were performed.

Gross Beta

Samples from all locations were analyzed for concentrations of gross beta (Table C–I.1, Appendix C). The values ranged from 5.1 to 10.5 pCi/I. Concentrations detected were consistent with those detected in previous years (Figure C–1, Appendix C). The required LLD was met.

Tritium

Quarterly composites of weekly collections were analyzed for tritium activity (Table C–I.2, Appendix C). The values ranged from <143 to <191 pCi/l. Concentrations detected were consistent with those detected in previous years (Figure C–2, Appendix C). The 2000 pCi/L OCDM and contractually required 200 pCi/L LLDs were met.

Gamma Spectrometry

Samples from both locations were analyzed for gamma emitting nuclides (Table C–I.3, Appendix C). No nuclides were detected, and all required LLDs were met.

2. Ground/well Water

Quarterly grab samples were collected at two locations (L-27 and L-28). These locations could be affected by LaSalle's effluent releases. The following analyses were performed:

Tritium

Quarterly grab samples from the locations were analyzed for tritium activity (Table C–II.1, Appendix C). No tritium was detected and the 2000 pCi/L OCDM and contractually required 200 pCi/L LLDs were met.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–II.2, Appendix C). No nuclides were detected, and all required LLDs were met.

3. Fish

Fish samples comprised bluegill, channel catfish, freshwater drum and smallmouth buffalo were collected at three locations (L-34, L-35 and L-36) semiannually. Locations L-34 and L-35 could be affected by LaSalle's effluent releases. The following analysis was performed:

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C--III.1, Appendix C). Naturally occurring K-40 was found at all stations and ranged from 2,340 to 3,990 pCi/kg wet. No fission or activation products were found.

4. Sediment

Aquatic sediment samples were collected at two locations (L-40 and L-41) semiannually. Both locations, located downstream, could be affected by LaSalle's effluent releases. The following analysis was performed:

Gamma Spectrometry

Sediment samples from both locations were analyzed for gamma

emitting nuclides (Table C–IV.1, Appendix C). Nuclides detected were naturally occurring K-40 and Cs-137.

Potassium-40 was found at both stations and ranged from 11,500 to 14,300 pCi/kg dry. Cs-137 was found in one sample at a concentration of 172 pCi/kg dry. The activity detected was consistent with those detected in previous years and is likely due to fallout from above-ground nuclear weapons testing. No LaSalle fission or activation products were found.

- B. Atmospheric Environment
 - 1. Airborne
 - a. Air Particulates

Continuous air particulate samples were collected from nine locations on a weekly basis. The nine locations were separated into four groups: Group I (onsite) represents locations within the LCS site boundary (L-05 and L-06), Group II (near site) represents the locations near the LCS site (L-01 and L-06), Group III (far field) represents the control location at an intermediate distance from LCS (L-04, L-07, L-08 and L-11) and Group IV (Control) represents the control location at a remote distance (L-10). The following analyses were performed:

Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Table C-V.1 and C-V.2, Appendix C). Detectable gross beta activity was observed at all locations. Comparison of results among the four groups aid in determining the effects, if any, resulting from the operation of LCS. The results from the OnSite locations (Group I) ranged from 6 to 35 E–3 pCi/m³ with a mean of 20 E–3 pCi/m³. The results from the near site location (Group II) ranged from <5 to 37 E-3 pCi/m³ with a mean of 20 E-3 pCi/m³. The results from the far field locations (Group III) ranged from 6 to 38 E-3 pCi/m³ with a mean of 21 E–3 pCi/m³. The results from the Control location (Group IV) ranged from 8 to 38 E-3 pCi/m³ with a mean of 20 E-3 pCi/m³. Comparison of the 2006 air particulate data with previous years data indicate no effects from the operation of LCS (Figures C-3 through C-7, Appendix C). In addition a comparison of the weekly mean

values for 2006 indicate no notable differences among the three groups.

Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C–V.3, Appendix C). Naturally occurring Be-7 due to cosmic ray activity was detected in all samples. These values ranged from 86 to $263 \text{ E}-3 \text{ pCi/m}^3$. Naturally occurring K-40 was detected in 2 samples at concentrations of 23 and 24 E–3 pCi/m³. All other nuclides were less than the MDC.

b. Airborne lodine

Continuous air samples were collected from nine locations (L-01, L-03, L-04, L-05, L-07, L-08, L-10, L-14, and L-53) and analyzed weekly for I-131 (Table C–VI.1, Appendix C). No nuclides were detected, and all required LLDs were met.

- 2. Terrestrial
 - a. Milk

Samples were collected from one location (L-42) biweekly May through October and monthly November through April. The following analyses were performed:

lodine-131

Milk samples from the location were analyzed for concentrations of I-131 (Table C–VII.1, Appendix C). No nuclides were detected. The I-131 LLD was missed on one sample. See the Program Exceptions section III.D for the explanation.

Gamma Spectrometry

Each milk sample was analyzed for concentrations of gamma emitting nuclides (Table C–VII.2, Appendix C).

Naturally occurring K-40 activity was found in all samples and ranged from 1,140 to 1,400 pCi/l. No other nuclides were detected, and all required LLDs were met.

b. Food Products

Food product samples were collected at five locations (L-Quad C, L-Quad 1, L-Quad 2, L-Quad 3 and L-Quad 4) when available. Four locations, (L-Quad 1, L-Quad 2, L-Quad 3 and L-Quad 4) could be affected by LaSalle's effluent releases. The following analysis was performed:

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–VIII.1, Appendix C). No nuclides were detected, and all required LLDs were met.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured utilizing Panasonic 814 (CaF_2) thermoluminescent dosimeters. Forty-one TLD locations were established around the site. Results of TLD measurements are listed in Tables C–IX.1 to C–IX.3, Appendix C.

Most TLD measurements were below 30 mR/standard month, with a range of 19 to 41 mR/quarter. A comparison of the Inner Ring, Outer Ring, and Other data to the Control Location data, indicate that the ambient gamma radiation levels from the Control Location L-10 were comparable.

D. Land Use Survey

A Land Use Survey conducted during the August 2006 growing season around the LaSalle County Station (LCS) was performed by Environmental Inc. (Midwest Labs) for Exelon Nuclear to comply with Radiological Effluent Control 12.5.2 of the LaSalle's Offsite Dose Calculation Manual. The purpose of the survey was to document the nearest resident, milk producing animal and garden of greater than 500 ft² in each of the sixteen 22 ½ degree sectors around the site. The distance and direction of all locations from the LCS reactor buildings were positioned using Global Positioning System (GPS) technology. There were no changes required to the LCS REMP, as a result of this survey. The results of this survey are summarized below.

Distance in Miles from the LCS Reactor Buildings									
Sector	Residence	Livestock	Milk Farm						
	Miles	Miles	Miles						
AN	3.9	4.0	-						
B NNE	1.6	1.7	-						
C NE	2.1	3.5	-						
D ENE	3.3	3.8	-						
EE	3.2	-	14.2						
F ESE	1.4	-	-						
G SE	1.7	4.7	-						
H SSE	1.8	4.7	-						
JS	1.5	4.7	-						
K SSW	0.7	-	-						
L SW	1.0	5.8	-						
M WSW	1.5	1.5	-						
NW	1.5	3.0	-						
P WNW	0.9	3.0	-						
Q NW	1.8	4.0	-						
R NNW	1.7	4.6	-						

E. Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation and water matrices (Appendix D). The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is $\pm 20\%$ of the reference value. Performance is acceptable with warning when a mean result falls in the range from $\pm 20\%$ to $\pm 30\%$ of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the primary laboratory, 24 out of 28 analytes met the specified acceptance criteria. Four samples did not meet the specified acceptance criteria for the following reasons:

- 1. Teledyne Brown Engineering's MAPEP Series 15 January 2006 soil Cs-134 was evaluated as a false positive, although TBE considered the result a non-detect due to the peak not being identified by the gamma software. MAPEP suggests the Bi-214 is not being differentiated from the Cs-134 peak. When the ratio of activity to uncertainty exceeds 3, TBE will use a key line analysis rather than a weighted mean analysis when evaluating MAPEP non-detects.
- 2. Teledyne Brown Engineering's MAPEP Series 15 January 2006 Sr-90 in vegetation result of 2.22 Bq/kg exceeded the upper acceptance range of 2.029 Bq/kg. The samples were analyzed in triplicate and the results averaged. One high result of 2.43 Bq/kg biased the submitted results on the high side. TBE was unable to determine the cause for the higher result. The Sr-90 in vegetation results for MAPEP Series 14 and MAPEP Series 16 were acceptable. No client samples were analyzed during the MAPEP Series 14 time period.
- 3. Teledyne Brown Engineering's MAPEP Series 15 January 2006 Pu-238 and Pu-239/240 in vegetation result of 2.22 Bq/kg failed the required acceptance ranges. TBE was evaluating the current preparation method for vegetation samples, which proved insufficient for the analyses. TBE does not perform isotopic Pu on client's vegetation samples.

For the secondary laboratory, 20 out of 25 analytes met the specified acceptance criteria. Seven samples did not meet the specified

acceptance criteria for the following reasons:

- 1. Environmental Inc.'s ERA November 2006 water I-131 result of 28.4 pCi/L exceeded the upper control limit of 27.3 pCi/L. The reported result was an average of three analyses, results ranged from 25.36 pCi/L to 29.23 pCi/L. A fourth analysis was performed, with a result of 24.89 pCi/L.
- 2. Environmental Inc.'s MAPEP January 2006 vegetation Pu-238 result of 0.08 Bq/sample exceeded the lower control limit of 0.10 Bq/sample due to incomplete dissolution of the sample.
- 3. Environmental Inc.'s MAPEP January 2006 air particulate Pu-238 result of 0.03 Bq/sample exceeded the lower control limit of 0.05 Bq/sample due to incomplete dissolution of the sample.
- Environmental Inc.'s MAPEP January 2006 soil Pu-238, Pu-239/240, U-233/234 and U-238 results of 14.6, 14.6, 13.5 and 15.4 Bq/kg, respectively, exceeded the lower control limits of 42.81, 32.09, 25.9 and 27.2 Bq/kg, respectively, due to incomplete dissolution of the sample.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT QUARTERLY AND ANNUAL SUMMARY

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL				DOCKET NUMBER: REPORTING PERIOD:		50-373 & 50-374 1ST OUARTER, 2006	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	TTH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
								MEASOREMENTS
SURFACE WATER (PCI/LITER)	GR-B	6	4	8.3 (3/3) (7.3/10.1)	7.7 (3/3) (6.8/ 8.7)	8.3 (3/3) (7.3/10.1)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	Н-3	2	200	191 (0/1) (<191)	189 (0/1) (<189)	191 (0/1) (<191)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	GAMMA MN-54	6	15	1 (0/3) (<1/<2)	1 (0/3) (<1/<2)	1 (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 'REAM
	CO-58		15	2 (0/3) (<1/<2)	2 (0/3) (<1/<3)	2 (0/3) (<1/<3)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	FE-59		30	4 (0/3) (<3/<6)	4 (0/3) (<3/<6)	4 (0/3) (<3/<6)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 'REAM
	CO-60		15	1 (0/3) (<1/<2)	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 TREAM
	ZN-65		30	3 (0/3) (<2/<4)	3 (0/3) (<2/<5)	3 (0/3) (<2/<5)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 Ream
	NB-95		15	2 (0/3) (<1/<3)	2 (0/3) (<1/<3)	2 (0/3) (<1/<3)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 Ream

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY:	LASALLE			DOCKET NU	MBER:	50-373 & 50-374		
LUCATION OF FACILITY:	MARSEILLES, II	4		INDICATOR	CONTROL	LOCATION V	ISI QUARTER, 2000 VITH HIGHEST ANNIAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	ZR-95		30	3 (0/3) (<2/<4)	3 (0/3) (<2/<5)	3 (0/3) (<2/<5)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	I-131		15	11 (0/3) (<8/<13)	11 (0/3) (<9/<13)	11 (0/3) (<9/<13)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 Ream
	CS-134		15	l (0/3) (<1/<2)	1 (0/3) (<1/<2)	1 (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	CS-137		18	1 (0/3) (<1/<2)	1 (0/3) (<1/<2)	1 (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	BA-140		60	24 (0/3) (<16/<40)	27 (0/3) (<17/<44)	27 (0/3) (<17/<44)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	LA-140		15	8 (0/3) (<5/<13)	9 (0/3) (<5/<15)	9 (0/3) (<5/<15)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 'REAM
GROUND WATER (PCI/LITER)	Н-3	2	200	167 (0/2) (<166/<168)	N/A	168 (0/1) (<168)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	GAMMA MN-54	2	15	8 (0/2) (<8/<8)	N/A	8 (0/1) (<8)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY:	LASALLE MAPSEILLES II			DOCKET NUMBER: REPORTING PERIOD		50-373 & 50-374 1st quarter 2006		
LOCATION OF FACILITY.	MARSEILLES, IL			INDICATOR	CONTROL	LOCATION W	VITH HIGHEST ANNUAL MEAN	I
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROUND WATER (PCI/LITER)	CO-58		15	8 (0/2) (<8/<8)	N/A	8 (0/1) (<8)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	FE-59		30	15 (0/2) (<12/<18)	N/A	18 (0/1) (<18)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	CO-60		15	9 (0/2) (<7/<11)	N/A	11 (0/1) (<11)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	ZN-65		30	18 (0/2) (<13/<22)	N/A	22 (0/1) (<22)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	NB-95		15	8 (0/2) (<7/<8)	N/A	8 (0/1) (<8)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	ZR-95		30	12 (0/2) (<11/<14)	N/A	14 (0/1) (<14)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	I-131		15	11 (0/2) (<9/<13)	N/A	13 (0/1) (<13)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	CS-134		15	8 (0/2) (<8/<8)	N/A	8 (0/1) (<8)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

×

NAME OF FACILITY: LOCATION OF FACILITY: MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	LASALLE MARSEILLES, I TYPES OF ANALYSES PERFORMED	IL NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	DOCKET NU REPORTING CONTROL LOCATION MEAN (F) RANGE	MBER: PERIOD: LOCATION MEAN (F) RANGE	50-373 & 50-374 1ST QUARTER, 2006 WITH HIGHEST ANNUAL MEA STATIONS # NAME DISTANCE AND DIRECTION	N NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROUND WATER (PCI/LITER)	CS-137		18	7 (0/2) (<6/<8)	N/A	8 (0/1) (<8)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	BA-140		60	33 (0/2) (<27/<39)	N/A	39 (0/1) (<39)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	LA-140		15	13 (0/2) (<12/<13)	N/A	13 (0/1) (<13)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	117	10	19 (104/104) (10/29)	19 (13/13) (11/28)	20 (13/13) (13/29)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
	GAMMA MN-54	9	N/A	4.9 (0/8) (< 2.9/< 6.8)	5.7 (0/1) (< 5.7)	6.8 (0/1) (< 6.8)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0
	CO-58		N/A	11.5 (0/8) (< 8.1/<18.5)	12.1 (0/1) (<12.1)	18.5 (0/1) (<18.5)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0
	FE-59		N/A	50.5 (0/8) (<22/<72.7)	61.9 (0/1) (<61.9)	72.7 (0/1) (<72.7)	L-05 INDICATOR ONSITE 5 0.3 MILES ESE OF SITE	0
	CO-60		N/A	4.5 (0/8) (< 3.3/< 6.6)	3.7 (0/1) (< 3.7)	6.6 (0/1) (< 6.6)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL				DOCKET NUMBER: REPORTING PERIOD:		50-373 & 50-374 1ST QUARTER, 2006	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION V MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PCI/CU.METER)	ZN-65		N/A	11.1 (0/8) (< 6.0/<15.1)	11.7 (0/1) (<11.7)	15.1 (0/1) (<15.1)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
	ZRNB-95		N/A	12.9 (0/8) (< 9.6/<16.1)	12.6 (0/1) (<12.6)	16.1 (0/1) (<16.1)	L-03 INDICATOR ONSITE 3 1.0 MILES ENE OF SITE	0
	CS-134		50	4.8 (0/8) (< 4.0/< 6.5)	4.2 (0/1) (< 4.2)	6.5 (0/1) (< 6.5)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0
	CS-137		60	3.9 (0/8) (< 2.3/< 4.9)	3.6 (0/1) (< 3.6)	4.9 (0/1) (< 4.9)	L-05 INDICATOR ONSITE 5 0.3 MILES ESE OF SITE	0
	BALA140		N/A	3062.5 (0/8) (<1850/<3740)	1810 (0/1) (<1810)	3740 (0/1) (<3740)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
AIR IODINE (E-3 PCI/CU.METER)	GAMMA I-131	63	70	35 (0/56) (<19/<42)	36 (0/7) (<30/<41)	37 (0/7) (<26/<42)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
MILK (PCI/LITER)	I-131	3	1	N/A	0.5 (0/3) (< 0.4/< 0.6)	0.5 (0/3) (< 0.4/< 0.6)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, II	·. · ·			DOCKET NUMBER: REPORTING PERIOD:		50-373 & 50-374 1ST OUARTER, 2006	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION MEAN (F) RANGE	WITH HIGHEST ANNUAL MEA STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	GAMMA MN-54	3	N/A	N/A	8 (0/3) (<6/<8)	8 (0/3) (<6/<8)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-58		N/A	N/A	8 (0/3) (<7/<9)	8 (0/3) (<7/<9)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	FE-59		N/A	N/A	18 (0/3) (<16/<20)	18 (0/3) (<16/<20)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-60		N/A	N/A	8 (0/3) (<7/<9)	8 (0/3) (<7/<9)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZN-65		N/A	N/A	21 (0/3) (<17/<24)	21 (0/3) (<17/<24)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZRNB-95		N/A	N/A	8 (0/3) (<7/<9)	8 (0/3) (<7/<9)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CS-134		15	N/A	10 (0/3) (<7/<11)	10 (0/3) (<7/<11)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CS-137		18	N/A	8 (0/3) (<7/<9)	8 (0/3) (<7/<9)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0

 THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL	1			DOCKET NUMBER: REPORTING PERIOD:		50-373 & 50-374 1ST QUARTER, 2006	
				INDICATOR	CONTROL LOCATION	ONTROL LOCATION WITH HIGHEST ANNUAL MEAN		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	BA-140		60	N/A	38 (0/3) (<33/<44)	38 (0/3) (<33/<44)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	LA-140		15	N/A	10 (0/3) (<8/<10)	10 (0/3) (<8/<10)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
DIRECT RADIATION (MILLI-ROENTGEN/QTR.)	TLD-QUARTERLY	82	N/A	29 (80/80) (21/33)	26 (2/2) (24/28)	33 (1/1) (33)	L-102-2 INDICATOR 0.6 MILES NNE OF SITE	0

A-7

NAME OF FACILITY:	LASALLE				DOCKET NUMBER:		50-373 & 50-374	
LOCATION OF FACILITY:	MARSEILLES, IL				REPORTING	REPORTING PERIOD: 2ND QUARTER, 2006		
	TYPES OF	NI IMBED OF	BEOLIDED	INDICATOR LOCATIONS	CONTROL LOCATION MEAN	LOCATION V	STATIONS #	NUMBER OF
PATHWAY SAMPLED (UNIT OF MEASUREMENT)	ANALYSES PERFORMED	ANALYSES PERFORMED	LOWER LIMIT OF DETECTION (LLD)	(F) RANGE	(F) RANGE	(F) RANGE	NAME DISTANCE AND DIRECTION	NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	GR-B	6	4	6.8 (3/3) (5.1/ 9.2)	7.8 (3/3) (5.6/10.5)	7.8 (3/3) (5.6/10.5)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 Ream
	Н-3	2	200	174 (0/1) (<174)	174 (0/1) (<174)	174 (0/1) (<174)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 'REAM
	GAMMA MN-54	6	15	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	CO-58		15	2 (0/3) (<2/<3)	2 (0/3) (<2/<3)	2 (0/3) (≪2/≪3)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF ŞITE	0
	FE-59		30	5 (0/3) (<4/<7)	5 (0/3) (<4/<7)	5 (0/3) (<4/<7)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	CO-60		15	2 (0/3) (<1/<2)	2 (0/3) (<1/<3)	2 (0/3) (<1/<3)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 TREAM
	ZN-65		30	4 (0/3) (<3/<5)	4 (0/3) (<3/<5)	4 (0/3) (<3/<5)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	NB-95		15	2 (0/3) (<2/<3)	2 (0/3) (<2/<3)	2 (0/3) (<2/<3)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 TREAM

.

.

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY:	LASALLE MARSFILLES II				DOCKET NUMBER: REPORTING PERIOD		50-373 & 50-374 2ND QUARTER, 2006	
LOCATION OF FACILITY.	MANJELLES, IL	1		INDICATOR	CONTROL	LOCATION V	VITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	ZR-95		30	4 (0/3) (<3/<5)	4 (0/3) (<3/<5)	4 (0/3) (<3/<5)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	I-131		15	12 (0/3) (<9/<15)	12 (0/3) (<10/<14)	12 (0/3) (<9/<15)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CS-134		15	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CS-137		18	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	BA-140		60	34 (0/3) (<21/<41)	35 (0/3) (<20/<43)	35 (0/3) (<20/<43)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
	LA-140		15	12 (0/3) (<7/<14)	12 (0/3) (<6/<15)	12 (0/3) (<6/<15)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM
GROUND WATER (PCI/LITER)	Н-3	2_	200	174 (0/2) (<171/<176)	N/A	176 (0/1) (<176)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	GAMMA MN-54	2	15	3 (0/2) (<2/<3)	N/A	3 (0/1) (<3)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0

 THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAS AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL				DOCKET NUMBER: REPORTING PERIOD:		50-373 & 50-374 2ND QUARTER, 2006	
	,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,			INDICATOR LOCATIONS	CONTROL LOCATION	LOCATION V	LOCATION WITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROUND WATER (PCI/LITER)	CO-58		15	3 (0/2) (<3/<3)	N/A	3 (0/1) (<3)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	FE-59		30	6 (0/2) (<5/<6)	N/A	6 (0/1) (<6)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	CO-60		15	3 (0/2) (<3/<3)	N/A	3 (0/1) (<3)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	ZN-65		30	6 (0/2) (<6/<6)	N/A	6 (0/1) (<6)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	NB-95		15	3 (0/2) (<3/<3)	N/A	3 (0/1) (<3)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	ZR-95		30	5 (0/2) (<4/<5)	N/A	5 (0/1) (<5)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	I-131		15	7 (0/2) (<7/<8)	N/A	8 (0/1) (<8)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	CS-134		15	3 (0/2) (<3/<3)	N/A	3 (0/1) (<3)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY: LOCATION OF FACILITY: MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	LASALLE MARSEILLES, IL TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	DOCKET NU REPORTING CONTROL LOCATION MEAN (F) RANGE	MBER: PERIOD: LOCATION V MEAN (F) RANGE	50-373 & 50-374 2ND QUARTER, 2006 VITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	N NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROUND WATER (PCI/LITER)	CS-137		18	3 (0/2) (<3/<3)	N/A	3 (0/1) (<3)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	BA-140		60	17 (0/2) (<16/<18)	N/A	18 (0/1) (<18)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	LA-140		15	6 (0/2) (<5/<6)	N/A	6 (0/1) (<6)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
FISH (PCI/KG WET)	GAMMA MN-54	6	130	70 (0/4) (<45/<100)	67 (0/2) (<65/<69)	73 (0/2) (<45/<100)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
	CO-58		130	80 (0/4) (<54/<108)	76 (0/2) (<73/<79)	84 (0/2) (<61/<108)	L-35 INDICATOR MARSEILLES POOL OF ILLINOIS I 6.5 MILES NW OF SITE	0 RIVER - DOWN
	FE-59		260	170 (0/4) (<120/<218)	147 (0/2) (<144/<150)	172 (0/2) (<140/<203)	L-35 INDICATOR MARSEILLES POOL OF ILLINOIS I 6.5 MILES NW OF SITE	0 RIVER - DOWN
	CO-60		130	73 (0/4) (<58/<88)	68 (0/2) (<67/<68)	73 (0/2) (<58/<88)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
	ZN-65		260	180 (0/4) (<128/<237)	155 (0/2) (<149/<160)	183 (0/2) (<128/<237)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, II				DOCKET NU	MBER: PERIOD:	50-373 & 50-374 2ND QUARTER, 2006	
				INDICATOR LOCATIONS	CONTROL LOCATION	LOCATION W	VITH HIGHEST ANNUAL MEAN	N
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
FISH (PCI/KG WET)	ZRNB-95		N/A	80 (0/4) (<53/<105)	80 (0/2) (<78/<81)	81 (0/2) (<58/<103)	L-35 INDICATOR MARSEILLES POOL OF ILLINOIS I 6.5 MILES NW OF SITE	0 RIVER - DOWN
	CS-134		130	74 (0/4) (<47/<93)	64 (0/2) (<60/<69)	78 (0/2) (<63/<93)	L-35 INDICATOR MARSEILLES POOL OF ILLINOIS I 6.5 MILES NW OF SITE	0 RIVER - DOWN
	CS-137		150	74 (0/4) (<47/<98)	70 (0/2) (<59/<80)	82 (0/2) (<65/<98)	L-35 INDICATOR MARSEILLES POOL OF ILLINOIS I 6.5 MILES NW OF SITE	0 RIVER - DOWN
	BALA140		N/A	204 (0/4) (<133/<275)	176 (0/2) (<154/<197)	204 (0/2) (<133/<275)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
SEDIMENT	GAMMA	2						
(PCI/KG DRY)	MN-54		N/A	76 (0/2) (<60/<92)	N/A	92 (0/1) (<92)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CO-58		N/A	78 (0/2) (<67/<89)	N/A	89 (0/1) (<89)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	· 0
	FE-59		N/A	196 (0/2) (<176/<215)	N/A	215 (0/1) (<215)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CO-60		N/A	77 (0/2) (<73/<81)	N/A	81 (0/1) (<81)	L-40 INDİCATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAS AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY:	LASALLE				DOCKET NUMBER:		50-373 & 50-374	
LOCATION OF FACILITY:	MARSEILLES, IL	,			REPORTING	PERIOD:	2ND QUARTER, 2006	
				INDICATOR	CONTROL	LOCATION W	/ITH HIGHEST ANNUAL MEAN	í
				LOCATIONS	LOCATION			
MEDIUM OR	TYPES OF	NUMBER OF	REQUIRED	MEAN	MEAN	MEAN	STATIONS #	NUMBER OF
PATHWAY SAMPLED	ANALYSES	ANALYSES	LOWER LIMIT	(F)	(F)	(F)	NAME	NONROUTINE
(UNIT OF MEASUREMENT)	PERFORMED	PERFORMED	OF DETECTION (LLD)	RANGE	RANGE	RANGE	DISTANCE AND DIRECTION	REPORTED MEASUREMENTS
SEDIMENT	ZN-65		N/A	204	N/A	213	L-40 INDICATOR	0
(PCI/KG DRY)				(0/2)		(0/1)	ILLINOIS RIVER - DOWNSTREAM	
				(<194/<213)		(<213)	5.2 MILES NNW OF SITE	
	ZRNB-95		N/A	87	N/A	97	L-40 INDICATOR	0
				(0/2)		(0/1)	ILLINOIS RIVER - DOWNSTREAM	
				(<77/<97)		(<97)	5.2 MILES NNW OF SITE	
	CS-134		150	86	N/A	98	L-40 INDICATOR	0
				(0/2)		(0/1)	ILLINOIS RIVER - DOWNSTREAM	
				(<75/<98)		(<98)	5.2 MILES NNW OF SITE	
	CS-137		180	85	N/A	97	L-40 INDICATOR	0
				(0/2)		(0/1)	ILLINOIS RIVER - DOWNSTREAM	
				(<74/<97)		(<97)	5.2 MILES NNW OF SITE	
	BALA140		N/A	166	N/A	169	L-40 INDICATOR	0
				(0/2)		(0/1)	ILLINOIS RIVER - DOWNSTREAM	
				(<162/<169)		(<169)	5.2 MILES NNW OF SITE	
AIR PARTICULATE	GR-B	117	10	16	15	17	L-11 INDICATOR	0
(E-3 PCI/CU.METER)				(103/104)	(13/13)	(13/13)	RANSOM	
				(<5/25)	(8/25)	(8/24)	6.0 MILES S OF SITE	
	GAMMA	9						
	MN-54		N/A	4.2	3.2	6.0	L-04 INDICATOR	0
				(0/8)	(0/1)	(0/1)	RTE. 170	
				(< 2.7/< 6.0)	(< 3.2)	(< 6.0)	3.2 MILES E OF SITE	
	CO-58		N/A	10.4	9.6	13.8	L-06 INDICATOR	0
				(0/8)	(0/1)	(0/1)	NEARSITE 6	
				(< 6.3/<13.8)	(< 9.6)	(<13.8)	0.4 MILES WSW OF SITE	

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

35 of 234

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL	-		INDICATOR LOCATIONS	DOCKET NUMBER: REPORTING PERIOD:		50-373 & 50-374 2ND OUARTER, 2006	
	······································				CONTROL LOCATION	LOCATION	WITH HIGHEST ANNUAL MEAN	۱ <u>.</u>
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PCI/CU.METER)	FE-59		N/A	29.2 (0/8) (<12.1/<35.8)	30.2 (0/1) (<30.2)	35.8 (0/1) (<35.8)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
	CO-60		N/A	3.5 (0/8) (< 2.9/< 4.5)	4.8 (0/1) (< 4.8)	4.8 (0/1) (< 4.8)	L-10 CONTROL STREATOR 13.5 MILES SW OF SITE	0
	ZN-65		N/A	10.4 (0/8) (< 6.3/<15.1)	12.1 (0/1) (<12.1)	15.1 (0/1) (<15.1)	L-01 INDICATOR NEARSITE 1 1.5 MILES NNW OF SITE	0
	ZRNB-95		N/A	8.7 (0/8) (< 4.5/<13.2)	8.5 (0/1) (< 8.5)	13.2 (0/1) (<13.2)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0
	CS-134		50	4.0 (0/8) (< 1.5/< 5.6)	3.6 (0/1) (< 3.6)	5.6 (0/1) (< 5.6)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
	CS-137		60	3.3 (0/8) (< 1.6/< 4.7)	3.3 (0/1) (< 3.3)	4.7 (0/1) (< 4.7)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
	BALA140		N/A	1305.4 (0/8) (<655/<2210)	303 (0/1) (<303)	2210 (0/1) (<2210)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0
AIR IODINE (E-3 PCI/CU.METER)	GAMMA I-131	108	70	57 (0/96) (<23/<70)	59 (0/12) (<43/<70)	60 (0/12) (<39/<68)	L-03 INDICATOR ONSITE 3 1.0 MILES ENE OF SITE	0
AIR IODINE (E-3 PCI/CU.METER)	GAMMA I-131 THE MEAN AND 2 S	108	70 /IATION VALUES A	57 (0/96) (≪23/≪70) \RE CALCULATE	59 (0/12) (<43/<70) D USING BOTH ¹	60 (0/12) (<39/<68) THE MDAs AND	L-03 INDICATOR ONSITE 3 1.0 MILES ENE OF SITE THE POSITIVE VALUES	0

 THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)
NAME OF FACILITY: LOCATION OF FACILITY: MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	LASALLE MARSEILLES, D TYPES OF ANALYSES PERFORMED	L NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	DOCKET NU REPORTING CONTROL LOCATION MEAN (F) RANGE	MBER: PERIOD: LOCATION MEAN (F) RANGE	50-373 & 50-374 2ND QUARTER, 2006 WITH HIGHEST ANNUAL MEA STATIONS # NAME DISTANCE AND DIRECTION	AN NUMBER OF NONROUTINE REPORTED MEASUREMENTS
			······································					
MILK (PCI/LITER)	1-131	0	I	N/A	1.0 (0/6) (< 0.3/< 2.9)	1.0 (0/6) (< 0.3/< 2.9)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	GAMMA	6						
	MN-54		N/A	N/A	8 (0/6) (<5/<10)	8 (0/6) (<5/<10)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-58		N/A	N/A	8 (0/6) (<5/<9)	8 (0/6) (<5/<9)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	FE-59		N/A	N/A	19 (0/6) (<12/<23)	19 (0/6) (<12/<23)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-60		N/A	N/A	9 (0/6) (<6/<12)	9 (0/6) (<6/<12)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZN-65		N/A	N/A	20 (0/6) (<12/<25)	20 (0/6) (<12/<25)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZRNB-95		N/A	N/A	9 (0/6) (<5/<11)	9 (0/6) (<5/<11)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CS-134		15	N/A	9 (0/6) · (<5/<13)	9 (0/6) (<5/<13)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, II				DOCKET NU	DOCKET NUMBER: 50-373 & 50-374 REPORTING PERIOD: 2ND OUARTER, 2006		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION N MEAN (F) RANGE	VITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	CS-137		18	N/A	8 (0/6) (<5/<11)	8 (0/6) (<5/<11)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	BA-140		60	N/A	41 (0/6) (<27/<51)	41 (0/6) (<27/<51)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	LA-140		15	N/A	13 (0/6) (<9/<15)	13 (0/6) (<9/<15)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
DIRECT RADIATION (MILLI-ROENTGEN/QTR.)	TLD-QUARTERLY	81	N/A	24 (79/79) (19/29)	19 (2/2) (19/19)	29 (1/1) (29)	L-210-2 INDICATOR 3.3 MILES SW OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL				DOCKET NUMBER: 50-373 & 50-374 REPORTING PERIOD: 3RD QUARTER, 2006			
	.,			INDICATOR LOCATIONS	CONTROL LOCATION	LOCATION	WITH HIGHEST ANNUAL MEAN	Ĩ
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	GR-B	6	4	8.8 (3/3) (8.2/ 9.4)	7.5 (3/3) (6.3/ 8.3)	8.8 (3/3) (8.2/ 9.4)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	Н-3	2	200	178 (0/1) (<178)	175 (0/1) (<175)	178 (0/1) (<178)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	GAMMA MN-54	6	15	l (0/3) (≪0/≪2)	1 (0/3) (<1/<1)	1 (0/3) (<0/<2)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CO-58		15	1 (0/3) (<1/<2)	1 (0/3) (<1/<1)	1 (0/3) (<1/<2)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	FE-59		30	3 (0/3) (<2/<4)	3 (0/3) (<2/<3)	3 (0/3) (<2/<4)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CO-60		15	l (0/3) (<0/<2)	1 (0/3) (<1/<1)	1 (0/3) (<0/<2)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	ZN-65		30	2 (0/3) (<1/<3)	2 (0/3) (<1/<2)	2 (0/3) (<1/<3)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	NB-95		15	1 (0/3) (<1/<2)	1 (0/3) (<1/<2)	1 (0/3) (<1/<2)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL	· · · · · · · · · · · · · · · · · · ·		INDICATOR	DOCKET NU REPORTING CONTROL	MBER: FERIOD: LOCATION W	50-373 & 50-374 3RD QUARTER, 2006 /ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	ZR-95		30	2 (0/3) (<1/<3)	2 (0/3) (<1/<3)	2 (0/3) (<1/<3)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	I-131		15	12 (0/3) (<11/<14)	12 (0/3) (<7/<15)	12 (0/3) (<11/<14)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CS-134		15	1 (0/3) (<0/<1)	1 (0/3) (<1/<1)	1 (0/3) (<0/<1)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM . 5.2 MILES NNW OF SITE	0
	CS-137		18	I (0/3) (≪0/≪2)	l (0/3) (≪0/<1)	1 (0/3) (<0/<2)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	BA-140		60	16 (0/3) (<14/<18)	16 (0/3) (<13/<19)	16 (0/3) (<14/<18)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	LA-140		15	5 (0/3) (<4/<6)	6 (0/3) (<5/<6)	6 (0/3) (<5/<6)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 'REAM
GROUND WATER (PCI/LITER)	H-3	2	200	166 (0/2) (<165/<166)	N/A	166 (0/1) (<166)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	GAMMA MN-54	2	15	3 (0/2) (<2/<3)	N/A	3 (0/1) (<3)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0

NAME OF FACILITY:	LASALLE				DOCKET NU	MBER:	50-373 & 50-374	
LOCATION OF FACILITY:	MARSEILLES, IL				REPORTING	PERIOD:	3RD QUARTER, 2006	
				LOCATIONS	CONTROL LOCATION	LOCATION W	VITH HIGHEST ANNUAL MEAN	NUMBER OF
MEDIUM OR	TYPES OF	NUMBER OF	REQUIRED	MEAN	MEAN	MEAN	STATIONS #	
PATHWAY SAMPLED	ANALYSES	ANALYSES	LOWER LIMIT	(F)	(F)	(F)	NAME	NONROUTINE
(UNIT OF MEASUREMENT)	PERFORMED	PERFORMED	(LLD)	KANGE	KANGE	KANGE	DISTANCE AND DIRECTION	MEASUREMENTS
GROUND WATER	CO-58		15	3	N/A .	3	L-27 INDICATOR	0
(PCI/LITER)				(0/2)		(0/1)	LSCS ONSITE WELL	
				(<2/<3)		(<3)	0 MILES AT STATION OF SITE	
	FE-59		30	6	N/A	7	L-27 INDICATOR	0
				(0/2)		(0/1)	LSCS ONSITE WELL	
				(<5/<7)		(<7)	0 MILES AT STATION OF SITE	
	CO-60		15	3	N/A	3	L-27 INDICATOR	0
				(0/2)		(0/1)	LSCS ONSITE WELL	
				(<2/<3)		(<3)	0 MILES AT STATION OF SITE	
	ZN-65		30	6	N/A	6	L-27 INDICATOR	0
				(0/2)		(0/1)	LSCS ONSITE WELL	
				(<5/<6)		(<6)	0 MILES AT STATION OF SITE	
	NB-95		15	3	N/A	3	L-27 INDICATOR	0
				(0/2)		(0/1)	LSCS ONSITE WELL	
				(<3/<3)		(<3)	0 MILES AT STATION OF SITE	
	ZR-95		30	5	N/A	5	L-27 INDICATOR	0
				(0/2)		(0/1)	LSCS ONSITE WELL	
				(<4/<5)		(<5)	0 MILES AT STATION OF SITE	
	I-131		15	8	N/A	9	L-27 INDICATOR	0
				(0/2)		(0/1)	LSCS ONSITE WELL	
				(<8/<9)		(<9)	0 MILES AT STATION OF SITE	
	CS-134		15	3	N/A	3	L-27 INDICATOR	0
				.(0/2)		(0/1)	LSCS ONSITE WELL	
				(<2/<3)		(<3)	0 MILES AT STATION OF SITE	

NAME OF FACILITY: LOCATION OF FACILITY: MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	LASALLE MARSEILLES, IL TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION	INDICATOR LOCATIONS MEAN (F) RANGE	DOCKET NU REPORTING CONTROL LOCATION MEAN (F) RANGE	MBER: PERIOD: LOCATION MEAN (F) RANGE	50-373 & 50-374 3RD QUARTER, 2006 WITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
								MEASOREMENTS
GROUND WATER (PCI/LITER)	CS-137		18	3 (0/2) (<2/<3)	N/A	3 (0/1) (<3)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	BA-140		60	18 (0/2) (<17/<19)	N/A	19 (0/1) (<19)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	LA-140		15	6 (0/2) (<5/<6)	N/A	6 (0/1) (<6)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	116	10	23 (103/103) (12/37)	23 (13/13) (17/34)	24 (13/13) (17/36)	L-11 INDICATOR RANSOM 6.0 MILES S OF SITE	0
	GAMMA MN-54	9	N/A	2.1 (0/8) (< 1.4/< 2.9)	1.5 (0/1) (< 1.5)	2.9 (0/1) (< 2.9)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0
	CO-58		N/A	5.3 (0/8) (< 4.3/< 6.0)	3.7 (0/1) (< 3.7)	6.0 (0/1) (< 6.0)	L-11 INDICATOR RANSOM 6.0 MILES S OF SITE	0
	FE-59		N/A	22.2 (0/8) (<12/<30.5)	25.4 (0/1) (<25.4)	30.5 (0/1) (<30.5)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0
	CO-60		N/A	1.8 (0/8) (< 1.1/< 3.3)	1.2 (0/1) (< 1.2)	3.3 (0/1) (< 3.3)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0

NAME OF FACILITY:	LASALLE				DOCKET NU	50-373 & 50-374		
LOCATION OF FACILITY:	MARSEILLES, IL				REPORTING	FPERIOD:	3RD QUARTER, 2006	
				INDICATOR	CONTROL	LOCATION W	VITH HIGHEST ANNUAL MEAN	
				LOCATIONS	LOCATION			
MEDIUM OR	TYPES OF	NUMBER OF	REQUIRED	MEAN	MEAN	MEAN	STATIONS #	NUMBER OF
PATHWAY SAMPLED	ANALYSES	ANALYSES	LOWER LIMIT	(F)	(F)	(F)	NAME	NONROUTINE
(UNIT OF MEASUREMENT)	PERFORMED	PERFORMED	OF DETECTION (LLD)	RANGE	RANGE	RANGE	DISTANCE AND DIRECTION	REPORTED MEASUREMENTS
AIR PARTICULATE	ZN-65		N/A	5.5	4.7	6.9	L-08 INDICATOR	0
(E-3 PCI/CU.METER)				(0/8)	(0/1)	(0/1)	MARSEILLES	
				(< 3.9/< 6.9)	(< 4.7)	(< 6.9)	6.0 MILES NNW OF SITE	
	ZRNB-95		N/A	7.3	5.1	11	L-08 INDICATOR	0
				(0/8)	(0/1)	(0/1)	MARSEILLES	
				(< 5.7/<11)	(< 5.1)	(<11)	6.0 MILES NNW OF SITE	
	CS-134		50	1.8	1.5	2.1	L-08 INDICATOR	0
				(0/8)	(0/1)	(0/1)	MARSEILLES	
				(< 1.6/< 2.1)	(< 1.5)	(< 2.1)	6.0 MILES NNW OF SITE	
	CS -137		60	1.9	1.4	2.4	L-03 INDICATOR	0
				(0/8)	(0/1)	(0/1)	ONSITE 3	
				(<1.4/<2.4)	(< 1.4)	(< 2.4)	1.0 MILES ENE OF SITE	
	BALA140		N/A	1909.8	4020	4020	L-10 CONTROL	0
				(0/8)	(0/1)	(0/1)	STREATOR	
				(<998/<2520)	(<4020)	(<4020)	13.5 MILES SW OF SITE	
AIR IODINE	GAMMA	116						
(E-3 PCI/CU.METER)	I-131		70	55	59	59	L-10 CONTROL	0
				(0/103)	(0/13)	(0/13)	STREATOR	
				(<15/<70)	(<27/<68)	(<27/<68)	13.5 MILES SW OF SITE	
MILK	I-131	6	1	N/A	0.5	0.5	L-42 CONTROL	0
(PCI/LITER)					(0/6)	(0/6)	BIROS FARM	
					(< 0.3/< 0.8)	(< 0.3/< 0.8)	14.2 MILES E OF SITE	

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAS AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

43 of 234

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, II	L		INDICATOR	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION		50-373 & 50-374 3RD QUARTER, 2006 WITH HIGHEST ANNUAL MEA	N
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	GAMMA MN-54	6	N/A	N/A	7 (0/6) (<6/<7)	7 (0/6) (<6/<7)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-58		N/A	N/A	7 (0/6) (<6/<8)	7 (0/6) (<6/<8)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	FE-59		N/A	N/A	16 (0/6) (<13/<18)	16 (0/6) (<13/<18)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-60		N/A	N/A	7 (0/6) (<5/<7)	7 (0/6) (<5/<7)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZN-65		N/A	N/A	16 (0/6) (<12/<19)	16 (0/6) (<12/<19)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZRNB-95		N/A	N/A	7 (0/6) (<6/<9)	7 (0/6) (<6/<9)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CS-134		15	N/A	6 (0/6) (<4/<8)	6 (0/6) (<4/<8)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CS-137		18	N/A	6 (0/6) (<5/<8)	6 (0/6) (<5/<8)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0

NAME OF FACILITY:	LASALLE				DOCKET NU	MBER:	j0-373 & 50-374			
LOCATION OF FACILITY:	MARSEILLES, IL	ı			REPORTING	PERIOD:	3RD QUARTER, 2006			
				INDICATOR	CONTROL	LOCATION V	WITH HIGHEST ANNUAL MEAN			
				LOCATIONS	LOCATION					
MEDIUM OR	TYPES OF	NUMBER OF	REQUIRED	MEAN	MEAN	MEAN	STATIONS #	NUMBER OF		
PATHWAY SAMPLED	ANALYSES	ANALYSES	LOWER LIMIT	(F)	(F)	(F)	NAME	NONROUTINE		
(UNIT OF MEASUREMENT)	PERFORMED	PERFORMED	OF DETECTION (LLD)	RANGE	RANGE	RANGE	DISTANCE AND DIRECTION	REPORTED MEASUREMENTS		
MILK	BA-140		60	N/A	36	36	L-42 CONTROL	0		
(PCI/LITER)					(0/6)	(0/6)	BIROS FARM			
					(<29/<44)	(<29/<44)	14.2 MILES E OF SITE			
	LA-140		15	N/A	11	11	L-42 CONTROL	0		
					(0/6)	(0/6)	BIROS FARM			
					(<8/<14)	(<8/<14)	14.2 MILES E OF SITE			
VEGETATION	GANGUA	10								
(PCI/LITER)	MN-54	10	N/A	11	13	14	L-OUAD 1 INDICATOR	0		
				(0/8)	(0/2)	(0/2)	DIANE PARTRIDGE	-		
				(<7/<15)	(<12/<14)	(<13/<15)	4.5 MILES NE OF SITE			
	CO-58		N/A	12	12	16		٥		
	0-38		IWA	(0/8)	(0/2)	(0/2)	DIANE PARTRIDGE	v		
				(<10/<18)	(<13/<14)	(<14/<18)	4.5 MILES NE OF SITE			
	FE-59		N/A	28	37	38	L-QUAD 1 INDICATOR	0		
				(0/8)	(0/2)	(0/2)	DIANE PARTRIDGE			
				(<22/<40)	(<33/<41)	(<36/<40)	4.5 MILES NE OF SITE			
	CO-60		N/A	12	12	16	L-QUAD 1 INDICATOR	0		
				(0/8)	(0/2)	(0/2)	DIANE PARTRIDGE			
				(<8/<18)	(<10/<14)	(<15/<18)	4.5 MILES NE OF SITE			
	ZN-65		N/A	24	33	33	L-CONTROL CONTROL	0		
				(0/8)	(0/2)	(0/2)	EUGENE CLEMENTS			
				(<18/<32)	(<27/<38)	(<27/<38)	10.0 MILES NW OF SITE			
	72NR-94		N/A	12	15	16		٥		
	641110-7J		19/12	(0/8)	(0/2)	(0/2)	DIANE PARTRIDGE	v		
				(<8/<18)	(<14/<15)	(<14/<18)	4.5 MILES NE OF SITE			
				· · · · · ·						

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL			INDICATOR LOCATIONS	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION V		50-373 & 50-374 3RD QUARTER, 2006 /ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
VEGETATION (PCI/LITER)	I-131		60	53 (0/8) (<42/<58)	48 (0/2) (<48/<49)	56 (0/2) (<55/<58)	L-QUAD 2 INDICATOR MIKE AND GINA WELBOURNE 3.8 MILES ESE OF SITE	0
	CS-134		60	9 (0/8) (<7/<13)	11 (0/2) (<10/<13)	12 (0/2) (<11/<13)	L-QUAD I INDICATOR DIANE PARTRIDGE 4.5 MILES NE OF SITE	0
	CS-137		80	11 (0/8) (<8/<14)	13 (0/2) (<11/<14)	14 (0/2) (<14/<14)	L-QUAD 1 INDICATOR DIANE PARTRIDGE 4.5 MILES NE OF SITE	0
	BALA140		N/A	27 (0/8) (<20/<33)	24 (0/2) (<22/<26)	32 (0/2) (<31/<33)	L-QUAD 2 INDICATOR MIKE AND GINA WELBOURNE 3.8 MILES ESE OF SITE	0
DIRECT RADIATION (MILLI-ROENTGEN/QTR.)	TLD-QUARTERLY	82	N/A	26 (80/80) (21/41)	24 (2/2) (22/25)	41 (1/1) (41)	L-102-2 INDICATOR 0.6 MILES NNE OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL			INDICATOR	DOCKET NU REPORTINC	DOCKET NUMBER:50-373 & 50-374REPORTING PERIOD:4TH QUARTER, 2006CONTROLLOCATION WITH HIGHEST ANNUAL MEAN				
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS		
SURFACE WATER (PCI/LITER)	GR-B	6	4	8.1 (3/3) (6.3/ 9.9)	6.7 (3/3) (5.7/ 8.5)	8.1 (3/3) (6.3/ 9.9)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0		
	Н-3	2	200	177 (1/1) (177)	143 (0/1) (<143)	177 (1/1) (177)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0		
	GAMMA MN-54	6	15	1 (0/3) (<1/<2)	1 (0/3) (<1/<2)	l (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM		
	CO-58		15	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM		
	FE-59		30	4 (0/3) (<3/<4)	4 (0/3) (<4/<5)	4 (0/3) (<4/<5)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM		
	CO-60		15	2 (0/3) (<1/<2)	1 (0/3) (<1/<2)	2 (0/3) (<1/<2)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0		
	ZN-65		30	3 (0/3) (<2/<3)	3 (0/3) (<2/<4)	3 (0/3) (<2/<4)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM		
	NB-95		15	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	2 (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 REAM		

LASALLE MADSEILLES II				DOCKET NU	MBER:	50-373 & 50-374	
Marseilles, Il			INDICATOR	CONTROL	FERIOD:	41H QUARTER, 2000	
TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
ZR-95		30	3 (0/3) (<2/<3)	3 (0/3) (<3/<4)	3 (0/3) (<3/<4)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTH 4.0 MILES NE OF SITE	0 REAM
I-131		15	13 (0/3) (<12/<14)	15 (0/3) (<15/<15)	15 (0/3) (<15/<15)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTR 4.0 MILES NE OF SITE	0 REAM
CS-134		15	1 (0/3) (<1/<1)	1 (0/3) (<1/<2)	1 (0/3) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTI 4.0 MILES NE OF SITE	0 REAM
CS-137		18	1 (0/3) (<1/<2)	2 (0/3) (<1/<2)	2 (0/3) (<1/ <2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTR 4.0 MILES NE OF SITE	0 REAM
BA-140		60	18 (0/3) (<18/<19)	21 (0/3) (<19/<23)	21 (0/3) (<19/<23)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTR 4.0 MILES NE OF SITE	0 REAM
LA-140		15	6 (0/3) (<5/<6)	7 (0/3) (<6/<8)	7 (0/3) (<6/<8)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTI 4.0 MILES NE OF SITE	0 REAM
Н-3	2	200	176 (0/2) (<170/<181)	N/A	181 (0/1) (<181)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
GAMMA MN-54	2	15	1 (0/2) (<1/<1)	N/A	1 (0/1) (<1)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	LASALLE MARSEILLES, IL TYPES OF ANALYSES PERFORMED ZR-95 I-131 CS-134 CS-134 CS-137 BA-140 LA-140 H-3 GAMMA MN-54	LASALLE MARSEILLES, IL TYPES OF ANALYSES PERFORMED 2R-95 CS-134 CS-134 CS-134 CS-137 BA-140 LA-140 H-3 2 GAMMA MN-54 2	LASALLE MARSEILLES, ILTYPES OF ANALYSES PERFORMEDNUMBER OF ANALYSES PERFORMEDREQUIRED LOWER LIMIT OF DETECTION (LD)ZR-9530I-13115CS-13415CS-13718BA-14060LA-14015H-32QAMMA MN-5421515	LASALLE MARSEILLES, IL INDICATOR IOCATIONS MEAN PERFORMED INDICATOR IOCATIONS MEAN OF DETECTION (LD) INDICATOR IOCATIONS MEAN (F) RANGE ZR-95 NUMBER OF ANALYSES PERFORMED REQUIRED LOWER LIMIT OF DETECTION (LD) IOCATIONS MEAN (F) RANGE ZR-95 30 3 (0/3) (<2/<3)	LASALLE DOCKET NI MARSEILLES, IL REPORMED TYPES OF NUMBER OF REQUIRED INDICATOR CONTROL ANALYSES NUMBER OF REQUIRED INDICATOR CONTROL ZR-95 30 3 (0/3) (0/3) ZR-95 30 3 (0/3) (10/3) L131 15 (0/3) (10/3) (15/5/15) CS-134 15 1 1 (0/3) (1/5/5/15) BA-140 60 18 21 (0/3) (1/5/2) H-3 2 200 176 N/A (0/2) (1/5/2) GAMMA 2 200 176 (0/2) (1/5/2) MA 2 200 176 N/A MOMEA 2 200 176 N/A	LASALLE DOCKET NUMBER: MARSEILLES, IL DOCKET NUMBER: TYPES OF ANALYSES PERFORMED NUMBER OF REQUIRED LOWER LIMIT OF DETECTION (LD) INDICATOR DOCKET NUMBER: REPORTING PERIOD: JOCKET NUMBER OF ANALYSES OF DETECTION (LD) INDICATOR CONTROL LOCATION VICATION VICATION VICATION (LD) ZR-95 30 3 (0/3)	LASALLE MARSEILLES, IL DOCKET NUMBER: 59.373 & 59.374 MARSEILLES, IL INDICATOR REPORTING FERIOD: ITH IGHEST ANNUAL MEAN LOCATION TYPES OF ANALYSES NUMBER OF ANALYSES REQUIRED DOWER LIMIT INDICATOR (F) IOCATION MEAN STATIONS # ZR-95 JOWER LIMIT (LD) RANGE ANAGE ANAGE DISTANCE AND DIRECTION (C3) IIIINOIS RIVER AT SENECA - UPSTI (C3/C4) IIIINOIS RIVER AT SENECA - UPSTI (C3/C4) ZR-95 JO 3 3 L21 CONTROL L21 CONTROL ZR-95 JO 3 3 L21 CONTROL L21 CONTROL L131 I5 I5 L21 CONTROL L21 CONTROL L131 I5 I5 L21 CONTROL L21 CONTROL CS-134 I5 I5 L21 CONTROL L21 CONTROL (C3/C4) (C3/C4) (C3/C4) 4.00 MILES NE OF SITE L21 CONTROL CS-134 I5 I I L1 L1LINOIS RIVER AT SENECA - UPSTI (C1/C1) (C1/C2) (C1/C2) 4.00 MILES NE OF SITE CS-137 I8 I 2 2 L21 CONTROL (C1/C2) L21 CONTROL

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL			BIDICATOR	DOCKET NU REPORTING	MBER: PERIOD:	50-373 & 50-374 4TH QUARTER, 2006	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROUND WATER (PCI/LITER)	CO-58		15	1 (0/2) (<1/<2)	N/A	2 (0/1) (<2)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	FE-59		30	3 (0/2) (<3/<4)	N/A	4 (0/1) (<4)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	CO-60		15	1 (0/2) (<1/<1)	N/A	1 (0/1) (<1)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	ZN-65		30	3 (0/2) (<2/<3)	N/A	3 (0/1) (<3)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	NB-95		15	2 (0/2) (<1/<2)	N/A	2 (0/1) (<2)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	ZR-95		30	3 (0/2) (<2/<3)	N/A	3 (0/1) (<3)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	I-131		15	8 (0/2) (<8/<9)	N/A	9 (0/1) (<9)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	CS-134		15	1 (0/2) (<1/<1)	N/A	1 (0/1) (<1)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL							
				INDICATOR	CONTROL	LOCATION W	ATH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROUND WATER (PCI/LITER)	CS-137		18	1 (0/2) (<1/<1)	N/A	1 (0/1) (<1)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	BA-140		60	14 (0/2) (<13/<15)	N/A	15 (0/1) (<15)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	LA-140		15	4 (0/2) (<4/<5)	N/A	5 (0/1) (<5)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
FISH	GAMMA	6						
(PCI/KG)	MN-54		130	63 (0/4) (<46/<82)	58 (0/2) (<42/<75)	72 (0/2) (<62/<82)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
	CO-58		130	76 (0/4) (<53/<99)	63 (0/2) (<50/<77)	90 (0/2) (<82/<99)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
	FE-59		260	196 (0/4) (<136/<240)	148 (0/2) (<94/<201)	236 (0/2) (<231/<240)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
	CO-60		130	64 (0/4) (<45/<78)	53 (0/2) (<39/<67)	67 (0/2) (<61/<74)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
	ZN-65		260	138 (0/4) (<111/<179)	114 (0/2) (<73/<156)	148 (0/2) (<116/<179)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, TL			INDICATOR	DOCKET N REPORTING CONTROL	UMBER: G PERIOD: LOCATION V	50-373 & 50-374 4TH QUARTER, 2006 /ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
FISH (PCI/KG)	ZRNB-95		N/A	109 (0/4) (<72/<126)	64 (0/2) (<47/<82)	124 (0/2) (<122/<126)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
	CS-134		130	61 (0/4) (<42/<70)	56 (0/2) (<38/<73)	66 (0/2) (<63/<70)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
	CS-137		150	67 (0/4) (<49/<84)	54 (0/2) (<36/<73)	80 (0/2) (<75/<84)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
	BALA140		N/A	329 (0/4) (<238/<385)	297 (0/2) (<230/<364)	350 (0/2) (<314/<385)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0
SEDIMENT	GAMMA	2						
(PCI/KG DRY)	MN-54		N/A	50 (0/2) (<41/<60)	N/A	60 (0/1) (<60)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CO-58		N/A	50 (0/2) (<49/<51)	N/A	51 (0/1) (<51)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	FE-59		N/A	146 (0/2) (<118/<173)	N/A	173 (0/1) (<173)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CO-60		N/A	51 (0/2) (<39/<62)	N/A	62 (0/1) (<62)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL	, <u>, , , , , , , , , , , , , , , , , , </u>	DOCKET NUMBER: 50-373 & 50-374 REPORTING PERIOD: 4TH QUARTER, 2006 INDICATOR CONTROL LOCATION WITH HIGHEST ANNUAL MEAN					
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SEDIMENT (PCI/KG DRY)	ZN-65		N/A	114 (0/2) (<112/<115)	N/A	115 (0/1) (<115)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	ZRNB-95		N/A	67 (0/2) (<60/<75)	N/A	75 (0/1) (<75)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CS-134		150	45 (0/2) (<40/<49)	N/A	49 (0/1) (<49)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CS-137		180	109 (1/2) (<46/172)	N/A	172 (1/1) (172)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	BALA140		N/A	152 (0/2) (<147/<156)	N/A	156 (0/1) (<156)	L-41 INDICATOR ILLINOIS RIVER - DOWNSTREAM 4.6 MILES NNW OF SITE	0
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	117	10	24 (104/104) (10/38)	24 (13/13) (15/38)	26 (13/13) (16/38)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
	GAMMA MN-54	9	N/A	2.3 (0/8) (< 1.1/< 3.7)	2.7 (0/1) (< 2.7)	3.7 (0/1) (< 3.7)	L-11 INDICATOR RANSOM 6.0 MILES S OF SITE	0
	CO-58		N/A	4.0 (0/8) (< 2.6/< 5.0)	6.1 (0/1) (< 6.1)	6.1 (0/1) (< 6.1)	L-10 CONTROL STREATOR 13.5 MILES SW OF SITE	0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

.

NAME OF FACILITY:	LASALLEDOCKET NUMBER:50-373 & 50-374(: MARSEILLES, ILREPORTING PERIOD:4TH OUARTER, 2006							
Location of Facility				INDICATOR	CONTROL	LOCATION V	WITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PCI/CU.METER)	FE-59		N/A	11.8 (0/8) (< 7.6/<16.5)	16.4 (0/1) (<16.4)	16.5 (0/1) (<16.5)	L-11 INDICATOR RANSOM 6.0 MILES S OF SITE	0
	CO-60		N/A	2.0 (0/8) (< 0.8/< 3.0)	1.2 (0/1) (< 1.2)	3.0 (0/1) (< 3.0)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
	ZN-65		N/A	6.0 (0/8) (< 3.0/< 9.9)	5.4 (0/1) (< 5.4)	9.9 (0/1) (< 9.9)	L-11 INDICATOR RANSOM 6.0 MILES S OF SITE	0
	ZRNB-95		N/A	4.3 (0/8) (< 2.7/< 6.1)	6.2 (0/1) (< 6.2)	6.2 (0/1) (< 6.2)	L-10 CONTROL STREATOR 13.5 MILES SW OF SITE	0
	CS-134		50	2.2 (0/8) (< 1.4/< 3.2)	2.8 (0/1) (< 2.8)	3.2 (0/1) (< 3.2)	L-07 INDICATOR SENECA 5.2 MILES NNE OF SITE	0
	CS-137		60	2.1 (0/8) (< 1.1/< 3.0)	2.5 (0/1) (< 2.5)	3.0 (0/1) (< 3.0)	L-11 INDICATOR RANSOM 6.0 MILES S OF SITE	0
	BALA140		N/A	180.6 (0/8) (<99.8/<236)	262 (0/1) (<262)	262 (0/1) (<262)	L-10 CONTROL STREATOR 13.5 MILES SW OF SITE	0
AIR IODINE (E-3 PCI/CU.METER)	GAMMA I-131	117	70	35 (0/104) (<12/<65)	40 (0/13) (<20/<65)	40 (0/13) (<20/<65)	L-10 CONTROL STREATOR 13.5 MILES SW OF SITE	0

53 of 234

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL		REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	DOCKET NU REPORTING CONTROL	JMBER: G PERIOD: LOCATION W	50-373 & 50-374 4TH QUARTER, 2006 VITH HIGHEST ANNUAL MEAN	N
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED			LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	I-131	4	1	N/A	0.5 (0/4) (< 0.3/< 0.7)	0.5 (0/4) (< 0.3/< 0.7)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	GAMMA MN-54	4	N/A	N/A	6 (0/4) (<5/<6)	6 (0/4) (<5/<6)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-58		N/A	N/A	6 (0/4) (<5/<7)	6 (0/4) (<5/<7)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	FE-59		N/A	N/A	15 (0/4) (<14/<17)	15 (0/4) (<14/<17)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-60		N/A	N/A	6 (0/4) (<5/<7)	6 (0/4) (<5/<7)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZN-65		N/A	N/A	13 (0/4) (<10/<16)	13 (0/4) (<10/<16)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZRNB-95		N/A	N/A	6 (0/4) (<6/<7)	6 (0/4) (<6/<7)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CS-134		15	N/A	5 (0/4) (<5/<6)	5 (0/4) (<5/<6)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES. IL				DOCKET NU	MBER: PERIOD:	50-373 & 50-374 4TH OUARTER, 2006	
				INDICATOR LOCATIONS	CONTROL LOCATION	LOCATION W	ATH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	CS-137		18	N/A	6 (0/4) (<5/<6)	6 (0/4) (<5/<6)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	BA-140		60	N/A	43 (0/4) (<40/<49)	43 (0/4) (<40/<49)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	LA-140		15	N/A	11 (0/4) (<8/<14)	11 (0/4) (<8/<14)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
DIRECT RADIATION (MILLI-ROENTGEN/QTR.)	TLD-QUARTERLY	82	N/A	27 (80/80) (23/30)	24 (2/2) (23/24)	30 (1/1) (30)	L-102-2 INDICATOR* 0.6 MILES NNE OF SITE	0

* L-105-1 also read 30 mrem.

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

55 of 234

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL				DOCKET NU REPORTING	MBER: PERIOD:	50-373 & 50-374 ANNUAL, 2006	
	······································			INDICATOR	CONTROL	LOCATION	WITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	GR-B	24	4	8.0 (12/12) (5.1/10.1)	7.4 (12/12) (5.6/10.5)	8.0 (12/12) (5.1/10.1)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	H-3	8	200	180 (1/4) (<174/<191)	170 (0/4) (<143/<189)	180 (1/4) (<174/<191)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	GAMMA MN-54	24	15	1 (0/12) (<0/<2)	1 (0/12) (<1/<2)	1 (0/12) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTA 4.0 MILES NE OF SITE	0 Ream
	CO-58		15	2 (0/12) (<1/<3)	2 (0/12) (<1/<3)	2 (0/12) (<1/<3)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTH 4.0 MILES NE OF SITE	0 REAM
	FE-59		30	4 (0/12) (<2/<7)	4 (0/12) (<2/<7)	4 (0/12) (<2/<7)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTR 4.0 MILES NE OF SITE	0 REAM
	CO-60		15	l (0/12) (<0/<2)	1 (0/12) (<1/<3)	1 (0/12) (<1/<3)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTR 4.0 MILES NE OF SITE	0 REAM
	ZN-65		30	3 (0/12) (<1/<5)	3 (0/12) (<1/<5)	3 (0/12) (<1/<5)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTR 4.0 MILES NE OF SITE	0 REAM
	NB-95		15	2 (0/12) (<1/<3)	2 (0/12) (<1/<3)	2 (0/12) (<1/<3)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTR 4.0 MILES NE OF SITE	0 REAM

NAME OF FACILITY:	LASALLE				DOCKET NU	MBER:	50-373 & 50-374	
LOCATION OF FACILITY:	MARSEILLES, IL	,			REPORTING	PERIOD:	ANNUAL, 2006	
				INDICATOR	CONTROL	LOCATION V	VITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	ZR-95		30	3 (0/12) (<1/<5)	3 (0/12) (<1/<5)	3 (0/12) (<1/<5)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 TREAM
	I-131		15	12 (0/12) (<8/<15)	12 (0/12) (<7/<15)	12 (0/12) (<7/<15)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 TREAM
	CS-134		15	1 (0/12) (<0/<2)	1 (0/12) (<1/<2)	l (0/12) (<1/<2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 TREAM
	CS-137		18	1 (0/12) (<0/<2)	1 (0/12) (<0/<2)	1 (0/12) (⊲0/⊲2)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 TREAM
	BA-140		60	23 (0/12) (<14/<41)	25 (0/12) (<13/<44)	25 (0/12) (<13/<44)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 TREAM
	LA-140		15	8 (0/12) (<4/<14)	8 (0/12) (<5/<15)	8 (0/12) (<5/<15)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPST 4.0 MILES NE OF SITE	0 TREAM
GROUND WATER (PCI/LITER)	Н-3	8	200	170 (0/8) (<165/<181)	N/A	171 (0/4) (<166/<181)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	GAMMA MN-54	8	15	4 (0/8) (<1/<8)	N/A	4 (0/4) (<1/<8)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE DOCKET NUMBER: 50-373 & 50-374 FY: MARSEILLES, IL REPORTING PERIOD: ANNUAL, 2006 INDICATOR CONTROL & OCATION WITH INCHEST ANNUAL ME							
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION W MEAN (F) RANGE	VITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROUND WATER (PCI/LITER)	CO-58		15	4 (0/8) (<1/<8)	N/A	4 (0/4) (<2/<8)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0
	FE-59		30	7 (0/8) (<3/<18)	N/A	8 (0/4) (<3/<18)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	CO-60		15	4 (0/8) (<1/<11)	N/A	4 (0/4) (<1/<11)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	ZN-65		30	8 (0/8) (<2/<22)	N/A	9 (0/4) (<2/<22)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	NB-95		15	4 (0/8) (<1/<8)	N/A	4 (0/4) (<1/<8)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	ZR-95		30	6 (0/8) (<2/<14)	N/A	6 (0/4) (<2/<14)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	I-131		15	9 (0/8) (<7/<13)	N/A	9 (0/4) (<7/<13)	L-27 INDICATOR LSCS ONSITE WELL 0 MILES AT STATION OF SITE	0
	CS-134		15	4 (0/8) (<1/<8)	N/A	4 (0/4) (<1/<8)	L-28 INDICATOR MARSEILLES WELL 7.0 MILES NW OF SITE	0

LASALLE	LLE DOCKET NUMBER: 50-373 & 50-374						
MARSEILLES, IL				REPORTING	PERIOD:	ANNUAL, 2006	
			INDICATOR	CONTROL	LOCATION	WITH HIGHEST ANNUAL MEAN	N
			LOCATIONS	LOCATION			
TYPES OF	NUMBER OF	REQUIRED	MEAN	MEAN	MEAN	STATIONS #	NUMBER OF
ANALYSES	ANALYSES	LOWER LIMIT	(F)	(F)	(F)	NAME	NONROUTINE
PERFORMED	PERFORMED	OF DETECTION	RANGE	RANGE	RANGE RANGE	ANGE DISTANCE AND DIRECTION	REPORTED
		(LLD)					MEASUREMENTS
CS-137		18	3	N/A	4	L-27 INDICATOR	0
			(0/8)		(0/4)	LSCS ONSITE WELL	
			(<1/<8)		(<1/<8)	0 MILES AT STATION OF SITE	
BA-140		60	20	N/A	22	L-27 INDICATOR	0
			(0/8)		(0/4)	LSCS ONSITE WELL	
			(<13/<39)		(<13/<39)	0 MILES AT STATION OF SITE	
LA-140		15	7	N/A	7	L-27 INDICATOR	0
			(0/8)		(0/4)	LSCS ONSITE WELL	
			(<4/<13)		(<4/<13)	0 MILES AT STATION OF SITE	
GAMMA	12						
MN-54		130	67	63	72	L-34 INDICATOR	0
			(0/8)	(0/4)	(0/4)	LASALLE COOLING LAKE	
			(<45/<100)	(<42/<75)	(<45/<100)	2.0 MILES E OF SITE	
CO-58		130	78	70	83	L-34 INDICATOR	0
			(0/8)	(0/4)	(0/4)	LASALLE COOLING LAKE	
			(<53/<108)	(<50/<79)	(<54/<99)	2.0 MILES E OF SITE	
FE-59 `		260	183	147	202	L-34 INDICATOR	0
			(0/8)	(0/4)	(0/4)	LASALLE COOLING LAKE	
			(<120/<240)	(<94/<201)	(<120/<240)	2.0 MILES E OF SITE	
CO-60		130	69	60	70	L-34 INDICATOR	0
			(0/8)	(0/4)	(0/4)	LASALLE COOLING LAKE	
			(<45/<88)	(<39/<68)	(<58/<88)	2.0 MILES E OF SITE	
ZN-65		260	159	134	165	L-34 INDICATOR	0
			(0/8)	(0/4)	(0/4)	LASALLE COOLING LAKE	
			(<111/<237)	(<73/<160)	(<116/<237)	2.0 MILES E OF SITE	
	IASALLE MARSEILLES, IL TYPES OF ANALYSES PERFORMED CS-137 BA-140 LA-140 GAMMA MN-54 CO-58 FE-59 CO-60 ZN-65	LASALLE MARSEILLES, IL TYPES OF NUMBER OF ANALYSES ANALYSES PERFORMED PERFORMED CS-137 BA-140 LA-140 LA-140 GAMMA 12 MN-54 12 FE-59 CO-60 ZN-65 ZN-65	LASALLE MARSEILLES, ILTYPES OF ANALYSESNUMBER OF ANALYSESREQUIRED LOWER LIMIT OF DETECTION (LD)CS-13718BA-14060LA-14015GAMMA MN-5412CO-58130FE-59260CO-60130ZN-65260	LASALLE INDICATOR MARSEILLES, IL INDICATOR TYPES OF NUMBER OF REQUIRED LOCATIONS ANALYSES ANALYSES LOWER LIMIT (F) PERFORMED PERFORMED OF DETECTION (F) CS-137 18 3 (0/8) EA-140 60 20 (0/8) BA-140 60 20 (0/8) LA-140 15 7 (0/8) GAMMA 12 130 67 MN-54 130 67 (0/8) FE-59 260 183 (O/8) (<13/< 39)	LASALLE DUMBER OF REQUIRED NUMBER OF REQUIRED NUMBER OF REQUIRED NUMBER OF REQUIRED MEAN MEAN TYPES OF ANALYSES DOWER LIMIT OF DETECTION I.OCATIONS LOCATION PERFORMED PERFORMED OF DETECTION I.B 3 N/A CS-137 I.B 3 N/A BA-140 60 20 N/A GAMMA 12 15 7 N/A MN-54 130 67 63 (0%) (c4/c13) (0%) (c4/c2/c75) CO-58 130 78 70 (0%) (0%) (c4/c20) (c4/c20) FE-59 260 183 147 (0%) (0%) (0/4) (c45/c38) (c39/c68) ZN-65 260 159 134 (0%) (0/4) (0%) (0/4) (c45/c48) (c45/c46) (c45/c46) (c45/c46)	LASALLE DUCKET NOTHERA MARSEILLES, IL REPORTING PERIOD: TYPES OF NUMBER OF REQUIRED LOCATION LOCATION ANALYSES ANALYSES DOVER LIMIT OF DETECTION MEAN MEAN PERFORMED PERFORMED OF DETECTION RANGE RANGE RANGE CS-137 18 3 N/A 4 (UD) (CV-8) (C1/-8) (C4/-4) CS-137 18 3 N/A 4 (CV-8) (CV-8) (C4/-8) (C4/-8) BA-140 60 20 N/A 22 (CV-8) (CV-8) (C4/-8) (C4/-78) LA-140 15 7 (N/A 7 (0/8) (C4/-13) (C4/-13) (C4/-13) GAMMA 12 130 67 63 72 (CV-58 130 78 70 83 (CV-58 130 78 70 (C4/-C50) (C4/-C50) CO-58 130 78 (C4/-200) (C4/-C50) (C4/-C50)<	LASALLE DUCATI NUMBER DUCATI NUMBER DUCATION DUCATI NUMBER DUCATION DUCATION SUCCESS TYPES OF ANALYSES NUMBER OF ANALYSES REQUIRED ANALYSES NUMBER OF ANALYSES REQUIRED OF DETECTION (LLD) MEAN (F) L37 MEAN (F) MEAN (

NAME OF FACILITY:	LASALLE				DOCKET NU	JMBER:	t: 50-373 & 50-374				
LOCATION OF FACILITY:	MARSEILLES, IL	,			REPORTING	G PERIOD:	ANNUAL, 2006				
				INDICATOR	CONTROL	LOCATION	WITH HIGHEST ANNUAL MEAN				
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS			
MERBOREMENT			(220)					MERSOREMENTS			
FISH (PCI/KG WET)	ZRNB-95		N/A	94 (0/8) (<53/<126)	72 (0/4) (<47/<82)	102 (0/4) (<53/<126)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	Q.			
	CS-134		130	67 (0/8) (<42/<93)	60 (0/4) (<38/<73)	68 (0/4) (<47/<93)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0			
	CS-137		150	71 (0/8) (<47/<98)	62 (0/4) (<36/<80)	73 (0/4) (<47/<87)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0			
	BALA140		N/A	266 (0/8) (<133/<385)	236 (0/4) (<154/<364)	277 (0/4) (<133/<385)	L-34 INDICATOR LASALLE COOLING LAKE 2.0 MILES E OF SITE	0			
SEDIMENT	GAMMA	4									
(PCI/KG DRY)	MN-54		N/A	63 (0/4) (<41/<92)	N/A	76 (0/2) (<60/<92)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0			
	CO-58		N/A	64 (0/4) (<49/<89)	N/A	70 (0/2) (<51/<89)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0			
	FE-59		N/A	171 (0/4) (<118/<215)	N/A	194 (0/2) (<173/<215)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0			
	CO-60		N/A	64 (0/4) (<39/<81)	N/A	71 (0/2) (<62/<81)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0			

NAME OF FACILITY:	LASALLE				DOCKET NUMBER:		50-373 & 50-374	
LOCATION OF FACILITY:	MARSEILLES, IL				REPORTING	PERIOD:	ANNUAL, 2006	
				INDICATOR	CONTROL	LOCATION	WITH HIGHEST ANNUAL MEAN	I
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
			()					
SEDIMENT (PCI/KG DRY)	ZN-65		N/A	159 (0/4) (<112/<213)	N/A	164 (0/2) (<115/<213)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	Û
	ZRNB-95		N/A	77 (0/4) (<60/<97)	N/A	86 (0/2) (<75/<97)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CS-134		150	65 (0/4) (<40/<98)	N/A	73 (0/2) (<49/<98)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	CS-137		180	97 (1/4) (<46/172)	N/A	135 (1/2) (<97/172)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	BALA140		N/A	159 (0/4) (<147/<169)	N/A	159 (0/2) (<156/<162)	L-41 INDICATOR ILLINOIS RIVER - DOWNSTREAM 4.6 MILES NNW OF SITE	0
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	467	10	20 (414/415) (<5/38)	20 (52/52) (8/38)	21 (51/51) (10/38)	L-04 INDICATOR RTE. 170 3.2 MILES E OF SITE	0
	GAMMA MN-54	36	N/A	3.4 (0/32) (< 1.1/< 6.8)	3.2 (0/4) (< 1.5/< 5.7)	4.3 (0/4) (< 2.6/< 6.8)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0
	CO-58		N/A	7.8 (0/32) (< 2.6/<18.5)	7.9 (0/4) (< 3.7/<12.1)	9,9 (0/4) (< 4.3/<18.5)	L-08 INDICATOR MARSEILLES 6.0 MILES NNW OF SITE	0

NAME OF FACILITY:	LASALLE				DOCKET NUMBER:		50-373 & 50-374	
LOCATION OF FACILITY:	MARSEILLES, IL		IN LO	Distanton	REPORTING	FERIOD:	ANNUAL, 2006	
				INDICATOR LOCATIONS	LOCATION	LOCATION	WIIN MIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED	ANALYSES	NUMBER OF	REQUIRED	MEAN (F)	MEAN (F)	MEAN (F)	STATIONS # NAME	NUMBER OF NONROUTINE
(UNIT OF MEASUREMENT)	PERFORMED	PERFORMED	OF DETECTION (LLD)		RANGE	RANGE	DISTANCE AND DIRECTION	REPORTED MEASUREMENTS
AIR PARTICULATE	FE-59		N/A	28.4	33.5	33.8	L-05 INDICATOR	0
(E-5 TEPCO.METER)				(<7.6/<72.7)	(0/4) (<16.4/<61.9)	(0/4) (<10.9/<72.7)	0.3 MILES ESE OF SITE	
	CO-60		N/A	2.9	2.8	3.6	L-08 INDICATOR	0
				(< 0.8/< 6.6)	(0/4) (< 1.2/< 4.8)	(0/4) (< 1.6/< 6.6)	6.0 MILES NNW OF SITE	
	ZN-65		N/A	8.2	8.5	10.9	L-04 INDICATOR	0
				(0/32) (< 3.0/<15.1)	(0/4) (< 4.7/<12.1)	(0/4) (< 5.0/<15.1)	3.2 MILES E OF SITE	
	ZRNB-95		N/A	8.3	8.1	10.5	L-08 INDICATOR	0
				(0/32) (< 2.7/<16.1)	(0/4) (< 5.1/<12.6)	(0/4) (< 3.7/<14.1)	MARSEILLES 6.0 MILES NNW OF SITE	
	CS-134		50	3.2	3.0	3.9	L-08 INDICATOR	0
				(0/32) (< 1.4/< 6.5)	(0/4) (< 1.5/< 4.2)	(0/4) (< 2.1/< 6.5)	MARSEILLES 6.0 MILES NNW OF SITE	
	CS-137		60	2.8	2.7	3.3	L-03 INDICATOR	0
				(0/32) (< 1.1/< 4.9)	(0/4) (< 1.4/< 3.6)	(0/4) (< 2.4/< 4.2)	ONSITE 3 1.0 MILES ENE OF SITE	
	BALA140		N/A	1614.6	1598.8	2001.5	L-08 INDICATOR	0
				(0/32) (<99.8/<3740)	(0/4) (<262/<4020)	(0/4) (<226/<3050)	MARSEILLES 6.0 MILES NNW OF SITE	
AIR IODINE	GAMMA	404						
(E-3 PCI/CU.METER)	I-131		70	46 (0/359)	50 (0/45)	50 (0/45)	L-10 CONTROL STREATOR	0
				(<12/<70)	(<20/<70)	(<20/<70)	13.5 MILES SW OF SITE	

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, IL				DOCKET NU	MBER: PERIOD:	50-373 & 50-374 ANNUAL, 2006	
				INDICATOR LOCATIONS	CONTROL LOCATION	LOCATION W	/ITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	I-131	19	1	N/A	0.7 (0/19) (< 0.3/< 2.9)	0.7 (0/19) (< 0.3/< 2.9)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	GAMMA MN-54	19	N/A	N/A	7 (0/19) (<5/<10)	7 (0/19) (<5/<10)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-58		N/A	N/A	7 (0/19) (<5/<9)	7 (0/19) (<5/<9)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	FE-59		N/A	N/A	17 (0/19) (<12/<23)	17 (0/19) (<12/<23)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CO-60		N/A	N/A	7 (0/19) (<5/<12)	7 (0/19) (<5/<12)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZN-65		N/A	N/A	17 (0/19) (<10/<25)	17 (0/19) (<10/<25)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	ZRNB-95		N/A	N/A	8 (0/19) (<5/<11)	8 (0/19) (<5/<11)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	CS-134		15	N/A	7 (0/19) (<4/<13)	7 (0/19) (<4/<13)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0

NAME OF FACILITY:	LASALLE			DOCKET NUMBER:		50-373 & 50-374		
LOCATION OF FACILITY:	MARSEILLES, IL	ı –			REPORTING	PERIOD:	ANNUAL, 2006	
				INDICATOR	CONTROL	LOCATION	WITH HIGHEST ANNUAL MEA	N
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATIONS # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	CS-137		18	N/A	7 (0/19) (<5/<11)	7 (0/19) (<5/<11)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	BA-140		60	N/A	39 (0/19) (<27/<51)	39 (0/19) (<27/<51)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
	LA-140		15	N/A	11 (0/19) (<8/<15)	11 (0/19) (<8/<15)	L-42 CONTROL BIROS FARM 14.2 MILES E OF SITE	0
VEGETATION	GAMMA	10						
(PCI/LITER)	MN-54		N/A	11 (0/8) (<7/<15)	13 (0/2) (<12/<14)	14 (0/2) (<13/<15)	L-QUAD 1 INDICATOR DIANE PARTRIDGE 4.5 MILES NE OF SITE	0
	CO-58		N/A	12 (0/8) (<10/<18)	13 (0/2) (<13/<14)	16 (0/2) (<14/<18)	L-QUAD 1 INDICATOR DIANE PARTRIDGE 4.5 MILES NE OF SITE	0
	FE-59		N/A	28 (0/8) (<22/<40)	37 (0/2) (<33/<41)	38 (0/2) (<36/<40)	L-QUAD 1 INDICATOR DIANE PARTRIDGE 4.5 MILES NE OF SITE	0
	CO-60		N/A	12 (0/8) (<8/<18)	12 (0/2) (<10/<14)	16 (0/2) (<15/<18)	L-QUAD 1 INDICATOR DIANE PARTRIDGE 4.5 MILES NE OF SITE	0
	ZN-65		N/A	24 (0/8) (<18/<32)	33 (0/2) (<27/<38)	33 (0/2) (<27/<38)	L-CONTROL CONTROL EUGENE CLEMENTS 10.0 MILES NW OF SITE	0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING BOTH THE MDAs AND THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

64 of 234

NAME OF FACILITY: LOCATION OF FACILITY:	LASALLE MARSEILLES, N				DOCKET NUMBER: REPORTING PERIOD:		50-373 & 50-374 ANNUAL, 2006	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	CONTROL LOCATION MEAN (F) RANGE	LOCATION MEAN (F) RANGE	I WITH HIGHEST ANNUAL MEAN STATIONS # NAME DISTANCE AND DIRECTION	N NUMBER OF NONROUTINE REPORTED MEASUREMENTS
VEGETATION (PCI/LITER)	ZRNB-95		N/A	12 (0/8) (<8/<18)	15 (0/2) (<14/<15)	16 (0/2) (<14/<18)	L-QUAD 1 INDICATOR DIANE PARTRIDGE 4.5 MILES NE OF SITE	0
	I-131		60	53 (0/8) (<42/<58)	48 (0/2) (<48/<49)	56 (0/2) (<55/<58)	L-QUAD 2 INDICATOR MIKE AND GINA WELBOURNE 3.8 MILES ESE OF SITE	0
	CS-134		60	9 (0/8) (<7/<13)	11 (0/2) (<10/<13)	12 (0/2) (<11/<13)	L-QUAD I INDICATOR DIANE PARTRIDGE 4.5 MILES NE OF SITE	0
	CS-137		80	11 (0/8) (<8/<14)	13 (0/2) (<11/<14)	14 (0/2) (<14/<14)	L-QUAD 1 INDICATOR DIANE PARTRIDGE 4.5 MILES NE OF SITE	0
	BALA140		N/A	27 (0/8) (<20/<33)	24 (0/2) (<22/<26)	32 (0/2) (<31/<33)	L-QUAD 2 INDICATOR MIKE AND GINA WELBOURNE 3.8 MILES ESE OF SITE	0
DIRECT RADIATION (MILLI-ROENTGEN/QTR.)	TLD-QUARTERLY	327	N/A	26 (319/319) (19/41)	23 (8/8) (19/28)	32 (4/4) (24/41)	L-102-2 INDICATOR 0.6 MILES NNE OF SITE	0

APPENDIX B

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

Location	Location Description	Distance & Direction From Site			
ASurface	Water				
L-21 L-40	Illinols River at Seneca, Upstream (control) Illinois River, Downstream (indicator)	4.0 miles NE 5.2 miles NNW			
B Ground	Well Water				
L-27 L-28	27LSCS Onsite Well (indicator)28Marseilles Well (indicator)				
<u>C Milk - b</u>	i-weekly / monthly				
L-42	Biros Farm (control)	14.2 miles E			
D. Air Part	iculates / Air lodine				
L-01 L-03 L-04 L-05 L-06 L-07 L-08	Nearsite 1 (indicator) Onsite 3 (indicator) Rte. 170 (indicator) Onsite 5 (indicator) Nearsite 6 (indicator) Seneca (indicator) Marseilles (indicator)	1.5 miles NNW 1.0 miles ENE 3.2 miles E 0.3 miles ESE 0.4 miles WSW 5.2 miles NNE 6.0 miles NNW			
L-10 L-11	13.5 miles SW 6.0 miles S				
EFish					
L-34 L-35 L-36 FSedime	LaSalle Cooling Lake (indicator) Marseilles Pool of Illinois River, Downstream (indicator) Illinois River, Upstream of Discharge (control)	2.0 miles E 6.5 miles NW 4.3 miles NNE			
L-40 L-41	Illinois River, Downstream (indicator) Illinois River, Downstream (indicator)	4.6 miles NNW			
G Food P	roducts				
Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 Control	Diane Partridge Mike and Gina Welbourne Michael Olson Robert Eisers Eugene Clements	4.5 miles NE 3.8 miles ESE 1.5 miles WSW 4.5 miles NW 10.0 miles NW			
Inner Ring					
L-101-1 and -2 L-102-1 and -2 L-103-1 and -2 L-103-1 and -2 L-105-1 and -2 L-105-1 and -2 L-106-1 and -2 L-107-1 and -2 L-109-1 and -2 L-110-1 and -2		0.5 miles N 0.6 miles NNE 0.7 miles NE 0.8 miles ENE 0.7 miles E 1.4 miles ESE 0.8 miles SE 0.5 miles SSE 0.6 miles S			

TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, LaSalle County Station, 2006

Location	Location Description	Distance & Direction From Site
L-112-1 and -2		0.9 miles WSW
L-113a-1 and -2		0.8 miles W
L-114-1 and -2		0.9 miles WNW
L-115-1 and -2		0.7 miles NW
L-116-1 and -2		0.6 miles NNW
Outer Ring		
L-201-3 and -4		4.0 miles N
L-202-3 and -4		3.6 miles NNE
L-203-1 and -2		4.0 miles NE
L-204-1 and -2		3.2 miles ENE
L-205-1 and -2		3.2 miles ESE
L-205-3 and -4		5.1 miles E
L-206-1 and -2		4.3 miles SE
L-207-1 and -2		4.5 miles SSE
L-208-1 and -2		4.5 miles S
L-209-1 and -2		4.0 miles SSW
L-210-1 and -2		3.3 miles SW
L-211-1 and -2		4.5 miles WSW
L-212-1 and -2		4.0 miles WSW
L-213-3 and -4		4.9 miles vv 5.1 miles VV
L-215-3 and -4		5.0 miles NW
L-216-3 and -4		5.0 miles NW
Other		
L-01-1 and -2	Nearsite 1 (indicator)	1.5 miles NNW
L-03-1 and -2	Onsite 3 (indicator)	1.0 miles ENE
L-04-1 and -2	Rte. 170 (indicator)	3.2 miles E
L-05-1 and -2	Onsite 5 (indicator)	0.3 miles ESE
L-06-1 and -2	Nearsite 6 (indicator)	0.4 miles WSW
L-07-1 and -2	Seneca (Indicator)	5.2 miles NNE
L-08-1 and -2	Marseilles (indicator)	6.0 miles NNW
L-11-1 and -2	Ransom	6.0 miles S
Control and Specia	al Interest	
L-10-1 and -2	Streator	13.5 miles SW

TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, LaSalle County Station, 2006

TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, LaSalle County Station, 2006

Sample Medium	Analysis	Sampling Method	Analytical Procedure Number
Surface Water	Gamma Spectroscopy	Monthly composite	TBE, TBE-2007 Gamma emitting radioisotope analysis
		from weekly grab	
		samples.	Env. Inc., GS-01 Determination of gamma emitters by
Surface Water	Gross Beta	Monthly composite	TRE TRE-2008 Gross Aloba and/or gross beta activity in
	0.005 000	from weekly grab	various matrices
		samples.	
			Env. Inc., W(DS)-01 Determination of gross alpha and/or
Ourfrage Miller	T-tat.		gross beta in water (dissolved solids or total residue)
Surface water	Indum	from weekly grab	scintillation
		samples.	
	ļ		Env. Inc., T-02 Determination of tritium in water (direct
			method)
Ground/Well Water	Gamma Spectroscopy	Quarterly grab	TBE, TBE-2007 Gamma emitting radioisotope analysis
		samples.	Env. Inc. GS-01 Determination of gamma emitters by
			gamma spectroscopy
Ground/Well Water	Tritium	Quarterly grab	TBE, TBE-2011 Tritium analysis In drinking water by liquid
		samples.	scintillation
1			
			method)
Fish	Gamma Spectroscopy	Semi-annual samples	TBE-2007 Gamma emitting radioisotope analysis
		collected via	
		electroshocking or	Env. Inc., GS-01 Determination of gamma emitters by
		other techniques	
Sediment	Gamma Spectroscopy	Semi-annual grab	TBE, TBE-2007 Gamma emitting radioisotope analysis
		aanpies	Env. Inc., GS-01 Determination of gamma emitters by
			gamma spectroscopy
Air Particulates	Gross Beta	One-week composite of	TBE, TBE-2008 Gross Alpha and/or gross beta activity in
		continuous air	various matrices
		fiber filter paper	Env. Inc. AB-02 Determination of gross slobs and/or
			aross beta in air particulate filters
Air Particulates	Gamma Spectroscopy	Quarterly composite of	TBE, TBE-2007 Gamma emitting radioisotope analysis
		each station	
			Env. Inc., GS-01 Determination of gamma emitters by
Air lodine	Gamma Spectroscopy	Ri waskhi composite of	TRE TRE 2007 Gamma emitting radioisatone analysis
	Comma opecolocopy	continuous air	The, The work of the annual strating radioisotope analysis
		sampling through	Env. Inc., I-131-02 Determination of I-131 in charcoal
		charcoal filter	canisters by gamma spectroscopy (batch method)
Milk	F131	Bi-weekly grab sample	TBE, TBE-2012 Radioiodine in various matrices
		when cows are on	Env. Inc., L131-01 Determination of L131 in milk by anion
		other times	exchange
Milk	Gamma Spectroscopy	Bi-weekly grab sample	TBE, TBE-2007 Gamma emitting radioisotope analysis
		when cows are on	
1		pasture. Monthly all	Env. Inc., GS-01 Determination of gamma emitters by
Food Products	Gamma Spectmenny	Annual grab camples	TRE TRE-2007 Gamma emitting radiolectore analysis
	Samma Speciroscopy	minuai yrau sainipies.	
			Env. Inc., GS-01 Determination of gamma emitters by
		L	gamma spectroscopy
TLD	Thermoluminescence	Quarterly TLDs	Global Dosimetry
	Dosimetry	Comprised of two	
ļ		elements.	

TLD Location

Figure B-1 Inner Ring TLD Locations of the LaSalle County Station, 2006

Figure B-2 Outer Ring TLD Locations of the LaSalle County Station, 2006

Figure B-3 Fixed Air Sampling Locations of the LaSalle County Station, 2006

Figure B-4 Ingestion and Waterborne Exposure Pathway Sample Locations of the LaSalle County Station, 2006

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

TABLE C-1.1CONCENTRATIONS OF GROSS BETA IN SURFACE WATER SAMPLESCOLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

COLLECTION		
PERIOD	L-21	L-40
JAN	7.7 ± 2.3	10 ± 2.5
FEB	8.7 ± 2.2	7.3 ± 2.1
MAR	6.8 ± 2.2	7.6 ± 2.3
APR	11 ± 2.6	5.1 ± 2.3
MAY	5.6 ± 2.3	6.3 ± 2.4
JUN	7.2 ± 2.1	9.2 ± 2.3
JUL	8.0 ± 2.4	9.4 ± 2.5
AUG	8.3 ± 2.2	8.2 ± 2.2
SEP	6.3 ± 2.0	8.8 ± 2.2
ОСТ	5.7 ± 1.9	6.3 ± 1.9
NOV	8.5 ± 2.3	9.9 ± 2.4
DEC	5.8 ± 2.2	8.2 ± 2.4
MEAN	7.4 ± 2.9	8.0 ± 3.1

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-1.2CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION		
PERIOD	L-21	L-40
JAN-MAR	< 189	< 191
APR-JUN	< 174	< 174
JUL-SEP	< 175	< 178
OCT-DEC	< 143	177 ± 97
MEAN	170 ± 39	180 ± 15

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	I-131	CS-134	CS-137	BA-140	LA-140
L-21	JAN	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 13	< 1	< 1	< 20	< 5
	FEB	< 1	< 1	< 3	< 2	< 3	< 2	< 3	< 12	< 1	< 1	< 17	< 6
	MAR	< 2	< 3	< 6	< 2	< 5	< 3	< 5	< 9	< 2	< 2	< 44	< 15
	APR	< 2	< 3	< 7	< 3	< 5	< 3	< 5	< 11	< 2	< 2	< 41	< 15
	MAY	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 10	< 1	< 1	< 43	< 15
	JUN	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 14	< 1	< 1	< 20	< 6
	JUL	< 1	< 1	< 3	< 1	< 2	< 2	< 3	< 14	< 1	< 1	< 19	< 6
	AUG	< 1	< 1	< 2	< 1	< 1	< 1	< 1	< 15	< 1	< 0	< 17	< 6
	SEP	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 7	< 1	< 1	< 13	< 5
	OCT	< 1	< 1	< 4	< 1	< 2	< 1	< 3	< 15	< 1	< 1	< 19	< 6
	NOV	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 15	< 1	< 1	< 21	< 8
	DEC	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 15	< 2	< 2	< 23	< 8
	MEAN	1 ± 1	2 ± 1	4 ± 3	1 ± 1	3 ± 2	2 ± 1	3 ± 2	12 ± 5	1 ± 1	1 ± 1	25 ± 22	8 ± 8
L-40	JAN	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 13	< 1	< 1	< 17	< 6
	FEB	< 1	< 1	< 3	< 1	< 3	< 1	< 2	< 11	< 1	< 1	< 16	< 5
	MAR	< 2	< 2	< 6	< 2	< 4	< 3	< 4	< 8	< 2	< 2	< 40	< 13
	APR	< 2	< 3	< 7	< 2	< 5	< 3	< 5	< 12	< 2	< 2	< 41	< 14
	MAY	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 9	< 1	< 1	< 40	< 14
	JUN	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 15	< 1	< 2	< 21	< 7
	JUL	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 12	< 1	< 1	< 17	< 6
	AUG	< 0	< 1	< 2	< 0	< 1	< 1	< 1	< 14	< 0	< 0	< 14	< 4
	SEP	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 11	< 1	< 2	< 18	< 6
	OCT	< 1	< 1	< 3	< 1	< 2	< 1	< 3	< 14	< 1	< 1	< 19	< 6
	NOV	< 1	< 1	< 3	< 2	< 2	< 1	< 2	< 12	< 1	< 1	< 18	< 5
	DEC	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 12	< 1	< 2	< 18	< 6
	MEAN	1 ± 1	2 ± 1	4 ± 3	1 ± 1	3 ± 2	2 ± 1	3 ± 2	12 ± 4	1 ± 1	1 ± 1	23 ± 21	8 ± 7

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES

COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

TABLE C-I.3

TABLE C-II.1CONCENTRATIONS OF TRITIUM IN GROUND/WELL WATER SAMPLES
COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

	1-97	1.29
FERIOD	L-2/	L-20
JAN-MAR	< 166	< 168
APR-JUN	< 171	< 176
JUL-SEP	< 166	< 165
OCT-DEC	< 181	< 170
MEAN	171 ± 14	170 ± 9

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

.

TABLE C-II.2 CONCENTRATIONS OF GAMMA EMITTERS IN GROUND/WELL WATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	CS-134	CS-137	BA-140	LA-140
Ľ-27	01/12/06	< 8	< 8	< 18	< 11	< 22	< 8	< 14	< 8	< 8	< 39	< 13
	04/13/06	< 2	< 3	< 5	< 3	< 6	< 3	< 4	< 3	< 3	< 16	< 5
	07/13/06	< 3	< 3	< 7	< 3	< 6	< 3	< 5	< 3	< 3	< 19	< 6
	10/19/06	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 1	< 1	< 13	< 4
	MEAN	4 ± 6	4 ± 5	8 ± 13	4 ± 8	9 ± 18	4 ± 6	6 ± 10	4 ± 6	4 ± 6	22 ± 23	7 ± 8
L-28	01/12/06	< 8	< 8	< 12	< 7	< 13	< 7	< 11	< 8	< 6	< 27	< 12
	04/13/06	< 3	< 3	< 6	< 3	< 6	< 3	< 5	< 3	< 3	< 18	< 6
	07/13/06	< 2	< 2	< 5	< 2	< 5	< 3	< 4	< 2	< 2	< 17	< 5
	10/19/06	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 1	< 1	< 15	< 5
	MEAN	4 ± 6	4 ± 5	7 ± 8	3 ± 5	7 ± 9	4 ± 5	6 ± 7	4 ± 6	3 ± 4	19 ± 11	7 ± 7

,

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-III.1 CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY POWER STATION, 2006

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BALA-140
L-34										
Bluegill	05/04/06	< 100	< 98	< 218	< 88	< 237	< 105	< 93	< 87	< 275
Channel Catfish	05/04/06	< 45	< 54	< 120	< 58	< 128	< 53	< 47	< 47	< 133
Bluegili	10/02/06	< 62	< 82	< 240	< 61	< 116	< 126	< 63	< 75	< 385
Channel Catfish	10/02/06	< 82	< 99	< 231	< 74	< 179	< 122	< 70	< 84	< 314
	MEAN	72 ± 48	83 ± 42	202 ± 111	70 ± 27	165 ± 110	102 ± 67	68 ± 39	73 ± 37	277 ± 212
L-35										
Channel Catfish	05/04/06	< 50	< 61	< 140	< 59	< 144	< 58	< 63	< 65	< 152
Freshwater drum	05/04/06	< 84	< 108	< 203	< 86	< 209	< 103	< 93	< 98	< 254
Channel Catfish	10/02/06	< 46	< 53	< 136	< 45	< 111	< 72	< 42	< 49	< 238
Smallmouth Buffalo	10/02/06	< 63	< 72	< 176	< 78	< 145	< 115	< 70	< 59	< 379
	MEAN	61 ± 34	73 ± 49	164 ± 64	67 ± 37	152 ± 82	87 ± 53	67 ± 42	68 ± 43	256 ± 187
L-36										
Channel Catfish	05/04/06	< 65	< 73	< 144	< 67	< 149	< 78	< 60	< 59	< 154
Smallmouth Buffalo	05/04/06	< 69	< 79	< 150	< 68	< 160	< 81	< 69	< 80	< 197
Channel Catfish	10/02/06	< 42	< 50	< 94	< 39	< 73	< 47	< 38	< 36	< 230
Smallmouth Buffalo	10/02/06	< 75	< 77	< 201	< 67	< 156	< 82	< 73	< 73	< 364
	MEAN	63 ± 29	70 ± 27	147 ± 87	60 ± 28	134 ± 83	72 ± 33	60 ± 32	62 ± 39	236 ± 181

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

TABLE C-IV.1 CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

STC COLLECTION PERIOD		MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BALA-140
L-40	05/04/06	< 92	< 89	< 215	< 81	< 213	< 97	< 98	< 97	< 169
	10/26/06	< 60	< 51	< 173	< 62	< 115	< 75	< 49	172 ± 51	< 147
	MEAN	76 ± 45	70 ± 54	194 ± 59	71 ± 27	164 ± 139	86 ± 32	73 ± 70	135 ± 106	158 ± 31
L-41	05/04/06	< 60	< 67	< 176	< 73	< 194	< 77	< 75	< 74	< 162
	10/26/06	< 41	< 49	< 118	< 39	< 112	< 60	< 40	< 46	< 156
	MEAN	50 ± 28	58 ± 25	147 ± 82	56 ± 48	153 ± 116	68 ± 23	58 ± 48	60 ± 39	159 ± 8.5

RESULTS IN UNITS OF PCI/KG DRY ± 2 SIGMA

TABLE C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

	RESULTS	IN UNITS	OF E-3	PCI/CU	METER ±	SIGMA
--	---------	----------	--------	--------	---------	-------

	GRO		GROU	Jen I		GROL	JP III	1	GRUP IV
WEEK	L-03	L-05	L-01	L-06	L-04	L-07	L-08	L-11	L-10
1	18 ± 5	16 ± 4	20 ± 5	16 ± 4	18 ± 4	18 ± 4	20 ± 4	17 ± 4	12 ± 4
2	25 ± 5	25 ± 5	22 ± 4	20 ± 4	27 ± 5	26 ± 5	19 ± 4	23 ± 5	21 ± 4
3	23 ± 5	21 ± 5	23 ± 5	20 ± 5	24 ± 5	20 ± 4	23 ± 5	20 ± 4	20 ± 4
4	15 ± 4	16 ± 4	14 ± 4	17 ± 4	16 ± 4	17 ± 4	16 ± 4	18 ± 4	17 ± 4
5	22 ± 4	18 ± 4	23 ± 4	19 ± 4	21 ± 4	19 ± 4	20 ± 4	19 ± 4	22 ± 4
6	19 ± 4	18 ± 4	18 ± 4	18 ± 4	19 ± 4	19 ± 4	19 ± 4	21 ± 5	19 ± 4
7	17 ± 4	18 ± 4	17 ± 4	14 ± 4	18 ± 4	19 ± 4	18 ± 4	19 ± 4	17 ± 4
8	24 ± 5	28 ± 5	28 ± 5	27 ± 5	29 ± 5	26 ± 5	29 ± 5	28 ± 5	28 ± 5
9	22 ± 4	27 ± 5	24 ± 4	22 ± 4	26 ± 5	23 ± 4	25 ± 4	23 ± 4	24 ± 4
10	16 ± 4	16 ± 4	16 ± 4	13 ± 4	16 ± 4	14 ± 4	16 ± 4	16 ± 4	15 ± 4
11	15 ± 4	21 ± 4	24 ± 5	15 ± 4	23 ± 5	19 ± 4	16 ± 4	17 ± 4	20 ± 4
12	12 ± 4	12 ± 4	12 ± 4	15 ± 4	14 ± 4	12 ± 4	12 ± 4	13 ± 4	16 ± 4
13	11 ± 4	12 ± 4	12 ± 4	12 ± 4	13 ± 4	10 ± 4	9.8 ± 4	12 ± 4	11 ± 4
14	10 ± 4	11 ± 4	13 ± 4	17 ± 4	15 ± 4	13 ± 4	14 ± 4	16 ± 4	11 ± 4
15	20 ± 4	23 ± 5	25 ± 5	20 ± 5	24 ± 5	21 ± 5	21 ± 4	24 ± 5	24 ± 5
16	17 ± 4	15 ± 4	15 ± 4	12 ± 4	15 ± 4	16 ± 4	12 ± 4	16 ± 4	14 ± 4
17	13 ± 4	16 ± 4	17 ± 4	15 ± 4	15 ± 4	11 ± 4	14 ± 4	15 ± 4	15 ± 4
18	13 ± 4	16 ± 4	15 ± 4	20 ± 5	14 ± 4	14 ± 4	16 ± 4	13 ± 4	13 ± 4
19	12 ± 4	15 ± 4	15 ± 4	16 ± 4	14 ± 4	16 ± 4	14 ± 4	16 ± 4	15 ± 4
20	6 ± 3	8 ± 4	< 5	7 ± 4	10 ± 4	6 ± 4	6 ± 3	8 ± 4	9±4
21	10 ± 4	9±4	16 ± 4	13 ± 4	12 ± 4	14 ± 4	12 ± 4	14 ± 4	13 ± 4
22	24 ± 4	24 ± 4	24 ± 4	23 ± 4	20 ± 4	22 ± 4	19 ± 4	23 ± 4	25 ± 4
23	19 ± 4	22 ± 4	19 ± 4	20 ± 4	21 ± 4	15 ± 4	19 ± 4	20 ± 4	17 ± 4
24	14 ± 4	12 ± 3	14 ± 4	13 ± 4	14 ± 4	14 ± 4	12 ± 4	13 ± 4	8 ± 4
25	24 ± 5	23 ± 5	21 ± 4	18 ± 4	23 ± 5	22 ± 4	19 ± 4	22 ± 4	18 ± 4
26	14 ± 4	14 ± 4	13 ± 4	12 ± 4	12 ± 4	11 ± 4	14 ± 4	19 ± 4	16 ± 4
27	24 ± 5	23 ± 5	23 ± 5	25 ± 5	17 ± 4	24 ± 5	24 ± 5	25 ± 5	30 ± 5
28	19 ± 5	16 ± 4	16 ± 4	13 ± 4	(1)	18 ± 4	14 ± 4	17 ± 4	18 ± 4
29	29 ± 5	31 ± 5	31 ± 5	30 ± 5	25 ± 4	34 ± 5	28 ± 5	34 ± 5	34 ± 5
30	19 ± 4	20 ± 4	19 ± 4	19 ± 4	21 ± 4	21 ± 4	19 ± 4	20 ± 4	18 ± 4
31	28 ± 5	28 ± 5	24 ± 5	26 ± 5	26 ± 5	27±5	25 ± 5	25 ± 5	29 ± 5
32	23 ± 5	19 ± 5	26 ± 5	20 ± 5	25 ± 5	28 ± 5	29 ± 5	23 ± 5	24 ± 5
33	23 ± 5	22 ± 4	23 ± 5	19 ± 4	23 ± 5	21 ± 4	20 ± 4	25 ± 5	23 ± 5
34	31 ± 5	32 ± 5	36 ± 5	29 ± 5	37 ± 5	30 ± 5	32 ± 5	36 ± 5	33 ± 5
35	24 ± 5	19 ± 4	24 ± 5	23 ± 5	24 ± 5	24 ± 5	23 ± 5	23 ± 5	19 ± 4
36	19 ± 4	19 ± 4	12 ± 4	19 ± 4	20 ± 4	19 ± 4	20 ± 4	21 ± 4	19 ± 4
37	20 ± 4	19 ± 4	20 ± 4	24 ± 5	23 ± 5	20 ± 4	23 ± 5	20 ± 4	18 ± 4
38	15 ± 4	16 ± 4	19 ± 4	17 ± 4	20 ± 5	21 ± 5	15 ± 4	19 ± 5	18 ± 4
39	17 ± 4	16 ± 4	23 ± 5	19 ± 4	17 ± 4	17 ± 4	20 ± 4	24 ± 5	17 ± 4
40	25 ± 5	23 ± 4	24 ± 5	22 ± 4	28 ± 5	26 ± 4	21 ± 4	25 ± 4	25 ± 4
41	16 ± 4	10 ± 4	20 ± 4	16 ± 4	16 ± 4	16 ± 4	13 ± 4	12 ± 4	15 ± 4
42	18 ± 5	14 ± 4	16 ± 4	17 ± 4	18 ± 4	19 ± 5	20 ± 5	19 ± 5	16 ± 4
43	24 ± 5	19 ± 4	18 ± 4	18 ± 4	22 ± 5	23 ± 5	21 ± 4	16 ± 4	19 ± 4
44	19 ± 4	17 ± 4	17 ± 4	18 ± 4	24 ± 5	23 ± 4	20 ± 4	19 ± 4	19 ± 4
45	32 ± 5	31 ± 5	34 ± 5	28 ± 5	31 ± 5	37 ± 5	37 ± 5	37 ± 5	27 ± 5
46	15 ± 4	18 ± 4	16 ± 4	19 ± 4	21 ± 4	21 ± 4	20 ± 4	18 ± 4	20 ± 4
47	33 ± 6	27 ± 5	29 ± 6	32 ± 6	35 ± 6	33 ± 6	36 ± 6	28 ± 6	38 ± 6
48	20 ± 4	21 ± 4	20 ± 4	21 ± 4	20 ± 4	22 ± 4	21 ± 4	19 ± 4	22 ± 4
49	33 ± 5	30 ± 5	33 ± 5	33 ± 5	38 ± 5	30 ± 5	29 ± 5	30 ± 5	29 ± 5
50	35 ± 6	26 ± 5	29 ± 5	31 ± 5	32 ± 6	34 ± 5	32 ± 5	32 ± 5	32 ± 5
51	27 ± 5	25 ± 5	25 ± 5	25 ± 5	24 ± 5	21 ± 4	20 ± 4	26 ± 5	21 ± 4
52	30 ± 5	27 ± 5	33 ± 5	26 ± 5	33 ± 5	32 ± 5	27 ± 5	24 ± 5	27 ± 5
MEAN	20 ± 13	20 ± 12	21 ± 13	20 ± 11	21 ± 13	21 ± 13	20 ± 13	21 ± 12	20 ± 13

TABLE C-V.2MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS (E-3 PCI/CU METER) IN AIR
PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

GROUP I - ONSITE LC	CATIC	NS		GROUP II - NEAR SITE	ELOCA	ATIONS	5	GROUP III - FAR FIELI	DLOCA	ATIONS	5	GROUP IV - CONTRO	LLOC	ATION	S
COLLECTION PERIOD	MIN	MAX	MEAN ± 2 SD	COLLECTION PERIOD	MIN	MAX	MEAN ± 2 SD	COLLECTION	MIN	MAX	MEAN ± 2 SD	COLLECTION PERIOD	MIN	MAX	MEAN ± 2 SD
12/29/05 - 02/02/06	15	25	20 ± 8	12/29/05 - 02/02/06	14	23	19±6	12/29/05 - 02/02/06	16	27	20 ± 6	12/29/05 - 02/02/06	12	22	18 ± 8
02/02/06 - 03/02/06	17	28	22 ± 8	02/02/06 - 03/02/06	14	28	21 ± 10	02/02/06 - 03/02/06	18	29	22 ± 8	02/02/06 - 03/02/06	17	28	22 ± 11
03/02/06 - 03/30/06	11	21	14 ± 7	03/02/06 - 03/30/06	12	24	15 ± 8	03/02/06 - 03/30/06	10	23	14 ± 7	03/02/06 - 03/30/06	11	20	15 ± 7
03/30/06 - 04/27/06	10	23	15 ± 9	03/30/06 - 04/27/06	12	25	17 ± 8	03/30/06 - 04/27/06	11	24	16 ± 8	03/30/06 - 04/27/06	11	24	16 ± 11
04/27/06 - 06/01/06	6	24	14 ± 12	04/27/06 - 06/01/06	< 5	24	15 ± 12	04/27/06 - 06/01/06	6	23	14 ± 9	04/27/06 - 06/01/06	9	25	15 ± 13
06/01/06 - 06/29/06	12	24	18 ± 10	06/01/06 - 06/29/06	12	21	16 ± 8	06/01/06 - 06/29/06	11	23	17 ± 8	06/01/06 - 06/29/06	8	18	15 ± 9
06/29/06 - 08/03/06	16	31	24 ± 11	06/29/06 - 08/03/06	13	31	23 ± 12	06/29/06 - 08/03/06	14	34	23 ± 11	06/29/06 - 08/03/06	18	34	26 ± 15
08/03/06 - 08/31/06	19	32	24 ± 10	08/03/06 - 08/31/06	19	36	25 ± 11	08/03/06 - 08/31/06	20	37	26 ± 10	08/03/06 - 08/31/06	19	33	25 ± 12
08/31/06 - 09/28/06	15	20	18 ± 4	08/31/06 - 09/28/06	12	24	19 ± 7	08/31/06 - 09/28/06	15	24	20 ± 5	08/31/06 - 09/28/06	17	19	18 ± 1
09/28/06 - 11/02/06	10	25	18 ± 9	09/28/06 - 11/02/06	16	24	19 ± 5	09/28/06 - 11/02/06	12	28	20 ± 9	09/28/06 - 11/02/06	15	25	19 ± 8
11/02/06 - 11/30/06	15	33	25 ± 14	11/02/06 - 11/30/06	16	34	25 ± 13	11/02/06 - 11/30/06	18	37	27 ± 15	11/02/06 - 11/30/06	20	38	27 ± 15
11/30/06 - 12/28/06	25	35	29 ± 7	11/30/06 - 12/28/06	25	33	29 ± 8	11/30/06 - 12/28/06	20	38	29 ± 10	11/30/06 - 12/28/06	21	32	27 ± 9
12/29/05 - 12/28/06	6	35	20 ± 9	12/29/05 - 12/28/06	< 5	36	20 ± 9	12/29/05 - 12/28/06	6	38	21 ± 10	12/29/05 - 12/28/06	8	38	20 ± 10

TABLE C-V.3	CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
	COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BALA140
L-01	03/30/06	< 6	< 10	< 48	< 4	< 9	< 10	< 4	< 4	< 3020
	06/29/06	< 5	< 13	< 35	< 3	< 15	< 11	< 5	< 3	< 1830
	09/28/06	< 2	< 5	< 30	< 2	< 7	< 6	< 2	< 2	< 2420
	12/28/06	< 2	< 3	< 9	< 1	< 3	< 3	< 1	< 1	< 101
	MEAN	4 ± 4	8 ± 9	31 ± 33	3 ± 3	9 ± 10	7 ± 8	3 ± 3	2 ± 2	1843 ± 2517
L-03	03/30/06	< 6	< 14	< 51	< 3	< 9	< 16	< 5	< 4	< 3680
	06/29/06	< 5	< 10	< 34	< 4	< 12	< 11	< 4	< 4	< 1570
	09/28/06	< 1	< 6	< 17	< 2	< 4	< 7	< 2	< 2	< 998
	12/28/06	< 3 < 5		< 13	< 2	< 7	< 5	< 3	< 2	< 200
	MEAN	4 ± 4	9 ± 8	29 ± 35	3 ± 2	8 ± 6	10 ± 10	3 ± 3	3 ± 2	1612 ± 2977
L-04	03/30/06	< 4	< 11	< 62	< 4	< 15	< 13	< 4	< 4	< 3740
	06/29/06	< 5	< 9	< 15	< 4	< 13	< 8	< 4	< 3	< 780
	09/28/06	< 1	< 5	< 12	< 2	< 5	< 6	< 2	< 1	< 1700
	12/28/06	< 2	< 4	< 12	< 3	< 9	< 5	< 2	< 2	< 222
	MEAN	3 ± 3	7 ± 7	25 ± 49	3 ± 2	11 ± 9	8 ± 7	3 ± 3	3 ± 2	1611 ± 3090
L-05	03/30/06	< 5	< 12	< 73	< 5	< 12	< 15	< 5	< 5	< 2640
	06/29/06	< 3	< 6	< 26	< 3	< 6	< 5	< 3	< 2	< 917
	09/28/06	< 2	< 4	< 26	< 2	< 6	< 6	< 2	< 2	< 1530
	12/28/06	< 2	< 3	< 11	< 2	< 4	< 3	< 2	< 2	< 153
	MEAN	3 ± 3	6 ± 7	34 ± 54	3 ± 3	7 ± 7	7 ± 10	3 ± 3	3 ± 3	1310 ± 2101

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BALA140
L-06	03/30/06	< 3	< 8	< 41	< 6	< 11	< 10	< 5	< 3	< 3500
	06/29/06	< 4	< 14	< 30	< 5	< 10	< 9	< 5	< 5	< 1350
	09/28/06	< 2	< 6	< 27	< 1	< 6	< 9	< 2	< 2	< 2210
	12/28/06	< 1	< 3	< 8	< 1	< 3	< 3	< 2	< 1	< 100
	MEAN	3 ± 3	8 ± 9	26 ± 28	3 ± 5	7 ± 7	8 ± 6	3 ± 3	3 ± 3	1790 ± 2864
L-07	03/30/06	< 5	< 9	< 52	< 4	< 14	< 13	< 5	< 5	< 1850
	06/29/06	< 3	< 9	< 12	< 3	< 6	< 5	< 2	< 2	< 655
	09/28/06	< 2	< 4	< 20	< 2	< 4	< 7	< 2	< 2	< 2000
	12/28/06	< 2	< 5	< 16	< 2	< 5	< 5	< 3	< 3	< 207
	MEAN	3 ± 3	7 ± 5	25 ± 36	3 ± 2	7 ± 9	7 ± 8	3 ± 3	3 ± 3	1178 ± 1768
L-08	03/30/06	< 6	< 14	< 49	< 4	< 13	< 12	< 6	< 4	< 3050
	06/29/06	< 5	< 11	< 33	< 3	< 12	< 13	< 5	< 4	< 2210
	09/28/06	< 3	< 6	< 31	< 3	< 7	< 11	< 2	< 2	< 2520
	12/28/06	< 3	< 4	< 10	< 2	< 6	< 4	< 2	< 2	< 226
	MEAN	4 ± 3	9±9	31 ± 32	3 ± 2	10 ± 7	10 ± 9	4 ± 4	3 ± 2	2002 ± 2467
L-10	03/30/06	< 6	< 12	< 62	< 4	< 12	< 13	< 4	< 4	< 1810
	06/29/06	< 2	< 8	< 28	< 4	< 11	< 7	< 3	< 3	< 303
	09/28/06	< 1	< 4	< 25	< 1	< 5	< 5	< 1	< 1	< 4020
	12/28/06	< 3	< 6	< 16	< 1	< 5	< 6	< 3	< 3	< 262
	MEAN	3 ± 4	7 ± 7	33 ± 40	3 ± 3	8 ± 7	8 ± 7	3 ± 2	3 ± 2	1599 ± 3535

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES

COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

TABLE C-V.3

TABLE C-V.3CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BALA140
L-11	03/30/06	< 4	< 11	< 22	< 4	< 6	< 13	< 4	< 2	< 3020
	06/29/06	< 3	< 10	< 28	< 4	< 7	< 7	< 3	< 2	< 831
	09/28/06	< 2	< 6	< 16	< 2	< 5	< 7	< 2	< 2	< 1900
	12/28/06	< 4	< 5	< 17	< 3	< 10	< 6	< 3	< 3	< 236
	MEAN	3 ± 2	8 ± 5	21 ± 11	3 ± 2	7 ± 4	8 ± 7	3 ± 2	2 ± 1	1497 ± 2454

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

TABLE C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

	GROUPI		GROUP II		GROUP III			I	GROUP IV	
WEEK	L-03	L-05	L-01	L-06	L-04	L-07	L-08	L-11	L-10	
1	< 37	< 36	< 27	< 36	< 36	< 35	< 35	< 35	< 35	
2										
3	< 23	< 41	< 42	< 41	< 40	< 41	< 41	< 41	< 41	
4										
5	< 42	< 41	< 41	< 27	< 42	< 38	< 38	< 37	< 38	
6										
7	< 23	< 35	< 35	< 35	< 35	< 41	< 41	< 40	< 40	
8										
9	< 41	< 41	< 41	< 20	< 41	< 30	< 30	< 30	< 30	
10										
11	< 37	< 19	< 37	< 38	< 37	< 30	< 30	< 30	< 30	
12							-	-		
13	< 28	< 27	< 27	< 20	< 26	< 36	< 36	< 35	< 35	
14	(1)									
15	< 61	< 62	< 64	< 64	< 66	< 56	< 54	< 55	< 55	
16	< 59	< 59	< 58	< 63	< 60	< 33	< 64	< 64	< 64	
17	< 39	< 38	< 39	< 42	< 39	< 41	< 43	< 23	< 43	
18	< 68	< 68	< 67	< 61	< 67	< 63	< 41	< 61	< 62	
19	< 56	< 56	< 55	< 43	< 55	< 44	< 33	< 44	< 44	
20	< 68	< 70	< 68	< 65	< 68	< 67	< 66	< 36	< 66	
21	< 66	< 64	< 65	< 66	< 65	< 67	< 67	< 49	< 70	
22	< 62	< 60	< 61	< 31	< 61	< 51	< 51	< 51	< 51	
23	< 49	< 49	< 49	< 32	< 49	< 61	< 60	< 60	< 60	
24	< 67	< 65	< 67	< 44	< 66	< 67	< 69	< 69	< 69	
25	< 60	< 59	< 59	< 61	< 33	< 54	< 57	< 57	< 57	
26	< 67	< 65	< 65	< 63	< 84	< 68	< 68	< 45	< 68	
27	< 68	< 65	< 67	< 37	< 67	< 67	< 67	< 67	< 67	
28	< 41	< 38	< 40	< 33	(2)	< 59	< 58	< 58	< 58	
29	< 68	< 65	< 66	< 36	< 65	< 65	< 65	< 65	< 65	
30	< 67	< 63	< 64	< 51	< 64	< 68	< 68	< 66	< 66	
31	< 48	< 46	< 47	< 38	< 47	< 56	< 55	< 56	< 56	
32	< 70	< 65	< 66	< 37	< 66	< 68	< 68	< 68	< 68	
33	< 62	< 58	< 60	< 48	< 60	< 56	< 59	< 60	< 59	
34	< 29	< 28	< 29	< 23	< 28	< 36	< 36	< 37	< 37	
35	< 65	< 62	< 64	< 63	< 64	< 36	< 63	< 63	< 63	
36	< 29	< 27	< 28	< 15	< 28	< 27	< 27	< 26	< 27	
37	< 68	< 64	< 67	< 68	< 67	< 66	< 53	< 67	< 67	
38	< 69	< 67	< 37	< 69	< 66	< 69	< 68	< 68	< 68	
39	< 57	< 53	< 41	< 55	< 54	< 68	< 68	< 67	< 68	
40	< 32	< 30	< 21	< 31	< 31	< 32	< 33	< 33	< 33	
41	< 34	< 48	< 49	< 49	< 48	< 63	< 60	< 65	< 65	
42	< 45	< 43	< 24	< 44	< 44	< 44	< 43	< 43	< 44	
43	< 37	< 35	< 36	< 39	< 36	< 40	< 39	< 22	< 39	
44	< 18	< 17	< 17	< 17	< 13	< 36	< 36	< 36	< 36	
45	< 19	< 17	< 18	< 13	< 18	< 20	< 20	< 20	< 20	
46	< 38	< 36	< 37	< 20	< 37	< 36	< 36	< 35	< 35	
47	< 49	< 26	< 49	< 48	< 49	< 51	< 48	< 51	< 51	
48	< 35	< 33	< 34	< 29	< 33	< 37	< 37	< 37	< 37	
49	< 24	< 22	< 22	< 12	< 22	< 40	< 40	< 40	< 40	
50	< 24	< 23	< 16	< 24	< 25	< 24	< 18	< 24	< 24	
51	< 55	< 51	< 31	< 53	< 53	< 47	< 46	< 46	< 46	
52	< 50	< 47	< 46	< 48	< 48	< 46	< 45	< 45	< 45	
~*	- ••									
MEAN	48 ± 33	46 ± 3	33 45 ± 33	41 ± 33	47 ± 32	48 ± 29	48 ± 30	47 ± 30	0 50 ± 2	

RESULTS IN UNITS OF E-3 PCI/CU METER ± SIGMA

(1) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

(1) SEE PROGRAM CHANGES SECTION FOR EXPLANATION (2) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION C - 12

ς

TABLE C-VII.1CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN
THE VICINITY OF LASALLE COUNTY STATION, 2006

COLLECTION	CONTROL DAIRY
PERIOD	L-42
01/05/06	< 0.6
02/02/06	< 0.4
03/02/06	< 0.6
04/06/06	< 0.3
05/05/06	< 0.7
05/19/06	< 0.6
06/02/06	< 0.7
06/16/06	< 1.0
06/30/06	< 2.9 (1)
07/14/06	< 0.6
07/28/06	< 0.8
08/10/06	< 0.3
08/25/06	< 0.7
09/08/06	< 0.3
09/22/06	< 0.5
10/06/06	< 0.3
10/19/06	< 0.7
11/03/06	< 0.7
12/07/06	< 0.3
MEAN	0.7 ± 1.1

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	CS-134	CS-137	BA-140	LA-140
L-42	01/05/06	< 8	< 9	< 19	< 9	< 24	< 9	< 11	< 9	< 38	< 10
	02/02/06	< 8	< 9	< 20	< 9	< 23	< 9	< 10	< 9	< 44	< 10
	03/02/06	< 6	< 7	< 16	< 7	< 17	< 7	< 7	< 7	< 33	< 8
	04/06/06	< 8	< 9	< 17	< 8	< 25	< 10	< 13	< 8	< 41	< 13
	05/05/06	< 8	< 8	< 20	< 9	< 21	< 10	< 8	< 8	< 51	< 15
	05/19/06	< 8	< 9	< 21	< 9	< 24	< 9	< 9	< 10	< 43	< 13
	06/02/06	< 7	< 8	< 19	< 8	< 18	< 8	< 8	< 8	< 44	< 14
	06/16/06	< 10	< 9	< 23	< 12	< 22	< 11	< 10	< 11	< 38	< 13
	06/30/06	< 5	< 5	< 12	< 6	< 12	< 5	< 5	< 5	< 27	< 9
	07/14/06	< 6	< 8	< 17	< 7	< 17	< 7	< 7	< 7	< 44	< 14
	07/28/06	< 6	< 7	< 18	< 6	< 19	< 8	< 8	< 7	< 37	< 12
	08/10/06	< 7	< 6	< 15	< 7	< 15	< 6	< 6	< 5	< 36	< 9
	08/25/06	< 6	< 6	< 13	< 7	< 12	< 7	< 5	< 5	< 33	< 13
	09/08/06	< 6	< 6	< 16	< 5	< 17	< 7	< 4	< 5	< 39	< 13
	09/22/06	< 7	< 7	< 15	< 7	< 15	< 9	< 7	< 8	< 29	< 8
	10/06/06	< 5	< 6	< 16	< 6	< 10	< 7	< 5	< 5	< 49	< 12
	10/19/06	< 5	< 7	< 14	< 6	< 14	< 6	< 5	< 6	< 40	< 14
	11/03/06	< 6	< 5	< 14	< 5	< 12	< 6	< 5	< 6	< 43	< 11
	12/07/06	< 6	< 6	< 17	< 7	< 16	< 6	< 6	< 6	< 41	< 8
	MEAN	7 ± 3	7 ± 3	17 ± 6	7 ± 4	17 ± 9	8 ± 3	7±5	7 ± 4	39 ± 12	11 ± 5

TABLE C-VII.2 CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-VIII.1 CONCENTRATIONS OF GAMMA EMITTERS IN FOOD PRODUCT SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2006

STC	COLLECTION PERIOD	MN-54	CO-58	FE-59	CO-60	ZN-65	ZRNB-95	I-131	CS-134	CS-137	BALA140
L-QUAD 1 Turnip greens	09/09/06	< 13	< 14	< 36	< 18	< 32	< 14	< 54	< 11	< 14	< 24
L-QUAD 1	09/09/06	< 15	< 18	< 40	< 15	< 32	< 18	< 54	< 13	< 14	< 29
rumps	MEAN	14 ± 3	16 ± 5	38 ± 6	16 ± 4	32 ± 1	16 ± 6	54 ± 1	12 ± 2	14 ± 1	26 ± 8
L-QUAD 2 Beet greens	09/09/06	< 9	< 11	< 24	< 8	< 19	< 12	< 55	< 8	< 9	< 31
L-QUAD 2	09/09/06	< 10	< 12	< 24	< 11	< 21	< 12	< 58	< 10	< 10	< 33
Deeus	MEAN	9 ± 0.2	11 ± 1	24 ± 0.0	9 ± 3	20 ± 2	12 ± 0.3	56 ± 5	9 ± 2	10 ± 1	32 ± 3
L-QUAD 3 Carrot greens	09/09/06	< 10	< 11	< 24	< 9	< 20	< 11	< 54	< 8	< 9	< 20
L-QUAD 3	09/09/06	< 8	< 10	< 24	< 12	< 19	< 11	< 56	< 8	< 9	< 27
Carrots	MEAN	9 ± 2	11 ± 2	24 ± 1	11 ± 5	19 ± 2	11 ± 0.1	55 ± 3	8 ± 0.1	9 ± 1	23 ± 10
L-QUAD 4 Broccoli	09/09/06	< 12	< 12	< 31	< 14	< 28	< 13	< 42	< 9	< 12	< 27
L-QUAD 4	09/09/06	< 7	< 10	< 22	< 8	< 18	< 8	< 56	< 7	< 8	< 23
Unions	MEAN	9 ± 6	11 ± 2	26 ± 12	11 ± 9	23 ± 15	10 ± 6	49 ± 19	8 ± 3	10 ± 5	25 ± 5
L-QUAD C Beets	09/09/06	< 12	< 13	< 33	< 10	< 27	< 14	< 48	< 10	< 11	< 22
L-QUAD C	09/09/06	< 14	< 14	< 41	< 14	< 38	< 15	< 49	< 13	< 14	< 26
Lettuce	MEAN	13 ± 4	13 ± 3	37 ± 11	12 ± 6	33 ± 15	15 ± 1	48 ± 1	11 ± 4	13 ± 4	24 ± 7

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

TABLE C-IX.1 QUARTERLY TLD RESULTS FOR LASALLE COUNTY STATION, 2006

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS

STATION	MEAN	JAN - MAR	APR-JUN	JUL-SEP	OCT-DEC
CODE	± 2 S. D.				
L-01-1	25.3 ± 7.7	21	23	29	28
L-01-2	26.8 ± 5.0	28	23	28	28
L-03-1	26.0 ± 5.7	28	22	26	28
L-03-2	25.0 ± 4.9	28	22	25	25
L-04-1	26.0 ± 4.3	29	25	24	26
L-04-2	24.5 ± 5.3	27	21	24	26
L-05-1	24.5 ± 5.3	27	21	24	26
L-05-2	25.5 ± 4.8	29	24	24	25
L-06-1	27.5 ± 5.3	31	25	26	28
L-06-2	27.5 ± 5.3	31	25	28	26
L-07-1	25.3 ± 6.6	30	23	23	25
L-07-2	26.8 ± 4.4	29	24	28	26
L-08-1	25.3 ± 3.0	27	24	24	26
L-08-2	26.0 ± 4.3	29	24	25	26
L-10-1	23.3 ± 7.5	28	19	22	24
L-10-2	22.0 ± 4.3	24	19	22	23
L-101-1	27.5 ± 6.2	31	24	29	26
L-101-2	26.8 ± 5.5	30	24	25	28
L-102-1	28.0 ± 5.4	29	24	30	29
L-102-2	32.0 ± 14	33	24	41	30
L-103-1	27.3 ± 5.0	30	(1)	25	27
L-103-2	27.0 ± 6.7	31	23	28	26
L-104-1	25.3 ± 6.2	27	21	25	28
L-104-2	26.3 ± 5.7	30	24	24	27
L-105-1	27.5 ± 5.3	29	24	27	30
L-105-2	27.8 ± 5.7	32	26	27	26
L-106-1	27.8 ± 3.4	30	26	28	27
L-106-2	26.3 ± 1.9	27	25	27	26
L-107-1	26.3 ± 7.2	31	24	23	27
L-107-2	26.5 ± 6.2	31	25	26	24
L-108-1	28.0 ± 5.9	32	25	28	27
L-108-2	23.8 ± 5.7	28	22	22	23
L-109-1	26.0 ± 7.3	30	22	24	28
L-109-2	26.8 ± 6.6	31	23	26	27
L-110-1	27.5 ± 2.0	28	26	28	28
L-110-2	27.5 ± 6.2	32	26	25	27
L-111B-1	27.0 ± 5.9	31	26	24	27
L-111B-2	28.3 ± 5.7	32	26	26	29
L-112-1	25.8 ± 3.8	27	26	23	27
L-112-2	27.3 ± 2.5	29	26	27	27
L-113A-1	27.8 ± 6.2	32	25	26	28
L-113A-2	26.8 ± 4.4	29	26	24	28
L-114-1	27.5 ± 3.8	30	26	26	28
L-114-2	27.5 ± 2.6	29	26	27	28
L-115-1	23.8 ± 4.4	27	23	22	23
L-115-2	23.8 ± 5.3	26	21	22	26
L-116-1	25.3 ± 1.9	26	24	25	26
L-116-2	24.3 ± 2.5	26	24	23	24

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-IX.1 QUARTERLY TLD RESULTS FOR LASALLE COUNTY STATION, 2006

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS

STATION	MEAN	JAN - MAR	APR-JUN	JUL-SEP	OCT-DEC
CODE	± 2 S. D.				
L-201-3	22.5 ± 6.2	26	19	21	24
L-201-4	26.8 ± 5.0	30	24	26	27
L-202-3	24.3 ± 5.7	28	22	22	25
L-202-4	24.3 ± 4.7	26	21	24	26
L-203-1	26.0 ± 4.9	29	23	26	26
L-203-2	25.3 ± 5.7	29	22	25	25
L-204-1	28.3 ± 5.7	32	26	26	29
L-204-2	26.3 ± 4.4	27	23	27	28
L-205-1	26.3 ± 3.0	28	25	25	27
L-205-2	25.8 ± 6.6	29	22	24	28
L-205-3	26.3 ± 6.6	31	26	24	24
L-205-4	26.3 ± 4.4	27	24	25	29
L-206-1	27.5 ± 5.8	31	24	27	28
L-206-2	27.3 ± 4.4	30	25	26	28
L-207-1	26.5 ± 6.8	30	22	26	28
L-207-2	25.3 ± 7.2	30	22	23	26
L-208-1	25.5 ± 2.6	26	24	25	27
L-208-2	26.3 ± 4.7	28	23	26	28
L-209-1	26.5 ± 6.2	31	24	25	26
L-209-2	26.8 ± 7.5	31	22	26	28
L-210-1	28.8 ± 5.0	32	29	28	26
L-210-2	26.5 ± 3.5	28	24	27	27
L-211-1	27.0 ± 3.3	29	25	27	27
L-211-2	27.8 ± 6.8	32	25	25	29
L-212-1	27.0 ± 2.8	28	25	27	28
L-212-2	26.5 ± 4.8	28	23	27	28
L-213-3	24.0 ± 5.9	27	21	22	26
L-213-4	25.0 ± 7.8	29	20	24	27
L-214-3	24.8 ± 5.0	28	22	25	24
L-214-4	26.8 ± 8.5	32	22	25	28
L-215-3	26.8 ± 6.6	31	23	26	27
L-215-4	27.5 ± 6.6	. 32	24	27	27
L-216-3	27.8 ± 6.0	32	25	27	27
L-216-4	26.5 ± 6.2	31	24	26	25

TABLE C-IX.2MEAN QUARTERLY TLD RESULTS FOR THE INNER RING, OUTER RING,
OTHER AND CONTROL LOCATIONS FOR LASALLE COUNTY STATION, 2006

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER ± 2 STANDARD DEVIATIONS OF THE STATION DATA

STATION CODE	INNER RING ± 2 S. D.		OTHER	CONTROL
JAN-MAR	29.6 ± 4.0	29.4 ± 3.9	28.1 ± 4.9	26.0 ± 5.7
APR-JUN	24.4 ± 3.1	23.4 ± 3.8	23.3 ± 2.8	19.0 ± 0.0
JUL-SEP OCT-DEC	26.0 ± 6.9 26.9 ± 3.4	25.4 ± 3.3 26.9 ± 2.8	25.6 ± 3.9 26.4 ± 2.3	23.5 ± 4.2 23.5 ± 1.4

TABLE C-IX.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR LASALLE
COUNTY STATION, 2006

RESULTS IN UNITS OF MILLI-ROENTGEN/QUARTER

LOCATION	SAMPLES ANALYZED	PERIOD MINIMUM	PERIOD MAXIMUM	PERIOD MEAN ± 2 S. D.
INNER RING	127	21	41	26.7 ± 5.9
OUTER RING	136	19	32	26.2 ± 5.6
OTHER	56	21	31	25.8 ± 5.0
CONTROL	8	19	28	23.0 ± 6.0

INNER RING - L-101-1, L-101-2, L-102-1, L-102-2, L-103-1, L-103-2, L-104-1, L-104-2, L-105-1, L-105-2, L-106-1, L-106-2, L-107-1, L-107-2, L-108-1, L-108-2, L-109-1, L-109-2, L-110-1, L-110-2

OUTER RING - L-201-3, L-201-4, L-202-3, L-202-4, L-203-1, L-203-2, L-204-1, L-204-2, L-205-1, L-205-2, L-206-1, L-206-2, L-207-1, L-207-2, L-208-1, L-208-2, L-209-1, L-209-2, L-210-1, L-211-2 L-211-2, L-212-1, L-212-2, L-213-3, L-213-4, L-214-3, L-214-4, L-215-3, L-215-4, L-216-3, L-216-4

OTHER STATIONS - L-01-1, L-01-2, L-03-1, L-03-2, L-04-1, L-04-2, L-05-1, L-05-2, L-06-1, L-06-2 L-07-1, L-07-2, L-08-1, L-08-2, L-11-1, L-11-2

CONTROL STATIONS = L-10-1, L-10-2

SURFACE WATER (TRITIUM LIQUID SCINTILLATION)

COLLECTION PERIOD	L-21	L-40
JAN-MAR	01/05/06 - 03/30/06	01/05/06 - 03/30/06
APR-JUN	04/06/06 - 06/29/06	04/06/06 - 06/29/06
JUL-SEP	07/06/06 - 09/28/06	07/06/06 - 09/28/06
OCT-DEC	10/05/06 - 12/28/06	10/05/06 - 12/28/06

SURFACE WATER (GROSS BETA & GAMMA SPECTROSCOPY)

COLLECTION PERIOD	L-21	L-40
JAN	01/05/06 - 01/26/06	01/05/06 - 01/26/06
FEB	02/02/06 - 02/23/06	02/02/06 - 02/23/06
MAR	03/02/06 - 03/30/06	03/02/06 - 03/30/06
APR	04/06/06 - 04/27/06	04/06/06 - 04/27/06
MAY	05/04/06 - 05/25/06	05/04/06 - 05/25/06
JUN	06/01/06 - 06/29/06	06/01/06 - 06/29/06
JUL	07/06/06 - 07/27/06	07/06/06 - 07/27/06
AUG	08/03/06 - 08/31/06	08/03/06 - 08/31/06
SEP	09/07/06 - 09/28/06	09/07/06 - 09/28/06
OCT	10/05/06 - 10/26/06	10/05/06 - 10/26/06
NOV	11/02/06 - 11/30/06	11/02/06 - 11/30/06
DEC	12/07/06 - 12/28/06	12/07/06 - 12/28/06

GROUND/WELL WATER (TRITIUM & GAMMA SPECTROSCOPY)

1 97	1.00
L-2/	L-20
01/12/06	01/12/06
04/13/06	04/13/06
07/13/06	07/13/06
10/19/06	10/19/06
	L-27 01/12/06 04/13/06 07/13/06 10/19/06

AIR PARTICULATE (GAMMA SPECTROSCOPY)

COLLECTION PERIOD	L-01	L-03	L-04	L-05	L-06
JAN-MAR	12/29/05 - 03/30/06	12/29/05 - 03/30/06	12/29/05 - 03/30/06	12/29/05 - 03/30/06	12/29/05 - 03/30/06
APR-JUN	03/30/06 - 06/29/06	03/30/06 - 06/29/06	03/30/06 - 06/29/06	03/30/06 - 06/29/06	03/30/06 - 06/29/06
JUL-SEP	06/26/06 - 09/28/06	06/26/06 - 09/28/06	06/26/06 - 09/28/06	06/26/06 - 09/28/06	06/26/06 - 09/28/06
OCT-DEC	09/28/06 - 12/28/06	09/28/06 - 12/28/06	09/28/06 - 12/28/06	09/28/06 - 12/28/06	09/28/06 - 12/28/06

AIR PARTICULATE (GAMMA SPECTROSCOPY)

COLLECTION PERIOD	L-07	L-08	L-10	L-11
JAN-MAR	12/29/05 - 03/30/06	12/29/05 - 03/30/06	12/29/05 - 03/30/06	12/29/05 - 03/30/06
APR-JUN	03/30/06 - 06/29/06	03/30/06 - 06/29/06	03/30/06 - 06/29/06	03/30/06 - 06/29/06
JUL-SEP	06/26/06 - 09/28/06	06/26/06 - 09/28/06	06/26/06 - 09/28/06	06/26/06 - 09/28/06
OCT-DEC	09/28/06 - 12/28/06	09/28/06 - 12/28/06	09/28/06 - 12/28/06	09/28/06 - 12/28/06

AIR PARTICULATE (GROSS BETA & I-131)

COLLECTION	l L-01	L-03	L-04	L-05	L-06
PERIOD					
1	12/29/05 - 01/05/06	12/29/05 - 01/05/06	12/29/05 - 01/05/06	12/29/05 - 01/05/06	12/29/05 - 01/05/06
2 '	• 01/05/06 - 01/12/06	01/05/06 - 01/12/06	01/05/06 - 01/12/06	01/05/06 - 01/12/06	01/05/06 - 01/12/06
3	01/12/06 - 01/19/06	01/12/06 - 01/19/06	01/12/06 - 01/19/06	01/12/06 - 01/19/06	01/12/06 - 01/19/06
4 '	* 01/19/06 - 01/26/06	01/19/06 - 01/26/06	01/19/06 - 01/26/06	01/19/06 - 01/26/06	01/19/06 - 01/26/06
5	01/26/06 - 02/02/06	01/26/06 - 02/02/06	01/26/06 - 02/02/06	01/26/06 - 02/02/06	01/26/06 - 02/02/06
ē '	* 02/02/06 - 02/09/06	02/02/06 - 02/09/06	02/02/06 - 02/09/06	02/02/06 - 02/09/06	02/02/06 - 02/09/06
7	02/09/06 - 02/16/06	02/09/06 - 02/16/06	02/09/06 - 02/16/06	02/09/06 - 02/16/06	02/09/06 - 02/16/06
Å.	• 02/16/06 - 02/23/06	02/16/06 - 02/23/06	02/16/06 - 02/23/06	02/16/06 - 02/23/06	02/16/06 - 02/23/06
ğ	02/23/06 - 03/02/06	02/23/06 - 03/02/06	02/23/06 - 03/02/06	02/23/06 - 03/02/06	02/23/06 - 03/02/06
10 1	• 03/02/06 - 03/09/06	03/02/06 - 03/09/06	03/02/06 - 03/09/06	03/02/06 - 03/09/06	03/02/06 - 03/09/06
11	03/09/06 - 03/16/06	03/09/06 - 03/16/06	03/09/06 - 03/16/06	03/09/06 - 03/16/06	03/09/06 - 03/16/06
12	* 03/16/06 - 03/23/06	03/16/06 - 03/23/06	03/16/06 - 03/23/06	03/16/06 - 03/23/06	03/16/06 - 03/23/06
13	03/23/06 - 03/30/06	03/23/06 = 03/30/06	03/23/06 - 03/30/06	03/23/06 - 03/30/06	03/23/06 - 03/30/06
14	• 03/30/06 - 04/06/06	03/30/06 - 04/06/06	03/30/06 - 04/06/06	03/30/06 - 04/06/06	03/30/06 - 04/06/06
15	04/06/06 = 04/13/06	0.1/0.6/0.6 = 0.4/13/0.6	04/06/06 - 04/13/06	04/06/06 - 04/13/06	04/06/06 = 04/13/06
16	04/13/06 - 04/20/06	04/43/06 = 04/13/06	04/13/06 = 04/20/06	04/13/06 = 04/20/06	04/13/06 - 04/20/06
17	04/20/06 04/20/00	04/13/00 - 04/20/00	04/20/06 04/27/06	04/20/06 - 04/20/06	04/10/06 = 04/20/00
10	04/20/00 - 04/21/00	04/20/00 - 04/27/00	04/20/00 = 04/27/00	04/27/06 = 05/04/06	04/27/06 = 05/04/06
10	04/27/08 - 05/04/08	04/21/00 - 05/04/00	05/04/06 05/11/06	05/04/06 05/11/06	04/2//00 - 05/04/00
19	05/04/00 - 05/11/00	05/04/00 - 05/11/00	05/14/00 - 05/11/00	05/11/06 05/18/06	05/11/06 05/19/06
20	05/11/00 - 05/16/00	05/11/00 - 05/16/00	05/11/06 - 05/16/06	05/11/00 - 05/16/00	05/11/00 + 05/16/00
21	05/16/06 - 05/25/06	05/16/00 - 05/25/00	05/18/00 - 05/25/00	05/16/06 - 05/25/00	05/16/00 - 05/25/00
22	05/25/06 - 06/01/06	05/25/00 + 06/01/06			
23	00/01/08 - 00/06/08				
24	06/06/06 - 06/15/06	00/00/00 - 00/15/00	00/00/00 - 00/15/00	00/00/00 - 00/15/00	06/06/06 - 06/15/06
25	06/15/06 - 06/22/06	00/15/00 - 00/22/00	06/15/06 - 06/22/06	00/15/00 - 00/22/00	06/15/00 - 06/22/00
26	06/22/06 - 06/29/06	06/22/06 - 06/29/06	06/22/06 - 06/29/06	06/22/06 - 06/29/06	06/22/06 - 06/29/06
27	06/29/06 - 07/06/06	00/29/00 - 07/00/00	00/29/00 - 07/00/00	00/29/00 - 07/00/00	00/29/00 - 07/00/00
28	07/06/06 - 07/13/06	07/06/06 - 07/13/06	(1)	07/06/06 - 07/13/06	07/06/06 - 07/13/06
29	07/13/06 - 07/20/06	07/13/06 - 07/20/06	07/13/06 - 07/20/06	07/13/06 - 07/20/06	07/13/06 - 07/20/06
30	07/20/06 - 07/27/06	07/20/06 - 07/27/06	07/20/06 - 07/27/06	07/20/06 - 07/27/06	07/20/06 - 07/27/06
31	07/27/06 - 08/03/06	07/27/06 - 08/03/06	07/27/06 - 08/03/06	0//2//06 - 08/03/06	0//2//06 - 08/03/06
32	08/03/06 - 08/09/06	08/03/06 - 08/09/06	08/03/06 - 08/09/06	08/03/06 - 08/09/06	08/03/06 - 08/09/06
33	08/09/06 - 08/16/06	08/09/06 - 08/16/06	08/09/06 - 08/16/06	08/09/06 - 08/16/06	08/09/06 - 08/16/06
34	08/16/06 - 08/24/06	08/16/06 - 08/24/06	08/16/06 - 08/24/06	08/16/06 - 08/24/06	08/16/06 - 08/24/06
35	08/24/06 - 08/31/06	08/24/06 - 08/31/06	08/24/06 - 08/31/06	08/24/06 - 08/31/06	08/24/06 - 08/31/06
36	08/31/06 - 09/07/06	08/31/06 - 09/07/06	08/31/06 - 09/07/06	08/31/06 - 09/07/06	08/31/06 - 09/07/06
37	09/07/06 - 09/14/06	09/07/06 - 09/14/06	09/07/06 - 09/14/06	09/07/06 - 09/14/06	09/07/06 - 09/14/06
38	09/14/06 - 09/21/06	09/14/06 - 09/21/06	09/14/06 - 09/21/06	09/14/06 - 09/21/06	09/14/06 - 09/21/06
39	09/21/06 - 09/28/06	09/21/06 - 09/28/06	09/21/06 - 09/28/06	09/21/06 - 09/28/06	09/21/06 - 09/28/06
40	09/28/06 - 10/05/06	09/28/06 - 10/05/06	09/28/06 - 10/05/06	09/28/06 - 10/05/06	09/28/06 - 10/05/06
41	10/05/06 - 10/12/06	10/05/06 - 10/12/06	10/05/06 - 10/12/06	10/05/06 - 10/12/06	10/05/06 - 10/12/06
42	10/12/06 - 10/19/06	10/12/06 - 10/19/06	10/12/06 - 10/19/06	10/12/06 - 10/19/06	10/12/06 - 10/19/06
43	10/19/06 - 10/26/06	10/19/06 - 10/26/06	10/19/06 - 10/26/06	10/19/06 - 10/26/06	10/19/06 - 10/26/06
44	10/26/06 - 11/02/06	10/26/06 - 11/02/06	10/26/06 - 11/02/06	10/26/06 - 11/02/06	10/26/06 - 11/02/06
45	11/02/06 - 11/09/06	11/02/06 - 11/09/06	11/02/06 - 11/09/06	11/02/06 - 11/09/06	11/02/06 - 11/09/06
46	11/09/06 - 11/16/06	11/09/06 - 11/16/06	11/09/06 - 11/16/06	11/09/06 - 11/16/06	11/09/06 - 11/16/06
47	11/16/06 - 11/22/06	11/16/06 - 11/22/06	11/16/06 - 11/22/06	11/16/06 - 11/22/06	11/16/06 - 11/22/06
48	11/22/06 - 11/30/06	11/22/06 - 11/30/06	11/22/06 - 11/30/06	11/22/06 - 11/30/06	11/22/06 - 11/30/06
49	11/30/06 - 12/07/06	11/30/06 - 12/07/06	11/30/06 - 12/07/06	11/30/06 - 12/07/06	11/30/06 - 12/07/06
50	12/07/06 - 12/14/06	12/07/06 - 12/14/06	12/07/06 - 12/14/06	12/07/06 - 12/14/06	12/07/06 - 12/14/06
51	12/14/06 - 12/21/06	12/14/06 - 12/21/06	12/14/06 - 12/21/06	12/14/06 - 12/21/06	12/14/06 - 12/21/06
52	12/21/06 - 12/28/06	12/21/06 - 12/28/06	12/21/06 - 12/28/06	12/21/06 - 12/28/06	12/21/06 - 12/28/06

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION * AIR IODINE SAMPLES COLLECTED BIWEEKLY

.

AIR PARTICULATE (GROSS BETA & I-131)

COLLECTIC	DN	L-07	L-08	L-10	L-11
PERIOD					
		12/29/05 - 01/05/06	12/29/05 - 01/05/06	12/29/05 - 01/05/06	12/29/05 - 01/05/06
2	*	01/05/06 - 01/12/06	01/05/06 - 01/12/06	01/05/06 - 01/12/06	01/05/06 = 01/12/06
3		01/12/06 - 01/19/06	01/12/06 - 01/19/06	01/12/06 - 01/19/06	01/12/06 - 01/12/06
3	*	01/10/06 01/26/06	01/12/06 - 01/15/00	01/12/06 01/19/06	01/12/00 - 01/19/00
5		01/19/06 - 01/20/00	01/19/00 - 01/20/00	01/19/00 - 01/20/00	01/19/00 - 01/20/00
С					01/20/00 - 02/02/08
0					02/02/06 - 02/09/06
/			02/09/06 - 02/16/06	02/09/06 - 02/16/06	02/09/06 - 02/16/06
8	-	02/16/06 - 02/23/06	02/16/06 - 02/23/06	02/16/06 - 02/23/06	02/16/06 - 02/23/06
9	•	02/23/06 - 03/02/06	02/23/06 - 03/02/06	02/23/06 - 03/02/06	02/23/06 - 03/02/06
10	-	03/02/06 - 03/09/06	03/02/06 - 03/09/06	03/02/06 - 03/09/06	03/02/06 - 03/09/06
11		03/09/06 - 03/16/06	03/09/06 - 03/16/06	03/09/06 - 03/16/06	03/09/06 - 03/16/06
12		03/16/06 - 03/23/06	03/16/06 - 03/23/06	03/16/06 - 03/23/06	03/16/06 - 03/23/06
13	_	03/23/06 - 03/30/06	03/23/06 - 03/30/06	03/23/06 - 03/30/06	03/23/06 - 03/30/06
14		03/30/06 - 04/06/06	03/30/06 - 04/06/06	03/30/06 - 04/06/06	03/30/06 - 04/06/06
15		04/06/06 - 04/13/06	04/06/06 - 04/13/06	04/06/06 - 04/13/06	04/06/06 - 04/13/06
16		04/13/06 - 04/20/06	04/13/06 - 04/20/06	04/13/06 - 04/20/06	04/13/06 - 04/20/06
17		04/20/06 - 04/27/06	04/20/06 - 04/27/06	04/20/06 - 04/27/06	04/20/06 - 04/27/06
18		04/27/06 - 05/04/06	04/27/06 - 05/04/06	04/27/06 - 05/04/06	04/27/06 - 05/04/06
19		05/04/06 - 05/11/06	05/04/06 - 05/11/06	05/04/06 - 05/11/06	05/04/06 - 05/11/06
20		05/11/06 - 05/18/06	05/11/06 - 05/18/06	05/11/06 - 05/18/06	05/11/06 - 05/18/06
21		05/18/06 - 05/25/06	05/18/06 - 05/25/06	05/18/06 - 05/25/06	05/18/06 - 05/25/06
22		05/25/06 - 06/01/06	05/25/06 - 06/01/06	05/25/06 - 06/01/06	05/25/06 - 06/01/06
23		06/01/06 - 06/08/06	06/01/06 - 06/08/06	06/01/06 - 06/08/06	06/01/06 - 06/08/06
24		06/08/06 - 06/15/06	06/08/06 - 06/15/06	06/08/06 - 06/15/06	06/08/06 - 06/15/06
25		06/15/06 - 06/22/06	06/15/06 - 06/22/06	06/15/06 - 06/22/06	06/15/06 - 06/22/06
26		06/22/06 - 06/29/06	06/22/06 - 06/29/06	06/22/06 - 06/29/06	06/22/06 - 06/29/06
27		06/29/06 - 07/06/06	06/29/06 - 07/06/06	06/29/06 - 07/06/06	06/29/06 - 07/06/06
28		07/06/06 - 07/13/06	07/06/06 - 07/13/06	07/06/06 - 07/13/06	07/06/06 - 07/13/06
29		07/13/06 - 07/20/06	07/13/06 - 07/20/06	07/13/06 - 07/20/06	07/13/06 - 07/20/06
30		07/20/06 - 07/27/06	07/20/06 - 07/27/06	07/20/06 - 07/27/06	07/20/06 - 07/27/06
31		07/27/06 - 08/03/06	07/27/06 - 08/03/06	07/27/06 - 08/03/06	07/27/06 - 08/03/06
32		08/03/06 - 08/09/06	08/03/06 - 08/09/06	08/03/06 - 08/09/06	08/03/06 - 08/09/06
33		08/09/06 - 08/16/06	08/09/06 - 08/16/06	08/09/06 - 08/16/06	08/09/06 - 08/16/06
34		08/16/06 - 08/24/06	08/16/06 - 08/24/06	08/16/06 - 08/24/06	08/16/06 - 08/24/06
35		08/24/06 - 08/31/06	08/24/06 - 08/31/06	08/24/06 - 08/31/06	08/24/06 - 08/31/06
36		08/31/06 - 09/07/06	08/31/06 - 09/07/06	08/31/06 - 09/07/06	08/31/06 - 09/07/06
37		09/07/06 - 09/14/06	09/07/06 - 09/14/06	09/07/06 - 09/14/06	09/07/06 - 09/14/06
38		09/14/06 - 09/21/06	09/14/06 - 09/21/06	09/14/06 - 09/21/06	09/14/06 - 09/21/06
30		09/21/06 - 09/28/06	09/21/06 - 09/28/06	09/21/06 - 09/28/06	09/21/06 - 09/28/06
40		09/28/06 - 10/05/06	09/28/06 - 10/05/06	09/28/06 - 10/05/06	09/29/06 - 10/05/06
40		10/05/06 = 10/12/06	10/05/06 = 10/12/06	10/05/06 - 10/12/06	10/05/06 - 10/12/06
42		10/12/06 10/12/00	10/12/06 10/12/06	10/10/06 10/10/06	10/12/06 10/12/06
42		10/12/06 - 10/19/06	10/12/00 - 10/19/00	10/12/00 - 10/19/00	10/12/00 - 10/19/00
43		10/19/06 - 10/20/06	10/19/00 - 10/20/00	10/19/00 - 10/20/00	10/19/00 - 10/20/00
44		11/02/00 + 11/02/00	10/20/00 - 11/02/00	14/02/00 - 11/02/00	10/20/00 - 11/02/00
40		11/02/00 - 11/09/00	11/02/00 - 11/09/00	11/02/00 - 11/09/00	11/02/00 - 11/05/00
40		11/09/00 - 11/10/00		11/09/00 - 11/10/00	
47		11/10/06 - 11/22/06	11/10/06 - 11/22/06	11/10/06 - 11/22/06	11/10/00 - 11/22/06
48		11/22/06 - 11/30/06	11/22/06 - 11/30/06	11/22/06 - 11/30/06	11/22/00 - 11/30/06
49		11/30/06 - 12/0//06	11/30/06 - 12/0//06	11/30/06 - 12/0//06	11/30/06 - 12/0//06
50		12/07/06 - 12/14/06	12/07/06 - 12/14/06	12/0//06 - 12/14/06	12/0//06 - 12/14/06
51		12/14/06 - 12/21/06	12/14/06 - 12/21/06	12/14/06 - 12/21/06	12/14/06 - 12/21/06
52		12/21/06 - 12/28/06	12/21/06 - 12/28/06	12/21/06 - 12/28/06	12/21/06 - 12/28/06

* AIR IODINE SAMPLES COLLECTED BIWEEKLY

C - 22

· .

.

FIGURE C-1 (cont.) Surface Water - Gross Beta - Station L-21 and L-40 Collected in the Vicinity of LCS, 2005 - 2006

L-21 Illinois River at Seneca

L-40 Illinois River Downstream

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

FIGURE C-2 Surface Water - Tritium - Station L-21 (C) and L-40 Collected in the Vicinity of LCS, 2000 - 2004

FIGURE C-2 (cont.) Surface Water - Tritium - Station L-21 (C) and L-40 Collected in the Vicinity of LCS, 2005 - 2006

L-21 Illinois River at Seneca

L-40 Illinois River Downstream

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

FIGURE C-3 (cont.) Air Particulates - Gross Beta - Stations L-01 and L-03 Collected in the Vicinity of LCS, 2005 - 2006

L-01 Nearsite No. 1

L-03 Onsite No. 3

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

FIGURE C-4 (cont.) Air Particulates - Gross Beta - Stations L-05 and L-06 Collected in the Vicinity of LCS, 2005 - 2006

L-05 Onsite No. 5

L-06 Nearsite No. 6

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

L-10 (C) Streator

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

L-04 Rte. 170

L-07 Seneca

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3 AIR PARTICULATE GROSS BETA ANALYSES OF FAR FIELD LOCATIONS STARTED IN JULY 2005

FIGURE C-7 Air Particulates - Gross Beta - Stations L-08 and L-11 Collected in the Vicinity of LCS, 2005 - 2006

L-08 Marseilles

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3 AIR PARTICULATE GROSS BETA ANALYSES OF FAR FIELD LOCATIONS STARTED IN JULY 2005

108 of 234

,
APPENDIX D

INTER-LABORATORY COMPARISON PROGRAM

109 of 234

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM **TELEDYNE BROWN ENGINEERING, 2006**

(PAGE 1 OF 3)

Month/Year	Identification Number	n Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
March 2006	F4964-396	Milk	Sr-89	nCi/l	91.5	99.2	0.92	Δ
1101011 2000	24004 000	ivilia.	Sr-90	pCi/L	12.2	10.8	1.13	A
	E4965-396	Milk	I-131	pCi/L	74.4	78.0	0.95	Α
			Ce-141	pCi/L	95.1	104	0.91	A
			Cr-51	pCi/L	278	280	0.99	Α
			Cs-134	pCi/L	103	121	0.85	Α
			Cs-137	pCi/L	87.6	88.8	0.99	Α
			Co-58	pCi/L	93.9	105	0.89	Α
			Mn-54	pCi/L	90.0	93.3	0.96	Α
			Fe-59	pCi/L	83.0	86.6	0.96	Α
			Zn-65	pCi/L	178	176	1.01	Α
			Co-60	pCi/L	118	128	0.92	Α
	E4967-396	AP	Ce-141	pCi	89.9	74	1.21	w
			Cr-51	pCi	253	200	1.27	W
			Cs-134	pCi	71.5	86.1	0.83	A
			Cs-137	pCi	67.5	63.3	1.07	Α
			Co-58	pCi	79.7	74.6	1.07	Α
			Mn-54	pCi	74.9	67	1.12	Α
			Fe-59	pCi	75.5	61.8	1.22	W
			Zn-65	pCi	146	126	1.16	Α
			Co-60	pCi	91.2	91	1.00	Α
	E4966-396	Charcoal	I-131	рСі	87.4	86.2	1.01 .	Α
June 2006	E5018-396	Milk	Sr-89	pCi/L	118	129	0.91	Α
			Sr-90	pCi/L	9.29	9.74	0.95	Α
	E5019-396	Milk	I-131	pCi/L	49.9	63.2	0.79	w
			Ce-141	pCi/L	174	184	0.95	Α
			Cr-51	pCi/L	266	259	1.03	Α
			Cs-134	pCi/L	111	127	0.88	Α
			Cs-137	pCi/L	116	117	0.99	Α
			Co-58	pCi/L	101	100	1.01	Α
			Mn-54	pCi/L	144	146	0.98	Α
			Fe-59	pCi/L	96.7	93.6	1.03	Α
			Zn-65	pCi/L	182	185	0.98	Α
			Co-60	pCi/L	126	129	0.98	Α
	E5021-396	AP	Ce-141	рСі	113	124	0.91	Α
			Cr-51	pCi	176	174	1.01	Α
			Cs-134	pCi	63.7	85.1	0.75	W
			Cs-137	pCi	76.8	79.0	0.97	Α
			Co-58	рСі	63.1	67.4	0.94	Α
			Mn-54	рСі	102	99	1.04	Α
			Fe-59	рСі	64.6	62.9	1.03	Α
			Zn-65	pCi	131	125	1.05	Α
			Co-60	pCi	81.6	86.5	0.94	Α
	E5020-396	Charcoal	I-131	pCi	65.4	65.9	0.99	Α

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM **TELEDYNE BROWN ENGINEERING, 2006**

(PAGE 2 OF 3)

	Identification				Reported	Known	Ratio (c)	
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
September 2006	-		S- 90		00.3	80.2	1.01	٨
September 2006	E0120-390	MIIK	SI-09		90.3 11.6	09.Z 12 A	0.04	A A
			31-90	POIL	11.0	12.4	0.54	~
	E5121-396	Milk	I-131	pCi/L	67.8	73.8	0.92	Α
			Ce-141	pCi/L	85.0	86.0	0.99	A
			Cr-51	pCi/L	263	282	0.93	Α
			Cs-134	pCi/L	74.7	85.0	0.88	Α
			Cs-137	pCi/L	172	175	0.98	Α
			Co-58	pCi/L	107	109	0.98	Α
			Mn-54	pCi/L	110	113	0.98	Α
			Fe-59	pCi/L	46.6	43.7	1.07	Α
			Zn-65	pCi/L	144	145	0.99	Α
			Co-60	pCi/L	127	134	0.95	Α
	E5123-396	AP	Ce-141	nCi	67.1	66.4	1.01	А
	20120 000	7.4	Cr-51	pCi	223	217	1.03	A
			Cs-134	pCi	51.7	65.6	0.79	Ŵ
			Cs-137	nCi	134	135.0	0.99	A
			Co-58	nCi	84.8	84.3	1.01	Â
			Mn-54	pCi	95.2	87	1 10	A
			Fe-59	pCi	41.6	33.7	1 23	Ŵ
			7n-65	pCi	123	112	1 10	Δ
			C-60	pCi	98.9	103	0.96	Δ
			Co-57	pCi	0.922	(1)	NA	NA
	E5122-396	Charcoal	I-131	pCi	77.7	90.7	0.86	A
December 2006	E6172-306	N Aille	Sr-80	nCi/l	72 4	72.0	1 01	Δ
December 2000	20112-000	TATUL	Sr-90	pCi/L	7.05	5 90	1 19	A
			01-30	PO%E	1.00	0.50	1.15	~
	E5173-396	Milk	I-131	pCi/L	71.9	70.8	1.02	Α
			Ce-141	pCi/L	268	294	0.91	Α
			Cr-51	pCi/L	420	433	0.97	Α
			Cs-134	pCi/L	128	147	0.87	Α
			Cs-137	pCi/L	231	237	0.97	Α
			Co-58	pCi/L	82.0	83.8	0.98	Α
			Mn-54	pCi/L	113	111	1.02	Α
			Fe-59	pCi/L	79.8	79.7	1.00	Α
			Zn-65	pCi/L	170	164	1.04	Α
			Co-60	pCi/L	265	281	0.94	Α
	E5175-396	AP	Ce-141	pCi	220	210	1.05	Α
			Cr-51	pCi	343	309	1.11	Α
			Cs-134	pCi	90.8	105	0.86	Α
			Cs-137	pCi	185	169.0	1.09	Α
			Co-58	pCi	65.0	59.7	1.09	Α
			Mn-54	pCi	90.6	79	1.15	Α
			Fe-59	pCi	70.7	56.7	1.25	w
			Zn-65	, pCi	136	117	1.16	'Α
			Co-60	pCi	208	200	1.04	Α

•

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2006 (PAGE 3 OF 3)

	Identification				Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics		
Month/Year	Number	Matrix	Nuclide	Units				Evaluation (d)	
December 2006	E5174-396	Charcoal	I-131	pCi	77.4	85.4	0.91	Α	

(a) Teledyne Brown Engineering reported result.

(c) Ratio of Teledyne Brown Engineering to Analytics results.

⁽¹⁾ Impurity detected but not measured by Analytics.

⁽b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽d) Analytics evaluation based on TBE Internal QC limits: A= Acceptable. Reported result falls within ratio limits of 0.80-1.20. W-Acceptable with warning. Reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable. Reported result falls outside the ratio limits of < 0.70 and > 1.30.

TABLE D-2

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM	l
TELEDYNE BROWN ENGINEERING, 2006	

(PAGE	1	OF	1)
-------	---	----	----

	Identification	on			Reported	Known		
Month/Year	Number	Media	Nuclide	Units	Value (a)	Value (b)	Control Limits	Evaluation (c)
May 2006	Rad 65	Water	Sr-89	pCi/L	30.2	32.4	23.6 - 41.1	Α
			Sr-90	pCi/L	8.74	9.00	0.340 - 17.7	Α
			Ba-133	pCi/L	10.9	10.0	1.34 - 18.7	Α
			Cs-134	pCi/L	39.7	43.4	34.7 - 52.1	Α
			Cs-137	pCi/L	199	214	195 - 233	Α
			Co-60	pCi/L	111	113.0	103 - 123	Α
			Zn-65	pCi/L	146	152	126 - 178	Α
			Gr-A	pCi/L	22.9	21.3	12.1 - 30.5	Α
			Gr-B	pCi/L	23.7	23.0	14.3 - 31.7	Α
			Ra-226	pCi/L	2.64	3.02	2.23 - 3.81	Α
			U-Nat	pCi/L	74.9	69.1	57.1 - 81.1	Α
			H-3	pCi/L	7950	8130	6720 - 9540	Α
	Rad 65	Water	I-131	pCi/L	18.2	19.1	13.9 - 24.3	Α
November 2006	Rad 67	Water	Sr-89	pCi/L	40.0	39.9	31.2 - 48.6	Α
			Sr-90	pCi/L	16.2	16.0	7.34 - 24.7	Α
			Ba-133	pCi/L	65.0	70.2	58.1 - 82 .3	Α
			Cs-134	pCi/L	27.4	29.9	21.2 - 38.6	Α
			Cs-137	pCi/L	74.4	78.2	69.5 - 86.9	Α
			Co-60	pCi/L	61.6	62.3	53.6 - 71.0	Α
			Zn-65	pCi/L	277	277	229 - 325	Α
			Gr-A	pCi/L	23.3	28.7	16.3 - 41.1	Α
			Gr-B	pCi/L	22.0	20. 9	12.2 - 29.6	Α
			U-Nat	pCi/L	3.18	3.20	0.00 - 8.40	Α
			H-3	pCi/L	2930	3050	2430 - 3670	Α
		Water	I-131	pCi/L	19.8	22.1	16.9 - 27.3	Α

(a) Teledyne Brown Engineering reported result.

(b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) ERA evaluation: A=acceptable. Reported result fails within the Warning Limits. NA=not acceptable. Reported result fails outside of the Control Limits. CE=check for Error. Reported result fails within the Control Limits and outside of the Warning Limit.

TABLE D-3 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) **TELEDYNE BROWN ENGINEERING, 2006**

(PAGE 1 OF 3)

يوريند القنديي الدكر	Identification				Reported	Клоwп	Accentance	
Month/Year	Number	Media	Nuclide	Units	Value (a)	Value (b)	Range	Evaluation (c)
January 2006	06-MaW15	Water	Am-241	Ba/L	1.29	1.30	0.91 - 1.69	Α
			Cs-134	Ba/L	79.2	95.1	66.57 - 123.63	A
			Cs-137	Ba/L	-0.188			A
			Co-57	Ba/L	151	166.12	116.28 - 215.96	A
			Co-60	Ba/L	141	153.50	107.45 - 199.55	A
			H-3	Ba/L	988	952.01	666.41 - 1237.61	A
			Fe-55	Ba/L	106.0	129.60	90 72 - 168 48	A
			Mn-54	Bg/l	297	315.00	220 50 - 409 50	A
			Ni-63	Ba/l	61.5	60.34	44 24 - 78 44	A
			Pu-238	Ba/l	0 961	0.91	0.64 - 1.18	Δ
			Pu-230/240	Bo/L	0.001	0.01	(1)	Â
			Sr-90	Ba/l	126	13 16	Q 21- 17 11	Ā
			J-90	Bq/L	22.0	23.28	16 37 - 30 30	Â
			10-99	Bq/L Bq/L	22.0	20.00	10.37 - 30.39	
			0-234/233	Bq/L Ba/l	2.20	2.09	1.40 - 2.72	
			U-230 7- 65	Б 4 /L D~/l	2.23	2.17	1.02 - 2.02	~
			2n-05	BQ/L	219	220.10	159.71 - 290.01	A
	06-CAM15	Water	Gr	Bo/I	0 575	0 581	>0.0 - 1.162	۵
	00-014415	vvalei		Bq/L	1 52	1 13	0.56 - 1.70	Â
			GI-D	Бψс	1.02	1.15	0.00 - 1.70	~
	06-MaS15	Soil	Am-241	Ba/ka	48.8	57.08	39 96 - 74 20	Α
	00 11/2010	00.1	Ce-134	Ba/ka	15.9	07.00	00.00 14.20	N (2)
			Ce-137	Ba/ka	370	339 69	237 78 - 441 60	Δ
			Co-57	Ba/ka	667	656.29	459 40 - 853 18	A
			Co-60	Ba/ka	478	447 10	312 97 - 581 23	A
			Mn-54	Ba/ka	384	346 77	242 74 - 450 80	Δ
			Ni-63	Ba/ka	394	323 51	226 46 - 420 56	Ŵ
			K-40	Ba/ka	667	604	423 - 785	Δ
			Sr-90	Ba/ka	253	314 35	220 04 - 408 66	Δ
			To-99	Balka	146	154 76	108 33 - 201 10	Δ
			70-55	Ba/kg	740	657.36	460 15 - 854 67	
			211-00	Dyng	140	001.00	400.10-004.07	~
	06-RdF15	AP	Am-241	Ba/sample	0.0850	0.093	0.065 - 0.121	Α
			Cs-134	Bo/sample	2.34	2.934	2.054 - 3.814	A
			Cs-137	Bo/sample	2.45	2.531	1.772 - 3.290	Â
			Co-57	Bq/sample	3.87	4.096	2.867 - 5.325	A
			Co-60	Bq/sample	2.12	2.186	1.530 - 2.842	A
			Mn-54	Ba/sample	0.0206	2.100	not spiked	Δ
			Pu-238	Bo/sample	0.0200	0.067	0.047 - 0.087	A
			Pu-230/240	Balsample	0.0700	0.001	(1)	Δ
			Sr-00	Balsample	0.00520	0.00041	0.554 - 1.030	Δ
			11-23//233	Baleamole	0.0217	0.020	0.004 - 1.000	Δ
			11-238	Ba/sample	0.0217	0.020	0.015 - 0.020	Â
			7n_65	Balsomolo	3 26	3 122	2 206 - 1 150	$\hat{\mathbf{x}}$
			211-00	pheamhig	0.00	J.42J	2.330 - 4.430	~
	06-GrF15	AP	Gr-A	Ba/sample	0.257	0.361	>0.0 - 0.722	Α
			Gr-B	Ba/sample	0.398	0.481	0.241 - 0.722	A
				·				

-

TABLE D-3

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2006

(PAGE 2 OF 3)

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c)
January 2006		Vegetation	Am 241	Balaamala	0.456	0.156	0.100 0.202	
January 2000	00-Ruv 15	vegetation	A01-241	Bq/sample	0.150	0.150	0.109 - 0.203	A .
			CS-134	Bq/sample	0.309	0.074		A
			CS-137	Bq/sample	3.13	3.074	2.152 - 3.990	A
			CO-57	Bq/sample	10.1	8.578	6.005 - 11.151	A
			Co-60	Bq/sample	4.69	4.520	3.164 - 5.876	A
			Mn-54	Bq/sample	6.53	6.247	4.3/3 - 8.121	A
			Pu-238	Bq/sample	0.183	0.137	0.096 - 0.178	N (3)
			Pu-239/240	Bq/sample	0.111	0.164	0.115 - 0.213	N (3)
			Sr-90	Bq/sample	2.22	1.561	1.093 - 2.029	N (3)
			U-234/233	Bq/sample	0.208	0.208	0.146 - 0.270	A
			U-238	Bq/sample	0.176	0.216	0.151 - 0.281	A
			Zn-65	Bq/sample	10.5	9.798	6.859 - 12.737	A
July 2006	06-MaW16	Water	Am-241	Bq/L	2.09	2.31	1.62 - 3.00	Α
			Cs-134	Bq/L	99.8	112.82	78.98 - 146.66	Α
			Cs-137	Bq/L	191	196.14	137.30 - 254.98	Α
			Co-57	Bq/L	203	213.08	149.16 - 277.00	Α
			Co-60	Ba/L	46.2	47.5	33.2 - 61.8	Α
			H-3	Ba/L	471	428.85	300.20 - 557.50	Α
			Fe-55	Ba/L	173	165.4	115.8 - 215.0	Α
			Ni-63	Ba/L	109	118.62	83.03 - 154.21	A
			Pu-238	Ba/L	1.50	1.39	0.97 - 1.81	A
			Pu-239/240	Ba/L	2.01	1.94	1.36 - 2.52	A
			Sr-90	Ba/L	13.7	15.69	10.98-20.40	A
			Tc-99	Ba/l	29.0	27 15	19.00 - 35.29	A
			11-234/233	Ba/l	2 19	2 15	1 50 - 2 80	A
			U-238	Ba/l	2.25	2 22	1.55 - 2.89	Ā
			Zn-65	Bq/L	178	176.37	123.46 - 229.28	A
	06-GrW16	Water	Gr-A	Ba/l	1 52	1 033	>0.0 - 2.066	Α
		Trato.	Gr-B	Bq/L	1.18	1.03	0.52 - 1.54	A
	06-MaS16	Soil	Am-241	Ba/ka	83.6	105.47	73.83 - 137.11	w
			Cs-134	Ba/ka	393	452.13	316.49 - 587.77	A
			Cs-137	Ba/ka	522	525.73	368.01 - 683.45	Α
			Co-57	Ba/ka	636	676.33	473.43 - 879.23	A
			Co-60	Ba/ka	3.78	1.98		A (4)
			Mn-54	Ba/ka	598	594.25	415.98 - 772.52	A
			Ni-63	Bo/kg	571	627.3	470.6 - 874.0	A
			Pu-238	Ba/ka	71.2	82	57 - 107	Δ
			Pu-239240	Bo/ko	0.487	0.93	UI - IVI	
			K_40	Ba/ka	615	604	423 - 785	Δ
			Sr-90	Ba/ka	178	222.2	156 3 - 200 3	ŵ
			Te 00	Bq/kg	170	223.3	152 61 - 282 /1	Δ
			11-234/222	Balka	110	152 //	106 71 102 17	~ \v/
			0-204/200	Balka	110	152.44	111 11 206 25	10/
			Zn-65	Bq/kg	937	903.61	632.53 - 1174.69	A A

TABLE D-3

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2006

(PAGE 3 OF 3)

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c)
July 2006	06-RdF16	AP	Am-241	Ba/sample	0.124	0.142	0.099 - 0.185	А
·			Cs-134	Ba/sample	2.62	3.147	2.203 - 4.091	A
			Cs-137	Bq/sample	1.98	1.805	1.263 - 2.346	A
			Co-57	Bq/sample	2.65	2.582	1.807 - 3.357	Α
			Co-60	Bq/sample	1.63	1.577	1.104 - 2.050	Α
			Mn-54	Bq/sample	2.10	1.92	1.34 - 2.50	Α
			Pu-238	Bq/sample	0.118	0.118	0.083 - 0.153	Α
			Pu-239/240	Bq/sample	0.00822		not spiked	Α
			Sr-90	Bq/sample	0.549	0.62	0.43 - 0.81	Α
			U-234/233	Bq/sample	0.140	0.134	0.094 - 0.174	Α
			U-238	Bq/sample	0.136	0.139	0.097 - 0.181	Α
			Zn-65	Bq/sample	-0.163		not spiked	Α
	06-GrF16	AP	Gr-A	Bq/sample	0.134	0.290	>0.0 - 0.580	Α
			Gr-B	Bq/sample	0.358	0.359	0.180 - 0.538	Α

(1) False positive test

(2) Evaluated as a false positive by MAPEP atthough we considered the result a non-detect due to the peak not being identified by the gamma software. For Cs-134, MAPEP suggests the Bi-214 is not being differentiated from the Cs-134 peak.

(3) Sr samples analyzed in triplicate and one high result of 2.43 pCi/kg biased the submitted results on the high side. We were unable to determine the cause for the higher result. Since we do not analyze vegetation for isotpic Pu, no NCR was initiated for the Pu failure. MAPEP suggest pyrosulfate fusion preparation prior to analysis for isotopic Pu in vegetation samples.

- (4) Not detected, reported a statistically zero result. (False positive test)
- (a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

TABLE D-4 ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2006

(Page 1 of 2	2)
--------------	----

		Concentration (pCi/L)						
Lab Code	Date	Analysis	Laboratory	ERA	Control			
			Result ^b	Result ^c	Limits	Acceptance		
STW-1078	01/16/06	Sr-89	49.9 ± 3.5	50.2	41.5 - 58.9	Pass		
STW-1078	01/16/06	Sr-90	31.5 ± 1.5	30.7	22.0 - 39.4	Pass		
STW-1079	01/16/06	Ba-133	86.5 ± 4.1	95.0	78.6 - 111.0	Pass		
STW-1079	01/16/06	Co-60	96.3 ± 4.1	95.3	86.6 - 104.0	Pass		
STW-1079	01/16/06	Cs-134	22.6 ± 3.0	23.1	14.4 - 31.8	Pass		
STW-1079	01/16/06	Cs-137	109.0 ± 5.9	111.0	101.0 - 121.0	Pass		
STW-1079	01/16/06	Zn-65	198.0 ± 11.2	192.0	159.0 - 225.0	Pass		
STW-1080	01/16/06	Gr. Alpha	10.8 ± 1.4	9.6	1.0 - 18.3	Pass		
STW-1080	01/16/06	Gr. Beta	56.9 ± 1.9	61.9	44.6 - 79.2	Pass		
STW-1081	01/16/06	Ra-226	4.3 ± 0.4	4.6	3.4 - 5.8	Pass		
STW-1081	01/16/06	Ra-228	7.1 ± 1.8	6.6	3.7 - 9.5	Pass		
STW-1081	01/16/06	Uranium	20.7 ± 0.5	22.1	16.9 - 27.3	Pass		
STW-1088	04/10/06	Sr-89	29.0 ± 1.8	32.4	23.7 - 41.1	Pass		
STW-1088	04/10/06	Sr-90	8.7 ± 1.0	9.0	0.3 - 17.7	Pass		
STW-1089	04/10/06	Ba-133	10.3 ± 0.4	10.0	1.3 - 18.7	Pass		
STW-1089	04/10/06	Co-60	114.0 ± 2.8	113.0	103.0 - 123.0	Pass		
STW-1089	04/10/06	Cs-134	41.9 ± 1.4	43.4	34.7 - 52.1	Pass		
STW-1089	04/10/06	Cs-137	208.0 ± 1.1	214.0	195.0 - 233.0	Pass		
STW-1089	04/10/06	Zn-65	154.0 ± 0.8	152.0	126.0 - 178.0	Pass		
STW-1090	04/10/06	Gr. Alpha	13.4 ± 1.1	21.3	12.1 - 30.5	Pass		
STW-1090	04/10/06	Gr. Beta	27.7 ± 2.1	23.0	14.3 - 31.7	Pass		
STW-1091	04/10/06	I-131	22.0 ± 0.3	19.1	13.9 - 24.3	Pass		
STW-1092	04/10/06	H-3	7960.0 ± 57.0	8130.0	6720.0 - 9540.0	Pass		
STŴ-1092	04/10/06	Ra-226	2.9 ± 0.4	3.0	2.2 - 3.8	Pass		
STW-1092	04/10/06	Ra-228	20.9 ± 1.2	19.1	10.8 - 27.4	Pass		
STW-1092	04/10/06	Uranium	68.6 ± 3.4	69.1	57.1 - 81.1	Pass		
STW-1094	07/10/06	Sr-89	15.9 ± 0.7	19.7	11.0 - 28.4	Pass		
STW-1094	07/10/06	Sr-90	24.3 ± 0.4	25.9	17.2 - 34.6	Pass		
STW-1095	07/10/06	Ba-133	94.9 ± 8.9	88.1	72.9 - 103.0	Pass		
STW-1095	07/10/06	Co-60	104.0 ± 1.8	99.7	91.0 - 1 08.0	Pass		
STW-1095	07/10/06	Cs-134	48.7 ± 1.3	54.1	45.4 - 62.8	Pass		
STW-1095	07/10/06	Cs-137	236.0 ± 3.0	238.0	217.0 - 259.0	Pass		
STW-1095	07/10/06	Zn-65	126.0 ± 8.0	121.0	100.0 - 142.0	Pass		
STW-1096	07/10/06	Gr. Alpha	10.9 ± 1.0	10.0	1.3 - 18.6	Pass		
STW-1096	07/10/06	Gr. Beta	9.7 ± 0.4	8.9	0.2 - 17.5	Pass		
STW-1097	07/10/06	Ra-226	11.0 ± 0.5	10.7	7.9 - 13.5	Pass		
STW-1097	07/10/06	Ra-228	12.2 ± 0.8	10.7	6.1 - 15.3	Pass		
STW-1097	07/10/06	Uranium	43.4 ± 0.1	40.3	33.3 - 47.3	Pass		

TABLE D-4

ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2006

(Page 2 of 2)

		Concentration (pCi/L)									
Lab Code	Date	Analysis	Analysis Laboratory Result ^b		Controi Limits	Acceptance					
					<u></u>	·····					
STW-1104	10/06/06	Sr-89	38.4 ± 1.3	39.9	31.2 - 45.7	Pass					
STW-1104	10/06/06	Sr-90	15.5 ± 0.5	16.0	7.3 - 24.7	Pass					
STW-1105	10/06/06	Ba-133	64.9 ± 2.8	70.2	58.1 - 82.3	Pass					
STW-1105	10/06/06	Co-60	61.6 ± 1.0	62.3	53.6 - 71.0	Pass					
STW-1105	10/06/06	Cs-134	29.0 ± 0.9	29.9	21.2 - 38.6	Pass					
STW-1105	10/06/06	Cs-137	77.8 ± 2.4	78.2	69.5 - 86. 9	Pass					
STW-1105	10/06/06	Zn-65	293.0 ± 2.4	277.0	229.0 - 325.0	Pass					
STW-1106	10/06/06	Gr. Alpha	23.9 ± 2.5	28.7	16.3 - 41.1	Pass					
STW-1106	10/06/06	Gr. Beta	23.7 ± 1.4	20.9	12.2 - 29.6	Pass					
STW-1107 d	10/06/06	I-131	28.4 ± 1.2	22.1	16.9 - 27.3	Fail					
STW-1108	10/06/06	Ra-226	14.5 ± 0.5	14.4	10.7 - 18.1	Pass					
STW-1108	10/06/06	Ra-228	6.6 ± 0.4	5.9	3.3 - 8.4	Pass					
STW-1108	10/06/06	Uranium	2.9 ± 0.1	3.2	0.0 - 8.4	Pass					
STW-1109	10/06/06	H-3	3000.0 ± 142.0	3050.0	2430.0 - 3670.0	Pass					

Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^d The reported result was an average of three analyses, results ranged from 25.36 to 29.23 pCi/L. A fourth analysis was performed, result of analysis, 24.89 pCi/L.

TABLE D-5 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)* ENVIRONMENTAL, INC., 2006

(Page 1 of 3)

		Concentration ^b							
Lob Codo ^c				Known	Control				
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits d	Acceptance			
STVE-1082	01/01/06	Am-241	0.16 ± 0.06	0.16	0.11 - 0.20	Pass			
STVE-1082	01/01/06	Co-57	10.40 ± 0.20	8.58	6.00 - 11.15	Pass			
STVE-1082	01/01/06	Co-60	5.00 ± 0.20	4.52	3.16 - 5.88	Pass			
STVE-1082 *	01/01/06	Cs-134	< 0.20	0.00		Pass			
STVE-1082	01/01/06	Cs-137	3.40 ± 0.20	3.07	2.15 - 4.00	Pass			
STVE-1082	01/01/06	Mn-54	6.90 ± 0.20	6.25	4.37 - 8.12	Pass			
STVE-1082 1	01/01/06	Pu-238	0.08 ± 0.03	0.14	0.10 - 0.18	Fail			
STVE-1082	01/01/06	Pu-239/40	0.17 ± 0.03	0.16	0.11 - 0.21	Pass			
STVE-1082	01/01/06	Sr-90	1.40 ± 0.20	1.56	1.09 - 2.03	Pass			
STVE-1082	01/01/06	U-233/4	0.24 ± 0.05	0.21	0.15 - 0.27	Pass			
STVE-1082	01/01/06	U-238	0.19 ± 0.04	0.22	0.15 - 0.28	Pass			
STVE-1082	01/01/06	Zn-65	11.10 ± 0.50	9.80	6.86 - 12.74	Pass			
STSO-1083	01/01/06	Am-241	54.60 ± 5.50	57.08	39.96 - 74.20	Pass			
STSO-1083	01/01/06	Co-57	762.90 ± 12.70	656.29	459.40 - 853.18	Pass			
STSO-1083	01/01/06	Co-60	504.90 ± 3.10	447.10	312.97 - 581.23	Pass			
STSO-1083*	01/01/06	Cs-134	< 1.70	0.00		Pass			
STSO-1083	01/01/06	Cs-137	406.50 ± 3.70	339.69	237.78 - 441.60	Pass			
STSO-1083	01/01/06	K-40	719.20 ± 18.40	604.00	422.80 - 785.20	Pass			
STSO-1083	01/01/06	Mn-54	415.60 ± 4.80	346.77	242.74 - 450.80	Pass			
STSO-1083	01/01/06	Ni-63	261.40 ± 14.70	323.51	226.46 - 420.56	Pass			
STVE-1083 ¹	01/01/06	Pu-238	14.60 ± 2.90	61.15	42.81 - 79.50	Fail			
STVE-1083 ¹	01/01/06	Pu-239/40	14.60 ± 2.40	45.85	32.09 - 59.61	Fail			
STVE-1083 1	01/01/06	U-233/4	13.50 ± 1.70	37.00	25.90 - 48.10	Fail			
STVE-1083 1	01/01/06	U-238	15.40 ± 1.80	38.85	27.20 - 50.50	Fail			
STSO-1083	01/01/06	Zn-65	783.40 ± 7.00	657.36	460.15 - 854.57	Pass			
STAP-1084	01/01/06	Gr Alnha	0 26 + 0 02	0.36	0.00 - 0.72	Pass			
STAP-1084	01/01/06	Gr Beta	0.51 ± 0.02	0.68	0.24 - 0.72	Pass			
01741-1004	01101100	OI. DOLL	0.01 1 0.00	0.40	0.24 - 0.12	1 435			
STAP-1085	01/01/06	Am-241	0.12 ± 0.02	0.09	0.07 - 0.12	Pass			
STAP-1085	01/01/06	Co-57	4.32 ± 0.10	4.10	2.87 - 5.32	Pass			
STAP-1085	01/01/06	Co-60	2.24 ± 0.16	2.19	1.53 - 2.84	Pass			
STAP-1085	01/01/06	Cs-134	2.96 ± 0.19	2.93	2.05 - 3.81	Pass			
STAP-1085	01/01/06	Cs-137	2.64 ± 0.20	2.53	1.77 - 3.29	Pass			
STAP-1085 1	01/01/06	Pu-238	0.03 ± 0.01	0.07	0.05 - 0.09	Fail			
STAP-1085 *	01/01/06	Pu-239/40	< 0.01	0.00		Pass			
STAP-1085	01/01/06	Sr-90	0.77 ± 0.21	0.79	0.55 - 1.03	Pass			
STAP-1085	01/01/06	U-233/4	0.03 ± 0.01	0.02	0.01 - 0.03	Pass			
STAP-1085	01/01/06	U-238	0.02 ± 0.01	0.02	0.01 - 0.03	Pass			
STAP-1085	01/01/06	Zn-65	3.94 ± 0.44	3.42	2.40 - 4.45	Pass			

TABLE D-5 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)* ENVIRONMENTAL, INC., 2006

(Page 2 of 3)

_		Concentration ^b						
Lab Cada ^c		· · · · · ·		Known	Control			
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance		
STW-1086	01/01/06	Am-241	1.29 ± 0.05	1.30	0.91 - 1.69	Pass		
STW-1086	01/01/06	Co-57	177.10 ± 1.00	166.12	116.28 - 215.96	Pass		
STW-1086	01/01/06	Co-60	158.30 ± 1.00	153.50	107.45 - 199.55	Pass		
STW-1086	01/01/06	Cs-134	96.40 ± 1.50	95.10	66.57 - 123.63	Pass		
STW-1086 *	01/01/06	Cs-137	- < 0.80	0.00		Pass		
STW-1086	01/01/06	Fe-55	102.50 ± 18.10	129.60	90.72 - 168.48	Pass		
STW-1086	01/01/06	H-3	956.60 ± 16.50	952.01	666.41 - 1238.00	Pass		
STW-1086	01/01/06	Mn-54	335.30 ± 2.20	315.00	220.50 - 409.50	Pass		
STW-1086	01/01/06	Ni-63	62.90 ± 3.60	60.34	42.24 - 78.44	Pass		
STW-1086	01/01/06	Pu-238	0.96 ± 0.07	0.91	0.70 - 1.30	Pass		
STW-1086 °	01/01/06	Pu-239/40	< 0.20	0.00		Pass		
STW-1086	01/01/06	Sr-90	12.80 ± 1.60	13.16	9.21 - 17.11	Pass		
STW-1086	01/01/06	Tc-99	22.30 ± 1.20	23.38	16.37 - 30.39	Pass		
STW-1086	01/01/06	U-233/4	2.02 ± 0.12	2.09	1.46 - 2.72	Pass		
STW-1086	01/01/06	U-238	2.03 ± 0.12	2.17	1.52 - 2.82	Pass		
STW-1086	01/01/06	Zn-65	249.50 ± 3.40	228.16	159.71 - 296.61	Pass		
STW-1087	01/01/06	Gr. Alpha	0.59 ± 0.10	0.58	0.00 - 1.16	Pass		
STW-1087	01/01/06	Gr. Beta	1.69 ± 0.07	1.13	0.56 - 1.70	Pass		
STVE-1098 *	07/01/06	Co-57	< 0.14	0.00		Pass		
STVE-1098 9	07/01/06	Co-60	6.89 ± 0.17	5.81	4.06 - 7.55	Pass		
STVE-1098	07/01/06	Cs-134	8.46 ± 0.16	7.49	5.24 - 9.73	Pass		
STVE-1098	07/01/06	Cs-137	6.87 ± 0.29	5.50	3.85 - 7.14	Pass		
STVE-1098	07/01/06	Mn-54	10.36 ± 0.29	8.35	5.85 - 10.86	Pass		
STVE-1098	07/01/06	Zn-65	7.46 ± 0.50	5.98	4.19 - 7.78	Pass		
STSO-1099	07/01/06	Am-241	130.00 ± 11.60	105.47	73.83 - 137.11	Pass		
STSO-1099	07/01/06	Co-57	784.90 ± 3.80	676.33	473.43 - 879.23	Pass		
STSO-1099	07/01/06	Co-60	2.10 ± 0.90	1.98	0.00 - 5.00	Pass		
STSO-1099	07/01/06	Cs-134	500.70 ± 7.40	452.13	316.49 - 587.77	Pass		
STSO-1099	07/01/06	Cs-137	624.20 ± 4.90	525.73	368.01 - 683.45	Pass		
STSO-1099	07/01/06	K-40	701.30 ± 3.40	604.00	423.00 - 785.00	Pass		
STSO-1099	07/01/06	Mn-54	699.20 ± 5.20	594.25	415.98 - 772.52	Pass		
STSO-1099	07/01/06	Ni-63	614.40 ± 17.10	672.30	470.60 - 874.00	Pass		
STSO-1099	07/01/06	Pu-238	79.90 ± 5.80	82.00	57.00 - 107.00	Pass		
STSO-1099 *	07/01/06	Pu-239/40	< 0.70	0.00		Pass		
STSO-1099	07/01/06	U-233/4	150.50 ± 5.90	152.44	106.71 - 198.17	Pass		
STSO-1099	07/01/06	U-238	151.60 ± 6.00	158.73	111.11 - 206.35	Pass		
STSO-1099	07/01/06	Zn-65	1021.90 ± 9.20	903.61	632.53 - 1175.00	Pass		

TABLE D-5 DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)* ENVIRONMENTAL, INC., 2006

(Page 3 of 3)

		Concentration ^b						
				Known	Control			
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance		
STAP-1100	07/01/06	Am-241	0.16 + 0.03	0 14	0 10 - 0 19	Pace		
STAP-1100	07/01/06	Co-57	2 17 + 0.06	2.58	1.81 - 3.36	Pase		
STAD_1100	07/01/06	Co-60	1 39 ± 0.07	1 59	1.01 - 3.00	Pass		
STAP-1100	07/01/06	Cc-13/	1.30 ± 0.07	2.15	2.20 4.00	Pass		
STAP-1100	07/01/06	C_{5} -134 C_{6} -137	2.52 10.15	3.15	2.20 - 4.09	Pass		
STAP-1100	07/01/06	Mo-54	1.04 ± 0.00	1.01	1.20 - 2.33	Pass		
STAP-1100	07/01/06	Du-238	1.70 ± 0.10	0.12	0.09 - 0.15	Pass		
STAP-1100	07/01/06	Sr-90	0.03 ± 0.02	0.62	0.00 - 0.13	Pass		
STAP-1100	07/01/06	11-233/4	0.00 ± 0.21 0.15 ± 0.02	0.02	0.45 - 0.01	Paes		
STAP-1100	07/01/06	11-238	0.13 ± 0.02 0.13 ± 0.02	0.10	0.03 - 0.17	Pase		
STAP-1100 *	07/01/06	Zn-65	< 0.02	0.00	0.10 - 0.10	Pass		
STAP-1101	07/01/06	Gr. Alpha	0.08 ± 0.03	0.00	0.00 - 0.58	Pass		
STAP-1101	07/01/06	Gr. Beta	0.41 ± 0.05	0.36	0.18 - 0.54	Pass		
		0.1.0012	0.117 2 0.00	0.00	0.10 0.07	1 400		
STW-1102	07/01/06	Gr. Alpha	0.76 ± 0.07	1.03	0.00 - 2.07	Pass		
STW-1102	07/01/06	Gr. Beta	1.23 ± 0.06	1.03	0.52 - 1.54	Pass		
STW-1103	07/01/06	Am-241	1.86 ± 0.09	2.31	1.62 - 3.00	Pass		
STW-1103	07/01/06	Co-57	224.10 ± 1.20	213.08	149.16 - 277.00	Pass		
STW-1103	07/01/06	Co-60	49.40 ± 0.50	47.50	33.20 - 61.80	Pass		
STW-1103	07/01/06	Cs-134	112.70 ± 0.90	112.82	78.97 - 146.66	Pass		
STW-1103	07/01/06	Cs-137	206.60 ± 1.40	196.14	137.30 - 254.98	Pass		
STW-1103	07/01/06	Fe-55	138.40 ± 5.40	165.40	115.80 - 215.00	Pass		
STW-1103	07/01/06	H-3	446.50 ± 11.80	428.85	300.20 - 557.50	Pass		
STW-1103 *	07/01/06	Mn-54	< 0.30	0.00		Pass		
STW-1103	07/01/06	Ni-63	116.70 ± 3.60	118.62	83.03 - 154.21	Pass		
STW-1103	07/01/06	Pu-238	1.27 ± 0.07	1.39	0.97 - 1.81	Pass		
STW-1103	07/01/06	Pu-239/40	1.67 ± 0.08	1.94	1.36 - 2.52	Pass		
STW-1103	07/01/06	Sr-90	16.40 ± 1.90	15.69	10.98 - 20.40	Pass		
STW-1103	07/01/06	Tc-99	29.40 ± 1.10	27.15	19.00 - 35.29	Pass		
STW-1103	07/01/06	U-233/4	1.97 ± 0.08	2.15	1.50 - 2.80	Pass		
STW-1103	07/01/06	U-238	1.97 ± 0.08	2.22	1.55 - 2.89	Pass		
	07/04/00	7-05	400 50 + 0.40	470.07	100 10 000 00	-		

* Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

• Included in the MAPEP as a false positive.

¹ Difficulties with the analyses for transuranics isotopes in solid samples (Filters, Soil and vegetation), were attributed to incomplete dissolution of the samples. Soil samples were repeated, results of reanalyses: Pu-238, 53.1 ± 5.3 bq/kg. Pu-239/240, 42.4 ± 4.7 bq/kg. U-233/4, 33.3 ± 3.5 bq/kg. U-238, 35.5 ± 3.6 bq/kg.

⁹ The July vegetation sample was provided in two separate geometries, (100 ml. and 500 ml.). Results reported here used the 500 ml. standard size geometry. Results for the 100 ml. geometry showed approximately a 15% higher bias.

APPENDIX E

EFFLUENT DATA

TABLE OF CONTENTS

	1
SUMMARY	2
1.0. EFFLUENTS	3
1.1. Gaseous Effluents to the Atmosphere	3
1.2. Liquids Released to Illinois River	3
2.0. SOLID RADIOACTIVE WASTE	3
3.0. DOSE TO MAN	3
3.1. Gaseous Effluent Pathways	3
3.1.1. Noble Gases	3
3.1.1.1. Gamma Dose Rates	3
3.1.1.2. Beta Air and Skin Dose Rate	4
3.1.2. Radioactive Iodine	5
3.1.2.1. Dose to Thyroid	5
3.2. Liquid Effluent Pathways	5
3.3. Assessment of Dose to Member of Public	S
4.0. SHE METEURULUGT	O

.

Table of Contents (cont.)

APPENDIX E-1 DAT	A TABLES AND FIGURES	E-1.1
Station Release	es	
Table 1.1-1	Gaseous Effluents Summation of all Releases	E-1.2
Table 1.2-1	Liquid Effluents Summation of all Releases	E-1.3
Table 2.0-1	Solid Radwaste Annual Report	E-1.4
Table 3.1-1	Maximum Doses Resulting from Airborne Releases	E-1.5
Table 3.2-1	Maximum Doses Resulting from Liquid Effluents	E-1.9
Table 3.3.1	10CFR20 Compliance Assessment	E-1.13
Table 3.4-1	Maximum Doses Resulting from Airborne Releases Based	
	On Concurrent Meteorological Data	E-1.17

INTRODUCTION

LaSalle County Station, a two-unit BWR station, is located near Marseilles, Illinois in LaSalle county, 3.5 miles south the Illinois River. Both units are rated for 3489 MWt. Unit 1 loaded fuel in March 1982. Unit 2 loaded fuel in late December 1983. The station has been designed to keep releases to the environment at levels below those specified in the regulations.

Liquid effluents from LaSalle County Station are released to the Illinois River in controlled batches after radioassay of each batch. Gaseous effluents are released to the atmosphere after delay to permit decay of short-lived (noble) gases. Releases to the atmosphere are calculated on the basis of analyses of routine grab samples of noble gases as well as continuously collected composite samples of iodine and particulate radioactivity sampled during the course of the year. The results of effluent analyses are summarized on a monthly basis and reported to the Nuclear Regulatory Commission as required per Technical Specifications. Airborne concentrations of noble gases, I-131, and particulate radioactivity in offsite areas are calculated using effluent and meteorological data.

Environmental monitoring is conducted by sampling at indicator and control (background) locations in the vicinity of LaSalle County Station to measure changes in radiation or radioactivity levels that may be attributable to station operations. If significant changes attributable to LaSalle County Station are measured, these changes are correlated with effluent releases. External gamma radiation exposure from noble gases and internal dose from I-131 in milk are the critical pathways at this site; however, an environmental monitoring program is conducted which also includes these and many other pathways which are less significant in terms of radiation protection.

SUMMARY

Gaseous and liquid effluents for the period contributed to only a small fraction of the LaSalle County Station Technical Specification limits. Calculations of environmental concentrations based on effluent, Illinois River flow, and meteorological data for the period indicate that consumption by the public of radionuclides attributable to LaSalle County Station does not exceed regulatory Radiation exposure from radionuclides releases to the atmosphere limits. represented the critical pathway for the period with a maximum individual total dose estimated to be 1.60E-02 mrem for the year, where a shielding and occupancy factor of 0.7 is assumed. The assessment of radiation doses is performed in accordance with the Offsite Dose Calculation Manual (ODCM), specifically, a comparison of preoperational studies with operational controls or with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. Control locations are basis for "preoperational data." Yearly data comparisons are provided in Sections 5.1 and 5.2; five-year graphical trend data is provided in Appendix III, Section 7.0. The results of analysis confirm that the station is operating in compliance with 10CFR50 Appendix I, 10CFR20 and 40CFR190.

1.0 EFFLUENTS

1.1 <u>Gaseous Effluents to the Atmosphere</u>

Measured concentrations of noble gases, radioiodine, and particulate radioactivity released to the atmosphere during the year, are listed in Table 1.1-1. A total of 2.93E+03 curies of fission and activation gases were released with a maximum quarterly average release rate of $1.63E+02 \ \mu$ Ci/sec.

A total of 4.43E-02 curies of 1-131 was released during the year with a maximum quarterly release rate of $2.68E-03 \ \mu$ Ci/sec.

A total of 5.84E-03 curies of beta-gamma emitters was released as airborne particulate matter with a maximum quarterly average release rate of 1.55E-03 μ Ci/sec. Alpha-emitting radionuclides were below the lower limit of detection (LLD).

A total of 8.65E+01 curies of tritium was released with a maximum quarterly average release rate of $3.60E+00 \ \mu Ci/sec$.

1.2 Liquids Released to Illinois River

There were no liquid batch releases in 2006. Continuous release path activity was below applicable Lower Limits of Detection.

2.0 SOLID RADIOACTIVE WASTE

Solid radioactive wastes were shipped by truck to the Envirocare Disposal Facility or to a waste processor. For further detail, refer the LaSalle 2005 Radioactive Effluent Release Report. The submittal date of this report was April 30, 2007.

3.0 DOSE TO MAN

3.1 Gaseous Effluent Pathways

Table 3.1-1 summarizes the doses resulting from releases of airborne radioactivity via the different exposure pathways.

3.1.1 Noble Gases

3.1.1.1 Gamma Dose Rates

Unit 1 and Unit 2 gaseous releases at LaSalle

County Station are reported as Unit 1 releases due to a single station vent stack (SVS) release point. Offsite Gamma air and whole body dose rates are shown in Table 3.1-1 and were calculated based on measured release rates. isotopic composition of the noble gases, and average meteorological data for the period. Doses bases on concurrent meteorological data are Based on measured shown in Table 3.4-1. effluents and meteorological data, the maximum total body dose to an individual would be 4.66E-02 mrem (Table 3.1-1) for the year, with an occupancy or shielding factor of 0.7 included. The maximum total body dose based on measured effluents and concurrent meteorological data would be 1.60E-02 mrem. (Table 3.4-1).

The maximum gamma air dose was 6.16E-02 mrad (Table 3.1-1) and 3.93E-02 mrad based on concurrent meteorological data (Table 3.4-1).

3.1.1.2 Beta Air and Skin Rates

The range of beta particles in air is relatively small (on the order of a few meters or less); consequently, plumes of gaseous effluents may be considered "infinite" for purpose of calculating the dose from beta radiation incident on the skin. However, the actual dose to sensitive skin tissues is difficult to calculate due to the effect of the beta particle energies, thickness of inert skin and clothing covering sensitive tissues. For purposes of this report the skin is taken to have a thickness of 7.0 m_0/cm^2 and an occupancy factor of 1.0 is used. The skin dose from beta and gamma radiation for the year was 4.90E-02 (Table 3.1-1) and 1.90E-02 mrem (Table 3.4-1) based on concurrent meteorological data. The maximum offsite beta dose for the year was 2.03E-03 mrad (Table 3.1-1) and 4.38E-03 mrad (Table 3.4-1) based on concurrent meteorological data.

3.1.2 Radioactive lodine

The human thyroid exhibits a significant capacity to concentrate ingested or inhaled iodine. The radioiodine, I-131, released during routing operation of the plant, may be made available to man resulting in a dose to the thyroid. The principal pathway of interest for this radionuclide in ingestion of radioiodine in milk.

3.1.2.1 Dose to Thyroid

The hypothetical thyroid dose to a maximum exposed individual living near the station via ingestion of milk was calculated. The radionuclide considered was I-131 and the source of milk was taken to be the nearest dairy farm with the cows pastured from May through October. The maximum thyroid does due to I-131 was 6.03E-02 mrem (child) for the year (Table 3.1-1).

3.2 Liquid Effluent Pathways

The three principal pathways through the aquatic environment for potential doses to man from liquid waste are ingestion of potable water, eating aquatic foods, and exposure while on the shoreline. Not all of these pathways are significant or applicable at a given time but a reasonable approximation of the dose can be made by adjusting the dose formula for season of the year or type and degree of use of the aquatic environment. NRC developed equations* were used to calculate the doses to the whole body, lower gastro-intestinal tracts, thyroid, bone and skin; specific parameters for use in the equations are given in the Offsite Dose Calculation Manual. The maximum whole body dose was 0.00E+00 mrem and organ dose was 0.00E+00 for the year mrem (Table 3.2-1).

3.3 Assessment of Dose to Member of Public

During the period January to December, 2006, LaSalle County Station did not exceed these limits as shown in Table 3.1-1 and Table 3.2-1 (based on annual average meteorological data), and As shown in Table 3.3-1:

• The Radiological Effluent Technical Standards (RETS) limits on dose or dose commitment to an individual due to radioactive materials in liquid effluents from each reactor unit (1.5 mrem to the whole body or 5 mrem to any organ during any calendar year; 3 mrem to the whole body or 10 mrem to any organ during the calendar year).

- The RETS limits on air dose in noble gases released in gaseous effluents to a member of the public from each reactor unit (5 mrad for gamma radiation or 10 mrad for beta radiation during any calendar quarter; 10 mrads for gamma radiation or 20 mrad for beta radiation during a calendar year).
- The RETS limits on dose to a member of the public due to iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from each reactor unit (7.5 mrem to any organ during any calendar quarter; 15 mrem to any organ during any calendar year).
- The 10CFR20 limit on Total Effective Dose Equivalent to individual members of the public (100 mrem).

4.0 <u>SITE METEOROLOGY</u>

A summary of the site meteorological measurements taken during each calendar quarter of the year is given in Appendix E. The data are presented as cumulative joint frequency distributions of the wind direction for the 375' level and wind speed class by atmospheric stability class determined from the temperature difference between the 375' and 33' levels. Data recovery for these measurements was 99.6% during 2006 (Table 3.4-1).

*Nuclear Regulatory Commission, Regulatory Guide 1.109 (Rev. 1)

APPENDIX E-1

DATA TABLES AND FIGURES

Table 1.1-1

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2006) UNITS ONE AND TWO DOCKET NUMBERS 50-373 AND 50-374 GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES

					Estimated
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total Error %

A. Fission and Activation Gas Releases

1. Total Release Activity	Ci	1.27E+03	7.48E+02	4.70E+02	4.35E+02	3.50E+01
2. Average Release Rate	uCi/sec	1.63E+02	9.51E+01	5.91E+01	5.47E+01	
3. Percent of Technical Specification Limit	%	*	*	*	*	

B. Iodine Releases

1. Total I-131 Activity	Ci	2.08E-02	7.35E-03	8.14E-03	8.00E-03	3.50E+01
2. Average Release Rate	uCi/sec	2.68E-03	9.36E-04	1.02E-03	1.01E-03	
3. Percent of Technical Specification Limit	%	*	*	*	*	

C. Particulate (> 8 day half-life) Releases

1. Gross Activity	Ci	1.55E-03	1.22E-03	1.82E-03	1.25E-03	3.30E+01
2. Average Release Rate	uCi/sec	1.99E-04	1.55E-03	2.29E-04	1.57E-04	
3. Percent of Technical Specification Limit	%	*	*	*	*	
3. Gross Alpha Activity	Ci	<1.00E-11	<1.00E-11	<1.00E-11	<1.00E-11	

D. Tritium Releases

1. Total Release Activity	Ci	2.01E+01	1.76E+01	2.02E+01	2.86E+01	2.10E+01
2. Average Release Rate	uCi/sec	2.59E+00	2.24E+00	2.55E+00	3.60E+00	
3. Percent of Technical Specification Limit	%	*	*	*	*	

"*" This information is contained in the Radiological Impact on Man section of the report.

"<" Indicates activity of sample is less than LLD given in uCi/ml

Table 1.2-1

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2006) LIQUID RELEASES UNIT 1 and UNIT 2 SUMMATION OF ALL LIQUID RELEASES

					Estimated
Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total Error %

A. Fission and Activation Products

1. Total Activity Released	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<>	<lld< th=""><th>N/A</th></lld<>	N/A
2. Average Concentration Released	uCi/ml	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of Applicable Limit	%	*	*	*	*	

B. Tritium

1. Total Activity Released	Ci ·	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<>	<lld< th=""><th>N/A</th></lld<>	N/A
2. Average Concentration Released	uCi/ml	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of Applicable Limit	%	*	*	*	*	

C. Dissolved Noble Gases

1. Total Activity Released	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<>	<lld< th=""><th>N/A</th></lld<>	N/A
2. Average Concentration Released	uCi/ml	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of Applicable Limit	%	*	*	*	*	

D. Gross Alpha

1. Total Activity Released (estimate)	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>N/A</th></lld<></th></lld<>	<lld< th=""><th>N/A</th></lld<>	N/A
2. Average Concentration Released	uCi/ml	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of Applicable Limit	%	*	*	*	*	[

E. Volume of Liquid Waste to Discharge	liters	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
F. Volume of Dilution Water	liters	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A

"*" This information is contained in the Radiological Impact on Man section of the report.

"<" Indicates activity of sample is less than LLD given in uCi/ml

Table 2.0-1

SOLID RADWASTE ANNUAL REPORT

LaSalle County Station

Table 2.0-1 had been deliberately deleted. For solid waste disposal detail, refer to the LaSalle County Station 2006 Effluent Report.

- -

Table 3.1-1

.

LASALLE STATION UNIT ONE

ACTUAL 2006 MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/06 TO 12/31/06 CALCULATED 04/09/07 INFANT RECEPTOR

	1ST	2ND	3RD	4 TH	
TYPE	QUARTER	QUARTER	QUARTER	QUARTER	ANNUAL
	JAN-MAR	APR-JUN	JUL-SEP	OCT-DEC	
GAMMA AIR	2.63E-02	1.48E-02	1.31E-02	7.42E-03	6.16E-02
(MRAD)	(WSW)	(WSW)	(WSW)	(WSW)	(WSW)
BETA AIR	9.56E-04	4.56E-04	4.00E-04	2.22E-04	2.03E-03
(MRAD)	(ESE)	(ESE)	(ESE)	(ESE)	(ESE)
TOT. BODY	1.99E-02	1.12E-02	9.90E-03	5.61E-03	4.66E-02
(MREM)	(WSW)	(WSW)	(WSW)	(WSW)	(WSW)
SKIN	2.10E-02	1.17E-02	1.04E-02	5.88E-03	4.90E-02
(MREM)	(WSW)	(WSW)	(WSW)	(WSW)	(WSW)
ORGAN	2.07E-03	1.35E-02	2.16E-02	8.77E-03	4.59E-02
(MREM)	(ESE)	(ESE)	(ESE)	(ESE)	(ESE)
	THYROID	THYROID	THYROID	THYROID	THYROID
THIS I	S A REPORT FOR THE	CALENDAR YE	AR 2006		

COMPLIANCE STATUS - 10CFR 50 APP. I INFANT RECEPTOR

	*	OF	APP	I.	
--	---	----	-----	----	--

	QTRLY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	YRLY	% OF
	OBJ	JAN-MAR	APR-JUN	JUL-SEP	OCT-DEC	OBJ	APP. I
GAMMA AIR (MRAD)	5.0	0.53	0.30	0.26	0.15	10.0	0.62
BETA AIR (MRAD)	10.0	0.01	0.00	0.00	0.00	20.0	0.01
TOT. BODY (MREM)	2.5	0.80	0.45	0.40	0.22	5.0	0.93
SKIN (MREM)	7.5	0.28	0.16	0.14	0.08	15.0	0.33
ORGAN (MREM)	7.5	0.03	0.18	0.29	0.12	15.0	0.31
		THYROID	THYROID	THYROID	THYROID		THYROID
RESUL	TS BASE	D UPON:	ODCM ANNE ODCM SOFT ODCM DATA	X REVISION WARE VERSIO BASE VERSIO	3.0 MAY ON 1.1 Janu ON 1.1 Janu	2001 Jary 199 Jary 199	95 95

.

Table 3.1-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2006 MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/06 TO 12/31/06 CALCULATED 04/09/07 CHILD RECEPTOR

TYPE		1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN		2.63E-02 (WSW) 9.56E-04 (ESE) 1.99E-02 (WSW) 2.10E-02	1.48E-02 (WSW) 4.56E-04 (ESE) 1.12E-02 (WSW) 1.17E-02	1.31E-02 (WSW) 4.00E-04 (ESE) 9.90E-03 (WSW) 1.04E-02	7.42E-03 (WSW) 2.22E-04 (ESE) 5.61E-03 (WSW) 5.88E-03	6.16E-02 (WSW) 2.03E-03 (ESE) 4.66E-02 (WSW) 4.90E-02
(MREM)		(WSW)				
(MREM)		(NNE)				
THIS	IS P	THYROID REPORT FOR THE	THYROID CALENDAR YE	THYROID AR 2006	THYROID	THYROID

COMPLIANCE STATUS - 10CFR 50 APP. I

CHILD RECEPTOR

----- % OF APP I. -----

	QTRLY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	YRLY	% OF
	OBJ	JAN-MAR	APR-JUN	JUL-SEP	OCT-DEC	OBJ	APP. I
GAMMA AIR (MRAD)	5.0	0.53	0.30	0.26	0.15	10.0	0.62
BETA AIR (MRAD)	10.0	0.01	0.00	0.00	0.00	20.0	0.01
TOT. BODY (MREM)	2.5	0.80	0.45	0.40	0.22	5.0	0.93
SKIN (MREM)	7.5	0.28	0.16	0.14	0.08	15.0	0.33
ORGAN (MREM)	7.5	0.02	0.24	0.39	0.15	15.0	0.40
		THYROID	THYROID	THYROID	THYROID		THYROID
RESUL	IS BASE	D UPON:	ODCM ANNE ODCM SOFT ODCM DATA	X REVISION WARE VERSI BASE VERSI	3.0 MAY ON 1.1 Janu ON 1.1 Janu	2001 Lary 199 Lary 199	95 95

.____

Table 3.1-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2006 MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/06 TO 12/31/06 CALCULATED 04/09/07 TEENAGER RECEPTOR

TYPE			1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN			2.63E-02 (WSW) 9.56E-04 (ESE) 1.99E-02 (WSW) 2.10E-02 (WSW) 1.27E-03	1.48E-02 (WSW) 4.56E-04 (ESE) 1.12E-02 (WSW) 1.17E-02 (WSW) 1.14E-02	1.31E-02 (WSW) 4.00E-04 (ESE) 9.90E-03 (WSW) 1.04E-02 (WSW) 1.80E-02	7.42E-03 (WSW) 2.22E-04 (ESE) 5.61E-03 (WSW) 5.88E-03 (WSW) 7.21E-03	6.16E-02 (WSW) 2.03E-03 (ESE) 4.66E-02 (WSW) 4.90E-02 (WSW) 3.80E-02
(MREM) THIS	IS	A REPO	(NNE) THYROID RT FOR THE	(NNE) THYROID CALENDAR YEA	(NNE) THYROID AR 2006	(NNE) THYROID	(NNE) THYROID

COMPLIANCE STATUS - 10CFR 50 APP. I TEENAGER RECEPTOR

	8	OF	APP	I.	

GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	QTRLY OBJ 5.0 10.0 2.5 7.5 7.5	1ST QTR JAN-MAR 0.53 0.01 0.80 0.28 0.02	2ND QTR APR-JUN 0.30 0.00 0.45 0.16 0.15	3RD QTR JUL-SEP 0.26 0.00 0.40 0.14 0.24	4TH QTR OCT-DEC 0.15 0.00 0.22 0.08 0.10	YRLY OBJ 10.0 20.0 5.0 15.0 15.0	<pre>% OF APP. I 0.62 0.01 0.93 0.33 0.25</pre>
ORGAN (MREM)	7.5	THYROID	THYROID	THYROID	THYROID	15.0	THYROID

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

Table 3.1-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2006 MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/06 TO 12/31/06 CALCULATED 04/09/07 ADULT RECEPTOR

TYPE			1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR			2.63E-02 (WSW) 9.56E-04	1.48E-02 (WSW) 4.56E-04	1.31E-02 (WSW) 4.00E-04	7.42E-03 (WSW) 2.22E-04	6.16E-02 (WSW) 2.03E-03
(MRAD) TOT. BODY (MREM)			(ESE) 1.99E-02 (WSW)	(ESE) 1.12E-02 (WSW)	(ESE) 9.90E-03 (WSW)	(ESE) 5.61E-03 (WSW)	(ESE) 4.66E-02 (WSW)
SKIN (MREM) ORGAN			2.10E-02 (WSW) 1.40E-03	1.17E-02 (WSW) 1.14E-02	1.04E-02 (WSW) 1.81E-02	5.88E-03 (WSW) 7.32E-03	4.90E-02 (WSW) 3.82E-02
(MREM)			(NNE)				
THIS	IS	A REPOR	THYROID F FOR THE	THYROID CALENDAR YEA	THYROID R 2006	THYROID	THYROID

COMPLIANCE STATUS - 10CFR 50 APP. I ADULT RECEPTOR

----- % OF APP I. -----

	QTRLY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	YRLY	۶ OF
	OBJ	JAN-MAR	APR-JUN	JUL-SEP	OCT-DEC	OBJ	APP. I
GAMMA AIR (MRAD)	5.0	0.53	0.30	0.26	0.15	10.0	0.62
BETA AIR (MRAD)	10.0	0.01	0.00	0.00	0.00	20.0	0.01
TOT. BODY (MREM)	2.5	0.80	0.45	0.40	0.22	5.0	0.93
SKIN (MREM)	7.5	0.28	0.16	0.14	0.08	15.0	0.33
ORGAN (MREM)	7.5	0.02	0.15	0.24	0.10	15.0	0.25
		THYROID	THYROID	THYROID	THYROID		THYROID
RESUL	TS BASE	D UPON:	ODCM ANNE	X REVISION	3.0 MAY	2001	35
			ODCM DATA	BASE VERSI	ON 1.1 Jan	uary 199	95

Table 3.2-1

LASALLE STATION UNIT ONE

ACTUAL 2006 MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/06 TO 12/31/06 CALCULATED 04/13/07 INFANT RECEPTOR 1ST 2ND 3RD 4TH DOSE TYPE QUARTER QUARTER QUARTER QUARTER ANNUAL JAN-MAR APR-JUN JUL-SEP OCT-DEC

TOTAL	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BODY INTERNAL ORGAN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

THIS IS A REPORT FOR THE CALENDAR YEAR 2006

COMPLIANCE STATUS ~ 10 CFR 50 APP. I

----- % OF APP I. -----

			QTRLY OBJ	1ST QTR JAN-MAR	2ND QTR APR-JUN	3RD QTR JUL-SEP	4TH QTR OCT-DEC	YRLY OBJ	% OF APP. I
TOTAL	BODY	(MREM)	1.5	0.00	0.00	0.00	0.00	3.0	0.00
CRIT.	ORGAN	(MREM)	5.0	0.00	0.00	0.00	0.00	10.0	0.00

RESULTS BASED UPON:	ODCM	ANNEX REV	VISION	3.0	MAY 2001
	ODCM	SOFTWARE	VERSION	1.1	January 1995
	ODCM	DATABASE	VERSION	1.1	January 1995

Table 3.2-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2006 MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/06 TO 12/31/06 CALCULATED 04/13/07 CHILD RECEPTOR

DOSE TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
INTERNAL ORGAN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

THIS IS A REPORT FOR THE CALENDAR YEAR 2006

COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

			QTRLY OBJ	1ST QTR JAN-MAR	2ND QTR APR-JUN	3RD QTR JUL-SEP	4TH QTR OCT-DEC	YRLY OBJ	% OF APP. I
TOTAL	BODY	(MREM)	1.5	0.00	0.00	0.00	0.00	3.0	0.00
CRIT.	ORGAN	(MREM)	5.0	0.00	0.00	0.00	0.00	10.0	0.00

RESULTS BASED UPON:	ODCM	ANNEX REV	VISION	3.0	MAY 2001	L
	ODCM	SOFTWARE	VERSION	1.1	January	1995
	ODCM	DATABASE	VERSION	1.1	January	1995

,

Table 3.2-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2006 MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/06 TO 12/31/06 CALCULATED 04/13/07 TEENAGER RECEPTOR

DOSE TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL BODY	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
INTERNAL ORGAN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

THIS IS A REPORT FOR THE CALENDAR YEAR 2006

COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

			QTRLY OBJ	1ST QTR JAN-MAR	2ND QTR APR-JUN	3RD QTR JUL-SEP	4TH QTR OCT-DEC	YRLY OBJ	% OF APP. I
TOTAL	BODY	(MREM)	1.5	0.00	0.00	0.00	0.00	3.0	0.00
CRIT.	ORGAN	(MREM)	5.0	0.00	0.00	0.00	0.00	10.0	0.00

RESULTS BASED UPON:	ODCM	ANNEX REV	VISION	3.0	MAY 2001	L
(ODCM	SOFTWARE	VERSION	1.1	January	1995
(ODCM	DATABASE	VERSION	1.1	January	1995

,

Table 3.2-1 (continued)

LASALLE STATION UNIT ONE

ACTUAL 2006 MAXIMUM DOSES (MREM) RESULTING FROM AQUATIC EFFLUENTS PERIOD OF RELEASE - 01/01/06 TO 12/31/06 CALCULATED 04/13/07 ADULT RECEPTOR

DOSE TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
INTERNAL ORGAN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

THIS IS A REPORT FOR THE CALENDAR YEAR 2006

COMPLIANCE STATUS - 10 CFR 50 APP. I

----- % OF APP I. -----

		I	QTRLY OBJ	1ST QTR JAN-MAR	2ND QTR APR-JUN	3RD QTR JUL-SEP	4TH QTR OCT-DEC	YRLY OBJ	% OF APP. I
TOTAL	BODY	(MREM)	1.5	0.00	0.00	0.00	0.00	3.0	0.00
CRIT.	ORGAN	(MREM)	5.0	0.00	0.00	0.00	0.00	10.0	0.00

RESULTS BASED UPON:	ODCM ANNEX REVISION	3.0 MAY 2001
	ODCM SOFTWARE VERSION	1.1 January 1995
	ODCM DATABASE VERSION	1.1 January 1995
	1	

Table 3.3-1

LASALLE STATION UNIT ONE

10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/06 TO 12/31/06

CALCULATED 04/09/07

1. 10 CFR 20.1301 (a) (1) Compliance

Total Effective	e Dose 1	Equival	ent, mrem/yr	3.50E-01
10 CFR 20.1301	(a) (1)	limit	mrem/yr	100.0
			۔ ۶ of limit	0.35

Compliance Summary - 10CFR20

	1st	2nd	3rd	4th	% of
	Qtr	Qtr	Qtr	Qtr	Limit
TEDE	8.17E-02	1.01E-01	1.01E-01	6.70E-02	0.35

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

Table 3.3-1 (continued)

LASALLE STATION UNIT ONE

10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/06 TO 12/31/06

CALCULATED 04/09/07

2. 10 CFR 20.1301 (d)/40 CFR 190 Compliance

		Dose (mrem)	Limit (mrem)	% of Limit
Whole Body	Plume	4.66E-02		
(DDE)	Skyshine	2.94E-01		
	Ground	3.81E-04		
	Total	3.41E-01	25.0	1.36
		<u> </u>		
Organ Dose	Thyroid	3.12E-02	75.0	0.04
(CDE)	Gonads	9.01E-03	25.0	0.04
	Breast	9.00E-03	25.0	0.04
	Lung	9.01E-03	25.0	0.04
	Marrow	9.01E-03	25.0	0.04
	Bone	9.00E-03	25.0	0.04
	Remainder	9.03E-03	25.0	0.04
			<u> </u>	
	CEDE	9.68E-03		
	TEDE	3.50E-01	100.0	0.35

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995
Table 3.3-1 (continued)

LASALLE STATION UNIT TWO

10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/06 TO 12/31/06

CALCULATED 04/09/07

1. 10 CFR 20.1301 (a) (1) Compliance

Total Effectiv	e Dose)	Equival	ent, mrem/yr	3.25E-01
10 CFR 20.1301	(a) (1)	limit	mrem/yr	100.0
			% of limit	0.32

Compliance Summary - 10CFR20

	1st	2nd	3rd	4th	% of
	Qtr	Qtr	Qtr	Qtr	Limit
TEDE	8.80E-02	8.86E-02	8.85E-02	5.98E-02	0.32

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

Table 3.3-1 (continued)

LASALLE STATION UNIT TWO

10 CFR 20 COMPLIANCE ASSESSMENT

PERIOD OF ASSESSMENT 01/01/06 TO 12/31/06

CALCULATED 04/09/07

2. 10 CFR 20.1301 (d)/40 CFR 190 Compliance

		Dose (mrem)	Limit (mrem)	% of Limit
Whole Body	Plume	0.00E+00		
(DDE)	Skyshine	3.25E-01		
	Ground	0.00E+00		
	Total	3.25E-01	25.0	1.30
Organ Dose	Thyroid	0.00E+00	75.0	0.00
(CDE)	Gonads	0.00E+00	25.0	0.00
	Breast	0.00E+00	25.0	0.00
	Lung	0.00E+00	25.0	0.00
	Marrow	0.00E+00	25.0	0.00
	Bone	0.00E+00	25.0	0.00
	Remainder	0.00E+00	25.0	0.00
	CEDE	0.00E+00		
	TEDE	3.25E-01	100.0	0.32

RESULTS BASED UPON: ODCM ANNEX REVISION 3.0 MAY 2001 ODCM SOFTWARE VERSION 1.1 January 1995 ODCM DATABASE VERSION 1.1 January 1995

Table 3.4-1

LaSalle Station - Unit 1

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

2006

TYPE OF DOSE	FIRST QUARTER	SECOND QUARTER	THIRD QUARTER	FOURTH QUARTER	ANNUAL
GAMMA AIR (mrad)	1.790E-02(SE)	1.570E-02(SW)	7.500E-03(WSW)	4.405E-03(N)	3.933E-02(SW)
BETA AIR (mrad)	2.755E-03(SE)	1.315E-03(SW)	6.650E-04(NE)	3.740E-04(NE)	4.380E-03(SE)
WHOLE BODY (mrem)	7.350E-03(SSW)	5.700E-03(SSW)	2.085E-03(W)	1.310E-03(ESE)	1.596E-02(SSW)
SKIN (mrem)	8.850E-03(SSW)	6.750E-03(SSW)	2.500E-03(SW)	1.740E-03(ESE)	1.903E-02(SSW)
ORGAN (mrem)	3.550E-04(SE)	1.775E-04(SW)	1.680E-04(NE)	1.170E-04(NE)	6.620E-04(SE)
CRITICAL PERSON	Child	Child	Child	Child	Child
CRITICAL ORGAN	Thyroid	Thyroid	Thyroid	Thyroid	Thyroid

COMPLIANCE STATUS

	10 CFR 50 APP. I		10 CFR 50 APP.I			
TYPE OF DOSE	QUARTERLY OBJECTIVE	% OF APP. I	YEARLY OBJECTIVE	% OF APP. I		
GAMMA AIR (mrad)	5.0	0.36	10.0	0.39		
BETA AIR (mrad)	10.0	0.03	20.0	0.02		
WHOLE BODY (mrem)	2.5	0.29	5.0	0.32		
SKIN (mrem)	7.5	0.12	15.0	0.13		
ORGAN (mrem)	7.5	0.00	15.0	0.00		
CRITICAL PERSON		Child		Child		
CRITICAL ORGAN		Thyroid		Thyroid		

Calculation used release data from the following: Unit 0 - Chimney

Date of calculation: 4/13/2007

Table 3.4-1 (continued)

LaSalle Station - Unit 2

MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES

2006

TYPE OF DOSE	FIRST QUARTER	SECOND QUARTER	THIRD QUARTER	FOURTH QUARTER	ANNUAL
GAMMA AIR (mrad)	1.790E-02(SE)	1.570E-02(SW)	7.500E-03(WSW)	4.405E-03(N)	3.933E-02(SW)
BETA AIR (mrad)	2.755E-03(SE)	1.315E-03(SW)	6.650E-04(NE)	3.740E-04(NE)	4.380E-03(SE)
WHOLE BODY (mrem)	7.350E-03(SSW)	5.700E-03(SSW)	2.085E-03(W)	1.310E-03(ESE)	1.596E-02(SSW)
SKIN (mrem)	8.850E-03(SSW)	6.750E-03(SSW)	2.500E-03(SW)	1.740E-03(ESE)	1.903E-02(SSW)
ORGAN (mrem)	3.550E-04(SE)	1.775E-04(SW)	1.680E-04(NE)	1.170E-04(NE)	6.620E-04(SE)
CRITICAL PERSON	Child	Child	Child	Child	Child
CRITICAL ORGAN	Thyroid	Thyroid	Thyroid	Thyroid	Thyroid

COMPLIANCE STATUS

	10 CFR 50 APP. I		10 CFR 50 APP.I			
TYPE OF DOSE	QUARTERLY OBJECTIVE	% OF APP. I	YEARLY OBJECTIVE	% OF APP. I		
GAMMA AIR (mrad)	5.0	0.36	10.0	0.39		
BETA AIR (mrad)	10.0	0.03	20.0	0.02		
WHOLE BODY (mrem)	2.5	0.29	5.0	0.32		
SKIN (mrem)	7.5	0.12	15.0	0.13		
ORGAN (mrem)	7.5	0.00	15.0	0.00		
CRITICAL PERSON		Child		Child		
CRITICAL ORGAN		Thyroid		Thyroid		

Calculation used release data from the following: Unit 0 - Chimney

Date of calculation: 4/13/2007

.

.

APPENDIX F

METEOROLOGICAL

•

Period of Record: January - March 2006 Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

114 - 4	wina Speea (in mpn)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	2	0	0	0	2	
NNE	0	1	2	0	0	0	3	
NE	0	0	2	0	0	0	2	
ENE	0	0	0	2	1	0	3	
Е	0	0	0	0	0	0	0	
ESE	0	0	2	2	0	0	4	
SE	0	0	0	1	0	0	1	
SSE	0	0	2	2	2	0	6	
S	0	0	1	2	2	1	6	
SSW	0	0	0	5	2	0	7	
SW	0	0	0	3	1	2	6	
WSW	0	0	0	4	1	0	5	
W	0	0	0	0	3	0	3	
WNW	0	0	1	0	2	0	3	
NW	0	0	2	0	0	0	2	
NNW	0	0	0	2	0	0	2	
Variable	0	0	0	0	0	0	0	
Total	0	1	14	23	14	3	55	

Wind Speed (in mph)

Period of Record: January - March 2006 Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

		atha speed (th mpn)							
Wind Direction	1-3	4-7	8-12	13 -18	19-24	> 24	Total		
N	0	1	9	7	0	0	17		
NNE	0	1	5	2	0	0	8		
NE	0	0	0	1	0	0	1		
ENE	0	0	1	1	0	0	2		
E	0	0	1	0	0	0	1		
ESE	0	0	0	0	0	0	0		
SE	0	0	2	0	2	0	4		
SSE	0	1	1	2	4	3	11		
S	0	1	6	0	2	0	9		
SSW	0	0	0	3	2	0	5		
SW	0	5	2	2	. 1	1	11		
WSW	0	0	0	2	3	2	7		
W	0	2	2	2	4	0	10		
WNW	0	1	5	16	4	2	28		
NW	0	2	4	7	1	0	14		
NNW	0	1	11	6	3	0	21		
Variable	0	0	0	0	0	0	0		
Total	0	15	49	51	26	8	149		

Wind Speed (in mph)

Period of Record: January - March 2006 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

		wina Speea (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24 	> 24	Total			
N	0	4	18	4	0	0	26			
NNE	0	4	11	5	0	0	20			
NE	0	0	3	7	1	0	11			
ENE	0	0	2	2	1	0	5			
Е	0	0	1	3	0	0	4			
ESE	0	0	1	5	1	0	7			
SE	0	1	5	2	0	0	8			
SSE	0	2	4	6	6	0	18			
S	0	0	3	6	1	0	10			
SSW	0	1	4	1	1	0	7			
SW	0	1	1	2	1	0	5			
WSW	0	1	5	3	1	2	12			
W	0	2	9	12	3	3	29			
WNW	0	3	9	13	6	1	32			
NW	0	3	7	13	1	0	24			
NNW	0	1	6	15	6	0	28			
Variable	0	0	0	0	0	0	0			
Total	0	23	89	99	29	6	246			

Wind Speed (in mph)

Period of Record: January - March 2006 Stability Class - Neutral - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind			-	•	•		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	14	39	10	0	0	63
NNE	0	26	23	3	0	0	52
NE	1	12	6	18	5	1	43
ENE	0	11	9	27	23	6	76
E	0	3	15	17	5	0	40
ESE	1	3	11	24	2	0	41
SE	0	2	10	9	1	0	22
SSE	0	3	7	12	5	0	27
S	0	3	8	6	5	0	22
SSW	0	1	5	9	8	0	23
SW	2	4	9	11	8	2	36
WSW	3	4	12	12	5	2	38
W	0	7	16	14	4	6	47
WNW	2	14	46	51	26	8	147
NW	0	7	29	29	11	0	76
NNW	0	9	43	52	20	1	125
Variable	0	0	0	0	0	0	0
Total	9	123	288	304	128	26	878

Period of Record: January - March 2006 Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

••• • • •	wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	1	21	10	1	0	0	33		
NNE	2	15	2	0	0	0	19		
NE	3	5	1	1	0	0	10		
ENE	3	1	7	4	0	0	15		
E	5	12	18	5	0	0	40		
ESE	0	8	11	5	0	0	24		
SE	4	10	24	5	0	0	43		
SSE	1	6	10	4	5	0	26		
S	2	5	19	30	3	2	61		
SSW	0	2	6	26	10	0	44		
SW	1	2	12	14	3	0	32		
WSW	0	3	12	2	1	0	18		
W	0	7	7	1	4	7	26		
WNW	6	12	19	2	8	12	59		
NW	3	18	20	1	0	0	42		
NNW	0	11	5	0	0	0	16		
Variable	0	0	0	0	0	0	0		
Total	31	138	183	101	34	21	508		

Wind Speed (in mph)

Period of Record: January - March 2006 Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind	wind speed (in mpn)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	11	0	0	0	0	11		
NNE	0	1	0	0	0	0	1		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	4	6	6	0	0	0	16		
ESE	1	6	5	0	0	0	12		
SE	0	5	2	0	0	0	7		
SSE	1	2	6	1	0	0	10		
S	0	5	3	3	0	0	11		
SSW	0	2	7	7	1	0	17		
SW	0	5	13	4	1	0	23		
WSW	0	6	24	2	0	0	32		
W	1	4	11	1	0	0	17		
WNW	0	18	9	1	0	0	28		
NW	0	7	15	0	0	0	22		
NNW	2	1	0	0	0	0	3		
Variable	0	0	0	0	0	0	0		
Total	9	79	101	19	2	0	210		

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

.

Period of Record: January - March 2006 Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

	wing speed (in mbu)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	2	0	0	0	0	0	2			
ESE	1	0	0	0	0	0	1			
SE	0	16	4	0	0	0	20			
SSE	0	5	1	0	0	0	6			
S	0	5	1	0	0	0	6			
SSW	0	1	3	1	0	0	5			
SW	1	2	5	0	0	0	8			
WSW	0	0	11	3	0	0	14			
W	0	6	1	1	0	0	8			
WNW	1	9	3	0	0	0	13			
NW	0	0	0	0	0	0	0			
NNW	1	0	0	0	0	0	1			
Variable	0	0	0	0	0	0	0			
Total	6	44	29	5	0	0	84			

Wind Speed (in mph)

Period of Record: January - March 2006 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

	wind Speed (in mph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24 	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	1	0	0	1		
SW	0	0	0	0	0	0	0		
WSW	0	0	0	0	0	0	0		
W	0	0	0	0	0	0	0		
WNW	0	0	0	0	0	0	0		
NW	0	0	0	0	0	0	0		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	0	0	1	0	0	1		

Wind Speed (in mph)

Period of Record: January - March 2006 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

111	wind Speed (in mpn)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	1	0	1			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	0	0	0	0	0	0	0			
SSW	0	0	0	0	1	0	1			
SW	0	0	0	0	0	0	0			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	0	0	0	2	0	0	2			
NNW	0	0	0	1	0	0	1			
Variable	0	0	0	0	0	0	0			
Total	0	0	0	3	2	0	5			

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

t

Period of Record: January - March 2006 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

til å al		wind Speed (in mpn)									
Direction	1-3	4 -7	8-12	13-18	19-24	> 24	Total				
N	0	0	0	2	2	0	4				
NNE	0	0	3	1	0	0	4				
NE	0	0	1	0	0	0	1				
ENE	0	0	0	1	2	0	3				
E	0	0	0	0	0	0	0				
ESE	0	0	0	0	1	0	1				
SE	0	0	0	1	0	0	1				
SSE	0	0	1	2	1	1	5				
S	0	0	1	0	2	1	4				
SSW	0	0	0	0	3	0	3				
SW	0	0	0	1	2	4	7				
WSW	0	0	0	0	1	1	2				
W	0	0	0	0	2	0	2				
WNW	0	0	0	0	0	0	0				
NW	0	0	0	1	1	2	4				
NNW	0	0	0	0	0	0	0				
Variable	0	0	0	0	0	0	0				
Total	0	0	6	9	17	9	41				

Wind Speed (in mph)

Period of Record: January - March 2006 Stability Class - Neutral - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

	atha speed (th mbu)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	5	22	49	22	6	104		
NNE	0	6	31	33	14	0	84		
NE	0	6	10	9	24	13	62		
ENE	1	7	10	8	26	23	75		
E	0	1	8	6	16	3	34		
ESE	0	1	2	8	5	6	22		
SE	0	4	5	10	6	11	36		
SSE	0	3	6	4	16	21	50		
S	0	4	12	6	17	14	53		
SSW	0	0	3	2	12	16	33		
SW	0	9	5	10	11	15	50		
WSW	1	1	6	13	12	13	46		
W	0	8	15	20	14	24	81		
WNW	0	2	21	46	39	47	155		
NW	1	5	22	55	59	43	185		
NNW	1	4	22	45	39	24	135		
Variable	0	0	0	0	0	0	0		
Total	4	66	200	324	332	279	1205		

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 33 Hours of missing stability measurements in all stability classes: 6

160 of 234

Period of Record: January - March 2006 Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind	wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	1	4	7	15	3	0	30		
NNE	1	1	7	12	4	1	26		
NE	1	6	20	6	1	0	34		
ENE	1	2	4	5	3	1	16		
E	0	5	7	16	12	6	46		
ESE	0	5	0	7	6	14	32		
SE	0	1	4	7	9	15	36		
SSE	0	3	4	11	16	21	55		
S	1	6	1	6	7	24	45		
SSW	0	3	1	6	9	77	96		
SW	1	4	0	2	4	22	33		
WSW	0	0	2	8	9	7	26		
W	0	2	2	10	7	15	36		
WNW	1	1	3	7	15	34	61		
NW	0	2	9	11	21	4	47		
NNW	1	4	5	11	12	0	33		
Variable	0	0	0	0	0	0	0		
Total	8	49	76	140	138	241	652		

Wind Speed (in mph)

Period of Record: January - March 2006 Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

ार्ग ने काली	ATHA SPEED (TH While)								
Direction	1-3	4 -7	8-12	13-18	19-24	> 24	Total		
N	0	0	5	4	0	0	9		
NNE	1	1	1	1	0	0	4		
NE	0	0	1	1	0	0	2		
ENE	0	0	0	0	0	0	0		
Е	0	0	0	0	0	0	0		
ESE	0	0	1	4	6	1	12		
SE	0	1	2	2	0	3	8		
SSE	1	1	3	5	6	1	17		
S	1	1	2	2	3	3	12		
SSW	0	0	5	1	6	6	18		
SW	0	1	2	3	5	10	21		
WSW	0	0	1	2	4	3	10		
W	1	1	1	1	15	9	28		
WNW	0	3	0	4	7	1	15		
NW	0	0	2	3	8	1	14		
NNW	0	1	3	5	6	0	15		
Variable	0	0	0	0	0	0	0		
Total	4	10	29	38	66	38	185		

Wind Speed (in mph)

Period of Record: January - March 2006 Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

*** *	wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24 	> 24	Total			
N	0	1	0	0	0	0	1			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	0	0	0	0	0	0			
ESE	0	1	0	0	0	0	1			
SE	0	0	1	0	0	0	1			
SSE	0	1	0	2	2	1	6			
S	0	0	0	2	3	4	9			
SSW	0	0	0	0	1	0	1			
SW	0	1	0	1	1	2	5			
WSW	0	0	0	0	0	1	1			
W	0	0	0	0	1	1	2			
WNW	0	0	0	0	0	1	1			
NW	0	0	0	0	0	0	0			
NNW	0	0	1	0	1	0	2			
Variable	0	0	0	0	0	0	0			
Total	0	4	2	5	9	10	30			

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 6

163 of 234

Period of Record: April - June 2006 Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

11 i	Wind Speed (in mph)									
Direction	1-3	4 -7	8-12	13-18	19-24	> 24	Total			
N	0	1	1	1	0	0	3			
NNE	0	0	1	2	1	0	4			
NE	0	0	0	2	5	0	7			
ENE	0	0	0	1	3	0	4			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	0	0	0	2	1	0	3			
SSW	0	0	0	8	0	0	8			
SW	0	1	0	0	3	0	4			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	6	2	0	8			
NW	0	2	2	3	0	0	7			
NNW	0	1	0	0	0	0	1			
Variable	0	0	0	0	0	0	0			
Total	0	5	4	25	15	0	49			

Period of Record: April - June 2006 Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

11 J A	wing Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	2	9	1	0	0	12			
NNE	0	0	12	0	0	0	12			
NE	0	0	1	4	1	0	6			
ENE	0	0	1	5	2	1	9			
Е	0	0	0	1	0	0	1			
ESE	0	0	0	3	2	0	5			
SE	0	0	0	0	1	0	1			
SSE	0	0	1	3	2	0	6			
S	0	0	1	8	1	0	10			
SSW	0	0	4	9	1	0	14			
SW	0	0	3	3	1	0	7			
WSW	0	0	1	0	4	0	5			
W	0	0	4	1	2	0	7			
WNW	0	1	12	11	3	1	28			
NW	0	1	10	5	2	0	18			
NNW	0	0	5	5	0	0	10			
Variable	0	0	0	0	0	0	0			
Total	0	4	64	59	22	2	151			

Wind Speed (in mph)

Period of Record: April - June 2006 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

***1	ATHA Sheed (TH While									
Wind Direction	1-3	4 -7	8-12	13-18	19-24	> 24	Total			
N	0	7	6	1	0	0	14			
NNE	0	5	11	2	1	0	19			
NE	0	0	6	4	1	0	11			
ENE	0	1	4	7	1	0	13			
Е	0	0	4	1	0	1	6			
ESE	0	0	0	3	2	1	6			
SE	0	0	0	2	0	1	3			
SSE	0	0	0	3	3	3	9			
S	0	0	2	, 5	3	1	11			
SSW	1	0	11	8	0	0	20			
SW	0	0	5	4	1	0	10			
WSW	0	2	3	1	0	0	6			
W	0	6	11	4	2	0	23			
WNW	0	2	22	11	10	1	46			
NW	0	5	8	4	3	0	20			
NNW	0	8	4	0	1	0	13			
Variable	0	0	0	0	0	0	0			
Total	1	36	97	60	28	8	230			

Wind Speed (in mph)

Period of Record: April - June 2006 Stability Class - Neutral - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

11	Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	5	27	7	1	0	0	40			
NNE	3	29	27	5	3	0	67			
NE	2	26	43	30	6	0	107			
ENE	1	16	12	17	1	0	47			
E	0	10	19	6	6	0	41			
ESE	0	7	5	20	11	9	52			
SE	0	6	9	8	7	8	38			
SSE	1	11	14	10	3	3	42			
S	0	15	15	16	2	· 3	51			
SSW	0	14	16	13	2	0	45			
SW	0	7	9	9	2	0	27			
WSW	1	8	10	13	1	0	33			
W	0	8	11	7	4	0	30			
WNW	1	4	19	11	25	5	65			
NW	2	9	20	17	6	0	54			
NNW	0	25	18	18	10	3	74			
Variable	0	0	0	0	0	0	0			
Total	16	222	254	201	89	31	813			

Period of Record: April - June 2006 Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

*** 1 ··· ·1	utua opaca (tu mpu)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	2	27	2	0	0	0	31			
NNE	2	21	6	0	1	0	30			
NE	0	7	7	3	0	0	17			
ENE	1	10	13	8	0	0	32			
E	1	13	25	10	4	0	53			
ESE	0	8	5	11	8	0	32			
SE	0	5	5	5	1	0	16			
SSE	2	1	8	9	0	0	20			
S	0	8	9	9	4	2	32			
SSW	2	8	13	13	5	0	41			
SW	1	8	12	6	1	0	28			
WSW	1	5	9	2	1	0	18			
W	1	5	13	0	2	0	21			
WNW	1	10	8	2	0	0	21			
NW	2	17	20	3	0	0	42			
NNW	0	13	10	0	0	0	23			
Variable	0	0	. O	0	0	0	0			
Total	16	166	165	81	27	2	457			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

168 of 234

Period of Record: April - June 2006 Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind	Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	17	2	0	0	0	19			
NNE	0	6	0	0	0	0	6			
NE	0	0	0	0	0	0	0			
ENE	1	1	0	0	0	0	2			
Е	0	15	11	4	0	0	30			
ESE	1	12	10	0	0	0	23			
SE	0	10	4	0	0	0	14			
SSE	3	9	9	0	0	0	21			
S	2	8	22	4	0	0	36			
SSW	2	9	10	0	1	0	22			
SW	1	5	5	2	1	0	14			
WSW	0	15	11	2	0	0	28			
W	2	7	6	0	0	0	15			
WNW	1	14	7	0	0	0	22			
NW	0	18	9	0	0	0	27			
NNW	0	6	1	0	0	0	7			
Variable	0	0	0	0	0	0	0			
Total	13	152	107	12	2	0	286			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

169 of 234

Period of Record: April - June 2006 Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

	Wind Speed (in mph)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	1	0	0	0	0	0	. 1			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	2	0	0	0	0	2			
ESE	1	5	1	0	0	0	7			
SE	1	23	1	0	0	0	25			
SSE	1	16	20	0	0	0	37			
S	0	6	19	1	0	0	26			
SSW	0	7	2	0	0	0	9			
SW	0	5	19	0	0	0	24			
WSW	0	5	10	0	0	0	15			
W	0	15	14	0	0	0	29			
WNW	1	9	2	0	0	0	12			
NW	0	2	0	0	0	0	2			
NNW	0	3	0	0	0	0	3			
Variable	0	0	0	0	0	0	0			
Total	5	98	88	1	0	0	192			

Period of Record: April - June 2006 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Min d	Wind Speed (in mph)										
Direction	1-3	4 -7	8-12	13-18	19-24	> 24	Total				
N	0	0	0	0	0	0	0				
NNE	0	0	0	0	0	0	0				
NE	0	0	0	0	0	0	0				
ENE	0	0	0	0	0	0	0				
Е	0	0	0	0	0	0	0				
ESE	0	0	0	0	0	0	0				
SE	0	0	0	0	0	0	0				
SSE	0	0	0	0	0	0	0				
S	0	0	0	0	0	0	0				
SSW	0	0	0	0	0	0	0				
SW	0	0	0	0	0	0	0				
WSW	0	0	0	0	0	0	0				
W	0	0	0	0	0	0	0				
WNW	0	0	0	0	0	0	0				
NW	0	0	0	0	0	0	0				
NNW	0	0	0	0	0	0	0				
Variable	0	0	0	0	0	0	0				
Total	0	0	0	0	0	0	0				

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 3

.

171 of 234

Period of Record: April - June 2006 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind	wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	0	0	0	1	1	2			
NE	0	0	0	0	0	1	1			
ENE	0	0	0	0	0	0	0			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	0	0	0	0	0	0	0			
SSW	0	0	0	0	1	0	1			
SW	0	0	0	0	0	2	2			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	0	0	0	0	0	0	0			
NNW	0	0	0	0	1	0	1			
Variable	0	0	0	0	0	0	0			
Total	0	0	0	0	3	4	7			

Wind Snood (in moh)

Period of Record: April - June 2006 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

771 - 3	wrug Sheeg (Tu mbu)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	1	3	0	0	4			
NNE	0	0	3	3	0	0	6			
NE	0	0	0	2	3	0	5			
ENE	0	0	0	2	0	1	3			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	2	0	2			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	1	0	1			
S	0	0	0	1	1	1	3			
SSW	0	0	0	0	9	1	10			
SW	0	0	1	0	0	1	2			
WSW	0	0	0	0	1	1	2			
W	0	0	0	0	0	0	0			
WNW	0	0	0	3	0	0	3			
NW	0	1	0	1	1	0	3			
NNW	0	0	0	0	3	0	3			
Variable	0	0	0	0	0	0	0			
Total	0	1	5	15	21	5	47			

Wind Speed (in mph)

Period of Record: April - June 2006 Stability Class - Neutral - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Wind			·····	· · · · · ·	-,		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	16	19	21	6	0	63
NNE	0	25	30	22	8	9	94
NE	1	19	24	47	42	16	149
ENE	0	13	11	26	19	7	76
E	0	6	4	21	3	4	38
ESE	0	5	2	11	14	32	64
SE	0	6	7	1	8	19	41
SSE	0	8	8	5	25	10	56
S	0	11	18	5	30	10	74
SSW	1	8	13	25	18	6	71
SW	0	3	6	15	21	0	45
WSW	0	4	11	12	10	4	41
W	1	4	13	20	6	9	53
WNW	1	0	23	37	28	34	123
NW	2	6	30	35	20	27	120
NNW	1	12	19	23	10	7	72
Variable	0	0	0	0	0	0	0
Total	8	146	238	326	268	194	1180

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 1 Hours of missing stability measurements in all stability classes: 3

174 of 234

Period of Record: April - June 2006 Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

	wina Speea (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	1	7	12	2	1	23			
NNE	0	4	14	11	1	1	31			
NE	1	7	12	17	1	0	38			
ENE	0	7	17	18	2	2	46			
E	0	5	13	13	6	12	49			
ESE	0	5	5	9	2	19	40			
SE	0	3	9	2	2	8	24			
SSE	1	2	4	2	4	6	19			
S	0	0	4	6	5	13	28			
SSW	0	1	1	6	10	30	48			
SW	1	1	6	6	8	16	38			
WSW	0	1	5	10	5	4	25			
W	0	2	5	7	8	3	25			
WNW	0	2	' 3	10	15	9	39			
NW	0	3	10	17	15	5	50			
NNW	0	2	4	13	10	1	30			
Variable	0	0	0	0	0	0	0			
Total	3	46	119	159	96	130	553			

Wind Speed (in mph)

Period of Record: April - June 2006 Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind Speed (in mph)

Mind									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	1	3	4	1	0	9		
NNE	0	2	10	6	2	0	20		
NE	0	4	0	0	0	0	4		
ENE	0	2	1	0	0	0	3		
E	0	1	4	1	4	0	10		
ESE	0	2	7	6	1	2	18		
SE	1	6	5	11	3	6	32		
SSE	0	1	1	10	3	2	17		
S	0	1	0	7	10	20	38		
SSW	0	0	2	2	10	18	32		
SW	0	2	1	4	3	11	21		
WSW	0	2	2	4	6	5	19		
W	0	0	4	3	5	2	14		
WNW	0	2	4	10	8	6	30		
NW	0	1	5	6	10	4	26		
NNW	0	1	5	5	5	3	19		
Variable	0	0	0	0	0	0	0		
Total	1	28	54	79	71	79	312		

Period of Record: April - June 2006 Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

	wina Speea (in mpn)								
Wind Direction	1-3 	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	1	0	0	0	0	1		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	1	0	0	6	1	1	9		
SSE	0	0	0	7	4	3	14		
S	0	0	0	0	5	10	15		
SSW	0	0	0,	2	3	11	16		
SW	0	0	1	1	2	5	9		
WSW	0	0	1	0	1	2	4		
W	0	0	1	0	0	0	1		
WNW	0	0	1	0	2	4	7		
NW	0	0	0	3	0	0	3		
NNW	0	0	1	0	0	0	1		
Variable	0	0	0	0	0	0	0		
Total	1	1	5	19	18	36	80		

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 3 ----

Period of Record: July - September 2006 Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

	wind Speed (in mpn)								
Wind Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total		
N	0	1	1	0	0	0	2		
NNE	0	0	0	0	0	0	0		
NE	0	0	4	3	0	0	7		
ENE	0	0	1	0	0	0	1		
E	0	0	1	0	0	0	1		
ESE	0	0	0	0	0	0	0		
SE	0	2	3	0	0	0	5		
SSE	0	1	1	0	0	0	2		
S	0	1	1	4	0	0	6		
SSW	0	1	5	3	0	0	9		
SW	0	0	14	12	0	0	26		
WSW	0	2	4	5	0	0	11		
W	0	0	6	0	0	0	6		
WNW	0	0	19	2	0	0	21		
NW	0	0	2	0	0	0	2		
NNW	0	2	6	1	0	0	9		
Variable	0	0	0	0	0	0	0		
Total	0	10	68	30	0	0	108		

Wind Speed (in mph)

Period of Record: July - September 2006 Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Direction	wind speed (in mpn)									
	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	7	0	0	0	7 ·			
NNE	0	4	8	0	0	0	12			
NE	0	1	10	3	0	0	14			
ENE	0	1	5	5	0	0	11			
E	0	0	4	7	0	0	11			
ESE	0	0	1	0	0	0	1			
SE	0	3	4	1	1	0	9			
SSE	0	0	4	1	1	0	6			
S	0	2	1	4	0	0	7			
SSW	1	2	10	2	0	0	15			
SW	0	7	11	5	1	0	24			
WSW	0	3	8	1	0	0	12			
W	0	3	8	1	0	0	12			
WNW	0	5	10	2	0	0	17			
NW	0	1	3	0	0	0	4			
NNW	0	0	3	0	0	0	3			
Variable	0	0	0	0	0	0	0			
Total	1	32	97	32	3	0	165			

Wind Speed (in mph)

Period of Record: July - September 2006 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Direction	wind Speed (in mpn)									
	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	1	14	9	0	0	0	24			
NNE	0	4	9	0	0	0	13			
NE	0	4	16	3	0	0	23			
ENE	0	1	12	8	0	0	21			
E	0	5	5	3	0	0	13			
ESE	0	1	2	0	0	0	3			
SE	0	7	1	2	0	0	10			
SSE	0	8	0	4	0	0	12			
S	0	5	2	3	0	0	10			
SSW	0	6	9	1	0	0	16			
SW	0	3	10	6	2	0	21			
WSW	0	9	8	2	0	0	19			
W	0	10	6	3	0	0	19			
WNW	0	5	8	3	0	0	16			
NW	0	4	5	1	0	0	10			
NNW	0	2	14	0	0	0	16			
Variable	0	0	0	0	0	0	0			
Total	1	88	116	39	2	0	246			

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

.
Period of Record: July - September 2006 Stability Class - Neutral - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

17 d	wind Speed (in mpn)							
Wind Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total	
N	6	37	18	0	1	0	62	
NNE	4	29	13	0	0	0	46	
NE	1	11	40	5	0	0	57	
ENE	1	12	33	30	0	0	76	
E	2	12	28	3	0	0	45	
ESE	3	15	6	0	0	0	24	
SE	2	19	15	5	1	0	42	
SSE	1	14	14	10	2	0	41	
S	2	18	13	7	1	0	41	
SSW	5	13	20	2	0	0	40	
SW	2	11	19	10	1	0	43	
WSW	3	16	11	2	1	0	33	
W	0	17	12	12	2	0	43	
WNW	0	17	11	13	1	0	42	
NW	1	11	2	1	о	0	15	
NNW	3	22	18	2	0	0	45	
Variable	0	0	0	0	0	0	0	
Total	36	274	273	102	10	0	695	

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

Period of Record: July - September 2006 Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

12 d 1	wind obeen (in mbu)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	15	0	0	0	0	15		
NNE	2	15	2	0	0	0	19		
NE	3	4	4	0	0	0	11		
ENE	0	5	8	1	0	0	14		
E	1	31	17	0	0	0	49		
ESE	3	23	4	1	0	0	31		
SE	3	8	7	8	1	0	27		
SSE	1	11	12	1	0	0	25		
S	2	10	14	0	0	0	26		
SSW	1	19	35	0	0	0	55		
SW	3	10	28	9	0	0	50		
WSW	3	12	16	0	0	0	31		
W	0	5	10	0	0	0	15		
WNW	0	18	9	1	0	0	28		
NW	0	7	4	0	0	0	11		
NNW	2	10	3	0	0	0	15		
Variable	0	0	0	0	0	0	0		
Total	24	203	173	21	1	0	422		

Period of Record: July - September 2006 Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

til i mal	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	8	0	0	0	0	8		
NNE	1	6	0	0	0	0	7		
NE	0	2	0	0	0	0	2		
ENE	2	0	0	0	0	0	2		
Е	0	10	9	0	0	0	19		
ESE	1	19	0	0	0	0	20		
SE	3	22	3	0	0	0	28		
SSE	0	16	7	0	0	0	23		
S	0	16	11	0	0	0	27		
SSW	1	25	18	0	0	0	44		
SW	1	13	18	0	0	0	32		
WSW	0	14	8	0	0	0	22		
W	3	10	7	0	0	0	20		
WNW	3	11	0	0	0	0	14		
NW	4	6	0	0	0	0	10		
NNW	2	4	0	0	0	0	6		
Variable	0	0	0	0	0	0	0		
Total	21	182	81	0	0	0	284		

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

Period of Record: July - September 2006 Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph) Wind Direction 1-3 4-7 8-12 13-18 19-24 > 24 Total ----- ----____ ____ ----____ ____ ~~___ 0 0 0 0 0 0 Ν 0 0 0 0 NNE 0 0 0 0 NE 0 0 0 0 0 0 0 ENE 1 0 0 0 0 0 1 1 7 2 0 0 0 Е 10 1 21 0 ESE 0 0 0 22 SE 2 23 0 0 0 0 25 1 20 1 0 0 0 SSE 22 2 23 3 0 0 0 S 28 0 28 13 0 0 0 SSW 41 1 27 9 0 0 0 SW 37 21 0 0 WSŴ 3 8 0 32 0 0 1 W 23 3 0 27 0 WNW 2 28 0 0 0 30 1 0 1 0 0 0 0 NW NNW 0 0 0 0 0 0 0 Variable 0 0 0 0 0 0 0 222 39 0 0 0 Total 15 276

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

Period of Record: July - September 2006 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

til i m d	Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13 - 18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	0	0	0	0	0	0	0			
SSW	0	0	0	0	0	0	0			
SW	0	0	0	0	0	0	0			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	1	0	0	1			
NW	0	0	0	0	0	0	0			
NNW	0	0	0	0	0	0	0			
Variable	0	0	0	0	0	0	0			
Total	0	0	0	1	0	0	1			

Period of Record: July - September 2006 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

	wing speed (in mbu)									
Wind Direction	1-3	4 -7	8-12	13-18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	1	0	0	0	1			
SSE	0	0	0	0	0	0	0			
S	0	0	0	0	0	0	0			
SSW	0	0	0	0	0	0	0			
SW	0	0	0	0	2	0	2			
WSW	0	0	1	4	1	0	6			
W	0	0	0	0	0	0	0			
WNW	0	0	0	1	0	0	1			
NW	0	0	0	0	0	0	0			
NNW	0	0	0	1	4	0	5			
Variable	0	0	0	0	0	0	0			
Total	0	0	2	6	7	0	15			

Wind Speed (in mph)

Period of Record: July - September 2006 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

	wind opeca (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	2	2	0	0	4			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	5	2	0	7			
ENE	0	0	0	2	0	0	2			
E	0	0	0	0	0	0	0			
ESE	0	1	0	0	0	0	1			
SE	0	1	0	1	0	0	2			
SSE	0	0	0	0	0	0	0			
S	0	0	0	1	4	0	5			
SSW	0	0	1	0	2	0	3			
SW	0	0	5	10	4	0	19			
WSW	0	0	3	7	0	0	10			
W	0	0	0	0	0	0	0			
WNW	0	1	2	2	0	0	5			
NW	0	0	2	1	0	0	3			
NNW	0	0	1	1	0	0	2			
Variable	0	0	0	0	0	0	0			
Total	0	3	16	32	12	0	63			

Wind Speed (in mph)

Period of Record: July - September 2006 Stability Class - Neutral - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind	wind Speed (in mpn)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	2	11	40	29	1	1	84			
NNE	3	5	24	15	5	0	52			
NE	0	10	22	44	33	1	110			
ENE	0	5	25	52	35	1	118			
Е	2	5	24	18	6	0	55			
ESE	2	6	4	5	1	0	18			
SE	0	13	15	9	6	4	47			
SSE	2	12	28	11	8	4	65			
S	5	7	24	9	12	4	61			
SSW	2	10	18	16	8	0	54			
SW	1	13	23	27	25	8	97			
WSW	0	16	16	15	5	3	55			
W	0	13	22	20	10	2	67			
WNW	1	8	24	24	20	2	79			
NW	0	5	15	21	6	0	47			
NNW	1	10	16	15	2	0	44			
Variable	0	0	0	0	0	0	0			
Total	21	149	340	330	183	30	1053			

Wind Speed (in mph)

Period of Record: July - September 2006 Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

111 - J	atha pheed (the mbut								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	5	10	12	4	0	31		
NNE	1	2	11	8	2	0	24		
NE	0	3	17	10	7	0	37		
ENE	1	6	6	16	8	0	37		
E	4	3	15	18	6	0	46		
ESE	1	3	6	5	11	0	26		
SE	1	1	9	5	8	6	30		
SSE	0	1	17	7	4	0	29		
S	0	6	11	9	11	6	43		
SSW	0	4	6	10	21	14	55		
SW	1	3	4	20	16	30	74		
WSW	0	6	13	8	11	4	42		
W	0	4	4	9	18	3	38		
WNW	0	2	5	7	8	3	25		
NW	0	3	3	11	5	0	22		
NNW	0	4	9	1	1	0	15		
Variable	0	0	0	0	0	0	0		
Total	9	56	146	156	141	66	574		

Wind Speed (in mph)

Period of Record: July - September 2006 Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

	wing sheed (in mbu)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	1	2	4	2	0	0	9			
NNE	1	0	0	0	0	0	1			
NE	1	1	1	2	1	0	6			
ENE	0	2	1	2	1	0	6			
E	0	2	2	2	4	0	10			
ESE	0	2	9	3	3	0	17			
SE	0	4	7	6	4	0	21			
SSE	0	1	5	7	5	7	25			
S	1	3	4	14	7	15	44			
SSW	3	2	1	7	12	23	48			
SW	1	3	8	7	26	35	80			
WSW	0	3	8	7	6	4	28			
W	0	4	8	5	11	0	28			
WNW	0	3	5	3	5	0	16			
NW	0	2	4	11	13	0	30			
NNW	0	3	0	1	1	0	5			
Variable	0	0	0	0	0	0	0			
Total	8	37	67	79	99	84	374			

Wind Speed (in mph)

Period of Record: July - September 2006 Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

With an el		and phood (the wheel									
Direction	1-3	4-7 	8-12	13-18	19-24 	> 24	Total				
N	0	1	0	0	0	0	1 ·				
NNE	0	0	0	0	0	0	0				
NE	0	0	0	0	0	0	0				
ENE	0	0	0	0	0	0	0				
Е	0	0	0	0	0	0	0				
ESE	0	0	0	0	2	0	2				
SE	0	0	0	3	10	1	14				
SSE	0	1	0	6	4	0	11				
S	0	0	0	3	7	0	10				
SSW	0	1	0	6	9	2	18				
SW	1	2	3	2	4	4	16				
WSW	0	1	2	4	4	0	11				
W	0	0	6	11	0	0	17				
WNW	0	0	5	4	2	0	11				
NW	0	0	0	2	7	0	9				
NNW	0	1	0	2	0	0	3				
Variable	0	0	0	0	0	0	0				
Total	1	7	16	43	49	7	123				

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

-- ----

Period of Record: October - December2006 Stability Class - Extremely Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Til - al	arna obeea (ru mbu)									
Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total			
N	0	0	9	8	1	0	18			
NNE	0	0	2	1	0	0	3			
NE	0	0	0	5	0	0	5			
ENE	0	0	1	2	0	0	3			
Е	0	0	4	8	1	0	13			
ESE	0	0	1	1	2	2	6			
SE	0	1	2	1	2	0	6			
SSE	0	1	0	1	0	0	2			
S	0	1	0	1	0	0	2			
SSW	0	2	2	3	0	0	7			
SW	0	0	5	1	2	0	8			
WSW	0	1	1	0	3	1	6			
W	0	0	0	14	2	0	16			
WNW	0	0	0	0	0	1	1			
NW	0	1	1	0	1	0	3			
NNW	0	1	4	7	1	1	14			
Variable	0	0	0	0	0	0	0			
Total	0	8	32	53	15	5	113			

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

Period of Record: October - December2006 Stability Class - Moderately Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

لتلغ مربا	wina Speea (in mpn)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	1	1	5	1	0	8			
NNE	0	0	8	8	1	0	17			
NE	0	0	1	2	1	0	4			
ENE	0	0	0	0	0	0	0			
E	0	0	8	2	0	0	10			
ESE	0	0	5	0	0	0	5			
SE	0	0	1	1	0	0	2			
SSE	0	1	0	0	0	0	1			
S	0	0	2	1	0	0	3			
SSW	0	0	2	3	0	0	5			
SW	0	0	2	0	1	0	3			
WSW	0	1	3	0	1	0	5			
W	0	0	0	4	6	2	12			
WNW	0	2	2	1	1	1	7			
NW	0	0	0	1	0	0	1			
NNW	0	1	0	4	2	0	7			
Variable	0	0	0	0	0	0	0			
Total	0	6	35	32	14	3	90			

Wind Speed (in mph)

Period of Record: October - December2006 Stability Class - Slightly Unstable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph) Wind Direction 1-3 4-7 8-12 13-18 19-24 > 24 Total ----- ----_____ ____ ____ ____ ---------7 N 0 0 3 1 0 11 NNE 0 0 4 3 0 0 7 0 0 2 4 NE 1 0 7 ENE 0 0 2 4 0 0 6 0 0 7 2 0 0 9 E 0 1 3 6 0 0 10 ESE 0 0 1 0 0 0 1 SE 0 2 1 3 0 0 SSE 6 1 6 0 S 0 3 1 11 0 0 5 0 SSW 9 0 14 0 0 5 5 2 0 SW 12 WSW 0 0 1 1 2 0 4 W 0 0 1 7 3 2 13 0 2 2 9 3 0 WNW 16 1 2 3 0 6 0 NW 12 0 3 2 11 1 NNW 0 17 Variable 0 0 0 0 0 0 0 Total 0 10 48 79 17 2 156

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

Period of Record: October - December2006 Stability Class - Neutral - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	2	21	8	12	7	0	50		
NNE	1	9	13	9	1	0	33		
NE	1	1	7	15	2	0	26		
ENE	1	4	4	7	3	0	19		
Е	1	11	15	7	2	0	36		
ESE	0	6	7	11	2	0	26		
SE	1	10	5	10	2	0	28		
SSE	1	9	18	10	0	0	38		
S	1	6	17	17	5	0	46		
SSW	0	7	27	28	5	0	67		
SW	1	7	27	13	3	0	51		
WSW	0	5	16	5	3	0	29		
W	0	9	31	18	7	2	67		
WNW	0	19	22	45	16	4	106		
NW	0	9	17	9	4	1	40		
NNW	1	15	43	26	6	0	91		
Variable	0	0	0	0	0	0	0		
Total	11	148	277	242	68	7	753		

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

195 of 234

,

Period of Record: October - December2006 Stability Class - Slightly Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

	wind Speed (in mpn)								
Wind Direction	1-3	4-7 	8-12	13-18	19-24	> 24	Total		
N	0	5	1	0	0	0	6		
NNE	2	10	1	0	0	0	13		
NE	1	0	3	1	0	0	5		
ENE	1	3	1	8	0	0	13		
Е	2	13	7	2	0	0	24		
ESE	3	7	1	1	0	0	12		
SE	3	10	28	3	0	0	44		
SSE	1	7	32	4	0	0	44		
S	0	9	23	32	3	0	67		
SSW	0	3	19	34	14	0	70		
SW	0	13	13	28	13	0	67		
WSW	1	10	21	18	1	0	51		
W	2	6	17	9	1	1	36		
WNW	2	5	7	17	5	3	39		
NW	1	13	14	1	1	0	30		
NNW	1	4	5	0	0	0	10		
Variable	0	0	0	0	0	0	0		
Total	20	118	193	158	38	4	531		

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

Period of Record: October - December2006 Stability Class - Moderately Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind	wing obeen (the liber)									
Direction	1-3	4-7 	8-12 	13-18	19-24	> 24	Total			
N	0	2	0	0	0	0	2			
NNE	1	1	0	0	0	0	2			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
Е	0	4	4	0	0	0	8			
ESE	1	5	5	0	0	0	11			
SE	0	13	12	0	0	0	25			
SSE	0	12	28	2	0	0	42			
S	0	11	20	3	0	0	34			
SSW	0	9	19	11	1	0	40			
SW	1	4	7	16	2	0	30			
WSW	0	5	18	3	0	0	26			
W	0	2	27	9	0	0	38			
WNW	0	7	7	0	0	0	14			
NW	0	3	8	0	0	0	11			
NNW	0	0	1	0	0	0	1			
Variable	0	0	0	0	0	0	0			
Total	3	78	156	44	3	0	284			

Wind Speed (in mph)

Period of Record: October - December2006 Stability Class - Extremely Stable - 200Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

747 d	and opeca (in april									
Direction	1-3	4-7 	8-12	13-18	19-24 	> 24	Total			
N	1	0	0	0	0	0	1			
NNE	0	1	0	0	0	0	1			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	1	1	0	0	0	2			
ESE	0	7	0	0	0	0	7			
SE	0	26	22	0	0	0	48			
SSE	0	14	22	0	0	0	36			
S	0	18	19	0	0	0	37			
SSW	0	16	11	1	0	0	28			
SW	0	11	12	0	0	0	23			
WSW	1	11	28	0	0	0	40			
W	0	16	15	1	0	0	32			
WNW	0	7	1	0	0	0	8			
NW	0	0	0	0	0	0	0			
NNW	0	0	0	0	0	0	0			
Variable	0	0	0	0	0	0	0			
Total	2	128	131	2	0	0	263			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

Period of Record: October - December2006 Stability Class - Extremely Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

ام س ڈ 12	urue shooe (ru whu)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	0	0	0	0	0	0	0			
SSW	0	0	0	0	0	0	0			
SW	0	0	0	0	0	2	2			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	0	0	0	0	0	0	0			
NNW	0	0	0	0	0	0	0			
Variable	0	0	0	0	0	0	0			
Total	0	0	0	0	0	2	2			

Wind Speed (in mph)

Period of Record: October - December2006 Stability Class - Moderately Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind		wind Speed (in mpn)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	0	0	2	4	3	2	11				
NNE	0	0	0	0	0	0	0				
NE	0	0	0	0	0	0	0				
ENE	0	0	0	0	0	0	0				
E	0	0	0	0	0	0	0				
ESE	0	0	0	0	0	1	1				
SE	0	0	0	0	0	0	0				
SSE	0	0	0	0	0	0	0				
S	0	0	0	0	0	0	0				
SSW	0	0	1	0	1	0	2				
SW	0	0	0	0	0	0	0				
WSW	0	0	0	0	0	1	1				
W	0	0	0	0	0	0	0				
WNW	0	0	0	0	0	0	0				
NW	0	0	0	0	0	0	0				
NNW	0	0	0	0	1	0	1				
Variable	0	0	0	0	0	0	0				
Total	0	0	3	4	5	4	16				

Wind Speed (in mph)

Period of Record: October - December2006 Stability Class - Slightly Unstable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

121 m al	wina speea (in mpn)								
Direction	1-3	4- 7	8-12	13-18	19-24 	> 24	Total		
N	0	0	0	2	4	0	6		
NNE	0	0	0	4	0	0	4		
NE	0	0	0	0	5	0	5		
ENE	0	0	0	0	0	0	0		
Е	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	2	2		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	1	1	0	2		
SW	0	1	1	2	1	0	5		
WSW	0	0	0	0	0	5	5		
W	0	0	0	2	1	1	4		
WNW	0	0	0	0	0	0	0		
NW	0	0	0	0	0	0	0		
NNW	0	0	0	1	1	0	2		
Variable	0	0	0	0	0	0	0		
Total	0	1	1	12	13	8	35		

Wind Speed (in mph)

Period of Record: October - December2006 Stability Class - Neutral - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

	artig speed (th liph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	1	10	14	13	18	15	71		
NNE	0	5	4	13	17	8	47		
NE	1	2	1	16	14	8	42		
ENE	0	4	5	9	8	6	32		
Е	1	0	8	20	9	5	43		
ESE	0	2	3	11	22	9	47		
SE	0	1	4	10	7	10	32		
SSE	0	3	17	10	10	0	40		
S	0	7	16	21	15	13	72		
SSW	0	7	11	19	20	22	79		
SW	1	3	18	23	9	17	71		
WSW	0	3	11	2	10	8	34		
W	0	0	11	25	11	26	73		
WNW	0	8	14	25	31	17	95		
NW	0	5	20	20	21	15	81		
NNW	0	7	14	28	27	13	89		
Variable	0	0	0	0	0	0	0		
Total	4	67	171	265	249	192	948		

Wind Speed (in mph)

Period of Record: October - December2006 Stability Class - Slightly Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

	atur obcer (tu mbu)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	2	1	1	2	2	0	8			
NNE	1	2	4	6	0	1	14			
NE	2	4	1	2	3	0	12			
ENE	0	5	1	1	1	3	11			
Е	1	2	5	1	1	4	14			
ESE	1	0	6	3	3	4	17			
SE	2	1	9	8	0	1	21			
SSE	0	2	7	27	21	9	66			
S	0	5	4	20	23	47	99			
SSW	1	3	4	5	12	69	94			
SW	1	8	5	11	10	45	80			
WSW	1	0	2	12	12	18	45			
W	0	1	1	10	19	15	46			
WNW	0	2	2	3	20	29	56			
NW	0	1	2	6	7	6	22			
NNW	2	1	1	17	9	0	30			
Variable	0	0	0	0	0	0	0			
Total	14	38	55	134	143	251	635			

Wind Speed (in mph)

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 23 Hours of missing stability measurements in all stability classes: 11

Period of Record: October - December2006 Stability Class - Moderately Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

tal and	utua obeca (tu mbu)									
Direction	1-3	4-7 	8-12 	13-18	19-24	> 24	Total			
N	0	0	2	0	2	0	4			
NNE	0	1	0	0	0	0	1			
NE	0	0	0	1	0	0	1			
ENE	0	0	0	0	0	0	0			
Е	1	0	0	0	1	0	2			
ESE	0	2	0	0	0	0	2			
SE	0	1	1	1	4	0	7			
SSE	0	0	1	8	11	10	30			
S	0	1	4	5	12	27	49			
SSW	0	2	2	7	8	44	63			
SW	0	0	3	12	9	23	47			
WSW	0	0	3	3	7	4	17			
W	0	0	1	5	7	22	35			
WNW	0	0	2	13	24	8	47			
NW	0	0	3	5	3	1	12			
NNW	0	0	0	2	11	0	13			
Variable	0	0	0	0	0	0	0			
Total	1	7	22	62	99	139	330			

Wind Speed (in mph)

Period of Record: October - December2006 Stability Class - Extremely Stable - 375Ft-33Ft Delta-T (F) Winds Measured at 375 Feet

Wind	wind Speed (in mpn)								
Direction	1-3	4 -7	8-12	13-18	19-24	> 24	Total		
N	0	3	0	0	0	0	3		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
Е	0	0	0	0	0	0	0		
ESE	0	0	0	0	1	0	1		
SE	0	0	0	0	3	0	3		
SSE	0	0	2	3	4	7	16		
S	0	0	0	1	13	23	37		
SSW	1	0	0	2	13	20	36		
SW	0	0	0	3	8	5	16		
WSW	0	0	5	0	0	2	7		
W	0	0	4	2	1	0	7		
WNW	1	0	4	3	0	0	8		
NW	0	2	1	1	0	0	4		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	2	5	16	15	43	57	138		

Wind Speed (in mph)

APPENDIX G

ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

Docket No: 50-373 50-374	<u>.</u>
LASALLE COUNTY STATION UNITS 1 and 2	
Annual Radiological Groundwater Protection Program Report	
1 January Through 31 December 2006	
Prepared By	
Teledyne Brown Engineering Environmental Services	
NUCIEAT LaSalle County Station Marseilles, IL 61341	
May 2007	207 of 2

Table Of Contents

I.	Summary and Conclusions	1
H.	Introduction A. Objectives of the RGPP B. Implementation of the Objectives C. Program Description	3 3 4
111.	 D. Characteristics of Tritium (H-3) Program Description. A. Sample Analysis B. Data Interpretation C. Background Analysis 1. Background Concentrations of Tritium 	5 6 6 7 7
IV	Results and Discussion A. Groundwater Results B. Drinking Water Well Survey C. Summary of Results – Inter-laboratory Comparison Program D. Leaks, Spills, and Releases E. Trends F. Investigations G. Actions Taken	9 9 10 10 10 10 11 11

Appendices

Appendix A	Location Designation		
<u>Tables</u>			
Table A-1:	LaSalle County Station Groundwater Monitoring Sample Point List		
Eigures			
Figure A-1:	LaSalle County Station Map of Groundwater Monitoring Sample Locations.		
Appendix B	Data Tables		
Tables			
Table B-I.1	Concentrations of Tritium in Groundwater and Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2006.		
Table B-I.2	Highest to Lowest Concentrations of Tritium in Groundwater and Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2006.		
Table B-I.3	Concentrations of Strontium in Groundwater and Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2006.		
Table B-I.4	Highest to Lowest Concentrations of Strontium in Groundwater and Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2006.		
Table B-I.5	Concentrations of Gamma Emitters in Groundwater and Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2006.		
Table B-I.6	Highest to Lowest Concentrations of Gamma Emitters in Groundwater and Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2006.		

I. Summary and Conclusions

In 2006, Exelon instituted a comprehensive program to evaluate the impact of station operations on groundwater and surface water in the vicinity of LaSalle County Station. This evaluation involved numerous station personnel and contractor support personnel. Baseline sampling efforts included the use of six surface water locations, two of which were already included in LaSalle's REMP sampling program, and seventeen groundwater well sampling locations. Following baseline sampling and subsequent recommendations, LaSalle's RGPP program now consists of the six surface water and nine groundwater well sampling locations. The results for LaSalle's RGPP sampling efforts in 2006 are included in this report.

This is the first in a series of annual reports on the status of the Radiological Groundwater Protection Program (RGPP) conducted at LaSalle County Station. This report covers groundwater and surface water samples, collected from the environment, both on and off station property in 2006. During that time period, 169 analyses were performed on 57 samples from 32 locations. The monitoring was conducted in two phases. Phase 1 of the monitoring was part of a comprehensive study initiated by Exelon to determine whether groundwater or surface water at and in the vicinity of LaSalle County Station had been adversely impacted by any releases of radionuclides. This phase was conducted by Conestoga Rovers and Associates (CRA) and the conclusions were made available to state and federal regulators as well as the public on an Exelon web site:

http://www.exeloncorp.com/ourcompanies/powergen/nuclear/Tritium.htm].

Phase 2 of the RGPP was conducted by Exelon corporate and station personnel to initiate follow up of Phase 1 and begin long-term monitoring at groundwater and surface water locations selected during Phase 1. All analytical results from both the Phase 1 and Phase 2 monitoring are reported herein.

In assessing all the data gathered for this report, it was concluded that the operation of LaSalle County Station had no adverse radiological impact on the environment, and there are no known active releases into the groundwater at LaSalle County Station.

Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs), as specified in the Offsite Dose Calculation Manual (ODCM) in any of the groundwater or surface water samples. In the case of tritium, Exelon specified that its laboratories achieve a lower limit of detection 10 times lower than that required by federal regulation.

Strontium-89/90 was not detected at a concentration greater than the LLD of 2.0 picoCuries per liter (pCi/L) in any of the groundwater or surface water samples tested.

Tritium was not detected in any of the groundwater or surface water samples at concentrations greater than the United States Environmental Protection Agency (USEPA) drinking water standard (and the Nuclear Regulatory Commission Reporting Limit) of 20,000 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L in 1 of 26 groundwater monitoring well locations. The tritium concentrations ranged from 776 ± 153 pCi/L to 1,940 ± 255 pCi/L. Additionally, low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L in 4 of 14 surface water samples. These samples were obtained from 6 surface water locations. The tritium concentrations in affected surface water samples ranged from 219 ± 113 pCi/L to 721 ± 147 pCi/L.

Elevated tritium levels (>200) observed in the single well location are believed to be associated with the 2001 CY tank rupture as documented in the station's 10CFR75g report. Surface water samples with measured tritium concentrations above 200 pCi/L are believed to be due to the Illinois River make-up water, as LaSalle Station is a zero liquid radwaste release plant. LaSalle's REMP analyses of Illinois River samples have historically shown periodic results above 200 pCi/L for tritium analysis. These values are believed to be related to contributions from plants up river from LaSalle.

II. Introduction

The LaSalle County Station (LCS), consisting of two boiling water reactors, each rated for 3489 MWt, owned and operated by Exelon Corporation, is located in LaSalle County, Illinois. Unit No. 1 went critical on 16 March 1982. Unit No. 2 went critical on 02 December 1983. The site is located in northern Illinois, approximately 75 miles southwest of Chicago, Illinois.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) and Environmental Inc. (Midwest Labs) on samples collected in 2006.

A. Objective of the RGPP

The long-term objectives of the RGPP are as follows:

- 1. Identify suitable locations to monitor and evaluate potential impacts from station operations before significant radiological impact to the environment and potential drinking water sources.
- 2. Understand the local hydrogeologic regime in the vicinity of the station and maintain up-to-date knowledge of flow patterns on the surface and shallow subsurface.
- 3. Perform routine water sampling and radiological analysis of water from selected locations.
- 4. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner.
- 5. Regularly assess analytical results to identify adverse trends.
- 6. Take necessary corrective actions to protect groundwater resources.
- B. Implementation of the Objectives

The objectives identified have been implemented at LaSalle County Station as discussed below:

1. Exelon and its consultant identified locations as described in the Phase 1 study. Phase 1 studies were conducted by Conestoga Rovers and Associates (CRA) and the results and conclusions were made available to state and federal regulators as well as the public on an Exelon web site in station specific reports.

http://www.exelonCorp.com/ourcompanies/powergen/nuclear/Tritium.htm

- 2. The LaSalle County Station reports describe the local hydrogeologic regime. Periodically, the flow patterns on the surface and shallow subsurface are updated based on ongoing measurements.
- 3. LaSalle County Station will continue to perform routine sampling and radiological analysis of water from selected locations.
- 4. LaSalle County Station has implemented new procedures to identify and report new leaks, spills, or other detections with potential radiological significance in a timely manner.
- 5. LaSalle County Station staff and consulting hydrogeologist assess analytical results on an ongoing basis to identify adverse trends.
- C. Program Description
 - 1. Sample Collection

Sample locations can be found in Table A-1, Appendix A.

Groundwater and Surface Water

Samples of water are collected, managed, transported and analyzed in accordance with approved procedures following EPA methods. Both groundwater and surface water are collected. Sample locations, sample collection frequencies and analytical frequencies are controlled in accordance with approved station procedures. Contractor and/or station personnel are trained in the collection, preservation management, and shipment of samples, as well as in documentation of sampling events. Analytical laboratories are subject to internal quality assurance programs, industry cross-check programs, as well as nuclear industry audits. Station personnel review and evaluate all analytical data deliverables as data are received. Analytical data results are reviewed by both station personnel and an independent hydrogeologist for adverse trends or changes to hydrogeologic conditions.

D. Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion, essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are activated to produce tritium. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like nontritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (3He). This radioactive decay releases a beta particle (low-energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium is one of the least dangerous radionuclides because it emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

III. Program Description

A. Sample Analysis

This section describes the general analytical methodologies used by TBE to analyze the environmental samples for radioactivity for the LaSalle County Station RGPP in 2006.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of gamma emitters in groundwater and surface water.
- 2. Concentrations of strontium in groundwater and surface water.
- 3. Concentrations of tritium in groundwater and surface water.
- B. Data Interpretation

The radiological data collected prior to LaSalle County Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, LaSalle County Station was considered operational at initial criticality. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is specified by federal regulation as a minimum sensitivity value that must be achieved routinely by the analytical parameter.

2. Laboratory Measurements Uncertainty

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated

Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus \pm the estimated sample standard deviation, as TPU, that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

Gamma spectroscopy results for each type of sample were grouped as follows:

For groundwater and surface water 11 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137, Ba-140 and La-140 were reported.

C. Background Analysis

A pre-operational radiological environmental monitoring program (preoperational REMP) was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, precipitation, marine life, and foodstuffs. The results of the monitoring were detailed in the report entitled, Environmental Radiological Monitoring for LaSalle County Nuclear Power Station, Commonwealth Edison Company, Annual Reports for the years 1979 and 1981. The pre-operational REMP contained analytical results from samples collected from the surface water and groundwater.

1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others. Additional detail may be found by consulting references (CRA 2006).

a. Tritium Production

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic
cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and strontium-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s, and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

b. Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected world wide from 1960 to 2006. RadNet provides tritium precipitation concentration data for samples collected at stations through out the U.S. from 1960 up to and including 2006. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been below 100 pCi/L since around 1980. However, LaSalle's 1981 pre-operational REMP report showed precipitation tritium concentrations in excess of 300 pCi/L at 2 of 4 sample locations. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above. Water from previous years and decades is naturally captured in groundwater, so some well water sources today are subject to being affected by the surface

water from the 1960s that was elevated in tritium. Surface Water Data

Tritium concentrations are routinely measured in large surface water bodies, including Lake Michigan and the Mississippi River. Illinois surface water data were typically less than 200 pCi/L. Illinois River tritium results have historically shown periodic results >200 pCi/L, not related to LaSalle plant operation, as evidenced in LaSalle's REMP program sample results.

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a \pm 70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately \pm 70 to 100 pCi/L.

The radio-analytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40 - 240 pCi/L or 140 ± 100 pCi/L. Clearly, these sample results cannot be distinguished as different from background at this concentration.

- IV. Results and Discussion
 - A. Groundwater Results

Groundwater

Samples were collected from on and off-site wells throughout the year in accordance with the station radiological groundwater protection program. Analytical results and anomalies are discussed below.

Tritium

Samples from all locations were analyzed for tritium activity (Table B–I.1 and B-I.2, Appendix B). Tritium values were <LLD with the exception of the one on-site well location that showed a maximum concentration of 1940 pCi/I. Outside of the owner-controlled area, tritium concentrations were less than the detection limit. Based on

the hyrogeological study conducted at LaSalle, there is no feasible pathway into a drinking water supply. Based on established aquifer flow paths the location most representative of potential offsite release into groundwater was also less than the detection limit.

Strontium

Strontium-90 was detected in four samples at concentration of 0.9 to 1.9 pCi/liter. This was less than the required detection limit of 2.0 pCi/liter. (Table B–I.3 and B-I.4, Appendix B).

Gamma Emitters and Strontium

Naturally occurring Potassium-40 was detected in twenty of 57 samples. The concentrations ranged from 41 pCi/liter to 978 pCi/liter. No other gamma emitting nuclides were detected. (Table B–I.5 and B–I.6, Appendix B).

B. Drinking Water Well Survey

A drinking water well survey was conducted during the summer 2006 by CRA (CRA 2006) around the LaSalle County Station. This survey concluded that no residents in the vicinity of the plant utilize the shallow water aquifer as a drinking water supply. Site hydrological studies of aquifer flow and permeation rates from the shallow aquifer to the deep aquifer concluded that there is no feasible dose receptor via a ground water pathway at LaSalle.

C. Summary of Results – Inter-Laboratory Comparison Program

Inter-Laboratory Comparison Program results for TBE and Environmental Inc. (Midwest Labs) are presented in the AREOR.

D. Leaks, Spills, and Releases

No new leaks or spills were discovered through efforts conducted at LaSalle Station. Historical spills were captured in the CSA report as well as the Station's 10CFR75g reports.

E. Trends

Baseline data established at LaSalle revealed no current ground water issues. On-going monitoring through the RGPP will allow for early detection of any potential threats to groundwater on and around the site.

F. Investigations

There were no anomalous result investigations conducted at for LaSalle RGPP sample results in 2006.

- G. Actions Taken
 - 1. Compensatory Actions

There were no required compensatory actions as a result of RGPP monitoring at LaSalle in 2006.

2. Installation of Monitoring Wells

No new monitoring wells were added beyond the initial phase for LaSalle in 2006.

3. Actions to Recover/Reverse Plumes

2006 LaSalle RGPP effort s resulted in no required actions.

Figure A-1: LaSalle County Station Map of Groundwater Monitoring Sample Locations

APPENDIX A

LOCATION DESIGNATION & DISTANCE

.

 Table A-1

 LaSalle County Station Groundwater Monitoring Sample Point List

Sample No.	Location	Current Well Status
SW-LS-101	North Storm Water Pond	Active
SW-LS-102	South Storm Water Pond	Active
SW-LS-103	Circ Water Discharge Canal	Active
SW-LS-104	Illinois River Upstream at Seneca (Boondocks)	Active
SW-LS-105	Illinois River Downstream at Marseilles (Illini State Park Boat Ramp)	Active
SW-LS-106	Circ Water Intake Bay	Active
MW-LS-101S	SW Corner of Perimiter Road	Inactive
MW-LS-102S	OLD Parking Lot West (Lake) Side	Inactive
MW-LS-103S	MAF South Centerline	Inactive
MW-LS-104S	CY Storage Tanks	Active
MW-LS-105S	Behind IRSF	Active
MW-LS-106S	Spare Transformer Area – Back Toward Security Fence	Active
MW-LS-107S	Old Service Building – Near Outage Trailers	Active
MW-LS-108S	Near 12 KV Swithchyard	Inactive
SW-LS-104 SW-LS-105 SW-LS-106 MW-LS-101S MW-LS-102S MW-LS-103S MW-LS-104S MW-LS-105S MW-LS-106S MW-LS-107S MW-LS-108S	Circ Water Discharge Canal Illinois River Upstream at Seneca (Boondocks) Illinois River Downstream at Marseilles (Illini State Park Boat Ramp) Circ Water Intake Bay SW Corner of Perimiter Road OLD Parking Lot West (Lake) Side MAF South Centerline CY Storage Tanks Behind IRSF Spare Transformer Area – Back Toward Security Fence Old Service Building – Near Outage Trailers Near 12 KV Swithchyard	Active Active Active Inactive Inactive Active Active Active Active

-

Sample No.	Location	Current Well Status
MW-LS-109S	Near BDG 33	Inactive
MW-LS-110S	RSH Area by Valve Pit 16B	Inactive
MW-LS-111S	West Permiter Road before pad mounted transformer (right hand side)	Active
MW-LS-112S	Between perimeter security fences near SE corner. (Access via security gate east of 12 KV switchyard)	Inactive
MW-LS-113S	Between perimeter security fences near CW intake bay. (Access via security gate east of 12 KV switchyard)	Inactive
HP-2	North of tracks near Nuclear Fuel Lay-down Area	Active
HP-5	Near VQ LN2 Storage Tanks	Active
HP-7	Near UAT's	Active
HP-10	Near VQ LN2 Storage Tanks, South of HP-5	Active

-

FIGURE A-1

LASALLE COUNTY STATION MAP OF GROUNDATER MONITORING SAMPLE LOCATIONS