

GE Energy

James C. Kinsey
Project Manager, ESBWR Licensing

PO Box 780 M/C J-70 Wilmington, NC 28402-0780 USA

T 910 675 5057 F 910 362 5057 jim.kinsey@ge.com

MFN 07-238

Docket No. 52-010

April 30, 2007

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555-0001

Subject:

Response to Portion of NRC Request for Additional Information Letter No. 67 Related to ESBWR Design Certification Application –

Reactor Internal Structures – RAI Number 3.9-149

Enclosure 1 contains GE's response to the subject NRC RAI transmitted via the Reference 1 letter.

If you have any questions or require additional information regarding the information provided here, please contact me.

Sincerely,

James C. Kinsey

Project Manager, ESBWR Licensing

Bathy Sedney for

MFN 07-238 Page 2 of 2

Reference:

1. MFN 06-378, Letter from U.S. Nuclear Regulatory Commission to David Hinds, Request for Additional Information Letter No. 67 Related to ESBWR Design Certification Application, October 10, 2006

Enclosure:

 MFN 07-238 - Response to Portion of NRC Request for Additional Information Letter No. 67 Related to ESBWR Design Certification Application - Reactor Internal Structures - RAI Number 3.9-149

cc: AE Cubbage USNRC (with enclosures)

DH Hinds GE (with enclosures)
RE Brown GE (w/o enclosures)
eDRF 0000-0066-7390

Enclosure 1

MFN 07-238

Response to Portion of NRC Request for

Additional Information Letter No. 67

Related to ESBWR Design Certification Application

Reactor Internal Structures – RAI Number 3.9-149

NRC RAI 3.9-149

Table 3.9-4 of the DCD, Tier 2, provides deformation limits for safety class reactor internal structures. GE is requested to provide the technical basis for the General Limits listed in the table.

GE Response

The deformation limit of 0.9/ SF_{min} given in Table 3.9-4 a. of DCD, Tier 2 is determined as follows:

Per the ASME Code, Section II, Part D, Appendix I, the allowable stress intensity value, S_m , for austenitic stainless steel is 90% of minimum yield strength at temperature. Based on experimental data from the industry, the minimum strain, ϵ , before yield of irradiated stainless steel is selected. Using these values and considering the minimum safety factors, SF_{min} , from Chapter 3.9.5.4 of DCD, Tier 2, the maximum permissible deformation can generally be specified as:

$$(P + Q)/E \leq 0.9/ SF_{min} \cdot \varepsilon$$

Where:

P = Primary stress

Q = Secondary stress

E = Young's modulus

 ε = minimum strain before yield

For ASME III, Service Level A and B loads, the maximum permissible deformation with SF $_{min}$ = 2.25 would be:

$$(P+Q)/E \le (0.9/2.25) \cdot \varepsilon = 0.4 \cdot \varepsilon$$

likewise:

$$(P + Q)/E \le (0.9/1.5) \cdot \varepsilon = 0.6 \cdot \varepsilon$$
 for Service Level C loads

and

$$(P + Q)/E \le (0.9/1.125) \cdot \varepsilon = 0.8 \cdot \varepsilon$$
 for Service Level D loads

These maximum permissible deformation limits and the minimum strain value, ε , are specified in the reactor internals design specification.

When experimental data from the actual material are used, the general deformation limit $1.00/ SF_{min}$ as shown in Table 3.9-4 b. may be used.

DCD Impact

No DCD changes will be made in response to this RAI.